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Abstract
Demands for transportation are growing at a fast pace in countries that are ex-
periencing rapid economic growth and urbanisation, such as China, India, Brazil,
and Africa. Understanding the spatial and temporal distribution of people and the
activities they participate is essential for urban planning, travel demand forecast-
ing, and infrastructure investment. This thesis explores ways in which Twitter data
can be useful to understand some important aspects of human mobility, including
total travel distance, patterns of mobility and communities. Raw Twitter data was
processed to extract relevant information on space and time dimensions and we
compare the results across all studied geographies. This information is also fed into
a Continuous Time Random Walk (CTRW) model to estimate the average annual
distance travelled by people on the same geographies, and we use travel survey data
to validate our results. Origin-Destination Matrices (ODM) are generated and the
patterns of mobility are visualised on a map and with Rose Diagrams. Finally we
use a community detection algorithm to better understand its dynamics of these
networks. The validity of our estimates may critically depend on the mathematical
models we selected and careful interpretations of the results. Important future work
can include continued refinements of our mathematical models to accurately repre-
sent total travel distance, identify biases, and further understand how demographics
and characteristics of urban infrastructure affect travel demands and mobility pat-
terns.
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1 Bakground

1.1 New soures of big data for mobility studies

Traditionally, mobility studies depend on data from surveys or observational

studies. While suh data ontains rih and detailed information, it is very

expensive to ollet and proess and restrited to sope and sale. As urban big

data suh as soial media data and mobile phone reords beomes inreasingly

available, the analytial tools we use to design the ity and the ommuniation

tools we use to engage people are hugely hanging the way we understand ities.

There is not an authoritative big data soure used to study human mobility

patterns, but several di�erent soures have been used for this purpose, eah with

its aveats and advantages. The most widely used soures are those derived from

mobile devies, whether from the all logs themselves [13, 22, 20, 38, 37, 39℄,

traking apps [23, 37, 39℄, or soial media usage [17, 25, 26, 19, 24℄. The soures,

however, are not limited to mobile devies, a few examples are studies were also

performed using data from banknote irulation [10℄, tra� data from indution

loops.[11℄, or geo-tagged photography [30℄.

1.1.1 Mobile phone data

Every time a user makes a all or sends an SMS, their devie onnets to a

ellular transmission tower. Those onnetions are logged and the anonymised

information an be used to infer the position of the user around that tower at

that partiular time, and the olletion of suh data points an be used to infer

movement.

The advantages of this type of data are: Big sample of the population,

mobile phones are ubiquitous in most soieties at this time, and their use by a

representative part of the populations an be assumed for most developed and

developing nations. Good frequeny of data point, with people mostly relying

solely on mobile phones for their ommuniation needs, the frequeny on whih

the data is olleted is on average very high [38℄. Data globally available, ell

phone tehnology has been adopted in most regions of the world and an serve

as a good benhmark to ompare results aross borders.

There are, however, some disadvantages to this type of data are: Poor spatial

resolution, using this method, a user an only be assigned to a viinity of a ell

tower, that area is on average 3km2
in the US [38℄ but an vary a lot depending

on fator suh as urbanization and terrain. Di�ult to obtain and expensive.

Surge in use of messaging apps mean SMS and mobile alls are not as prevalent

as before.

1.1.2 Soial media data

When a user hooses to share something on a soial media network, they may

also hoose to share their loation. While in some networks the loation is an

integral part of the produt (Foursquare), in most others it is a optional feature

used by a fration of the users.

There are many advantages of using soial media data: Preise loation,

when a user hooses to share their loation, it is done using information from

the GPS hip on their devie, this tehnology has an average preision of 10m

[7, 24℄. Data openly available, some soial media platform operate on a business

2



model foused on providing users free aess to the data their onnetions in

the network make publi. User an also opt to share information with the

entire network, and thus this data will be available to anyone with aess to

the network. Easily obtainable, some networks provide APIs to failitate data

gathering.

But in turn many disadvantages follow: Low sample of the population, soial

media use is growing, but still penetration rates vary aross networks and pop-

ulations. Skewed sample, soial media use and penetration is not homogeneous

aross all segments of the population, and measuring the ways in whih this

varies is still di�ult [34℄. Low data point frequeny, soial media use is sparse

in time, with frequeny being measured often in days.

1.1.3 Continuous GPS traking

Controlled studies an be done where volunteers reord their oordinates in set

interval of times, using the GPS hip on their phones. Examples of suh studies

are the Copenhagen Network Study[39℄ and the Nokia Mobile Data Challange

[2℄.

Advantages of this methodology: High data frequeny, sine it an be on-

trolled to �t the experiments needs. Preise loation, by using GPS signals.

Controlled population sample, when the study is being designed, the sample

an be ontrolled for di�erent variables.

Disadvantages inlude: Extremely laborious to set up the experiment and

reruit volunteers. Small sample size means that some patterns may not show

up in the data. Usually very limited geographially. Data is available as a

one-o� basis and annot be updated without reonstruting the experiment.

1.2 Use of Twitter data in the literature

1.2.1 An overview of Twitter data

A data point in Twitter data is alled a tweet. A tweet is a soial media message

and its most basi informations are a unique username and a text that is no

more than 140 haraters long. This data by itself is not remarkably useful in

our study, but a tweet may also ontain one or more of the following information:

User information, inluding a unique number, user name, piture, friends and

followers ount, geographi loation, and language; tweet unique number ID;

time and timezone in whih the tweet was generated; soure appliation used to

generate the tweet; geographi information of where the tweet was generated,

inluding ountry, ity and GPS oordinates; tweet hashtags, user mentions,

and �in reply to� information; tweet favorite and share ounts. Most of this

information is shared by users on an opt-in basis. Spei�ally to our interests,

in order to get the preise geoloation of a user, it has to willingly attah the

oordinates to a publi tweet.

There are many ways in whih Twitter data an be olleted, but the most

widely used are its two free APIs. The REST API allows us to searh twitter

massive dataset of arhived tweets, with data going bak to 2009. There are,

however, many ways in whih this aess is limited. They an all be found in the

API doumentation, and the most restraining one is a rate limit of 180 tweets

on a 15 minutes window per API user. The Streaming API delivers tweets in
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real time, as they are generated, and is therefore more limited on the sope of

data whih an be olleted. Its big advantage is the rate on whih data an be

olleted: it is limited at 1% of the absolute number of tweets being generated

at any given time, whih is a muh bigger rate than the REST API. Aside from

the free alternatives, there are paid ones whih do away with this limitations.

Gnip is a Twitter subsidiary whih sells, among other things, historial tweets

in bulk, and provides aess to the Firehose API, whih is similar in sope to

the Streaming API, but has no rate limit.

1.2.2 Sparsity of Twitter data

An important information is how big the data sample is among the population.

Twitter penetration in a ountry, that is, the share of the population atively

using the platform, an be anywhere from 1% to less than 0.001% of the total

population [26℄. Not all tweets ontain geoloation information. Among the

tweets, the number of those ontaining geoloation data has been found to be

around 3% [27℄. Combining this two piees of information with the fat that

the average user tweets 0.023 times a day [26℄, we an start to have a sense of

how sparse the data is.

1.2.3 Soures of bias in Twitter data

We need to aution about the demographi bias present on the data. Twitter

users have been found to be skewed towards young (18-29), highly eduated

(ollege degree), high inome ($75,000+) and urban population [18℄. It is widely

aepted that travel distanes are orrelated with inome level [36, 35℄, and

urban travel patterns are of di�erent nature than rural ones [32℄. So we expet

these bias to in�uene our results to a degree. Due to the nature in whih the

data is generated, we also speulate that Twitter users are also biased towards

people with extroversion a ommitted to publiness, as opposed to very private

people, and they have shown to be more mobile than average [14℄. And sine

the data points onsists of individual tweets, and not users, we expet the �nal

data to be even more heavily skewed towards these two.

Finally, sine tweets are a user generated ativity of soial nature, we would

expet to have more data points on areas of larger soial interest, suh as restau-

rants, touristi areas, et. [33℄.

This bias ould make it very hard to generalize e�etively our results. The

e�ets of soial media bias on big data analysis have been widely studied [34, 16℄

on areas suh as politial pooling general sampling, yet most of the tehniques

proposed to overome those are beyond our immediate reah. On the positive

side, some studies found that Twitter data an reliably be used as a soure of

data for mobility studies [25, 24℄.

1.3 Goals and objetives

In this thesis, we fous on soial media data, aquired from the platform Twitter.

Soial media data is beoming inreasingly relevant and prevalent, and the fat

that it an be olleted ontinuously and reliably makes it an ideal hoie for a

foundation on whih to build models in hope that they an beome useful tools of

predition and understanding in the future. We hope that with rigorous analysis
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and the use of areful assumptions, we an mitigate some of the disadvantages

of this data soure presented earlier.

2 Methods

2.1 Dataset used in this researh

2.1.1 Desription of the dataset

Our main dataset was purhased from Gnip, a Twitter subsidiary, and ontains

over 50 million tweets, gathered in a period of 6 months from 25 di�erent loali-

ties around the world. The loations were seleted to, given time and budgetary

onstrains, span most of the globe and try to isolate some variables suh as in-

ome, population density, infrastruture, et. This means that one we seleted

a ountry, we always tried to selet another one with similar level of eonomi

development and population, but loated in a di�erent area of the world. Also,

we tried to have at least 2 ities from eah ountry so that internal di�erenes

within a ountry an be notied.

The data onstitutes of geo-tagged tweets generated within the geography

delimited by a bounding box. A bounding box is haraterized by two oordi-

nates, and represented by four numbers. The �rst two numbers are the longitude

and latitude of the southwest orner of the box, and the last two are the same

oordinates for the northeast orner.

Table 1 shows the bounding boxes used to �lter the aquired data. The

time period being onsidered is from Friday, 20 June 2016, 0:00, to Sunday, 20

Deember 2015. 0:00.
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Country City SW lon SW lat NE lon NE lat

Kuwait entire ountry 46.553 28.5244 48.5184 30.1037

Sweden entire ountry 10.58 55.01 24.18 69.06

Netherlands entire ountry 3.3316 50.7504 7.2275 53.6316

Egypt entire ountry 24.7 22 37.06 31.81

Saudi Arabia entire ountry 34.53 16 55.67 32.15

Australia entire ountry 111 -44.6 159.3 -9.2

Austria entire ountry 9.5308 46.3723 17.1607 49.0206

Brazil

São Paulo -46.965179 -23.795398 -46.365084 -23.333429

Rio de Janeiro -43.640704 -23.055589 -42.912598 -22.652037

Spain

Madrid -3.896027 40.272191 -3.524912 40.563845

Barelona 2.037964 41.291222 2.254944 41.471544

Indonesia

Jakarta 106.598969 -6.432671 107.082367 -6.014922

Surabaya 112.606922 -7.370639 112.872162 -7.19435

Malaysia

Kuala Lumpur 101.570663 2.98967 101.791763 3.296139

George town 100.29479 5.371296 100.345981 5.443244

Philippines

Manila metropolitan 120.906211 14.348096 121.135076 14.787496

Cebu 123.2995 9.4115 124.5696 11.5238

South Afria

Cape town 18.3074 -34.3598 19.0047 -33.4713

Johannesburg 27.828369 -26.342653 28.288422 -26.018532

Mexio

Mexio ity -99.364924 19.048237 -98.940303 19.592757

Guadalajara -103.459625 20.56851 -103.203506 20.743846

Russia

Mosow 37.3193 55.4899 37.9457 56.0097

St Petersburg 30.090332 59.745216 30.559783 60.089675

Nigeria Lagos 3.098273 6.393351 3.696728 6.702798

Kenya Nairobi 36.645419 -1.444863 37.049375 -1.164744

Table 1: Bounding boxes used as �lters in the data olletion

2.1.2 Filtering and leaning the data

The raw dataset has to be leaned, as it ontains many data points that are

not relevant to our study. First we keep only tweets that ontain a preise

loation, represented by a set of oordinates. As a seond measure, we are

interested in removing tweets that are generated algorithmially by bots or are

ommerial tweets that do not represent the ativities of an individual. Most of

these tweets ome from soures suh as the API for bots or ommerial platform

for ommerial tweets, so to ahieve this, we �lter only tweets whose soures are

in one of the following four: Android app, iPhone app, Instagram or Foursquare.

2.1.3 Some artifats of this dataset

The main way in whih this dataset is �ltered is geographially, through bound-

ing boxes. While this makes perfet sense to analyze movement patters inside

those boxes, movement that takes plae outside or aross its boundaries will

not be aptured, resulting in some artifats on the analysis to ome. These will

be disussed as they appear on the di�erent analysis. This ould be avoided if

needed with an user-entri �lter, where we �lter tweets by user instead of by

geography. This would alter the nature of the data and its representativeness
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in a non trivial way, and user-entri �lters in the Twitter API are muh more

limiting.

2.1.4 Summary of the data

Table 2 and 3 present a summary of the data olleted. The population of the

geographies, when entire ountry is the subjet of the study, is obtained from

the CIA World Fatbook 2017, or alulated using the bounding boxes and the

'Gridded Population of the World (GPW), v4' [12℄, when onsidering ities.

Geo Tweets Repeated Geo Tweets

Country Population Users Tweets Users Tweets Tot dist (km)

Australia 22,992,654 69,042 819,112 41,796 791,866 76,745,478

Austria 8,711,770 21,049 116,553 11,399 106,903 2,319,127

Egypt 94,666,993 28,790 281,145 15,525 267,880 6,786,621

Kuwait 2,832,776 28,859 1,224,696 22,889 1,218,726 12,099,922

Netherlands 17,016,967 64,728 494,128 36,073 465,473 7,264,873

Saudi 28,160,273 50,012 599,821 27,601 577,410 17,141,274

Sweden 9,880,604 25,390 273,100 14,883 262,593 9,655,083

Barelona 2,748,458 50,914 298,402 28,238 275,726 520,810

Cape Town 4,553,581 13,003 136,420 7,797 131,214 764,237

Cebu 7,047,559 20,355 245,788 13,667 239,100 2,057,550

George Town 236,506 17,557 95,913 10,584 88,940 114,516

Guadalajara 3,520,172 17,350 186,292 10,013 178,955 526,926

Jakarta 20,026,430 149,389 1,242,263 92,991 1,185,865 5,854,328

Johanesburg 4,963,247 19,479 200,355 11,549 192,425 778,125

Kuala Lumpur 4,036,423 110,334 2,205,048 81,874 2,176,588 10,509,918

Lagos 11,655,049 15,180 176,961 9,309 171,090 654,158

Madrid 4,312,307 71,216 425,648 39,714 394,146 1,150,335

Manila 15,006,509 117,444 1,687,768 80,474 1,650,798 5,548,256

Mexio ity 14,747,465 94,827 1,432,372 60,876 1,398,421 6,303,389

Mosow 13,355,581 29,805 432,992 19,782 422,969 2,206,877

Nairobi 4,916,844 9,419 114,978 5,405 110,964 277,205

Rio de Janeiro 11,035,393 101,156 1,783,728 64,866 1,747,438 8,108,751

Sao Paulo 18,503,520 94,897 1,371,964 60,470 1,337,537 5,493,168

St Petersburg 4,261,511 13,648 178,470 9,165 173,987 604,965

Surabaya 3,052,569 26,494 164,413 14,602 152,521 407,333

Table 2: Data summary of total population, geo tweets and its users
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Country Geo users/100k Tweets/Geo user % of Tweets

rep users

Avg distane/

repeated user

Australia 300 11.86 96.7% 1,836

Austria 242 5.54 91.7% 203

Egypt 30 9.77 95.3% 437

Kuwait 1,019 42.44 99.5% 529

Netherlands 380 7.63 94.2% 201

Saudi 178 11.99 96.3% 621

Sweden 257 10.76 96.2% 649

Barelona 1,852 5.86 92.4% 18

Cape Town 286 10.49 96.2% 98

Cebu 289 12.08 97.3% 151

George Town 7,423 5.46 92.7% 11

Guadalajara 493 10.74 96.1% 53

Jakarta 746 8.32 95.5% 63

Johanesburg 392 10.29 96.0% 67

Kuala Lumpur 2,733 19.99 98.7% 128

Lagos 130 11.66 96.7% 70

Madrid 1,651 5.98 92.6% 29

Manila 783 14.37 97.8% 69

Mexio ity 643 15.11 97.6% 104

Mosow 223 14.53 97.7% 112

Nairobi 192 12.21 96.5% 51

Rio de Janeiro 917 17.63 98.0% 125

Sao Paulo 513 14.46 97.5% 91

St Petersburg 320 13.08 97.5% 66

Surabaya 868 6.21 92.8% 28

Table 3: Statistis of geo tweeting penetration

There is a great variability in the penetration and use of geotagged tweets

among the areas studied, with Malaysian ities oming in front and Afrian

regions behind. We also see that representation is bigger when looking at ities

in respet to whole ountries, further strengthening the hypothesis of urban

bias.

2.1.5 Travel survey data for Sweden for validation

We have aess to data from the Swedish National Travel survey (RVU Sweden)

[3℄ for the years of 2011-2014. This dataset onsists of a total of 31.457 travel

diaries spanning the period of a day, with information on trip distane, times,

mode of transportation, trip purpose, and others.

Any data from a survey is subjet to self reporting bias, were there is a

seletive reporting or suppression of information by the respondents due to a

number of fators, onsious and unonsious.
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2.2 Spatial density

Spatial distribution is an important feature of the data set. Sine we are study-

ing the movement of people aross spae, we want �rst that our data distribution

aross this dimension resembles to a high degree the distribution of the atual

population, as studies have shown that di�erent ities have di�erent mobility

patterns [29, 21, 4℄, and they an even di�er inside regions of the same ity.

To understand the ways in whih our sample is skewed, a �rst analysis ould

be to ompare the spatial density of tweets with the spatial population density

and see how muh they orrelate. If the sample is not skewed in any way, we

would expet to see a high degree of orrelation, yet, we ould not a�rm the

opposite, that is, a high orrelation would not immediately imply that the data

is not skewed.

For the population density data, we use the GPWv4 dataset [12℄. This

dataset is ompiled by NASA using a olletion of di�erent ensus and other

population soures, and provides population ounts for the entire world in a

1km2
grid. We also used the GDAM database of administrative areas [1℄ as a

way to separate the ountry into useful regions. For eah of these administrative

areas, we use our dataset to alulate the density of tweets inside them, to om-

pare with the population density. Noting that sine the ensus data measures

where people reside, whereas our twitter data tells us where people are ative,

we would not expet a perfet orrelation to arise.

2.3 Temporal patterns

We know that humans have habits, making temporal ativity and spatial ativity

orrelated to a high degree. For example, ativity during working hours is

di�erent in nature that those in leisure time, and those our at regular times

in a day, or in di�erent days in a week.

Another dimension that an be explored when analyzing the representative-

ness of Twitter data is the distribution of ativity on the di�erent hour of the

day. If we are to say that the Twitter data represents well human ativity aross

spae, we would here like to see the temporal distribution of Twitter ativity

represent to a high degree human ativity along the day.

2.4 Trip distane distribution

One of the most studied aspets of human mobility is the density distribution

of trip lengths. These are used as a way to understand and desribe how mobile

a population or subset of a population is, and is essential part in any model of

human mobility in general. Studies have shown that the density distribution

for the step lengths follows a heavy tailed distribution [17, 10℄, whih an be

explained by the fat that human ativity in general does not follow a Pois-

son proess, and instead ome in bursts of ativity followed by long periods of

inativity [8℄.

When using Twitter data, we will look at the relation between two onseu-

tive points for a same user, and look at the distane between those points. Here

we de�ne the trip distane as the geographial distane between two points. To

alulate eah trip distane, we �rst have to onvert the di�erene in oordinates
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to a di�erene in kilometers. Here we use the Pythagorean distane between

both points, whih assumes the earth is loally �at at the mean of both points.

ykm = (lat1 − lat2)
40.008

360
(1)

xkm = (lon1 − lon2)
40.075

360
cos

(
lat1 + lat2

2

)
(2)

d =
√
y2km + x2

km (3)

where the numbers 40.008 and 40.075 orrespond to the irumferene of the

earth, in kilometers, along the poles and the equator respetively.

This is a fair approximation for small distanes, where the urvature of earth

plays a small role. One alternative would be to use the Harvesine distane, whih

does take into aount this urvature, but using this distane we would lose the

ability to make an assertive de�nition of the diretion of travel, whih will be

important when we analyze that dimension of mobility.

One onsequene of our de�nitions is that the trip distane will always give

a lower bound for the atual travel distane, sine disloation is rarely done in

straight line.

2.5 Waiting time distribution

Waiting time is the time a person spends not moving, i.e. not in a trip, as de�ned

earlier. It is a omplementary information to the distane distribution in many

models of human mobility, and is essential when we add a time dimension to

suh models.

For our Twitter data, we de�ne waiting time as the di�erene in time between

two points from the same person that are distint in spae, implying that some

disloation has ourred. A onsequene of this de�nition it that it is a upper

bound for the atual time, as it does not take into aount the travel time and

other possible trips that might have ourred between the two measurements.

Another minor onsequene of this de�nition is that it implies that disloations

our instantly, and thus we loose the apability to make any study related to

the veloity of travel.

2.6 Continuous Time Random Walk (CTRW)

A Random Walk is a stohasti proess that desribes a suession of steps that

are random in nature, and they an be random in diretion, length, or both. It

is a widely used model in many areas of physis and omplex systems analysis.

A Continuous Time Random Walk (CTRW) is a ontinuation of this model

where a time dimension is added, and the di�erene in time between steps is

also itself a random proess.

It has been shown that human motion resembles a CTRW [17, 10℄, where

both the step length and time between steps follow an underlying heavy tailed

density distribution.

The total distane of a path X (t) at time t in a CTRW an be formulated

as

10



X (t) =

N(t)∑

i=1

∆Xi (4)

where ∆Xi are the i individual step distanes and N (t) is the number of

steps taken until time t. The di�erene between this measure form a normal

random walk is that N is also a funtion of time. A distribution for N (t) an
be generated by a transformation of the waiting time distribution, but sine we

will deal with non analytial distributions in this study, we will simply sample

from the waiting time distribution until the total sampled time exeeds t.
As disussed in the previous setions, we an then simulate the total dis-

tane traveled by a population in a given period of time using this model and

the underlying trip distane and waiting time distributions of a population. It

is here useful to remember that step length (trip distane) distribution obtained

using Twitter data provides only a lower bound for the atual step length dis-

tribution, and the waiting time distribution provides an upper bound to the

real distribution. This means we annot assume that the �nal simulated total

distane will be an upper or a lower bound to the atual total traveled distane.

2.7 Radius of Gyration

When studying human mobility, the radius of gyration is often used as a proxy

for the size of the area where a person has been ative, sine it is a good

representation of how far points are distributed around a enter. It is a onept

borrowed from physis, and is de�ned as the root mean square distane of all

the points relative to their enter of mass on a given axis. Sine we are studying

a two dimensional distribution of points the axis is trivially de�ned and we are

left with the following formula for the radius of gyration, Rg:

R2
g =

1

N

N∑

k=1

(rk − r̄)2 (5)

where rk are the k individual oordinates, and r̄ the enter of mass.

2.8 Origin-Destination Matries (ODMs)

The most widely used transportation foreast model is alled the Four Step

Model, with the four steps being trip generation, trip distribution, mode hoie,

and route assignment. Eah of the steps are done separately and have their own

body of researh.

Origin-Destination matries (ODMs) are an essential tool in the traditional

four step transportation foreasting model, and they are used as a proxy on trip

distribution over a geographial area, and essentially represent the volume of

travel between any two subregions of a study area. In the four step model is

used for assigning transportation modes and routes between those subregions.

To onstrut an ODM, the area must be �rst partitioned into a set of sub-

regions. This an be done in ways to aommodate the data available [25℄, to

orrespond to areas of interest in the seleted geography [11℄. A ODM is a

matrix de�ned as

A = [aij ] i, j = 1, . . . , n (6)
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were the elements aij orrespond to the number of trips originating in region

i and terminating in region j.
Many methods have been developed for onstruting ODM matries, one

exemple is the Gravity Model, where ertain areas, suh as ommerial or in-

dustrial areas, are assumed to attrat the population in a way that an be

modeled similarly to gravity. ODMs an also be estimated using data from in-

dutive tra� loops [11℄, if one assumes users always take the shortest path to

where they need to be, an assumption that is not trivial.

Reently, many studies have foused in using ell phone all reord as a way

to onstrut these matries [9, 6, 28℄, with good suess. Less attention has

been paid in using soial media data for the same purpose, but one study has

shown that both produe similar results [25℄.

If we de�ne trips in the ODM ontext to be the same as the trips we de�ned

for our data on the setions above, it beomes possible to generate ODMs using

our Twitter data. We divide our geographi areas using a square grid, with a

10km resolution when generating it for ountries, and a 1km resolution for the

individual ities, and proeed to ount the trips between those regions to form

the matrix.

2.9 Communities in networks

In network theory, a ommunity is loosely de�ned as a olletion of nodes with

many edged between them, and with few edges between di�erent ommunities.

They are a good way to study and visualize the topology of a network.

There are many methods used to �nd suh ommunities in networks, and

they mostly di�er on interpretations on what are de�ning features of a ommu-

nity [41℄. To analyze the presene or not of ommunities in our ODMs, we will

use a method alled Walktrap [31℄. The essential assumption of this method is

that random walkers on the network tend to be "trapped" inside the ommuni-

ties, that is, if you start a random walk inside a ommunity, you are more likely

to end up inside the same ommunity than outside of it. This assumption seems

very �tting given the nature of what we are studying.

A random walk on the network is performed as follows: at the start node,

hoose a vertex to walk along, with given probabilities, and repeat this for a

given number of steps. This aommodates two features of our network that

are important, the �rst one being the number of trips between the nodes, that

an be used when alulating the probabilities of hoosing among the verties;

and the seond is the fat that our network is direted, that is the the vertex

from node i to j is di�erent to the one going the opposite diretion.

The number of steps taken in the walk is a parameter of the algorithm and

it is usually in the range of 3 to 5. After many random walks are performed in

the network, the expeted number of steps between any two nodes is alulated

based on the results and a lustering is performed to �nd the ommunities.
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3 Results

3.1 Population vs Twitter ativity

Figure 1 and 2 show the orrelation plot for the number of tweets vs the popu-

lation on the administrative regions of eah ountry studied (left), as well as the

residuals of the orrelation represented on a map of those administrative regions

(right). We see that in some ountries, suh as Austria, The Netherlands and

Sweden, the orrelation is very high, with R2
ranging from 0.62 to 0.95, whih

are strong results giving the aveats disussed in setion 2.2.

Some ountries, however, have a very poor orrelation of these two variables,

Australia and Egypt perform very poorly in this analysis. Both ountries have

in ommon the fat that most of their population is onentrated in a small

portion of its area (along the oean for Australia, and the Nile for Egypt), and

that the less populated areas have big touristi attrativeness, whih has been

shown to generate large soial media ativity [30℄. This an help to explain the

very loose orrelation that was obtained.
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Figure 1: Population and tweeting ativity orrelation (left), and the geograph-

ial representation of the residuals (right)
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Figure 2: Population and tweeting ativity orrelation (left), and the geograph-

ial representation of the residuals (right)

3.2 Temporal patterns

Figures 3 shows the tweeting ativity along the day for all studied ountries

(plots for all ities an be found in the appendix). We �nd that users are more

ative on the working hours of the day, where they are least likely to be home,

further strengthening our hypothesis made earlier when omparing our data

distribution with the ensus data.

15



Figure 3: Hourly ativity in the studied ountries

3.3 Trip Distane and Waiting Time distributions

Figures 4-6 show the distribution of both variables for all the studied ountries

and seleted ities (plots for all ities an be found in the appendix). They

are represented in a mono-log sale for better visualization of the distribution

tail. A red line in the distane distributions shows the maximum distane that

an possibly be traveled given the onstrains in the bounding box, so the edge

e�ets an more learly be seen.

When looking at the ountries, we note that the distribution of trip distane

indeed follow a heavy tailed pattern, yet there are spikes at di�erent points

for di�erent ountries. Noting that those spikes are more prominent in more

sparsely populated ountries, they our at larger distanes, and are nearly

absent in the same distributions for the ities, we speulate that they are due

to the arrangement of ities inside the ountry, with the spikes being the result

of interity travel.
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Figure 4: Trip distane and waiting time distribuition for Australia, Austria,

Egypt and Kuwait
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Trip distane distribuition Waiting time distribuition
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Figure 5: Trip distane and waiting time distribuition for the Netherlands, Saudi

Arabia and Sweden
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Trip distane distribuition Waiting time distribuition
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Lagos, trip distance
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Rio de Janeiro, trip distance
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Figure 6: Trip distane and waiting time distribuition for seleted ities, red

line represents the maximum possible distane inside the bounding box
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For the waiting time distributions, we �nd that they are relatively very

similar along all the di�erent geographies, with small di�erenes explained by

di�erenes in the temporal pattens shown in the setion above. A striking

feature, however, is the spikes around every 24h mark, and we speulate that

this is an e�et of both olletive behavior, with Twitter ativity being more

onentrated at ertain areas of the day, with individual habits, with users

tweeting at the same plae and time daily.

We proeed to study the the relationship between waiting time and trip dis-

tane, and the results are shown in Figure 7. We note that there is a ontinuous

inrease in distane at every 24 hour mark. We hypothesize that those jumps

ome from two interating underlying phenomena, one where the distane in-

reases onstantly with the inreasing waiting time derived from the di�usive

nature of human mobility, and another where the distane dereases to zero at

every 24h mark, as hypothesized before and derived form the fat that humans

have established habits. The superposition of the two resulting distributions

would be similar to the one observed in the data. This interpretation would ex-

plain also the peaks we see on the waiting time distribution at the same marks,

as the e�ets of habit.

Figure 7: Relationship between waiting time and trip distane for Sweden and

Netherlands

For validation, we ompare the distributions with the 1-day travel survey

for Sweden. First we need to onsider the di�erent sopes of the datasets and

aount for it; and for this we �lter our Twitter data to onsider only trips

beginning and ending on the same day, and only trip that are longer than

on kilometer (minimum distane in the survey). Figure 8 shows the resulting

omparison. We an see that while the distane distributions agree to a ertain

degree, the waiting time distributions do not. Part of this di�erene is due

to the di�erent nature of both datasets: the distanes alulated using our

data are mostly bounded by the distanes on the travel survey, on�rming our

observation made in setion 2.4. We also speulate that due to reporting bias,

people will tend to under report small distanes and short times, in favor of big

larger ones, due to the di�erent ognitive load.
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Figure 8: Comparions of trip distane and waiting time between the Twitter

and survey datasets

3.4 Total travel distane

We de�ne the total distane traveled simply as the sum of all individual trip

distanes performed by a single individual (eq 4). Figures 9 and 10 show the

distribution of individual traveled distanes for some studied geographies along

the study period. We again notie that these distributions resemble eah other

and are fat tailed, but we an see that the size of the tail is heavily in�uened

by the size of the ountry or ity in question. This an be due to the fat

that our data is �ltered geographially, and we are unable to apture movement

that takes plae aross geographial boundaries, and not that the people in

those ountries have di�erent travel patterns. However, it has been shown that

the individual mobility is related to inome, so we would expet some variations

among ountries. Also, as a onsequene to this, we would expet that ountries

with a high degree of inome inequality to have a distribution that is inreasingly

bimodal, and this ould explain the peaks in total travel for both Saudi Arabia

and Egypt on the plots.
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Australia, individual total travel
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Austria, individual total travel
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Egypt, individual total travel
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Kuwait, individual total travel
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Netherlands, individual total travel
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Saudi, individual total travel
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Sweden, individual total travel
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Figure 9: Total observed trip distane for individuals in the studied ountries,

during the data olletion period
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Barcelona, individual total travel
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Jakarta, individual total travel
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Lagos, individual total travel
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Mexico city, individual total travel
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Moscow, individual total travel
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Rio de Janeiro, individual total travel
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Figure 10: Total observed trip distane for individuals in seleted ities, during

the data olletion period

We again ompare the Twitter analysis with our survey data for Sweden

using the same �ltering proess as previously desribed. Figure 11a shows this

omparison. There are some disrepanies between both distributions, with the

Twitter distribution being more heavy on the lower distanes. One possible

reason for this is that twitter samples trips non-uniformly among individuals,

i.e. some individuals have more data points than others, whereas the survey

is theoretially uniform aross the sample. To aount for this, we an try to

normalize the traveled distane on the twitter dataset by the number of data

points, using the following transformation

S∗i = Si
n̄

ni
(7)

where Si is the individual traveled distane for user i, ni is the number of

data points for the same user, and n̄ is the average number of data points. Figure

11b show the resulting distribution again ompared to the survey distribution.

They ompare somewhat more favorably, but still diverge.

We then use a CTRW to estimate the total travel distane of a popula-

tion. To do so, we use as the underlying distributions for the random proesses

P (X) for the step length and P (h) for waiting time obtained diretly from the

proessed Twitter data. Figure 11 shows the resulting traveled distane dis-

tribution (for 10000 simulated individuals) ompared also with the distribution

resulting from the survey, the two distributions di�er signi�antly. One of the

reasons for suh disrepanies is that the formulation of a CTRW assumes that

the step length and waiting time are independent of eah other, and as shown

in setion 3.3, this is not aurate.

To overome this, we an redo the same simulations, but instead of sampling

the step length from distributions P (X), we an sample it from the onditional
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distribution P (X |h) where h is the waiting time before that step. This results

in a distribution for the daily traveled distane that most losely resembles the

one given by the survey data, yet it still overestimates it. Results an also be

seen in Figure 11d.

(a) (b)

() (d)

Figure 11: Comparison of total daily traveled distanes between both datasets

(a), between the survey and normalized twitter distane (b), the survey and the

CTRW simulation (), survey and orrelated CTRW simulation (d).

Having onluded that a CTRW where the waiting time and distane are

orrelated makes, to the extent in whih ould be validated, for the best approx-

imation of the total traveled distane distribution, we an use it to estimate the

yearly total traveled distane for the studied ountries. Several methods have

been studied on how to obtain this measurement [42℄, resulting in a wide range

of estimative. As this is an important measurement that serves as a base in

many studies on energy modeling, so ontributions to this an be very fruitful.

Figure 12 shows the resulting distributions for all ountries (ity distributions

an be found on the appendix).
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Figure 12: Simulated distributions for total yearly travel distane using the

orrelated CTRW

Table 4 shows the estimated average distane per person per year in eah

ountry together with their area and population density, and Table 5 has the
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same information for the ities. For both tables, demographi data was obtained

using the same soures as Table 2.

Country Distane (km/apita/year) Area (km2
) Population density GDP per apita (PPP)

Australia 10131 7,741,220 2.97 $48,800

Austria 2637 83,871 103.87 $47,900

Egypt 2958 1,001,450 94.53 $12,100

Kuwait 2092 17,818 158.98 $71,300

Netherlands 1519 41,543 409.62 $50,800

Saudi 3763 2,149,690 13.10 $54,100

Sweden 3930 450,295 21.94 $49,700

Table 4: Simulated average yearly travel distane per apita in kilometers using

the orrelated CTRW, and omparison with geographi harateristis

City Distane (km/apita/year) Area of bounding box (km2
) Population density

Barelona 173 23,205 118.44

Cape Town 706 82,702 55.06

Cebu 1035 1,753,169 4.02

George Town 115 545 433.69

Guadalajara 350 10,610 331.78

Jakarta 347 3,756 5,331.40

Johanesburg 434 22,435 221.23

Kuala Lumpur 553 43,731 92.30

Lagos 524 32,715 356.26

Madrid 183 41,069 105.00

Manila 313 70,915 211.61

Mexio ity 505 159,569 92.42

Mosow 611 15,104 884.25

Nairobi 348 59,906 82.08

Rio de Janeiro 703 132,032 83.58

São Paulo 482 85,671 215.98

St Petersburg 457 100,685 42.33

Surabaya 170 11,567 263.91

Table 5: Simulated average yearly travel distane per apita in kilometers using

the orrelated CTRW, and omparison with geographi harateristis

By omparing our estimate with others obtained using di�erent methods

[5, 42℄, we �nd that we onsistently underestimate the total travel distane, and

this is also lear when looking at the results for all ities. This is expeted, sine

the estimate omes from a simulation based on data that does not apture the

entirety of movement for any single person. But sine our methods and data

are onsistent aross geographies, we have a good basis to ompare the estimate

aross them.

Looking at the total travel distane in relation to area and population den-

sity, we �nd that for ountries there is a good orrelation with the ountry area

(R2 = 0.94) and with an inverse power of the population density (R2 = 0.93),
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but no orrelation with GDP per apita (PPP) (R2 = 0.001). For ities, we �nd
in turn a low orrelation with the area of the bounding box (R2 = 0.29) and no

orrelation with the population density (R2 = 0.008). Combining these results,
we see that lower population density has a large a�et on total traveled distane,

but that e�et plateaus at higher densities, and beomes very unimportant.

Noting that our one-day travel distane estimate for Sweden overestimates,

if ompared to the survey data, and the yearly travel distane is learly an

under estimate, we ask what are the e�ets of the uto� in the waiting time

distribution on this value. To analyze this e�et, we again performed the yearly

estimate, but this time varying the uto� time hourly from 1 to 24 hours and

then daily from 1 to 90 days. The resulting relation an be seen in Figure 13,

and there it is learly visible that this e�et is large.

We an also see that there seems to be two di�erent e�ets ating on this

relation. Figure 14 shows that for large waiting time uto�s, the onditional

distane distributions do not hange signi�antly (and therefore might not be

useful), so the leading mehanism in the derease of the total travel distane are

the longer waiting times. For shorter ones, this relationship is not so simple,

and has to be studied further.
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Figure 13: E�ets of the uto� in the waiting time and assoiated onditional

distributions on the total yearly travel distane using the CTRW model
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Figure 14: Shape of the onditional distribuitions P (X |h) for given waiting

times

Finally, having onsidered a uto� of 24h pertinent for the estimation of a

yearly total traveled distane, we redo our simulations using this parameter,

and the results an be seen in Table 6.

Country Distane (km/apita/year)

Australia 99259

Austria 24034

Egypt 25016

Kuwait 12365

Netherlands 16571

Saudi 31693

Sweden 30134

Table 6: Simulated average yearly travel distane per apita in kilometers using

the orrelated CTRW, with a uto� of the waiting time at 24h.

3.5 Radius of Gyration

To further analyze the results of the CTRW simulation, we an look at the evo-

lution of the radius of gyration in the simulation and ompare it with the same

measure taken diretly from the data. To do this, we assume that the CTRW

is anisotropi on the diretion of travel, and generate the spatial distribution of

points along the simulated time.

Figure 15 shows the results of the average radius of gyration aross time, for

the simulated random walk and alulated using the raw twitter data. We see

that, although they resemble eah other for a very short initial period of time,

they do di�er in signi�ant ways, with the simulated radius inreases muh

faster than the one taken diretly from the data. This again an be explained

by the fat that a CTRW exhibits a di�erent di�usion regime than what has

been observed for human motion [37℄.
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Figure 15: Average radius of gyration for Sweden, alulated using twitter data

and simulated with a CTRW

3.6 Origin-Destination Matries and Rose Diagrams

Sine visualizing the results in matrix form is very di�ult, we will translate

the matrix to graphial form and overlay it on a map. Figures 16-24 shows the

resulting plots, in them, the red lines represent trips going from the enter of

one sub-region to another, with its opaity proportional to the number of trips

between them. To help visualize and understand the movement patterns, every

ODM is ompanied by a plot showing the twitter ativity density on the same

region,and a Rose Diagram showing the total number of kilometers traveled in

eah diretion. [hange desity->density℄
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Australia, weighted angle distribution
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Austria, weighted angle distribution
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Egypt, weighted angle distribution
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Figure 16: Twitter ativity density (left), origin and destination matries rep-

resented on a map (middle); total traveled distane on eah diretion (right)
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Kuwait, weighted angle distribution
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Netherlands, weighted angle distribution
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Saudi, weighted angle distribution
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Figure 17: Twitter ativity density (left), origin and destination matries rep-

resented on a map (middle); total traveled distane on eah diretion (right)
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Sweden, weighted angle distribution
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Figure 18: Twitter ativity density (left), origin and destination matries rep-

resented on a map (middle); total traveled distane on eah diretion (right)
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Barcelona, weighted angle distribution
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Cape Town, weighted angle distribution
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Cebu, weighted angle distribution
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Figure 19: Twitter ativity density (left), origin and destination matries rep-

resented on a map (middle); total traveled distane on eah diretion (right)
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George Town, weighted angle distribution
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Guadalajara, weighted angle distribution
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Jakarta, weighted angle distribution
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Figure 20: Twitter ativity density (left), origin and destination matries rep-

resented on a map (middle); total traveled distane on eah diretion (right)
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Johanesburg, weighted angle distribution
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Kuala Lumpur, weighted angle distribution

0

20

40

60

80100

120

140

160

180

200

220

240

260 280

300

320

340

0

50000

1e+05

150000

2e+05

250000 Km

Lagos, weighted angle distribution
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Figure 21: Twitter ativity density (left), origin and destination matries rep-

resented on a map (middle); total traveled distane on eah diretion (right)
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Madrid, weighted angle distribution
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Manila, weighted angle distribution
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Mexico city, weighted angle distribution
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Figure 22: Twitter ativity density (left), origin and destination matries rep-

resented on a map (middle); total traveled distane on eah diretion (right)
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Moscow, weighted angle distribution
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Nairobi, weighted angle distribution
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Rio de Janeiro, weighted angle distribution
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Figure 23: Twitter ativity density (left), origin and destination matries rep-

resented on a map (middle); total traveled distane on eah diretion (right)
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Sao Paulo, weighted angle distribution
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St Petersburg, weighted angle distribution

0

20

40

60

80100

120

140

160

180

200

220

240

260 280

300

320

340

0

5000

10000

15000

20000 Km

Surabaya, weighted angle distribution
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Figure 24: Twitter ativity density (left), origin and destination matries rep-

resented on a map (middle); total traveled distane on eah diretion (right)

At the ountry level, we an see the in�uene that big ities have on the

overall mobility in the ountry, and it has a big e�et on the number of kilometers
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traveled in eah diretion, yet, by omparing both the rose diagram and the

visualization, we an also see a great in�uene of intraity travel on the total

kilometers. At the ity level, while there is an e�et of the geography on the

diretion of travel, they are less pronouned. Most of the models for human

mobility disussed earlier make an assumption of anisotropy for the diretion of

travel, but we �nd that this does not hold so well when we move to bigger and

less densely populated areas.

3.7 Communities

We use the Walktrap implementation present in the iGraph library [15℄, with

the number of steps set to 4. We run the ommunity detetion algorithm for

all our ODMs. For the sake of better visualizations, the ities maintained their

segmentation on a 1km2
grid, and we segmented ountries aording to admin-

istrative regions (level 2) given by the GDAM database [1℄. The results are

shown in �gures 25-28.
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Figure 25: Deteted ommunities in studied ountries. White represents no

deteted ommunity
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Figure 26: Deteted ommunities in some of the studied ities
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Figure 27: Deteted ommunities in some of the studied ities
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Figure 28: Deteted ommunities in some of the studied ities

For ountries, we �nd that ommunities develop largely around big ities.

Some exeptions an be found in Australia and Egypt, and similarly to the

onlusions on setion 3.1, those are largely unpopulated but touristi areas,
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again showing the a�et of tourism in biasing the data.

For the ities, the results above show that the algorithm in most ases is

able to identify and separate ities from their suburbs. Also, in some of the

ities, suh as São Paulo and Rio de Janeiro, we see that the ommunities are

also separated by soio-eonomi bakground. These results indiate that the

ODMs generated with our data do have a good onnetion with the atual

movement patterns in the ity,

4 Conlusions

We proposed to analyze ways in whih human motion an be analyzed using

Twitter data. The question of whether Twitter data an represent the travel

patterns of a population an be broken into two equally important questions.

The �rst question is if the population is aurately represented by ative twitter

users, and seond is if the tweeting patterns of those users aurately represent.

To illuminate the �rst question, we have looked at the size of our sample in

the population and found it to be between 1%-0.03% in the studied ountries,

and 7.4%-0.2% for the studied ities, and reviews ways in whih soial media

data is known to be biased. We also looked at how the tweeting ativity is

spatially distributed in relation to the population of eah ountry, and found

the orrelation ranging from very strong to not present, but in ountries with

poor orrelation we found strong in�uene of sparsely populated areas with

strong touristi attration, and noting the di�erene between plae of residene

and ativity, we onlude that these orrelations should be taken with aution.

On the seond question, we started by looking at the temporal distribution

of tweeting ativity and found it to be skewed towards times where people are

more soially ative, and aution that there might be an over representation of

soially important plaes in the data. We then de�ne movement as a sequene

of trips and waiting periods and proeed to look at the density distribution

for the trip distanes and waiting times and �nd strong similarities for these

distributions aross the studied areas, and agreement with the literature on

those topis, leading to a hypothesis that if our sample is indeed skewed, it

might be skewed in the same way aross all regions, and our data an be used

to make useful omparisons aross them.

We then feed our distributions into a Continuous Time Random Walk model

for human mobility and �nd that with some aveats, it an be used to estimate

the average total traveled time for a population, and make some omparisons for

those estimates aross the regions, �nding good desriptors for this variable. We

also �nd that this model is very laking when desribing other aspets of human

mobility suh as the radius of gyration. A possible reason for this disrepany is

the validity of using a CTRW to desribe human motion, as it has been shown

that, if the underlying distributions are of the form of powers with negative

exponents, a CTRW an exhibit superdi�usive or subdi�usive behavior [40℄,

depending on the parameters of these distributions. However, it has also been

shown that human movement follows a ultraslow di�usive proess [37℄, whih

is not predited by the CTRW. The di�erene in the di�usive behaviors might

be due to the fat that human motion is itself is not random, as there is a high

probability of returning to an already visited plae.

Finally, we onstruted Origin-Destination Matries with our data and used
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visualization tehniques to better understand their properties, we �nd that for

ountries interity and intraity travel play equally important roles in the mo-

bility patterns of sparsely populated areas. We also use a ommunity detetion

algorithm and �nd ommunities that show strong spatial resemblane to the

way we understand human movement to behave both at the ountry and ity

level.

All of these results ombined show that Twitter data indeed ontains useful

information for the study of human mobility. Yet, areful assumptions and a

wise model hoie are essential if one seeks to obtain useful insights.

5 Future work

Having barely srathed the surfae of what an be done with this soure of

data, this thesis hopes to be a good overview and a possible starting point for

deeper studies and insights. Future work an onentrate on better de�ning

the ways that the sample of the population studied is skewed, how this bias

varies aross and the regions, and most importantly, how does this a�et the

aspets of the studied data and onlusions. Attention should also be given to

the way the data is �ltered, we know that today a large part of human move-

ment ours aross ountry borders and between ities, and we are unable to

apture this movement with the urrent �lters; an individual based �lter an

be implemented to overome this. A better study of the shape of the under-

lying density distributions of motion an be made, so as to better understand

the theoretial mehanisms that give rise to suh distributions, and how do this

mehanisms di�er from region to region. Also, studying the shape of the on-

ditional distribuition P (x|h), and how it hanges with varying h ould provide

an insight on the problems found with the waiting time distribution. We have

also shown that di�erent mathematial models of human motion an be fruitful

when estimating di�erent aspet of motion, but laking when fousing on oth-

ers. This was however done in an ad ho basis and a more general theory ould

be ahieved. The validity of the ODMs onstruted using the data an also be

tested using established tools on the four-step model.
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6 Appendix

Figure 29: Hourly ativity in the studied ities
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Cebu, trip distance
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George Town, trip distance
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Figure 30: Trip distane and waiting time distribuition for Barelona, Cape

Town, Cebu and George Town
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Guadalajara, trip distance
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Jakarta, trip distance
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Johanesburg, trip distance
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Kuala Lumpur, trip distance
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Kuala Lumpur, waiting time

Hours

fr
e
q

5
e
−

0
4

2
e
−

0
3

5
e
−

0
3

2
e
−

0
2

5
e
−

0
2

2
e
−

0
1

0 9 20 33 46 59 72 85 98 113 129 145 161 177 193

Figure 31: Trip distane and waiting time distribuition for Guadalajara,

Jakarta, Johanesburg, Kuala Lumpur

52



Trip distane distribuition Waiting time distribuition

Lagos, trip distance
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Madrid, trip distance
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Manila, trip distance
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Mexico city, trip distance
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Figure 32: Trip distane and waiting time distribuition for Lagos, Madrid,

Manila and Mexio City
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Moscow, trip distance

Km

fr
e
q

1
e
−

0
5

1
e
−

0
4

1
e
−

0
3

1
e
−

0
2

1
e
−

0
1

0 5 11 18 25 32 39 46 53 60 67 74 81 88 95

Moscow, waiting time

Hours

fr
e
q

5
e
−

0
4

2
e
−

0
3

5
e
−

0
3

2
e
−

0
2

5
e
−

0
2

2
e
−

0
1

0 9 20 33 46 59 72 85 98 113 129 145 161 177 193

Nairobi, trip distance
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Nairobi, waiting time
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Rio de Janeiro, trip distance
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Sao Paulo, trip distance

Km

fr
e
q

1
e
−

0
6

1
e
−

0
4

1
e
−

0
2

0 5 11 18 25 32 39 46 53 60 67 74 81 88 95
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Figure 33: Trip distane and waiting time distribuition for Mosow, Nairobi,

Rio de Janeiro and São Paulo
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St Petersburg, trip distance
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Surabaya, trip distance
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Surabaya, waiting time
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Figure 34: Trip distane and waiting time distribuition for St Petersburg and

Surabaya
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Barcelona, individual total travel
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Cape Town, individual total travel
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Cebu, individual total travel
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George Town, individual total travel
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Guadalajara, individual total travel
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Jakarta, individual total travel
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Johanesburg, individual total travel
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Kuala Lumpur, individual total travel
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Lagos, individual total travel
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Figure 35: Total traveled distane for individuals in the studied ities, during

the data oletion period
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Figure 36: Simulated distributions for yearly total travel distane using the

orrelated CTRW
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Figure 37: Simulated distributions for yearly total travel distane using the

orrelated CTRW
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