
Sampling a Subset of Chemical Space
with GNN-Based Generative Models

Evaluating the Chemical Space Coverage of Molecular Gen-
erative Models Using GDB-13

Master’s thesis in Computer Science and Engineering

TOBIAS RASTEMO

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2020

Master’s thesis 2020

Sampling a Subset of Chemical Space
with GNN-Based Generative Models

Evaluating the Chemical Space Coverage of Molecular Generative
Models Using GDB-13

TOBIAS RASTEMO

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2020

Sampling a Subset of Chemical Space with GNN-Based Generative Models
Evaluating the Chemical Space Coverage of Molecular Generative Models Using
GDB-13
TOBIAS RASTEMO

© TOBIAS RASTEMO, 2020.

Supervisor: Shirin Tavara, Department of Computer Science and Engineering
Advisor: Rocío Mercado, AstraZeneca
Examiner: Alexander Schliep, Department of Computer Science and Engineering

Master’s Thesis 2020
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: In the center of the images a depiction of the iterative graph generation
process is shown. Here, a GNN takes a graph as input, outputs an action sample
space (green-checkered cube), and then an action is is sampled and applied to the
graph. This iterative process is repeated until some termination criteria is met.
To the left training data from GDB-13 is input into the process, and to the right,
generated molecules from trained models is output.

Typeset in LATEX
Gothenburg, Sweden 2020

iv

Sampling a Subset of Chemical Space with GNN-Based Generative Models
Evaluating the Chemical Space Coverage of Molecular Generative Models Using
GDB-13
TOBIAS RASTEMO
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
In recent years deep neural network models have been used in the field of drug
discovery for de novo molecular design. One, somewhat novel, field of deep learning
that has seen some use in drug discovery is graph neural networks (GNN:s). This
thesis evaluates 6 GNNmodels for use in molecular graph generation. The evaluation
is based on a benchmark introduced by Arús-Pous et al. [1], which measures how
well models sample a subset of chemical space. The models are also compared to
existing recurrent neural network models (RNN:s), which use string representation of
molecules. The best performing GNN models achieve comparable scores to the RNN
models, all though the RNN models score higher. Even though the GNN models
score slightly lower on two of the training sets, they still show great potential for
future use and merit further research. In addition to this, a data loading scheme
for PyTorch is introduced, which increases training speed by loading training data
from disk efficiently.

Keywords: machine learning, deep learning, graph neural networks, message passing
neural network, de novo molecular design, graph generation

v

Acknowledgements
I would like to thank my supervisor at AstraZeneca, Rocío Mercado for help, guid-
ance, and support during the course of this thesis work. Much of the work done was
based on models implemented and coded by her, and she helped me overcome many
hurdles and problems. She also helped with many aspects of the report, and helped
make it what it is. The entire Molecular AI group at AstraZeneca also provided me
with help and insight for many aspects of my thesis, and I would like to especially
mention Ola Engkvist and Esben Bjerrum for continuous input that helped shape
the project.

I would also like to thank my supervisor at Chalmers, Shirin Tavara for her in-
put and guidance during the project, as well as constructive and well thought out
criticism for my final report. My examiner Alexander Schliep, and my opponent
Jithinraj Sreekumar also provided me with good input for my report, and I thank
them as well.

Lastly I would like to thank Fredrik Ring and Inger Rastemo for proof reading, and
providing feed back to my report.

Tobias Rastemo, Gothenburg, August 2020

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1

2 Technical Background 3
2.1 Graph Neural Networks . 3

2.1.1 General Model Scheme . 3
2.2 Graph-based Generative Models . 5

2.2.1 General Construction Scheme 5
2.2.2 Action Sampling . 7
2.2.3 Training Graph Generative Models 8
2.2.4 Existing Implementations . 9

2.3 String-based Generative Models . 9
2.3.1 SMILES . 10
2.3.2 Model Structure . 11
2.3.3 Existing Implementations . 11

2.4 Evaluating Generative Models . 12
2.5 Enumerated Database of Molecules (GDB-13) 12

3 Methods 13
3.1 Choice of GNN Models . 13
3.2 Training . 14

3.2.1 Training Sets . 14
3.2.2 Hyperparameters . 14
3.2.3 String based Models . 16
3.2.4 Hardware and Software . 16

3.3 Training Data and Data Storage . 17
3.3.1 Graph Representation . 17
3.3.2 Data Preprocessing and Data Representation 19
3.3.3 Padding Data . 20

3.4 Data Loading . 20
3.4.1 HDF . 20
3.4.2 Disk Bottleneck . 20
3.4.3 Loading in Blocks and Shuffling 21

3.5 GDB-13 as a Benchmark . 22

ix

Contents

3.5.1 The Ideal Model . 22
3.5.2 Benchmark Metrics . 23
3.5.3 Performance Considerations when Processing SMILES 24

4 Results 27
4.1 Model Convergence . 27
4.2 Model Validation . 27
4.3 GDB-13 Benchmark . 31

4.3.1 Sampled Molecules . 34
4.4 Computational Performance . 34

4.4.1 Memory usage . 35
4.4.2 Computational Speed . 36

5 Discussion 39
5.1 GDB-13 Benchmark . 39

5.1.1 Fluctuations . 39
5.1.2 Viability of GNN Based Models 39
5.1.3 Randomized and Canonical CharRNN Performance 40
5.1.4 Sample Size . 41

5.2 Continuing Evaluations . 41
5.3 Model Improvements . 41

5.3.1 Incorporating RNN:s . 42
5.3.2 Further Hyperparameter Optimization 42
5.3.3 Newer and Different Architectures 43
5.3.4 Canonical Representation and Data Augmentation 43

6 Conclusion 45

Bibliography 47

A GNN Publications I
A.1 Original Graph Neural Networks . I
A.2 Graph Convolutional Networks . I
A.3 Message Passing Neural Networks . II

B GNN Architectures V

C Complete GDB-13 Benchmark IX

D Ideal Generative Model XIII

x

List of Figures

2.1 Illustration of a partial message passing step in an MPNN 4
2.2 This figure illustrates the iterative graph generation process. 6
2.3 A description of the graph generation process using MPPN:s. 6
2.4 Presentation of the tensors used to represent construction actions. . . 8
2.5 Various molecules from GDB-13 and corresponding examples of one

SMILES representation for each. 10

3.1 Plot of learning rate for three different learning rate decay parameters. 16
3.2 A small sample molecule from GDB-13. 18
3.3 Depiction of the GDB-13 set and sets of sampled molecules. 24
3.4 The distribution of the length of SMILES in GDB-13. 25

4.1 Training loss for different GNN based models and training sets. . . . 28
4.2 Validity and uniqueness of molecules generated by the different GNN

models trained on GDB-13 1K. 28
4.3 Analogous plots to what is presented in Figure 4.2 but for models

trained on the GDB-13 10K subset. 29
4.4 Analogous plots to what is presented in Figure 4.2 but for models

trained on the GDB-13 100K subset. 29
4.5 The average number of nodes in each graph of the sampled molecules. 30
4.6 GDB-13 benchmarks for some models trained on the GDB-13 1K subset. 31
4.7 Analogous plots to what is presented in 4.6 but for models trained on

the GDB-13 10K subset. 32
4.8 Analogous plots to what is presented in 4.6 but for models trained on

the GDB-13 100K subset. 33
4.9 Molecules sampled with the AttGGNN model at epoch 30 trained on

the 1K GDB-13 subset. 34
4.10 Molecules sampled with the AttS2V model at epoch 40 trained on

the 1K GDB-13 subset. 34
4.11 Molecules sampled with the GGNN model at epoch 90 trained on the

100K GDB-13 subset. 35

C.1 The full benchmark of all GNN and CRNN models for the 1K training
set. X

C.2 The full benchmark of all GNN and CRNN models for the 10K train-
ing set. XI

xi

List of Figures

C.3 The full benchmark of all GNN and CRNN models for the 100K
training set. XII

xii

List of Tables

3.1 The values of the common hyperparameters used in the different GNN
networks. 15

3.2 The different learning rates and learning rate decay factors used for
the different GDB-13 subsets. 16

3.3 The hardware used for training and benchmarking. 17
3.4 The node features represented in the graph data. 17
3.5 The edge features represented in the graph data. 17
3.6 Size and number of samples for the different GDB-13 datasets. 22

4.1 The different benchmarking results for all GNN and CRNN models. . 37
4.2 Data usage for different data types in Python and C when managing

SMILES. 37

xiii

List of Tables

xiv

1
Introduction

Deep learning (DL) has recently grown in popularity in the fields of drug discovery
and de novo molecular design. The flexibility of DL models coupled with the in-
creasing amount of available molecular data gives DL many advantages over more
traditional machine learning methods, such as support vector machines and random
forests. As such, DL is on its way to becoming the new standard in pharmaceutical
drug discovery[2].

A rather novel class of models within DL is the graph neural network (GNN), in-
troduced by Gori et al. [3] and Scarselli et al. [4] in 2005 and 2009, respectively. A
GNN takes a graph as input and by utilizing internal neural networks it produces a
real-valued output vector. This output vector can be seen as an embedded version of
the graph and can be used in other neural networks for global property prediction.
Being able to operate on graphs directly is very useful since data in many domains
are naturally represented as graphs. One of these domains is drug discovery, where
graphs can be used to represent molecules.

Since GNN:s by themselves only output graph embeddings, they are not sufficient
to generate new graphs, as is the goal of de novo design. However, GNN:s can be
used as part of generative network models to create new molecules [5, 6]. This is
accomplished by adding nodes and edges iteratively to graphs until some termina-
tion criterion is met, and the final graph is output.

The GNN networks show great promise for graph generation, but there is yet to
emerge a standardized metric for evaluating how well a generative model performs.
This is not only the case for graph generative models, but for generative models in
general. One metric, proposed by Arús-Pous et al. [7], utilizes a subset of chemical
space to evaluate model performance. The authors use this metric to benchmark
their RNN-based generative models.

This thesis evaluates GNN-based generative models using the benchmark proposed
by Arús-Pous et al. [7]. This benchmark evaluates the percent chemical space cov-
erage of an enumerated database of molecules called GDB-13 [8]. GDB-13 consists
of small, organic molecules with 13 or fewer heavy atoms. Heavy atoms in the
molecules are limited to those in the set {C,N,O, S, Cl}.

In contrast to this work, the models benchmarked by Arús-Pous et al. [7] were based
on a string representation of molecules called SMILES [9]; SMILES have shown

1

1. Introduction

great promise in the field of de novo design. By employing their benchmark on
deep generative models based on GNN:s, this thesis aims to explore if graph-based
models are also viable for use in de novo molecular design, and to get a qualitative
measure of how they compare to string-based models.

2

2
Technical Background

Here the relevant background and theory regarding the specific type of deep learn-
ing networks, as well as the datasets used in this thesis, are presented. In Sections
2.1 and 2.2 the basics of GNN:s and the generative process are covered. Then, in
Section 2.3, previous work on string-based generative models is explained. Finally,
existing benchmarking metrics for generative models and the GDB-13 dataset are
briefly discussed.

It is assumed that the reader has previous knowledge in the domain of machine
and deep learning; as such, the general principles behind these concepts are not
explained. Basic understanding of biochemistry is also helpful but not required, nor
is it covered here.

2.1 Graph Neural Networks
Graph neural networks (GNN:s) are a relatively new addition to deep learning in-
troduced by Gori et al. [3] in 2005. GNN:s can be viewed as a network that takes a
graph as input and embeds it in some latent real space. Since they operate directly
on graphs, GNN:s are applicable in a wide variety of fields and have gained notice-
able traction over the last few years. For a brief discussion on some of the GNN:s
published in the literature, see Appendix A.

A multitude of different network architectures has been introduced by various re-
searchers and several are nicely summarized in [10]. All of these networks work
differently and will not be explained in detail here, but they all share the same
underlying GNN architecture. As GNN:s are the main component used in the gen-
erative models in this thesis, the following sections are dedicated to explaining the
underlying GNN architecture.

2.1.1 General Model Scheme
The input graph to the GNN is generally represented as a set of node and edge
features. If V and E denote the nodes and edges of the graph, respectively, then
the node and edge features are abbreviated as {xv, v ∈ V } and {evw, (v, w) ∈ E}.
In the example of molecular graphs, the nodes represent atoms in the molecule, and
the edges the bonds between them. The node features can, for example, include:
atom type, formal charge, and the number of implicit hydrogens. The edge features

3

2. Technical Background

can, for example, include the bond type (single, double, triple, aromatic) and bond
lengths.

A GNN operates on its graph input by passing messages between connected nodes,
which are then used to update a hidden state in each node. The hidden node states
are then aggregated into a single graph embedding, which is the output of the GNN.
Messages, hidden states, and the output are all represented by real valued vectors.

The message passing and update processes are repeated several times before aggre-
gation, where the exact number depends on the specific GNN implementation. In
the original GNN architecture the number of message passes is dynamic, and can
change depending on the graph input. This thesis, however, is concerned with a
subset of GNN:s called message passing neural networks (MPNN), where the num-
ber of message passes is a hyperparameter.

In Figure 2.1, a schematic view of the MPNN message passing is presented. Below,
Equation (2.1) describes the mathematics behind this process. In this equation Mt

is the message embedding function, Ut the hidden note state update function, and
R the global aggregation function.

(a) Create the messages m2 and m5. (b) Pass the messages to node 4.

(c) Update hidden state h4 using the
messages.

Figure 2.1: Illustration of a partial message passing step in an MPNN. When
passing messages to node 4, highlighted in red, the neighboring nodes, node 2 and
5, are involved. The messages m2 and m5 are first generated using the states of
node 2 and 5, as illustrated in Figure (a). These messages are then passed to node
4 and used to update its hidden state, as seen in Figures (b) and (c). This process
is repeated for each node in the graph, and for each message passing step.

4

2. Technical Background

h0
v = xv

mt+1
v =

∑
w∈N(v)

Mt(ht
v, h

t
w, evw)

ht+1
v = Ut(ht

v,m
t+1
v)

y = R({hv : v ∈ G})

(2.1)

Here t is the message passing iteration, mt
v the node message incoming to node v,

ht
v the hidden node state of node v, N(v) the set of all nodes neighboring v, y the

target property, and G the graph in question. By making the functions Ut, Mt, and
R learnable deep neural networks, this becomes a deep model.

2.2 Graph-based Generative Models

The graph generative model used in this thesis is based on the concept of iteratively
constructing graphs. Starting from a base graph, the model adds nodes and edges
at each iteration step and decides what construction action to apply based on the
current graph. Figure 2.2 shows a schematic of this process.

The construction of graphs is not inherently connected to deep learning. However,
in this thesis GNN:s are utilized for graph generation. This refers to the fact that,
in each step of the graph construction process, a GNN is used to determine what
action is taken.

2.2.1 General Construction Scheme

In the deep generative models presented here, the construction action is decided us-
ing GNN:s. More precisely, a GNN is used to embed the graph into a latent space,
and this embedding is then fed into another neural network. This neural network
then outputs an action probability distribution (APD), which can be used to sample
a construction action, and the action is then applied to the graph. In the APD
every element represents the probability of that action being sampled. A view of
this process is presented in Figure 2.3

5

2. Technical Background

(a) (b)

(c) (d)

Figure 2.2: This figure illustrates the iterative graph generation process. In Figure
(a) we start with a graph consisting of four nodes and three edges. Then in Figure
(b) a node along with an edge is added. In Figure (c) this newly added node is then
connected to another node with an edge. Finally in Figure (d) the last node and
edge are added. These sort of graph generation steps are referred to as actions in
the thesis.

...

(a)
(b)

(c)

(d)

(e)

Figure 2.3: In this figure the process of generating graphs using MPNN:s is de-
scribed. (a) The graph is passed through the MPNN. (b) This produces an APD,
containing all possible actions. (c) An action is sampled from the APD, in this case
to add a node and connect it to node 4. (d) The action is applied, resulting in a
new graph. (e) The new graph replaces the old graph and the process repeats.

6

2. Technical Background

As an algorithm, the process is described as follows:

1. Initialize an empty graph G0
2. Embed the current graph with an embedding function

yt = GNN(Gt) (2.2)

3. Pass the embedded graph through another function that outputs an action
probability distribution

APDt = F (yt) (2.3)

4. Sample an action probabalistically from At and apply it to the graph

Gt+1 = APPLY(Gt, a ∼ APDt) (2.4)

5. Repeat steps (2)-(4) until a terminate action has been sampled

Here F is learnable network. Note that this graph construction process is stochastic,
since actions are sampled probabilistically.

2.2.2 Action Sampling
There are several potential schemes for adding edges and nodes when constructing
a graph. When a node is added it can always be connected to an existing node in
the graph, for example. This node could also be allowed to be added without an
edge, thus making disconnected graphs a possible output. There are also choices
for how to add edges: can edges always be added between all nodes, or is it only
possible to add edges to the most newly added node? In the scheme explained here,
and which is used in the thesis, a newly added node is also connected to an existing
node in the graph, and edges can only be connected to the most recently added node.

When constructing the graphs it is also necessary to determine how to represent the
different construction actions in the APD. When adding a node, for example, there
are several features that need to be chosen: the features of the node added, to what
node it is being connected, and the features of the edge used to connect it. Note
that the newly added node is also connected to an existing node in the graph. The
set of different node features, abbreviated by A, includes all different combinations
of features. The same applies to the edge features B. What previous node the new
node is added to is represented by the set of all nodes V . In the end, the APD for
adding a new node can be viewed as a three dimensional tensor with dimensions
|A|, |B|, |V |. Each element in the tensor represents a combination of the different
choices for node features, edges, and connecting nodes. This tensor is flattened,
which produces a vector of length |A| × |B| × |V |, which is the APD for adding
nodes. Similarly, adding edges results in a tensor with dimensions |V | × |B|, which
can also be flattened. An illustration of these tensors is displayed in Figure 2.41.

1This image was heavily inspired by a similar figure from Li et al. [6]

7

2. Technical Background

|B| |B|

Add Node

...

|A|

Flattened APD: |A|×|B|×|V| + |V|×|B| + 1

AddEdge

Terminate

|V|
|V|

Figure 2.4: Illustration of the different tensors used to represent construction
actions. The "Add Node" tensor has three dimensions corresponding to what node is
connected and how. This consists of: its node features, what node it gets connected
to, and the features of the edge used to connect it. Similarly the "Add Edge" tensor
has two dimensions: one representing to what node to connect, and the other what
edge is used to connect the nodes. Note that "Add Edge" always connects from the
most recently added node. The last action is the termination action which is a single
element. These tensors are flattened and put into the final APD.

Concatenating the two APD tensors and a single element for termination gives us
the final APD. Thus, the index sampled from this flattened APD corresponds to one
of the elements in the tensors presented, and, consequently, a construction action.

Something worth noting about this action sampling scheme is that it is possible
to sample invalid actions. The reason for this is that the output APD from the
model will always be of fixed size, since the neural networks have fixed output size.
Thus, the indices corresponding to, for example, connecting newly added nodes to
non-existing nodes will be present in the APD. Note that the value of an element
in the APD is the probability to sample this action, thus, it can be sampled unless
it is exactly zero. If these indices are sampled, then the action is invalid. In the
models used in this thesis sampling invalid actions result in a termination of the
construction process. It is also possible to mask invalid actions, and only sample
valid actions, but this was not done in this thesis. Instead, when an invalid action
is sampled the current graph is taken as the final output.

2.2.3 Training Graph Generative Models
The training of graph generative models can seen somewhat confusing at first, but is
very similar to that of RNN:s. Training loss is calculated for each APD a model gen-

8

2. Technical Background

erates, i.e., each APD that is output from the GNN model is compared to a ground
truth APD. This ground truth APD corresponds to a sub-graph in the training set,
which is part of a complete graph. Since this sub-graph belongs to a full graph it is
known what the next correct action should be, in order to construct the full graph.
This single action corresponds to an APD of all zeros, except for the correct action,
which has a value, and consequently a probability, of 1.

The loss during training is calculated for each APD output at each construction step.
Given an APD output, APDout, from the model, the Kullback–Leibler divergence
(DKL) is used as the loss function. Conceptually this means that the model is
trained to generate APD:s that look like the ones in the training set. The definition
of the loss function can be seen in equation (2.5).

DKL(APDtarget||APDout) =
∑

x

APDtarget(x) log
(
APDout

APDtarget

)
(2.5)

For a given graph in the training set there exist multiple construction orderings.
Thus, an ordering needs to be chosen. This can be done in several ways. For exam-
ple, starting from an initial node, the graph can be deconstructed by a breadth- or
depth-first algorithm. When an ordering has been chosen, a construction path for
the graph is computed, and for each subgraph in the construction process we can
compute the ground truth APD, APDtarget.

2.2.4 Existing Implementations
Li et al. [5] proposes a generative model for iteratively building graphs. This scheme
is very similar to the one that has been presented so far in the thesis, since it was
from this publication a lot of inspiration was taken. They evaluate their model on
several tests. For generating molecules, the graph-based approach perform better
than string-based approaches on some metrics.

Li et al. [6] introduce two networks architectures for generating molecules: MolMP,
and MolRNN. Both closely follow the scheme of Li et al. [5], and this thesis. The
biggest difference is that they use a graph convolutional network (GCN) [11] as their
GNN. MolMP uses a multilayer perceptron (MLP) to get the action probability
distributions from a graph embedding, while MolRNN uses a gated recurrent unit
(GRU) instead. This GRU keeps track of a hidden construction state. The authors
report that the best performing model is MolRNN and that it outperforms string-
based networks on several generative measurements.

2.3 String-based Generative Models
For generation of molecular graphs, there exist networks that utilize RNN:s and
string representations of molecules such as SMILES. Previous work done by Arús-
Pous et al. [1] uses such models, and the results there are relevant for comparison

9

2. Technical Background

to the GNN based models evaluated in this thesis. In this section we give a short
overview of the concepts relevant to understanding the string-based models.

2.3.1 SMILES
Simplified molecular input line entry specification (SMILES) is a string represen-
tation of molecular graphs that was introduced by Weininger [9]. SMILES can
represent a large amount of drug-like molecules and offer a very concise and com-
pact notation. In Figure 2.5 a selection of molecules and an example SMILES for
each is displayed.

Figure 2.5: Various molecules from GDB-13 and corresponding examples of one
SMILES representation for each.

It is worth noting that a molecular graph does not have a unique SMILES repre-
sentation, and can be represented by many different SMILES. There exist canonical
SMILES representations, one of which is used in GDB-13; see Section 2.5 for an
explanation of GDB-13. One advantage of having multiple SMILES per molecule is
that it enables augmentation of training sets by using several SMILES per sample.

10

2. Technical Background

2.3.2 Model Structure

One of the most common architectures to use for string data is the RNN. Both
LSTM:s and GRU:s are examples of RNNs, and are very popular. This is also the
case for processing SMILES where models use layers of LSTM:s and GRU:s.

RNN-based models operate similarly to graph-based models, but, instead of con-
structing graphs directly, they construct strings. They do this by generating an
APD from the current string and sampling what token to add. A token here can
be several characters, since for example some atoms types, like Cl, contain several
characters but represent one token in the SMILES.

Although RNN:s have shown a lot of success in molecule generation they might have
some disadvantages. One is the fact that LSTM models using SMILES not only have
to learn the underlying rules of atom connectivity, but also the SMILES grammar.
For example, the strings have syntax for creating rings where brackets are used and
must be closed. This can also lead to the LSTM "forgetting" to close a bracket and
creating an invalid SMILES string.

2.3.3 Existing Implementations

Arús-Pous et al. [7] utilize an RNN-based model for generating molecules. The
model is implemented using GRU:s [12] and operates on SMILES [9]. Training data
is a subset (0.001) of GDB-13 [8], an enumerated dataset of all drug-like molecules
with 13 or fewer heavy atoms.

To measure the performance of the generative model, the authors calculate what
percentage of the entire GDB-13 dataset the model covers when generating 2 billion
structures. This is compared to an ideal model that samples GDB-13 uniformly,
which is expected to cover 0.8712 of GDB-13 when sampling 2 billion molecules.
The model is reported to cover 0.689 of GDB-13 and the authors also conclude
that it is more difficult for the model to sample some advanced molecules, such as
molecules with complex ring systems.

Arús-Pous et al. [1] use the same approach to generating molecules as in [7]. The
main difference is the training data representation used. Instead of using canonical
SMILES, the atom ordering is instead randomized. Randomizing ordering also al-
lows for easy data augmentation by including several orderings for a single molecule.

The authors calculate the chemical space coverage as in [7] and find that using ran-
domized SMILES, the GDB-13 coverage is 0.830 when sampling 2 billion molecules,
compared 0.871 with the ideal model.

11

2. Technical Background

2.4 Evaluating Generative Models
Here is presented some of the existing metrics that are currently used to evaluate
generative models. The simplest metrics are:

• counting the percentage of valid molecules

• counting the amount of unique molecules generated

• counting how many of the generated molecules are novel, i.e., not in the train-
ing set.

While these metrics give useful information and are valuable, they are not perfect.
For example a model could generate only one molecule which could both be valid
and novel, but these metrics wouldn’t capture the uniqueness. A model could also
generate only novel and unique molecules that could all be invalid.

There exist proposed frameworks for evaluating the generative power of de novo
molecular models. One such example is GuacaMol proposed by Brown et al. [13].
This benchmark is a collection of aforementioned metrics, two more general metrics,
and several target-directed metrics. These two additional metrics are more compli-
cated and measure how alike the generated set is to the training set and how well the
generated set approximates a variety of chemical descriptors. The target-directed
metrics measure performance for a set of tasks where specific molecules are used.
The authors conclude that the non-targeted parts of their proposed benchmark are
too easy for modern deep generative models.

2.5 Enumerated Database of Molecules (GDB-13)
Blum and Reymond [8] published an enumerated database of all drug like molecules
with 13 or fewer heavy atoms in the set

C,N,Cl, O, S.

Enumerated here refers to the fact that all possible valid molecules have been in-
cluded. This was done by constructing molecules according to deterministic con-
struction rules. The database is available online and contains roughly 1 billion
SMILES. For an explanation of SMILES see 2.3.1.

There also exists an enumerated database of molecules of 17 heavy atoms or fewer
[14]. This dataset contains roughly 166 billion molecules.

12

3
Methods

Here we present the methods used to train and benchmark the models in the thesis.
In addition to this we also discuss some steps used to improve training speed and
performance and how previous models were trained, as well as how the GDB-13
benchmark is defined and calculated.

3.1 Choice of GNN Models
Six different models were trained and evaluated for this thesis. Here we present
a brief overview of what they look like and how they are defined. For a more
detailed description, see Appendix B. Note also that there exists some ambiguity
in the naming of the different models in regard to the publications they are based on.

MNN: This is the simplest network used in this thesis. The message passing func-
tion Mt is a single learnable linear layer, and the update function Ut is a GRU. This
part of the model is the same as the GGNN introduced by Li et al. [15]. As an
aggregation function R a simple summation is used.

GGNN: This model is also similar to the GGNN introduced by Li et al. [15], but
instead of a single layer in Mt an MLP is used instead. A GRU is still used as an
update function and the same readout as Li et al. [15] proposed, which consists of
a kind of soft attention on the nodes.

S2V: Here again an MLP is utilized in Mt and a GRU is used as Ut. The biggest
addition here is an attention network, introduced by Vaswani et al. [16], as a readout
function R.

AttGGNN: This network is the same as the GGNN but adds an additional atten-
tion network on top of the message passing function Mt.

AttS2V: Just as with the AttGGNN an attention layer is added on top of Mt. The
rest of the network is the same as the S2V.

EMN: The EMN is similar to the D-MPNN presented by Yang et al. [17] in that
it uses hidden edge states, and messages between edges. But, as Mt, Ut, and R
more complex networks are used. The main part of Mt is made up of an attention

13

3. Methods

network, and a GRU is used as an update. The readout is very similar to that of
the GGNN but operates on edge features instead of node features.

3.2 Training
Both the models proposed in this thesis, as well as earlier string-based models, were
trained on a number of different data sets, and used a variety of hyperparameters.
This is covered in the following sections.

3.2.1 Training Sets
When training the graph-based models, three different datasets were used. All of
these were subsets of GDB-13 and contained: 1K, 10K, and 100K randomly sampled
molecules respectively. The original goal was to also train on a 1M subset, but due
to time constraints this was not possible, as training the slowest models on the 100K
subset took several days.

The graphs contained in each training set was not only randomly chosen from GDB-
13, but their construction ordering was also randomized, as discussed in Section
2.2.3. In this work only a single ordering was chosen for each graph, but by choos-
ing several orderings the data would have been augmented, i.e., more samples would
have been available during training. Data augmentation done in this manner is very
similar to that done by Arús-Pous et al. [1] where it improved model performance.
It was not doable in this project due to the scope of the project.

The main idea behind using different splits of the GDB-13 set is to not only eval-
uate how well the models perform on each set, but also how changing the size of
the dataset affects performance. The point of using differently sized training sets
was not to find the best training set. Smaller sets were expected to perform worse
and overfit more, but the aim was to get insight to how model performance was
affected by training set size. Even if samples are abundant in a large dataset such
as GDB-13, this is not always the case for real world applications.

3.2.2 Hyperparameters
For the different MPNN models that were used there exist a number of different
common hyperparameters that are associated with the deep network structures.
These had to be fine-tuned in order to ensure that the models trained properly and
could learn the distribution of properties in the training set. Below we give a brief
overview of the different common hyperparameters.

• Message Passes: The number of message passes done by the MPNN net-
works.

14

3. Methods

Hyperparameter Value
Message Passes 3

Hidden Node Feature Size 100
MLP Depth 4

MLP Hidden Dimension 500

Table 3.1: The values of the common hyperparameters used in the different GNN
networks.

• Hidden Node/Edge Feature Size: The size of the hidden feature vector
associated with the nodes, and in the case of EMN with the edges.

• MLP Depth: Throughout each MPNN, a number of MLP:s are used, and
this hyperparameter controls the depth of all of these networks.

• MLP Hidden Dimension: The number of nodes in each hidden layer in the
MLP:s of the different models.

In Table 3.1, a list of these hyperparameters and their values are shown.

Learning rate (lr) was also tuned in order to improve training and convergence, and
in addition to this a custom learning rate decay scheme was adopted. This scheme
is very similar to exponential learning rate decay but not entirely the same. At a set
interval of batches the lr is updated by multiplying it with the learning rate decay
factor (lrdf) taken to the power of the number of batches processed. In Equation
(3.1) this scheme is described.

ri+1 = rif
ni = rif

i·b, ni = i · b

ri+1 = r0

i∏
k=1

fk·b = r0f
(∑i

k=1 k·b) = r0f
b

i(i+1)
2

(3.1)

Here ni is the number of batches processed at update step i, ri is the learning rate
at update i, b the interval between updates, and f the decay factor. From the equa-
tions it appears that the decay scheme follows a Gaussian curve, since the exponent
of f is proportional to the square of i. This is also visible in Figure 3.1, where an
example of the learning rate decay with three different decay factors is plotted. Here
the 10K subset of GDB-13 was used.

In order for the training on the different GDB-13 subsets to converge, the initial
learning rate and decay factors were tuned depending on the training set. In Ta-
ble 3.2 these different learning rates and decay factors are listed for the respective
subsets. To choose a decay factor, different values were tested for each subset, and
the factor that led to the lowest and smoothest converged loss for the MNN model
was chosen and used for all different GNN models. A more thorough search could
be done but due to time constraints only the MNN model was considered during
optimization.

15

3. Methods

Figure 3.1: An example of how the learning rate changes over time for three
learning rate decay factors. Here the MNN model and 10K GDB-13 subset was
used.

GDB-13 Subset Initial LR LRDF
1K 0.0001 0.9999
10K 0.0001 0.999995
100K 0.00005 0.999999995

Table 3.2: The different learning rates and learning rate decay factors used for the
different GDB-13 subsets. Note that the same initial learning rate was used for all
models on a given subset.

3.2.3 String based Models
When training the string-based models, Arús-Pous et al. [7] also used 3 subsets of
the GDB-13 database. These contained 1K, 10K, and 1M molecules each; a 100K
set as is used in this thesis was not included. In addition to this the model was
also trained using an augmented data set [1]. The authors used several different
randomized SMILES representations for each molecule, thus increasing the data set
size. This lead to great performance improvements.

They also generated 2 billion SMILES every 5 epochs to see how much of the chem-
ical space could be sampled. As a baseline for how well chemical space was being
sampled, they also calculated the performance of an ideal model. This ideal model
would sample chemical space uniformly and thus when sampling 2 billion molecules
with this model the expected fraction of chemical space found should have been
≈ 0.8712. For a more in depth discussion of the GDB-13 benchmark see 3.5

3.2.4 Hardware and Software
Training was done on two different platforms: a desktop workstation, and remotely
via a computer cluster. Both setups were using linux and the hardware specification
can be seen in Table 3.3

16

3. Methods

Resource Desktop Cluster
OS CentOS Linux 7 CentOS Linux 7
GPU GeForce RTX 2080 Ti Tesla K80
CPU Intel(R) Xeon(R) W-2125 Intel(R) Xeon(R) CPU E5-2683
Ram 64 GB 32 GB

Table 3.3: The hardware used for training and benchmarking. Note that two
different platforms were used for this task: a dekstop, and a remote cluster.

3.3 Training Data and Data Storage
It is not obvious how training data for the graph models was stored and represented.
Thus, the following sections explain the data structures used, how it was stored in
memory, and what preprocessing was necessary.

3.3.1 Graph Representation
To store a molecule as a graph all features of its atoms and bonds need to repre-
sented as nodes and edges in a graph. Each atom is considered to be a node, and the
bonds between atoms are the edges. As common with graphs the data is then stored
as two tensors: one representing node features, and the other connections between
nodes. The node and edge features that are represented in the feature tensors are
presented in Tables 3.4 and 3.5 respectively.

Type Features
atom C, N, O, S, Cl

hydrogen 0, 1, 2, 3
charge −1, 0, 1
chirality None, R, S

Table 3.4: The node features represented in the graph data.

Type Features
bond single, double, triple, aromatic

Table 3.5: The edge features represented in the graph data.

Each node is represented as a matrix where each row is a concatenation of one-hot
encoded features. The edge features are represented by an adjacency tensor, which
is just an adjacency matrix with one-hot encoded features as entries. To illustrate
this, consider the molecule presented in Figure 3.2. In this molecule, the set of
different node features is:

17

3. Methods

Figure 3.2: A small sample molecule from GDB-13.

atoms = {C,O,N, S, Cl}
hydrogen = {0, 1, 2, 3}

charge = {−1, 0, 1}
chirality = {None, S,R}

As an example of the encoded node features, let’s look at the oxygen atom in the
middle left. It has no hydrogen atoms, neutral charge, and no chirality. So the one
hot encoded features become:

atom : [0, 1, 0, 0, 0]
hydrogen : [1, 0, 0, 0]

charge : [0, 1, 0]
chirality : [1, 0, 0]

and their concatenation will become a row in our node features tensor like below:

[
atom︷ ︸︸ ︷

0, 1, 0, 0, 0,
hydrogen︷ ︸︸ ︷
1, 0, 0, 0,

charge︷ ︸︸ ︷
0, 1, 0,

chirality︷ ︸︸ ︷
1, 0, 0].

If we again consider our sample molecule and enumerate the atoms from left to right
we can write the complete node feature tensor, Tv, as

Tv =

1 0 0 0 0 0 0 0 1 0 1 0 1 0 0
0 1 0 0 0 1 0 0 0 0 1 0 1 0 0
0 0 1 0 0 1 0 0 0 0 1 0 1 0 0
1 0 0 0 0 0 0 1 0 0 1 0 1 0 0

 (3.2)

where vertical lines have been added to illustrate which part of each row corresponds
to a node feature. Note that we could have chosen to one-hot encode all of the fea-
tures but this would have required a tensor with a dimensionality greater than the
number of node features, and would have resulted in even more sparse data and
consequently greater memory usage.

18

3. Methods

Moving onto edges, in Equation (3.3) the adjacency matrix, A, for this same molecule
can be seen.

A =

0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

 (3.3)

Note that as we are working with undirected graphs the adjacency matrix is sym-
metric.

The adjacency matrix does not contain all the information about the bonds between
atoms, we also need to represent the bond type. The set of bond types is:

bonds = {Single,Double, T riple, Aromatic}.

Thus the single bond between the oxygen and nitrogen is encoded as [1, 0, 0, 0] and
the triple bond between nitrogen and the right most carbon is [0, 0, 1, 0]. If no bond
is present we use [0, 0, 0, 0]. If we put this all into the adjacency matrix we end up
with the edge feature tensor, Te, which can be seen in Equation (3.4). If we reduce
the tensor by summation of the innermost dimension we end up with the adjacency
matrix.

Te =

[
0, 0, 0, 0

] [
1, 0, 0, 0

] [
0, 0, 0, 0

] [
0, 0, 0, 0

]
[
1, 0, 0, 0

] [
0, 0, 0, 0

] [
1, 0, 0, 0

] [
0, 0, 0, 0

]
[
0, 0, 0, 0

] [
1, 0, 0, 0

] [
0, 0, 0, 0

] [
0, 0, 1, 0

]
[
0, 0, 0, 0

] [
0, 0, 0, 0

] [
0, 0, 1, 0

] [
0, 0, 0, 0

]

(3.4)

3.3.2 Data Preprocessing and Data Representation
All the data used is present in GDB-13, which contains roughly 1 billion molecules.
This means that the amount of data is more than sufficient for training deep gen-
erative models. However data preprocessing was necessary to extract the relevant
data for each molecule.

The molecules in the training sets, taken from GDB-13, were originally represented
as SMILES. In order to use these in the GNN generative models, the data were
converted into tensors containing the relevant node and edge features. In addition
to this, a node construction ordering was calculated for each molecule, which was
then taken as the ground truth during training.

19

3. Methods

3.3.3 Padding Data
A single input to the GNN of a model consists of the pair of feature tensors (Tv, Te).
For a given molecular graph the shape of the feature tensors will be dependent on
the number of nodes in the graph. This is not compatible with the GNN which
has a fixed shape of its input. It was thus necessary to pad the feature tensors
of all data samples to match the dimensions of the largest molecular graph in the
dataset. Once the model has been specified this input shape cannot be changed and
thus a trained model is restricted to handle graphs smaller or equal to the largest
graph it was trained on. Note that padding data does increase the memory usage,
but, it also enables data to be stored with consistent spacing in memory. In theory
this should enable faster reads from disk, since the data layout on disk is then known.

The node features are padded by appending rows of zeros. In total there should be
as many rows in the node feature tensors as the maximum number of nodes in the
largest molecular graph in the training set. The edge feature tensor is padded by
appending rows and columns of zeros.

3.4 Data Loading
During development of the graph based models it became apparent that the largest
bottleneck when training GNN models was reading training data from disk. This
was most noticable when looking at GPU utilization, which was jumping between
10% and 20% during model training. Further profiling revealed that a majority of
the time (up to 70%, during each training epoch) was spent on loading data from
disk. Thus, in order to improve training speed and resource usage, some time was
spent investigating why this problem appeared, and how it could be fixed. In the
end a satisfactory solution was found.

In the following sections the solution to the problem is explained. In order to
understand the bottleneck it is necessary to know how training data was stored on
and loaded from disk previously, therefor this is also discussed.

3.4.1 HDF
A very common way to store training data for deep learning, especially image-base
tasks, is the Hierarchical Data Format (HDF5) [18]. Some advantages are that it
allows for simple partitioning of data within a single file. This means that in order
to access parts of the dataset it is not necessary to load all data into memory. HDF5
is easily accessible in Python through the package h5py [19]. All data was stored
using HDF5 and loaded using data loaders from the Python package torch.

3.4.2 Disk Bottleneck
The reason for the slow reading speeds was the way data was loaded from disk into
memory. All data loading in Python was originally managed by the DataLoader

20

3. Methods

class from the package torch. This is common practice as the DataLoader class al-
lows for simple management of batches, and shuffling during training. It also turned
out that this was where the bottleneck was. According to the PyTorch documenta-
tion data is loaded according to the scheme in Listing 3.1 [20] below.

Listing 3.1: Semantics for the PyTorch DataLoader.
for indices in batch_sampler :

yield collate_fn ([dataset [i] for i in indices])

This shows that the data is accessed once for each index in every batch. In the
case with HDF5 this leads to reading new data from disk every time we access a
new index. Reading data from disk is a time consuming process and in general it
is advantageous to avoid multiple reads, and instead read data contiguously. Thus,
the source of the problem seemed to be this disk access scheme.

The proposed solution was to read data from disk in contiguous batches in such
a way that only a single read per batch was required. This was accomplished by
writing code that circumvented the data loading scheme in the DataLoader class,
and forced the data loader to not iterate over the indices. This seemed to alleviate
the disk reading bottleneck, but there were some disadvantages associated with this
approach. For example it did not allow the shuffling of data dynamically between
batches, since the batches were read contiguously. To solve this problem a new
scheme was adopted where data was loaded in blocks of batches. This is discussed
in the next section.

3.4.3 Loading in Blocks and Shuffling

Shuffling data can have a huge impact when training a model. If a model only sees
the same batches over and over it is more prone to overfit to the training data.
Therefore it was necessary to enable shuffling of training data, while still benefiting
from the performance gain associated with reading blocks of data.

The simplest solution is to only read data from disk once and store the entire training
set in memory. Memory wise this is possible with the smaller datasets consisting of
1K, 10K, and 100K molecules each. As can be seen in Table 3.6, the largest of these
three takes up roughly 1.3 GB in memory, which is manageable. To possibly allow
for training on the larger 1M dataset this was not considered an option, as its size
is roughly 9 GB. Nonetheless, in the end this 1M dataset was not used for training
in this thesis.

The final approach was to write a custom DataLoader where data was read contigu-
ously in blocks of batches that fit into memory. Once the data block was loaded the
samples were shuffled and batched as shown in Listing 3.2.

21

3. Methods

Dataset # Graphs # Subgraphs Size [Mb]
1K 979 10,764 13
10K 9988 109,262 129
100K 100289 1,056,561 1300
1M 998922 13,844,921 9000

Table 3.6: The table shows size and number of samples for the different GDB-13
datasets. Each dataset is a subset of the entire GDB-13 set.

Listing 3.2: Pseudo code illustrating the semantics of the custom
BlockDataloader. Note here that the main difference compared to the Pytorch
Dataloader is that the blocks are loaded from disk into memory contiguously. Shuf-
fling was managed by the inner batch_sampler.

for block_indices in block_sampler :
block = dataset [block_indices]
batch_sampler = BatchSampler (block)
for indices in batch_sampler :

yield collate_fn ([block[i] for i in indices])

This resulted in shuffling only parts of the dataset but was deemed to be sufficient
given large datasets. This method resulted in fast load times, while still retaining
the ability to shuffle.

3.5 GDB-13 as a Benchmark
The idea of using GDB-13 as a benchmark is to measure how well models sample
chemical space when trained on only a subset of it. This is accomplished by measur-
ing what percentage of GDB-13 is found when sampling a set number of molecules.
To understand the motivation for why this is a good approach, we need to look at
what an ideal model would be.

3.5.1 The Ideal Model
The ideal model samples chemical space uniformly. Such a model is ideal since it
shows no bias towards a specific part of chemical space, and thus will sample more
of it. In order to measure how well this ideal model performs, the coupon collector’s
problem is considered, i.e., what is the expected number of samples required to
sample the entire space. In the case of GDB-13 the entire space consists of roughly
1 billion points. If N is the number of samples required to sample the entire space,
then

Eideal[N] ≈ 2 · 1010.

This means that the ideal model needs to sample roughly 20 billion molecules in
order to find the entire chemical space. This gives an upper bound for performance:

22

3. Methods

in theory, 20 billion molecules can be sampled by the model.

A problem that arises is that sampling 20 billion molecules and calculating what
percentage of chemical space they cover is a very computationally heavy task. This
is infeasible and instead 100K molecules are sampled. This means that it is also
necessary to calculate what percentage of GDB-13 the ideal model covers when
sampling 100K molecules. The ideal models coverage when sampling 100K molecules
is given by the expression

Eideal[X] = 1− (1− p)k = ϕ(k),

where k is the number of sampled molecules and p is the probability of sampling
any molecule. Note also that the expression has been assigned to the function ϕ(k).
Given this expression the ideal model is expected to sample

Eideal[X] = 1− (1− 1.023 · 10−9)105 ≈ 1.023 · 10−4

of chemical space. For a more in depth explanation of the ideal model, see Appendix
D

3.5.2 Benchmark Metrics
The benchmark is the same as proposed and used by [21] and consists of several
metrics based on GDB-13. To calculate the metrics, the following quantities are
used:

ratioin = |in|
k
,

ratiounique = |unique|
k

.

Here, k is the number of sampled molecules, |in| the number of sampled molecules
in GDB-13, and |unique| the number of distinct sampled molecules in GDB-13. In
Figure 3.3 a depiction of the different sampled sets is presented. Using these, the
metrics are defined as:

completeness = ratiounique

ϕ(k) ,

uniformity = ratiounique

ϕ(|in|) ,

closedness = ratioin.

Another metric, the most relevant in this thesis, is the product of the three afore-
mentioned metrics. This is called ucc and is defined as follows:

ucc = completeness · uniformity · closedness.

23

3. Methods

GDB-13
ideal

sampled

= in

Figure 3.3: A depiction of GDB-13, samples from the ideal model, and samples
from a generative model. Note that all samples from the ideal model are valid GDB-
13 molecules, while the generative model can sample molecules outside of GDB-13.
Also the striped intersection between sampled and GDB-13 is denoted in. Note also
that the sets depicted are not to scale.

The relevance of this metric comes from the fact that it captures all three aspects of
GDB-13 coverage. This can allow for models that score highly for different metrics
to still be comparable. It is also one of the metrics used by Arús-Pous et al. [1].

3.5.3 Performance Considerations when Processing SMILES
In order to measure what percentage of GDB-13 a model covers, a fixed number
of molecules are generated, and then the intersection of these molecules with the
GDB-13 dataset is computed. Below is a discussion of the time complexity of this
task, and how it was done in this thesis. Note that the generated molecules are
always converted to SMILES strings, since these are information dense, and it is
also the format used by GDB-13.

The intersection of two lists, both of length n, of SMILES can be calculated in sev-
eral ways. The naïve approach would be to compare all elements in list one to all
elements in list two, which can be accomplished in O(n2) time.

A more refined approach would be to first sort these lists and find the unique el-
ements, which takes O(n log n) time. The lists can then be traversed only once in
O(n) time resulting in a total time of O(n log n). Even more useful is the fact that
the GDB-13 set is fixed, and can thus be presorted.

The processing time can be decreased even further by separating the different
SMILES into different partitions, one for each SMILES length, and then comparing
the partitions one by one. This is possible since two SMILES can only be equal if

24

3. Methods

they are of equal length. If the number of partitions is m, and all partitions are of
equal size, this results in a time complexity of

m×O
(
n

m
log n

m

)
< O(n log n).

The partitioning of SMILES also enables easy data parallellization, which is another
possible improvement, since several CPU cores were available.

The assumption made that the size of all partitions are equal is not valid, however.
The bar plot in Figure 3.4 shows the distribution of SMILES lengths in GDB-13.
Even though all partitions will not be of equal length it is apparent that several
of the partitions around length 23 and many are similarly sized. Thus, it was still
advantageous to split the data into partitions.

Figure 3.4: The distribution of the length of SMILES in GDB-13.

In order to sort, find unique, and calculate the intersection of the lists, Python
was used. Within Python, the numpy package, which has well optimized functions
unique and intersection1d, was used. Running on 4 CPUs, a sample of 2 billion
SMILES took roughly 15 minutes to benchmark.

25

3. Methods

26

4
Results

In this chapter various results from training and benchmarking are presented. In
addition to the results for the GNN models, we also present some metrics for string-
based models. More specifically we present results from one string-based model
trained on sets of canonical SMILES, and one trained on sets of randomized SMILES.
These models are referred to as CanonCRNN and RandCRNN, where CRNN refers
to Character Recurrent Neural Network. These RNN models are the ones used by
Arús-Pous et al. [1].

4.1 Model Convergence
In Figure 4.1 the training loss for the different GNN models and datasets is plotted.
These figures show that all the different trained models on all the different datasets
seem to converge.

Though note that for the models trained on the 100K set the loss is not fully con-
verged at the final epoch (see Subfigure 4.1(c)). At these epochs the models started
to display over fitting at some metrics, so no further training was done. Also, the
1K and 10K models appear to converge around epoch 80.

4.2 Model Validation
As a rough evaluation metric, the percentage of valid and unique molecules was used
during training. These metrics were also calculated for the sampled molecules used
for benchmarking. In Figures 4.2, 4.3, and 4.4, these metrics are presented for the
different GNN models and GDB-13 training sets. The metrics were calculated on
samples of 100,000 molecules every 10 epochs.

27

4. Results

(a) Trained on GDB-13 1K subset (b) Trained on GDB-13 10K subset

(c) Trained on GDB-13 100K subset

Figure 4.1: The training loss plotted for every training epoch. Each plot shows
the loss for a different subset of GDB-13, and in each plot the loss is displayed for
all trained GNN models.

GDB-13 1K

(a) valid (b) unique

Figure 4.2: The graphs show the ratio of validity and uniqueness of molecules
sampled by the different GNN models. The GNN models sampled 100,000 molecules
every 10 epochs and were trained on the GDB-13 1K subset.

28

4. Results

GDB-13 10K

(a) valid (b) unique

Figure 4.3: Analogous plots to what is presented in Figure 4.2 but for models
trained on the GDB-13 10K subset.

GDB-13 100K

(a) valid (b) unique

Figure 4.4: Analogous plots to what is presented in Figure 4.2 but for models
trained on the GDB-13 100K subset.

29

4. Results

Another metric used during training to evaluate models was the average number of
nodes of the sampled molecules. This metric was also calculated for the generated
samples and the results are presented in Figure 4.5

(a) 1K training set (b) 10K training set

(c) 100K training set

Figure 4.5: The average number of nodes in each graph of the 100,000 molecules
sampled every 10 epochs. Included is also the average number of nodes in the
molecules in the training set used.

30

4. Results

4.3 GDB-13 Benchmark
All models trained on the different subsets of GDB-13 were benchmarked using
the presented GDB-13 metrics (see Section 3.5 for more details). The models were
saved every 10 epochs and benchmarked with 100,000 generated molecules. In Fig-
ures 4.6, 4.7, and 4.8 the metrics of the best performing GNN model on each training
set have been plotted. Drawn is also the performance of the string based models:
CanonCRNN and RandCRNN. Best performing refers to the model that reached
the highest ucc value. For the results of all GNN based models, see Appendix C

GDB-13 1K

(a) ucc (b) completeness

(c) closedness (d) uniformity

Figure 4.6: GDB-13 benchmarks for some models trained on the GDB-13 1K
subset. The only GNN model presented is the one that reached the highest ucc
score, AttGNN, but the results for both CRNN models are plotted for comparison.
Both GNN and CRNN models sampled 100,000 molecules.

For all benchmarks the metrics for the best epoch were extracted, and the results can
be seen in Table 4.1. Here, the epoch where the ucc was the highest was considered
the best. All other measurements for this epoch are also printed, including validity
and uniqueness.

31

4. Results

GDB-13 10K

(a) ucc (b) completeness

(c) closedness (d) uniformity

Figure 4.7: Here the results for the GDB-13 benchmarks analogous to those Figure
4.6 are presented, but for models trained on the GDB-13 10K subset. The best GNN
model for this training set was AttS2V.

32

4. Results

GDB-13 100K

(a) ucc (b) completeness

(c) closedness (d) uniformity

Figure 4.8: Here the results for the GDB-13 benchmarks analogously to those in
Figure 4.6 are presented, but for models trained on the GDB-13 100K subset. The
best GNN model for this training set was GGNN.

33

4. Results

4.3.1 Sampled Molecules

In Figures 4.9, 4.10, and 4.11, an assortment of sampled molecules have been dis-
played. These molecules are taken from the best epoch of the best performing GNN
models for each GDB-13 dataset.

AttGGNN 1K

Figure 4.9: Molecules sampled with the AttGGNN model at epoch 30 trained on
the 1K GDB-13 subset.

AttS2V 10K

Figure 4.10: Molecules sampled with the AttS2V model at epoch 40 trained on
the 1K GDB-13 subset.

4.4 Computational Performance

When designing, training, and optimizing the models, some choices were made in
regards to performance. To make these choices some rough performance tests were
carried out. Here, the results of these tests are presented.

34

4. Results

GGNN 100K

Figure 4.11: Molecules sampled with the GGNN model at epoch 90 trained on
the 100K GDB-13 subset.

4.4.1 Memory usage

An obstacle when working with huge datasets such as GDB-13 is memory usage.
In order to process and manage the large data set it was necessary to either have
vast amounts of RAM available, or devise strategies to overcome memory limitations.

The entire GDB-13 dataset consists of SMILES and their respective IDs (integers),
which were all stored in SMI files. This is a text file where each row contains one
SMILES and its enumerated ID separated by a whitespace. The full dataset is
roughly 31 GB, but if the ID:s, which are irrelevant for our purposes, are discarded,
this shrinks to 22 GB. Such sizes are possible to handle and load into memory but
can still become a problem.

When loading large data into memory great care was taken on the choice of datatypes.
In Table 4.2 the memory usage for different data types is compared. This shows
that binary strings stored in NumPy arrays are roughly as memory efficient as C.
Thus this data type was used in loading and managing SMILES for the benchmark.

When calculating the chemical space coverage benchmarks the total memory usage
was even greater. The entire GDB-13 dataset is roughly 22 GB in size; in addition
to this, 100,000 generated SMILES, were loaded into memory. Furthermore, extra
memory was required when sorting strings, finding unique strings, and the intersec-
tion of arrays.

This problem was averted by splitting the SMILES into partitions depending on their
length, which made it possible to not load all at once. This approach is discussed
in Section 3.5.3.

35

4. Results

4.4.2 Computational Speed
Although widely used in the sciences, Python is a relatively slow language for work-
ing with large datasets and huge computations compared to languages like C or
C++. Thus, some effort was put into investigating whether an alternative approach
was warranted, such as using C. Writing code in C is much slower and more prone
to errors but it is a much faster language.

In order to evaluate whether to use C some tests were done on reading and sorting
SMILES. When reading roughly 1 million SMILES from disk, C outperforms Python
by a factor of roughly 10, and for sorting the same amount of SMILES roughly 2. The
benchmark computations in Python take roughly 20 minutes, however, compared to
the training of models this time is negligible. Python was ultimately chosen as it is
easier to work with.

36

4. Results

dataset model ucc compl. closed. unif. valid unique epoch
100K MNN 0.0321 0.179 0.184 0.976 0.968 0.962 90

GGNN 0.0442 0.21 0.216 0.972 0.961 0.951 90
S2V 0.0393 0.198 0.205 0.969 0.973 0.961 120

AttGGNN 0.0407 0.202 0.218 0.926 0.927 0.909 70
AttS2V 0.0388 0.197 0.219 0.898 0.938 0.901 140
EMN 0.0424 0.206 0.211 0.976 0.963 0.955 80

CanonCRNN 0.0478 0.219 0.219 1.0 0.992 0.991 80
RandCRNN 0.0422 0.205 0.206 0.998 0.972 0.969 80

10K MNN 0.018 0.134 0.164 0.821 0.971 0.875 60
GGNN 0.0203 0.142 0.154 0.922 0.927 0.911 30
S2V 0.0205 0.143 0.16 0.895 0.944 0.917 40

AttGGNN 0.0227 0.151 0.196 0.767 0.857 0.746 40
AttS2V 0.0237 0.154 0.175 0.88 0.839 0.8 40
EMN 0.0188 0.137 0.155 0.883 0.865 0.844 20

CanonCRNN 0.0301 0.174 0.174 0.998 0.964 0.962 75
RandCRNN 0.0197 0.14 0.14 1.0 0.926 0.926 85

1K MNN 0.0118 0.109 0.14 0.774 0.884 0.788 60
GGNN 0.0073 0.0854 0.102 0.837 0.756 0.721 40
S2V 0.00785 0.0886 0.123 0.719 0.764 0.712 50

AttGGNN 0.0148 0.122 0.181 0.672 0.59 0.519 30
AttS2V 0.011 0.105 0.146 0.717 0.621 0.561 40
EMN 0.0106 0.103 0.131 0.785 0.754 0.698 40

CanonCRNN 0.0085 0.0922 0.0922 0.999 0.762 0.762 80
RandCRNN 0.00315 0.0561 0.0561 1.0 0.586 0.586 85

Table 4.1: The table shows the different benchmark metrics, validity, and unique-
ness for the trained models. All metrics were calculated from a sample of 100,000
molecules, and the benchmark values were taken from the epoch with the highest
ucc. The best model for each metric and dataset has been marked with bold face,
and the row of the best GNN and CRNN model for each dataset has been highlighted
with blue and red respectively.

Storage Method Memory usage [MiB]
disk 4100

C array 4100
numpy binary string array 4200
python binary string list 14200

Table 4.2: Data usage for different data types in Python and C when loading a SMI
file containing roughly 180 million smiles of length 23. The binary data indicated
that the data was loaded and managed as binary strings instead of regular strings.
The advantage of binary strings is that only 1 byte is required per character as
opposed to the 4 bytes needed for unicode characters.

37

4. Results

38

5
Discussion

In this chapter we start by discussing the results of the GDB-13 benchmark. Then
we move on to future work based on this thesis. This includes both further bench-
marking we did not have time for, as well as improvements that could be made to
the models.

5.1 GDB-13 Benchmark
Here we discuss the results for the GDB-13 benchmark, including the viability of
the GNN models as well as some discrepancies in the data.

5.1.1 Fluctuations
When trained on the 100K subset the GNN models displayed some aberrant behav-
ior. As can be seen in Figure 4.5(c), the number of nodes of the sampled graphs
made regular jumps to lower values. This behavior was present in all benchmarked
GNN models. In addition to this, the benchmarking metrics for some of the GNN
models were also behaving differently for the 100K training set, compared to the
1K and 10K. This is most apparent when looking at the full benchmarks, which can
be seen in Appendix C. For the 1K, and 10K models, the different metrics seem to
increase and then decrease, while for the 100K they reach a peak very early and
then start to rapidly fluctuate. This might indicate that there are problems with
the models, and the GNN results for the 100K set should be considered less telling.

It is difficult to assess why these problems arise. One explanation could be that the
learning rate for the 100K set is not optimal, and that it converges too quickly. But,
lowering the learning rate did not seems to affect the the benchmarks.

5.1.2 Viability of GNN Based Models
Looking at the results in Table 4.1 we can see that for the 100K and 10K training
sets the CharRNN:s have the highest scores on the GDB-13 metrics. For the 1K
set, it seems to perform significantly worse, but this is likely due to the models not
being fully trained. In Figure 4.6, we can see that the ucc score for the CharRNN:s
is still increasing, and thus they should have been trained longer. Retraining was
unfortunately not possible due to lack of time. However, for the 10K and 100K
metrics, we can see that some GNN based models are still performing rather well,

39

5. Discussion

and the only score that is consistently lower for all GNN models is the uniformity.

It is also worth noting that the 100K CharRNN models are not fully optimized.
The hyperparameters used were taken from the models optimized for the 1M sub-
set, since the 100K subset was not used by Arús-Pous et al. [1]. On the other hand,
the GNN models were not optimized for the 10K or 100K subset. All hyper param-
eter optimization was done on the 1K set, which was due to time constraints. Since
the 1K set could be trained rather quickly it was deemed suitable for optimization.

From Table 4.1, we can also observe that the GNN based models trained on the 1K
and 10K set seem to reach a maximum ucc score earlier than the CRNN:s during
training. The models trained on the 100K reach this maximum later, but the score
almost peaks during early epochs, as discussed in 5.1.1. That the ucc score of the
GNN models peak earlier might indicate that the models are faster to train. On the
other hand, the uniformity score of the CharRNN:s peaks during the first 5 epochs,
even for the 1K set, as can be seen in Figure 4.6. Considering all of this it might be
the case that the string based and GNN based models learn rather differently.

Another consideration is that the GNN models are much slower to train and sample.
The fastest GNN model, MNN, is still slower than the CharRNN:s, and the slowest
GNN model, EMN, is slower than MNN by at least an order of magnitude.

Taking all of this into consideration, GNN:s appear promising for molecular graph
generation. Even if the models are not performing as well as the CharRNN:s they
still have a lot of potential, and further research could make them very useful as a
tool for de novo molecular design.

5.1.3 Randomized and Canonical CharRNN Performance

The results presented for the GDB-13 benchmarks show that the CharRNN trained
on the canonical SMILES outperforms the one trained on randomized SMILES.
At first glance this seems to contradict the results presented by Arús-Pous et al.
[1] in the paper “Randomized SMILES Strings Improve the Quality of Molecular
Generative Models”. However, this is not the case. Arús-Pous et al. [1] utilized
data augmentation by using several randomized SMILES representations for each
SMILES sample, in contrast to this thesis where only one randomization was used.
The authors only used non-augmented canonical SMILES when training models on
the 1M subset. However, in this thesis models were only trained on the 1K, 10K,
and 100K subsets. Thus, a direct comparison of these results is not indicative of the
models’ performances.

A possible explanation for the low performance of the RandCRNN is that training
data in the three smaller sets is not sufficient for learning the randomized SMILES
space. Randomized SMILES space is vastly greater than canonical space, and up
towards 1M samples might be needed to learn the space distribution correctly.

40

5. Discussion

5.1.4 Sample Size
When evaluating the models, a sample size of 100,000 molecules was used, which
is much smaller than the sample size of 2 billion used in Arús-Pous et al. [1]. The
reason for this was time constraints, since 100,000 molecules can be generated and
evaluated in significantly less time than 2 billion. This decrease in sample size might
have introduced noise in the metrics calculated, but 100,000 was the maximum num-
ber of structures that was feasible.

To evaluate the impact of the decreased sample size, the variance of the ideal model’s
coverage of GDB-13 can be analyzed. Let Nk denote the number of unique samples
in GDB-13 when sampling k molecules form the ideal model. Then the expected
number and variance of the samples are:

E[N100K] = 99, 994.876

Var(N100K) = 5.123.

For a more thorough explanation of how these numbers were calculated, see Ap-
pendix D.

The variance in the number of unique molecules found by the ideal model is very
small, which means that an ideal model should always generate almost the same
amount of unique molecules when we sample 100K. So for the GBD-13 measurements
we should see rather low fluctuations even when sampling so few molecules. This
indicates that even for the non-ideal models, 100,000 should be sufficient.

5.2 Continuing Evaluations
Due to lack of time, only the 1K, 10K, and 100K GDB-13 training sets were consid-
ered, but in previous works by Arús-Pous et al. [7] and Arús-Pous et al. [1] models
were also trained on a 1M subset. The models used in these publications were all
CharRNN:s, which are much faster to train than the GNN-based models. Training
GNN models on the 1M subset, partly for comparison reasons, is still desirable, and
hopefully this can be done in future work.

In addition to this, the GNN-based models showed some unexpected behavior when
trained on the largest dataset, 100K, as discussed in Section 5.1.1. Trying to evalu-
ate why these fluctuations appeared and making changes to correct this behaviour
is also of interest.

5.3 Model Improvements
Here we present some suggestions for how the GNN models in this thesis could be
improved in future work.

41

5. Discussion

5.3.1 Incorporating RNN:s
One possible improvement is the inclusion of RNN:s in the graph generative process.
Currently the APD for a subgraph is generated using a combination of MLP:s, but
some publications (see for example Li et al. [6]) report a performance improvement
when instead using RNN:s.

Exchanging the MLP:s in the current models for RNN:s would also affect training
data. Currently samples in the training data are made up of subgraphs and APD:s,
but subsequent subgraphs in a molecules construction path are not necessarily stored
in order. This would need to change if RNN:s were implemented, since each step in
an RNN depends on iteration.

These changes were never implemented during the course of this thesis, simply due
to lack of time. But implementing this should be straight forward, and is a possible
improvement that is instead left for future work.

5.3.2 Further Hyperparameter Optimization
Some time was spent on optimizing the different GNN models used in this thesis,
and in the end the parameters presented in Tables 3.1 (Repeated) and 3.2 (Re-
peated) were used; these tables have been repeated here for convenience. Note that
these parameters were the same for all different GNN models, and were based on
optimization done on the MNN model. A much more thorough hyperparameter op-
timization could have been performed, and each model could have been more finely
tuned. This could be achieved by optimizing hyperparameters for each separate
model and training set, as was done by Arús-Pous et al. [1]. This also includes
learning rate and learning rate decay.

Hyperparameter Value
Message Passes 3

Hidden Node Feature Size 100
MLP Depth 4

MLP Hidden Dimension 500

Table 3.1 (Repeated): The values of the common hyperparameters used in the
different GNN networks.

For the optimization that was done the number of valid and unique structure gen-
erated were used to measure performance. But different metrics could also be used.
For example, the GDB-13 benchmarking metrics could have been used as well, since
optimizing these scores is of interest.

The optimization method used in this thesis was a grid search, but there exist other
methods. An example is a random walk of hyperparameters, and another is Bayesian
hyperparameter optimization. In addition to this, the models were only optimized

42

5. Discussion

GDB-13 Subset Initial LR LRDF
1K 0.0001 0.9999
10K 0.0001 0.999995
100K 0.00005 0.999999995

Table 3.2 (Repeated): The different learning rates and learning rate decay factors
used for the different GDB-13 subsets. Note that the same initial learning rate was
used for all models on a given subset.

using the 1K training set, and were not fine-tuned for the larger subsets. Arús-Pous
et al. [1] optimized the hyperparameters for their different models on each training
set size. They also used optimized additional hyperparameters such as batch size.
These further optimizations could also be applied to the GNN models and are left
for future work.

5.3.3 Newer and Different Architectures
None of the models tested and used in this thesis fall under the category of GCN:s.
GCN models have already seen applications in the domain of de novo molecular
design, and also in other fields such as social networking, where significantly larger
graphs are used [6, 11]. Since the MPNN models used in this thesis are quite slow,
it could be of interest to see how well models based on GCN:s work, and if they
improve computational speed while still scoring high on the GDB-13 metrics.

Since the field of GNN:s is still rather new there is also a constant flow of newer
models, and during the course of this thesis work new models have been published
in the literature. One such model is the SAMPN by Tang et al. [22], which is based
on the D-MPNN model introduced by Yang et al. [17]. New architectures such as
this one are also of interest for future work, since they could provide improvements
to the generative models.

5.3.4 Canonical Representation and Data Augmentation
The graphs used for training were all randomly chosen, as was their construction or-
derings. This is in contrast to what was done with SMILES by Arús-Pous et al. [1],
where they used a canonical representation, as well as several randomized ones. The
latter case here is data augmentation. To make the comparison between SMILES-
based and GNN-based models better a canonical construction ordering could have
been used instead for the molecular graphs, where the graph traversal would have
been based on the atom ordering of the SMILES.

As mentioned earlier in this thesis, data augmentation is rather easily achieved by
using several construction orderings for each graph. This is also something that
could be of interest to investigate, to see if it improves model performance, and to
what degree.

43

5. Discussion

44

6
Conclusion

This thesis presents an evaluation of deep graph based generative models for de
novo molecular design. The evaluation is based on metrics that measure how well
models sample a subset of chemical space, which consists of small molecules with 13
or fewer heavy atoms taken from the set C,N,O, S, Cl. Four metrics are used, one
of which, called ucc, is the product of the other three.

The models are all based on graph neural networks, which are incorporated in the
generative process. In total, 6 different models are trained and evaluated on three
different training sets, all three being different subsets of the target chemical space
subset GDB-13. The three training sets consist of 1K, 10K, and 100K molecules
respectively. In addition to the 6 graph models, two string based models are also
trained and evaluated for comparison reasons. These models are based on earlier
work done by Arús-Pous et al. [1] and operate on string representation of molecules
called SMILES. Time was also spent on optimizing the graph based model structures.

In addition the work done on models a data loading scheme for pytorch is intro-
duced. This scheme loads data in large blocks from disk into memory, and the data
block is then shuffled and separated into batches. This prevents slow random access
reads from disk, while still maintaining the possibility for shuffling large datasets
that don’t fit into memory.

For the 100K set the best performing graph model scored a ucc of 0.442, compared
to the best string model which scored 0.478. For the 10K set the best graph model
scored 0.237, and the best string model 0.301. Lastly for the 1K set the best graph
model scored 0.0148 and the best string model 0.0085. Different graph models scored
the highest on all three subsets, while the same string model performed the best.
Note that for the 1K set the string based models were not converged, and thus it is
possible they could have scored higher.

The results indicate that graph based models can be viable for de novo molecular
design. Even if the performance is worse than the string based models for two of the
sets, they are still performing similarly. It is also worth noting that the graph based
models were not as optimized as some of the string models, and another thing to
consider is the computational complexity of the different models. All graph based
models are slower than the string based models, both during training and generation.

There are also improvements that can be made for the graph based models. One

45

6. Conclusion

such is the inclusion of recurrent neural networks in the generation process. This
has been done by other authors and has improved performance of their models, but
it is left for future work.

46

Bibliography

[1] J. Arús-Pous, S. V. Johansson, O. Prykhodko, E. J. Bjerrum, C. Tyrchan, J.-L.
Reymond, H. Chen, and O. Engkvist, “Randomized SMILES Strings Improve
the Quality of Molecular Generative Models”, Jul. 2019.

[2] H. Chen, O. Engkvist, Y. Wang, M. Olivecrona, and T. Blaschke, “The rise
of deep learning in drug discovery”, Drug Discovery Today, vol. 23, no. 6,
pp. 1241 –1250, 2018, issn: 1359-6446.

[3] M. Gori, G. Monfardini, and F. Scarselli, “A new model for learning in graph
domains”, in Proceedings. 2005 IEEE International Joint Conference on Neu-
ral Networks, 2005., vol. 2, Jul. 2005, 729–734 vol. 2.

[4] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The
graph neural network model”, IEEE Transactions on Neural Networks, vol. 20,
no. 1, pp. 61–80, Jan. 2009.

[5] Y. Li, O. Vinyals, C. Dyer, R. Pascanu, and P. W. Battaglia, “Learning deep
generative models of graphs”, CoRR, vol. abs/1803.03324, 2018.

[6] Y. Li, L. Zhang, and Z. Liu, “Multi-objective de novo drug design with con-
ditional graph generative model”, Journal of Cheminformatics, vol. 10, no. 1,
p. 33, 2018, issn: 1758-2946.

[7] J. Arús-Pous, T. Blaschke, S. Ulander, J.-L. Reymond, H. Chen, and O. En-
gkvist, “Exploring the gdb-13 chemical space using deep generative models”,
Journal of Cheminformatics, vol. 11, no. 1, p. 20, 2019, issn: 1758-2946.

[8] L. C. Blum and J.-L. Reymond, “970 million druglike small molecules for
virtual screening in the chemical universe database gdb-13”, Journal of the
American Chemical Society, vol. 131, no. 25, pp. 8732–8733, 2009, PMID:
19505099.

[9] D. Weininger, “Smiles, a chemical language and information system. 1. intro-
duction to methodology and encoding rules”, Journal of Chemical Information
and Computer Sciences, vol. 28, no. 1, pp. 31–36, 1988.

[10] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A comprehensive
survey on graph neural networks”, CoRR, vol. abs/1901.00596, 2019.

[11] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convo-
lutional networks”, CoRR, vol. abs/1609.02907, 2016.

47

Bibliography

[12] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H.
Schwenk, and Y. Bengio, “Learning phrase representations using rnn encoder-
decoder for statistical machine translation”, arXiv preprint arXiv:1406.1078,
2014.

[13] N. Brown, M. Fiscato, M. H. Segler, and A. C. Vaucher, “Guacamol: Bench-
marking models for de novo molecular design”, Journal of Chemical Informa-
tion and Modeling, vol. 59, no. 3, pp. 1096–1108, 2019.

[14] L. Ruddigkeit, R. van Deursen, L. C. Blum, and J.-L. Reymond, “Enumeration
of 166 billion organic small molecules in the chemical universe database gdb-
17”, Journal of Chemical Information and Modeling, vol. 52, no. 11, pp. 2864–
2875, 2012, PMID: 23088335.

[15] Y. Li, R. Zemel, M. Brockschmidt, and D. Tarlow, “Gated graph sequence
neural networks”, in Proceedings of ICLR’16, Apr. 2016.

[16] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł.
Kaiser, and I. Polosukhin, “Attention is all you need”, in Advances in neural
information processing systems, 2017, pp. 5998–6008.

[17] K. Yang, K. Swanson, W. Jin, C. Coley, P. Eiden, H. Gao, A. Guzman-Perez,
T. Hopper, B. Kelley, M. Mathea, A. Palmer, V. Settels, T. Jaakkola, K.
Jensen, and R. Barzilay, “Analyzing learned molecular representations for
property prediction”, Journal of Chemical Information and Modeling, vol. 59,
no. 8, pp. 3370–3388, 2019, PMID: 31361484.

[18] (2020). Hdf5 support page, [Online]. Available: https://portal.hdfgroup.
org/display/HDF5/HDF5 (visited on 06/01/2020).

[19] A. Collette and contributors. (2014). H5py documentation, [Online]. Available:
http://docs.h5py.org/en/stable/ (visited on 06/01/2020).

[20] T. contributors. (2019). Pytorch documentation, [Online]. Available: https:
//pytorch.org/docs/stable/index.html (visited on 06/01/2020).

[21] J. Arús-Pous, S. V. Johansson, O. Prykhodko, E. J. Bjerrum, C. Tyrchan, J.-L.
Reymond, H. Chen, and O. Engkvist, “Randomized smiles strings improve the
quality of molecular generative models”, Journal of Cheminformatics, vol. 11,
no. 1, pp. 1–13, 2019.

[22] B. Tang, S. T. Kramer, M. Fang, Y. Qiu, Z. Wu, and D. Xu, “A self-attention
based message passing neural network for predicting molecular lipophilicity
and aqueous solubility”, Journal of Cheminformatics, vol. 12, no. 1, p. 15,
2020, issn: 1758-2946.

[23] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, “Neural
message passing for quantum chemistry”, in Proceedings of the 34th Interna-
tional Conference on Machine Learning - Volume 70, ser. ICML’17, Sydney,
NSW, Australia: JMLR.org, 2017, pp. 1263–1272.

48

https://portal.hdfgroup.org/display/HDF5/HDF5
https://portal.hdfgroup.org/display/HDF5/HDF5
http://docs.h5py.org/en/stable/
https://pytorch.org/docs/stable/index.html
https://pytorch.org/docs/stable/index.html

Bibliography

[24] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. F. Zam-
baldi, M. Malinowski, A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner, Ç.
Gülçehre, H. F. Song, A. J. Ballard, J. Gilmer, G. E. Dahl, A. Vaswani, K. R.
Allen, C. Nash, V. Langston, C. Dyer, N. Heess, D. Wierstra, P. Kohli, M.
Botvinick, O. Vinyals, Y. Li, and R. Pascanu, “Relational inductive biases,
deep learning, and graph networks”, CoRR, vol. abs/1806.01261, 2018.

[25] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph neural
networks?”, CoRR, vol. abs/1810.00826, 2018.

[26] B. Weisfeiler and A. A. Lehman, “A reduction of a graph to a canonical form
and an algebra arising during this reduction”, Nauchno-Technicheskaya Infor-
matsia, vol. 2, no. 9, pp. 12–16, 1968.

49

Bibliography

50

A
GNN Publications

Here we give a brief overview of some of the different GNN:s published in the liter-
ature. For a more in depth survey of GNN:s, see Wu et al. [10].

A.1 Original Graph Neural Networks
Gori et al. [3] introduces the novel neural network architecture GNN, which is an
extension of the RNN. The GNN is essentially a mapping from a graph to a real
valued vectors yv ∈ Rm, one for each node v. This mapping is defined by the
propagation scheme in Equation (A.1).

Xv = {xw : w ∈ N(v)}
H t

v = {ht
w : w ∈ N(v)}

ht+1
v = fv(xv, Xv, H

t
v)

yv = gv(xv, hv)

(A.1)

Here, Xv and H t
v are the set of node and hidden features in the neighborhood of v.

The mapping from graph to latent vector is then carried out by applying the func-
tion fv in Equation (A.1) repeatedly until the hidden states ht

v converge to fixed
points. The authors argue that, by the fixed-point theorem, if f is defined in such
a way that it is a contraction mapping, then applying f will always converge to
a unique point. The authors present two implementations of GNN:s and evaluate
them on a set of small benchmarks, where both GNN:s show promising results.

Scarselli et al. [4] continue the work on GNN:s introduced by Gori et al. [3]. The
main contribution the authors provide is a rigorous theoretical foundation for the
GNN model. They prove that if the model is differentiable w.r.t. its parameters,
then back propagation is possible.

A.2 Graph Convolutional Networks
Kipf and Welling [11] present an efficient approximation of the graph neural net-
work; they call their networks graph convolutional networks (GCN:s). Because their
approach scales linearly with the number of graph edges, and is applicable on very
large graphs.

I

A. GNN Publications

They define the t:th layer of their graph convolutional step as

H t+1 = σ
(
ÂH tW t

)
, (A.2)

where H are hidden graph states, W learnable matrices, and σ a non-linear activa-
tion function. The matrix Â is a normalized adjacency matrix defined by

Ã = A+ I, (A.3)
D̃ =

∑
j

Ãij, (A.4)

Â = D̃−
1
2 ÃD̃−

1
2 . (A.5)

The paper presents a rigorous mathematical motivation for these approximations.

The main goal of the paper is to apply GCN:s on sparsely-labeled graph-structured
data using a semi-supervised learning approach. The model is applied on several
large graphs (|V |, |E| ∈ [1000, 1000000]) for benchmarking and compared to previ-
ously published approaches.

Although the GCN:s have shown promise and scale well to large data, they were
not specifically used in this thesis. It is also worth noting that GCN:s are a subset
of the MPNN architecture discussed in Section A.3.

A.3 Message Passing Neural Networks
Gilmer et al. [23] introduce a graph neural network framework they call message
passing neural network (MPNN). MPNN:s operate by using messages which are
passed from a node to its neighbors and then aggregated into a hidden node state.
This message passing step is applied a fixed number of times. This allows informa-
tion to propagate through the graph via connected nodes, as at each step information
is only transmitted to neighboring nodes.

At a given message passing step t and for a given node v, the messages mt+1
v are

computed using the message passing function, Mt, and the hidden states ht+1
v are

computed with the aggregation function, Ut. These are defined as can be seen in
Equations (A.6) and (A.7).

mt+1
v =

∑
w∈,N(v)

Mt(ht
v, h

t
w, evw), (A.6)

ht+1
v = Ut(ht

v,m
t+1
v). (A.7)

The authors show that several previously published architectures [15] can be rep-
resented using this framework. They also benchmark several models on property
prediction tasks, and thus identify the best model. They found that the best model
is a combination of a previously published model and a novel message passing func-
tion.

II

A. GNN Publications

Li et al. [15] build upon general GNN:s by using a gated recurrent unit (GRU) as a
part of their node propagation model. They call this architecture Gated Graph Neu-
ral Network (GG-NN) but also apply it for generating sequential data from graphs,
which they call Gated Graph Sequence Neural Network. Another significant differ-
ence is that the propagation, or message passing, is not repeated until convergence,
as is the case for the general GNN. Instead, a fixed number of message passing steps
are used. In the context of MPNN:s, the GG-NN can be described by the mes-
sage passing and update functions in Equations (A.8) and (A.9). A more advanced
readout function is also applied; see Appendix B for an in-depth explanation.

Mt = Aevwh
t
w (A.8)

Ut = GRU(ht
v,m

t+1
v) (A.9)

The main goal of the authors is to use graph networks for program verification.
Consequently, the benchmarks and tests they present are for generating sequential
output, and they find the model performs well compared to previous work.

Inspired by the MPNN model framework, Yang et al. [17] present directed mes-
sage passing neural networks (D-MPNN), a similar architecture which also utilizes
message passing. Instead of using hidden node states in the message passing and
aggregation functions, hidden directed edge states are used. This means that a mes-
sage is passed to an edge from all edges directed at its base node. The message
passing and aggregation schemes are explicitely written in Equations (A.10) and
(A.11).

mt+1
vw =

∑
k∈N(v)\w

Mt(xv, xk, h
t
kv) (A.10)

ht+1
vw = Ut(ht

v,m
t+1
v) (A.11)

Since messages in this network are passed along the direction of edges, messages are
not propagated back and forth between nodes. The authors argue that this reduces
the amount of noisy data generated during the message passing step. A concrete
implementation of the framework is also presented and evaluated. The results show
that this model performs on par with, or better than, existing networks at a large
number of the benchmarks.

Battaglia et al. [24] present a framework they call the graph network (GN), which is a
further generalization of the MPNN framework. In the GN framework, the message
passing and aggregation steps are each modeled using something they refer to as
GN blocks. Each block passes information according to the scheme in Equations
(A.12) and (A.13).

e′k = φe(ek,vrk
,vsk

,u) (A.12)
ht+1

vw = φe(hvw, h
t
v, h

t
w, h) (A.13)

Several GN blocks can be put together to form more complicated propagation
schemes, allowing for the easy creation of more advanced models.

III

A. GNN Publications

Xu et al. [25] present a variant of the MPNN architecture, which is defined by
Equations (A.14) and (A.15).

mt+1
v = Ft

({
ht

w : w ∈ N(v)
})

(A.14)

ht+1
v = Ut

(
ht

v,m
t+1
v

)
, (A.15)

Here, Ut is required to be an injective function. The authors also specify an im-
plementation of this scheme which they call the graph isomorphism network (GIN).
The implementations of the message passing and aggregations functions for GIN are
presented in Equations (A.16) and (A.17) .

mt+1
v =

∑
w∈N(v)

ht
w, (A.16)

ht+1
v = MLPt

((
1 + εt

)
ht

v +mt+1
v

)
, (A.17)

ε is a learnable parameter.

The authors also lay a theoretical foundation for understanding why some GNN:s are
more expressive than others. They do this by comparing GNN:s to the Weisfeiler-
Lehman test [26], which is a traditional algorithm for testing graph isomorphism.
Furthermore, the authors provide proofs that the scheme in Equations (A.16) and
(A.17) can provide a test as strong as the WL-test under the right conditions. They
further prove that their own propagation and aggregation functions satisfy these
conditions.

IV

B
GNN Architectures

In this appendix, the 6 different GNN architectures used in this thesis are presented
in detail. For all models, the message passing step as well as readout function is
presented, as these set apart the different models.

h0
v = xv

mt+1
v =

∑
w∈N(v)

Mt(ht
v, h

t
w, evw)

ht+1
v = Ut(ht

v,m
t+1
v)

g = R({hv : v ∈ G})

Some of the models also introduce an additional attention step to the message
passing. The message passing for these models is defined by:

m̄t+1
v =

∑
w∈N(v)

Mt(ht
v, h

t
w, evw)

bt+1
v =

∑
w∈N(v)

Bt(ht
v, h

t
w, evw)

mt+1
v = ATTENTION(m̄t+1

v , bt+1
v).

MNN

The MNN model uses a very simple linear Mt. The update function consists of a
GRU and the aggregation function is simply a sum.

mt+1
v =

∑
w∈N(v)

Wevwh
t
w (B.1)

ht+1
v = GRU(mt+1

v , ht
v) (B.2)

g =
∑
v∈G

hT
v (B.3)

GGNN

In the GGNN model, the linear layer in the MNN has been replaced my an MLP, and
the readout function is the one presented by Li et al. [15]. Note here that � refers

V

B. GNN Architectures

to elementwise multiplication, also known as the Hadamard product.

mt+1
v =

∑
w∈N(v)

MLPevw(ht
w) evw (B.4)

ht+1
v = GRU(mt+1

v , ht
v) (B.5)

g =
∑
v∈G

MLP(ht
v)� tanh

(
MLP

(
[ht

v, h
0
v]
))

(B.6)

S2V

The S2V network uses a very similar architecture to the GGNN, but a more advanced
readout function.

mt+1
v =

∑
w∈N(v)

MLP(evw) ht
w (B.7)

ht+1
v = GRU(mt+1

v , ht
v) (B.8)

The readout function here utilizes an attention mechanism as presented by Vaswani
et al. [16], and an RNN. T here refers to the number of message passes.

a = embedding([h0
v, h

T
v])

r0, q0, c0 = [0, . . . , 0]
qt+1, ct+1 = LSTM(rt, qt, ct)
bt+1 = qt+1 · a
rt+1 = ATTENTIONt(a, bt+1)
g = [qT , rT]

(B.9)

AttGGNN

The AttGGNN builds upon the GGNN and introduces an attention mechanism as
an extra step between Mt and Ut. The additional step is defined as

bt+1
v =

∑
w∈N(v)

MLP(ht
w)evw (B.10)

(B.11)

The rest of the model is identical to GGNN.

AttS2V

As with AttGGNN, the AttS2V model builds upon S2V by adding an attention
layer. The additional message passing step is defined as:

bt+1
v =

∑
w∈N(v)

MLP([evw, h
t
w]) (B.12)

(B.13)

VI

B. GNN Architectures

EMN

The final model is the EMN. This model passes messages between edges instead of
nodes, and utilizes a GRU and attention. The scheme is very similar to that of the
other GNN models but here indexing is done on edges vw instead of of nodes v.

h0
vw = [0, . . . , 0] (B.14)
êvw =

∑
w∈N(v)

tanh(MLP([xv, xw, evw])) (B.15)

m̄t+1
vw = MLP([êvw, h

t
vw]) (B.16)

bt+1
vw =

∑
w∈N(v)

[MLP(êvw), MLP(ht
vw)] (B.17)

mt+1
vw = ATTENTIONt(m̄t+1

vw , b
t+1
vw (B.18)

ht+1
vw = GRU(mt+1

vw) (B.19)

VII

B. GNN Architectures

VIII

C
Complete GDB-13 Benchmark

Here, the complete GDB-13 benchmarking runs for all GNN and CharRNN models
are presented. The results for models trained on the 1K, 10K, and 100K sets can be
seen in Figures C.1, C.2, and C.3, respectively. Included in the figures are the four
metrics: ucc, uniformity, closedness, and completeness.

IX

C. Complete GDB-13 Benchmark

GDB-13 1K

(a) completeness (b) closedness

(c) uniformity (d) ucc

Figure C.1: The full benchmark of all GNN and CRNN models for the 1K training
set.

X

C. Complete GDB-13 Benchmark

GDB-13 10K

(a) completeness (b) closedness

(c) uniformity (d) ucc

Figure C.2: The full benchmark of all GNN and CRNNmodels for the 10K training
set.

XI

C. Complete GDB-13 Benchmark

GDB-13 100K

(a) completeness (b) closedness

(c) uniformity (d) ucc

Figure C.3: The full benchmark of all GNN and CRNN models for the 100K
training set.

XII

D
Ideal Generative Model

The ideal model samples molecules without bias, i.e, uniformly. This can be used
to derive an expression for the number of distinct molecules sampled. Denote the
number of distinct molecules byN , the sample size by k, and the number of molecules
in the samples space by n. Note here that N is a stochastic variable, while n and k
are constants. The expected number of samples can be seen in Equation (D.1)1.

E[N] = n

[
1−

(
1− 1

n

)k
]

(D.1)

Of interest is also the variance of the variable N . This can be seen in Equation
(D.2)2.

Var(N) = n
(

1− 1
n

)k

+ n2
(

1− 1
n

)(
1− 2

n

)k

− n2
(

1− 1
n

)2k

(D.2)

Note here that for the GDB-13 set n ≈ 109 and k = 105. For such large n the
expression in Equation (D.2) can be hard to compute since 1 − 1

n
is quite close to

1. This problem was solved by utilizing Python and the package mpmath, which is
a package for arbitrary-precision floating-point arithmetic. Using only the built in
Python arithmetic is not sufficient, since this causes significant floating-point errors.

In addition to these two measurements, it is also of interest to look at the Coupon
collector’s problem, i.e., what is the expected number of samples before the entire
target space has been sampled. Denote by K this number of samples, then the
expected value of K can be computed using the expression in Equation (D.3) 3.

E[K] = n
(1

1 + 1
2 + . . .

1
n

)
= nHn (D.3)

Above, Hn is the harmonic series, which can be easily approximated numerically.

1For a discussion on the derivation of Equations (D.1) and (D.2), see https:
//math.stackexchange.com/questions/32800/probability-distribution-of-coverage-
of-a-set-after-x-independently-randomly.

2See Footnote 1.
3For an explanation of the expression in Equation (D.3), see https://en.wikipedia.org/wiki/

Coupon_collector%27s_problem.

XIII

https://math.stackexchange.com/questions/32800/probability-distribution-of-coverage-of-a-set-after-x-independently-randomly
https://math.stackexchange.com/questions/32800/probability-distribution-of-coverage-of-a-set-after-x-independently-randomly
https://math.stackexchange.com/questions/32800/probability-distribution-of-coverage-of-a-set-after-x-independently-randomly
https://en.wikipedia.org/wiki/Coupon_collector%27s_problem
https://en.wikipedia.org/wiki/Coupon_collector%27s_problem

	List of Figures
	List of Tables
	Introduction
	Technical Background
	Graph Neural Networks
	General Model Scheme

	Graph-based Generative Models
	General Construction Scheme
	Action Sampling
	Training Graph Generative Models
	Existing Implementations

	String-based Generative Models
	SMILES
	Model Structure
	Existing Implementations

	Evaluating Generative Models
	Enumerated Database of Molecules (GDB-13)

	Methods
	Choice of GNN Models
	Training
	Training Sets
	Hyperparameters
	String based Models
	Hardware and Software

	Training Data and Data Storage
	Graph Representation
	Data Preprocessing and Data Representation
	Padding Data

	Data Loading
	HDF
	Disk Bottleneck
	Loading in Blocks and Shuffling

	GDB-13 as a Benchmark
	The Ideal Model
	Benchmark Metrics
	Performance Considerations when Processing SMILES

	Results
	Model Convergence
	Model Validation
	GDB-13 Benchmark
	Sampled Molecules

	Computational Performance
	Memory usage
	Computational Speed

	Discussion
	GDB-13 Benchmark
	Fluctuations
	Viability of GNN Based Models
	Randomized and Canonical CharRNN Performance
	Sample Size

	Continuing Evaluations
	Model Improvements
	Incorporating RNN:s
	Further Hyperparameter Optimization
	Newer and Different Architectures
	Canonical Representation and Data Augmentation

	Conclusion
	Bibliography
	GNN Publications
	Original Graph Neural Networks
	Graph Convolutional Networks
	Message Passing Neural Networks

	GNN Architectures
	Complete GDB-13 Benchmark
	Ideal Generative Model

