
Mixed Reality Real Time Strategy Game
Bachelor of Science Thesis in Information Technology and Computer Science and Engi-
neering

KEVIN BJÖRKLUND, ANDERS ERIKSSON, JIMMY MALMER,
DANIEL OLSSON, CHRISTIAN ROOS, RICHARD WECKE

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Göteborg, Sweden, June 2016

Bachelor of Science Thesis

Mixed Reality Real Time Strategy Game

KEVIN BJÖRKLUND, ANDERS ERIKSSON, JIMMY MALMER,
DANIEL OLSSON, CHRISTIAN ROOS, RICHARD WECKE

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Göteborg, Sweden, June 2016

Mixed Reality Real Time Strategy Game
KEVIN BJÖRKLUND, ANDERS ERIKSSON, JIMMY MALMER,
DANIEL OLSSON, CHRISTIAN ROOS, RICHARD WECKE

© KEVIN BJÖRKLUND, ANDERS ERIKSSON, JIMMY MALMER, DANIEL
OLSSON, CHRISTIAN ROOS, RICHARD WECKE, 2016.

Examiner: Olof Torgersson

Department of Computer Science and Engineering
Chalmers University of Technology
University of Gothenburg
SE-412 96 Göteborg
Telephone +46 (0)31 772 1000

The Author grants to Chalmers University of Technology and University of Gothen-
burg the non-exclusive right to publish theWork electronically and in a non-commercial
purpose make it accessible on the Internet. The Author warrants that he/she is the
author to the Work, and warrants that the Work does not contain text, pictures or
other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for
example a publisher or a company), acknowledge the third party about this agree-
ment. If the Author has signed a copyright agreement with a third party regarding
the Work, the Author warrants hereby that he/she has obtained any necessary
permission from this third party to let Chalmers University of Technology and Uni-
versity of Gothenburg store the Work electronically and make it accessible on the
Internet.

Cover: The room and the table containing the game field as well as the boards for
communication and squad interaction.

Department of Computer Science and Engineering
Göteborg 2016

iii

Mixed Reality Real Time Strategy Game
KEVIN BJÖRKLUND, ANDERS ERIKSSON, JIMMY MALMER,
DANIEL OLSSON, CHRISTIAN ROOS, RICHARD WECKE
Department of Computer Science and Engineering
Chalmers University of Technology
University of Gothenburg

Abstract

Making video games in Virtual Reality (VR) is a fairly new and undeveloped terri-
tory and there are a lot of new problems that arise when developers step into the
world of VR. The goal of this project is to create a Real Time Strategy (RTS) game
in Mixed Reality (MR) and to tackle any problems that may arise. Mixed reality is
VR but with real life elements incorporated in the virtual world. During develop-
ment the VR headset used is an Oculus Rift Development Kit 2 (DK2). To handle
the input from the users a Leap Motion controller is used and the game itself will
be made in the game engine Unreal Engine 4.

An RTS game was created where the player is placed in front of a virtual table
inside a virtual room. The game field, or game world, is then projected on the table
much like a board game. The Graphical User Interface (GUI) is constructed around
the player inside this VR room. A simple menu connected to the player’s hand
was created for unit production and main menus were placed on banners around
the room. There are three kinds of units in the game, a musketeer, a soldier and a
mortar.

The focus of the project was to minimize cybersickness and at the same time create
an innovative input system for VR. Most of the problems that surfaced were due to
the lack of support for a small world inside a larger one, impairing both the scale
of which the player sees the models and the navigation mesh for the AI. It was
essential to have the two separate worlds, the room and the table, to get the board
game feeling sought after, so these problems had to be solved.

Keywords: Leap Motion, Virtual Reality, Oculus Rift, Unreal Engine, Blender, Real
Time Strategy, Tablemen, Stenkross Studios, Chalmers, Bachelor Exam Project.

Acknowledgements

Chalmers University of Technology
Daniel Sjölie - For great supervision and large interest in the project and VR
progress in general.
Arne Linde - For much assistance with many practical things and making the
foundation of the project possible.
Mickaäl Fourgeaud - For taking time and helping out with Leap Motion problems
in Unreal Engine 4.

Chalmers Ventures
Viktor Brunnegård - For taking time and granting supervision in business design.
Alexander Hars - For dedicating time to help us in details regarding a potential
startup.

Gothia Innovations
Fredrik Örneblad - For showing interest and providing motivation and assistance
to the future of the project.

Leap Motion
Alex Colgan - For his continuous support and input towards the development.

vi

Contents

List of Figures viii

1 Introduction 2
1.1 Purpose . 2
1.2 Scope . 2
1.3 Problem Definition . 3

2 Background 4
2.1 Real Time Strategy Game . 4
2.2 Virtual Reality . 4

2.2.1 Cybersickness . 6
2.2.2 Graphical User Interface . 7

2.3 Input . 8

3 Method 9
3.1 Game Design . 9
3.2 Unreal Engine 4 . 10
3.3 Artificial Intelligence . 11
3.4 Artificial Intelligence design in Unreal Engine 4 12
3.5 Input . 13

3.5.1 Scaling Issues . 14
3.5.2 Scaling Issues Solution . 14
3.5.3 The Flag . 16
3.5.4 Leap Motion GUI . 16

3.6 Virtual Reality . 17
3.6.1 GUI in Virtual Reality . 19

3.7 User Testing . 20
3.8 Modelling and Animations . 21

3.8.1 Blender . 21
3.8.2 Sculptris . 21
3.8.3 Modelling of the units . 21

4 Result 23
4.1 Game Design . 23

4.1.1 The Different Types of Soldiers 23
4.1.2 Armor and the Strategy of Battles 24

vii

Contents

4.1.3 Resources . 25
4.1.4 The Fortress . 25
4.1.5 The Resource Points . 25
4.1.6 Artificial Intelligence . 26

4.2 Virtual Reality . 27
4.3 Input . 28

5 Discussion 30
5.1 Input . 30

5.1.1 Leap Motion User Interface 31
5.2 Virtual Reality . 32
5.3 Other Possibilities . 34

6 Conclusion 35

7 Future Plans 36

Bibliography 37

A Appendix 1 I
A.1 Individual Contributions . I

A.1.1 Jimmy Malmer . I
A.1.2 Anders Eriksson . I
A.1.3 Kevin Björklund . II
A.1.4 Christian Roos . II
A.1.5 Daniel Olsson . III
A.1.6 Richard Wecke . III

viii

List of Figures

2.1 Interaction in Minecraft through Augmented Reality (where virtual
objects augment the real world) using Microsoft HoloLens. Image
courtesy of Microsoft Sweden [7]. 5

3.1 Figure shows a loop in blueprints that increments an integer eleven
times. 10

3.2 The AI behaviour tree for the Musketeer unit type. 12
3.3 Illustration of the cross eye effect issue in the game. To get good

focus at the object you have to look with one eye 17
3.4 Illustration of how the human eyes have a larger field of view. Objects

in the yellow area can only be seen with good focus when looking with
one eye. Objects in the green area can be looked with both eyes and
have good focus. In the red area objects cannot be seen at all 18

3.5 Illustration of the narrow field of view that the lenses in the HMD has. 18
3.6 Illustration of how by decreasing the IPD, one can enlarge the green

area where objects can be looked at with both eyes in good focus . . 18
3.7 Figure showing the main menu and chat banner, as well as the chatlog

displayed on monitor in the background. 20
3.8 Each of the units displayed side by side. From the left, the musketeer,

the soldier and the artillerist. 22
3.9 The deployed version of the mortar launcher 22

4.1 The player’s fortress. 25
4.2 Resource point with a capture sphere. When a trooper enters a cap-

ture sphere, the process of taking over a resource point or fortress
begins. 26

4.3 The custom made hands. 28
4.4 The GUI used for production of squads. The icons below the progress

bar represent the different squad types. The icon to the right of the
progress bar is the current squad being in production. The icons
above are the ones in the production queue. 28

4.5 Here is a picture of the player grabbing and holding a flag that is used
for commanding the troops. Directly below the flag is the indicator
showing where the flag will land if released. 29

ix

List of Figures

Glossary

VR - Virtual Reality: An artificial environment that is generated with a computer
in order to simulate physical presence and real environments.

DK2 - Oculus Rift Development Kit 2: The second and last development kit
of Oculus Head Mounted Display.

Leap Motion: An IR camera used for hand tracking.

UE4 - Unreal Engine 4: A high end game engine made by Epic Games.

GUI - Graphical User Interface: A visual interface that allows for easy inter-
action.

Cybersickness: The feeling of nausea that occurs when motion in VR does not
relate to real motion.

AI - Artificial Intelligence: A machine intelligence that evaluates the surround-
ings and works towards an arbitrary goal.

Blender: A free to use 3D modelling software.

RTS - Real Time Strategy: A game genre.

MR - Mixed Reality: A broad concept featuring a combination of virtual as well
as real worlds and objects that can interact with each other.

AR - Augmented Reality: A concept where virtual objects are projected and
interacted with in the real world.

Motion Controller: A position tracked hand controller which can be used to
interact with things in a virtual enviroment.

HMD - Head Mounted Display: The hardware used for simulating Virtual
Reality.

Razer Hydra: A motion controller made by Razer Inc.

API - Application Programming Interface: A programming library consisting
of functions and tools for a specific component.

W2M - World To Meters: A variable used for scaling in VR within Unreal
Engine.

IPD - Interpupillary distance: A measurement of the distance between the eyes.

Mixamo: A company that produces motion capture Animations.

x

List of Figures

Behaviour Tree: A mathematical model used for AI which contains information
about the different tasks the AI characters can do.

Sculptris: A sculpting tool used for soft body mesh creation.

Navigation Mesh: An abstract data structure used for units to navigate compli-
cated spaces.

1

1
Introduction

1.1 Purpose

The purpose of the project is to create an RTS game in VR with a focus on imple-
menting a way of controlling the game that feels smooth and natural while enabling
an immersive and aesthetically pleasing experience for the player.

Additionally, finding ways to decrease or avoid cybersickness, which is a common
problem with VR experiences, was a priority. Exploring the different options of
interaction in VR will also be an objective for this project.

The game itself was a squad based tactical multiplayer game for two players, where
the goal is to conquer the opponent’s fortress by sending in troops and take over
resource points in order to build more troops.

1.2 Scope

MR offers many new possibilities but implementing these ideas, and MR itself, can
be difficult. An early idea was to make use of Microsoft Kinect cameras in order
to scan a room, make a 3D reconstruction of it and then render it in real time in
the game. This will give the illusion that the user really is in the same room while
the environment can change and be modified right in front of the players eyes. The
concept of MR will be further explained in subsection 2.2.

This, however, is not an easy task and it has not been previously implemented for
use in a game. As a result, there is an uncertainty regarding the amount of time
needed to implement this feature and as such the core focus of this project was to
use the Leap Motion controller to enable natural interaction and drive the feeling
of immersion.

A focus on implementing many different control options for the game was not of high
priority. Leap Motion was the main source of input and mouse controls was added
for development purposes. Support for gamepads such as the Xbox One controller

2

1. Introduction

and motion controllers like HTC Vive and Oculus Touch will eventually be added in
the continuation of the game, outside of the project, but it is not within the scope
of this project.

There are two possible modes of play, multiplayer or single-player. Multiplayer was
to be completed first because single-player mode was not a priority for the game.
This is due to having to create an Artificial Intelligence (AI), that can mimic the
player’s decisions and control flags and troopers. This will take too much time, and
time is better prioritized elsewhere. Instead, the core features of playing the game
should be implemented and completed first.

The planned number of maps is just one. If there is time, once all the core features
are completed, work can be put into making another map for the game.

Early in the game planning process, there was an idea that the player should be
able to take control of a trooper, a “commander”, and for a brief moment be able to
move around the field in first person and interact with the enemies. This idea has
moved down the list of priorities and only if there is enough time in the end, will
this feature be implemented.

1.3 Problem Definition

There are three main problems when it comes to game development in virtual reality
that was dealt with in this project. When developing a game in virtual reality all
three of these problems must be considered and dealt with:

• Cybersickness - Cybersickness is referring to the sense of moving but not feeling
that you are moving. Often causing nausea this is a common problem in VR.
Often confused with motionsickness, that is essentially the opposite, where
motionsickness refers to the sense of feeling that you are moving but not seeing
it. [1]

• Input - Input and input devices is for the majority of cases not as effective
for VR application as they are in 2D environments. Mouse and keyboard for
example is not as viable in 3D space as it is currently in 2D applications.

• Interface - As for input devices, interfaces that are common today are tailored
for 2D applications and are therefore not as effective for VR environments.
These interfaces are commonly stuck on the screen which works fine on a
computer screen but not in VR. Because of this, a new type of interface needs
to be invented. [2]

3

2
Background

2.1 Real Time Strategy Game

The RTS genre is vast and there are many different types of RTS games. All games
in this category share at least one feature, the players must make their decisions
in real time[3]. This can be compared to other strategy games, such as Heroes of
Might and Magic, originally by 3DO, or the more classic board game, Chess, where
every player can take their time before making a move.

Taking a look at an iconic RTS game, Starcraft II[4], some common elements of RTS
can be distinguished. Elements such as, gathering resources, training and upgrading
troops, planning attacks and battle the enemy. All of this happening in real time has
the effect of games often becoming very fast paced. This is due to the fact that the
player who makes smart decisions faster than the opponent will have an advantage
in battle.

2.2 Virtual Reality

A new genre of gaming is emerging, live-action virtual reality games. This is a result
of Virtual Reality is entering the gaming industry and many other industries, and
it requires different kind of game play.

" We say that live-action virtual reality games are “live-action games” because a
player physically acts out his/her “avatar” (his/her virtual representation) in the
game stage, the mixed-reality environment where the game happens." , says Valente
et al.[5]

Virtual Reality (VR) is the concept of a computer generated alternative reality, in
which you can step into with the help of various technologies. The concept of VR
has seen a huge increase in attention over the past few years due to the commercial
release of the first generation VR headsets, where Oculus Rift and HTC Vive are
the major products on the market. These headsets use head tracking sensors to
determine the head’s position, and can then use these coordinates to position your

4

2. Background

view in a virtual world. Another feature is the use of two screens, one for each eye,
to create a stereo vision effect with sense of depth.

Another concept within the area is Augmented Reality. This technique applies
enhancements to the real world, instead of stepping into a virtual world. Microsoft
HoloLens is a recent example of this, where all kinds of 3D rendering are applied to
real world environment.

There exist articles that describes how Augmented Reality works. Engadget posted
an article describing Microsoft’s HoloLens, an AR headset, and how it can change
the way viewers perceive and interact with Minecraft[6].

Figure 2.1: Interaction in Minecraft through Augmented Reality (where virtual
objects augment the real world) using Microsoft HoloLens. Image courtesy of Mi-
crosoft Sweden [7].

In between these two there’s a concept called Mixed Reality. Mixed Reality intro-
duces the concept of blending real with virtual, where physical real world objects can
interact with the virtual objects, creating new ways of interaction. In a sense, Mixed
Reality is Augmented Reality within Virtual Reality. An example of this could be
cameras capturing the surroundings, allowing the rendering of these surroundings
in the virtual world.

Aspects of Mixed Reality can be a part of the gameplay of live-action VR games, as
mentioned in a an academic article from Brazil.

"The game may also track physical objects that are part of this physical environment
and map them in the virtual world as 3D models. Examples of these physical objects
are furniture, interactive objects carried by a player, and players’ own bodies. How-
ever, the player does not see the physical world and physical objects, the player only
sees virtual representations through the HMD.", writes Valente et al.[5]

There has been a lot of excitement regarding VR in the last few years. A VR headsets
lets you dive into a 3D environment with a higher level of presence (the perception
of truly being in the game world) than what is possible with only a stereoscopic 3D
display. With VR headsets the players can not only look, but also move around the

5

2. Background

environment which truly makes for an immersive and enhancing experience that is
not limited to just games but is also available to other applications such as military
training and medicine.

There are challenges with VR, however. Cybersickness (see below) can easily erupt
if the headset does not respond correctly to the players’ perception of movement.
Another challenge is to handle the players input in VR. The mouse and keyboard is
not optimal anymore e.g as the players cannot see them, instead new methods such
as hand motion detection or VR motion controllers must be explored. The input
part is especially challenging in real time strategy games, where the players must
be able to do many things at once, and be able to navigate quickly through options
and maps.

The VR Head Mounted Display (HMD) used in this project is an Oculus Rift DK2.
This version of the headset is not representative of the final product. The Oculus
Rift DK2 is solely for the purpose of letting developers get ahead for the actual
release of the consumer variant (CV1). The CV1 however has been commercially
released during the project, but has not been available for testing. The CV1 has
considerably better specifications than the DK2. This means that many, especially
negative, observations relating to the HMD could possibly be considerably improved
with the new hardware.

The Oculus Rift is essentially a headset consisting of two screens, one for each eye.
In front of each screen is a lens, which makes the screen appear larger than it really
is. This is to increase the field of vision and allow the eye to focus at a good distance.
This increase in field of vision, does however make the screen resolution more critical,
as it makes the individual pixels more apparent. This could be compared to staring
at a 40” LCD TV from 10 cm away.

Oculus uses a camera to track the position of the HMD to keep the real world head
position synchronized with what the players sees. It does this with the help of several
infrared LEDs with their relative positions and patterns calculated to determine the
relative position of the HMD.

2.2.1 Cybersickness

Cybersickness in virtual reality can be likened to nausea and occurs when the re-
sponse of the headset does not match the movement of the player’s head, especially
in games with a first person perspective where the players have the option of not only
moving the view with their head but can also control it with an input device like a
gamepad or mouse. Other things which can cause cybersickness include acceleration
and input lag.

Since game development in VR is relatively new it is also possible that new things
might be discovered that cause cybersickness. Finding solutions for these problems
while retaining a great sense of immersion is one of the key focuses of this project.

6

2. Background

One of the core issues in this project will be to investigate the placement of the
players in the game environment and their ability to move around the map. The
question is whether the players should be able to navigate a larger map or if the
player should be stationary but able to reach and look everywhere on a smaller
map. It will be a part of our goal to measure and hopefully minimize the amount
of cybersickness in this game.

Road To VR published an analysis on how one can avoid cybersickness in VR
games[8].

2.2.2 Graphical User Interface

Since the invention of computing technology, people have had a need for easier
interaction with their computers. People have always done this with the help of
a User Interface (UI). The User Interface’s complexity can range from a label and
a lever to a fully text based operating system. Ever since computers made their
way into the world we have sought to make computers more accessible to common
people.

At first, computers were fully text-based, meaning that people only wrote commands
in a prompt and the computer executed those commands. This was effective, but
not very user friendly, since it required the user to know the commands to be able
to use the computer.

Later, during the late 1970’s a company named Xerox made the first Graphical
User Interface or GUI. A GUI is a way for the user to graphically interact with
the computer, making it much easier to use the hardware without education on the
system. It was not however until the coming of the Apple Macintosh that GUIs
became popular. One reason why the Macintosh became so popular was because of
its GUI and therefore ease of use for the public[9].

Over the years developers and end users alike have refined the term GUI. They’ve
made it easier to understand, optimizing the way it looks and the information it
presents and so on. Some go through extreme effort to make their GUI tailored
to the way they want to use it, resulting in GUIs others couldn’t possibly hope to
understand let alone use. One thing however has always been the same, the GUI is
projected on a 2D monitor. Having a fixed frame of where the GUI would go, and
bounds that the GUI would play inside.

Now, with the VR revolution (As predicted by Motherboard[26] there will be 7-16
Million users that buy a HMD), developers need to rethink the term GUI and a new
standard needs to be set. As LeapMotion writes in their blog, GUIs are going to
change[25]. Now that the bounds are removed, we’re probably going away from a
2D type of GUI. The 2D world is limited to what you can do and the 3D benefits
from the possibilities that VR enables. A few examples of this would be Google’s
Tilt Brush[24] where the GUI is bound to the players left hand and the player is able

7

2. Background

to summon the GUI on command. Another example is Fantastic Contraption[23] by
Northway Games where as little GUI as it is, it is still bound to the player’s hands.

2.3 Input

Input and interaction is a core problem when dealing with Virtual Games, but in
Mixed Reality there are ways to alleviate the problems.

"Having Agency is the ability to act in any given environment. It’s the feeling of
having power and ability to manipulate the things around you. Without it, you have
the Swayze Effect which is an issue that 360° Video Storytelling is still dealing with.
As I’ve mentioned before, your hands are one of the most important things you need
to bring into VR with you. Why? Because you’ll spend more time playing with
balloons than you would’ve ever imagined.", writes Azad in an article on Virtual
Reality interaction[10][11]

When it comes to input in VR there are a lot of interesting choices that are both on
the market and under development. The two most common options right now are
gamepads like the Xbox One controller and motion controllers such as the Razer Hy-
dra, HTC Vive and the upcoming Oculus Touch. Motion controllers are controllers
that use different types of sensors for tracking the player’s hand motions. The Razer
Hydra, for example, uses magnetic fields to determine position and orientation.

A third option is the Leap Motion controller which is a hand tracking camera that
can be mounted on the headset. It uses optical sensors and infrared light in order to
scan the user’s hands and then feeds that data via a USB cable to the computer where
a person as a developer can access it through the Leap Motion API (Application
Programming Interface) or via game engines that support it.

The Leap Motion controller has a field of view of 150 degrees and has an effective
range from 25mm to 600mm in its forward direction[12]. With the beta version
of the new driver (Orion) being released, the hand tracking has been elevated to
a new level and is now a much more reliable source of input in games and other
applications than it was before this project was started.

8

3
Method

3.1 Game Design

The first idea of the game was to make a game in MR, blending real with virtual.
This way, the playfield of the game would actually appear right out of the table that
was scanned in, leading to a greater sense of immersion. In order to do this the first
plans were to scan a room, with depth sensing cameras such as Microsoft’s Kinect,
and recreate it virtually within the game world. It was quickly realized, however,
that this would most likely be a project on its own and the idea was abandoned.
Instead it was decided to make a fixed room in the game, where the aspect of mixed
reality would be achieved by the players having a physical table in front of them
(typically the desk where the player’s computer is).

The gameplay of this game follows the core principles of the RTS genre. The players
never wait for their respective turn, instead they always keep playing. This makes
for a gameplay where players must react in time to their opponents’ moves and plan
and execute their actions accordingly.

In most games that employ the RTS formula, the soldiers have no will of their own;
the player decides where they go, when to attack or defend as well as upgrading the
soldiers.

It would prove to be a little too difficult and cumbersome to steer the soldiers
as precisely as one normally does in an RTS game, in VR. In order to make the
controlling experience smooth, it was decided to make use of flagpoles. Each of
these flagpoles have their own squad of soldiers. When a flagpole is grabbed and
moved across the playing field, the squad that belongs to that flag will move to its
location. In other words, the idea is that the soldiers would be intelligent and move
to the flagpole, attack and seek cover automatically on their own.

9

3. Method

Initially there were plans for having an artificial intelligence acting as another player
to be the human player’s opponent. It was decided early that this was not interesting
and could also take too much time to implement. Instead, the game is supposed to
be played online versus other human players. This way, it is also easier to make sure
that both players get the same or similar VR experience, since it is very difficult
to drive two VR headsets on the same PC hardware through local multiplayer.
Handling the network code for the multiplayer feature was done within the game
engine.

3.2 Unreal Engine 4

This game was created using the game engine Unreal Engine 4, made by Epic Games.
All logic in the game was implemented using this engine and its feature called
“Blueprints”. The Blueprints Visual Scripting language is a visual way of program-
ming, which requires no code to be written. Instead, the user creates functions and
commands represented as boxes and then connects these boxes by dragging lines
between them. This makes it easy for beginner developers to create a project in the
engine, although it is still necessary to have some programming experience to fully
understand what the commands do and how to properly connect them. [13]

Figure 3.1: Figure shows a loop in blueprints that increments an integer eleven
times.

Since no one in the project group had any previous experience of Unreal Engine 4,
reading the documentation and tutorials gave much useful information on how the
project should be implemented.

It is possible to make the game entirely with programming code. In Unreal En-
gine, the programming language one has to use is C++, unless one wants to use the
blueprint approach. Blueprints can easily be combined with C++, which is preferable
in some cases where one has to implement functions with heavy calculations like AI

10

3. Method

and physics, as blueprint can be less efficient than pure code. In our case this has
not become a performance issue as of yet, but if it does we will have to port some
of the blueprints scripts to C++.

When it comes to Leap Motion in Unreal Engine we used a plugin originally made
by Mark Weiser. However the development of the plugin was taken over by a Unreal
community member named Jan Kaniewski, also known by his username “Getnamo”,
whom made the plugin more event driven. The plugin was an unofficial plugin in
version 4.10 since Epic and Leap Motion had tried making an official one but it was
put on hold due to many bugs. Getnamo’s plugin has now become the official Leap
Motion plugin as of version 4.11 of Unreal Engine and it does a great job exposing
the Leap Motion API to Blueprints which makes it easy for developers to get started
creating content.

3.3 Artificial Intelligence

Artificial intelligence (AI) is a major part of many games today, especially when
it comes to the RTS genre. In this genre, the player himself is often busy coming
up with strategies and commanding whole troops to complete certain tasks. As a
consequence, the player has no time to tell every single unit exactly where to move,
whom to attack or what way is the fastest. Therefore an AI is implemented to take
care of such tasks.

The player controlling the army simply orders the soldiers to move to a location and
then the AI takes responsibility to move each and every character in the army to
the marked location. Because of this, a smart AI is necessary so that every obstacle
can be dealt with in the best possible way, whether it is a static object blocking the
path or an incoming enemy.

Another use for AI in the RTS genre is a human-like opponent to battle. Many
RTS games, such as Starcraft II and Rome Total War II, both offer a chance to
play against other human players and to try to battle an AI. In the case of the AI
opponent there will be two types of AI in the game. The first one is the helping AI
that will help the units make small decisions and the second one is actually making
all the strategy decisions and acting as the foe.

11

3. Method

3.4 Artificial Intelligence design in Unreal Engine
4

The method used to design the decision making AIs in Unreal Engine 4 is called
behaviour trees.

Figure 3.2: The AI behaviour tree for the Musketeer unit type.

The character AI is designed to control pawn characters throughout the game. The
AI is running a specific behaviour tree that will let the pawn react to and handle
certain events. The behaviour tree is constantly running and is going through the
tree until it runs out of branches to follow; Then it starts over from the top once
again.

By creating branches and adding conditions that must be met to get access to a
certain branch, the player is able to guide the soldiers through the behaviour tree
by triggering different events and giving specific inputs. For instance in this project
the soldiers will be following a squad captain. The behaviour tree is waiting for the
captain to start moving and will then use an algorithm to follow the captain. The
captain is in turn waiting for the location of the flag to change so that he can start
moving to his next target. All the player has to do is to move the flag and suddenly
a whole squad are on their feet moving across the table. By moving the flag, the
squad captain unlocks a branch that will tell him to start moving to the location
of the flag. This in turn will open up the branch to move for all other members of
the squad. By using this type of AI the developer can give the soldier the ability
to detect a range of different predetermined scenarios and react differently to each
and every one of them.

Another important aspect of any RTS game is pathfinding. Since the player most
of the time does not want to bother telling every unit exactly which path to take to
get to a target, a smart pathfinding AI must be implemented. Unreal Engine 4 has a

12

3. Method

“move to target/move to location” function that allows a character to move directly
to a given target or location. This function results in very simple movement, the
character will calculate a path and move in a straight line towards the given point.
When objects or characters block the calculated path the result is a collision between
the moving character and the obstacle. The algorithm can not handle changes in
the calculated path. For the “move to target” function to work there needs to be
a navigation mesh present on the map. The navigation mesh is used to mark the
parts of the map that will allow characters to move on. By using a navigation mesh
the characters will know where they are allowed to move and where they can not
go, i.e. on top of the mountain that exists on the current map. Unreal Engine 4
uses a simple object to automatically generate the navigation mesh, which can then
be modified by the programmer.

3.5 Input

For this project it was decided that a Leap Motion controller would be the most
interesting and most immersive source of input to develop for. It was also one of the
cheapest options which made it pretty simple for us to convince the University to buy
one. In the discussion section this choice will be motivated in more detail. Support
for mouse and keyboard controls were implemented for development purposes since
we only had access to one HMD and one Leap Motion controller.

After the decision was made that Leap Motion would be used it was time to start
looking at what kind of support Unreal Engine had for it. It turned out that
there were two existing plugins for the Leap Motion controller, one official and one
unofficial. The official plugin was integrated in the engine and it was developed by
people at Leap Motion and Epic. So, obviously, this sounded like the best option
and experiments with it started.

However the HMD that was to be used in this project had not been acquired yet so
testing out the plugin in the beginning was done in a non-VR environment resulting
in a false belief that everything worked fine. When the HMD finally arrived and the
same tests were run in VR mode a lot of issues arose that had to do with orientation.

It turned out, after reading in the Unreal forums in more detail, that the built in
plugin had severe flaws when it came to VR and that the issues were very hard
to track down, in fact the whole development of the plugin had been completely
abandoned.

One of the reasons that development had stopped was due to the success of the
unofficial plugin of integrating support for VR and exposing almost all of the core
functionality of the Leap Motion API to blueprints in Unreal Engine which made
it that much simpler getting started with development. After downloading the
unofficial Leap Motion plugin and seeing how well it worked in VR and how simple
it was to use, the process of implementing it in our game started.

13

3. Method

3.5.1 Scaling Issues

When the integration of Leap Motion in the project started, an issue that had to do
with scaling was encountered, and it would prove to be extremely difficult to find a
solution. The problem had to do with a parameter called World To Meters (w2m),
which is located in world settings within the Unreal Engine editor under the section
VR settings. This parameter is used in order to scale everything up or down in the
world in order to make the player feel smaller or larger in VR. The higher the value
of w2m the larger will the player feel in the world and vice versa.

Experiments had been made with w2m in order to find a value that made it feel like
the player sat in front of a real table and could look and reach almost everywhere
on the map. However two issues came up when modifying this parameter. The
first issue had to with something called Interpupillary Distance (IPD) which is the
distance between the eyes and this will be discussed in more detail in the next section
3.6.

The second issue had to do with the Leap Motion plugin. When increasing w2m to
the amount that was needed, the hands started behaving really strange. The Leap
hands started jittering and their movement got delayed a lot. This problem turned
out to be a really hard one to solve but at first we tried to avoid it by scaling the
world down so w2m could be kept at default value.

After scaling everything in the world down to “real life” sizes everything seemed
good at first. It felt like one sat behind a real table and the hands felt normal. So
now it was time to implement functionality for grabbing and releasing the flag that
we had decided would be the way to move your forces around and then connect it
with the rest of the game. In the first iteration of this feature one could pick up and
drop the flag anywhere on the map and it would fall down with a specified speed
and land on the map.

When it had landed, a waypoint was set so the squad of soldiers connected to the
flag would be able to find their way there. However when it was time to test this
functionality a new issue arose. It appeared that, on the very small scales that
we now worked on, the generation of navigation meshes used for pathfinding broke
down. There are a lot of parameters one can change in order to tweak the generation
of navigation meshes but it appeared our world was way too small to achieve a solid
navigation mesh, which meant we had to go back to changing the w2m parameter
and tackle the strange problems that came with it.

3.5.2 Scaling Issues Solution

The strange issue with the Leap Motion hands had to be solved. As described earlier
they got a jitter effect and moved with a great delay, making them impossible to
use for interaction in the game. To get a grasp at what might cause this we had

14

3. Method

to learn how the plugin worked from the ground up by looking at the source code,
which is written in C++. A lot of different changes to the source code was made
but the solution came from studying the official plugin that was described earlier.
This plugin had a lot of issues with orientation in VR but when increasing w2m the
problems with jittering and delayed movement that Getnamo’s plugin had, did not
show up.

This was interesting and when we looked at the source code for the built in plugin
we saw that w2m was taken into account when updating the positions of the hands,
which meant that something similar had to be done in the plugin we used. However
the architectures of the two plugins differed so tremendously that it took a long
time to figure out where w2m needed to be integrated. But eventually after a lot of
experimenting and discussing with the creator of the plugin, Getnamo, one part of
the problem was solved.

The jittering effect of the hands and the delayed movement problem was fixed with
an addition to the function ConvertAndScaleLeapToUE located at LeapInterfaceU-
tility.cpp in Getnamo’s plugin [14]. The code that needed to be added was:
f loat w2m = GWorld−>GetWorldSettings()−>AWorldSettings : : WorldToMeters ;
Vector vect = FVector(− l eapVector . z ∗ LEAP_TO_UE_SCALE ∗ w2m,

leapVector . x ∗ LEAP_TO_UE_SCALE ∗ w2m,
leapVector . y ∗ LEAP_TO_UE_SCALE ∗ w2m) ;

This addition to the source code meant that w2m got taken into account when calcu-
lating the position of the hands. The function that needed modification handles the
translation from the Leap Motion coordinate system to the Unreal Engine coordinate
system.

One issue still remained though. The actual size of the hands did not scale along
with the changes made to the code. It was expected that the addition of w2m to the
function above would also scale the size of the hand meshes. After trying to scale
up the hands on various places in the source code and also in the Unreal Engine
editor, it was concluded that this was not possibly.

There was no way to change the actual size of the hands in an easy way within
Unreal Engine but one could export the original hands, that came with the plugin,
to blender and modify them there. So after the hands got exported to blender they
were scaled up with the same amount that w2m was increased from its default value.
After this the hands were imported back into Unreal Engine and when doing so it
is very important to check a box called “Use TOAs Ref Pose” [15]. If this method
is not used then a really strange orientation issue will arise that gave us a lot of
headaches.

Finally with working hands in VR, the implementation of functionality for the Leap
Motion controller could be resumed.

15

3. Method

3.5.3 The Flag

The functionality for moving the flag around was implemented as described earlier
but had to be refined and adjusted to handle different scenarios such as when the
player drags the flag through the map and drops it. To solve this an indicator was
implemented so the player always can see where the flag will land when dropped.
The indicator is ray casted from the flag onto the map and it is represented as a
circle that will blink when the player holds the flag and stop blinking once the flag
has landed.

When the flag gets dragged too far below the map the indicator will always be visible
so there is no confusion as to where the flag will land.

3.5.4 Leap Motion GUI

Next up was the creation of a GUI system and it was decided that a simple and easy
to use GUI was to be created which would at first only handle squad production.
The GUI was to be attached to the left hand and only be visible when the player
rotates the left hand so that the palm faces the player’s face.

At first a system for interactive buttons in VR for Leap Motion had to be imple-
mented from scratch since this did not exist to our knowledge. When creating a
GUI in VR for Leap Motion there were a lot of new things to think about compared
to ordinary 3D or 2D games. For instance, the player should not be able to click
the button from behind and not accidentally press many buttons at once. Also the
size of the buttons and the collections of all GUI components would have to be a
proper size so the player does not accidentally press buttons due to them being too
close to each other.

The issue of the player pressing a button from behind was solved by adding another
collision box behind the button so it could easily be decided which way the player
interacted with the button from first. The problem with pressing many buttons at
once was solved by adding an extra check for the player’s index finger, which means
that the finger top has to reside within the boundaries of the button and overlap
with the collision boxes for the buttons in order for an event to occur. And the last
issue of the size of the buttons was solved after a lot of testing. More user testing
has to be made in order to decide whether or not we succeeded in making good sizes.

Another important thing when making GUI in VR with Leap Motion is to make
the buttons interactive. This was done by giving interactive responses to the user
in the form of changing light around the frame of the button and by translating the
button back a bit.

In the first iteration the player could only create one type of squad and it was no
time restriction on squad creation. Functionality for queueing up production of

16

3. Method

the three different squad types was later implemented and also a progress bar that
visualized the remaining time of the creation of the selected squad.

3.6 Virtual Reality

Getting started with VR in Unreal Engine 4 is very simple and straightforward.
When using Oculus Rift DK2 which was the HMD used for this project it was just
plug and play. The issues however, started when integrating VR into our game.

As mentioned in section 3.5 Input, issues with the IPD arose when increasing the
w2m parameter. The problem was that a "crossed eyed" effect occurred when looking
too closely at objects in the game world which made it impossible to get good focus
with both eyes opened. Since we want the player to be able to look really close at
things in the world this issue had to be investigated further.

Figure 3.3: Illustration of the cross eye effect issue in the game. To get good
focus at the object you have to look with one eye

It was found that the issue arises due to the narrow field of view of the lenses in
the HMD which is around 100 degrees. Also the lenses in the HMD are completely
static which means that when trying to focus on things that are too close in VR
the lenses will not adjust at all in the same way as our eyes do. Humans tend to
automatically cross their eyes when looking at objects more closely which means
that the area where you can focus on objects with both eyes is much larger. This
area is also larger due to the fact that the human eyes have a much larger field of
view, around 180 degrees. As illustrated in Figure 3.4 the human eyes have a larger
field of view than the lenses of the HMD. The green area in the figure is also more
dynamic as mentioned earlier which means it will vary in size.

17

3. Method

The following figures are just approximations and are simply used to better illustrate
the issue being discussed.

Figure 3.4: Illustration of how the human eyes have a larger field of view.
Objects in the yellow area can only be seen with good focus when looking with one
eye. Objects in the green area can be looked with both eyes and have good focus.

In the red area objects cannot be seen at all

Figure 3.5: Illustration of the narrow field of view that the lenses in the HMD
has.

Figure 3.6: Illustration of how by decreasing the IPD, one can enlarge the green
area where objects can be looked at with both eyes in good focus

So the reason we cannot look as close as we want in VR, in comparison to real life, is
that the lenses of the HMD have a much more narrow field of view then the human
eyes. They are also completely static which further limits the area of focus with two
eyes.

To solve this problem with the "crossed eyed" effect there are a few things one could
do. The first thing that was tried was to lower the IPD. By lowering the IPD the area
in which one could focus on objects with both eyes gets larger meaning one could
look more closely at them. But the effect of lowering the IPD is that everything will
appear larger for the player. This is due to the fact that a decrease of the IPD means
that the player’s eyes gets closer to each other meaning the player feels smaller. The
result of this is a weird sense of scale since the movement of the player was still
related to a "large" player while the player felt small. However one could now look

18

3. Method

really close at objects in the world with both eyes but the weird sense of scale was
not something we wanted. So a more flexible solution needed to be implemented
and we came up with two ideas.

The first solution was to specify a region around the map and when the players’
stuck their heads inside the region the IPD would instantly change to a lower value.
However this method was quickly dismissed since the immediate change of IPD made
all people who tried it feel unease or cybersick.

The second solution was to change the IPD dynamically depending on how close
the player got to objects in the world. The way it was done was by ray casting
from the HMD world location in its forward direction and then measure the length
of the ray cast between its impact point and the HMD location. Then an interval
was specified with a maximum and minimum range in where the IPD should be
calculated with a linear interpolation function. So the closer the player got to a
world object the lower the IPD would become if the player is inside the specified
interval. This solution gave us the best of both worlds. Players’ could now look
really close at objects with good focus and when looking away the sense of the right
scale and depth reappeared.

3.6.1 GUI in Virtual Reality

The VR-GUI used within this project was developed over a series of iterations.
Evaluating what was working and not working shaped the GUI into the final version.
The first few iterations the GUI was more like a control panel with buttons and
joysticks that moved with the player, providing the player with all necessary tools
for movement, communication and unit production. When this was more of an 2D
solution kind of GUI it was quickly developed further, disconnecting the player from
the GUI.

This was made possible with moving the GUI into a room the player was placed
in, and then placing the menus onto banners that were placed around the room
and displaying information on painting billboards on the walls of the room. A chat
consisting of preset messages and receivers were placed on a banner and the chatlog
on a wall painting, this was however changed in a later iteration.

19

3. Method

Figure 3.7: Figure showing the main menu and chat banner, as well as the
chatlog displayed on monitor in the background.

3.7 User Testing

To investigate what causes cybersickness in our game some user tests were done.
Since there was a lot of technical issues surrounding VR and Leap Motion this
resulted in that a lot of time that was initially planned for a more comprehensive
user test session had to be postponed. However the tests that were made was done
mostly during a demonstration day where a lot of people tried our game. The
different solutions for the IPD issue was tried and people reported how they felt. It
was concluded that the dynamic IPD change would cause feelings of cybersickness
for some people. A few of the people who felt unease with the IPD change had
never tried VR before which means they might not be the best subjects for testing.
Other people who felt unease had previous experiences of motion sickness , from car
driving and likewise, which means they too might not be the best test subjects. The
reason these people might not be the optimal testers is due to that they might feel
unease in VR for almost anything.

Even though some tests were made, a lot more has to be done before we can fully
conclude if changing the IPD should be avoided completely.

20

3. Method

3.8 Modelling and Animations

3.8.1 Blender

The models (troopers, buildings and the map) and animations for meshes were not
created within Unreal Engine but instead a 3D-modelling software called Blender
was used. Blender is completely free and is suitable for professional modelling and
animation.

The program has the capability to create meshes and to texture them by using
2D maps, called UV-maps to project textures on 3D-models. It can also create
skeletal rigs that can be attached to meshes and moved around. Using this technique
animations can be created for games or movies.

3.8.2 Sculptris

Sculptris is a freeware created by Pixologic, and is a lightweight sculpting software
that has few features but it is good at brush modelling. Sculptris was used to create
organic models for the character models.

3.8.3 Modelling of the units

The model’s base shape was first created within Blender using box-modelling and
subsequently brought into Sculptris to be sculpted into a human character. Sculptris
was used to achieve organic details with its dynamic mesh algorithm that adds new
polygons where needed to achieve mesh deformations. The model was thereafter
brought back into Blender to be optimized. This was needed to make the mesh
less demanding on the computer hardware. The mesh was thereafter given an UV
map to apply textures on the model. UV-map is named after its axes U and V, by
convention. With a human mesh completed, unit differentiation was done by adding
different clothing and apparel to the mesh. There were no options for this project
when choosing tools to use in the modeling process. The reason for this was because
of our previous experience with Blender and Sculptris.

21

3. Method

Figure 3.8: Each of the units displayed side by side. From the left, the
musketeer, the soldier and the artillerist.

Figure 3.9: The deployed version of the mortar launcher

Each character was then uploaded to a studio called Mixamo where each model
was automatically skinned. The mesh had to be skinned to skeleton bones before
it could be animated. Mixamo has a large amount of available animations, and it
was possible to find almost all of the needed animations. The models and skeleton
animations from Mixamo are too down scaled to be used in Unreal Engine, so scaling
up has to be done inside Blender.

22

4
Result

4.1 Game Design

The basic goal of our game is for the players to move their soldiers into the opposing
player’s fortress. Once the soldiers are in place a progress bar will indicate how
much of the fortress has been conquered. After some time, when the progress bar
has been filled, the fortress has been conquered and the player wins.

When starting out, the players have limited resources needed to deploy new squads
of troopers or artillery units. Throughout the game there will be resource points
that the players can capture, in order to procedurally gain more resources.

The purpose of this setup is to implement strategic elements to the game, where
players will have to defend their captured resource points or position their squads
to hinder the opposing players.

4.1.1 The Different Types of Soldiers

The battles in the game are fought by three different types of soldiers. The mid
range musketeers, the close range swordsmen and the long range mortar launcher.
These types of soldiers have different advantages and disadvantages to each other.

The Musketeers are the mid range soldier class. Their armor is not very thick
putting them at a clear disadvantage against swordsmen at close range. Their main
benefit is their ability to fire their rifles, killing off enemy units from a mid range
distance. The catch, however, is that the musketeers will not always hit their target.
A unique trait to the musketeers is their ability to seek cover when under attack,
making them less vulnerable to enemy fire while still able to return fire towards the
enemy.

The Swordsmen are the close range units. They sport thicker armor than the
musketeers but they can only attack at close range. Swordsmen do, in contrast to
the musketeers, always hit their targets. As long as the swordsmen can get up close

23

4. Result

to the enemy, they are a very reliable battle force.

The Mortar Launcher is the heavy artillery unit capable of long range attacks.
When their projectiles hit their mark they explode, hitting any enemy units within
the blast radius. The drawback of the mortar launcher is its slow firing rate and
low defensive capabilities. The mortar is operated by four artillerists. When all of
the artillerists are killed, the mortar will be rendered useless and be destroyed.

The development of the mortar demanded a solution for the firing arc of the mortar.
Even though an “animation version” (with a set explosion point and only animation
to show the projectile fly) was considered, the final implementation came with the
fairly complicated task of calculating the force which a projectile should receive and
be fired in a set angle to hit a target location.

The calculation of the force (F) was made with the following equation that was
derived from Newton’s laws.

F =
√

dg

2sin(θ)cos(θ) ∗ sin(2θ)

Where g is the gravity constant, d is the distance to the target point, where the
cannonball will land, from the mortar and θ is the angle between the barrel and the
ground.

4.1.2 Armor and the Strategy of Battles

Every class of soldier wear armor but no two classes of soldiers wears the same
armor. While they have the ability to fire from a distance, the musketeers are very
susceptible to damage. They easily fall in battle if they are hit by any attack.
Getting musketeers to hide behind cover and keep a distance from the enemy is the
key to using this class of soldiers.

The swordsmen may require to be up close with their targets but they wear a more
durable armor making them more resistant to attacks. If a swordsman can get close
enough to take a swing at a musketeer, the musketeer will certainly meet his end.

While being next to indestructible by the weapons of the musketeers and the swords-
men, the mortar still needs to be operated by artillerists who do not wear very pro-
tective armor. Their main defense is what the mortar provides. The best way to
take out an enemy mortar would be to send in a squad of swordsmen to dispose of
the artillerists or to blast it with a mortar of one’s own.

24

4. Result

4.1.3 Resources

Resources are what determine how many and what kind of squads the player can
deploy in battle. The more resources the player has, the more and stronger squads
the player can deploy. When the player runs out of resources the player will not be
able to deploy any squad until the resources have been refilled.

4.1.4 The Fortress

This is where the player’s troops will be spawned into the battlefield. The fortress
is the player’s most important building and must be defended from the opposing
player’s forces. When the troopers of an opposing force enters a fortress a progress
bar will tick down, indicating how much of the fortress that has been taken over.
Once the bar has reached zero, the fortress has been completely conquered by the
opposing force and the opposing force wins the game. Keeping the enemy from the
player’s fortress, while advancing into the enemy’s fortress, is the most important
factor of this game.

Figure 4.1: The player’s fortress.

4.1.5 The Resource Points

Spread across the battlefield are several resource points that can be captured by
any of the players in order to increase the amount of resources gained over time.
Strategically choosing which resource points to capture will ensure a better income
of resources, giving the player the possibility to spawn more troops and overpower
the enemy.

25

4. Result

Figure 4.2: Resource point with a capture sphere. When a trooper enters a
capture sphere, the process of taking over a resource point or fortress begins.

4.1.6 Artificial Intelligence

There are at this point two major AI parts implemented and running, a pathfinding
AI and some different versions of a decision making AI. The pathfinding functionality
in Unreal Engine 4 was used as the first AI. This made it possible to focus more on
the second major AI, the decision making AI.

Each type of unit shares the same core functionality such as choosing a captain and
moving to their flag. In addition each character uses their own functions for attacking
and in the case of the musketeers, finding and choosing cover. These functions are
given a priority, a condition to be called and are placed in the behaviour tree. When,
for example, evaluating cover, the musketeers take into consideration the position
of all seen enemy soldiers as well as the distance to the cover. The position of the
enemies is used to evaluate which cover is the most optimal. If no cover is in a
specific range, the condition to find cover is not met and the function will not be
called.

26

4. Result

4.2 Virtual Reality

To create a sense of immersion it was decided to put the player within a virtual room.
This room would contain a table where the game field is set up as a board game
for the player akin to a game of chess. This decision was made partly to prevent
cybersickness, since a lot of times games can be quite chaotic and this might be a
reason for the emerging of cybersickness and also to provide a 1:1 mapped method
of moving around the game world as needed.

As of now we have two alternatives for the IPD issue first introduced in the method
section (chapter 3). The first one is to keep the IPD at a precalculated value,
either the default or one that is significantly lower. The other option is to change it
dynamically with the method described in section 3.6.

The Leap Motion hands work well and as intended in VR after the scaling issue was
solved as described eariler in section 3.6.

When it comes to cybersickness, which was one of the main problems to be addressed
in this project, it was concluded that in situations where the player only moves 1:1
with the movement of the head, there was little to no cybersickness for any of
our testers. One of the only situations in which the application makes our testers
sick is when the frame rate drops to below about 60 fps. In this case, the screen
stutters forward, which causes a very high strain on the eyes, and might cause heavy
cybersickness. This is, however, not a problem as long as you run the application on
hardware fit for it (mainly with a sufficient GPU). It was also discovered that certain
guidelines existed in order to achieve better frame rate. For instance, dynamic
shadows shouldn’t be used at all and static shadows or light maps should be used
instead[20].

Another issue had to do with the dynamic change of IPD which made some testers
experience cybersickness. But since this was implemented at the end of the project
more testing will have to be made in order to decide whether to remove this feature
or keep it as an option. The reason it might cause cybersickness is due to the fact
that a decrease in IPD means shrinking the player’s head down while the movement
still relates to a larger scaled player. [21]

27

4. Result

4.3 Input

In the end, after dealing with all the issues described earlier with VR and Leap
Motion, there are now custom made hands in the form of medieval looking gauntlets
in correct size.

Figure 4.3: The custom made hands.

There is a basic GUI attached to the left hand that gets shown when the user
faces the left palm towards themselves. Right now the GUI only handles squad
production which means the player can easily queue up a series of squads that shall
be produced if the player has enough gold and then a progress bar will start loading
that indicates how long it will take to produce the selected squad. The GUI will
be expanded greatly in the future and a general system for interactive buttons and
progress bars has been implemented which will make expanding it easier.

Figure 4.4: The GUI used for production of squads. The icons below the progress
bar represent the different squad types. The icon to the right of the progress bar
is the current squad being in production. The icons above are the ones in the
production queue.

28

4. Result

A general system for interacting with objects has been implemented. For now it is
only used for the flag and the target ball that is connected to the mortars, but it
will be easy to expand the system for more interactable objects.

For now the system of interaction supports grabbing objects with pinch events,
moving them wherever the player wants and releasing them. On release they will
fall down with a specified speed until they land on the visual indication point on
the map.

Figure 4.5: Here is a picture of the player grabbing and holding a flag that is used
for commanding the troops. Directly below the flag is the indicator showing where
the flag will land if released.

29

5
Discussion

5.1 Input

When deciding what kind of input would be best suited for an RTS game in Virtual
Reality, there were many options. The first option considered was a regular gamepad
like the Xbox One controller, however it was quickly decided that this option would
be a pretty boring and not so unique solution to the input problem. A more suitable
solution for VR was needed and the thoughts started heading towards some sort of
motion controller in the likes of the upcoming Oculus Touch. Since the Oculus Touch
wouldn’t be launched until the autumn of 2016 we had to look towards alternatives
and quickly found that one of the more popular motion controllers was the Razer
Hydra. However the Razer Hydra was too expensive and it appeared not to be as
precise as we had hoped. In the end we decided to go with a solution that is both
interesting and very immersive, the Leap Motion controller. The Leap Motion is an
IR camera that is attached to a head mounted display and then tracks the player’s
hands to create a virtual representation of them inside the virtual environment. This
gives the player a very immersive feeling as they can see their hands and interact
more naturally with the virtual world. For our game this felt like the most optimal
and unique solution.

Another option that would have been great was the HTC Vive, however due to the
late release date it was not an alternative. We will have support for it as soon as we
get our hands on the hardware. Since HTC Vive is roomscale VR, which means that
a larger tracking space exists for the HMD due to an additional tracking camera, it
would be a perfect match for our game.

There has been problems with the Leap Motion controller. The initial creation of
the models made them too small making it impossible for the troopers to navigate
the map. Scaling them up resulted in the hands being too small in comparison
to the rest of the models and the map objects. When scaling up the hands we
encountered a problem with the handling which was discussed in section 3.5. There
was a rubber band effect where the hands would not correctly follow the movement
of the Head Mounted Display. The hands also twisted and turned and locked into
awkward positions making it impossible to control the game. In order to solve this
we had to modify the plugin software for the Leap Motion controller and scale up

30

5. Discussion

the hand models in Blender. This task proved arduous and consumed a vast amount
of time, but in the end we succeeded in making the hands the right size.

Using the Leap Motion controller with Unreal Engine 4 proved to be not as straight-
forward as we first thought simply due to the nature of the game we were making.
Since no one before us seemed to have done anything similar to what we wanted to
achieve, it was inevitable that issues would arise.

An issue which has not been resolved with the Leap Motion is the decline in tracking
when moving hands into non-optimal angles of the camera. It is, however, expected
to be improved with future software improvements from the manufacturer.

5.1.1 Leap Motion User Interface

When implementing the Leap Motion GUI there were some guidelines that were
followed. As mentioned in [17] on page 23 it is really important to make buttons
appear interactive and give proper response when the user interacts with them in
order to achieve a sense of feedback. They should also be in proper sizes and have
a certain distance from each other so that the user does not accidentally press more
buttons than intended. This was all taken into consideration when the implemen-
tation started. Something that was not added during the time of the project was
sound response when pressing buttons but this will be implemented in the near
future as it is of great importance when it comes to giving proper response.

Another thing that has been discussed and that will most likely be implemented in
the future is to enable the player to disconnect the GUI from the left hand and place
it wherever the player wants it. This implementation was inspired by a Youtube
video. [18] It is a very flexible system that is completely optional for the player but
can provide a greater sense of interaction.

Before it was decided to have the GUI attached to the hand other options were
considered. For instance a control panel in front of the table where the player could
handle all the necessary interactions for playing the game. It was also talked about
placing the GUI for the squad production above the player’s fortress. This will,
however, be optional for the player if we choose to go with the detachable GUI
method.

The reason for not choosing the control panel approach was because having a GUI
attached to the player’s hand felt like a more compact solution. It also becomes
more dynamic with the player being able to easily access the GUI from anywhere in
the virtual room and always from a close range.

One issue that is well known is the so called Swayze effect which has to do with the
player’s ability to go through obstacles in the virtual world. When getting hands in
the virtual environment, questions arise regarding how this effect should be handled
with regards to user interfaces. When it comes to buttons one could implement

31

5. Discussion

them in such a way that the player cannot press through them and the buttons will
follow along with the finger pressing them.

However according to Mike Alger [19] most people do not have an issue with being
able to move their hands through virtual objects. He also made buttons with a
water like color since it might make people associate the virtual button with water
which might ease the experience of being able to press through objects in the virtual
environment with hands.

In our game the problem of the Swayze effect is partly solved with the virtual table
being 1:1 mapped to a real table but for the user interfaces we allow the player to
press through buttons and other virtual objects that are not mapped to real world
objects.

5.2 Virtual Reality

An issue that was discovered quite early in the project, but was paid more attention
to quite late was the problem with looking closely at things. Normally when looking
at things closely, many people cross their eyes to focus. This becomes an issue in
VR, since the angle of view does not cover that far inwards, which in turn makes
it impossible to focus on things closer than about 2dm with both eyes at the same
time. This created a very annoying effect for some people where it felt like there was
an error with the hardware. However, it was discovered that some people had no
issue with this. Si Lumb, BBC Research & Development [16], suggests that testing
has shown that older people have lost the reflex of crossing the eyes, for whom it is
not an issue. When talking to Si Lumb he says:

“In current VR, focus is always at infinity, so young eyes try to converge on close
objects without realising they are in fact an infinite distance away, just represented
in stereo. Older eyes can’t converge as well, so the effect is less pronounced.”

As this technology is new, there is not much research on the topic. A thorough study
would need to be conducted to get to the bottom of this. This will be necessary to
be able to design around the problem in our application, but has not been within the
timeframe of the project. There are however some options to a workaround for this
problem. The way we handle it right now is with dynamic change of IPD depending
on how close the player gets to objects.

However some people that have tried it experienced a sense of cybersickness while
other did not so further testing will have to be made with this method before a
decision is made to keep it. But for now the option of dynamic IPD will exist.
Other ways that this might be solved is by letting the IPD be at default and then
add a magnifying glass that the player can grab somewhere in the virtual room
and then use to be able to look closely at objects. Another option we have been
discussing is that the player should be able to throw some kind of sphere or character

32

5. Discussion

at the place on the map they want to look closely at and then they will be teleported
there and shrunk down to the appropriate size.

It could also be a camera that the player can place on the map and which starts
streaming the zoomed in environment to the big screen in front of the table. This
has the advantage of not making the player move too much and accidentally smash
their HMD in the table. We will implement all these suggestions in the future and
make a lot of user tests in order to decide what might be best suited for our game.
It might be appropriate to have all solutions to the problem available as options in
the game and then the player gets to decide which suits them best.

Something else that has to be properly done is a way of mapping our virtual table
to a real table more generally since we cannot assume that all players have the
same tables. This can be done with the HTC Vive fairly easily where the user
measures the table to be used with their motion controllers. This might be harder
with Oculus though since it only comes with one tracking camera and the Oculus
Touch motion controllers have not arrived yet. A way to solve this is to let player
input the dimensions of the table they aim to play on.

One of the key focuses of this project was to reduce the level of cybersickness for
users and one of the ways in which we did that was to give the player a familiar
environment inside a room by a table. This idea of a room and table would also
open up new possibilities when it came to the UI. In a game in virtual reality it is
a difficult task to display an informative UI, without the UI being in the way. A
minimap or a scoreboard will take up a lot of space and, since the player now is
inside the game instead of just being an observer, these can easily be distracting.

Many of the UI features can now instead be placed on the walls and in other spaces
around the room and the player can just turn his head to access a specific feature.
Utilising the Leap Motion controller to show information was also an option in
which the player would be able to have the information displayed in the palm of one
of the hands. The player would simply turn their hand, open their palm and the
information would be displayed.

While we do not have physical objects to interact with (i.e. AR cards that would
function as flags), the idea is to have a physical table in front of the player that
is approximately the same height and size as the virtual table in the game. This
gives the player the notion of moving and interacting with a real table in the game,
and to have real life objects in the game gives elements of MR. A good question
might be why we chose MR instead of AR. AR would probably have provided a
better experience, the downside to AR is that it is currently very expensive and not
commercially available. To make a game for AR today would mean almost no one
got to play it since not many have the gear required.

33

5. Discussion

5.3 Other Possibilities

An early idea was to make use of Microsoft Kinect cameras, capable of sensing
depth within an image, in order to bring the player and the encompassing area
into the game. The setup would require at least three cameras placed around the
player to scan in the player and the table. With this method the players could
walk around the physical table and interact with the playing field. In this example,
controlling the flags would be done by using special cards that the cameras can
scan and interpret as flags in the game. For a more in depth explanation on how
room scanning works, although without real time rendering, is to look at a project
by researchers at Chalmers where depth streams are used to scan the player into a
virtual environment[22].

34

6
Conclusion

Making an RTS game for VR has been an interesting and challenging task. Many
issues arose along the way that took a lot of effort to solve but in the end we got a
working product. One of the most challenging problems had to do with our choice
of input, Leap Motion. Since no one before us had made an RTS game in VR with
Leap Motion as input, the problems got much harder to solve. In the end a solution
was found and the Leap Motion hands work very good as a source of input in the
game.

The approach taken to solve the issue of user interfaces in VR was to attach a GUI
to the left Leap Motion hand and to place interactable banners in the virtual room.
A GUI system had to be developed for this which will be expanded in the future.

When it comes to the issues described in our report about IPD, which was a difficult
problem to tackle, it has not fully been solved. A reason for this is that the current
method being used, where the IPD gets updated dynamically, has various side effects
from person to person. As discussed in the previous section a lot of user testing will
have to be done in order to decide whether this solution is the best or if one of the
other suggestions made in the discussion section will be better suited.

As for the problem of cybersickness we cannot say that no user will ever experience
it from our game but a lot of effort has been taken to avoid it as much as possible.
Few of the people who have tried our game so far have complained about feeling
nauseous. The few who did experience nausea have had a history of motion sickness,
for example feeling sick from traveling by car. In our game we tried to avoid and
minimize cybersickness by mapping a real table to the virtual table and placing
the player in a room that feels familiar and real. Keeping a high frame rate was
also important since it was discovered pretty quickly that a low frame rate caused
cybersickness for almost all users.

35

7
Future Plans

At one point in the middle of the project, there was a realization that there might
be a commercial value in the product. Since this generation of VR is very new, there
are very few applications for the hardware. After some initial market research, it was
established that our product would stand decently against current competitors, and
that the project was fairly alone in the specific genre of gameplay. Because of this,
it was decided to explore the potential commercialisation of the project. Through
gaining business contacts through many different sources (closed Slack channels,
Chalmers Ventures, Gothia Innovation), we have managed to build a network of
information and channels. This gave a lot of very needed information on business
design and further progress. A business plan has been formed, and application to
join the incubator Gothia Innovations in Gothenburg has been discussed, so the
odds of the game becoming commercially available are fairly high.

The game is in a very rough state, where most things are working on a very basic
level, but the game has uncompleted features as well as a lot of bugs. The next
stage of the development would have to first include completion of features to create
a working beta version. After that a big testing phase would have to begin where
the game is polished and everything tested thoroughly to prepare for a potential
release.

36

Bibliography

[1] LaViola Jr. J J, (2000), "A Discussion of Cybersickness in Virtual Environ-
ments". In: ACM SIGCHI Bulletin: Volume 32 Issue 1, Jan. 2000 pp. 47-56
[Online] DOI: http://delivery.acm.org/10.1145/340000/333344/
p47-laviola.pdf?ip = 129.16.184.203id = 333344acc =
ACTIV E%20SERV ICEkey = 74F7687761D7AE37.3C5D6C4574200C81.
4D4702B0C3E38B35.4D4702B0C3E38B35CFID = 616119686CFTOKEN
= 45645855&_acm__
= 14634070456abb076cbd95380ccc4c4ec174cf35a3URLTOKEN .

[2] D. Allen, (2015), Ten Do’s and Dont’s to improve Comfort in VR.
Available: http://www.blockinterval.com/project-updates/2015/10/16/ten-
ways-to-improve-comfort-in-vr.

[3] M. Buro, D. Churchill (2012), "Real-Time Strategy Game Competitions". In:
AI MAGAZINE pp. 106-08. ISSN 0738-4602
DOI: http://www.aaai.org/ojs/index.php/aimagazine/article/download/2419/2317.

[4] Blizzard Entertainment, INC. (2016) What is StarCraft II?
Available: http://eu.battle.net/sc2/en/game/guide/whats-sc2.

[5] L. Valente, E. Clua, A. Ribeiro, S. Bruno Feijó (2015),"Live-action Virtual
Reality Games", ISSN 0103-9741.
DOI: https://arxiv.org/ftp/arxiv/papers/1601/1601.01645.pdf

[6] N. Summers, (2015) I played ’Minecraft’ with Microsoft’s HoloLens.
Available: http://www.engadget.com/2015/07/08/minecraft-hololens-
minecon/

[7] Microsoft Sweden (2015) win10-HoloLens-Minecraft
Available: https://www.flickr.com/photos/microsoftsweden/15716942894/

[8] S. Hayden, (2016), 7 Ways to Move Users Around in VR Without Making Them
Sick
Available: http://www.roadtovr.com/7-ways-move-users-around-vr-without-
making-sick/

37

http://delivery.acm.org/10.1145/340000/333344/p47-la_viola.pdf?ip=129.16.184.203&id=333344&acc=ACTIVE%20SERVICE&key=74F7687761D7AE37.3C5D6C4574200C81.4D4702B0C3E38B35.4D4702B0C3E38B35&CFID=616119686&CFTOKEN=45645855&__acm__=1463407045_6abb076cbd95380ccc4c4ec174cf35a3#URLTOKEN
http://delivery.acm.org/10.1145/340000/333344/p47-la_viola.pdf?ip=129.16.184.203&id=333344&acc=ACTIVE%20SERVICE&key=74F7687761D7AE37.3C5D6C4574200C81.4D4702B0C3E38B35.4D4702B0C3E38B35&CFID=616119686&CFTOKEN=45645855&__acm__=1463407045_6abb076cbd95380ccc4c4ec174cf35a3#URLTOKEN
http://delivery.acm.org/10.1145/340000/333344/p47-la_viola.pdf?ip=129.16.184.203&id=333344&acc=ACTIVE%20SERVICE&key=74F7687761D7AE37.3C5D6C4574200C81.4D4702B0C3E38B35.4D4702B0C3E38B35&CFID=616119686&CFTOKEN=45645855&__acm__=1463407045_6abb076cbd95380ccc4c4ec174cf35a3#URLTOKEN
http://delivery.acm.org/10.1145/340000/333344/p47-la_viola.pdf?ip=129.16.184.203&id=333344&acc=ACTIVE%20SERVICE&key=74F7687761D7AE37.3C5D6C4574200C81.4D4702B0C3E38B35.4D4702B0C3E38B35&CFID=616119686&CFTOKEN=45645855&__acm__=1463407045_6abb076cbd95380ccc4c4ec174cf35a3#URLTOKEN
http://delivery.acm.org/10.1145/340000/333344/p47-la_viola.pdf?ip=129.16.184.203&id=333344&acc=ACTIVE%20SERVICE&key=74F7687761D7AE37.3C5D6C4574200C81.4D4702B0C3E38B35.4D4702B0C3E38B35&CFID=616119686&CFTOKEN=45645855&__acm__=1463407045_6abb076cbd95380ccc4c4ec174cf35a3#URLTOKEN
http://delivery.acm.org/10.1145/340000/333344/p47-la_viola.pdf?ip=129.16.184.203&id=333344&acc=ACTIVE%20SERVICE&key=74F7687761D7AE37.3C5D6C4574200C81.4D4702B0C3E38B35.4D4702B0C3E38B35&CFID=616119686&CFTOKEN=45645855&__acm__=1463407045_6abb076cbd95380ccc4c4ec174cf35a3#URLTOKEN
http://www.blockinterval.com/project-updates/2015/10/16/ten-ways-to-improve-comfort-in-vr
http://www.blockinterval.com/project-updates/2015/10/16/ten-ways-to-improve-comfort-in-vr
http://www.aaai.org/ojs/index.php/aimagazine/article/download/2419/2317
http://eu.battle.net/sc2/en/game/guide/whats-sc2
https://arxiv.org/ftp/arxiv/papers/1601/1601.01645.pdf
http://www.engadget.com/2015/07/08/minecraft-hololens-minecon/
http://www.engadget.com/2015/07/08/minecraft-hololens-minecon/
https://www.flickr.com/photos/microsoftsweden/15716942894/
http://www.roadtovr.com/7-ways-move-users-around-vr-without-making-sick/
http://www.roadtovr.com/7-ways-move-users-around-vr-without-making-sick/

Bibliography

[9] E. Raymond and R. Landley, (2004), "The first GUIs, History: A Brief History
of User Interfaces". In The Art of Unix Usability, Catb.org, 2016. [Online].
Available: http://www.catb.org/esr/writings/taouu/html/index.html [Ac-
cessed: 2016]

[10] A. Balabanian, (2016), Cause and Effect-VR’s Essential Interaction, Available:
https://medium.com/@WizardofAz/cause-effect-vr-s-essential-interaction-
efff0471b470.7ix2encm2

[11] M. Burdette, (2015), The Swayze Effect
Available: https://storystudio.oculus.com/en-us/blog/the-swayze-effect/

[12] Leap Motion Documentation, (2016), "API Overview" [Online].
Available: https://developer.leapmotion.com/
documentation/cpp/devguide/LeapOverview.html

[13] Epic Games, (2016), "Blueprints Technical Guide"
Available: https://docs.unrealengine.com/latest/INT/
Engine/Blueprints/TechnicalGuide/index.html.

[14] M.Weiser and J.Kaniewski (Getnamo), (2014), "An event-driven Leap Motion
plugin for the Unreal Engine 4". Available: https://github.com/getnamo/leap-
ue4/blob/master/Plugins/LeapMotion/Source/LeapMotion/Private/LeapInterfaceUtility.cpp

[15] Epic Games, (2016), FBX Import Options Reference Available:
https://docs.unrealengine.com/latest/INT/Engine/Content/FBX/ImportOptions/

[16] S. Lumb, (2016), BBC Research & Development, [Personal Communication]

[17] Leap Motion, Inc. (2015), VR Best Practices Guidelines [Online] Version 1.2
DOI: https://developer.leapmotion.com/
assets/Leap%20Motion%20VR%20Best%20Practices%20Guidelines.pdf

[18] HOCgaming, (2016), Sword Art Online GUI - V2! [VR Dev Log - 05], Available:
https://www.youtube.com/watch?v=d70Sc0IzKm0

[19] M. Alger, (2015), VR Interface Design Pre-Visualisation Methods, Availabe:
https://www.youtube.com/watch?v=id86HeV-Vb8

[20] Epic Games, (2016), Virtual Reality Best Practices Available:
https://docs.unrealengine.com/latest/INT/Platforms/VR/ContentSetup/

[21] Epic Games, (2016), Virtual Reality Best Practices [Online]
Available: https://docs.unrealengine.com/latest/INT/Platforms/VR/ContentSetup/

[22] V. Kämpe, S. Rasmuson, M. Billeter, E. Sintorn and U. Assarsson (2016).
Exploiting Coherence in Time-Varying Voxel Data [Online]
Available: https://www.youtube.com/watch?v=ptmHag3XwXY&feature=youtu.be

38

http://www.catb.org/esr/writings/taouu/html/index.html
https://medium.com/@WizardofAz/cause-effect-vr-s-essential-interaction-efff0471b470#.7ix2encm2
https://medium.com/@WizardofAz/cause-effect-vr-s-essential-interaction-efff0471b470#.7ix2encm2
https://storystudio.oculus.com/en-us/blog/the-swayze-effect/
https://developer.leapmotion.com/documentation/cpp/devguide/Leap_Overview.html
https://developer.leapmotion.com/documentation/cpp/devguide/Leap_Overview.html
https://docs.unrealengine.com/latest/INT/Engine/Blueprints/TechnicalGuide/index.html
https://docs.unrealengine.com/latest/INT/Engine/Blueprints/TechnicalGuide/index.html
https://docs.unrealengine.com/latest/INT/Engine/Content/FBX/ImportOptions/
https://developer.leapmotion.com/assets/Leap%20Motion%20VR%20Best%20Practices%20Guidelines.pdf
https://developer.leapmotion.com/assets/Leap%20Motion%20VR%20Best%20Practices%20Guidelines.pdf
https://www.youtube.com/watch?v=d70Sc0IzKm0
https://www.youtube.com/watch?v=id86HeV-Vb8
https://docs.unrealengine.com/latest/INT/Platforms/VR/ContentSetup/
https://docs.unrealengine.com/latest/INT/Platforms/VR/ContentSetup/
https://www.youtube.com/watch?v=ptmHag3XwXY&feature=youtu.be

Bibliography

[23] Fantastic Contraption, Northway games, (2016) Available:
http://fantasticcontraption.com/

[24] Tilt Brush , Google, (2016) Available: http://www.tiltbrush.com/

[25] LeapMotion Blog , (2016) Available: http://blog.leapmotion.com/vr-interface-
design-future-hybrid-reality/

[26] MotherBoard’s forecast of sales, (2016) Available:
http://motherboard.vice.com/read/how-much-will-oculus-vive-vr-sell

39

http://fantasticcontraption.com/
http://www.tiltbrush.com/
http://blog.leapmotion.com/vr-interface-design-future-hybrid-reality/
http://blog.leapmotion.com/vr-interface-design-future-hybrid-reality/
http://motherboard.vice.com/read/how-much-will-oculus-vive-vr-sell

A
Appendix 1

A.1 Individual Contributions

A.1.1 Jimmy Malmer

Responsibilities:
Project Leader. Responsible for project deadlines, planning etc. Involved in al-
most all large decisions concerning design choices, features, path of the project etc.
Scrubmaster-ish role, helping where needed. Developer of large parts of the AI.
Main responsible for the marketing.

Problem solving, synopsis, analysis:
Been trying to solve issues where they arise, acting sounding board and giving
feedback regarding ideas. Been largely involved in the general VR problems with
IPD etc, and discussing the issues outwards to gain information. Had the initial
idea of an RTS, and had a big role in the building of the project planning.

Report sections responsibility:
Virtual Reality (Background & Discussion)
Development Process
Future Plans
(Have also done additions in many other parts of the report where needed)

A.1.2 Anders Eriksson

Responsibilities:
Mainly responsible for Leap Motion and VR integration in the project and dealing
with all the issues that came with it. Also helped out with various problems that
other members encountered.

Problem solving, synopsis, analysis:
Struggled with a lot of issues regarding VR and Leap Motion but managed to get it

I

A. Appendix 1

working after a lot of trial and error and discussions in the unreal forums. We have
also worked together a lot in the group to solve problems that arose by discussions
and laying out the problem on a whiteboard.

Report sections responsibility:
Wrote everything to do with input and also a lot about VR and the conclusion.

A.1.3 Kevin Björklund

Responsibilities:
Primarily responsible for still-graphics, ranging from icons, to textures and environ-
ment assets such as rocks and walls. Painted the game titelpicture and the poster.
Heavily influeced the planning of the project, decisionmaking within the project and
shaping the gameplay. Inlearning was made as needed, looking up alot of things re-
garding graphics.

Problem solving, synopsis, analysis:
Several problems arose around the graphics that was solved. Been around to assist
solving questions from everyone and tried to make myself an asset.

Report sections responsibility:
Been writing parts of the project report. Mainly the parts about UI and GUI as
well as the problem definition and the abstract.

A.1.4 Christian Roos

Responsibilities:
Mainly focused on the network part of the project and also been helping out with
different parts of the developing process. Made the melee unit and made all the
other units multiplayer compatible. Mostly trial and error, reading forum posts and
watching tutorial videos. A lot of work with blueprints in Unreal Engine 4.

Problem solving, synopsis, analysis:
We have mostly worked together when major problems have been discovered. When
minor problems have come our way the forum posts has been the number one source
of help.

Report sections responsibility:
Been writing a part of the introduction, writing the RTS part in the background as
well as the AI part in both background and results. Been helping out with some of
the images taken for the report.

II

A. Appendix 1

A.1.5 Daniel Olsson

Responsibilities:
Responsible to make sure the animated models were created to be used in testing
AI, and as an end-product. The animated characters were: Artillerist for Mortar,
Soldier and Musketeer. Also were responsible for the death animation of those, using
Ragdoll physics. Created the Particle effects used in combination with the units,
gunfire, blood spray and mortar fire explosions. Created the animated storybook
which were used for navigation.

Problem solving, synopsis, analysis:
Has been focused on trying to get the units to work as fast as possible so that
the AI-guys could test and evaluate their AI with a moving character. Attended
all meetings and listened carefully for other peoples problems, and considered if I
could help. Has tried to help with any problem arisen with Blender which I’ve used
alot. Coded the animation transitions and events for the soldiers, and the change
of physics for the soldiers.

Report sections responsibility:
Wrote the modelling section in the method section, though half of it was later
removed. Helped transferring the method section to LateX, found a couple of refer-
ences. Added picture for Mortar, and Units.

A.1.6 Richard Wecke

Responsibilities:
Assisting project management, involvement in creative design as well as project
planning and gameplay elements. Was also a large part of the development of the
artificial intelligence (mainly responsible for the Mortar Launcher, Artillerists and
partly responsible for the Musketeers and other more general features of the AI).
Responsible for the structure of the Final Report. Composed the Main Theme of
the game.

Problem solving, synopsis, analysis:
Have been struggling and solving problems, together with other group members,
regarding the AI as they arose. Making use of solutions from the Unreal Forums
as well as the documentation of the Unreal Engine have been other ways of solving
problems with the AI. Have also taken part in discussions of solutions to other
problems within the project.

Report sections responsibility:
Responsible for the structure of the final report. Also wrote about the Game Design
and partly about the Unreal Engine as well as cleaning up, or filling out, some text
when necessary. Mainly responsible for bringing the final text into LATEX.

III

	List of Figures
	Introduction
	Purpose
	Scope
	Problem Definition

	Background
	Real Time Strategy Game
	Virtual Reality
	Cybersickness
	Graphical User Interface

	Input

	Method
	Game Design
	Unreal Engine 4
	Artificial Intelligence
	Artificial Intelligence design in Unreal Engine 4
	Input
	Scaling Issues
	Scaling Issues Solution
	The Flag
	Leap Motion GUI

	Virtual Reality
	GUI in Virtual Reality

	User Testing
	Modelling and Animations
	Blender
	Sculptris
	Modelling of the units

	Result
	Game Design
	The Different Types of Soldiers
	Armor and the Strategy of Battles
	Resources
	The Fortress
	The Resource Points
	Artificial Intelligence

	Virtual Reality
	Input

	Discussion
	Input
	Leap Motion User Interface

	Virtual Reality
	Other Possibilities

	Conclusion
	Future Plans
	Bibliography
	Appendix 1
	Individual Contributions
	Jimmy Malmer
	Anders Eriksson
	Kevin Björklund
	Christian Roos
	Daniel Olsson
	Richard Wecke

