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Abstract

Demands for higher transmission rates are ever increasing as a result of requirements

imposed by a number of different applications. To meet these demands, world-

wide research efforts for optical communications have led to tremendous growth in

performance in the past few decades. Nowadays, optical communication systems find

applications in various scenarios, ranging from backbone networks to data centers.

In recent years, coherent communication systems in fiber-optical channels have at-

tracted interest in the academic and industrial communities. Coherent optical sys-

tems enable the encoding of information in both the amplitude and phase of the

signal, which can result in improved performance with respect to spectral and power

efficiency. Furthermore, advances in the electronic hardware have facilitated effective

signal impairment compensation using digital signal processing, allowing the adop-

tion of algorithms from wireless communications. A particular impairment is laser

phase noise, which can severely limit the gains promised by coherent optical systems.

In this thesis the problem of optimal symbol detection in the presence of laser phase

noise in uncoded optical communication systems is studied. We assume a single

carrier transmission on two independent polarizations in a channel that includes

phase noise, additive white Gaussian noise, and a random constant phase offset on

each polarization component. To this end, the maximum a posteriori (MAP) symbol

detector is presented, which is shown to be analytically intractable. Then, a pilot-

based algorithm developed using the factor graph framework and the sum product

algorithm, that jointly estimates phase and detects symbols for arbitrary quadrature

amplitude modulation (QAM) constellations, is studied. Performance is evaluated

using Monte Carlo simulations for quadrature phase shift keying, 16-QAM and 64-

QAM constellations. Results show that this algorithm is more tolerant to phase noise

compared to other algorithms found in optical literature.

Keywords: MAP detection, phase noise, estimation, optical communication, coher-

ent detection, QAM, pilot-aided, factor graphs, sum-product algorithm.
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1 Introduction

1.1 Optical Communications

Optical communications in some shape or form have been around for centuries. The

modern definition is a lightwave system that uses visible or near-infrared light to con-

vey information, and typically guides it through an optical fiber, although unguided

systems also exist. Ancient civilizations used mirrors and fire to communicate over

distances, while during the medieval centuries, information var conveyed through the

use of lamps and other devices [1, Ch. 1]. In the 18th century, information was sig-

naled through hundreds of kilometers with so-called optical telegraphs. These tools

were quite restricted with respect to the amount of information they could deliver at

a time however. In the 19th century and the first part of the 20th century, electri-

cal and microwave communication systems were predominant, as these technologies

were capable of much higher transmission rates than the previously used optical tech-

niques. In the 1960s, optical communications started to receive focus again with the

invention of the laser along with the discovery of optical fibers. Several years later, a

breakthrough in optical communications research took place, leading to world-wide

research efforts. Since then, research and commercial systems have seen colossal

progress in reach and capacity. The bit rate-distance product, a common measure

of performance in communication systems, has grown exponentially in recent years

for optical systems. Long-haul transmissions of terabits per second data rates have

already been experimentally demonstrated [2, 3].

Demands for higher transmission rates are ever increasing as a result of high band-

width requirements, imposed by a number of different applications, such as online

multimedia and gaming. Optical communication systems have therefore found their

use in various applications, on a worldwide scale, due to their high capacity. One of

the main reasons for the large transmission rates is the fact that the carriers used in

these systems have frequencies of around 200THz. Typically, the bandwidth of the

1



2 Introduction

signal can be a few percent of the carrier frequency, implying a potential for high bit

rates. Additionally, high spectral efficiency can be attained using coherent detection

with polarization multiplexing [4]. These factors, among others, lead to potential

data rates that are unmatched by that of any other types of communication systems.

Coherent communication systems in fiber-optical channels have in particular been

a topic of interest in recent years. These systems allow information to be encoded

in both the amplitude and phase, on each polarization component of the lightwave.

This facilitates the use of modulation formats that have the potential to deliver better

performance in terms of spectral and power efficiency. Furthermore, advances in the

electronic hardware have enabled effective channel impairment compensation using

digital signal processing (DSP). This has spurred the application of DSP algorithms

from wireless communications to coherent optical communication systems [5].

1.2 Signal Impairments

An optical fiber introduces various linear signal impairments that have to be com-

pensated for, e.g. chromatic dispersion and polarization mode dispersion, among

others [4]. More specifically, imperfections in the optical fiber lead to a random state

of polarization in the electromagnetic wave at the receiver end. When the signal is

separated into its two polarization components at the receiver, the random state of

polarization causes the outputs to contain linear combinations of both components.

The mixing of the components is typically described with a Jones matrix

A = 1√
uu∗ + vv∗

[
u v

−v∗ u∗

]
, (1.1)

where u and v are circularly symmetric complex Gaussian variables.

Additionally, transmitted optical signals are attenuated due to loss in the fiber. As

a result, optical amplifiers are routinely inserted in optical channels with periodic

intervals. Each section of the channel between the optical amplifiers is referred to as

a span. The optical amplifiers compensate for the signal attenuation, but introduce
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Figure 1.1: A high-level block diagram for a single-carrier polarization multiplexed transmission
over an optical channel. (DC: Downconversion, LO: Local oscillator, Mod: Modulation, OA: Op-
tical amplifier, PolDemux: Polarization demultiplexing, PolMux: Polarization multiplexing, Rx:
Receiver, Tx: Transmitter.)

amplified spontaneous emission (ASE) noise to the transmission. Furthermore, the

transmission quality is degraded by shot noise from the receiver’s local oscillator

laser, and thermal noise from the receiver’s components. These noise contributions

are commonly modeled as additive white Gaussian noise (AWGN).

In addition to the aforementioned linear impairments, an optical fiber brings about

a number of nonlinear impairments to the signal. Examples of those are self-phase

modulation (SPM), cross-phase modulation, and four-wave mixing. These effects

occur due to the Kerr effect, which imposes an amplitude-dependent phase shift

to the signal. For single-carrier transmissions, a particular type of nonlinear phase

noise occurs which is often referred to as the Gordon-Mollenauer effect. It is caused

by an interaction between ASE and the signal through SPM. The severity of this

impairment increases with longer transmission distances.

1.2.1 Laser Phase Noise

A high-level overview of a single-carrier polarization multiplexed transmission, over

an optical fiber channel, is depicted in Fig. 1.1. In particular, the transmitter laser

and the local oscillator laser at the receiver are shown. Noise in these lasers causes

phase drift in the generated waveforms. These drifts are typically referred to as laser
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Figure 1.2: Laser phase noise impact on a single carrier, where the phase noise manifests itself as
jitter in time (a), and spectral growth in frequency (b).

phase noise, and lead to spectral growth of the signal. The effects on a single carrier

with a frequency fC , and its power spectral density are depicted in Fig. 1.2. The 3-

dB bandwidth of the power spectral density curve corresponding to a noisy oscillator

is called the laser linewidth. The linewidth is an indication of the laser stability, and

is proportional to the phase noise variance. The focus in this thesis is on scenarios

where laser phase noise is dominant, thus it will be assumed to be the sole source

of phase noise. The transmitted symbol phase has to be recovered at the receiver

for successful detection in coherent systems. Hence, phase noise can degrade the

system performance, and its severity intensifies with increasing modulation order.

The effects of laser phase noise on the received samples of a quadrature amplitude

modulation (QAM) transmission in the presence of AWGN is shown in Fig. 1.3. The

phase noise causes the constellation to randomly rotate around its center point.

1.2.2 Phase Noise Compensation – Prior work

Substantial research has been made for blind phase noise compensation in coherent

optical systems, i.e. methods that do not use any pilot symbols known at the re-
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Figure 1.3: Laser phase noise impact on the received samples of a 16-QAM transmission in the
presence of AWGN. The colors indicate different transmitted symbols.

ceiver. A classic feedback-based method for estimating and mitigating phase noise is

a phase-locked loop [4]. However, delays in feedback loops decrease the effectiveness

of previous phase estimates. Coherent optical systems utilize extensive paralleliza-

tion together with pipelining to achieve the required throughput. In [6] it is shown

that this leads to large amounts of feedback delay, making feedback-based methods,

either hardware-based techniques or DSP algorithms, impractical for optical systems.

Various feedforward algorithms that do not require feedback loops have been pro-

posed, e.g. the Viterbi-Viterbi (VV) [7], and its variations [8–10], which are devel-

oped for phase shift keying constellations. These algorithms will perform poorly for

QAM as they assume constant symbol amplitude levels. Algorithms based on VV

and quadrature phase shift keying (QPSK) partitioning [11] have been proposed that

improve upon VV for QAM [12, 13]. Furthermore, among the best-known feedfor-

ward algorithms designed for QAM is the blind phase search algorithm [6]. Other

approaches have been proposed for QAM [14], reporting less complexity than the

blind phase search algorithm with similar performance [15].

Blind phase noise compensation algorithms have ambiguities in the phase noise esti-

mation, due to lack of pilots giving absolute phase references. This may cause cycle

slips which can further cause catastrophic failures [16]. A common way to mitigate
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this is to employ differential encoding (DE), but DE has the downside that the av-

erage bit error rate (BER) will be higher [8]. Algorithms have been proposed that

utilize pilots to estimate the phase noise without ambiguity [17–20], or to reduce the

amount of cycle slips after blind phase noise estimation at the receiver [21]. This

eliminates the need for DE, resulting in lower average BER. Another advantage of us-

ing pilots is the fact that modulation transparency is generally easier to achieve [22].

Moreover, the pilot symbols can be reused to perform other tasks in addition to

phase noise estimation, such as polarization demultiplexing, frequency offset estima-

tion, and fiber nonlinearity compensation [23]. On the other hand, pilots introduce

overhead to the transmission which results in reduced data rate.

1.3 Optimal Detection

Detection algorithms in uncoded digital communication systems are designed such

that the symbol error rate (SER) performance of the system is minimized. The

optimal detector is the maximum a posteriori (MAP) symbol detector [24, p. 254].

In [25] it is shown that for a transmission in the presence of random phase noise

and AWGN, the receiver that detects symbols with minimum SER has a detector-

estimator structure. The received samples are first used to estimate the a posteriori

probability density function (PDF) of the phase noise. This PDF is then utilized

when performing symbol detection. In other words, the phase noise estimation does

not entail obtaining point estimates of the phase noise. In optical communications,

receiver algorithms generally do not conform to this structure. Relevant work can

be found in [8], where symbol-by-symbol detection is performed by maximizing a

particular a posteriori PDF. However, this is not the MAP symbol detector when

the phase noise introduces correlation between the received samples.

The biggest challenge with realizing the MAP symbol detector is computing the a

posteriori phase noise PDF, as it turns out to be an infinite dimensional problem

in general [25]. Multiple attempts have been made to address this problem in the

context of wireless communications, by using various approximations and frame-
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works in order to derive low-complexity algorithms [26–28]. Factor graphs (FGs)

are a notable framework that, when employed in conjunction with the sum product

algorithm (SPA), can be utilized to derive a variety of algorithms in a wide range

of applications. Specifically, it can be used to realize the MAP symbol detector by

means of marginalization.

1.4 Contributions

In this thesis, motivated by the presence of laser phase noise in optical communication

systems, and the optimal receiver structure in [25], we review the theory of optimal

symbol detection for transmissions affected by AWGN and phase noise. We consider

an optical channel where laser phase noise is dominant, and other impairments have

been compensated for. We follow the approach introduced by Colavolpe et al. in [26],

applying the FG framework to the problem of realizing the MAP symbol detector.

Furthermore, we use the SPA to derive a practical pilot-based implementation of

this detector. Finally, we compare the derived algorithm with conventional receiver

structures, involving a blind or a pilot-based algorithm that finds point estimates of

the phase noise and compensates for it using the estimates. We evaluate the perfor-

mance of the different algorithms with Monte Carlo simulations. The results show

that the proposed algorithm outperforms the other algorithms by a wide margin,

while requiring low pilot density (PD).

1.5 Organization

The remainder of the thesis is organized as follows. In Chapter 2 the optical commu-

nication system model is presented, and a review of the optimal symbol detection for

transmissions affected by AWGN and phase noise is introduced. An application of

the FG framework to the problem of realizing the optimal detector is given, followed

by usage of the SPA. In Chapter 3 a low-complexity algorithm, based on the FG and

SPA from the preceding chapter, is derived. Finally, in Chapter 4 the simulation
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results are presented, and the concluding remarks are given in Chapter 5.

1.6 Concepts

1.6.1 Marginal Distributions

Consider a joint distribution p(x1, x2, . . . , xN) with arguments x1, x2, . . . , xN , whose

domains are D1,D2, . . . ,DN , respectively. For this joint distribution, there are N

associated marginal distributions pi(xi), where i = 1, 2, . . . , N . The i-th marginal

distribution is obtained by summing or integrating the joint distribution over the

domain of all arguments xj, where j 6= i. If the arguments are discrete, the i-th

marginal distribution is computed as

pi(xi) =
∑
x1∈D1

· · ·
∑

xi−1∈Di−1

∑
xi+1∈Di+1

· · ·
∑

xN∈DN

p(x1, x2, . . . , xN). (1.2)

Similarly for continuous arguments, the marginalization is computed by integrating,

as

pi(xi) =
∫
D1

. . .
∫
Di−1

∫
Di+1

. . .
∫
DN

p(x1, x2, . . . , xN)dx1 . . . dxi−1dxi+1 . . . dxN . (1.3)

For large N , the summations or integrals required to compute the marginal distribu-

tions may lack closed-form solutions, and directly carrying them out is impractical.

However, exploiting the way a joint distribution can be factorized, the problem of

finding the marginal distributions can be solved more efficiently.

1.6.2 Factor Graphs and the Sum Product Algorithm

FGs are graphical models that visually represent how multivariable functions can be

factorized into marginal functions of fewer variables. They are bipartite, which by

definition means their nodes can be divided into two disjoint sets. One set contains

nodes representing marginal functions, while the other set contains nodes corre-



1.6 Concepts 9

x1 x2 x3

fA fB fC

Figure 1.4: An FG corresponding to the product fA(x1, x2)fB(x2, x3)fC(x3).

sponding to variables. The edges between the nodes in these two sets describe which

variables are arguments of which marginal functions after the factorization. As an

example, consider a multivariable function f(x1, x2, x3) which can be factorized as

f(x1, x2, x3) = fA(x1, x2)fB(x2, x3)fC(x3). (1.4)

Thus, x1 is an argument of fA, x2 is an argument of fA and fB, and x3 is an argument

of fB and fC . The FG that corresponds to this factorization is depicted in Fig. 1.4.

The circles and rectangles represent variable nodes and function nodes, respectively,

and the lines correspond to edges. FGs can be used to the describe the factorization

of joint PDFs, and more specifically, the conditional independence among the random

variables associated with the PDFs.

The SPA is a algorithm that works in FGs, and attempts to compute the marginals

of joint distributions efficiently by exploiting their factorization. It involves message

passing, where the messages describe some marginal function. Associated with ev-

ery edge on the FG are two messages, one in each direction. Every message is a

single-argument function of the variable whose node is connected to the edge corre-

sponding to the message. By using the SPA, finding marginal distributions reduces

to computing and propagating these messages between the nodes. FGs and the SPA

are explained in more details in [29].



2 Optimal Symbol Detection

2.1 System Model

The transmission of complex modulation symbols in two polarizations is considered,

over an AWGN channel with laser phase noise and a random state of polarization

at the receiver end. The constant modulus algorithm [30] is assumed to have been

successfully applied for polarization demultiplexing, a process where the original po-

larization components are retrieved from the linear combination that occurs due to

(1.1). A success is defined as separating the polarization components and subjecting

them to a random constant phase offset [31]. Other impairments, such as nonlinear

phase noise, chromatic dispersion, and polarization mode dispersion, are assumed

to have been compensated for. Considering linear modulation, perfect symbol syn-

chronization, matched filtering, Nyquist sampling, and no intersymbol interference

or frequency offset, the discrete-time baseband complex equivalent system model is

written as [ rx,k

ry,k

]
=
 sx,ke

jCx

sy,ke
jCy

ejθk +
[nx,k

ny,k

]
, (2.1)

for k = 0, 1, . . . , N −1. A schematic of the model is sketched in Fig. 2.1. The indices

x and y denote the polarization components, and N is the number of transmitted

symbols.

The vectors rx and ry are the received samples on each polarization, whereas sx and sy

contain complex M -ary modulation symbols. The symbols are drawn independently

Random
phase offset × +

[ sx,k

sy,k

]

Cx Cy ejθk
[nx,k

ny,k

]

[ rx,k

ry,k

]

Figure 2.1: Discrete-time baseband complex equivalent model for a single-carrier polarization mul-
tiplexed transmission over an optical channel.

10



2.2 MAP Symbol Detection 11

· · ·

Data symbols Pilot symbols

Block

Figure 2.2: Pilot distribution in a transmitted block.

from a constellation M ⊂ C with equal probability. The constellation is subjected

to an energy constraint such that the average transmitted symbol energy is Es.

Pilot symbols are distributed uniformly in sx and sy, as depicted in Fig. 2.2. The

noise vectors nx and ny are independent of each other, and contain independent and

identically distributed circularly symmetric complex Gaussian components, nx,k ∼

NC(0, 2σ2) and ny,k ∼ NC(0, 2σ2). The vector θ accounts for the accumulated phase

noise from the transmitter and the local oscillator laser, and affects both polarizations

equally. Moreover, it is defined modulo 2π, and is modeled as a random-walk process,

expressed as

θk = (θk−1 + ∆k) mod 2π, (2.2)

with initial component θ0 ∼ U [0, 2π). The step ∆k is a real Gaussian random variable

with zero mean and variance

σ2
∆ = 2π∆νTs, (2.3)

where ∆ν is the total laser linewidth and Ts is the symbol duration. The phase noise

θ is unknown both to the receiver and the transmitter, and is independent of the

transmitted symbols as well as the AWGN. The constant phase offset on rx and ry is

encapsulated in the random variables Cx and Cy, drawn from a uniform distribution

in the interval [0, 2π).

2.2 MAP Symbol Detection

In this section the FG framework and the SPA are used to realize the optimal symbol

detector. As mentioned in Section 1.3, the detector that minimizes the SER for

an uncoded transmission is the MAP symbol detector. This detector is performed
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symbol-by-symbol according to

ŝw,k = argmax
sw,k∈M

p(sw,k|rx, ry), (2.4)

for k = 0, 1, . . . , N − 1 and w ∈ {x, y}. The indices x and y refer to the polarization

components, and p(sw,k|r) is the a posteriori probability mass function (PMF) for the

kth symbol on polarization w. The detection rule in (2.4) considers all the received

samples when decision on each transmitted symbol is made. In [25] it is shown that

in the presence of phase noise, the PMF in (2.4) can be written in the form

p(sw,k|rx, ry) ∝
2π∫
0

p(rw,k|sw,k, θk)p(θk|r̄w,k)dθk, (2.5)

where r̄w,k is the vector of received samples from both polarizations except for rw,k,

and θk is the phase noise at index k. The integral in (2.5) illustrates the fact that the

a posteriori phase noise PDF is used in the symbol detection. In [25], it is further

shown that this PDF does not have a closed form solution in general, and computing

the integral is an infinite dimensional problem.

The PMF in (2.4) can be obtained by marginalizing the joint PDF of all system

variables

p(sx,k|rx, ry) =
∑
sx∈Sx

∑
sy∈MN

∫
T

2π∫
0

2π∫
0

p(sx, sy,θ, Cx, Cy|rx, ry)dCxdCydθ, (2.6)

where Sx =
{
s′x ∈MN : s′x,k = sx,k

}
and T = [0, 2π)N . The corresponding PMF

p(sy,k|rx, ry) is obtained analogously by swapping x and y in (2.6). The computational

complexity in (2.6) is unpractical, and the problem can be solved in more efficient

ways. In this thesis, the PMF in (2.4) is computed using an FG which is constructed

from PDF p(sx, sy,θ|rx, ry), the joint a posteriori PDF of all variables in the system

model except for Cx and Cy. Omitting these two variables reduces the complexity

of the resulting FG. The justification for this omission stems from the fact that the

variables are constant throughout the received sequence. Thus, the phase difference

between the polarizations can be estimated and compensated for with high accuracy
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in the majority of cases. A constant phase offset is still applied to both polarizations.

Because the phase difference is absent, however, the phase offset can be regarded as

a component in the phase noise θ.

Looking again at the joint PDF p(s,θ|r) and using Bayes’ theorem results in1

p(sx, sy,θ|rx, ry) = p(rx, ry|sx, sy,θ)p(sx, sy,θ)
p(rx, ry)

∝ p(rx, ry|sx, sy,θ)p(sx)p(sy)p(θ) (2.7)

∝ p(θ)p(rx|sx,θ)p(ry|sy,θ), (2.8)

where (2.7) follows from the fact that the transmitted symbols are independent

of the phase noise. Moreover, the joint PDF of the received samples, p(rx, ry),

does not depend on sx or sy, and accordingly it is constant when maximizing with

respect to sw,k. All constellation points are equiprobable and the transmitted symbols

are independent and identically distributed, therefore p(sx) and p(sy) are constant.

Furthermore, when conditioned on θ, the received samples are independent of each

other, resulting in (2.8).

The random-walk model for the phase noise process is essentially a first-order Markov

chain. Consequently,

p(θk|θk−1, . . . , θ0) = p(θk|θk−1) = p∆(θk − θk−1), (2.9)

for k = 0, 1, . . . , N − 1, where p∆(·) is defined as the PDF of the step ∆k mod 2π, a

wrapped normal distribution expressed by

p∆(λ) ∆=
∞∑

τ=−∞
g(0, σ2

∆;λ− τ2π), λ ∈ [0, 2π), (2.10)

where g(µ, σ2; z) is a real Gaussian PDF with mean µ, variance σ2, and argument z.

1Since the marginal distributions are eventually maximized, constants in the expressions can be
ignored. Therefore the proportionality relationship between expressions suffices and will be used
throughout the thesis.
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By using (2.9), the joint PDF of θ can be factored as

p(θ) = p(θ0)
N−1∏
k=1

p∆(θk − θk−1), (2.11)

allowing further decomposition of the joint PDF in (2.8)

p(sx, sy,θ|rx, ry) ∝ p(θ)p(rx|sx,θ)p(ry|sy,θ)

∝ p(θ0)
N−1∏
k=1

p∆(θk − θk−1)
N−1∏
k=0

fx,k(sx,k, θk)fy,k(sy,k, θk), (2.12)

for k = 0, 1, . . . , N − 1 and w ∈ {x, y}, where

fw,k(sw,k, θk) ∆= exp
{

1
σ2 Re

{
rw,ks

∗
w,ke

−jθk

}
− |sw,k|

2

2σ2

}

∝ p(rw,k|sw,k, θk). (2.13)

A part of the FG constructed from (2.12) can be seen in Fig. 2.3, along with the

SPA messages. The graph is cycle-free, implying that the SPA, when applied to this

FG, yields exact a posteriori distributions [29]. Hence, it is optimal as it realizes the

exact MAP symbol detector.

For each k and w, let
→
Pw(sw,k) denote the message from variable node sw,k to factor

node f(sw,k, θk). This message corresponds to the a priori probabilities of the trans-

mitted symbols. The message in the reverse direction is denoted by
←
Pw(sw,k), and

corresponds to the a posteriori symbol probabilities. The message from factor node

f(sw,k, θk) to variable node θk is denoted by pw(θk), and is computed as

pw(θk) ∝
∑

sw,k∈M

→
Pw(sw,k)f(sw,k, θk) ∝ p(rw,k|θk), (2.14)

for k = 0, 1, . . . , N−1 and w ∈ {x, y}. The message from factor node p∆(θk−θk−1) to

variable node θk is denoted by pf(θk), and the message from p∆(θk+1−θk) to variable

node θk is denoted by pb(θk). These correspond to a posteriori phase noise PDFs,

and are computed in a recursive fashion. Computation of the forward recursion

entails the messages pf(θk) being calculated in a forward direction based on the

received samples. Similarly, computing the backward recursion involves calculating
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Figure 2.3: Part of FG constructed from the distribution in (2.12).
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the messages pb(θk) in a backward direction based on the received samples. The

computation of the messages is expressed as

pf(θk) ∝
∫ 2π

0
px(θk−1)py(θk−1)pf(θk−1)p∆(θk − θk−1)dθk−1, (2.15)

pb(θk) ∝
∫ 2π

0
px(θk+1)py(θk+1)pb(θk+1)p∆(θk+1 − θk)dθk+1, (2.16)

with initial conditions

pf(θ0) = pb(θN−1) = 1
2π . (2.17)

Finally, the messages
←
Px(sx,k) and

←
Py(sy,k) are computed as

←
Px(sx,k) ∝

∫ 2π

0
pf(θk)pb(θk)py(θk)f(sx,k, θk)dθk, (2.18)

←
Py(sy,k) ∝

∫ 2π

0
pf(θk)pb(θk)px(θk)f(sy,k, θk)dθk, (2.19)

for k = 0, 1, . . . , N − 1. The messages in (2.18) and (2.19) correspond to the a

posteriori PMFs p(sx,k|rx, ry) and p(sy,k|rx, ry), respectively. Furthermore, it can be

shown that

pf(θk)pb(θk)py(θk) ∝ p(θk|r̄x,k), (2.20)

pf(θk)pb(θk)px(θk) ∝ p(θk|r̄y,k), (2.21)

where p(θk|r̄w,k), for w ∈ {x, y}, is the a posteriori phase noise PDF in (2.5).

The message-passing algorithm can be summarized as follows. The received samples,

along with the a priori probabilities of the transmitted symbols, are the inputs to the

algorithm. These inputs are used to calculate the message in (2.14). The messages

in (2.15) and (2.16), corresponding to the a posteriori phase noise PDFs, are then

computed in a recursive fashion. Finally, the messages in (2.18) and (2.19), corre-

sponding to the a posteriori symbol probabilities, are calculated. These messages

are the outputs of the algorithm. Symbol detection is performed according to (2.4),

by selecting the argument, i.e. the constellation point in M, that maximizes the

messages in (2.18) and (2.19).
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In the preceding chapter, the optimal symbol detector was realized using the FG

framework and the SPA. The messages produced by the SPA, however, are difficult

to implement in practice, as they contain integrals. As a result, approximations

are required in order to obtain efficient impementations. In this chapter a practical

receiver algorithm is presented. First, estimation and compensation, for the phase

offset due to the polarization demultiplexing, are described. Afterwards, an efficient

algorithm, is derived based on approximations of the results given by the SPA in the

preceding section.

3.1 Estimation of Phase Difference

As mentioned in Chapter 2, the variables Cx and Cy represent the phase offset on

each polarization components. Moreover, the FG in Fig. 2.3 is constructed from

the joint PDF p(sx, sy,θ|rx, ry), with the assumption that rx and ry are free of

the relative phase difference caused by these offsets. If not compensated for, the a

posteriori phase noise PDF estimation will not work properly. By using the pilot

symbols, however, the relative phase difference between the two polarizations can be

estimated.

Let L ⊂ {0, 1, . . . , N − 1} denote the set of indices for the pilots in the transmitted

block. The phase difference between the transmitted and the received pilot symbol

on polarization w ∈ {x, y} at index l ∈ L is computed as

rw,ls
∗
w,l = sw,ls

∗
w,le

j(θl+Cw) + nw,ls
∗
w,l

= |sw,l|2ej(θl+Cw) + |sw,l|nw,le−j arg{sw,l}

∝ ej(θl+Cw) + nw,le
−j arg{sw,l}

|sw,l|
. (3.1)

Rotating the AWGN vectors nx and ny does not change their statistics as they

17
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contain complex circularly symmetric Gaussian components. The relative phase

difference between the polarizations is then

rx,ls
∗
x,l(ry,ls

∗
y,l)∗ ∝

(
ej(θl+Cx) + nx,le

−j arg{sx,l}

|sx,l|

)(
ej(θl+Cy) + ny,le

−j arg{sy,l}

|sy,l|

)∗

= ej(θl+Cx−θl−Cy) +
n∗y,le

j(θl+Cx+arg{sy,l})

|sy,l|

+ nx,le
−j(θl+Cy+arg{sx,l})

|sx,l|
+
nx,ln

∗
y,le

j(arg{sy,l}−arg{sx,l})

|sx,l||sy,l|

= ρ+ml, (3.2)

where ρ = ejCd = eCx−Cy , and ml includes a sum of terms contributed by the noise.

It can be shown that ml is drawn from a zero-mean, non-Gaussian distribution.

Therefore, ρ can be estimated by the sample mean

ρ̂ = 1
|L|

∑
l∈L

rx,ls
∗
x,lr
∗
y,lsy,l. (3.3)

It is worth noting, however, that since the parameter of interest is the argument of ρ,

the sample sum suffices, as scaling a complex number does not affect its argument.

Rotating ry,k with arg{ρ̂} gives

[ rx,k

ry,ke
j arg{ρ̂}

]
≈
[ sx,k

sy,k

]
ejθ̃k +

[ nx,k

ny,ke
jCd

]
, (3.4)

where θ̃k = (θk + Cx) mod 2π, for k = 0, 1, . . . , N − 1. As seen in (3.4), the relative

phase difference has been approximately eliminated, albeit the received samples on

both polarizations are still affected by a phase offset. The phase noise θ̃ can be

regarded as a shifted version of the original phase noise θ, with unchanged statistics.

3.2 Phase Noise Estimation – Symbol Detection

In order to derive an efficient algorithm, the approach in [26] is adopted, namely

selecting parametrized canonical distributions to approximate messages involving

continuous PDFs [32]. Hence, the messages pf(θk) and pb(θk) are constrained to be
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in a family of Tikhonov PDFs. This PDF, also known as a von Mises or a circular

normal distribution [33, p. 35], is defined as

t(κ; θ) = 1
2πI0(|κ|) exp

{
Re
{
κe−jθ

}}
, θ ∈ [0, 2π), (3.5)

where κ ∈ C, and I0(·) is the modified Bessel function of the first kind and zeroth

order. The argument and the modulus of κ characterize the mean and the variance,

respectively, of the PDF in (3.5); the Tikhonov PDFs are completely described by a

single parameter. The direct computation of the integrals in (2.15) and (2.16) thus

reduces to updating the parameters describing the Tikhonov PDFs.

A closer look at the message in (2.14) reveals it to be a mixture of Gaussian PDFs.

As in [26], the message is approximated by the closest Gaussian PDF in terms of

the Kullback-Leibler divergence, a measure of the similarity between two distribu-

tions. The mean and variance of this Gaussian PDF are E[rw,k|θk] and Var[rw,k|θk],

respectively, for k = 0, 1, . . . , N − 1 and w ∈ {x, y}, and are expressed as

E[rw,k|θk] =
∑

sw,k∈M
E[rw,k|sw,k, θk]

→
Pw(sw,k)

=
∑

sw,k∈M
sw,k

→
Pw(sw,k)ejθk

= αw,ke
jθk , (3.6)

and

Var[rw,k|θk] = E
[
|rw,k|2

∣∣∣θk]− |αw,k|2
=

∑
sw,k∈M

E
[
|rw,k|2

∣∣∣sw,k, θk]→Pw(sw,k)− |αw,k|2

=
∑

sw,k∈M

(
Var[rw,k|sw,k, θk] + |sw,k|2

)→
Pw(sw,k)− |αw,k|2

= 2σ2 +
∑

sw,k∈M
|sw,k|2

→
Pw(sw,k)− |αw,k|2,

= 2σ2 + βw,k − |αw,k|2, (3.7)

where αw,k and βw,k represent the first and second moments of sw,k, and are expressed
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as

αw,k =
∑

sw,k∈M
sw,k

→
Pw(sw,k), (3.8)

βw,k =
∑

sw,k∈M
|sw,k|2

→
Pw(sw,k). (3.9)

Using the results from (3.6) and (3.7) gives

pw(θk) ≈ gC(E[rw,k|θk],Var[rw,k|θk]; rw,k)

= gC
(
αw,ke

jθk , 2σ2 + βw,k − |αw,k|2; rw,k
)

∝ exp
{

2 Re{rw,kα∗w,ke−jθk}
2σ2 + βw,k − |αw,k|2

}
exp

{
− |αw,k|2 + |rw,k|2

2σ2 + βw,k − |αw,k|2

}

∝ t

(
2rw,kα∗w,k

2σ2 + βw,k − |αw,k|2
; θk

)
, (3.10)

where gC(µ, σ2; z) is a complex Gaussian PDF with mean µ, variance σ2, and ar-

gument z. Furthermore, the messages pf(θk) and pb(θk) are constrained to be in a

family of Tikhonov PDFs, as

pf(θk) ∝ t(af,k; θk), (3.11)

pb(θk) ∝ t(ab,k; θk), (3.12)

for k = 0, 1, . . . , N −1, where af,k and ab,k denote forward and backward coefficients,

respectively. These coefficients can be recursively calculated, thereby allowing for

an efficient means of computing the messages in (3.11) and (3.12). To this end, by

using (3.10) and (3.11), the message in (2.15) can be simplified as

pf(θk) ∝
∫ 2π

0
px(θk−1)py(θk−1)pf(θk−1)p∆(θk − θk−1)dθk−1

≈
∫ 2π

0
exp

2 Re
{
rx,k−1α

∗
x,k−1e

−jθk−1
}

2σ2 + βx,k−1 − |αx,k−1|2

 exp

2 Re
{
ry,k−1α

∗
y,k−1e

−jθk−1
}

2σ2 + βy,k−1 − |αy,k−1|2


· exp

{
Re
{
af,k−1e

−jθk−1
}}
p∆(θk − θk−1)dθk−1

≈
∫ 2π

0
exp

{
Re
{
zf,ke

−jθk−1
}}
p∆(θk − θk−1)dθk−1

∝
∫ 2π

0
t(zf,k; θk−1)p∆(θk − θk−1)dθk−1, (3.13)
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where

zf,k = af,k−1 +
2rx,k−1α

∗
x,k−1

2σ2 + βx,k−1 − |αx,k−1|2
+

2ry,k−1α
∗
y,k−1

2σ2 + βy,k−1 − |αy,k−1|2
. (3.14)

Define the 2π-periodic functions

t̃(κ; η) ∆= 1
2πI0(|κ|) exp

{
Re
{
κe−jη

}}
, (3.15)

p̃∆(η) ∆=
∞∑

τ=−∞
g(0, σ2

∆; η − τ2π), (3.16)

where κ ∈ C and η ∈ R. Using (3.15) and (3.16), the integral in (3.13) can be

rewritten as

pf(θk) ∝
∫ 2π

0
t(zf,k; θk−1)p∆(θk − θk−1)dθk−1

=
∫ 2π

0
t̃(zf,k; θk−1)p̃∆(θk − θk−1)dθk−1

=
∫ θk+π

θk−π
t̃(zf,k; θk−1)p̃∆(θk − θk−1)dθk−1. (3.17)

For practical values of σ2
∆, p̃∆(θk − θk−1) in (3.17) is virtually zero everywhere in

[θk − π, θk + π) except in an interval much smaller than 2π, centered around θk.

Consequently, it can be approximated as a Gaussian PDF

p̃∆(θk − θk−1) ≈ g(θk, σ2
∆; θk−1). (3.18)

Thus, the integral in (3.17) simplifies to

pf(θk) ∝
∫ θk+π

θk−π
t̃(zf,k; θk−1)g(θk, σ2

∆; θk−1)dθk−1

∝
∫ θk+π

θk−π
exp

{
Re
{
zf,ke

−jθk−1
}}
g(θk, σ2

∆; θk−1)dθk−1. (3.19)

The integral in (3.19) can further be approximated as a Tikhonov PDF [26], resulting

in

pf(θk) ≈ t(af,k; θk), (3.20)
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where the forward coefficients af,k, for k = 1, . . . , N − 1, are computed recursively as

af,k = zf,k

1 + σ2
∆|zf,k|

, (3.21)

with initial condition af,0 = 0. Similarly, using (3.10), (3.18), and (3.12), the mes-

sages in (2.16) may be approximated as

pb(θk) ≈ t(ab,k; θk), (3.22)

where the coefficients ab,k, for k = 0, . . . , N − 2, are computed recursively as

ab,k = zb,k

1 + σ2
∆|zb,k|

, (3.23)

with initial condition ab,N−1 = 0, and

zb,k = ab,k+1 +
2rx,k+1α

∗
x,k+1

2σ2 + βx,k+1 − |αx,k+1|2
+

2ry,k+1α
∗
y,k+1

2σ2 + βy,k+1 − |αy,k+1|2
. (3.24)

The expressions for
←
Pw(sw,k) are calculated using (2.18) and (2.19) for polarization

x and y, respectively. In Appendix A it is shown that they can be approximated as

←
Pw(sw,k) ∝ I0(|ξw,k|) exp

{
−|sw,k|

2

2σ2

}
, (3.25)

where

ξx,k = af,k + ab,k +
2ry,kα

∗
y,k

2σ2 + βy,k − |αy,k|2
+
rx,ks

∗
x,k

σ2 , (3.26)

ξy,k = af,k + ab,k +
2rx,kα

∗
x,k

2σ2 + βx,k − |αx,k|2
+
ry,ks

∗
y,k

σ2 . (3.27)

The expression in (3.25) can be numerically problematic. A solution to this is derived

in Section 3.4.

Using the above approximations, it can be shown that the message products in (2.20)

and (2.21), corresponding to the a posteriori phase noise PDFs, simplify to

pf(θk)pb(θk)py(θk) ∝ t

(
af,k + ab,k +

2ry,kα
∗
y,k

2σ2 + βy,k − |αy,k|2
; θk

)
, (3.28)
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Figure 3.1: 3D plot of t(ax,k; θk), representing the approximate a posteriori phase noise PDF
p(θk|r̄x,k). Corresponding point estimates are depicted in the plot on the right.

pf(θk)pb(θk)px(θk) ∝ t

(
af,k + ab,k +

2rx,kα
∗
x,k

2σ2 + βx,k − |αx,k|2
; θk

)
. (3.29)

A graphical illustration of (3.28) can be seen in Fig. 3.1, for a small range of indices

k. To this purpose, a short hand notation for (3.28) is defined as

t(ax,k; θk) ∆= t

(
af,k + ab,k +

2rx,kα
∗
x,k

2σ2 + βx,k − |αx,k|2
; θk

)
. (3.30)

Finding the means of the PDFs at each time k, produces point estimates of the phase

noise. A plot of these point estimates is shown in the upper left corner of Fig. 3.1,

to emphasize the difference between PDFs and point estimates of the phase noise.

As mentioned earlier, using point estimates to compensate for the phase noise does

not lead to optimal symbol detection in general. The variance of the a posteriori

phase noise PDFs gives information about the uncertainty of the estimates. By

compensating for the phase noise using point estimates, as opposed to PDFs, this

information is discarded. This has been shown to be suboptimal [25].

3.3 Multiple Iterations

A single iteration of the algorithm is defined as follows. First and second order

moments of the transmitted symbols, described in (3.6) and (3.7), are first calculated,



24 Receiver Implementation

given the a priori symbol probabilities. Afterwards, the a posteriori phase noise

PDFs are estimated by way of calculating their forward and backward coefficients

recursively with (3.21) and (3.23). Finally, the a posteriori symbol probabilities are

calculated with (3.25).

Once the a posteriori symbol probabilities have been calculated, symbol detection

can be performed according to (2.4). The first order moment, however, is zero

for symbols whose a priori probabilities are equal for all the constellation points.

When the first iteration is run, this is the case for all the data symbols on either

polarization. If αx,k and αy,k are zero, (3.14) and (3.24) reduce to zf,k = af,k−1 and

zb,k = ab,k+1, respectively. Thus, the coefficients af,k and ab,k do not get updated

with new information; the data symbols do not contribute to the estimation of the

a posteriori phase noise PDF in the first iteration of the algorithm.

The performance of the algorithm can be improved by running multiple iterations.

After calculating the message
←
Pw(sw,k) in a particular iteration, corresponding to the

a posteriori symbol probabilities, it is used as the a priori symbol probabilities in the

next iteration, represented by the message
→
Pw(sw,k). This can be performed until a

stopping criterion is fulfilled. It should be noted that
→
Pw(sw,k) is assumed to be a

PMF, i.e. the sum of
→
Pw(sw,k) over all possible values of sw,k is assumed to be one.

The message
←
Pw(sw,k) is in general only equal to the a posteriori symbol probabilities

up to a scaling factor; the sum of
←
Pw(sw,k) over all possible values of sw,k is not one.

To be used as the a priori symbol probabilities, it generally has to be scaled properly

beforehand. A high level flowchart of the algorithm structure can be seen in Fig. 3.2.

3.4 Numerical problems

The expression in (3.25) can take on large values which is problematic from an

implementation standpoint. The modified Bessel function I0(·), however, can be
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No
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Figure 3.2: A high level flowchart of the algorithm, from receiving the samples to detecting the
transmitted symbols, illustrating the iterative structure of the implementation.

approximated with an asymptotic expansion [34, p. 377]

I0(z) ∼ ez√
2πz

, z ∈ C, (3.31)

which is a close approximation for |z| � 1 and | arg{z}| < π
2 . In practice, (3.26) and

(3.27) satisfy the former condition with high probability. Moreover, as the argument

of I0(·) in (3.25) is the modulus of a complex number, the latter condition is satisfied.

Define a scaled version of the message in (3.25), which can be simplified as

←̃
Pw(sw,k) ∆= A

←
Pw(sw,k) (3.32)
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≈
A exp

{
− |sw,k|2

2σ2 + |ξw,k|
}

√
|ξw,k|

, (3.33)

for k = 0, 1 . . . , N−1, w ∈ {x, y}, and A > 0. The expression in (3.33) is positive, and

the natural logarithm is a monotonically increasing function for positive arguments.

Hence

argmax
sw,k∈M

←̃
Pw(sw,k) = argmax

sw,k∈M

←
Pw(sw,k)

= argmax
sw,k∈M

log
←
Pw(sw,k)

≈ argmax
sw,k∈M

(
−|sw,k|

2

2σ2 + |ξw,k| −
1
2log |ξw,k|

)
. (3.34)

The expression that is maximized in (3.34) is not numerically problematic. It rep-

resents the logarithm of scaled a posteriori symbol probabilities, and suffices when

performing symbol detection. For it to be used as a priori symbol probabilities in

a consecutive iteration, however, it has to be transformed to a PMF. This entails

reverting the logarithmic transformation and normalizing. In this context, normal-

izing signifies scaling such that the sum of the expression, over all possible values of

sw,k, is one. This imposes the constraint

∑
sw,k∈M

←̃
Pw(sw,k) = A

∑
sw,k∈M

←
Pw(sw,k) = 1. (3.35)

Solving (3.35) for A gives

A =
 ∑
sw,k∈M

←
Pw(sw,k)

−1

. (3.36)

Subtituting (3.36) in (3.32), and taking the natural logarithm of both sides yields

log
←̃
Pw(sw,k) = log

←
Pw(sw,k)− log

∑
sw,k∈M

←
Pw(sw,k). (3.37)

The latter term can be rewritten as

log
∑

sw,k∈M

←
Pw(sw,k) = log

 max
sw,k∈M

←
Pw(sw,k)

∑
sw,k∈M

←
Pw(sw,k)

maxsw,k∈M
←
Pw(sw,k)


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= log max
sw,k∈M

←
Pw(sw,k) + log

∑
sw,k∈M

←
Pw(sw,k)

maxsw,k∈M
←
Pw(sw,k)

= max
sw,k∈M

log
←
Pw(sw,k) + log

∑
sw,k∈M

exp
{

log
←
Pw(sw,k)

}
exp

{
maxsw,k∈M log

←
Pw(sw,k)

} ,
(3.38)

where (3.38) follows from the fact that the natural logarithm is a monotonically

increasing function for positive arguments. Using these results, the message in (3.32)

can be expressed as a function of log
←
Pw(sw,k), and is computed as

←̃
Pw(sw,k) = exp

 log
←
Pw(sw,k)− max

sw,k∈M
log

←
Pw(sw,k)

− log
∑

sw,k∈M

exp
{

log
←
Pw(sw,k)

}
exp

{
maxsw,k∈M log

←
Pw(sw,k)

}
. (3.39)



4 Simulation Results

In this chapter the performance of the algorithm is assessed in terms of BER for

different amounts of phase noise, signal to noise ratio (SNR), PD, and number of

iterations. The algorithm is evaluated using Monte Carlo simulations for QPSK, 16-

QAM, and 64-QAM constellations. The transmitted blocks contain at most 10 000

data symbols, and for each result, errors for each transmission are accumulated until

the total number of transmitted bits reaches 108, or if the number of errors exceeds a

minimum of 10 000. The bits are Gray encoded before they are mapped to symbols,

and no forward error correction coding is used. Pilots are normalized such that their

energy is Es. When simulating a PD of more than 50%, single data symbols are

inserted between blocks of pilots. For 50% or lower PDs, single pilots are inserted

between blocks of data symbols.

When finding sensitivity penalty (SP) induced by the phase noise, BER values for

different amounts of linewidth are compared with an ideal theoretical BER, when

only AWGN affects the transmitted signal. This theoretical BER versus SNR per

bit is expressed as [35]

BER ≈
√
M − 1√

M log2
√
M

erfc
(√

3γ log2M

2(M − 1)

)
+

√
M − 2√

M log2
√
M

erfc
(

3
√

3γ log2M

2(M − 1)

)
,

(4.1)

whereM is the number of points in the QAM constellation, erfc is the complementary

error function, and γ is the SNR per bit, defined as

γ = Es

2σ2 log2M
, (4.2)

where log2M represents the number of bits per symbol. Using the expression in (4.1),

the minimum required γ for a BER of 10−3 is approximately 6.79 dB, 10.52 dB, and

14.77 dB for QPSK, 16-QAM, and 64-QAM, respectively. The SP is the additional

SNR required, when phase noise is present, to achieve the same BER as the ideal

case. When simulating the blind reference algorithms, the transmission blocks con-

28
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Table 4.1: Linewidth tolerance comparison for different algorithms and modulation formats.

Algorithm PD
∆νTs for 1 dB SP at a BER of 10−3

QPSK 16-QAM 64-QAM

TIK (3 it.) 2.86% 1.21 · 10−3 5.74 · 10−4 1.33 · 10−4

TIK (2 it.) 2.86% 1.01 · 10−3 3.98 · 10−4 9.02 · 10−5

PA-Z 2.86% 9.0 · 10−4 4.8 · 10−4 6.5 · 10−5

PA-MO 1.79% 7.5 · 10−4 1.8 · 10−4 3.5 · 10−5

BPS 0% 4.1 · 10−4 1.4 · 10−4 4.0 · 10−5

NLS-CPE 0% - 1.5 · 10−4 2.7 · 10−5

VV-IK 0% 1.6 · 10−4 - -

tain 200 000 symbols. Additionally, DE, described in [6], is employed due to phase

ambiguity. In the following subsections the proposed algorithm will be referred to as

TIK, and the following algorithms are used for comparison: A VV variant (VV-IK)

proposed in [8], a blind phase search algorithm (BPS) proposed in [6], a scheme

based on nonlinear least squares (NLS-CPE) proposed in [15], and two pilot aided

schemes, referred to as PA-MO and PA-Z, proposed in [18] and [20], respectively.

4.1 Linewidth Tolerance

The SP at a BER of 10−3 is shown in Fig. 4.1a for TIK running 2 iterations. It is

compared to BPS for all modulation formats, and additionally to VV-IK for QPSK.

For 16-QAM and 64-QAM transmissions, TIK suffers from the lowest SP when com-

pared to the other considered algorithms, for all of the tested linewidths. For QPSK

transmissions, the same is observed except when the linewidth and symbol duration

product ∆νTs surpasses 1.3·10−3. As the linewidth approaches zero, TIK attains close

to zero penalty while the blind reference algorithms maintain a minimum penalty.

This is due to the DE the blind algorithms use, which increases the average BER.

Table 4.1 shows the maximum reported tolerable ∆νTs for a 1 dB penalty at a BER

of 10−3, for the considered algorithms. The second column shows the required PD
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0 3 6 9 1210−6

10−4

10−2

100

γ [dB]

B
E
R

QPSK

Ideal
4.0 · 10−4

1.0 · 10−3

1.5 · 10−3

0 4 8 12 1610−6

10−4

10−2

100

γ [dB]

B
E
R

16-QAM

Ideal
1.0 · 10−4

3.8 · 10−4

8.8 · 10−4

0 5 10 15 2010−6

10−4

10−2

100

γ [dB]

B
E
R

64-QAM

Ideal
3.0 · 10−5

8.5 · 10−5

2.4 · 10−4

(b) BER performance of the algorithm for 2 itera-
tions, 2.86% PD, different modulation formats, and
different values of ∆νTs.

Figure 4.1: Linewidth tolerance and BER performance of the algorithm.

to achieve the tolerance values. After running 2 iterations with a PD of 2.86%,

TIK outperforms the compared algorithms for QPSK and 64-QAM transmissions.

After 3 iterations, TIK has the best performance for all modulation formats. Addi-

tionally, the effect of different amounts of linewidth on the BER for TIK is shown
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Figure 4.2: Linewidth tolerance of the algorithm for 2.86% PD and a different number of iterations,
at a fixed SNR and BER.

in Fig. 4.1b. An ideal theoretical curve computed using (4.1), where only AWGN

affects the transmission, is plotted for comparison. For ∆νTs values of 4.0 · 10−4,

1.0 · 10−4, and 3.0 · 10−5 for QPSK, 16-QAM, and 64-QAM, respectively, BER values

close to the ideal case are achieved. For higher linewidths, the phase noise causes

the BER curves to hit an error floor as the SNR increases.

4.2 Iterations

To demonstrate the linewidth tolerance improvement, the maximum tolerable ∆νTs

for a 1 dB SP at a BER of 10−3, for a different number of iterations, is depicted in

Fig. 4.2. After 8 iterations, tolerable ∆νTs values of 1.25 ·10−3, 7.46 ·10−4, and 1.77 ·

10−4 are obtained for QPSK, 16-QAM, and 64-QAM, respectively. As Fig. 4.2 shows,

the performance improves initially with increasing number of iterations. Beyond a

particular number of iterations, however, negligible improvement in performance is

observed. In the case of QPSK, the improvements are marginal after 3 iterations.

For 16-QAM and 64-QAM, the tolerance increases more gradually.

The improvement of the a posteriori phase noise PDF estimation from increasing

the number of iterations is shown in Fig. 4.3, by comparing the mean of (3.28) to

the true phase noise. If the number of iterations is more than one, the data symbols
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Figure 4.3: Comparison of the true phase noise versus the estimated phase noise (top figures), and
the squared error of the estimated phase noise (bottom figures). The figures in the left, middle,
and right columns show the results for 1, 2, and 3 iterations, respectively.

are used in the estimation of the coefficients in (3.21) and (3.23). Thus, the mean

squared error between the estimated phase noise and the true phase noise decreases.

4.3 Pilot Density

The performance of the algorithm depends significantly on the PD. To get a better

understanding of this dependency, the maximum ∆νTs values for a 1 dB SP at a BER

of 10−3, for different PDs and 2 iterations, are plotted in Fig. 4.4. For a low PD

the relationship between the linewidth tolerance and the PD is approximately linear.

As the density approaches 100%, the tolerance improvements become negligible and

reach an upper bound for tolerable ∆νTs values. This bound is found to be 5.53·10−3,

1.39 · 10−3, and 3.59 · 10−4 for QPSK, 16-QAM, and 64-QAM, respectively. The
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Figure 4.4: Linewidth tolerance of the algorithm for 2 iterations and different PDs, at a fixed SNR
and BER.

number of iterations has negligible effect on this bound. However, the number will

affect how quickly the bound is approached as the PD is increased.

4.4 Benefits of Phase Noise PDFs

In this section the performance gains of using a posteriori phase noise PDFs in the

symbol detection are illustrated for a 16-QAM transmission. For comparison, a

suboptimal variation of the proposed algorithm is used, where point estimates of the

phase noise are utilized, as opposed to the phase noise PDFs. This variant is described

and derived in Appendix B and is referred to as TIK-ED. The two algorithms, TIK

and TIK-ED, are compared in Fig. 4.5, in terms of linewidth tolerance and BER

performance. All results are obtained from running 2 iterations of the algorithms,

with 2.86% PD.

Fig. 4.5a demonstrates the decline in linewidth tolerance when phase noise point esti-

mates are used as opposed to PDFs. As the linewidth increases, TIK-ED is quicker to

reach a point where the SP starts growing rapidly. In other words, it is less tolerant

to linewidth increments. For lower linewidths, the difference in performance is neg-

ligible. Fig. 4.5b shows that as the SNR increases, both algorithms hit an error floor

caused by the phase noise. The error floor is higher for TIK-ED, which highlights the
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Figure 4.5: Linewidth tolerance and BER performance of the algorithms.

fact that discarding the information contained in the PDFs results in performance

penalty. For lower SNRs, the difference between the algorithms is negligible as the

AWGN becomes the predominant limitation of the BER performance.



5 Conclusion and Extensions

In this work, the optimal symbol detector in the presence of phase noise was pre-

sented, which makes use of phase noise PDFs when performing symbol detection.

This is in contrast to the approach most phase noise compensation algorithms in op-

tical communications conform to, namely using point estimates of the phase noise.

This detector was realized using the FG framework and the SPA, and was further-

more shown to be analytically intractable. An approach from the wireless commu-

nications literature was adopted to implement a practical algorithm. This algorithm

is pilot based, and uses observations from both polarizations of the received signal

to estimate the phase noise PDFs.

The algorithm’s performance was assessed using Monte Carlo simulations. When 8

iterations are run using 2.86% PD, the algorithm has approximately 3.1, 5.3, and

4.4 times the laser linewidth tolerance of the tested blind algorithms, for QPSK,

16-QAM, and 64-QAM, respectively. Moreover, after running 3 iterations using

2.86% PD, the algorithm outperforms other considered pilot based algorithms that

use similar PD, in terms of laser linewidth tolerance, for all the tested modulation

formats.

Finally, a suboptimal variation of the algorithm was derived, where point estimates

are produced from the phase noise PDFs. These point estimates are used to compen-

sate for the phase noise, followed by symbol detection assuming no residual phase

noise. Simulations confirm that using point estimates instead of PDFs of the phase

noise results in a higher BER, and consequently, lower laser linewidth tolerance.

5.1 Future Work

There are many aspects of the algorithm left to explore, which gives motivation for

extensions of this work. Examples of interesting problems are the following.
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• Complexity analysis of the algorithm, and comparison with other algorithms

from literature.

• Joint phase offset estimation, phase noise estimation and symbol detection.

This entails including the variables responsible for the random phase difference

between the polarizations in the FG.

• Modeling of the phase difference between the polarizations as a drifting noise

process, as opposed to a static difference, and modifying the FG correspondingly.

• Algorithm evaluation using more realistic channel models that include nonlinear

phase noise. Additionally, if possible, evaluate using real data, to gain a better

insight into its performance in real optical communication systems.

• Investigation of a parallelized implementation of the algorithm, to determine if

it is realizable in a receiver of a real optical communication system.

• Joint processing of multiple cores/modes in an optical fiber. Assuming that the

same phase noise applies to the different cores/modes, an extension of the algo-

rithm to combine more than two observations is possible. A complexity analysis

in this context might be desirable, to determine the algorithm’s scalability with

increasing number of cores/modes.
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A Message Derivations

A closed form solution of the messages corresponding to the a posteriori symbol

probabilities in Section 3.2 is derived. Using (2.18), the message
←
Px(sx,k), for k =

0, 1, . . . , N − 1, can be simplified as

←
Px(sx,k) ∝

∫ 2π

0
pf(θk)pb(θk)py(θk)f(sx,k, θk)dθk

≈
∫ 2π

0
t(af,k; θk)t(ab,k; θk)t

(
2ry,kα

∗
y,k

2σ2 + βy,k − |αy,k|2
; θk

)

· exp
{

1
σ2 Re

{
rx,ks

∗
x,ke
−jθk

}
− |sx,k|2

2σ2

}
dθk

∝
∫ 2π

0
exp

{
Re
{
ξx,ke

−jθk

}}
exp

{
−|sx,k|2

2σ2

}
dθk

= 2πI0(|ξx,k|) exp
{
−|sx,k|2

2σ2

}∫ 2π

0
t(ξx,k; θk)dθk

∝ I0(|ξx,k|) exp
{
−|sx,k|2

2σ2

}
, (A.1)

where (A.1) stems from the fact that an integral of a PDF over its entire support is

one, and

ξx,k
∆= af,k + ab,k +

2ry,kα
∗
y,k

2σ2 + βy,k − |αy,k|2
+
rx,ks

∗
x,k

σ2 . (A.2)

Similarly, using (2.19), the message
←
Py(sy,k), for k = 0, 1, . . . , N−1, can be simplified

as

←
Py(sy,k) ∝

∫ 2π

0
pf(θk)pb(θk)px(θk)fy,k(sy,k, θk)dθk

≈ I0(|ξy,k|) exp
{
−|sy,k|2

2σ2

}
, (A.3)

where

ξy,k
∆= af,k + ab,k +

2rx,kα
∗
x,k

2σ2 + βx,k − |αx,k|2
+
ry,ks

∗
y,k

σ2 . (A.4)
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B Variant of Proposed Algorithm

A suboptimal variation of the proposed algorithm is derived for evaluation in Section

4.4, where point estimates of the phase noise are used, as opposed to phase noise

PDFs. These point estimates are obtained by finding the mean of the Tikhonov

PDFs in (3.28) and (3.29), i.e. by finding the argument of the complex parameter,

describing the PDFs, expressed as

θ̂x,k = arg
{
af,k + ab,k +

2ry,kα
∗
y,k

2σ2 + βy,k − |αy,k|2

}
, (B.1)

θ̂y,k = arg
{
af,k + ab,k +

2rx,kα
∗
x,k

2σ2 + βx,k − |αx,k|2

}
, (B.2)

for k = 0, 1 . . . , N − 1. The point estimates in (B.1) are used for the received

samples on polarization x, whereas the point estimates in (B.2) are used for the

received samples on polarization y. The estimates are treated as the true values of

the phase noise, which corresponds to the case where the a posteriori phase noise

PDFs in (2.5) are Dirac delta functions. A Dirac delta function is defined as

δ(i) ∆=


0, i 6= 0

∞, i = 0
, (B.3)

where i ∈ R. In this case, the symbol detection in (2.4) reduces to

argmax
sw,k∈M

p(sw,k|rx, ry) ≈ argmax
sw,k∈M

2π∫
0

p(rw,k|sw,k, θk)δ(θk − θ̂w,k)dθk

= argmax
sw,k∈M

p(rw,k|sw,k, θ̂w,k)

= argmax
sw,k∈M

log p(rw,k|sw,k, θ̂w,k)

= argmin
sw,k∈M

∣∣∣rw,k − sw,kejθ̂w,k

∣∣∣2
= argmin

sw,k∈M

∣∣∣e−jθ̂w,k

(
rw,k − sw,kejθ̂w,k

)∣∣∣2 (B.4)

= argmin
sw,k∈M

∣∣∣rw,ke−jθ̂w,k − sw,k
∣∣∣2, (B.5)
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for k = 0, 1, . . . , N −1 and w ∈ {x, y}, where (B.4) comes from the fact that rotating

a complex number does not affect its magnitude. Thus, the received symbols are

derotated with the point estimates, followed by symbol detection. The detection

is performed symbol-by-symbol by minimizing the Euclidean distance between the

received sample and a transmitted symbol, assuming no residual phase noise.


