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Abstract
Demands for transportation are growing at a fast pace in countries that are ex-
periencing rapid economic growth and urbanisation, such as China, India, Brazil,
and Africa. Understanding the spatial and temporal distribution of people and the
activities they participate is essential for urban planning, travel demand forecast-
ing, and infrastructure investment. This thesis explores ways in which Twitter data
can be useful to understand some important aspects of human mobility, including
total travel distance, patterns of mobility and communities. Raw Twitter data was
processed to extract relevant information on space and time dimensions and we
compare the results across all studied geographies. This information is also fed into
a Continuous Time Random Walk (CTRW) model to estimate the average annual
distance travelled by people on the same geographies, and we use travel survey data
to validate our results. Origin-Destination Matrices (ODM) are generated and the
patterns of mobility are visualised on a map and with Rose Diagrams. Finally we
use a community detection algorithm to better understand its dynamics of these
networks. The validity of our estimates may critically depend on the mathematical
models we selected and careful interpretations of the results. Important future work
can include continued refinements of our mathematical models to accurately repre-
sent total travel distance, identify biases, and further understand how demographics
and characteristics of urban infrastructure affect travel demands and mobility pat-
terns.

Keywords: big data, human mobility, twitter, ODM.
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1 Ba
kground

1.1 New sour
es of big data for mobility studies

Traditionally, mobility studies depend on data from surveys or observational

studies. While su
h data 
ontains ri
h and detailed information, it is very

expensive to 
olle
t and pro
ess and restri
ted to s
ope and s
ale. As urban big

data su
h as so
ial media data and mobile phone re
ords be
omes in
reasingly

available, the analyti
al tools we use to design the 
ity and the 
ommuni
ation

tools we use to engage people are hugely 
hanging the way we understand 
ities.

There is not an authoritative big data sour
e used to study human mobility

patterns, but several di�erent sour
es have been used for this purpose, ea
h with

its 
aveats and advantages. The most widely used sour
es are those derived from

mobile devi
es, whether from the 
all logs themselves [13, 22, 20, 38, 37, 39℄,

tra
king apps [23, 37, 39℄, or so
ial media usage [17, 25, 26, 19, 24℄. The sour
es,

however, are not limited to mobile devi
es, a few examples are studies were also

performed using data from banknote 
ir
ulation [10℄, tra�
 data from indu
tion

loops.[11℄, or geo-tagged photography [30℄.

1.1.1 Mobile phone data

Every time a user makes a 
all or sends an SMS, their devi
e 
onne
ts to a


ellular transmission tower. Those 
onne
tions are logged and the anonymised

information 
an be used to infer the position of the user around that tower at

that parti
ular time, and the 
olle
tion of su
h data points 
an be used to infer

movement.

The advantages of this type of data are: Big sample of the population,

mobile phones are ubiquitous in most so
ieties at this time, and their use by a

representative part of the populations 
an be assumed for most developed and

developing nations. Good frequen
y of data point, with people mostly relying

solely on mobile phones for their 
ommuni
ation needs, the frequen
y on whi
h

the data is 
olle
ted is on average very high [38℄. Data globally available, 
ell

phone te
hnology has been adopted in most regions of the world and 
an serve

as a good ben
hmark to 
ompare results a
ross borders.

There are, however, some disadvantages to this type of data are: Poor spatial

resolution, using this method, a user 
an only be assigned to a vi
inity of a 
ell

tower, that area is on average 3km2
in the US [38℄ but 
an vary a lot depending

on fa
tor su
h as urbanization and terrain. Di�
ult to obtain and expensive.

Surge in use of messaging apps mean SMS and mobile 
alls are not as prevalent

as before.

1.1.2 So
ial media data

When a user 
hooses to share something on a so
ial media network, they may

also 
hoose to share their lo
ation. While in some networks the lo
ation is an

integral part of the produ
t (Foursquare), in most others it is a optional feature

used by a fra
tion of the users.

There are many advantages of using so
ial media data: Pre
ise lo
ation,

when a user 
hooses to share their lo
ation, it is done using information from

the GPS 
hip on their devi
e, this te
hnology has an average pre
ision of 10m

[7, 24℄. Data openly available, some so
ial media platform operate on a business
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model fo
used on providing users free a

ess to the data their 
onne
tions in

the network make publi
. User 
an also opt to share information with the

entire network, and thus this data will be available to anyone with a

ess to

the network. Easily obtainable, some networks provide APIs to fa
ilitate data

gathering.

But in turn many disadvantages follow: Low sample of the population, so
ial

media use is growing, but still penetration rates vary a
ross networks and pop-

ulations. Skewed sample, so
ial media use and penetration is not homogeneous

a
ross all segments of the population, and measuring the ways in whi
h this

varies is still di�
ult [34℄. Low data point frequen
y, so
ial media use is sparse

in time, with frequen
y being measured often in days.

1.1.3 Continuous GPS tra
king

Controlled studies 
an be done where volunteers re
ord their 
oordinates in set

interval of times, using the GPS 
hip on their phones. Examples of su
h studies

are the Copenhagen Network Study[39℄ and the Nokia Mobile Data Challange

[2℄.

Advantages of this methodology: High data frequen
y, sin
e it 
an be 
on-

trolled to �t the experiments needs. Pre
ise lo
ation, by using GPS signals.

Controlled population sample, when the study is being designed, the sample


an be 
ontrolled for di�erent variables.

Disadvantages in
lude: Extremely laborious to set up the experiment and

re
ruit volunteers. Small sample size means that some patterns may not show

up in the data. Usually very limited geographi
ally. Data is available as a

one-o� basis and 
annot be updated without re
onstru
ting the experiment.

1.2 Use of Twitter data in the literature

1.2.1 An overview of Twitter data

A data point in Twitter data is 
alled a tweet. A tweet is a so
ial media message

and its most basi
 informations are a unique username and a text that is no

more than 140 
hara
ters long. This data by itself is not remarkably useful in

our study, but a tweet may also 
ontain one or more of the following information:

User information, in
luding a unique number, user name, pi
ture, friends and

followers 
ount, geographi
 lo
ation, and language; tweet unique number ID;

time and timezone in whi
h the tweet was generated; sour
e appli
ation used to

generate the tweet; geographi
 information of where the tweet was generated,

in
luding 
ountry, 
ity and GPS 
oordinates; tweet hashtags, user mentions,

and �in reply to� information; tweet favorite and share 
ounts. Most of this

information is shared by users on an opt-in basis. Spe
i�
ally to our interests,

in order to get the pre
ise geolo
ation of a user, it has to willingly atta
h the


oordinates to a publi
 tweet.

There are many ways in whi
h Twitter data 
an be 
olle
ted, but the most

widely used are its two free APIs. The REST API allows us to sear
h twitter

massive dataset of ar
hived tweets, with data going ba
k to 2009. There are,

however, many ways in whi
h this a

ess is limited. They 
an all be found in the

API do
umentation, and the most restraining one is a rate limit of 180 tweets

on a 15 minutes window per API user. The Streaming API delivers tweets in
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real time, as they are generated, and is therefore more limited on the s
ope of

data whi
h 
an be 
olle
ted. Its big advantage is the rate on whi
h data 
an be


olle
ted: it is limited at 1% of the absolute number of tweets being generated

at any given time, whi
h is a mu
h bigger rate than the REST API. Aside from

the free alternatives, there are paid ones whi
h do away with this limitations.

Gnip is a Twitter subsidiary whi
h sells, among other things, histori
al tweets

in bulk, and provides a

ess to the Firehose API, whi
h is similar in s
ope to

the Streaming API, but has no rate limit.

1.2.2 Sparsity of Twitter data

An important information is how big the data sample is among the population.

Twitter penetration in a 
ountry, that is, the share of the population a
tively

using the platform, 
an be anywhere from 1% to less than 0.001% of the total

population [26℄. Not all tweets 
ontain geolo
ation information. Among the

tweets, the number of those 
ontaining geolo
ation data has been found to be

around 3% [27℄. Combining this two pie
es of information with the fa
t that

the average user tweets 0.023 times a day [26℄, we 
an start to have a sense of

how sparse the data is.

1.2.3 Sour
es of bias in Twitter data

We need to 
aution about the demographi
 bias present on the data. Twitter

users have been found to be skewed towards young (18-29), highly edu
ated

(
ollege degree), high in
ome ($75,000+) and urban population [18℄. It is widely

a

epted that travel distan
es are 
orrelated with in
ome level [36, 35℄, and

urban travel patterns are of di�erent nature than rural ones [32℄. So we expe
t

these bias to in�uen
e our results to a degree. Due to the nature in whi
h the

data is generated, we also spe
ulate that Twitter users are also biased towards

people with extroversion a 
ommitted to publi
ness, as opposed to very private

people, and they have shown to be more mobile than average [14℄. And sin
e

the data points 
onsists of individual tweets, and not users, we expe
t the �nal

data to be even more heavily skewed towards these two.

Finally, sin
e tweets are a user generated a
tivity of so
ial nature, we would

expe
t to have more data points on areas of larger so
ial interest, su
h as restau-

rants, touristi
 areas, et
. [33℄.

This bias 
ould make it very hard to generalize e�e
tively our results. The

e�e
ts of so
ial media bias on big data analysis have been widely studied [34, 16℄

on areas su
h as politi
al pooling general sampling, yet most of the te
hniques

proposed to over
ome those are beyond our immediate rea
h. On the positive

side, some studies found that Twitter data 
an reliably be used as a sour
e of

data for mobility studies [25, 24℄.

1.3 Goals and obje
tives

In this thesis, we fo
us on so
ial media data, a
quired from the platform Twitter.

So
ial media data is be
oming in
reasingly relevant and prevalent, and the fa
t

that it 
an be 
olle
ted 
ontinuously and reliably makes it an ideal 
hoi
e for a

foundation on whi
h to build models in hope that they 
an be
ome useful tools of

predi
tion and understanding in the future. We hope that with rigorous analysis
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and the use of 
areful assumptions, we 
an mitigate some of the disadvantages

of this data sour
e presented earlier.

2 Methods

2.1 Dataset used in this resear
h

2.1.1 Des
ription of the dataset

Our main dataset was pur
hased from Gnip, a Twitter subsidiary, and 
ontains

over 50 million tweets, gathered in a period of 6 months from 25 di�erent lo
ali-

ties around the world. The lo
ations were sele
ted to, given time and budgetary


onstrains, span most of the globe and try to isolate some variables su
h as in-


ome, population density, infrastru
ture, et
. This means that on
e we sele
ted

a 
ountry, we always tried to sele
t another one with similar level of e
onomi


development and population, but lo
ated in a di�erent area of the world. Also,

we tried to have at least 2 
ities from ea
h 
ountry so that internal di�eren
es

within a 
ountry 
an be noti
ed.

The data 
onstitutes of geo-tagged tweets generated within the geography

delimited by a bounding box. A bounding box is 
hara
terized by two 
oordi-

nates, and represented by four numbers. The �rst two numbers are the longitude

and latitude of the southwest 
orner of the box, and the last two are the same


oordinates for the northeast 
orner.

Table 1 shows the bounding boxes used to �lter the a
quired data. The

time period being 
onsidered is from Friday, 20 June 2016, 0:00, to Sunday, 20

De
ember 2015. 0:00.
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Country City SW lon SW lat NE lon NE lat

Kuwait entire 
ountry 46.553 28.5244 48.5184 30.1037

Sweden entire 
ountry 10.58 55.01 24.18 69.06

Netherlands entire 
ountry 3.3316 50.7504 7.2275 53.6316

Egypt entire 
ountry 24.7 22 37.06 31.81

Saudi Arabia entire 
ountry 34.53 16 55.67 32.15

Australia entire 
ountry 111 -44.6 159.3 -9.2

Austria entire 
ountry 9.5308 46.3723 17.1607 49.0206

Brazil

São Paulo -46.965179 -23.795398 -46.365084 -23.333429

Rio de Janeiro -43.640704 -23.055589 -42.912598 -22.652037

Spain

Madrid -3.896027 40.272191 -3.524912 40.563845

Bar
elona 2.037964 41.291222 2.254944 41.471544

Indonesia

Jakarta 106.598969 -6.432671 107.082367 -6.014922

Surabaya 112.606922 -7.370639 112.872162 -7.19435

Malaysia

Kuala Lumpur 101.570663 2.98967 101.791763 3.296139

George town 100.29479 5.371296 100.345981 5.443244

Philippines

Manila metropolitan 120.906211 14.348096 121.135076 14.787496

Cebu 123.2995 9.4115 124.5696 11.5238

South Afri
a

Cape town 18.3074 -34.3598 19.0047 -33.4713

Johannesburg 27.828369 -26.342653 28.288422 -26.018532

Mexi
o

Mexi
o 
ity -99.364924 19.048237 -98.940303 19.592757

Guadalajara -103.459625 20.56851 -103.203506 20.743846

Russia

Mos
ow 37.3193 55.4899 37.9457 56.0097

St Petersburg 30.090332 59.745216 30.559783 60.089675

Nigeria Lagos 3.098273 6.393351 3.696728 6.702798

Kenya Nairobi 36.645419 -1.444863 37.049375 -1.164744

Table 1: Bounding boxes used as �lters in the data 
olle
tion

2.1.2 Filtering and 
leaning the data

The raw dataset has to be 
leaned, as it 
ontains many data points that are

not relevant to our study. First we keep only tweets that 
ontain a pre
ise

lo
ation, represented by a set of 
oordinates. As a se
ond measure, we are

interested in removing tweets that are generated algorithmi
ally by bots or are


ommer
ial tweets that do not represent the a
tivities of an individual. Most of

these tweets 
ome from sour
es su
h as the API for bots or 
ommer
ial platform

for 
ommer
ial tweets, so to a
hieve this, we �lter only tweets whose sour
es are

in one of the following four: Android app, iPhone app, Instagram or Foursquare.

2.1.3 Some artifa
ts of this dataset

The main way in whi
h this dataset is �ltered is geographi
ally, through bound-

ing boxes. While this makes perfe
t sense to analyze movement patters inside

those boxes, movement that takes pla
e outside or a
ross its boundaries will

not be 
aptured, resulting in some artifa
ts on the analysis to 
ome. These will

be dis
ussed as they appear on the di�erent analysis. This 
ould be avoided if

needed with an user-
entri
 �lter, where we �lter tweets by user instead of by

geography. This would alter the nature of the data and its representativeness
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in a non trivial way, and user-
entri
 �lters in the Twitter API are mu
h more

limiting.

2.1.4 Summary of the data

Table 2 and 3 present a summary of the data 
olle
ted. The population of the

geographies, when entire 
ountry is the subje
t of the study, is obtained from

the CIA World Fa
tbook 2017, or 
al
ulated using the bounding boxes and the

'Gridded Population of the World (GPW), v4' [12℄, when 
onsidering 
ities.

Geo Tweets Repeated Geo Tweets

Country Population Users Tweets Users Tweets Tot dist (km)

Australia 22,992,654 69,042 819,112 41,796 791,866 76,745,478

Austria 8,711,770 21,049 116,553 11,399 106,903 2,319,127

Egypt 94,666,993 28,790 281,145 15,525 267,880 6,786,621

Kuwait 2,832,776 28,859 1,224,696 22,889 1,218,726 12,099,922

Netherlands 17,016,967 64,728 494,128 36,073 465,473 7,264,873

Saudi 28,160,273 50,012 599,821 27,601 577,410 17,141,274

Sweden 9,880,604 25,390 273,100 14,883 262,593 9,655,083

Bar
elona 2,748,458 50,914 298,402 28,238 275,726 520,810

Cape Town 4,553,581 13,003 136,420 7,797 131,214 764,237

Cebu 7,047,559 20,355 245,788 13,667 239,100 2,057,550

George Town 236,506 17,557 95,913 10,584 88,940 114,516

Guadalajara 3,520,172 17,350 186,292 10,013 178,955 526,926

Jakarta 20,026,430 149,389 1,242,263 92,991 1,185,865 5,854,328

Johanesburg 4,963,247 19,479 200,355 11,549 192,425 778,125

Kuala Lumpur 4,036,423 110,334 2,205,048 81,874 2,176,588 10,509,918

Lagos 11,655,049 15,180 176,961 9,309 171,090 654,158

Madrid 4,312,307 71,216 425,648 39,714 394,146 1,150,335

Manila 15,006,509 117,444 1,687,768 80,474 1,650,798 5,548,256

Mexi
o 
ity 14,747,465 94,827 1,432,372 60,876 1,398,421 6,303,389

Mos
ow 13,355,581 29,805 432,992 19,782 422,969 2,206,877

Nairobi 4,916,844 9,419 114,978 5,405 110,964 277,205

Rio de Janeiro 11,035,393 101,156 1,783,728 64,866 1,747,438 8,108,751

Sao Paulo 18,503,520 94,897 1,371,964 60,470 1,337,537 5,493,168

St Petersburg 4,261,511 13,648 178,470 9,165 173,987 604,965

Surabaya 3,052,569 26,494 164,413 14,602 152,521 407,333

Table 2: Data summary of total population, geo tweets and its users
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Country Geo users/100k Tweets/Geo user % of Tweets

rep users

Avg distan
e/

repeated user

Australia 300 11.86 96.7% 1,836

Austria 242 5.54 91.7% 203

Egypt 30 9.77 95.3% 437

Kuwait 1,019 42.44 99.5% 529

Netherlands 380 7.63 94.2% 201

Saudi 178 11.99 96.3% 621

Sweden 257 10.76 96.2% 649

Bar
elona 1,852 5.86 92.4% 18

Cape Town 286 10.49 96.2% 98

Cebu 289 12.08 97.3% 151

George Town 7,423 5.46 92.7% 11

Guadalajara 493 10.74 96.1% 53

Jakarta 746 8.32 95.5% 63

Johanesburg 392 10.29 96.0% 67

Kuala Lumpur 2,733 19.99 98.7% 128

Lagos 130 11.66 96.7% 70

Madrid 1,651 5.98 92.6% 29

Manila 783 14.37 97.8% 69

Mexi
o 
ity 643 15.11 97.6% 104

Mos
ow 223 14.53 97.7% 112

Nairobi 192 12.21 96.5% 51

Rio de Janeiro 917 17.63 98.0% 125

Sao Paulo 513 14.46 97.5% 91

St Petersburg 320 13.08 97.5% 66

Surabaya 868 6.21 92.8% 28

Table 3: Statisti
s of geo tweeting penetration

There is a great variability in the penetration and use of geotagged tweets

among the areas studied, with Malaysian 
ities 
oming in front and Afri
an

regions behind. We also see that representation is bigger when looking at 
ities

in respe
t to whole 
ountries, further strengthening the hypothesis of urban

bias.

2.1.5 Travel survey data for Sweden for validation

We have a

ess to data from the Swedish National Travel survey (RVU Sweden)

[3℄ for the years of 2011-2014. This dataset 
onsists of a total of 31.457 travel

diaries spanning the period of a day, with information on trip distan
e, times,

mode of transportation, trip purpose, and others.

Any data from a survey is subje
t to self reporting bias, were there is a

sele
tive reporting or suppression of information by the respondents due to a

number of fa
tors, 
ons
ious and un
ons
ious.
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2.2 Spatial density

Spatial distribution is an important feature of the data set. Sin
e we are study-

ing the movement of people a
ross spa
e, we want �rst that our data distribution

a
ross this dimension resembles to a high degree the distribution of the a
tual

population, as studies have shown that di�erent 
ities have di�erent mobility

patterns [29, 21, 4℄, and they 
an even di�er inside regions of the same 
ity.

To understand the ways in whi
h our sample is skewed, a �rst analysis 
ould

be to 
ompare the spatial density of tweets with the spatial population density

and see how mu
h they 
orrelate. If the sample is not skewed in any way, we

would expe
t to see a high degree of 
orrelation, yet, we 
ould not a�rm the

opposite, that is, a high 
orrelation would not immediately imply that the data

is not skewed.

For the population density data, we use the GPWv4 dataset [12℄. This

dataset is 
ompiled by NASA using a 
olle
tion of di�erent 
ensus and other

population sour
es, and provides population 
ounts for the entire world in a

1km2
grid. We also used the GDAM database of administrative areas [1℄ as a

way to separate the 
ountry into useful regions. For ea
h of these administrative

areas, we use our dataset to 
al
ulate the density of tweets inside them, to 
om-

pare with the population density. Noting that sin
e the 
ensus data measures

where people reside, whereas our twitter data tells us where people are a
tive,

we would not expe
t a perfe
t 
orrelation to arise.

2.3 Temporal patterns

We know that humans have habits, making temporal a
tivity and spatial a
tivity


orrelated to a high degree. For example, a
tivity during working hours is

di�erent in nature that those in leisure time, and those o

ur at regular times

in a day, or in di�erent days in a week.

Another dimension that 
an be explored when analyzing the representative-

ness of Twitter data is the distribution of a
tivity on the di�erent hour of the

day. If we are to say that the Twitter data represents well human a
tivity a
ross

spa
e, we would here like to see the temporal distribution of Twitter a
tivity

represent to a high degree human a
tivity along the day.

2.4 Trip distan
e distribution

One of the most studied aspe
ts of human mobility is the density distribution

of trip lengths. These are used as a way to understand and des
ribe how mobile

a population or subset of a population is, and is essential part in any model of

human mobility in general. Studies have shown that the density distribution

for the step lengths follows a heavy tailed distribution [17, 10℄, whi
h 
an be

explained by the fa
t that human a
tivity in general does not follow a Pois-

son pro
ess, and instead 
ome in bursts of a
tivity followed by long periods of

ina
tivity [8℄.

When using Twitter data, we will look at the relation between two 
onse
u-

tive points for a same user, and look at the distan
e between those points. Here

we de�ne the trip distan
e as the geographi
al distan
e between two points. To


al
ulate ea
h trip distan
e, we �rst have to 
onvert the di�eren
e in 
oordinates
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to a di�eren
e in kilometers. Here we use the Pythagorean distan
e between

both points, whi
h assumes the earth is lo
ally �at at the mean of both points.

ykm = (lat1 − lat2)
40.008

360
(1)

xkm = (lon1 − lon2)
40.075

360
cos

(
lat1 + lat2

2

)
(2)

d =
√
y2km + x2

km (3)

where the numbers 40.008 and 40.075 
orrespond to the 
ir
umferen
e of the

earth, in kilometers, along the poles and the equator respe
tively.

This is a fair approximation for small distan
es, where the 
urvature of earth

plays a small role. One alternative would be to use the Harvesine distan
e, whi
h

does take into a

ount this 
urvature, but using this distan
e we would lose the

ability to make an assertive de�nition of the dire
tion of travel, whi
h will be

important when we analyze that dimension of mobility.

One 
onsequen
e of our de�nitions is that the trip distan
e will always give

a lower bound for the a
tual travel distan
e, sin
e dislo
ation is rarely done in

straight line.

2.5 Waiting time distribution

Waiting time is the time a person spends not moving, i.e. not in a trip, as de�ned

earlier. It is a 
omplementary information to the distan
e distribution in many

models of human mobility, and is essential when we add a time dimension to

su
h models.

For our Twitter data, we de�ne waiting time as the di�eren
e in time between

two points from the same person that are distin
t in spa
e, implying that some

dislo
ation has o

urred. A 
onsequen
e of this de�nition it that it is a upper

bound for the a
tual time, as it does not take into a

ount the travel time and

other possible trips that might have o

urred between the two measurements.

Another minor 
onsequen
e of this de�nition is that it implies that dislo
ations

o

ur instantly, and thus we loose the 
apability to make any study related to

the velo
ity of travel.

2.6 Continuous Time Random Walk (CTRW)

A Random Walk is a sto
hasti
 pro
ess that des
ribes a su

ession of steps that

are random in nature, and they 
an be random in dire
tion, length, or both. It

is a widely used model in many areas of physi
s and 
omplex systems analysis.

A Continuous Time Random Walk (CTRW) is a 
ontinuation of this model

where a time dimension is added, and the di�eren
e in time between steps is

also itself a random pro
ess.

It has been shown that human motion resembles a CTRW [17, 10℄, where

both the step length and time between steps follow an underlying heavy tailed

density distribution.

The total distan
e of a path X (t) at time t in a CTRW 
an be formulated

as

10



X (t) =

N(t)∑

i=1

∆Xi (4)

where ∆Xi are the i individual step distan
es and N (t) is the number of

steps taken until time t. The di�eren
e between this measure form a normal

random walk is that N is also a fun
tion of time. A distribution for N (t) 
an
be generated by a transformation of the waiting time distribution, but sin
e we

will deal with non analyti
al distributions in this study, we will simply sample

from the waiting time distribution until the total sampled time ex
eeds t.
As dis
ussed in the previous se
tions, we 
an then simulate the total dis-

tan
e traveled by a population in a given period of time using this model and

the underlying trip distan
e and waiting time distributions of a population. It

is here useful to remember that step length (trip distan
e) distribution obtained

using Twitter data provides only a lower bound for the a
tual step length dis-

tribution, and the waiting time distribution provides an upper bound to the

real distribution. This means we 
annot assume that the �nal simulated total

distan
e will be an upper or a lower bound to the a
tual total traveled distan
e.

2.7 Radius of Gyration

When studying human mobility, the radius of gyration is often used as a proxy

for the size of the area where a person has been a
tive, sin
e it is a good

representation of how far points are distributed around a 
enter. It is a 
on
ept

borrowed from physi
s, and is de�ned as the root mean square distan
e of all

the points relative to their 
enter of mass on a given axis. Sin
e we are studying

a two dimensional distribution of points the axis is trivially de�ned and we are

left with the following formula for the radius of gyration, Rg:

R2
g =

1

N

N∑

k=1

(rk − r̄)2 (5)

where rk are the k individual 
oordinates, and r̄ the 
enter of mass.

2.8 Origin-Destination Matri
es (ODMs)

The most widely used transportation fore
ast model is 
alled the Four Step

Model, with the four steps being trip generation, trip distribution, mode 
hoi
e,

and route assignment. Ea
h of the steps are done separately and have their own

body of resear
h.

Origin-Destination matri
es (ODMs) are an essential tool in the traditional

four step transportation fore
asting model, and they are used as a proxy on trip

distribution over a geographi
al area, and essentially represent the volume of

travel between any two subregions of a study area. In the four step model is

used for assigning transportation modes and routes between those subregions.

To 
onstru
t an ODM, the area must be �rst partitioned into a set of sub-

regions. This 
an be done in ways to a

ommodate the data available [25℄, to


orrespond to areas of interest in the sele
ted geography [11℄. A ODM is a

matrix de�ned as

A = [aij ] i, j = 1, . . . , n (6)
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were the elements aij 
orrespond to the number of trips originating in region

i and terminating in region j.
Many methods have been developed for 
onstru
ting ODM matri
es, one

exemple is the Gravity Model, where 
ertain areas, su
h as 
ommer
ial or in-

dustrial areas, are assumed to attra
t the population in a way that 
an be

modeled similarly to gravity. ODMs 
an also be estimated using data from in-

du
tive tra�
 loops [11℄, if one assumes users always take the shortest path to

where they need to be, an assumption that is not trivial.

Re
ently, many studies have fo
used in using 
ell phone 
all re
ord as a way

to 
onstru
t these matri
es [9, 6, 28℄, with good su

ess. Less attention has

been paid in using so
ial media data for the same purpose, but one study has

shown that both produ
e similar results [25℄.

If we de�ne trips in the ODM 
ontext to be the same as the trips we de�ned

for our data on the se
tions above, it be
omes possible to generate ODMs using

our Twitter data. We divide our geographi
 areas using a square grid, with a

10km resolution when generating it for 
ountries, and a 1km resolution for the

individual 
ities, and pro
eed to 
ount the trips between those regions to form

the matrix.

2.9 Communities in networks

In network theory, a 
ommunity is loosely de�ned as a 
olle
tion of nodes with

many edged between them, and with few edges between di�erent 
ommunities.

They are a good way to study and visualize the topology of a network.

There are many methods used to �nd su
h 
ommunities in networks, and

they mostly di�er on interpretations on what are de�ning features of a 
ommu-

nity [41℄. To analyze the presen
e or not of 
ommunities in our ODMs, we will

use a method 
alled Walktrap [31℄. The essential assumption of this method is

that random walkers on the network tend to be "trapped" inside the 
ommuni-

ties, that is, if you start a random walk inside a 
ommunity, you are more likely

to end up inside the same 
ommunity than outside of it. This assumption seems

very �tting given the nature of what we are studying.

A random walk on the network is performed as follows: at the start node,


hoose a vertex to walk along, with given probabilities, and repeat this for a

given number of steps. This a

ommodates two features of our network that

are important, the �rst one being the number of trips between the nodes, that


an be used when 
al
ulating the probabilities of 
hoosing among the verti
es;

and the se
ond is the fa
t that our network is dire
ted, that is the the vertex

from node i to j is di�erent to the one going the opposite dire
tion.

The number of steps taken in the walk is a parameter of the algorithm and

it is usually in the range of 3 to 5. After many random walks are performed in

the network, the expe
ted number of steps between any two nodes is 
al
ulated

based on the results and a 
lustering is performed to �nd the 
ommunities.
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3 Results

3.1 Population vs Twitter a
tivity

Figure 1 and 2 show the 
orrelation plot for the number of tweets vs the popu-

lation on the administrative regions of ea
h 
ountry studied (left), as well as the

residuals of the 
orrelation represented on a map of those administrative regions

(right). We see that in some 
ountries, su
h as Austria, The Netherlands and

Sweden, the 
orrelation is very high, with R2
ranging from 0.62 to 0.95, whi
h

are strong results giving the 
aveats dis
ussed in se
tion 2.2.

Some 
ountries, however, have a very poor 
orrelation of these two variables,

Australia and Egypt perform very poorly in this analysis. Both 
ountries have

in 
ommon the fa
t that most of their population is 
on
entrated in a small

portion of its area (along the o
ean for Australia, and the Nile for Egypt), and

that the less populated areas have big touristi
 attra
tiveness, whi
h has been

shown to generate large so
ial media a
tivity [30℄. This 
an help to explain the

very loose 
orrelation that was obtained.
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Figure 1: Population and tweeting a
tivity 
orrelation (left), and the geograph-

i
al representation of the residuals (right)
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Figure 2: Population and tweeting a
tivity 
orrelation (left), and the geograph-

i
al representation of the residuals (right)

3.2 Temporal patterns

Figures 3 shows the tweeting a
tivity along the day for all studied 
ountries

(plots for all 
ities 
an be found in the appendix). We �nd that users are more

a
tive on the working hours of the day, where they are least likely to be home,

further strengthening our hypothesis made earlier when 
omparing our data

distribution with the 
ensus data.
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Figure 3: Hourly a
tivity in the studied 
ountries

3.3 Trip Distan
e and Waiting Time distributions

Figures 4-6 show the distribution of both variables for all the studied 
ountries

and sele
ted 
ities (plots for all 
ities 
an be found in the appendix). They

are represented in a mono-log s
ale for better visualization of the distribution

tail. A red line in the distan
e distributions shows the maximum distan
e that


an possibly be traveled given the 
onstrains in the bounding box, so the edge

e�e
ts 
an more 
learly be seen.

When looking at the 
ountries, we note that the distribution of trip distan
e

indeed follow a heavy tailed pattern, yet there are spikes at di�erent points

for di�erent 
ountries. Noting that those spikes are more prominent in more

sparsely populated 
ountries, they o

ur at larger distan
es, and are nearly

absent in the same distributions for the 
ities, we spe
ulate that they are due

to the arrangement of 
ities inside the 
ountry, with the spikes being the result

of inter
ity travel.
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Figure 4: Trip distan
e and waiting time distribuition for Australia, Austria,

Egypt and Kuwait
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Trip distan
e distribuition Waiting time distribuition
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Figure 5: Trip distan
e and waiting time distribuition for the Netherlands, Saudi

Arabia and Sweden
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Trip distan
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Lagos, trip distance
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Rio de Janeiro, trip distance
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Figure 6: Trip distan
e and waiting time distribuition for sele
ted 
ities, red

line represents the maximum possible distan
e inside the bounding box
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For the waiting time distributions, we �nd that they are relatively very

similar along all the di�erent geographies, with small di�eren
es explained by

di�eren
es in the temporal pattens shown in the se
tion above. A striking

feature, however, is the spikes around every 24h mark, and we spe
ulate that

this is an e�e
t of both 
olle
tive behavior, with Twitter a
tivity being more


on
entrated at 
ertain areas of the day, with individual habits, with users

tweeting at the same pla
e and time daily.

We pro
eed to study the the relationship between waiting time and trip dis-

tan
e, and the results are shown in Figure 7. We note that there is a 
ontinuous

in
rease in distan
e at every 24 hour mark. We hypothesize that those jumps


ome from two intera
ting underlying phenomena, one where the distan
e in-


reases 
onstantly with the in
reasing waiting time derived from the di�usive

nature of human mobility, and another where the distan
e de
reases to zero at

every 24h mark, as hypothesized before and derived form the fa
t that humans

have established habits. The superposition of the two resulting distributions

would be similar to the one observed in the data. This interpretation would ex-

plain also the peaks we see on the waiting time distribution at the same marks,

as the e�e
ts of habit.

Figure 7: Relationship between waiting time and trip distan
e for Sweden and

Netherlands

For validation, we 
ompare the distributions with the 1-day travel survey

for Sweden. First we need to 
onsider the di�erent s
opes of the datasets and

a

ount for it; and for this we �lter our Twitter data to 
onsider only trips

beginning and ending on the same day, and only trip that are longer than

on kilometer (minimum distan
e in the survey). Figure 8 shows the resulting


omparison. We 
an see that while the distan
e distributions agree to a 
ertain

degree, the waiting time distributions do not. Part of this di�eren
e is due

to the di�erent nature of both datasets: the distan
es 
al
ulated using our

data are mostly bounded by the distan
es on the travel survey, 
on�rming our

observation made in se
tion 2.4. We also spe
ulate that due to reporting bias,

people will tend to under report small distan
es and short times, in favor of big

larger ones, due to the di�erent 
ognitive load.
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Figure 8: Comparions of trip distan
e and waiting time between the Twitter

and survey datasets

3.4 Total travel distan
e

We de�ne the total distan
e traveled simply as the sum of all individual trip

distan
es performed by a single individual (eq 4). Figures 9 and 10 show the

distribution of individual traveled distan
es for some studied geographies along

the study period. We again noti
e that these distributions resemble ea
h other

and are fat tailed, but we 
an see that the size of the tail is heavily in�uen
ed

by the size of the 
ountry or 
ity in question. This 
an be due to the fa
t

that our data is �ltered geographi
ally, and we are unable to 
apture movement

that takes pla
e a
ross geographi
al boundaries, and not that the people in

those 
ountries have di�erent travel patterns. However, it has been shown that

the individual mobility is related to in
ome, so we would expe
t some variations

among 
ountries. Also, as a 
onsequen
e to this, we would expe
t that 
ountries

with a high degree of in
ome inequality to have a distribution that is in
reasingly

bimodal, and this 
ould explain the peaks in total travel for both Saudi Arabia

and Egypt on the plots.
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Australia, individual total travel
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Austria, individual total travel
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Egypt, individual total travel
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Kuwait, individual total travel
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Netherlands, individual total travel
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Saudi, individual total travel
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Sweden, individual total travel
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Figure 9: Total observed trip distan
e for individuals in the studied 
ountries,

during the data 
olle
tion period
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Barcelona, individual total travel
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Jakarta, individual total travel
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Lagos, individual total travel
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Mexico city, individual total travel
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Moscow, individual total travel
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Rio de Janeiro, individual total travel
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Figure 10: Total observed trip distan
e for individuals in sele
ted 
ities, during

the data 
olle
tion period

We again 
ompare the Twitter analysis with our survey data for Sweden

using the same �ltering pro
ess as previously des
ribed. Figure 11a shows this


omparison. There are some dis
repan
ies between both distributions, with the

Twitter distribution being more heavy on the lower distan
es. One possible

reason for this is that twitter samples trips non-uniformly among individuals,

i.e. some individuals have more data points than others, whereas the survey

is theoreti
ally uniform a
ross the sample. To a

ount for this, we 
an try to

normalize the traveled distan
e on the twitter dataset by the number of data

points, using the following transformation

S∗i = Si
n̄

ni
(7)

where Si is the individual traveled distan
e for user i, ni is the number of

data points for the same user, and n̄ is the average number of data points. Figure

11b show the resulting distribution again 
ompared to the survey distribution.

They 
ompare somewhat more favorably, but still diverge.

We then use a CTRW to estimate the total travel distan
e of a popula-

tion. To do so, we use as the underlying distributions for the random pro
esses

P (X) for the step length and P (h) for waiting time obtained dire
tly from the

pro
essed Twitter data. Figure 11
 shows the resulting traveled distan
e dis-

tribution (for 10000 simulated individuals) 
ompared also with the distribution

resulting from the survey, the two distributions di�er signi�
antly. One of the

reasons for su
h dis
repan
ies is that the formulation of a CTRW assumes that

the step length and waiting time are independent of ea
h other, and as shown

in se
tion 3.3, this is not a

urate.

To over
ome this, we 
an redo the same simulations, but instead of sampling

the step length from distributions P (X), we 
an sample it from the 
onditional
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distribution P (X |h) where h is the waiting time before that step. This results

in a distribution for the daily traveled distan
e that most 
losely resembles the

one given by the survey data, yet it still overestimates it. Results 
an also be

seen in Figure 11d.

(a) (b)

(
) (d)

Figure 11: Comparison of total daily traveled distan
es between both datasets

(a), between the survey and normalized twitter distan
e (b), the survey and the

CTRW simulation (
), survey and 
orrelated CTRW simulation (d).

Having 
on
luded that a CTRW where the waiting time and distan
e are


orrelated makes, to the extent in whi
h 
ould be validated, for the best approx-

imation of the total traveled distan
e distribution, we 
an use it to estimate the

yearly total traveled distan
e for the studied 
ountries. Several methods have

been studied on how to obtain this measurement [42℄, resulting in a wide range

of estimative. As this is an important measurement that serves as a base in

many studies on energy modeling, so 
ontributions to this 
an be very fruitful.

Figure 12 shows the resulting distributions for all 
ountries (
ity distributions


an be found on the appendix).
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Figure 12: Simulated distributions for total yearly travel distan
e using the


orrelated CTRW

Table 4 shows the estimated average distan
e per person per year in ea
h


ountry together with their area and population density, and Table 5 has the
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same information for the 
ities. For both tables, demographi
 data was obtained

using the same sour
es as Table 2.

Country Distan
e (km/
apita/year) Area (km2
) Population density GDP per 
apita (PPP)

Australia 10131 7,741,220 2.97 $48,800

Austria 2637 83,871 103.87 $47,900

Egypt 2958 1,001,450 94.53 $12,100

Kuwait 2092 17,818 158.98 $71,300

Netherlands 1519 41,543 409.62 $50,800

Saudi 3763 2,149,690 13.10 $54,100

Sweden 3930 450,295 21.94 $49,700

Table 4: Simulated average yearly travel distan
e per 
apita in kilometers using

the 
orrelated CTRW, and 
omparison with geographi
 
hara
teristi
s

City Distan
e (km/
apita/year) Area of bounding box (km2
) Population density

Bar
elona 173 23,205 118.44

Cape Town 706 82,702 55.06

Cebu 1035 1,753,169 4.02

George Town 115 545 433.69

Guadalajara 350 10,610 331.78

Jakarta 347 3,756 5,331.40

Johanesburg 434 22,435 221.23

Kuala Lumpur 553 43,731 92.30

Lagos 524 32,715 356.26

Madrid 183 41,069 105.00

Manila 313 70,915 211.61

Mexi
o 
ity 505 159,569 92.42

Mos
ow 611 15,104 884.25

Nairobi 348 59,906 82.08

Rio de Janeiro 703 132,032 83.58

São Paulo 482 85,671 215.98

St Petersburg 457 100,685 42.33

Surabaya 170 11,567 263.91

Table 5: Simulated average yearly travel distan
e per 
apita in kilometers using

the 
orrelated CTRW, and 
omparison with geographi
 
hara
teristi
s

By 
omparing our estimate with others obtained using di�erent methods

[5, 42℄, we �nd that we 
onsistently underestimate the total travel distan
e, and

this is also 
lear when looking at the results for all 
ities. This is expe
ted, sin
e

the estimate 
omes from a simulation based on data that does not 
apture the

entirety of movement for any single person. But sin
e our methods and data

are 
onsistent a
ross geographies, we have a good basis to 
ompare the estimate

a
ross them.

Looking at the total travel distan
e in relation to area and population den-

sity, we �nd that for 
ountries there is a good 
orrelation with the 
ountry area

(R2 = 0.94) and with an inverse power of the population density (R2 = 0.93),
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but no 
orrelation with GDP per 
apita (PPP) (R2 = 0.001). For 
ities, we �nd
in turn a low 
orrelation with the area of the bounding box (R2 = 0.29) and no


orrelation with the population density (R2 = 0.008). Combining these results,
we see that lower population density has a large a�e
t on total traveled distan
e,

but that e�e
t plateaus at higher densities, and be
omes very unimportant.

Noting that our one-day travel distan
e estimate for Sweden overestimates,

if 
ompared to the survey data, and the yearly travel distan
e is 
learly an

under estimate, we ask what are the e�e
ts of the 
uto� in the waiting time

distribution on this value. To analyze this e�e
t, we again performed the yearly

estimate, but this time varying the 
uto� time hourly from 1 to 24 hours and

then daily from 1 to 90 days. The resulting relation 
an be seen in Figure 13,

and there it is 
learly visible that this e�e
t is large.

We 
an also see that there seems to be two di�erent e�e
ts a
ting on this

relation. Figure 14 shows that for large waiting time 
uto�s, the 
onditional

distan
e distributions do not 
hange signi�
antly (and therefore might not be

useful), so the leading me
hanism in the de
rease of the total travel distan
e are

the longer waiting times. For shorter ones, this relationship is not so simple,

and has to be studied further.
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Figure 13: E�e
ts of the 
uto� in the waiting time and asso
iated 
onditional

distributions on the total yearly travel distan
e using the CTRW model
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Figure 14: Shape of the 
onditional distribuitions P (X |h) for given waiting

times

Finally, having 
onsidered a 
uto� of 24h pertinent for the estimation of a

yearly total traveled distan
e, we redo our simulations using this parameter,

and the results 
an be seen in Table 6.

Country Distan
e (km/
apita/year)

Australia 99259

Austria 24034

Egypt 25016

Kuwait 12365

Netherlands 16571

Saudi 31693

Sweden 30134

Table 6: Simulated average yearly travel distan
e per 
apita in kilometers using

the 
orrelated CTRW, with a 
uto� of the waiting time at 24h.

3.5 Radius of Gyration

To further analyze the results of the CTRW simulation, we 
an look at the evo-

lution of the radius of gyration in the simulation and 
ompare it with the same

measure taken dire
tly from the data. To do this, we assume that the CTRW

is anisotropi
 on the dire
tion of travel, and generate the spatial distribution of

points along the simulated time.

Figure 15 shows the results of the average radius of gyration a
ross time, for

the simulated random walk and 
al
ulated using the raw twitter data. We see

that, although they resemble ea
h other for a very short initial period of time,

they do di�er in signi�
ant ways, with the simulated radius in
reases mu
h

faster than the one taken dire
tly from the data. This again 
an be explained

by the fa
t that a CTRW exhibits a di�erent di�usion regime than what has

been observed for human motion [37℄.
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Figure 15: Average radius of gyration for Sweden, 
al
ulated using twitter data

and simulated with a CTRW

3.6 Origin-Destination Matri
es and Rose Diagrams

Sin
e visualizing the results in matrix form is very di�
ult, we will translate

the matrix to graphi
al form and overlay it on a map. Figures 16-24 shows the

resulting plots, in them, the red lines represent trips going from the 
enter of

one sub-region to another, with its opa
ity proportional to the number of trips

between them. To help visualize and understand the movement patterns, every

ODM is 
ompanied by a plot showing the twitter a
tivity density on the same

region,and a Rose Diagram showing the total number of kilometers traveled in

ea
h dire
tion. [
hange desity->density℄
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Australia, weighted angle distribution
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Austria, weighted angle distribution
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Egypt, weighted angle distribution
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Figure 16: Twitter a
tivity density (left), origin and destination matri
es rep-

resented on a map (middle); total traveled distan
e on ea
h dire
tion (right)
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Kuwait, weighted angle distribution
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Netherlands, weighted angle distribution
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Saudi, weighted angle distribution
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Figure 17: Twitter a
tivity density (left), origin and destination matri
es rep-

resented on a map (middle); total traveled distan
e on ea
h dire
tion (right)
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Sweden, weighted angle distribution
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Figure 18: Twitter a
tivity density (left), origin and destination matri
es rep-

resented on a map (middle); total traveled distan
e on ea
h dire
tion (right)

32



Barcelona, weighted angle distribution
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Cape Town, weighted angle distribution
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Cebu, weighted angle distribution

0

20

40

60

80100

120

140

160

180

200

220

240

260 280

300

320

340

0

20000

40000

60000

80000

1e+05

120000 Km

Figure 19: Twitter a
tivity density (left), origin and destination matri
es rep-

resented on a map (middle); total traveled distan
e on ea
h dire
tion (right)
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George Town, weighted angle distribution
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Guadalajara, weighted angle distribution
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Jakarta, weighted angle distribution
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Figure 20: Twitter a
tivity density (left), origin and destination matri
es rep-

resented on a map (middle); total traveled distan
e on ea
h dire
tion (right)
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Johanesburg, weighted angle distribution
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Kuala Lumpur, weighted angle distribution
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Lagos, weighted angle distribution
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Figure 21: Twitter a
tivity density (left), origin and destination matri
es rep-

resented on a map (middle); total traveled distan
e on ea
h dire
tion (right)
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Madrid, weighted angle distribution
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Manila, weighted angle distribution

0

20

40

60

80100

120

140

160

180

200

220

240

260 280

300

320

340

0

50000

1e+05

150000

2e+05 Km

Mexico city, weighted angle distribution
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Figure 22: Twitter a
tivity density (left), origin and destination matri
es rep-

resented on a map (middle); total traveled distan
e on ea
h dire
tion (right)
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Moscow, weighted angle distribution
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Nairobi, weighted angle distribution
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Rio de Janeiro, weighted angle distribution
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Figure 23: Twitter a
tivity density (left), origin and destination matri
es rep-

resented on a map (middle); total traveled distan
e on ea
h dire
tion (right)
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Sao Paulo, weighted angle distribution
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St Petersburg, weighted angle distribution
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Surabaya, weighted angle distribution
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Figure 24: Twitter a
tivity density (left), origin and destination matri
es rep-

resented on a map (middle); total traveled distan
e on ea
h dire
tion (right)

At the 
ountry level, we 
an see the in�uen
e that big 
ities have on the

overall mobility in the 
ountry, and it has a big e�e
t on the number of kilometers
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traveled in ea
h dire
tion, yet, by 
omparing both the rose diagram and the

visualization, we 
an also see a great in�uen
e of intra
ity travel on the total

kilometers. At the 
ity level, while there is an e�e
t of the geography on the

dire
tion of travel, they are less pronoun
ed. Most of the models for human

mobility dis
ussed earlier make an assumption of anisotropy for the dire
tion of

travel, but we �nd that this does not hold so well when we move to bigger and

less densely populated areas.

3.7 Communities

We use the Walktrap implementation present in the iGraph library [15℄, with

the number of steps set to 4. We run the 
ommunity dete
tion algorithm for

all our ODMs. For the sake of better visualizations, the 
ities maintained their

segmentation on a 1km2
grid, and we segmented 
ountries a

ording to admin-

istrative regions (level 2) given by the GDAM database [1℄. The results are

shown in �gures 25-28.
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Australia Austria

Egypt Netherlands

Sweden

Figure 25: Dete
ted 
ommunities in studied 
ountries. White represents no

dete
ted 
ommunity
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Figure 26: Dete
ted 
ommunities in some of the studied 
ities
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Figure 27: Dete
ted 
ommunities in some of the studied 
ities
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Figure 28: Dete
ted 
ommunities in some of the studied 
ities

For 
ountries, we �nd that 
ommunities develop largely around big 
ities.

Some ex
eptions 
an be found in Australia and Egypt, and similarly to the


on
lusions on se
tion 3.1, those are largely unpopulated but touristi
 areas,
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again showing the a�e
t of tourism in biasing the data.

For the 
ities, the results above show that the algorithm in most 
ases is

able to identify and separate 
ities from their suburbs. Also, in some of the


ities, su
h as São Paulo and Rio de Janeiro, we see that the 
ommunities are

also separated by so
io-e
onomi
 ba
kground. These results indi
ate that the

ODMs generated with our data do have a good 
onne
tion with the a
tual

movement patterns in the 
ity,

4 Con
lusions

We proposed to analyze ways in whi
h human motion 
an be analyzed using

Twitter data. The question of whether Twitter data 
an represent the travel

patterns of a population 
an be broken into two equally important questions.

The �rst question is if the population is a

urately represented by a
tive twitter

users, and se
ond is if the tweeting patterns of those users a

urately represent.

To illuminate the �rst question, we have looked at the size of our sample in

the population and found it to be between 1%-0.03% in the studied 
ountries,

and 7.4%-0.2% for the studied 
ities, and reviews ways in whi
h so
ial media

data is known to be biased. We also looked at how the tweeting a
tivity is

spatially distributed in relation to the population of ea
h 
ountry, and found

the 
orrelation ranging from very strong to not present, but in 
ountries with

poor 
orrelation we found strong in�uen
e of sparsely populated areas with

strong touristi
 attra
tion, and noting the di�eren
e between pla
e of residen
e

and a
tivity, we 
on
lude that these 
orrelations should be taken with 
aution.

On the se
ond question, we started by looking at the temporal distribution

of tweeting a
tivity and found it to be skewed towards times where people are

more so
ially a
tive, and 
aution that there might be an over representation of

so
ially important pla
es in the data. We then de�ne movement as a sequen
e

of trips and waiting periods and pro
eed to look at the density distribution

for the trip distan
es and waiting times and �nd strong similarities for these

distributions a
ross the studied areas, and agreement with the literature on

those topi
s, leading to a hypothesis that if our sample is indeed skewed, it

might be skewed in the same way a
ross all regions, and our data 
an be used

to make useful 
omparisons a
ross them.

We then feed our distributions into a Continuous Time Random Walk model

for human mobility and �nd that with some 
aveats, it 
an be used to estimate

the average total traveled time for a population, and make some 
omparisons for

those estimates a
ross the regions, �nding good des
riptors for this variable. We

also �nd that this model is very la
king when des
ribing other aspe
ts of human

mobility su
h as the radius of gyration. A possible reason for this dis
repan
y is

the validity of using a CTRW to des
ribe human motion, as it has been shown

that, if the underlying distributions are of the form of powers with negative

exponents, a CTRW 
an exhibit superdi�usive or subdi�usive behavior [40℄,

depending on the parameters of these distributions. However, it has also been

shown that human movement follows a ultraslow di�usive pro
ess [37℄, whi
h

is not predi
ted by the CTRW. The di�eren
e in the di�usive behaviors might

be due to the fa
t that human motion is itself is not random, as there is a high

probability of returning to an already visited pla
e.

Finally, we 
onstru
ted Origin-Destination Matri
es with our data and used
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visualization te
hniques to better understand their properties, we �nd that for


ountries inter
ity and intra
ity travel play equally important roles in the mo-

bility patterns of sparsely populated areas. We also use a 
ommunity dete
tion

algorithm and �nd 
ommunities that show strong spatial resemblan
e to the

way we understand human movement to behave both at the 
ountry and 
ity

level.

All of these results 
ombined show that Twitter data indeed 
ontains useful

information for the study of human mobility. Yet, 
areful assumptions and a

wise model 
hoi
e are essential if one seeks to obtain useful insights.

5 Future work

Having barely s
rat
hed the surfa
e of what 
an be done with this sour
e of

data, this thesis hopes to be a good overview and a possible starting point for

deeper studies and insights. Future work 
an 
on
entrate on better de�ning

the ways that the sample of the population studied is skewed, how this bias

varies a
ross and the regions, and most importantly, how does this a�e
t the

aspe
ts of the studied data and 
on
lusions. Attention should also be given to

the way the data is �ltered, we know that today a large part of human move-

ment o

urs a
ross 
ountry borders and between 
ities, and we are unable to


apture this movement with the 
urrent �lters; an individual based �lter 
an

be implemented to over
ome this. A better study of the shape of the under-

lying density distributions of motion 
an be made, so as to better understand

the theoreti
al me
hanisms that give rise to su
h distributions, and how do this

me
hanisms di�er from region to region. Also, studying the shape of the 
on-

ditional distribuition P (x|h), and how it 
hanges with varying h 
ould provide

an insight on the problems found with the waiting time distribution. We have

also shown that di�erent mathemati
al models of human motion 
an be fruitful

when estimating di�erent aspe
t of motion, but la
king when fo
using on oth-

ers. This was however done in an ad ho
 basis and a more general theory 
ould

be a
hieved. The validity of the ODMs 
onstru
ted using the data 
an also be

tested using established tools on the four-step model.
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6 Appendix

Figure 29: Hourly a
tivity in the studied 
ities
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Cebu, trip distance
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Figure 30: Trip distan
e and waiting time distribuition for Bar
elona, Cape

Town, Cebu and George Town
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Trip distan
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Guadalajara, trip distance
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Jakarta, trip distance
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Johanesburg, trip distance
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Kuala Lumpur, trip distance
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Kuala Lumpur, waiting time
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Figure 31: Trip distan
e and waiting time distribuition for Guadalajara,

Jakarta, Johanesburg, Kuala Lumpur
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Lagos, trip distance

Km

fr
e
q

1
e
−

0
5

1
e
−

0
4

1
e
−

0
3

1
e
−

0
2

1
e
−

0
1

0 5 11 18 25 32 39 46 53 60 67 74 81 88 95

Lagos, waiting time

Hours

fr
e
q

2
e
−

0
4

5
e
−

0
4

2
e
−

0
3

5
e
−

0
3

2
e
−

0
2

5
e
−

0
2

2
e
−

0
1

0 9 20 33 46 59 72 85 98 113 129 145 161 177 193

Madrid, trip distance
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Manila, trip distance
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Mexico city, trip distance
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Figure 32: Trip distan
e and waiting time distribuition for Lagos, Madrid,

Manila and Mexi
o City
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Rio de Janeiro, trip distance
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Sao Paulo, trip distance
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Figure 33: Trip distan
e and waiting time distribuition for Mos
ow, Nairobi,

Rio de Janeiro and São Paulo
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Trip distan
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St Petersburg, trip distance
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Surabaya, trip distance
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Figure 34: Trip distan
e and waiting time distribuition for St Petersburg and

Surabaya
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Barcelona, individual total travel
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Cape Town, individual total travel
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Cebu, individual total travel
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George Town, individual total travel
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Guadalajara, individual total travel
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Jakarta, individual total travel
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Johanesburg, individual total travel
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Kuala Lumpur, individual total travel
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Lagos, individual total travel
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Madrid, individual total travel
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Manila, individual total travel
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Mexico city, individual total travel
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Moscow, individual total travel
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Nairobi, individual total travel
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Rio de Janeiro, individual total travel
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Sao Paulo, individual total travel
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St Petersburg, individual total travel
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Surabaya, individual total travel
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Figure 35: Total traveled distan
e for individuals in the studied 
ities, during

the data 
ole
tion period
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Figure 36: Simulated distributions for yearly total travel distan
e using the


orrelated CTRW
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Figure 37: Simulated distributions for yearly total travel distan
e using the


orrelated CTRW
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