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Using Big Data for Human Mobility Patterns

Examining how Twitter data can be used in the study of human movement across
space

GUSTAVO STOLF JEUKEN

Department of Energy and Environment

Chalmers University of Technology

Abstract

Demands for transportation are growing at a fast pace in countries that are ex-
periencing rapid economic growth and urbanisation, such as China, India, Brazil,
and Africa. Understanding the spatial and temporal distribution of people and the
activities they participate is essential for urban planning, travel demand forecast-
ing, and infrastructure investment. This thesis explores ways in which Twitter data
can be useful to understand some important aspects of human mobility, including
total travel distance, patterns of mobility and communities. Raw Twitter data was
processed to extract relevant information on space and time dimensions and we
compare the results across all studied geographies. This information is also fed into
a Continuous Time Random Walk (CTRW) model to estimate the average annual
distance travelled by people on the same geographies, and we use travel survey data
to validate our results. Origin-Destination Matrices (ODM) are generated and the
patterns of mobility are visualised on a map and with Rose Diagrams. Finally we
use a community detection algorithm to better understand its dynamics of these
networks. The validity of our estimates may critically depend on the mathematical
models we selected and careful interpretations of the results. Important future work
can include continued refinements of our mathematical models to accurately repre-
sent total travel distance, identify biases, and further understand how demographics
and characteristics of urban infrastructure affect travel demands and mobility pat-
terns.

Keywords: big data, human mobility, twitter, ODM.
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1 Background

1.1 New sources of big data for mobility studies

Traditionally, mobility studies depend on data from surveys or observational
studies. While such data contains rich and detailed information, it is very
expensive to collect and process and restricted to scope and scale. As urban big
data such as social media data and mobile phone records becomes increasingly
available, the analytical tools we use to design the city and the communication
tools we use to engage people are hugely changing the way we understand cities.

There is not an authoritative big data source used to study human mobility
patterns, but several different sources have been used for this purpose, each with
its caveats and advantages. The most widely used sources are those derived from
mobile devices, whether from the call logs themselves [13, 22, 20, 38, 37, 39],
tracking apps [23, 37, 39], or social media usage [17, 25, 26, 19, 24]. The sources,
however, are not limited to mobile devices, a few examples are studies were also
performed using data from banknote circulation [10], traffic data from induction
loops.[11], or geo-tagged photography [30].

1.1.1 Mobile phone data

Every time a user makes a call or sends an SMS, their device connects to a
cellular transmission tower. Those connections are logged and the anonymised
information can be used to infer the position of the user around that tower at
that particular time, and the collection of such data points can be used to infer
movement.

The advantages of this type of data are: Big sample of the population,
mobile phones are ubiquitous in most societies at this time, and their use by a
representative part of the populations can be assumed for most developed and
developing nations. Good frequency of data point, with people mostly relying
solely on mobile phones for their communication needs, the frequency on which
the data is collected is on average very high [38]. Data globally available, cell
phone technology has been adopted in most regions of the world and can serve
as a good benchmark to compare results across borders.

There are, however, some disadvantages to this type of data are: Poor spatial
resolution, using this method, a user can only be assigned to a vicinity of a cell
tower, that area is on average 3km? in the US [38] but can vary a lot depending
on factor such as urbanization and terrain. Difficult to obtain and expensive.
Surge in use of messaging apps mean SMS and mobile calls are not as prevalent
as before.

1.1.2 Social media data

When a user chooses to share something on a social media network, they may
also choose to share their location. While in some networks the location is an
integral part of the product (Foursquare), in most others it is a optional feature
used by a fraction of the users.

There are many advantages of using social media data: Precise location,
when a user chooses to share their location, it is done using information from
the GPS chip on their device, this technology has an average precision of 10m
[7, 24]. Data openly available, some social media platform operate on a business



model focused on providing users free access to the data their connections in
the network make public. User can also opt to share information with the
entire network, and thus this data will be available to anyone with access to
the network. Easily obtainable, some networks provide APIs to facilitate data
gathering.

But in turn many disadvantages follow: Low sample of the population, social
media use is growing, but still penetration rates vary across networks and pop-
ulations. Skewed sample, social media use and penetration is not homogeneous
across all segments of the population, and measuring the ways in which this
varies is still difficult [34]. Low data point frequency, social media use is sparse
in time, with frequency being measured often in days.

1.1.3 Continuous GPS tracking

Controlled studies can be done where volunteers record their coordinates in set
interval of times, using the GPS chip on their phones. Examples of such studies
are the Copenhagen Network Study[39] and the Nokia Mobile Data Challange
[2]-

Advantages of this methodology: High data frequency, since it can be con-
trolled to fit the experiments needs. Precise location, by using GPS signals.
Controlled population sample, when the study is being designed, the sample
can be controlled for different variables.

Disadvantages include: Extremely laborious to set up the experiment and
recruit volunteers. Small sample size means that some patterns may not show
up in the data. Usually very limited geographically. Data is available as a
one-off basis and cannot be updated without reconstructing the experiment.

1.2 Use of Twitter data in the literature
1.2.1 An overview of Twitter data

A data point in Twitter data is called a tweet. A tweet is a social media message
and its most basic informations are a unique username and a text that is no
more than 140 characters long. This data by itself is not remarkably useful in
our study, but a tweet may also contain one or more of the following information:
User information, including a unique number, user name, picture, friends and
followers count, geographic location, and language; tweet unique number ID;
time and timezone in which the tweet was generated; source application used to
generate the tweet; geographic information of where the tweet was generated,
including country, city and GPS coordinates; tweet hashtags, user mentions,
and “in reply to” information; tweet favorite and share counts. Most of this
information is shared by users on an opt-in basis. Specifically to our interests,
in order to get the precise geolocation of a user, it has to willingly attach the
coordinates to a public tweet.

There are many ways in which Twitter data can be collected, but the most
widely used are its two free APIs. The REST API allows us to search twitter
massive dataset of archived tweets, with data going back to 2009. There are,
however, many ways in which this access is limited. They can all be found in the
API documentation, and the most restraining one is a rate limit of 180 tweets
on a 15 minutes window per API user. The Streaming API delivers tweets in



real time, as they are generated, and is therefore more limited on the scope of
data which can be collected. Its big advantage is the rate on which data can be
collected: it is limited at 1% of the absolute number of tweets being generated
at any given time, which is a much bigger rate than the REST API. Aside from
the free alternatives, there are paid ones which do away with this limitations.
Gnip is a Twitter subsidiary which sells, among other things, historical tweets
in bulk, and provides access to the Firehose API, which is similar in scope to
the Streaming API, but has no rate limit.

1.2.2 Sparsity of Twitter data

An important information is how big the data sample is among the population.
Twitter penetration in a country, that is, the share of the population actively
using the platform, can be anywhere from 1% to less than 0.001% of the total
population [26]. Not all tweets contain geolocation information. Among the
tweets, the number of those containing geolocation data has been found to be
around 3% [27]. Combining this two pieces of information with the fact that
the average user tweets 0.023 times a day [26], we can start to have a sense of
how sparse the data is.

1.2.3 Sources of bias in Twitter data

We need to caution about the demographic bias present on the data. Twitter
users have been found to be skewed towards young (18-29), highly educated
(college degree), high income ($75,000+) and urban population [18]. It is widely
accepted that travel distances are correlated with income level [36, 35], and
urban travel patterns are of different nature than rural ones [32]. So we expect
these bias to influence our results to a degree. Due to the nature in which the
data is generated, we also speculate that Twitter users are also biased towards
people with extroversion a committed to publicness, as opposed to very private
people, and they have shown to be more mobile than average [14]. And since
the data points consists of individual tweets, and not users, we expect the final
data to be even more heavily skewed towards these two.

Finally, since tweets are a user generated activity of social nature, we would
expect to have more data points on areas of larger social interest, such as restau-
rants, touristic areas, etc. [33].

This bias could make it very hard to generalize effectively our results. The
effects of social media bias on big data analysis have been widely studied [34, 16]
on areas such as political pooling general sampling, yet most of the techniques
proposed to overcome those are beyond our immediate reach. On the positive
side, some studies found that Twitter data can reliably be used as a source of
data for mobility studies [25, 24].

1.3 Goals and objectives

In this thesis, we focus on social media data, acquired from the platform Twitter.
Social media data is becoming increasingly relevant and prevalent, and the fact
that it can be collected continuously and reliably makes it an ideal choice for a
foundation on which to build models in hope that they can become useful tools of
prediction and understanding in the future. We hope that with rigorous analysis



and the use of careful assumptions, we can mitigate some of the disadvantages
of this data source presented earlier.

2 Methods

2.1 Dataset used in this research
2.1.1 Description of the dataset

Our main dataset was purchased from Gnip, a Twitter subsidiary, and contains
over 50 million tweets, gathered in a period of 6 months from 25 different locali-
ties around the world. The locations were selected to, given time and budgetary
constrains, span most of the globe and try to isolate some variables such as in-
come, population density, infrastructure, etc. This means that once we selected
a country, we always tried to select another one with similar level of economic
development and population, but located in a different area of the world. Also,
we tried to have at least 2 cities from each country so that internal differences
within a country can be noticed.

The data constitutes of geo-tagged tweets generated within the geography
delimited by a bounding box. A bounding box is characterized by two coordi-
nates, and represented by four numbers. The first two numbers are the longitude
and latitude of the southwest corner of the box, and the last two are the same
coordinates for the northeast corner.

Table 1 shows the bounding boxes used to filter the acquired data. The
time period being considered is from Friday, 20 June 2016, 0:00, to Sunday, 20
December 2015. 0:00.



| Country | City SW lon | SW lat | NE lon | NE lat |
Kuwait entire country 46.553 28.5244 48.5184 30.1037
Sweden entire country 10.58 55.01 24.18 69.06
Netherlands | entire country 3.3316 50.7504 7.2275 53.6316
Egypt entire country 24.7 22 37.06 31.81
Saudi Arabia | entire country 34.53 16 55.67 32.15
Australia entire country 111 -44.6 159.3 -9.2
Austria entire country 9.5308 46.3723 17.1607 49.0206
Brazil Sao Paulo -46.965179 | -23.795398 | -46.365084 | -23.333429
Rio de Janeiro -43.640704 | -23.055589 | -42.912598 | -22.652037
Spain Madrid -3.896027 | 40.272191 -3.524912 | 40.563845
Barcelona 2.037964 | 41.291222 2.254944 | 41.471544
Indonesia Jakarta 106.598969 | -6.432671 | 107.082367 | -6.014922
Surabaya 112.606922 | -7.370639 | 112.872162 -7.19435
Malaysia Kuala Lumpur 101.570663 2.98967 | 101.791763 3.296139
George town 100.29479 5.371296 | 100.345981 5.443244
Philippines Manila metropolitan | 120.906211 | 14.348096 | 121.135076 | 14.787496
Cebu 123.2995 9.4115 124.5696 11.5238
South Africa Cape town 18.3074 -34.3598 19.0047 -33.4713
Johannesburg 27.828369 | -26.342653 28.288422 | -26.018532
Mexico Mexico city -99.364924 | 19.048237 | -98.940303 | 19.592757
Guadalajara -103.459625 20.56851 | -103.203506 | 20.743846
Russia Moscow 37.3193 55.4899 37.9457 56.0097
St Petersburg 30.090332 | 59.745216 30.559783 | 60.089675
Nigeria Lagos 3.098273 6.393351 3.696728 6.702798
Kenya Nairobi 36.645419 -1.444863 37.049375 -1.164744

Table 1: Bounding boxes used as filters in the data collection

2.1.2 Filtering and cleaning the data

The raw dataset has to be cleaned, as it contains many data points that are
not relevant to our study. First we keep only tweets that contain a precise
location, represented by a set of coordinates. As a second measure, we are
interested in removing tweets that are generated algorithmically by bots or are
commercial tweets that do not represent the activities of an individual. Most of
these tweets come from sources such as the API for bots or commercial platform
for commercial tweets, so to achieve this, we filter only tweets whose sources are
in one of the following four: Android app, iPhone app, Instagram or Foursquare.

2.1.3 Some artifacts of this dataset

The main way in which this dataset is filtered is geographically, through bound-
ing boxes. While this makes perfect sense to analyze movement patters inside
those boxes, movement that takes place outside or across its boundaries will
not be captured, resulting in some artifacts on the analysis to come. These will
be discussed as they appear on the different analysis. This could be avoided if
needed with an user-centric filter, where we filter tweets by user instead of by
geography. This would alter the nature of the data and its representativeness



in a non trivial way, and user-centric filters in the Twitter API are much more

limiting.

2.1.4 Summary of the data

Table 2 and 3 present a summary of the data collected. The population of the
geographies, when entire country is the subject of the study, is obtained from
the CIA World Factbook 2017, or calculated using the bounding boxes and the
"Gridded Population of the World (GPW), v4’ [12], when considering cities.

Geo Tweets

Repeated Geo Tweets

Country Population Users |  Tweets | Users | Tweets | Tot dist (km)
Australia 22,992,654 69,042 819,112 | 41,796 791,866 76,745,478
Austria 8,711,770 | 21,049 | 116,553 | 11,399 106,903 2,310,127
Egypt 94,666,993 28,790 281,145 | 15,525 267,880 6,786,621
Kuwait 2,832,776 | 28,850 | 1,224,606 | 22,880 | 1,218,726 | 12,009,922
Netherlands 17,016,967 64,728 494,128 | 36,073 465,473 7,264,873
Saudi 98,160,273 | 50,012 | 599,821 | 27,601 577410 | 17,141,274
Sweden 0,880,604 | 25,390 | 273,100 | 14,883 262,593 9,655,083
Barcelona 2,748,458 | 50,014 | 298,402 | 28,233 275,726 520,810
Cape Town | 4,553,581 | 13,003 | 136,420 | 7,797 131,214 764,237
Cebu 7,047,559 20,355 245,788 | 13,667 239,100 2,057,550
George Town 236,506 17,557 95,913 | 10,584 88,940 114,516
Guadalajara | 3,520,172 | 17,350 | 186,292 | 10,013 178,955 526,926
Jakarta 20,026,430 | 149,380 | 1,242,263 | 92,991 1,185,865 5.854,328
Johanesburg 4,963,247 19,479 200,355 | 11,549 192,425 778,125
Kuala Lumpur | 4,036,423 | 110,334 | 2,205,048 | 81,874 | 2,176,588 | 10,509,018
Lagos 11,655,049 15,180 176,961 9,309 171,090 654,158
Madrid 1312,307 | 71216 | 425,648 | 39,714 394,146 1,150,335
Manila 15,006,509 | 117,444 | 1,687,768 | 80,474 1,650,798 5,048,256
Mexico city | 14,747,465 | 94,827 | 1,432,372 | 60,876 | 1,308,421 6,303,389
Moscow 13,355,581 29,805 432,992 | 19,782 422,969 2,206,877
Nairobi 4,016,844 | 9,419 | 114,978 | 5,405 110,964 277,205
Rio de Janciro | 11,035,303 | 101,156 | 1,783,728 | 64,366 1,747,438 8.108,751
Sao Paulo 18,503,520 94,897 | 1,371,964 | 60,470 1,337,537 5,493,168
St Petersburg 4,261,511 13,648 178,470 9,165 173,987 604,965
Surabaya 3,052,560 | 26,404 | 164,413 | 14,602 152,521 407,333

Table 2: Data summary of total population, geo tweets and its users




Country Geo users/100k | Tweets/Geo user % of Tweets Avg distance/
rep users repeated user

Australia 300 11.86 96.7% 1,836
Austria 242 5.54 91.7% 203
Egypt 30 9.77 95.3% 137
Kuwait 1,019 42.44 99.5% 529
Netherlands 380 7.63 94.2% 201
Saudi 178 11.99 96.3% 621
Sweden 257 10.76 96.2% 649
Barcelona 1,852 5.86 92.4% 18
Cape Town 286 10.49 96.2% 98
Cebu 289 12.08 97.3% 151
George Town 7,423 5.46 92.7% 11
Guadalajara 493 10.74 96.1% 53
Jakarta 746 8.32 95.5% 63
Johanesburg 392 10.29 96.0% 67
Kuala Lumpur 2,733 19.99 98.7% 128
Lagos 130 11.66 96.7% 70
Madrid 1,651 5.98 92.6% 29
Manila 783 14.37 97.8% 69
Mexico city 643 15.11 97.6% 104
Moscow 223 14.53 97.7% 112
Nairobi 192 12.21 96.5% 51
Rio de Janeiro 917 17.63 98.0% 125
Sao Paulo 513 14.46 97.5% 91
St Petersburg 320 13.08 97.5% 66
Surabaya 868 6.21 92.8% 28

Table 3: Statistics of geo tweeting penetration

There is a great variability in the penetration and use of geotagged tweets

among the areas studied, with Malaysian cities coming in front and African
regions behind. We also see that representation is bigger when looking at cities
in respect to whole countries, further strengthening the hypothesis of urban
bias.

2.1.5 Travel survey data for Sweden for validation

We have access to data from the Swedish National Travel survey (RVU Sweden)
[3] for the years of 2011-2014. This dataset consists of a total of 31.457 travel
diaries spanning the period of a day, with information on trip distance, times,
mode of transportation, trip purpose, and others.

Any data from a survey is subject to self reporting bias, were there is a
selective reporting or suppression of information by the respondents due to a
number of factors, conscious and unconscious.



2.2 Spatial density

Spatial distribution is an important feature of the data set. Since we are study-
ing the movement of people across space, we want first that our data distribution
across this dimension resembles to a high degree the distribution of the actual
population, as studies have shown that different cities have different mobility
patterns [29, 21, 4], and they can even differ inside regions of the same city.

To understand the ways in which our sample is skewed, a first analysis could
be to compare the spatial density of tweets with the spatial population density
and see how much they correlate. If the sample is not skewed in any way, we
would expect to see a high degree of correlation, yet, we could not affirm the
opposite, that is, a high correlation would not immediately imply that the data
is not skewed.

For the population density data, we use the GPWv4 dataset [12]. This
dataset is compiled by NASA using a collection of different census and other
population sources, and provides population counts for the entire world in a
1km? grid. We also used the GDAM database of administrative areas [1] as a
way to separate the country into useful regions. For each of these administrative
areas, we use our dataset to calculate the density of tweets inside them, to com-
pare with the population density. Noting that since the census data measures
where people reside, whereas our twitter data tells us where people are active,
we would not expect a perfect correlation to arise.

2.3 Temporal patterns

We know that humans have habits, making temporal activity and spatial activity
correlated to a high degree. For example, activity during working hours is
different in nature that those in leisure time, and those occur at regular times
in a day, or in different days in a week.

Another dimension that can be explored when analyzing the representative-
ness of Twitter data is the distribution of activity on the different hour of the
day. If we are to say that the Twitter data represents well human activity across
space, we would here like to see the temporal distribution of Twitter activity
represent to a high degree human activity along the day.

2.4 Trip distance distribution

One of the most studied aspects of human mobility is the density distribution
of trip lengths. These are used as a way to understand and describe how mobile
a population or subset of a population is, and is essential part in any model of
human mobility in general. Studies have shown that the density distribution
for the step lengths follows a heavy tailed distribution [17, 10|, which can be
explained by the fact that human activity in general does not follow a Pois-
son process, and instead come in bursts of activity followed by long periods of
inactivity [8].

When using Twitter data, we will look at the relation between two consecu-
tive points for a same user, and look at the distance between those points. Here
we define the trip distance as the geographical distance between two points. To
calculate each trip distance, we first have to convert the difference in coordinates



to a difference in kilometers. Here we use the Pythagorean distance between
both points, which assumes the earth is locally flat at the mean of both points.

40.008
Yem = (laty — lata) 360 (1)
40.075 laty + lato
T (lony — lons) 360 cos< 5 ) (2)

d=\/y3, +3,, (3)

where the numbers 40.008 and 40.075 correspond to the circumference of the
earth, in kilometers, along the poles and the equator respectively.

This is a fair approximation for small distances, where the curvature of earth
plays a small role. One alternative would be to use the Harvesine distance, which
does take into account this curvature, but using this distance we would lose the
ability to make an assertive definition of the direction of travel, which will be
important when we analyze that dimension of mobility.

One consequence of our definitions is that the trip distance will always give
a lower bound for the actual travel distance, since dislocation is rarely done in
straight line.

2.5 Waiting time distribution

Waiting time is the time a person spends not moving, i.e. not in a trip, as defined
earlier. It is a complementary information to the distance distribution in many
models of human mobility, and is essential when we add a time dimension to
such models.

For our Twitter data, we define waiting time as the difference in time between
two points from the same person that are distinct in space, implying that some
dislocation has occurred. A consequence of this definition it that it is a upper
bound for the actual time, as it does not take into account the travel time and
other possible trips that might have occurred between the two measurements.
Another minor consequence of this definition is that it implies that dislocations
occur instantly, and thus we loose the capability to make any study related to
the velocity of travel.

2.6 Continuous Time Random Walk (CTRW)

A Random Walk is a stochastic process that describes a succession of steps that
are random in nature, and they can be random in direction, length, or both. It
is a widely used model in many areas of physics and complex systems analysis.
A Continuous Time Random Walk (CTRW) is a continuation of this model
where a time dimension is added, and the difference in time between steps is
also itself a random process.

It has been shown that human motion resembles a CTRW [17, 10], where
both the step length and time between steps follow an underlying heavy tailed
density distribution.

The total distance of a path X (¢) at time ¢ in a CTRW can be formulated
as

10



N(t)

X(t)=> AX; (4)

where AX; are the ¢ individual step distances and N (¢) is the number of
steps taken until time ¢. The difference between this measure form a normal
random walk is that N is also a function of time. A distribution for N (¢) can
be generated by a transformation of the waiting time distribution, but since we
will deal with non analytical distributions in this study, we will simply sample
from the waiting time distribution until the total sampled time exceeds t.

As discussed in the previous sections, we can then simulate the total dis-
tance traveled by a population in a given period of time using this model and
the underlying trip distance and waiting time distributions of a population. It
is here useful to remember that step length (trip distance) distribution obtained
using Twitter data provides only a lower bound for the actual step length dis-
tribution, and the waiting time distribution provides an upper bound to the
real distribution. This means we cannot assume that the final simulated total
distance will be an upper or a lower bound to the actual total traveled distance.

2.7 Radius of Gyration

When studying human mobility, the radius of gyration is often used as a proxy
for the size of the area where a person has been active, since it is a good
representation of how far points are distributed around a center. It is a concept
borrowed from physics, and is defined as the root mean square distance of all
the points relative to their center of mass on a given axis. Since we are studying
a two dimensional distribution of points the axis is trivially defined and we are
left with the following formula for the radius of gyration, R,:

N

R = () @

k=1

where 7 are the k individual coordinates, and 7 the center of mass.

2.8 Origin-Destination Matrices (ODMs)

The most widely used transportation forecast model is called the Four Step
Model, with the four steps being trip generation, trip distribution, mode choice,
and route assignment. Each of the steps are done separately and have their own
body of research.

Origin-Destination matrices (ODMs) are an essential tool in the traditional
four step transportation forecasting model, and they are used as a proxy on trip
distribution over a geographical area, and essentially represent the volume of
travel between any two subregions of a study area. In the four step model is
used for assigning transportation modes and routes between those subregions.

To construct an ODM, the area must be first partitioned into a set of sub-
regions. This can be done in ways to accommodate the data available [25], to
correspond to areas of interest in the selected geography [11]. A ODM is a
matrix defined as

A:[aij] i,j:l,...,n (6)
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were the elements a;; correspond to the number of trips originating in region
¢ and terminating in region j.

Many methods have been developed for constructing ODM matrices, one
exemple is the Gravity Model, where certain areas, such as commercial or in-
dustrial areas, are assumed to attract the population in a way that can be
modeled similarly to gravity. ODMs can also be estimated using data from in-
ductive traffic loops [11], if one assumes users always take the shortest path to
where they need to be, an assumption that is not trivial.

Recently, many studies have focused in using cell phone call record as a way
to construct these matrices [9, 6, 28], with good success. Less attention has
been paid in using social media data for the same purpose, but one study has
shown that both produce similar results [25].

If we define trips in the ODM context to be the same as the trips we defined
for our data on the sections above, it becomes possible to generate ODMs using
our Twitter data. We divide our geographic areas using a square grid, with a
10km resolution when generating it for countries, and a 1km resolution for the
individual cities, and proceed to count the trips between those regions to form
the matrix.

2.9 Communities in networks

In network theory, a community is loosely defined as a collection of nodes with
many edged between them, and with few edges between different communities.
They are a good way to study and visualize the topology of a network.

There are many methods used to find such communities in networks, and
they mostly differ on interpretations on what are defining features of a commu-
nity [41]. To analyze the presence or not of communities in our ODMs, we will
use a method called Walktrap [31]. The essential assumption of this method is
that random walkers on the network tend to be "trapped" inside the communi-
ties, that is, if you start a random walk inside a community, you are more likely
to end up inside the same community than outside of it. This assumption seems
very fitting given the nature of what we are studying.

A random walk on the network is performed as follows: at the start node,
choose a vertex to walk along, with given probabilities, and repeat this for a
given number of steps. This accommodates two features of our network that
are important, the first one being the number of trips between the nodes, that
can be used when calculating the probabilities of choosing among the vertices;
and the second is the fact that our network is directed, that is the the vertex
from node ¢ to j is different to the one going the opposite direction.

The number of steps taken in the walk is a parameter of the algorithm and
it is usually in the range of 3 to 5. After many random walks are performed in
the network, the expected number of steps between any two nodes is calculated
based on the results and a clustering is performed to find the communities.
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3 Results

3.1 Population vs Twitter activity

Figure 1 and 2 show the correlation plot for the number of tweets vs the popu-
lation on the administrative regions of each country studied (left), as well as the
residuals of the correlation represented on a map of those administrative regions
(right). We see that in some countries, such as Austria, The Netherlands and
Sweden, the correlation is very high, with R? ranging from 0.62 to 0.95, which
are strong results giving the caveats discussed in section 2.2.

Some countries, however, have a very poor correlation of these two variables,
Australia and Egypt perform very poorly in this analysis. Both countries have
in common the fact that most of their population is concentrated in a small
portion of its area (along the ocean for Australia, and the Nile for Egypt), and
that the less populated areas have big touristic attractiveness, which has been
shown to generate large social media activity [30]. This can help to explain the
very loose correlation that was obtained.
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ical representation of the residuals (right)

3.2 Temporal patterns

Figures 3 shows the tweeting activity along the day for all studied countries
(plots for all cities can be found in the appendix). We find that users are more
active on the working hours of the day, where they are least likely to be home,
further strengthening our hypothesis made earlier when comparing our data
distribution with the census data.
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Figure 3: Hourly activity in the studied countries

3.3 Trip Distance and Waiting Time distributions

Figures 4-6 show the distribution of both variables for all the studied countries
and selected cities (plots for all cities can be found in the appendix). They
are represented in a mono-log scale for better visualization of the distribution
tail. A red line in the distance distributions shows the maximum distance that
can possibly be traveled given the constrains in the bounding box, so the edge
effects can more clearly be seen.

When looking at the countries, we note that the distribution of trip distance
indeed follow a heavy tailed pattern, yet there are spikes at different points
for different countries. Noting that those spikes are more prominent in more
sparsely populated countries, they occur at larger distances, and are nearly
absent in the same distributions for the cities, we speculate that they are due
to the arrangement of cities inside the country, with the spikes being the result
of intercity travel.

16



| Trip distance distribution

Waiting time distribution

Australia, trip distance

Australia, waiting time

0 16 35 54 73 92 113 137 161 185 209 233 257 281

Km

e
o
s 2 s 7
g 8 2
8
8
K g
2 &
4 3 |
8 8
7 J
016 35 54 73 92 113 137 161 185 209 233 257 281 092033 46 59 72 85 98 113 120 145 161 177 193
Km Hours
Austria,trip distance Austria, waiting time
016 35 54 73 92 113 137 161 185 200 233 257 281 0920 % 4 59 72 85 98 113 1 15 161 177 193
i Hours
Egypt, trip distance Egypt, waiting time
s
° 3
&
s 4
3 o
8 g
2] T
53 &
g4
g~ g A
8
< 8
3
74 a
8 3]
&
8] S
8 3
0 16 35 54 73 92 113 137 161 185 209 233 257 281 09 20 33 46 59 72 85 98 113 129 145 161 177 193
Km Hours
Kuwait, trip distance Kuwait, waiting time
&1
g8
g 27
T - 8
&
- 8
e
g g 8]
29 8]
2 &
3
8
3
8 .-
7 - &
e

09 20 33 46 59 72 85 98 113 120 145 161 177 193

Hours

Figure 4: Trip distance and waiting time distribuition for Australia, Austria,

Egypt and Kuwait

17




| Trip distance distribuition | Waiting time distribuition

Netherlands, trip distance Netherlands, waiting time
-3
>
=3
T 4
M &
el ]
&
g 8 P
g % g
g3 &
s
g4 g
g ?
¢ g
3- ES
¢ 74
Km He
Saudi, rip istance
g &
3
kn Hous
Sweden, trip distance
39 3
] i
e g
g
o 8
] ¢4
i1 &
&
§ o g
R T3]
8 2
@ T
8 g
: &
H
g -
g &
0 16 35 54 73 92 113 137 161 185 209 233 257 281 0 9 20 33 46 59 72 85 98 113 129 145 161 177 193
Km Hours

Figure 5: Trip distance and waiting time distribuition for the Netherlands, Saudi
Arabia and Sweden

18



| Trip distance distribuition | Waiting time distribuition

Barcelona, trip distance Barcelona, waiting time
3
>
5 _ |
: s
3 |
. $
¢ 8§
& ¢
g 2 g |
£ 4 £ g
& 2 |
< 8 |
3 &
3
8 : -
2 $
e
05 11 18 25 32 39 45 53 60 67 74 81 88 95 0092063 46 59 72 85 95 113 120 145 161 177 139
Km Hours
Jakarta, trip distance Jakarta, waiting time
>
o 8
S &
. w
8§
&
g g
o
< g |
1 $
3
3 |
o S
; 3-
k4 Sl 8
0 5 11 18 25 32 39 46 53 60 67 74 81 88 95 0 9 20 33 46 59 72 85 98 113 129 145 161 177 193
Km Howrs
Lagos, trip distance Lagos, waiting time
. &
s &

1e-02
20-02 5e-02

freq
16-05 10-04 10-03
L . .
freq
2e-04 5e-04  2e-03 5e-03
L R L

il
0 5 11 18 25 32 39 46 53 60 67 74 81 88 95 0 9 20 33 46 59 72 85 98 113 129 145 161 177 193
Km Hours
Rio de Janeiro, trip distance Rio de Janeiro, waiting time

e
N 8

g 87

i g
&

g g ]

z ¢
2 &
= g

2 |

3
o &

¢ 3]
i &

05 11 18 25 G2 39 46 53 60 67 74 8 88 95 0920 33 46 59 72 85 9 113 129 145 161 177 193
Km Hours

Figure 6: Trip distance and waiting time distribuition for selected cities, red
line represents the maximum possible distance inside the bounding box
19



For the waiting time distributions, we find that they are relatively very
similar along all the different geographies, with small differences explained by
differences in the temporal pattens shown in the section above. A striking
feature, however, is the spikes around every 24h mark, and we speculate that
this is an effect of both collective behavior, with Twitter activity being more
concentrated at certain areas of the day, with individual habits, with users
tweeting at the same place and time daily.

We proceed to study the the relationship between waiting time and trip dis-
tance, and the results are shown in Figure 7. We note that there is a continuous
increase in distance at every 24 hour mark. We hypothesize that those jumps
come from two interacting underlying phenomena, one where the distance in-
creases constantly with the increasing waiting time derived from the diffusive
nature of human mobility, and another where the distance decreases to zero at
every 24h mark, as hypothesized before and derived form the fact that humans
have established habits. The superposition of the two resulting distributions
would be similar to the one observed in the data. This interpretation would ex-
plain also the peaks we see on the waiting time distribution at the same marks,
as the effects of habit.

Sweden Netherlands

Average trip distance
Average trip distance

0 s £ 7 160 135 0 2 S 75 100 125
Waiting time Waiting time

Figure 7: Relationship between waiting time and trip distance for Sweden and
Netherlands

For validation, we compare the distributions with the 1-day travel survey
for Sweden. First we need to consider the different scopes of the datasets and
account for it; and for this we filter our Twitter data to consider only trips
beginning and ending on the same day, and only trip that are longer than
on kilometer (minimum distance in the survey). Figure 8 shows the resulting
comparison. We can see that while the distance distributions agree to a certain
degree, the waiting time distributions do not. Part of this difference is due
to the different nature of both datasets: the distances calculated using our
data are mostly bounded by the distances on the travel survey, confirming our
observation made in section 2.4. We also speculate that due to reporting bias,
people will tend to under report small distances and short times, in favor of big
larger ones, due to the different cognitive load.
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Figure 8: Comparions of trip distance and waiting time between the Twitter
and survey datasets

3.4 Total travel distance

We define the total distance traveled simply as the sum of all individual trip
distances performed by a single individual (eq 4). Figures 9 and 10 show the
distribution of individual traveled distances for some studied geographies along
the study period. We again notice that these distributions resemble each other
and are fat tailed, but we can see that the size of the tail is heavily influenced
by the size of the country or city in question. This can be due to the fact
that our data is filtered geographically, and we are unable to capture movement
that takes place across geographical boundaries, and not that the people in
those countries have different travel patterns. However, it has been shown that
the individual mobility is related to income, so we would expect some variations
among countries. Also, as a consequence to this, we would expect that countries
with a high degree of income inequality to have a distribution that is increasingly
bimodal, and this could explain the peaks in total travel for both Saudi Arabia
and Egypt on the plots.

21



Australia, individual total travel Austria, individual total travel Egypt, individual total travel

g 2
g ° g ° g 3
0 30 65 105 145 185 225 265 305 345 385 425 465 030 65 105 145 185 225 265 305 345 385 425 465 0 30 65 105 145 185 225 265 305 345 385 425 465
Km Km Km
Kuwait, individual total travel Netherlands, individual total travel Saudi, individual total travel
0 30 65 105 145 185 225 265 305 345 385 425 465 030 65 105 145 185 225 265 305 345 385 425 465 0 30 65 105 145 185 225 265 305 345 385 425 465
Km Km Km
Sweden, individual total travel

0 30 65 105 145 185 225 265 305 345 385 425 465

Km

Figure 9: Total observed trip distance for individuals in the studied countries,
during the data collection period
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Figure 10: Total observed trip distance for individuals in selected cities, during
the data collection period

We again compare the Twitter analysis with our survey data for Sweden
using the same filtering process as previously described. Figure 11a shows this
comparison. There are some discrepancies between both distributions, with the
Twitter distribution being more heavy on the lower distances. One possible
reason for this is that twitter samples trips non-uniformly among individuals,
i.e. some individuals have more data points than others, whereas the survey
is theoretically uniform across the sample. To account for this, we can try to
normalize the traveled distance on the twitter dataset by the number of data
points, using the following transformation

S; = Si— (7)
n;

where S; is the individual traveled distance for user ¢, n; is the number of
data points for the same user, and 7 is the average number of data points. Figure
11b show the resulting distribution again compared to the survey distribution.
They compare somewhat more favorably, but still diverge.

We then use a CTRW to estimate the total travel distance of a popula-
tion. To do so, we use as the underlying distributions for the random processes
P (X)) for the step length and P (h) for waiting time obtained directly from the
processed Twitter data. Figure 11c shows the resulting traveled distance dis-
tribution (for 10000 simulated individuals) compared also with the distribution
resulting from the survey, the two distributions differ significantly. One of the
reasons for such discrepancies is that the formulation of a CTRW assumes that
the step length and waiting time are independent of each other, and as shown
in section 3.3, this is not accurate.

To overcome this, we can redo the same simulations, but instead of sampling
the step length from distributions P (X), we can sample it from the conditional
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distribution P (X|h) where h is the waiting time before that step. This results
in a distribution for the daily traveled distance that most closely resembles the
one given by the survey data, yet it still overestimates it. Results can also be

seen in Figure 11d.
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Figure 11: Comparison of total daily traveled distances between both datasets
(a), between the survey and normalized twitter distance (b), the survey and the
CTRW simulation (c), survey and correlated CTRW simulation (d).

Having concluded that a CTRW where the waiting time and distance are
correlated makes, to the extent in which could be validated, for the best approx-
imation of the total traveled distance distribution, we can use it to estimate the
yearly total traveled distance for the studied countries. Several methods have
been studied on how to obtain this measurement [42], resulting in a wide range
of estimative. As this is an important measurement that serves as a base in
many studies on energy modeling, so contributions to this can be very fruitful.
Figure 12 shows the resulting distributions for all countries (city distributions
can be found on the appendix).
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Figure 12: Simulated distributions for total yearly travel distance using the

correlated CTRW

Table 4 shows the estimated average distance per person per year in each
country together with their area and population density, and Table 5 has the
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same information for the cities. For both tables, demographic data was obtained
using the same sources as Table 2

| Country | Distance (km/capita/year) | Area (km?) | Population density | GDP per capita (PPP) |

Australia 10131 7,741,220 2.97 $48,800
Austria 2637 83,871 103.87 $47,900
Egypt 2958 1,001,450 94.53 $12,100
Kuwait 2092 17,818 158.98 $71,300
Netherlands 1519 41,543 409.62 $50,800
Saudi 3763 2,149,690 13.10 $54,100
Sweden 3930 450,295 21.94 $49,700
Table 4: Simulated average yearly travel distance per capita in kilometers using
the correlated CTRW, and comparison with geographic characteristics
| City | Distance (km/capita/year) | Area of bounding box (km?) | Population density |
Barcelona 173 23,205 118.44
Cape Town 706 82,702 55.06
Cebu 1035 1,753,169 4.02
George Town 115 545 433.69
Guadalajara 350 10,610 331.78
Jakarta 347 3,756 5,331.40
Johanesburg 434 22,435 221.23
Kuala Lumpur 553 43,731 92.30
Lagos 524 32,715 356.26
Madrid 183 41,069 105.00
Manila 313 70,915 211.61
Mexico city 505 159,569 92.42
Moscow 611 15,104 884.25
Nairobi 348 59,906 82.08
Rio de Janeiro 703 132,032 83.58
Sao Paulo 482 85,671 215.98
St Petersburg 457 100,685 42.33
Surabaya 170 11,567 263.91

Table 5: Simulated average yearly travel distance per capita in kilometers using
the correlated CTRW, and comparison with geographic characteristics

By comparing our estimate with others obtained using different methods
[5, 42], we find that we consistently underestimate the total travel distance, and
this is also clear when looking at the results for all cities. This is expected, since
the estimate comes from a simulation based on data that does not capture the
entirety of movement for any single person. But since our methods and data
are consistent across geographies, we have a good basis to compare the estimate
across them.

Looking at the total travel distance in relation to area and population den-
sity, we find that for countries there is a good correlation with the country area
(R? = 0.94) and with an inverse power of the population density (R? = 0.93),
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but no correlation with GDP per capita (PPP) (R? = 0.001). For cities, we find
in turn a low correlation with the area of the bounding box (R? = 0.29) and no
correlation with the population density (R? = 0.008). Combining these results,
we see that lower population density has a large affect on total traveled distance,
but that effect plateaus at higher densities, and becomes very unimportant.

Noting that our one-day travel distance estimate for Sweden overestimates,
if compared to the survey data, and the yearly travel distance is clearly an
under estimate, we ask what are the effects of the cutoff in the waiting time
distribution on this value. To analyze this effect, we again performed the yearly
estimate, but this time varying the cutoff time hourly from 1 to 24 hours and
then daily from 1 to 90 days. The resulting relation can be seen in Figure 13,
and there it is clearly visible that this effect is large.

We can also see that there seems to be two different effects acting on this
relation. Figure 14 shows that for large waiting time cutoffs, the conditional
distance distributions do not change significantly (and therefore might not be
useful), so the leading mechanism in the decrease of the total travel distance are
the longer waiting times. For shorter ones, this relationship is not so simple,
and has to be studied further.
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Figure 13: Effects of the cutoff in the waiting time and associated conditional
distributions on the total yearly travel distance using the CTRW model
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Finally, having considered a cutoff of 24h pertinent for the estimation of a
yearly total traveled distance, we redo our simulations using this parameter,
and the results can be seen in Table 6.

| Country [ Distance (km/capita/year) |

Australia 99259
Austria 24034
Egypt 25016
Kuwait 12365
Netherlands 16571
Saudi 31693
Sweden 30134

Table 6: Simulated average yearly travel distance per capita in kilometers using
the correlated CTRW, with a cutoff of the waiting time at 24h.

3.5 Radius of Gyration

To further analyze the results of the CTRW simulation, we can look at the evo-
lution of the radius of gyration in the simulation and compare it with the same
measure taken directly from the data. To do this, we assume that the CTRW
is anisotropic on the direction of travel, and generate the spatial distribution of
points along the simulated time.

Figure 15 shows the results of the average radius of gyration across time, for
the simulated random walk and calculated using the raw twitter data. We see
that, although they resemble each other for a very short initial period of time,
they do differ in significant ways, with the simulated radius increases much
faster than the one taken directly from the data. This again can be explained
by the fact that a CTRW exhibits a different diffusion regime than what has
been observed for human motion [37].
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Figure 15: Average radius of gyration for Sweden, calculated using twitter data
and simulated with a CTRW

3.6 Origin-Destination Matrices and Rose Diagrams

Since visualizing the results in matrix form is very difficult, we will translate
the matrix to graphical form and overlay it on a map. Figures 16-24 shows the
resulting plots, in them, the red lines represent trips going from the center of
one sub-region to another, with its opacity proportional to the number of trips
between them. To help visualize and understand the movement patterns, every
ODM is companied by a plot showing the twitter activity density on the same
region,and a Rose Diagram showing the total number of kilometers traveled in
each direction. [change desity->density]
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resented on a map (middle); total traveled distance on each direction (right)
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Figure 19: Twitter activity density (left), origin and destination matrices rep-
resented on a map (middle); total traveled distance on each direction (right)
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resented on a map (middle); total traveled distance on each direction (right)
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Figure 22: Twitter activity density (left), origin and destination matrices rep-
resented on a map (middle); total traveled distance on each direction (right)
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Figure 23: Twitter activity density (left), origin and destination matrices rep-
resented on a map (middle); total traveled distance on each direction (right)
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Figure 24: Twitter activity density (left), origin and destination matrices rep-
resented on a map (middle); total traveled distance on each direction (right)

At the country level, we can see the influence that big cities have on the
overall mobility in the country, and it has a big effect on the number of kilometers
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traveled in each direction, yet, by comparing both the rose diagram and the
visualization, we can also see a great influence of intracity travel on the total
kilometers. At the city level, while there is an effect of the geography on the
direction of travel, they are less pronounced. Most of the models for human
mobility discussed earlier make an assumption of anisotropy for the direction of
travel, but we find that this does not hold so well when we move to bigger and
less densely populated areas.

3.7 Communities

We use the Walktrap implementation present in the iGraph library [15], with
the number of steps set to 4. We run the community detection algorithm for
all our ODMs. For the sake of better visualizations, the cities maintained their
segmentation on a 1km? grid, and we segmented countries according to admin-
istrative regions (level 2) given by the GDAM database [1]. The results are
shown in figures 25-28.
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Figure 27: Detected communities in some of the studied cities
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Figure 28: Detected communities in some of the studied cities

For countries, we find that communities develop largely around big cities.
Some exceptions can be found in Australia and Egypt, and similarly to the
conclusions on section 3.1, those are largely unpopulated but touristic areas,
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again showing the affect of tourism in biasing the data.

For the cities, the results above show that the algorithm in most cases is
able to identify and separate cities from their suburbs. Also, in some of the
cities, such as Sao Paulo and Rio de Janeiro, we see that the communities are
also separated by socio-economic background. These results indicate that the
ODMs generated with our data do have a good connection with the actual
movement patterns in the city,

4 Conclusions

We proposed to analyze ways in which human motion can be analyzed using
Twitter data. The question of whether Twitter data can represent the travel
patterns of a population can be broken into two equally important questions.
The first question is if the population is accurately represented by active twitter
users, and second is if the tweeting patterns of those users accurately represent.

To illuminate the first question, we have looked at the size of our sample in
the population and found it to be between 1%-0.03% in the studied countries,
and 7.4%-0.2% for the studied cities, and reviews ways in which social media
data is known to be biased. We also looked at how the tweeting activity is
spatially distributed in relation to the population of each country, and found
the correlation ranging from very strong to not present, but in countries with
poor correlation we found strong influence of sparsely populated areas with
strong touristic attraction, and noting the difference between place of residence
and activity, we conclude that these correlations should be taken with caution.

On the second question, we started by looking at the temporal distribution
of tweeting activity and found it to be skewed towards times where people are
more socially active, and caution that there might be an over representation of
socially important places in the data. We then define movement as a sequence
of trips and waiting periods and proceed to look at the density distribution
for the trip distances and waiting times and find strong similarities for these
distributions across the studied areas, and agreement with the literature on
those topics, leading to a hypothesis that if our sample is indeed skewed, it
might be skewed in the same way across all regions, and our data can be used
to make useful comparisons across them.

We then feed our distributions into a Continuous Time Random Walk model
for human mobility and find that with some caveats, it can be used to estimate
the average total traveled time for a population, and make some comparisons for
those estimates across the regions, finding good descriptors for this variable. We
also find that this model is very lacking when describing other aspects of human
mobility such as the radius of gyration. A possible reason for this discrepancy is
the validity of using a CTRW to describe human motion, as it has been shown
that, if the underlying distributions are of the form of powers with negative
exponents, a CTRW can exhibit superdiffusive or subdiffusive behavior [40],
depending on the parameters of these distributions. However, it has also been
shown that human movement follows a ultraslow diffusive process [37], which
is not predicted by the CTRW. The difference in the diffusive behaviors might
be due to the fact that human motion is itself is not random, as there is a high
probability of returning to an already visited place.

Finally, we constructed Origin-Destination Matrices with our data and used
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visualization techniques to better understand their properties, we find that for
countries intercity and intracity travel play equally important roles in the mo-
bility patterns of sparsely populated areas. We also use a community detection
algorithm and find communities that show strong spatial resemblance to the
way we understand human movement to behave both at the country and city
level.

All of these results combined show that Twitter data indeed contains useful
information for the study of human mobility. Yet, careful assumptions and a
wise model choice are essential if one seeks to obtain useful insights.

5 Future work

Having barely scratched the surface of what can be done with this source of
data, this thesis hopes to be a good overview and a possible starting point for
deeper studies and insights. Future work can concentrate on better defining
the ways that the sample of the population studied is skewed, how this bias
varies across and the regions, and most importantly, how does this affect the
aspects of the studied data and conclusions. Attention should also be given to
the way the data is filtered, we know that today a large part of human move-
ment occurs across country borders and between cities, and we are unable to
capture this movement with the current filters; an individual based filter can
be implemented to overcome this. A better study of the shape of the under-
lying density distributions of motion can be made, so as to better understand
the theoretical mechanisms that give rise to such distributions, and how do this
mechanisms differ from region to region. Also, studying the shape of the con-
ditional distribuition P (x|h), and how it changes with varying h could provide
an insight on the problems found with the waiting time distribution. We have
also shown that different mathematical models of human motion can be fruitful
when estimating different aspect of motion, but lacking when focusing on oth-
ers. This was however done in an ad hoc basis and a more general theory could
be achieved. The validity of the ODMs constructed using the data can also be
tested using established tools on the four-step model.
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Figure 30:
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Trip distance and waiting time distribuition for Barcelona, Cape
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