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ABSTRACT

The estimation of velocities and sound pressure levels, using the method of SEA
- Statistical Energy Analysis, has been a long going technical issue. Previously,
this technique has been used mostly in plates, having a 2D structure, and acoustic
cavities, having a 3D structure. The goal of this report is to expand this theory
for usage in modelling solid acoustic volumes such as e.g. a rock block or any other
material. This further complicates the usage of SEA, introducing new boundary
conditions, and the type of wave known as the Rayleigh wave. The model finally
used in the SEA-analysis was chosen to be a cylinder of nylon (PA6GTECAST),
because of the convenient size and properties of this object. When doing a study
of the different waves present in a solid, having a bounding surface, it was found
that the shear, longitudinal and Rayleigh waves were of importance. Of these, the
longitudinal and Rayleigh waves were the ones actually implemented in the model.
It was found that the distribution of energy between wave types, in a point excitation
of a half-infinite solid, was of importance, due to the problem of determining which
wave types are of interest to study. Another important factor was the transmission
of the Rayleigh wave around a corner. The SEA-model was established using theory
for predicting the distribution of energy between the waves present, and measuring
and calculating SEA-parameters. This was not without problem, as the coupling
loss factors needed to set up the model were based on previous research, not taking
the coupling between Rayleigh waves and longitudinal or shear waves into account.
This were suggested as a topic for future research. The results from measurements
on the structure, with data for the 5 kHz band, were compared to the model results.
It was stated that measuring the frequency response in a broader frequency interval,
and comparing this to the model data, would be another topic for future research.
This thesis is done in co-operation with Atlas Copco Rock Drills AB in Örebro.
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1 Introduction

In order to be able to model cases of drilling vibrations, which exists in today’s
mining business, companies such as Atlas Copco have a need for software to ef-
fectively do this. It is possible to use technique such as SEA - Statistical Energy
Analysis. In figure 1, a drilling case in ”Nackagruvan” below Nacka shopping center
in Stockholm, is shown.

Figure 1: A drilling case in ”Nackagruvan” below Nacka shopping center in Stock-
holm. [36]

The drilling process will affect the rock, leading to the formation of wave fronts,
consisting of different types of waves. Of large importance is the Rayleigh wave,
formed on the surface of the rock, or another media. The object finally chosen
for the modelling process was a cylinder of nylon, due to the preferable vibrational
properties of this object. This was basically because in SEA, you use the assumption
that the wavelength is short in comparison with the dimensions of the structure,
which will be the case for a nylon cylinder. This enabled modelling of a smaller,
more convenient, object. In order to be able to make an SEA-model for this object,
there were a few parameters that needed to be calculated or measured. This report
focus on the properties of Rayleigh waves, and longitudinal waves, moving in the
cylinder, and how these waves were implemented in the model. It also gives a brief
look on some other types of waves that could potentially exist in an object similar to
ours, i.e. shear waves, quasi-longitudinal waves and bending waves. Some literature
were found to be important for the description of the different SEA-parameters
and wave types, and these have been referred to throughout the report. The most
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critical part, perhaps, of an SEA-analysis, is to model the coupling of the different
wave types (sub-systems), which have been described in some detail in this report.
Basically, this report aims at describing how it is possible to make an SEA-model
for a 3D-type of structure, and compare it with measurements to validate it.

2 Theory

In this section, the basic wave types present in a half-infinite elastic media are
presented. In addition, one find some information on wave types present in beams
and plates. Also, the full derivation of the wave equation in 3D are described. Later,
there is a deeper look-into the properties of Rayleigh waves travelling in different
types of structures. It is also described how the energy of a point-excitation will
distribute energy into different wave types. Statistical Energy Analysis, and it’s
parameters, are finally described in detail. These different theories are found in a
number of different literature, that is referenced. It is notable that some of this
literature cannot be used for more than study purposes, without having permission
from the author. Most important, in source no. [26], it is clearly stated that the
referenced material cannot be used for financial purposes, e. g. for making of a
commercial SEA-software, without the author’s permission.

2.1 Longitudinal waves moving in an elastic medium

The longitudinal wave moves in an elastic medium with the velocity [1]: vp =√
G(2−2ν)
ρ(1−2ν)

where G is the shear modulus of the media, ρ is the density of the media, and ν is
Poisson’s number of the media. The shear modulus is found from the formula:

G = E
2(1+ν)

in which E is the young’s modulus of the media.

The longitudinal wave affect the medium as a stretch or compression of the medium
in the direction of propagation. Figure 2 shows the deformations caused in a
medium, as a result of a longitudinal wave moving in one direction [3].
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Figure 2: Longitudinal waves moving in a half-infinite elastic solid [3].

2.2 Shear waves moving in an elastic medium

A transversal wave, also known as a shear wave, moves through an elastic medium
with velocity [1]:

vt =
√
G
ρ

In opposite to the longitudinal wave, the shear wave does not change the volume of
the element in which it moves [1]. The only thing that changes is the shape of the
element, which undergoes a shear deformation. The shear waves travelling in the
medium can move in any direction, not just paralell to the y or z-axis, which is also
true for longitudinal waves. Combining these parts of displacement, the shear wave
can move in an infinite number of directions.

If the velocities of the longitudinal waves and shear waves are compared, the follow-
ing expression is obtained:

vl
vt =

√
2−2v
1−2v

In table 1, the wave velocities for longitudinal waves and shear waves, for a number
of different medium, are given [3].
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Material Density
(kg/m3)

Longitudinal wave
velocity (m/s)

Transverse wave
velocity (m/s)

Metals
Aluminium (rolled) 2700 6420 3040
Lead (rolled) 11400 2160 700
Gold 19700 3240 1200
Silver 10400 3640 1610
Copper (rolled) 8930 5010 2270
Copper (annealed) 8930 4760 2325
Magnesium 1740 5770 3050
Brass (70% Cu,
30% Zn)

8600 4700 2110

Steel (stainless) 7900 5790 3100
Steel (1% C) 7840 5940 3220
Zinc (rolled) 7100 4210 2440
Tin (rolled) 7300 3320 1670
Nonmetals
Glass (Flint) 3600 4260 2552
Glass (Crown) 2500 5660 3391
Quartz, fused 2200 5968 3764
Plexiglas 1180 2680 1100
Polyethylene 900 1950 540
Polystyrene 1060 2350 1120

Table 1: The wave velocity for some common materials [3].

2.3 Bending waves moving in a beam

The phase velocity of bending waves moving in a beam is [16]:

cb = 4

√
B
ρSω

2 (1)

in which B = E · I is the bending stiffness (I is the moment of inertia), and S is the
area of the cross section.

The phase velocity increases as the root of the frequency increases [16]. The devi-

ation in eq. (1) is approximately 10 % if the thickness of the beam is near to 1
6 of

the wavelength. Also, the group velocity for a bending wave is cgb = 2cb.

2.4 Quasi-longitudinal waves moving in a beam

Love wave, or quasi-longitudinal wave, is a type of surface wave present in beams.
The motion of this wave is connected with the shear wave. The theory behind this
wave type is described in detail in [21].

It is possible to study the wave equation to compute the bending of a thick and
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infinite plate (or a beam where the width doesn’t matter). First, the plate is studied.
It is assumed, that waves only can move in the x-y-plane, as displayed in figure 3.
Therefore, strain εz is put to zero.

Figure 3: Love/transverse waves moving in the x-y-plane of a plate. [21]

The motion in the plate takes place as love- and transverse wave motion [21]. The
surfaces of the plate, e.g. at y = h/2 or y = −h/2, will have a noticeable bending
motion, due to the wave moving in the plate. The bending wave moving in the
plate, can be described by:

Aexp{i(ωt− kbx)}

in which A is the amplitude, and kb is the wave number of a bending wave. The
wave number is dependent on the wavelength of the motion in the elastic medium,
λ, by the equation:

k = 2π
λ

The wave equation is governing the scalar potential φ, that models the love waves,
and vector scalar potential Ξ, which describes the shear wave.

The scalar potential, which describes the love wave, is found to be:

φ = exp{j(ωt− kbx)}{A1e
−jλ1y + A2e

jλ1y} (1)

in which A1 is the amplitude of the wave moving towards the upper boundary, at
y = h/2. A2 is therefore the amplitude of the wave moving in direction of the lower
boundary, at y = −h/2.

The potential φ is required to fulfill the wave equation for longitudinal waves. There-
fore:

λ1 =
√
k2
1 − k

2
b

in which k1 is the wave-number of a love wave, and:

k2
1 =

ω2ρ
E

(1−ν)(1−2ν)
(1−ν)

= k2
0

(1−ν)(1−ν)
(1−2ν)

It is found one vector potential that fulfills this condition, or more precisely it’s
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z-part, that describes the movement of the shear waves in the x-y-plane. It’s in the
form of:

Ξz = exp{jωt− kbx)}{A3e
−jλ2y + A4e

jλ2y} (2)

And this requires that the wave equation of the shear wave is fulfilled. Therefore:

λ2 =
√
k2
t − k

2
b

k2
t =

ω2ρ2(1+ν)
E = k2

0 · 2(1− ν)

It is possible to estimate, that for lower frequencies and thin plates, the wave num-
ber kb is going to the wave number of a normal bending wave, κb. Therefore:

kb ' κb > kl

subsequently, the term λ1 is complex in the lower frequencies. In order to simplify
this discussion, the parameter α is described as:

α = jλ1 =
√
k2
b
− k2

1

The solution in (1) can therefore be rewritten as:

φx = exp{i(ωt− kxx)}{B1sinh(αy +B2cosh(αy))} (3)

The vector potential in (2), has a z-part, that states the movement of the shear
waves in the x-y-plane [21]. It is denoted as:

ψz = exp{j(ωt− kxx)}{C1sinh(βy) + C2cosh(βy)} (4)

where:

β =
√
k2
b
− k2

t

The equation of ψ is qualified to fulfill the below wave equation, that is controlling
the movement of these shear waves.

The displacements ζ and η, along the plus x- and y-axes , for ψx = ψy = 0, are
found as:

ζ =
∂φ
∂x

+
∂ψ
∂y

η =
∂φ
∂y
− ∂ψ
∂x

(5)

And the z part can be ignored.
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Figure 4: a) in-phase motion of a plate (bending mode). b) anti-phase motion
(longitudinal mode) [21].

There are two solutions to eq. (3) and (4). One denotes the in-phase motion and the
other is the anti-phase motion of the boundaries of the plate. These different types of
motion are described in figure 4. The in-phase motion corresponds to plate bending.
For bending, there exists displacements normal to the boundary, where y = ±h/2.
These two parts are the same. But in x-direction, there is a contraction of one
surface and lengthening of the other. Therefore, the in-phase motion, representing
the mode of bending, can be described by:

ζ+(y) = −ζ+(−y)

η+(y) = η+(−y) (6)

For the anti-phase motion, the following are found:

ζ−(y) = ζ−(−y)

η−(y) = −η−(−y) (7)

Expression (6) says that the surfaces of the plate are moving in opposite direction,
representing the displacement from a quasi-longitudinal wave. The subscripts that
is described by + and - in (6) and (7) shows the motion in-phase, and anti-phase.
This is seen in figure 4.

The quasi-longitudinal wave (for a thick plate, which is described on p.31 in [21])
has a wave number according to:

k2
b = k2

0(1− ν2) + ν2h2k4
0(1− ν)/12 + ...

The 1st two terms can be described by:

kb = k1

√
1 +

ν2h2k21
12(1−ν2)

k1 = k0

√
1− ν2 (8)

This wave number is similar to the wave number of a bending wave, and it changes
with the thickness of the plate, and frequency. The following condition is assumed
to be fulfilled:

15



h→0, kx→k0 ·
√

(1− ν2)

where kx is the wave number for quasi-longitudinal waves moving in a thin plate.
This means that the plate thickness are approaching zero, but still being a small
value in comparison to the other dimensions of the plate. If the plate thickness, h is
assumed to be larger, the 2nd and higher order terms must be taken into account.
If the error in k1 should be smaller than 10%, the wave number k1 and the plate
thickness h should fulfill:

hνk1(1− ν) < 1.6

If this condition is true, the plate can be seen as thin with respect to movement of
longitudinal waves. The eq. (8) can be used to find the apparent density, ρa, of the
plate as:

ρa = a · [1− ν2h2k21
12(1−ν2) ] (9)

Where a is the density of the plate. The app. density depends of the thickness of
the plate and frequency. If the quota which is denoted as

ρa
ρ , is bigger than 1, the

displacement is also taking place normal to the main axis.

The 2D motion is increasing the inertia and therefore the mass, opposite to if only
1D motion is studied. And the wave number for a quasi-longitudinal wave can finally
be expressed by:

k1 = ω

√
ρa(1−ν2)

E (10)

2.5 Solution to the equation of motion for an elastic solid
in 1D

The wave equation for an elastic solid in one dimension can be written as [1]: δ
2u
δt2

=

c2 δ
2u
δx2

where u is denoted as the displacement of a wave moving in the medium, and c is
the velocity of this wave.

This equation has solutions that come in the form of:

u(x, t) = f(ct− x) + g(ct+ x)

These solutions can be used together with the wave number:

k = ω̄
c ,

where ω̄ is the angular frequency of the loading on the body. This equation will
then look as:

u(x, t) = Acos(ω̄t− kx) +Bcos(ω̄t+ kx)

Where A and B are complex constants given by the boundary conditions. If using
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a complex form of notation the above equation can be simplified to:

u(x, t) = Cei(ω̄t−kx) +Dei(ω̄t+kx)

Where C and D are complex constants given by the boundary conditions.

2.6 Solution to the equation of motion for an elastic solid
in 3D

In the case of waves traveling in a half-infinite solid, the three variables of concern
are the elastic stresses, and the parts of displacements in 3D [1]. The parts of the
displacements in respective x, y and z-direction, is ruled by three wave equations
that are internally coupled to each other. The relevant variables for wave motion in
a half-infinite elastic solid are thus:

• Elastic shear stresses, τ , and elastic normal stresses, σ

• Parts of the displacements, u, v, and w, in respective x, y, and z-direction

It is assumed, that longitudinal waves are travelling in the x-direction. This au-
tomatically makes the partial derivatives of the displacements in y and z-direction
equal to zero. In opposite to this case, it is possible to assume that waves travelling
in the medium are shear waves, with motion in the direction perpendicular to the
direction of movement.

Three different wave types can exist in an half-infinite elastic solid, namely one
longitudinal wave, and two shear waves (with the particle motion of each being
perpendicular to the other one). The quota of the amplitudes of these waves is a
function of the method of excitation. A solution for the wave equation described
in the previons chapter can be extended to take into account a three dimensional
elastic medium [1]. First, the shear stresses and normal stresses working on a piece
of the medium, can be described.

Figure 5 shows a piece of a medium with lengths dx, dy and dz, with the normal
stresses σ pointing outward from the cube, and the shear stresses τ pointing along
the walls of the cube. The first letter after the respective stresses in figure 5 is
denoted as the plane in which the stress is working, and the second letter denotes
the direction in which it is working. The media shown in the figure is at rest and
there is no external force doing work on the structure.
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Figure 5: The normal and shear stresses working on a cube with sides dx, dy and
dz.

In order to hold the balance of the forces working on the cube, it is possible to use
the conditions shown in figure 5. These are:

τxy = τyx

τxz = τzx

τyz = τzy (1)

These conditions can later be used, in order to obtain the governing equation of
motion in each direction, x, y, and z. The description of stresses found in figure 5
can be extended to take into account the stress change in respective direction, due
to a propagating wave. This is done by introducing partial derivatives, to be able
to describe how the stresses affect the movement of the cube, when affected by a
wave. Figure 6 shows the full analysis of the stresses working on the sides of the
cube. In this figure, the letters u, v and w denotes the displacements in the x, y
and z-direction, respectively.
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Figure 6: The full analysis of the normal and shear stresses working on a cube with
sides dx, dy and dz.

First of all, a longitudinal wave travelling in x-direction, gives a change in the normal
stress part at the distance dx from origo, and the total normal stress part at this
face will be (marked with a red dot in figure 6):

σxx + ∂σxx
∂x

dx

Secondly, the shear stress parts working on the same face will have opposite direction,
relative to the shear stress parts on the x-face, at origo, in order to hold the balance
of the forces working on the cube. The change in stress at a distance dx from origo,
as an effect of a shear wave travelling in x-direction, will result in the two total shear
stress parts (marked with red dots in figure 6):

τxy +
∂τxy
∂x

dx, τxz + ∂τxz
∂x

dx

In the same manner, the normal stress part at a distance dz from origo will have a
change, due to a longitudinal wave moving along the z-axis, resulting in a total part
of (marked with a blue dot in figure 6):

σzz + ∂σzz
∂z

dz

The shear stress parts on this face will also be changed due to a shear wave moving in
z-direction. The total parts will therefore be (marked with blue dots in the figure):
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τzx + ∂τzx
∂z

dz, τzy +
∂τzy
∂z

dz

The normal stress part working on the face of the cube, on a distance dy from origo,
will be changed, due to a longitudinal wave moving in y-direction (marked with
green dots in figure 6):

σyy +
∂σyy
∂y

dy

The shear stress parts on this face will also experience a change due to a shear wave
moving in y-direction. The total parts will therefore be (marked with green dots in
the figure):

τyx +
∂τyx
∂y

dy, τyz +
∂τyz
∂y

dy

The total stresses working in the x-direction on the cube, as seen in figure 6, can be
summed up according to:

(σxx + ∂σxx
∂x

dx)dydz − σxxdydz + (τzx + ∂τzx
∂z

dz)dxdy − τzxdxdy + (τyx + ∂yx +

∂τyx
∂y

dydxdz − τyxdxdz = ρdxdydz∂
2u
∂t2

Where the right hand term denotes the wave equation for an elastic solid in 3D,
multiplied with the volume and density of the cube.

Figure 7: Infinitely small element of the cube.

By looking at an infinitely small element of the cube, as seen in figure 7, it is possible
to remove all the non-zero elements dx, dy and dz from the formula. After this step,
the following equation of motion is found [1]:

∂σxx
∂x

+ ∂τzx
∂z

+
∂τyx
∂y

= ρ∂
2u
∂t2

And if using the balance of the forces described in eq. (1), the following equation is
found, which is the ruling equation of motion in x-direction:
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∂σxx
∂x

+
∂τxy
∂z

+ ∂τxz
∂y

= ρ∂
2u
∂t2

Similar to this, it is possible to write the ruling equation of motion in the y-direction
as:

∂τyx
∂x

+
∂σyy
∂z

+
∂τyz
∂y

= ρ∂
2v
∂t2

and in z-direction, as:

∂τzx
∂x

+
∂τzy
∂z

+ ∂σzz
∂y

= ρ∂
2w
∂t2

2.7 Rayleigh waves on the surface of an elastic medium

As described earlier, if a medium reaches to infinity in all directions, basically two
types of waves can move in it, and these are longitudinal waves and shear waves.
If , however, the medium does not extend to infinity in one direction, but has a
surface boundary, another type of wave is found, the Rayleigh wave. This is a
kind of surface wave which moves on the surface of a half-infinite elastic medium.
This wave consists of both longitudinal and transverse motion parts, which have a
specific relation of the phases [2].

The amplitude of this type of motion declines rapidly in-depth of the medium. As
the wave passes through the medium, the particles are moved in the form of an
ellipse, and the largest axle of the ellipse lies in the plane that is vertical, as shown
in figure 8. This is denoted as retrograde motion, and it is the opposite to the
motion of a water wave, in which the particles move in the same direction as the
wave propagates. The Rayleigh wave moves with a velocity that varies with the
elastic parameters of the medium near the surface, but always fall below the shear
wave velocity (for a plane surface).

Figure 8: Particle motion during the movement of a Rayleigh wave.
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In the case that the Rayleigh wave is harmonic, meaning that the wave form follows
a specific sine-function during movement, with frequency ω and wave number k, it
moves with a velocity:

v = ω
k

in which k is the still unknown wave number of a Rayleigh wave.

It is of relevance to study the harmonic Rayleigh wave, moving in the boundary
between an elastic, solid, isotropic and half-infinite media, and a vacuum [13]. The
movement of the particles are shown in figure 9. The dots are the particles of the
medium, and they are located at the same distance from each other, if there is no
wave moving in the media. This medium is present in the region z > 0. If this area
is filled with the half-infinite medium, a scalar potential φ, and vector potential ψ,
can be used to model the Rayleigh wave. These are denoting the movement of the
waves, giving the particles a displacement in vector notation:

u = grad(φ) + rot(ψ)

Figure 9: Particle movement while the Rayleigh wave is moving in the medium [13].

It is also possible to say that the wave is plane in regard to the y-axis, and in this
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case, only the part of the vector potential along the y-axis will have values other
than zero (φ). The potentials φ and ψ, can be seen as the potentials of longitudinal
and shear waves, one by one. This is fulfilled in:

∂2φ
∂x2

+
∂2φ
∂z2

+ k2
l φ = 0 (1)

∂2ψ
∂x2

+
∂2ψ
∂z2

+ k2
t ψ = 0 (2)

in which, kl = ω
√

ρ
λ+2µ

, kt = ω
√
ρ
µ , are denoted the wave numbers of longitudinal-

and shear waves, and λ and µ are Lame’s coefficients. The particle displacement
parts, along the x- and z-axis, are denoted as u and w. The parts of the stress, σxx,
σzz , σxz , can be denoted in terms of φ, and ψ.

u =
∂φ
∂x
− ∂ψ
∂z

w =
∂φ
∂z
− ∂ψ
∂x

σxx = λ(
∂2φ
∂x2

+
∂2φ
∂z2

) + 2µ(
∂2φ
∂x2
− ∂2ψ
∂x∂z

) (3)

σzz = λ(
∂2φ
∂x2

+
∂2φ
∂z2

) + 2µ(
∂2φ
∂z2

+
∂2ψ
∂x∂z

) (4)

σxz = νl(2
∂2φ
∂x∂z

+
∂2ψ
∂x2
− ∂2φ
∂z2

) (5)

It is of interest to solve equations (1) and (2), which denotes the harmonic longitu-
dinal waves and shear waves, that are moving in the plus x-direction. This is found
from:

φ = F (z)ei(kx−ωt)

ψ = G(z)ei(kx−ωt)

If these formulas are put in (1) and (2), the following expressions are found:

d2F (z)
dz2

− (k2 − k2
l )F (z) = 0

d2G(z)
dz2

− (k2 − k2
t )G(z) = 0

And the terms that satisfy the equations above, are:

exp(±
√
k2 − k2

l
)z = 0

exp(±
√
k2 − k2

t )z = 0

also, it is possible to assume that k2 < k2
t < k2

l . It is possible to look for a solution
having plus roots in the exponent, and the result will give a movement which grows
larger in-depth of the media. The other solution, having a minus root in the expo-
nent, will give a movement growing smaller exponentially in-depth of the medium
(e.g. a surface wave). The terms of φ, ψ, will be described as:
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φ = Ae−qzei(kx−ωt)

ψ = Be−szei(kx−ωt)

in which q2 = k2 − k2
l , s2 = k2 − k2

t , and A, B are terms that can take on any
values, but have a fixed relation to one another.

When describing the Rayleigh wave, the stresses σzz , σxz , should approach zero
in the region of the boundary of the half-infinite medium (z=0, in figure 9). The
connections between A, B, and k, which are the properties of the movement of the
Rayleigh wave, are inserted into the formulas for φ and ψ, and this will give:

φ = −Aei(kx−ωt−qz) (6)

ψ = iA
2kq
k2+s2

ei(kx−ωt−sz) (7)

The relation formulating the wave number of a Rayleigh wave, kr, has the form:

4k2qs− (k2
r + s2) = 0

And this relation is reduced to give:

η6 − 8η4 + 8(3− 2ξ2)η2 − 16(1− ξ2) = 0 (8)

which has the notation: η = kt
kr

= cr
ct , ξ = kl

kt
= ct
cl . ct, cl are the phase velocities of

longitudinal/shear waves. This relation is the Rayleigh equation. 6 roots can be
found for this equation, which depends on the Poisson’s ratio, ν, for the elastic
medium. The root ηr, that lies between 0 and 1, is the root of the Rayleigh wave.
For a ν in the common interval for real media (0 < ν < 0.5), the eq. (8) has 1 root.
Therefore, it is proven that a Rayleigh wave could be present on the surface of a
half-infinite elastic medium. The root is estimated by:

ηr = 0.87+1.12ν
1+ν

and the criteria 0 < ν < 0.5, says the phase velocity of the Rayleigh wave is
between 0.87ct and 0.96ct. Thus, it is proved that that the Rayleigh wave is non-
dispersive, because ηr and ct does not depend on frequency. The formulas (3) and
(4), describing the stresses imposed by a Rayleigh wave, shows that it is made up
of two non-homogeneous waves, longitudinal/shear, that moves along the boundary
of the half-space with the same velocities. These two parts are damped in-depth
according to:

exp(−
√
kr − k2

l
z) (longitudinal part)

and: exp(−
√
kr − k2

t z) (shear part)

Close to the surface z=0 (the boundary of the half-infinite elastic medium), the
stresses of the wave motion are going to zero. The following expressions describe
the displacement parts in respective x and z-direction:
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UR = Akr(e
(−qzr−

2qrsr
k2r+s

2
r
e−s

z
r )sin(krx−ωt)

)

WR = Aqr(e
(−qzr−

2k2r
k2r+s

2
r
e−s

z
r )cos(krx−ωt)

)

The stress parts of the Rayleigh wave are found from (3), (4), (5), (6), (7).

In figure 10, the amplitudes of displacement, ÛR, ŴR, and the values of the stress,
ˆσzz , ˆσxx, ˆσxz , is related to depth of the media.
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Figure 10: Amplitudes of displacement, ÛR, ŴR, and the values of the stress, ˆσzz ,
ˆσxx, ˆσxz , related to depth of the media. [13]

The data in figure 10 have no dimension, and the values of the amplitudes are corre-
lated to the displacement amplitude, Ŵ0R, on the surface, and the stress amplitudes
σ̂xx|z=0, on the surface. The depth of the media is related to the wavelength. The

data in figure 10 are given for two values of Poisson’s number, ν = 0.25 (dashes),
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ν = 0.34 (dots). Commonly, metals have a value of Poisson’s ratio in this interval. It
is seen in the graphs, that the displacement normal to the boundary increases first,
than drops of over the depth, and the displacement parallel to the surface undergo
a change of sign at a depth of close to 0.2λR. Also, the term σxx undergo a change
of sign, and σzz , σxz has maximum at around z

λR
= 0.3, then decreases with the

exponent over depth in the medium.

There is a phase difference of the displacement parts (x-axis/z-axis) of π2 . This
means that the movement in the Rayleigh waves will be elliptic, as described earlier.
The motion on the plus side of the x-axis (in figure 9), will give an elliptic circulation
that moves equal to a clock, and the displacement will change sign at a depth of
z > 0.2λR. This means that the particle movement of the Rayleigh wave will go in
the opposite direction relative to the movement near the surface. The half-major
axis of this motion are normal to the plane z=0, and the half-minor axis of this
motion are parallel to this plane. The elliptic movement has an eccentricity that
is varying with depth into the medium, and the Poisson’s ratio of it. In table 2, the
length of these half-axes are given in relation to the wavelength of a Rayleigh wave,
for some numbers of ν. The upper part of the quota gives the size of the half-major
axis, having amplitude ŴR, and the lower part of the quota gives the size of the

half-minor axis, having amplitude ÛR.

z
λR

ν = 0 ν = 0.250 ν = 0.333 ν = 0.500

0 1.000
0.772

1.000
0.676

1.000
0.626

1.000
0.540

0.250 0.745
−0.007

0.910
−0.076

0.968
−0.101

1.120
−0.158

0.500 0.432
−0.104

0.587
−0.157

0.643
−0.177

0.812
−0.206

1.000 0.109
−0.044

0.192
−0.071

0.219
−0.077

0.339
−0.099

Table 2: The length of the half-axes in relation to the Rayleigh wave-length for some
values of ν [13].

The most fundamental case of a harmonic and plane Rayleigh wave moving in a
half-infinite elastic medium, has been described above. If, however, the medium is
non-homogeneous and have different properties in different directions, the Rayleigh
waves differ from the simpler case. In case of some of these non-isotropic mediums,
e.g. triclinic crystals, there are in most cases no Rayleigh waves present. Between
a solid and a fluid, e.g. rock/air, there always exists Rayleigh waves. In other cases
they are only found for certain relations between the elastic and geometric properties
of the mediums.

In figure 11, the Rayleigh wave velocity over Poisson’s number is given [3].
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Figure 11: The Rayleigh wave velocity over Poisson’s number [3].

and the different types of waves can then be related to each other with respect to
Poisson’s number of the medium, using the shear wave velocity as a reference value.
This is shown in figure 12 [1].

Figure 12: Relation between the different wave velocities as a fuction of Poisson’s
number of the medium. [1]

The Rayleigh wave can originate in a number of different sources, as localized strikes
or point-force excitation. In earthquakes, these kind of waves are created on the
surface of the earth. If these waves are moving in a layer, they are referred to as
Lamb waves.
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2.7.1 Effect of the curving radius on the Rayleigh wave

The method for calculating the velocity of a Rayleigh wave on a surface that is
curved, is derived in [23]. This calculation is quite long, so it will not be given in
detail here. It is a deepening recommended for those with strong skills in technical
physics. The following part is basically the summary part of paper [23].

It is possible to use the relation between wave velocity, wave number and frequency:
kl = ω

cl , kt = ω
ct , and k0 = ω

cr , where cl, ct are denoted as the longitudinal and
shear wave velocity of the volume waves, and cr is denoted as the phase velocity of
a surface wave on a flat partition.

It is stated that ρ is the density of the material, and c2l = (λ+2µ)/ρ, c2t =
µ
ρ , where

µ and λ are Lame’s constants. The following formula is a correctional term for the
radius of curving [23]:

δ = 1
k0C ′

(A
′

ρα + B′
ρβ ). (23)

in which:

A′ = 2c21

√
1− c2r

c21
− c2r

√
1− c2r

c2t
,

B′ = −2c2t (
c2r

c21−c2r

√
1− c2r

c2t
+

c2t
c2t−c2r

√
1− c2r

c2l
),

C′ = 2(3c2r − 5c2t ).

and ρα and ρβ are the radius of curving in α and β-direction, respectively. This is

explained by looking at figure 13.

Figure 13: The cartesian coordinates used on the curved surface. [23]

It is possible to denote this correction term as δc. The velocity of a Rayleigh wave
on a curved surface is denoted c, and it is related to the velocity of a Rayleigh wave
on a flat surface, cr, according to:
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c = cr(1− δc).

The velocity of a Rayleigh wave on a curved surface can also be expressed as c = ω/k,
where the wave number of the Rayleigh wave, k, on a curved surface, is:

k = k0(1 + δ)1/2

Thus, the velocity of a Rayleigh wave on a curved surface can be expressed as:

c = ω
k0(1+δ)1/2

≈ ω
k0

(1− 1
2δ) = cr(1− 1

2δ)

and subsequently:

δc = −1
2δ = −1

2
1

k0C ′
(A
′

ρα + B′
ρβ ). (24)

And this formula relates the surface wave phase velocity, and curving, 1
ρα , 1

ρβ .

2.7.2 Transmission coefficient for Rayleigh waves over a wedge

In literature [26], the case of Rayleigh wave transmission of a 90o wedge is studied.
In the search for literature, other sources for similar derivations were found, among
them [27], and [28], but the method described in this section was found to be the
most suitable.

The quarter space in figure 14 is considered.

Figure 14: The quarter space problem. [26]

It can be assumed that a Rayleigh wave is moving towards the corner, in minus
x-direction, incoming at the boundary of the two planes, x = 0. The longitudinal
wave velocity is denoted by α, the shear wave velocity by β, and the Rayleigh wave
velocity by γ. The Rayleigh wave, which is incoming towards the corner, in minus
x-direction, and the Rayleigh wave which is reflected at this corner, can be described
by the potentials:

φ = A1e
−rzej(ωt+kγx) + A2e

−rzej(ωt−kγx)

ψ = B1e
−szej(ωt+kγx) +B2e

−szej(ωt−kγx) (1)

where A1 and B1 are the amplitudes of the incoming wave, and A2 and B2 are the
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amplitudes of the reflected wave.

In the above expression,

r2 = k2
γ − k2

α, s2 = k2
γ − k2

β

The amplitude B1 is determined by A1, and the amplitude B2is determined by
A2, which means that there are only 2 unknowns in (1). When looking at the
boundary conditions, the stresses in both normal and tangential direction, pxx and
pxz , should be zero on the boundary of the two planes, x = 0. But no selection of
A2, or B2, will fulfill these terms. Because of this, the following method of working
is suggested:

It is possible to perform an estimation of the amplitude of the reflected Rayleigh
wave, at the boundary of both planes. It can be done by selecting this amplitude
from the condition that the stress at the surface of reflection (x = 0), are minimized
by the method of least squares. But the volume waves created by this reflection are
omitted. Therefore, the reflection coefficient R = A2/A1 are selected to fulfill:∫∞
0 = |pxx|2 + |pxz |2dz (2)

with a minimum at x=0.

These are the formulations of the stress and displacement equations for a medium
of isotropic properties:

pxx = λθ + 2µdu
dx

; pxy = µ(du
dy

+ dv
dx

)

pyy = λθ + 2µdv
dy

; pyz = µ(dv
dz

+ dw
dy

)

pzz = λθ + 2µdw
dz

; pzx = µ(dw
dx

+ du
dz

) (3)

in which θ = ∇ ·
−→
D , and

−→
D is the displacement parts in x- y- and z-direction,

described by the scalar potential φ and vector potential
−→
ψ (ψ1, ψ2, ψ3), according

to:

u =
∂φ
∂x

+
∂ψ3

∂y
− ∂ψ2

∂z

v =
∂φ
∂y

+
∂ψ1

∂z
− ∂ψ3

∂x

w =
∂φ
∂z

+
∂ψ2

∂x
− ∂ψ1

∂y

or in notation of vectors:
−→
D(u, v, w) = ∇φ+∇·

−→
ψ (ψ1, ψ2, ψ3)

The expressions for the two stresses, which are relevant for the Rayleigh wave, can
be found by looking at formula (1), together with formula (3):

pxx = −µ(2r2 + k2
β)(A1 + A2)e−rz + 2µjkγs(B1 −B2)e−sz
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pxz = 2µjkγr(A1 + A2)e−rz − µ(2s2 + k2
β(B1 +B2)e−sz (4)

It is possible to use the relationship between A and B, which is determined from
the conditions at the boundary. This relation is found by assuming that the planes
bounding the quarter-space lies next to a media free of stresses (e.g air). Therefore,
the stresses pzy, pzz , and pxz must be zero at z=0. This means that there will
be no motion in the y-direction. And the following expressions are found for the
arbitrary constants A and B:

(2k2
γ − k2

β)A+ 2jkγsB = 0

−2jkγrA+ (2k2
γ − k2

β)B = 0 (5)

It is desirable to find values of A, B 6= 0, and this requires that the Rayleigh equation
is satisfied (see section 2.7).

Incorporating the relationship between A and B, that is found in (5), the equation
(4) will be reduced to:

pxx/A = −µ(1−R)(ae−rz − be−sz)

pxz/A = −2µjkγr(1−R)(e−rz − e−sz) (6)

in which it is possible to denote a and b, by:

a = 2r2 + k2
β ; b = 2s2 + k2

β

Then it is possible to look at integral (2), of which we want to find a minima. This
can be described, using the introduced notation, by:

I = 1
A2

1

∫∞
0 |pxx|2 + |pxz |2dz = µ2(1−R)2(a

2

2r−
2ab
r+s+ b2

2s)+4µ2k2
γr

2(1−R)2( 1
2r−

2
r+s + 1

2s) = M(1−R)2 +N(1−R)2

in which M and N have a dependence of the frequency, Young’s modulus, Poisson’s
ratio and density of the material.

The next step is to look at the minima, dI
dR

= 0, and find a solution to this equation
with respect to R. This will give:

R = N−M
N+M

There is no dependence of R upon the frequency, ω, because this will disappear by

the ratio N−M
N+M . It makes sense, because there is no length defining the geometry

of this problem.

In order to find the factor T, the transmission coefficient for a Rayleigh wave around
a 90o corner, from the reflection factor, the following formula is used:

T = 1−R (7)

Omitting any conversion to other wave types. The power transmission, which is the
relevant quantity for the SEA-analyis, is found by using the following formula:
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Tpower = 1− |R|2 (8)

2.8 Statistical Energy Analysis - SEA

The method called Statistical Energy Analysis, SEA, uses the statistics of a
system of a number of modes, to look upon the properties of vibrations in it [5].
Originally, this method was applied for room acoustics, and later for plates. A few
of these model results were completed as far back as 1953 by Shröder. If a system
has a given response in every position and for each frequency, the total response
is calculated from the summation of these modes having a random phase, and a
relatively similar distribution of energy between the modes. This will be a good
approximation, for a number of dynamical systems, above a specific limit called the
critical frequency.

If using SEA to calculate the response of a resonant system, four steps are used [6]:

1. A model of the dynamical system with respect to sub-systems and coupling
interfaces.

2. Finding the parameters required to build the model.

3. Calculating the distribution of energy between the sub-systems included in the
model.

4. Calculating the levels of response of the sub-systems.

It is hard work to make a model of SEA, that reflects reality [6]. There are several
software that can do the calculations, but the result is also dependent on the per-
sonal knowledge and previous work in the field. The experiment is used to verify
the model. This can for example be a measurement of the radiated sound power
from a solid, compared to data from the model. This is important for finding errors
and application limits of the model.

An SEA-model basically gives the energy flow and vibrational energy accu-
mulation in an advanced, real object that posess both acoustic and structural
properties (vibro-acoustic system) [6]. Energy is stored inside the sub-systems,
which have different modal and structural properties. Normally, one type of mode
is present in each sub-system (e.g. longitudinal, shear, Rayleigh etc.), and can co-
exist with each other as different sub-systems. The different types of modes are
normally bounded from each other by a discontinuity, between the sub-systems. It
is often possible to find these different sub-systems , also if the system are made up
of several structural and acoustic parts. Only the energy found in the resonances
is of concern, used in the expressions for the power flow. The responses of a
system that is largely damped is normally estimated to be too low, because the non-
resonant response is not included. There is, although, a suggestion from Maidanik
[14], [15], that the SEA-analysis can take into account the non-resonant field in the
sub-systems. This will although make the model more complicated. The assumption
of conservative coupling is also useless with this formulation.
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In the study of a number of different modes, the importance is that they meet the
conditions of equality and dependence [6].

• Equality means that all the modes of the sub-system studied has almost
similar excitation of force, coupling losses to adjacent sub-systems, and losses
in the material. If these characteristics are fulfilled, the modes will have almost
similar vibrational energy, and this theory is then valid.

• Dependence means that the modes have an impact upon the internal losses,
transmission and/or storage of energy in the system. If a group of modes that
are not really relevant, are included in the model, the analyze may be more
complicated than necessary.

The sub-systems that are included in the model are elastic and linear structures
of certain size, or acoustic cavities. These different sub-systems are expressed
each by their specific vibrational modes and their internal losses. The energy
is either [6]:

1. Lost by the damping of the material

2. Transmitted to another sub-system

It is possible to implement some basic suppositions, and therefore widen the analyze
of the flow of energy from a couple of resonators to a couple of bundles of resonators
(sub-systems).

The following properties of the system are assumed [6]:

• The resonators in the 1st sub-system have weak coupling to the resonators
of the 2nd sub-system.

• The general forces of modes must be non-correlated.

• The natural frequencies of the sub-systems have the same chance of occur-
rence in a frequency band ∆ω.

• The resonators of a sub-system have equal energies.

• The full energy description of a sub-system is the total contribution from each
mode being resonant, and no non-resonant energy is taken into account.

Weak coupling does not have to state that there is a weak physical coupling in-
between two of the sub-systems. The weak coupling phenomena is valid in case that
the power that is transferred between two sub-systems are considerably smaller than
the internal losses in the transferring sub-system. Large internal losses and large
reflection at the coupling interfaces, and big differences in wave impedances
will contribute to this.

34



2.8.1 Lower limit of applicability - SEA

In order to use the method of SEA, it is assumed that the wavelength of the waves
traveling in the medium is short in comparison to the dimensions of the object. This
means that there is a lower limit of applicability for SEA, that is generally used in
order to have a working sub-system. The formula that is used to calculate the lower
limit of applicability for the SEA analysis is given by [5]:

M = η · f · n(f) > 1

in which:

η is the loss factor, n(f) is the modal density, f is the frequency.

2.8.2 Parameters needed for an SEA-model

The parameters needed to establish the SEA model are the following [6]:

• Input powers, Wi, into the i-th sub-system

• Modal densities , ni, for the i-th sub-system

• Internal loss factors, ηi, for the i-th sub-system

• Coupling loss factors, ηij , for the connection between the i-th and j-th
sub-system

2.8.3 Input power

The input power is found by the external force doing work on the system, giving it
a power input. If it is known, it can be used directly. It can also be calculated, if
the force doing work on the system is known (assumed that the data for the sub-
systems are known) [6]. It could e.g. be a point force acting on the object in 2D,
or an acoustic reverberant field acting on the object in 3D. It could also be a
percussive force working in a solid medium (e.g. a rock drill), giving it an input
power of a certain amplitude.

2.8.4 Modal density

The modal density is defined as the quota of the number of modes and the band-
width of the part of the frequency domain studied. It is generally described as [6]:

ni(f) = ∆N
∆f

in which ∆N is the number of modes in a frequency band ∆f .

It can be estimated from formulas, or found in literature, for common objects, given
e.g. in [7] or [8].

It is estmated as (1D subsystem - beam or rod):
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n(f) = 2·L
cg (1)

where L is the length of the interface of coupling, and cg is the group velocity.

It is estimated as (2D plates):

n(f) = A·ω
cp·cg + P

cg (2)

where A is the area of the plate, ω is the angular frequency, cp is the phase velocity,
and P is the full perimeter of the plate surfaces.

It is estimated as (3D cavity):

n(f) = ω2·V
π·cl2·cg + A·ω

cl·cg + P
cg (3)

where V is the volume of the 3D cavity, A is the area of the cavity sides, and P is
the full perimeter of the cavity sides.

It is possible to find the modal densities (the mean of how many modes exist per
Hz or radian), from computations in the SEA-software [6].

It has the unit [1/Hz]. This means, that the considered structure, is seen as several
different resonators of which the energy is summed up to obtain the full energy
doing work on the structure.

2.8.5 T60

The reverberation time, T60, is defined by [20]:

T60 = 2.2
f0ηi

(1)

in which f0 is the resonance frequency of the structure, and ηi is the internal loss
factor of the structure.

This equation can be modified to produce:

ηi = 2.2
f0T60

(2)

The T60 is a measure of how long it takes for the vibrational level to drop by 60
dB.

2.8.6 Internal loss factors

The energy losses, meaning how much energy is lost mainly due to damping in each
of the sub-systems, are denoted as [6]:

ηi =
Πi,diss

ωEi
(1)

in which Πi,diss is the power being lost in the i-th sub-system, and Ei is the energy

of vibrations being accumulated in the i-th sub-system.

The above described formulas describe the quantity of internal losses, related to
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the elastic energy being accumulated in each sub-system. These data, for each sub-
system, has to be given by material data sheets, or estimated in the form of loss
factors of an object being damped [9].

2.8.7 Coupling loss factors

The power flow from one of the subsystems to another one is formulated by the
coupling loss factors (CLF:s), ηij , in the equation [6]:

ηij =
Πij

ωEi

in which Πij denotes the flow of power between the i-th subsystem and the j-th
subsystem, and Ei is the sum of energy which is accumulated in the i-th subsystem,
if Ej = 0.

The CLF:s are dependent upon certain properties of coupling interfaces [7]. The
CLF:s can be found from the transmission loss of a solid media located between
different acoustic cavities. If the case of coupling between a structural sub-system,
and an acoustic sub-system, is studied, the CLF:s can be found from the radiation
efficiency or the radiation resistance. If looking at an interface between sub-systems
having the form of plates, the CLF:s are dependent on the wave transmission coef-
ficients of the coupling interface being studied. If a coupling is a point connection,
the CLF:s can be obtained from the mechanical mobilities of the sub-systems being
coupled to it. The CLF:s for a certain path where the energy is transferred, can be
found from literature [7], [8] and [10].

The coupling loss factors for a 2D type structure is found as [4]:

ηij = ¯τij
cg
ω

lc
πSv

(1)

and for a 3D type structure it is found as:

ηij = ¯τij
cg
ω
Sc
4Vv

(2)

in which ¯τij is the mean transmission coefficient over the total number of incidence
angles, lc is denoted as the length of the junction separating both sub-systems, Sv
is the area of the ’transferring’ sub-system, Sc is the area of the junction, and Vv is
the volume that the ’transferring’ structure has.

2.8.8 Power flow equations

In the methodology of SEA, the relationship of energy flow between the sub-
systems can be found from the formulas below. The relationships of the power flow
between the different sub-systems are shown in figure 15.
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Figure 15: The power flow between two different sub-systems. [11]

The equations used to describe the power flow are the following [11]:

Sub-system i: Pi,in + Pji = Pi,loss + Pij (1)

Sub-system j: Pj,in + Pij = Pj,loss + Pji (2)

where the internal losses, Pli, are given by:

Pli = ωηiEi (3)

And the transmitted powers, Pij , are given by:

Pij = −Pji = P ′ij − P
′
ji (4)

P ′ij = ωηijEi (5)

P ′ji = ωηjiEj (6)

where ηij and ηji are the CLF:s, that fulfill the relationship:

ηijni = ηjinj (7)

this gives the power transmission, Pij , to be expressed by:

Pij = ωηij(njEi − niEj) = ωηijni(
Ei
ni −

Ej
nj ) (8)

following the expression above, the power flow in eq. (1) and (2) can be expressed
by:
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Pi,in = ωηiEi = ωηijni(
Ei
ni −

Ej
nj ) (9)

Pj,in = ωηjEj = ωηjinj(
Ej
nj −

Ei
ni ) (10)

From this equation, the energy balance for each sub-system can be calculated, if the
parameters of the SEA calculations: the modal density, internal loss factor, coupling
loss factor, and input power, are known.

2.8.9 Computation of the energy distribution

The ”stationary” energy levels for each sub-system, can simply be found from the
given energy balance equations, e.g. the levels of response for pressure, acceleration,
and stress [6]. If the parameters used for sub-systems, and coupling interfaces, are
known, the below matrix equation can be used:

∆f · ω[A] · {Em} = {Win}

In the matrix above, A will have real values, have symmetry, always be positive,
and of size NxN, in which N is the number of subsystems. By denoting the different
sub-systems by numbers, the matrix can be solved as a version which is simplified,
which will allow a faster calculation, and give the opportunity to include more sub-
systems [6].

For a system built up of several different modes (as described in previous section),
this matrix will be described by:
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Figure 16: The power flow between many different sub-systems. [11]

2.8.10 Computation of the response levels

The total energy, in each sub-system, can be found from a multiplication of the
calculated modal energy levels, with the estimated number of modes in each 3rd-
octave band. Looking at the total energy in each of the bands, the average response
amplitudes are estimated. In the case of an acoustic subsystem which is a 3D
cavity, the spatial average of the sound pressure is:

E =
〈p2〉
ρc2

V

it is also found, that there is a relation between the total energy in a sub-system of
a structure and the average vibration velocity over the space:

E = M〈v2〉

where M is denoted as the total mass of the sub-system.
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2.9 Excitation of different waves

There is a problem to determine the distribution of the different wave types, which
are excited, when launching the excitation with a point-source. If a surface source is
used, one can expect, from previous studies in the field, that the main contribution
to the field of waves will be in form of surface waves, confined to the surface of the
cylinder, and to some extent, extending into the interior of the cylinder. The rest of
the energy, one can expect, will form volume waves in the interior of the cylinder.
This problem is illustrated in figure 17. This distribution, according to [17], will
be approximately 67 % into surface waves, 26 % into shear waves, and 7 % into
longitudinal waves, for a Poisson’s number of ν = 0.25. In [30], this analysis is done
in greater detail, giving the distribution between wave types, for a point excitation
on a half-infinite solid.

Figure 17: The problem of a single surface-source excitation of a half-infinite solid
medium. [17]

Longitudinal and shear waves. A round disk, of radii a, is vibrating in normal
direction on the surface of the solid, in figure 18. This media is half-infinite and
isotropic. This motion is giving a stress beneath the disk, at time t, expressed by

P0e
jωt. Here, P0 and ω are positive constants [30]. The longitudinal and shear

waves propagates in a spherical pattern. The interesting part is to find the intensity
of these waves. Therefore, it is suitable to introduce a system of spherical coordi-
nates (R, θ, φ), in which the origo is located at the mid-point of the disk, at time
t = 0. The polar angle θ is zero at points inside the medium, on the axle of the disk.

The radial and shear parts of the displacement, u, can be described by uR and uθ,
respectively, and we find the equations:

uR ≈ −
a2P0
2c44

e(jωt−klR)

R Θ1(θ) (1)

uθ ≈ −
ja2µ3

2c44
ej(ωt−ktR)

R Θ2(θ) (2)

for big R and small a, in which

Θ1(θ) =
cosθ(µ2−2sin2θ)

F0(sinθ)
, Θ2(θ) =

sin2θ
√
µ2sin2θ−1

F0(µsinθ)
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F0(ζ) = (2ζ2 − µ2)2 − 4ζ2
√
ζ2 − µ2

√
ζ2 − 1

kl = ω
√
ρ/c11, kt = ω

√
ρ/c44,

and

µ =
√
c11/c44 = kt/kl =

√
2(1− ν)/(1− 2ν)

in which c11 and c44 are the constants of elasticity for compressive, and transverse
motion, ζ is an integrand, ν is the Poisson’s ratio, and ρ is the density of the medium.

The intensity of a transverse or longitudinal wave can be expressed by the amount
of each wave type, being radiated from the excitation. This is described in terms of
power per unit area, over time, of the given wave surface:

Γl = −1
2 ˙uRR̂R∗, Γs = −1

2 u̇θR̂θ∗,

for each case, in which the * means the conjugate complex.

The radial and transverse stress parts, over the surface of the wave, R̂R and R̂θ,
and the parts of displacements, are related by the formulas:

R̂R = c12∇.u + 2c44
∂uR
∂R

, R̂θ = c44R
∂
∂R

(uθR ) + 1
R
∂uR
∂θ

,

in which c12 = c11−2c44, by regular description. The expressions (1) and (2) gives
another formulation of these stresses:

R̂R ≈ ja2klµ
2P0Θ1(θ)
2R ej(ωt−klR), R̂θ ≈ −a

2klµ
4P0Θ2(θ)
2R ej(ωt−ktR),

The oscillation frequency can be denoted by fv and the velocity of longitudial waves
in the medium by vl, so that:

fv = ω/2π, vl = ω/kl,

thus, the intensities of longitudinal waves and shear waves are found as:

Γl ≈
π2f 2

v a
4µ4P 2

0

2ρvl3
Θ1(θ)

2 R2,

Γt ≈
π2f 2

v a
2µ9P 2

0

2ρvl3
Θ2(θ)Θ

∗
2(θ)

R2 ,

and it is important to note that Θ1(θ) is real valued.

Wl and Wt will subsequently be used to describe the power being radiated in both
longitudinal and shear waves. After this, it is possible to perform an integration of
the intensities over a half sphere having big radius R, and end up with:

Wl =
π3f 2

v a
4µ4P 2

0

ρvl3
∫ π/2
0 Θ1(θ)2sinθdθ, (3)

Wt =
π3f 2

v a
4µ9P 2

0

ρvl3
∫ π/2
0 Θ2(θ)Θ∗2(θ)sinθdθ (4)

The preceeding integrals have been calculated, for a value of µ =
√

3, leading to a
Poisson’s ratio of 0.25, and the result is [17]:

42



Wl = 0.333
π3f 2

v a
4P 2

0

ρv3l
, Ws = 1.246

π3f 2
v a

4P 2
0

ρv3l

Surface waves. It is also of interest to find how much power is being distributed
into the surface wave. For this purpose, a system of coordinates in the shape of a
cylinder, (r, φ, z), is used, where the plus z-axis is interfering with the line θ = 0,
in the spherical coordinate system described earlier in this chapter [17]. The mean
intensity is then found from:

Γray = −1
2 u̇zẑr

∗ − 1
2 u̇rr̂r

∗.

The Rayleigh wave has displacement parts both radially, along the coordinate r, and
in z direction. These displacement parts can be found by looking at the integrals of
the overall parts of displacement, and observing how much a pole of the integrand,
will affect the result of each integral. This pole is found at the position ζ = −p on
the minus real axis, in which p, is given as the plus root of eq. F0(ζ) = 0. The
term F0(ζ) = 0 is depending on Poisson’s ratio of the medium. The parts of the
displacement field are given by:

uz ≈ a2e−
1
4 jπP0

c44F ′0(p)

√
πk1p(p2−1)

2r ej(ωt−k1pr){2p2eµ − (2p2eµ − (2p2 − µ2)e1}, (5)

ur ≈ a2e
1
4 jπP0

c44F ′0(p)

√
πk1p3

2r ej(ωt−k1pr){2
√
p2 − 1

√
p2 − µ2eµ − (2p2 − µ2)e1} (6)

in which eµ = exp{−k1z

√
p2 − µ2}, e1 = exp{−k1z

√
p2 − 1}

The stress parts, which are relevant, are given in terms of the displacement parts
uz and ur by:

ẑr = c44(∂uz
∂r

+ ∂ur
∂z

), r̂r = c12∇.u + 2c44
∂ur
∂r

.

The right parts of the equations above, can be replaced by the asymptotic expres-
sions that was found by differentiation of (5) and (6), and usage of the relation
F0(p) = 0. This will give the following expressions:

ẑr ≈ −a
2P0

F ′0(p)

√
πk31p

3(p2−1)
2r 2(2p2 − µ2){eµ − e1}e

j(ωt−k1pr+1
4
),

r̂r ≈ a2P0

F ′0(p)

√
πk31p

2r
{(2p2−µ2)eµ−(2p2+µ2−2)e1}ej(ωt−k1pr−

1
4π)

.

Subsequently, the mean intensity of the Rayleigh wave will be:

Γray =
ωk1

2a4P 2
0

2c44r
X(k1z) =

2π2f 2
v a

4µ2P 2
0 k1

ρv3l r
X(k1z)

in which:

X(k1z) =
π(2p2−µ2)
4{F ′0(p)}2

[4p2(p2−1){2p2eµ−(2p2−µ2)e1}(eµ−e1)+(2p2−µ2){(2p2−

µ2){(2p2 − µ2)eµ − 2p2e1}{(2p2 − µ2)eµ − (2p2 + µ2 − 2)e1}],
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It is also possible to integrate this expression over a large cylinder, having a large
radius r. This integration will lead to the the following formula, describing the ra-
diated power of the Rayleigh wave:

Wray =
4π3f 2

v a
4µ2P 2

0

ρv3l

∫∞
0 X(k1z)d(k1z). (7)

Integral (7) can be expressed by doing a summation of the functions e2µ, eµe1 and

e21, and if one assign numbered values to the coefficients and the exponents, it’s no

big deal to evaluate the integral. If the term p is known, the variable F ′0(p) can be
expressed by:

F ′0(p) = 8p{(2p2 − µ2)− (2p2−µ2)2

4p2
− 2p4(2p2−µ2−1)

2p2−µ2)2
}.

For the case of µ =
√

3, the value of p will be:

p = 3
2

√
1− 1√

3
= 1.8839, F ′0(p) = −8

√
3p = −26.104

and subsequently X(k1z) = 1.5383e3µ − 3.1192eµe1 + 1.8131e21

in which eµ = exp(−0.7410k1z), e1 = exp−1.5966k1z

and if this formulation is placed in (7), we get [17]:

Wray = 3.257
π2f 2

v a
4P 2

0

ρv3l

At last, the full power being generated by the point-force excitation, is obtained by
merging eq. (3), (4) and (7):

W = Wl +Ws +Wray = 4.836
pi3f 2

v a
4P 2

0
ρvl .

2.10 Euler-Bernoulli theory

The Euler-Bernoulli theory, and wave approach, are described in detail in [24]. These
theories are used to calculate the parameters of waves moving in a beam-like object.

It is assumed that we have a longitudinal wave incident on the end of a beam. The
reflected wave will also be longitudinal. We assume that the end of the beam is a
free surface, meaning that the force that is acting on this end is zero. The wave
being incident can be described by:

ξi(x, t) = ξi(ω)e−jkxejωt (1)

where ξi(ω) is the complex amplitude of the wave. The wave which is reflected will
have a proportional amplitude, in relation to the incident wave. The reflected wave
is defined as:

ξr(x, t) = rξi(ω)ejkxejωt (2)

where r is the reflection factor, which is complex.
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Figure 18: A longitudinal wave moving in a beam, and being reflected at the end of
the beam.

A longitudinal wave moving through the beam, being reflected at the end of the
beam, is shown in figure 18.

The displacement of the beam can be seen as a superposition of both waves [24]:

ξ(x, t) = ξi(ω)(e−jkx + rejkx)ejωt (3)

And the force and the displacement are related by hooke’s law:

F (x, t) = −ES∂ξ(x,t)
∂x

(4)

in which E is the young’s modulus, and S is the cross-sectional area of the beam.
which will give, together with eq. (3):

F (x, t) = jkESξi(ω)(e−jkx − rejkx)ejωt (5)

At x=0, the boundary condition is:

F (x = 0, t) = jkESξi(ω)(1− r)ejωt = 0 (6)

which is only true when r=1. This means that the incident and reflected wave must
have the same amplitude in order to have proper boundary conditions. The same
standing wave pattern as a sound wave moving in a Kundt’s tube, can be found on
the beam, if measuring with an accelerometer along the half-infinite beam. There
can exist different boundary conditions at the end of the beam. It can be e.g a mass
or a spring attached to the beam’s end, or a force working on the end. The reflection
factor can be found from the impedance ratio of the medias on the respective sides
of the boundary:

r = Zw−ZT
Zw−ZT (7)

where Zw is the wave impedance of the wave guide, and ZT is the impedance of
the stoppage. It is of interest to look at an example where the stoppage is a dense
mass. The wave impedance for a longitudinal wave is Zw = ρclS, and the mass
impedance is ZT = jωm. The reflection factor of (7) can then be expressed as:

r =
ρclS−jωm
ρclS+jωm (8)
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It is found, from (8), that if the mass can be seen as small relative to the wave
impedance, it will have no effect, which means that the reflection factor will be 1,
as it is for a free end.

The expression (8) is made up of both a real and an imaginairy part, according to:

Re(r) =
(ρclS)2−(ωm)2

(ρclS)2+(ωm)2
(9)

Im(r) = − 2ωmρclS
(ρclS)2+(ωm)2

It is of interest to describe the meaning of a dense mass, and this can be done by
modifying the formula for the wave impedance, according to:

Zw =
ρλlS
2π ω (10)

The expressions of the real and imaginary parts of the reflection factor, can then be
written as:

Re(r) =
m2
λ/6−m2

m2
λ/6+m

2 (11)

Im(r) = − 2mλ/6m
m2
λ/6+m

2

where mλ/6 =
ρλlS
2π

It is a frequency dependency present in eq. (11), as the wavelength of a longitudi-
nal wave. This indicates that a mass attached to the end of the beam will affect
the reflection only in case that this mass is larger than approximately 1/6 of this
wavelength.
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3 Measurements

In this section, measurements of the reverberation time, T60, are presented. This
gives the possibility to calculate the internal loss factors, described in section 2.8.6.
Also, additional measurements of the velocity, are performed for our modelling ob-
ject, a cylinder of nylon. Finally, a theoretical model, described in section 2.10, is
used to calculate an approximate velocity inside the cylinder.

3.1 T60 in a solid medium

In order to investigate the reverberation time, T60, in a solid medium, the software
LMS.Test.Lab 13B, aquisition system, LMS SCADAS 20Ch, and an accelerome-
ter, LMS PCB 35A16, were used. For the measurement on the cylinder of nylon,
a different accelerometer was used, LMS PCB 356A12. The 1st measurement was
performed on a block of diabase, as seen in figure 19. Both a steel hammer, a
rubber hammer, and a light rubber hammer were used to excite the structure. The
block was excited in a position a few decimeters from the measurement point, near
the closer side of the top. The response was measured in the accelerometer position.
MATLAB is used to process the results of the T60-measurements.

Figure 19: The 1st measurement taking place on a block of diabase.

It is seen from the Energy Spectral Density plot in LMS, in figure 20, that
we have an input of energy starting at around 1.7 kHz, where the 1st resonance
is located. This resonance indicates where the input of energy into the cylinder is
beginning to take place.
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Figure 20: The Energy Spectral Density, for the block of diabase.

The results from the measurements of the T60, on the block of diabase, are shown in
figure 21. The T60 for frequencies below the 1.6 kHz band are not included in this
data. This is due to the fact that, as explained, we have an input of energy starting
a bit above this frequency band, which would likely mean that measurements for
lower frequencies are inaccurate.

Figure 21: The results from the 1st measurement taking place on a block of diabase.
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The 2nd measurement was performed on a block of steel, as seen in figure 22. The
structure was excited with the types of hammers mentioned above. The area of
excitation was located a few decimeters from the measurement position, near the
close side of the top. The response was measured in the accelerometer position.

Figure 22: The 2nd measurement taking place on a block of steel.

The results of the measurement of T60, for the block of steel, is shown in figure 23.

Figure 23: The results from 2nd measurement taking place on a block of steel.
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The 5th measurement was performed on the cylinder of nylon, as shown in figure 24.
The structure was excited using the light rubber hammer. The excitation took place
close to the middle on the visible smaller side, and the response was measured with
the accelerometer on the top of this side. Note: the cylinder is placed on a rubber
ring. This could be mentioned as an influence on the results of the reverberation
time. An alternative placement is free suspension, which could perhaps be more
suitable.

Figure 24: The 5th measurement taking place on a cylinder of nylon.

The ESD spectrum for the cylinder of nylon is given in figure 25. In this data, two
peaks are found, one at around 1400 Hz, and another one at around 2100 Hz. This
is likely different resonances of the cylinder, which are important for the modelling
results. Also, the lower resonance indicates where we start to have an input of
energy into the cylinder.
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Figure 25: The ESD spectrum for the cylinder of nylon

The results from the measurement on the cylinder of nylon, are given in figure 26.
The T60 for frequencies below the 2 kHz band are interpolated linearly from the
value at this band. This is due to the fact that we have an input of energy starting
a bit below this frequency band, as seen in the ESD-spectrum.
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Figure 26: The results from the 5th measurement taking place on a cylinder of
nylon.

3.2 Internal loss factor in a solid medium

The loss factors in this chapter, are calculated using the T60-results found in the
previous section, and formula (2) of section 2.8.6. MATLAB is used to process these
results.

The loss factor over the frequency bands, for the block of diabase, is shown in figure
27.
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Figure 27: The internal loss factor over the frequency bands, for the block of diabase.

The loss factor over the frequency bands, for the block of steel, is shown in figure
28.

Figure 28: The internal loss factor over the frequency bands, for the block of steel.

The loss factor over the frequency bands, for the cylinder of nylon, is given in figure
29.
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Figure 29: The internal loss factor over the frequency bands, for the cylinder of
nylon.

The results of the loss factor in the cylinder of nylon, for frequencies below 2 kHz,
are interpolated linearly from the value it has at this frequency. This is because
the results for the T60 are not found for lower values in the measurements. This is
explained in the previous section. The value of the loss factor, at 5 kHz, is 0.004575,
for the cylinder of nylon.

3.3 Velocity on the cylinder of nylon

In order to find an estimation of the velocity levels of the surfaces of the cylinder of
nylon, measurements were performed, after exciting the structure with a continuous
excitation. The excitation of the cylinder of nylon (PA6GTECAST) was performed
using a shaker, LMS Qsources Integrated miniature shaker, on the top of the cylinder
(see figure 30), running at a sine of 5 kHz, and giving 1 N of input force. The
accelerometers used were LMS PCB 35A36, and LMS PCB 35A12. The aquisition
system used was LMS Scadas 20Ch. The data was processed in LMS.Test.Lab 13B.
The response was measured in 78 different points on the surface of the cylinder + 1
stationary accelerometer, used as phase reference. This gave a total of 26 different
measurements that was set up. The setup of these measurements is shown in figure
31. The animation of these velocity levels are displayed, over phase increments of
30o, in figure 31 - 36.

Note: since the accelerometers are 3-axis, the coordinates of the measurements are
referenced to the coordinate system given in figure 31 (since they may not be placed
the same as the referenced coordinate system).
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Figure 30: The measurement setup on the cylinder of nylon.
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Figure 31: The animation of the velocity levels of the 79 measurement points. The
phase increments are shown in the figure.
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Figure 32: The animation of the velocity levels of the 79 measurement points. The
phase increments are shown in the figure.
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Figure 33: The animation of the velocity levels of the 79 measurement points. The
phase increments are shown in the figure.
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Figure 34: The animation of the velocity levels of the 79 measurement points. The
phase increments are shown in the figure.
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Figure 35: The animation of the velocity levels of the 79 measurement points. The
phase increments are shown in the figure.
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Figure 36: The animation of the velocity levels of the 79 measurement points. The
phase increments are shown in the figure.

It is seen, most clearly, in the measurement points on the sides of the cylinder, that
it is some kind of near field effect present on the edges of the cylinder. This is
due to the free boundary conditions of the cylinder. Also, if looking closer at some
points on the top and sides of the cylinder, it is possible to see that we have some
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kind of wave motion of the particles, corresponding to the motion of a Rayleigh
wave (described in section 2.7). If looking at the measurement points at the bottom
of the cylinder, it is seen that this motion is much more plain, implying that the
longitudinal wave is influencing this surface.

In figure 37, the wavelength of Rayleigh waves on the cylinder of nylon, is shown,
following the calculations found in section 2.7.1. It implies that at a certain depth
into the cylinder, in high enough frequencies, there will be little or no effect of
Rayleigh waves, and here we assume that there are mostly longitudinal waves present
(in depth of the cylinder).

Figure 37: The wavelength of Rayleigh waves over frequency (nylon).

In figure 38, and 39, the velocity levels in the point on the mantle surface, near
the bottom side (position 21), and just at the top of the bottom side (position 22)
is compared. The 1st directional coordinate in this data stands for the measure-
ment direction (relative to the coordinate system in figure 31). The 2nd directional
coordinate in this system is the direction of the phase reference (acc2).
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Figure 38: The velocity levels in the point on the top row of the mantle surface,
closest to the bottom side (position 21).
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Figure 39: The velocity levels just at the top of the bottom side (position 22).

If looking at figures 38, and 39, it is seen that the majority of the velocities are com-
parable in level. The exception may be, that the velocity levels of the accelerometer
on the mantle surface, ”vita21”, and the same accelerometer just below, ”vita22”,
on the bottom surface, have a large difference in level. The level just below the
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mantle surface, at the bottom surface, appears to be in the interval of 50 dB higher.
Looking at the animation in .avi format, it is obvious that we do not have the same
kind of retrograde motion at the bottom surface, as on the mantle surface. It is
likely, we have a contribution from both longitudinal waves and Rayleigh waves at
the bottom surface. This will make a problem for the modelling process, as it must
be determined whether to use the velocity of a longitudinal wave or the velocity of
a Rayleigh wave, on the respective surfaces. Although, it is assumed, in the model,
that this velocity will be that of a Rayleigh wave. This is a fair estimation made for
the model, as it is assumed that one wave type is present per sub-system. It is also
a question, if the Rayleigh wave undergo some kind of transition, moving from the
mantle surface to the bottom surface (as described in section 2.7.1 - 2.7.2).
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4 Implementation

In this section, it is described how the velocity inside the cylinder is estimated, since
we were unable to measure it (because the desired object did not arrive in time).
An estimation of the lower limit of applicability of the SEA-model, is also described.
Subsequently, the SEA-model is set up. This includes setting up the different sub-
systems, and finding the modal densities, internal loss factors, coupling loss factors,
and input powers.

4.1 Theoretical estimation of the velocity in the cylinder

In order to be able to estimate the velocity in the interior of the cylinder, a plane
wave model was used (since it was not possible to measure this velocity for our
project). One can start by using the Euler-Bernoulli theory for beams, described
in section 2.10. This presume that we view our cylinder as a beam-like structure,
equivalent to a cylinder of long length. An assumption is made, that is based on a
1D theory, since we have a nice symmetry of our cylinder (excitation in the middle).
This may not be entirely according to our real case, since we will likely have more
of a spherical pressure wave field (diffuse field) at higher frequencies.

The setup of the measurements is given in figure 40, where the input force is taken
from the measurements with the shaker.

Figure 40: Measurements on the cylinder of nylon. The input force is taken from
the measurements with the shaker.

In our case, with a free surface, the reflection factor, at the bottom surface, will be
a real value of -1, for a 1D case.

The force, that is input on the cylinder, is:

F = 1.06 N

And using eq. (6) of section 2.10, it is possible to calculate the displacement in the
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cylinder using the measurement data. Deriving this, we have the absolute value of
the velocity, which will be:

Vcal = 5.3185 · 10−6 m/s

The calulated value will then be an estimated velocity inside the cylinder, of a
longitudinal wave moving in the cylinder, which explains why this value is lower than
the measured value, at the top side (the excited side) of the cylinder. Naturally, the
wave will ”die” out, while travelling through the material, mainly due to damping.
This value is later used to compare the velocities of the measurements and velocities
from the SEA-model.

Note: this value may not be a complete picture of the reality, but it could be a good
approximation. It is also somewhat uncertain, since it is based on measurement
data of a single measurement point.

4.2 Setting up the SEA-model

Now that all the parameters required for the SEA-model are found, it is possible to
build it. The following in-data are required for the basic analysis:

• Young’s modulus

• Density

• Shear modulus

• Poisson’s number

The most of this data were found in the manufacturer’s data sheet, in [25], for our

cylinder of nylon (PA6TECAST). The density was found to be: ρ = 1150 kg/m3,

the young’s modulus was found to be: E = 1700 ·106 N/m2, and the Poisson’s ratio
was estimated from other values for nylon, to be: ν = 0.39. The SEA sub-systems
are chosen according to figure 41.
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Figure 41: The SEA sub-systems, for our model of nylon.

It is indicated (according to section 2.7 - 2.7.1), that the surface waves (Rayleigh
waves) will be present in sub-systems 1-3. It will also have a minor effect on the
interior/volume (neglected in this report). It is assumed that it is only longitudinal
waves present in sub-system 4. The Rayleigh waves in sub-system 2, will have
a different velocity from the Rayleigh waves on the smaller surfaces, due to the
curving of the cylinder (see section 2.6.1).

It is also assumed that there are weak coupling between the sub-systems, meaning
that there are large internal losses in comparison to the energy transferred between
the sub-systems.

The model calculations were divided into two theoretical cases.

1. In the 1st case, all the input power goes into sub-system 4.

2. In the 2nd case, the input power into sub-systems 1 and 4, are given from the
distribution described below.

It is possible to implement the integral expressions of (3), (4), and (7), from section
2.8, into MATLAB, and solve for a specific value of Poisson’s ratio, ν. This gives an
approximation of the distribution of energy between wave types, for longitudinal,
shear, and Rayleigh waves, for a point excitation on a half-infinite solid. The results
from these calculations are found in table 3, for two different values of Poisson’s
ratio, ν = 0.25, ν = 0.39, of which the latter gives the data for our cylinder of nylon.
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Longitudinal wave (%) Shear wave (%) Rayleigh wave (%)

For ν = 0.25 6.88 25.75 67.36

For ν = 0.39 3.84 34.85 61.31

Table 3: The distribution of energy between wave types, for longitudinal, shear, and
Rayleigh waves (for ν = 0.25, and ν = 0.39).

The input power in the model relative to what we had in the measurements, are
neglected, and instead we use only a unit power input (P=1 W), into the model.
This doesn’t matter, because we only compare the relative differences between the
velocities.

4.3 Lower limit of applicability

It is possible to use the formula for the lower limit of applicability for the SEA
analysis (see section 2.8.1), for the case of a nylon cylinder, for both longitudinal
waves and Rayleigh waves. In table 4, the results from these calculations, are given,
for longitudinal waves.

Freq. 1k 1.25k 1.6k 2k 2.5k 3.15k 4k 5k 6.3k 8k

M 0.78 1.02 1.40 1.90 1.87 4.38 7.80 12.01 16.91 24.08

Table 4: The lower limit of applicability for the SEA-analysis, for longitudinal waves.

This result shows that the SEA-analysis could be valid for frequencies higher than
between 1 kHz, and 1.25 kHz, for longitudinal waves. The same result, but for
Rayleigh waves, are given in table 5.

Freq. 250 315 400 500 630 800 1k 1.25k 1.6k 2k

M 0.74 0.96 1.24 1.62 2.18 3.02 4.15 5.80 8.55 12.36

Table 5: The lower limit of applicability for the SEA-analysis, for Rayleigh waves.

This indicates, that the results could be better for Rayleigh waves, at lower frequen-
cies.

4.4 Modal density

The modal densities in this section, for a steel block, as a reference, and for the
cylinder of nylon, are calculated according to formula (3) of section 2.8.4.

The modal density for a block of steel, of dimensions 1000x1000x500 mm, is shown
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in figure 42. The block of steel has a density of: ρ = 7800 kg/m3, a Poisson’s ration

of: ν = 0.3125, and a young’s modulus of: E = 2.1 · 1011 Pa.

Figure 42: The modal densities for a block of steel of dimensions 1000x1000x500
mm, for longitudinal- shear, Rayleigh, and quasi-longitudinal waves. The modal
density of bending waves for a block of steel of of dimensions 1000x1000x500 mm is
also shown.

The modal density for a block of steel, of dimensions 1000x1000x500 mm, is shown
in figure 43, in 3rd octave bands.
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Figure 43: The modal densities for a block of steel of dimensions 1000x1000x500
mm, for longitudinal- shear, Rayleigh, and quasi-longitudinal waves, in 3rd octave
bands. The modal density of bending waves for a block of steel of dimensions
1000x1000x500 mm is also shown.

The velocity of the Rayleigh waves on the curved surface, used for calculating the
modal density on the curved surface (mantle) of the cylinder, is calculated from
the derivations found in section 2.7.1. In figure 44, the velocity of a Rayleigh wave
is given, over frequency, for a curved surface having radius of curving in α and
β-direction, ρα = 0.179 m, ρβ = 0.179 m. This curved surface is made of nylon,

having a density of: ρ = 1150 kg/m3, a Poisson’s ration of: ν = 0.39, and a young’s

modulus of: E = 1.7 · 109 Pa.

71



Figure 44: The Rayleigh wave velocity on a curved surface having radius of curving
in respective direction, ρα = 0.179m, ρβ = 0.179m (nylon).

Note: The velocity of the Rayleigh waves on a curved surface, is based on a ”smooth”
curving, which is approximated to be close to the case of Rayleigh waves, moving in
any direction, over the surface of a cylinder.

The modal density for a cylinder of nylon (PA6GTECAST), of dimensions 645x358
mm, is shown in figure 45, in 3rd octave bands. The cylinder of nylon has a density
of: ρ = 1150 kg/m3, a Poisson’s ration of: ν = 0.39, and a young’s modulus of:

E = 1.7 · 109 Pa.

72



Figure 45: The modal densities for a cylinder of nylon of dimensions 645x358 mm,
for longitudinal- shear, Rayleigh, and quasi-longitudinal waves, in 3rd octave bands.
The modal density of bending waves for a cylinder of nylon of of dimensions 645x358
mm is also shown.

4.5 Coupling loss factors

The coupling loss factors for the Rayleigh waves, moving from the mantle surface
of the cylinder, to the top/bottom surface, and the reverse, needs to be estimated.
Somewhat, we assume that the Rayleigh wave moving on the surface of the medium,
toward the corners, can be seen as a 2D type junction, which is why formula (1) of
section 2.8.7 is used. The results for the power transmission coefficient, calculated
from the derivations in section 2.6.2, and using formula (8) of the same section, is:

Tpower = τ21 = τ12 = τ23 = τ32 = 0.9405

The value of the amplitude transmission coefficient, that was found from this method,
was T = 0.7561. This seems to be quite good in correlation with the results for the
≈ 90o wedge that was found in [22].

The results are presented in figure 46, for the coupling between the mantle and
bottom/top.
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Figure 46: The coupling loss factors between the mantle and bottom/top.

The coupling loss factors from a longitudinal wave, in the interior of the cylinder,
to Rayleigh waves, on the surfaces, is calculated using formula (2) of section 2.8.7.
It is given in figure 47. The reverse, coupling loss factors from the Rayleigh waves
to longitudinal waves, are calculated using the reciprocity relation (7) of section
2.8.8. All these values are estimated to be close to neglectable, in accordance to the
theory in 2.7.2 (where it is fully neglected). This was done by choosing the value of

the power transmission coefficients, τ41, τ42, τ43, τ14, τ24, τ34, to be 0.012. If a
non-neglectable transmission is assumed, the transmission between the longitudinal
waves and Rayleigh waves would take place at the corners, according to [22].

Note: if one have a corrugated type of surface (non-plane), or up-and down-steps, one
will although have transmission of energy between wave types, also at the surfaces,
and this is described in [31], [32], and [33]. This means that a longitudinal wave will
be converted to a Rayleigh wave on an uneven surface, and also the reverse.
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Figure 47: The coupling loss factors between the interior and exterior of the cylinder.
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5 Results

After calculations in MATLAB, the velocities were found from the modal energy.
These were calculated using the energy balance, as described in section 2.8.10. Note:
for cases, differing from our, where for example the object under consideration is
very large, or a medium with very short wavelengths of a Rayleigh wave, the energy
balance is likely have to be compensated, for the part of the mass actually concerning
the movement of Rayleigh waves. There are two modeling cases described in the
results, and these are described in detail in section 4.2. The velocity levels, for case
1, are given in figure 48.

Figure 48: The velocity levels in 3rd octave bands (in a dB scale). For case 1.

The velocity in the 4th sub-system (relative to sub-system 1), the interior, seems
to be decreasing, for this case, and crosses the value of the velocities at the top
and bottom side, at around 1 kHz. There is also a small dip between 2 and 3 kHz,
which could likely be an error in the modelling process. The differences between the
top (sub-system 1) and bottom side (sub-system 3), are neglectable. The velocity
in the 2nd sub-system, which is the mantle, is slightly increasing over frequency.
This result, indicates, that we may have an over-estimation of the velocity inside
the cylinder, at lower frequencies. This could make sense, as it is assumed, in case
1, that the full power input goes into the longitudinal wave in the interior.

The results, for case 2, is given in figure 49, having a power input of largest magni-
tude into the 1st sub-system, and a small part into the 4th sub-system, as described
in section 4.2.
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Figure 49: The velocity levels in 3rd octave bands (in a dB scale). For case 2.

It is seen, that the velocity of sub-system 4 (relative to sub-system 1), the interior,
seems to be decreasing, from a lower starting value than for case 1. This is likely due
to the fact that we have only a small part of the energy going into the longitudinal
wave, in sub-system 4 (as described in section 4.2), and most energy going into the
Rayleigh wave in sub-system 1. The relative velocity in sub-system 2, the mantle,
seems to be slightly increasing over frequency, and this velocity is quite similar to the
velocity in the 1st case. The relative velocity in the 3rd sub-system is increasing, and
gets closer to the velocity in sub-system 1. This 2nd case, with the given distribution
of power, gives a result that mostly seems to affect the relative velocity in the 4th
sub-system.

5.1 Comparison of the model and mesurements

In order to have a picture of the differences between the results from the model,
and from the measurements, dB values are given as the difference between the
measured values and the model values. The results from the comparison between
measured values (from section 3.3), theoretically estimated value for sub-system 4
(from section 4.1), and model values, from the above section, are found in table 6,
for 5 kHz.
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Velocity 1 Velocity 2 Velocity 3 Velocity 4

Case 1 (power input
into sub-system 4)

1.0000 0.9552 1.0000 0.5311

Case 2 (power input
from calculations)

1.0000 0.9552 0.9968 0.4861

Measured (rel. veloc-
ity 1)

1.0000 1.1150 1.6430 0.2204

Case 1 (difference
in dB between the
measured values and
model)

0 dB -1.3 dB -4.3 dB 7.6 dB

Case 2 (difference
in dB between the
measured values and
model)

0 dB -1.3 dB -4.3 dB 6.9 dB

Table 6: Comparison of values from the 4 different cases, and the measure-
ments/estimations, at 5 kHz. Velocity 4 in the row for measured values is an esti-
mated value based on a plane wave model (from section 4.1). All these values are
relative to these in sub-system 1.

The results, shown in table 6, indicates that case 1 may be overestimating the
influence of the longitudinal wave (sub-system 4). This is strengthened by the fact
that the transmission from longitudinal waves to Rayleigh waves, are assumed to
be neglectable. The 2nd case, seems to give better overall results than the 1st case,
introducing the distribution of energies found in section 4.2. Comparing the results
from the measurements, to those from the model, indicates that we may have an
effect from the longitudinal wave, on the bottom side, which could be the reason
why this value is higher, compared to the model values. This is also seen when
looking at the animations of the cylinder. The 4th velocity in the measurements
row, are actually not fully measured, but based on a plane wave model, incorporating
measurement data (see section 4.1).

Note: in order to have a correct measurement of the velocity inside the cylinder, one
would have to use a transducer inside the cylinder, retaining the original boundary
conditions. One possible way of doing this would be to place a hole, fitting the
transducer, inside the cylinder (easiest to achieve by making a cross-section of the
cylinder. This could look something like shown in figure 50.
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Figure 50: The sketch of the proposed technique for measuring the velocity inside
the cylinder.
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6 Discussion

In this section, the implementation of the model, and the measurements executed
on the cylinder of nylon, are discussed. Also, the estimation of the velocity in the
4th sub-system is discussed. Differences between the measurements/estimations and
the model are discussed and evaluated. Also, it is looked upon what possibly needs
to be corrected in order to have a proper ”input run” model, where it is possible
to use different materials and geometries. There are, to judge from the results
presented in this report, two main factors affecting the end result, and this is the
distribution of excitation energy between wave types, and the transmission of energy
between sub-systems. The transmission of energy between longitudinal waves and
Rayleigh waves, are actually neglectable in the theory being used (as described in
section 4.5). The measurement data and model data have some large deviations.
One reason for the high values of the measurement at the bottom side (sub-system
3) could be that the velocity is affected by the longitudinal wave, moving through
the cylinder (as mentioned in section 3.3), from the excitation point. In the SEA-
model, the velocity on this face is estimated for the Rayleigh wave only. Also, the
estimated data, for the 4th sub-system, may not to well reflect the reality, since it is
based on a solely plane wave model (as described in section 4.1). Likely, our ”real”
world case would be more of a spherical pressure wave field, at least in the higher
frequencies, where we likely have a diffuse field of waves. Another doubt, is that
the Rayleigh wave could be affected by the depth of the cylinder. The wavelength
of a Rayleigh wave, is, as shown in section 3.3, comparable to (or shorter than) the
dimensions of the cylinder, for higher frequencies. This may have to be compensated
for when doing the calculations of the velocities, as described in section 5. Also,
our measurements were only done in 1 specific frequency, which can be compared to
the calculated velocity in that frequency band. Maybe, the most important part of
the doubts are the calculations of the transmission coefficients. These are done in a
most theoretical way, giving the result described in section 4.5. The measurements
of the reverberation times, and the calculated loss factors, are hopefully somewhat
correct. Also, as explained, the input power in the SEA-model is a big doubt,
as we may have a distribution of the energy between the longitudinal waves and
the Rayleigh waves, as described in section 4.2. Overall, the correlation of model
data, and measured/estimated values, were a little better for case 2, introducing the
calculated distribution of energy (as seen in figure 50).
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7 Conclusions

In this report, the investigation concerns the relationship between the surface of a
solid of nylon, and the interior of the cylinder, regarding wave motion. An estab-
lished SEA-model, using MATLAB, and theoretical parts for establishing energy
balance and coupling loss factors, have shown that it is at least theoretically pos-
sible, to implement the theory of SEA for a three dimensional object. There are
still many large doubts when it comes to theoretical parts, and one of these are
theory that were found in order to calculate the transmission coefficients for the
Rayleigh wave moving over a wedge. A model was used, as described in section 4.5,
that assumes neglectable transmission from longitudinal waves to Rayleigh waves.
Other research in this area, however, have shown that it is possible that transmis-
sion between longitudinal waves and Rayleigh waves will occur, both at the corners,
as described in [27], and also if the surfaces have discontinuities such as cracks and
up-and down steps, as described in [31], [32], and [33]. This is a topic that is highly
recommended for future work in this area. Another of these topics are measure-
ments of the velocities in the interior parts of the cylinder (as proposed in section
5.1). This is, in this work, estimated by using a simple plane wave model, based on
the measurement data, that could be highly inaccurate, since it does not reflect the
kind of wave field, we would likely have at 5 kHz, which would be more of a spherical
pressure wave field. This would be a field of work that is highly recommended for
the future of similar projects.

8 Future work

Another interesting aspect, is in what frequency range this model could be valid.
It is shown, in the estimation of the lower limit of applicability for the SEA-model,
as given in section 4.3, that it is possible that this model is valid for somewhere
between 1 kHz and 1.25 kHz, and above. But this is an estimation, and it is
possibly necessary to compare the model with measurements in a broader frequency
interval, to be able to tell. Also, the model and the measurements do not show
the same trend, as seen in table 6, so it is necessary to make measurements in a
broader frequency interval, also for this purpose. This means that it is still unclear
whether this model gives a correct picture of reality or not, since it was not possible
to execute the measurements that were required for a full validation. It would be
of interest to make the measurements with ”broadband noise”, and also place a
transducer inside the cylinder, for this measurement, as explained in section 5.1.
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