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Abstract

Wireless sensor networks (WSNs) consist of cheap nodes equipped with sen-
sors and radio, able to pass data and control devices.

Debugging WSNs is an open problem because they consist of several
independent systems without advanced debugging capabilities, usually de-
ployed in unprotected environments. Simulators are often used to reproduce
real networks; with the extra capability of being able to accelerate or slow
down the time and inspect the internal state of every node in the network.

Often an important condition for being able to fix a bug is the possi-
bility of reproducing it consistently, identifying the causes and conditions
that trigger the problem; however, it can happen that some conditions will
present themselves only in the real network, and possibly in a way that ap-
pears totally random, making the implementation of a solution extremely
time consuming.

In this thesis we present a tool able to collect events from a network and
replay them in a simulator. We introduce the design of the tool, show real
world applications and evaluate the performances.
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Chapter 1

Introduction

Wireless sensor networks (WSNs) consist of cheap nodes equipped with sen-
sors and radio, able to pass data and control devices. They can be used
for diverse purposes, mostly to monitor the environment, which can be in a
natural setting or inside domestic/industrial environments.

They can be effectively used, for example, to monitor volcanoes [25], or
other kinds of geo-monitoring applications [30], or industrial applications
[5].

The nodes (or motes) can have one or more sensors attached, to measure
temperature, humidity, pressure, light, and so on. They can be used to log
the information they gather and store it on a local flash memory or forward
it to their neighbours using the integrated radio. The fact that they are
battery powered and often deployed in places not readily accessible makes
the energy requirements very stringent. Low power hardware and network
protocols are used to maximise the battery life and also to reduce the cost
of the devices.

The increased usage that this class of devices is experiencing, together
with the vast number of possible uses make the topic interesting and yet not
well explored.

Software for WSNs is commonly written using an event based model that
requires less resources than the equivalent mode with blocking operations
and multiple processes running. This is a more complex style than the one
used on commodity machines because the program logic is implemented
in many small functions and state machines are needed to implement the
correct behaviour.

Different kinds of programming bugs can happen on a WSN, but their
solution is made more complex both by the distributed nature of the appli-
cations and by the limited hardware used. The devices do not posses screens
and common debugging techniques such as stepping are not available unless
the program is executed inside a simulator instead of the actual device.

In debugging it is often crucial to understand the causes that trigger a



bug, and being able to reproduce a bug can be very helpful because the flow
of the program can be analysed until the problem is found. The purpose of
the thesis is to help in debugging WSN by capturing the state of a network
and moving it in a simulator, so that a situation can be reproduced and the
program flow can be inspected using the tools provided by the simulator.

Pure functional programming languages like Haskell are based on the
concept that a pure function should have some input and some output, and
the output should depend solely on the input and not on internal state;
however any internal state can be expressed as explicit input to a function
and any variation to it can be expressed in the output of the function itself.
Given input and initial internal state, a program will follow the same flow
and obtain the same results all the time it is executed.

The central idea of this thesis is to design and implement a subsystem to
use on WSNs able to capture the state of the entire network, by composing
the states of the nodes together, so that it can be moved in a simulator to
be analysed. An immediate observation is that nodes do not share memory
or clocks and are not in any way in sync, so capturing a global situation in
the same instant is not possible. We overcome the limitation by capturing
an initial state and then the events occurring in the system, to be able to
reproduce the state of a node in an instant ¢ and throughout the time period
when events are being captured. By capturing the events over a time span
rather than on a single instant it is possible to obtain a more faithful copy
of the situation inside the simulator, because the nodes that started the
snapshot in an earlier moment can be moved forward in time to align with
the nodes that took the snapshot at a later moment.

Rather than using costly messages to sync the clocks of the nodes in the
network, our approach is to use the messages that the nodes send to be able
to find a global order of the events captured on the various nodes. This lets
us avoid the problem of clock skew, round trip time and does not require
the nodes to exchange any extra message.

Our design uses instrumentation on every node and a central program on
the sink that is able to collect, process and re-upload the captured data inside
an identical WSN reproduced inside a simulator. In this thesis, we introduce
a set of tools to (1) log events with minimal intrusion of deployed systems,
and (2) deterministically replay of events in controlled environments such
as system simulators.



Chapter 2

Background and related work

To design and implement the proposed tool, previous literature was reviewed
to find limitations and similarities with the problem.

2.1 Synchronized clocks

The most immediate solution is to globally log events from a network and
use a global clock to mark the events and be able to obtain an accurate
sorting afterwards. However, as shown by other works[20] synchronizing
clocks of motes is quite difficult and expensive, as it is not possible to have
an exact figure of the time needed to send, receive, and process messages.
Apart from that, clock drift is influenced by environmental temperature and
changes over time. Clock synchronization also requires a number of messages
being exchanged to reduce the delta of the clocks in the network under the
desired value. All these limitations make synchronized clocks inapt for a
debugging system that is lightweight and non-intrusive.

We believe that precise clocks are not needed for our application, as
partial ordering is sufficient to produce consistent global snapshots.

2.2 Operating system

Operating systems meant to run on embedded systems tend to be more tied
to their specific task and less similar to general purpose systems. Contiki [§]
and TinyOS [2] are both systems for use in environments with constrained
resources and make heavy use of event based programming.

TinyOS [2] is a multi-platform event based OS implemented in NesC
[11]. It provides several modules at different level of abstraction to interact
with the hardware and provides library functions. During the compilation
process the application is compiled together with the OS in a single binary
that can be run by the motes of the WSN. This has the advantage of using
less memory, not needing run-time linking or virtual memory, but only one



program can be loaded and run, and there is no separation between the OS
and the application, which is then able to access any low level functionality
with no restrictions. It has no concept of multiple users or processes, does
not use virtual memory, has a limited support for threads and does not im-
plement blocking I/O operations. Programs designed to run on TinyOS are
deeply affected by those differences and need to be written in an appropriate
style, that leaves space for unexpected interleaving of events or other errors,
when not programmed carefully.

A TinyOS application (and the OS itself) is composed by a set of modules
that can provide or use certain interfaces. For example all the modules
pertaining the sensors can provide an interface to power the device on or
off. An interface defines a group of commands and events; they both are
functions but the direction in which they are called changes, so they can be
used to provide a two way of communicating between the modules. Generally
events are generated as consequence of hardware interrupts to signal the
event to the application, while commands are used by the application to set
the status of the lower layers.

The modules used need to declare which interfaces they use and/or pro-
vide, and then a configuration file is needed to wire the modules together,
connecting the interface provided by a module to another module that uses
it. The mechanism is quite generic and also allows multiple instances of
some modules (if they specifically allow that) and multiple wirings. Mod-
ules can be easily replaced by other modules providing the same interfaces,
and can be reused in multiple applications.

Besides commands and events defined in interfaces, modules can contain
task functions. They are low priority functions that can be preempted by
higher priority functions but not by other tasks, and are meant to perform
long operations splitting them in many steps. Tasks can be posted and they
will be queued for execution and run to completion. A task performing
a very long operation should hence split it in phases and post itself to be
scheduled in the next cycle until the operation is fully completed. The fact
that a task cannot be preempted by other tasks generates a situation where
tasks that run for too long and starve other tasks leading to bugs.

2.3 Debugging distributed systems

WSNs, like all distributed systems, base their operation not only on the
internal state of a node, but on the global state of the entire network, which
also includes messages that are in transit, along the internal states of all
the nodes. The correctness of the operation depends on the aggregate state
of the entire network. In non-distributed applications simulating all the
possible states presents prohibitive costs that for any real application make
the technique infeasible. In a distributed system the amount of possible



states grows exponentially.

A number of tools and systems have been devised to help dealing with
distributed systems. A common approach is to collect traces from the nodes
of the network and use them to create global snapshots of the network to
later enable replaying [7, 12, 13, 22]. These tools are designed to work
on Internet based applications and do not share the same strict resource
constraints that are present on WSNs, however basic ideas and approaches
can be reused and adapted to embedded systems.

2.3.1 WSNs

Typical nodes used for WSNs provide RAM that is up to six orders of
magnitude less than what can be found on a common PC. For example a
TelosB (a mote architecture, based on an MSP430 CPU) mote comes with
10kB of RAM. Comparing the available resources on the different classes of
systems, it is clear that the debugging on WSNs must present substantial
differences to obey to the constraints.

A number of WSNs specific approaches have been proposed. For example
[33] periodically collects the aggregated state of the nodes to see if faults
occurred.

NodeMD [18] focuses on detecting faults at runtime to prevent the nodes
from being completely disabled by them. Its fault detection component is
capable of detecting overflows, locks, and other application-defined faults.
It detects stack overflows by inserting instrumentation in the code to in-
spect the stack and registers at every function call, checks for locks using a
software watchdog that is instructed at compile time with estimates of the
time needed by a thread to complete a task. The notification component
logs the fault in a circular buffer, and the diagnosis component can bring
the node in a recovery state where it can be remotely operated to inspect
the status and the log, for debugging. This system can be very helpful in
dealing with deployed nodes preventing them to go offline, but it does not
take networking into account.

Sympathy [27] is a metrics collector for data collection applications. It
is based on the observation that insufficient amount of data collected in the
sink is caused by faults in the network; so it uses data flow for the metrics.
Then it uses the data to indicate failures their possible source. It is used to
report failures but has a limited utility in investigating their original cause.

Dustminer [17] logs events in the network and then uses a probabilistic
data mining approach to automatically scan the trace to try to expose the
sequence that led to a fault.

MDB [28] uses the higher level abstraction of macroprogramming to ab-
stract the complexity of using multiple machines and introduces a debugger
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a la GDB, allowing different views of the network, stepping and hypothetical
changes, where changes are introduced without the need to re-run the entire
program. The tool has a substantial energy overhead so it is unlikely to be
used on deployed situations but the limitation does not affect testbeds.

Other works focus on the introduction of programming abstractions
[6, 21, 23, 24] and do not focus on the debugging itself but in helping to
create an environment where it is easier to write correct programs with less
opportunity for faults to happen, while some tools [15] can use invariants
and check their validity at runtime also across node boundaries. This intro-
duces an overhead on the number of bytes that need to be sent and a small
overhead on the memory used. Another drawback of the method is that the
invariants across nodes are not tested in real time.

A closer approach to our method is used in [29] where each functional call
and its parameters are logged to provide the user with a complete view on
the system; but the trace can’t be replayed. The authors use a combination
of methods [3, 19] to trace the flow of the program inside the functions and
across them, exploit the presence of paths that are much more used than
the paths relative to exceptional conditions by compressing them. Since
generic algorithms such as LZW are too heavy for the nodes, they identify
at compile time the most common sequences and generate lookup tables to
compress them. They use two buffers to be able to trace all the activity on
one buffer while the other is being written on the flash memory, and then
use the traces to be able to inspect the flow of the program at a later time.

In this thesis we agree that tracing all the input is costly but we argue
and we show that it is not necessary to trace the input entirely if the state
of a node at a given time can be restored and replayed deterministically.
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Chapter 3

Design

To achieve the goal of recreating the snapshot of an entire WSN, the system
must be capable of creating snapshots of the single nodes that compose the
network. Composing together snapshots of the single parts is not a solution
that would work, because their lack of shared clock and memory makes it
impossible to instruct an entire network to capture a snapshot in a given
moment. Various delays in the communication and in the scheduling would
make the result unreliable.

The chosen approach to reach the goal is to capture and replay the events
occurring on the nodes, replicating the input, to obtain a program that can
re-perform the same calculations. We consider several types of events in all
the nodes of the network, and as some of them are messages between the
nodes, it will be possible to devise a partially ordered global sequence of
events, where only the order of the events that include interaction between
nodes are globally sorted, and the relative order between the local events on
different nodes is unknown.

To make it possible, all nodes must be capable of logging some events
during their normal operation, and store them. The developer will have to
decide which event sources are interesting or necessary for the replay. As
the events from the entire network need to be compared with each other to
find the matching events, the nodes must be able to send the entire log to a
sink node that must be able to collect and analyse all this data.

In this chapter we provide details on how the system and its various
parts must be put in place and an overview of how they act and what tasks
they carry out.
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Simulator

Event logs

Timero fired
Recv from Ne
Send to Ni

Send done

Figure 3.1: Global architecture of the system. The events from the WSN
are collected, processed and sent to the simulator to be replayed.

3.1 Nodes

The TinyOS[16] event based operating system is used for the implementa-
tion, so all the nodes are equipped with this OS, which can be modified
and expanded to fit the needs of the project. Since it is implemented using
nesC[11], all the changes need to be implemented using the same language.
In addition to the normal program, the design is to add extra instrumen-
tation to allow events to be captured, stored and replayed. This additional
instrumentation can operate in three modes: normal, log, replay.

normal which is also the default state, lets the program run normally.

log in this mode the system works normally but all the events generated by
the watched modules are being stored.

replay in this mode the events generated by the watched modules are ig-
nored, and the node is able to replay events grabbing them from the
event log.

3.1.1 Wrappers

To allow the architecture to be extendable, the concept of wrapper is intro-
duced.

A wrapper is a piece of code that wraps around an event source, and
performs some collateral actions (such as logging the event) before making
the right calls and resuming the normal flow of the program. This component
is in charge of both logging and replaying the events related to the wrapped
event source.

Applications use different modules, that might or might not need to be
debugged, the developer of the application is in charge of deciding which
components of the application need to be wrapped. As this design is meant
to be extendable a wrapper is only required to implement a certain minimal
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interface and is left free on the internal implementation details. However all
wrappers perform a similar function and it is normal to expect similarities
in their design.

A common behavior for a wrapper upon receiving an event is illustrated
in Algorithm 1. Showing how a wrapper is expected to behave in the different
states.

Algorithm 1 S is the state in which the logging module is. P are the
parameters to the event

1: procedure EVENTRAISED(P)
2: if S=NORMAL then
event(P) > Calls event, which is the normal event handling
procedure in the application
else if S = LOG then
5: LogEvent(P)

W

o

6: event(P) 1 stores the event in the log, and passes the event to
the application.

7 else if S = REPLAY then > Simply ignores the event

8: end if

9: end procedure

As an event source could in truth generate more than one type of event,
wrappers should repeat that pattern for all of the events. But in many cases
it should be possible to avoid having large amounts of duplicated code.

Often components not only generate events, but accept calls to query
or change their status. For example a timer can generate events but can
also be queried by the application, for the clock value. As a consequence
wrappers around such components must be able to deal with the fact that
the component can both call and be called by the application; in case of
a call coming from the application, the wrapper is expected to behave as
shown in Algorithm 2 and log the call with its result, to later be able to
replay it.

To deal with this situation it can be convenient to store the logs in a
queue structure, extended to allow to also read and write at specific posi-
tions. This allows to replay events and function calls in a simple way, as
shown in Algorithms 3 and 4. On replay, the wrapper will scan the queue,
find the first entry that has a type corresponding to an event, trigger the
event, and change the type of the entry to Nil. When the application calls a
command, the wrapper will intercept the call and scan the logs to find the
result that was yielded by that call in the original run.

Periodically the events that have been replayed, are removed from the
log, to speed up the other operations, as shown in Algorithm 5. This can
usually be done after having replayed an event.
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Algorithm 2 S is the state in which the logging module is. P are the
parameters to the call

1: procedure WRAPCALL(P)
2: if S=NORMAL then
return Call(P) > Calls the function in the component
else if S = LOG then
r < Call(P)
LogCall(P,r)
return r
else if S = REPLAY then
r <= CommandCall(Q,t) > looks in the log for the result of the
command t
10: return r > the application gets the same return value that it
received when running the first time
11: end if
12: end procedure

Algorithm 3 Replay an event
1: procedure REPLAYEVENT( @) )
2: for i < 0 to len(Q) do
3: if Q[i].type € E then > E is the set of all the types that
correspond to events

4: wrappedEvent(Qi]) > calls the function in the application
5: Qli].type < Nil > Marks the event as invalid
6:

7 return Nil

8: end if

9: end for

10: end procedure

Algorithm 4 Returns to the application the same value that the command
call returned during the original run
1. procedure COMMANDCALL(Q,t) © Q is the log queue and t the type
that identifies the command
for i « 0 to len(Q) do
if Q[i].type =t then
Qli].type < Nil > Marks the event as invalid

return Q[i].retval > returns the original return value, stored
inside the log entry, to the application
T: end if
8: end for
9: end procedure
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Algorithm 5 Removes from the log the events that have been already
replayed.

1: procedure CLEARLOG(Q)

2: while Q.head.type = Nil do

3: Q.dequeue

4: end while

5: end procedure

The shown algorithms are quite generic to provide an idea of how a
wrapper should be written, but still leave room to improvement or changes
if the needs for a specific wrapper should be different.

Log format

As different kinds of wrappers must be allowed without changes to the other
modules, only the specific wrapper has to be aware of the data format used
for the log, to let the other components remain completely unmodified when
wrappers are added or modified. The interface between the wrapper and the
central module only requires that all log entries must have a fixed size, and
that every type of wrapper must be identified by a unique integer.

The limitation on the constant size of the log entries can cause some
waste of memory when a wrapper has events with different sizes. However a
wrapper is free on the internal format it uses and is just required to have a
fixed length when dumping or loading the log, so a wrapper implementation
is free to use compression internally.

3.1.2 Central module

A central module is also needed. Its task is to coordinate the wrappers and
communicate with the external world.

In our design, the central module is the entity responsible for changing
the state and start and stop the logging, as well as replaying the events. It
must be possible to use this module from inside the application running in
the node, as well as externally, from the testbed. The module is designed
to operate over the serial port and be capable of dumping and loading logs
using it.

When changing state: all the wrappers should be notified of the new
state, possibly in an atomic way, so that no events can occur during the
transition.

To provide local ordering of the events the central module provides a
centralized counter, and all the wrappers are expected to atomically read
the counter and increment it before assigning a sequence number to a log
entry. Figure 3.2 shows different wrappers with stored events, each with
different incremental sequence number, so that they can be sorted.
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TimerLogger TimerLogger Messagelogger

1 fired 2 fired 4 send

6 fired 3 | getNow 5 sent

Figure 3.2: Wrappers store events, keeping a sequence number that is unique
on the node.

— TimerLoggerC |>| Timermiliic
TimerMilliC : MessageLoggercl
_— . H Receive >{ AMReceiverC
BlinkToRadio [——>| AMReceiverC BlinkToRadio [ 7|
|
T AMsend  [>| Amsenderc
AMSenderC
(a) A generic application (b) The same application with the new wiring

Figure 3.3: Wiring to add wrappers. The original modules are indicated in
white, the light gray ones are the wrappers and the dark one is an optional
interface to the central module.

During the replay stage the central module must determine which of
the wrappers has the event with the lowest sequence number, then has to
instruct that particular wrapper to replay one event to be sure that the
events are replayed in the correct order.

3.1.3 Wiring

The TinyOS concept of wiring modules together is exploited in this design.
It is used to support the insertion of wrappers without the need of extensive
changes to the code. Figure 3.3 shows a simple application, originally wired
to TimerMilliC, AMReceiverC and AMSenderC. With logging in place the
wiring is modified to interpose wrappers between the original module. The
figure also shows an optional wiring to Logger, which can be used by the
application to control the logging but is not a necessary component.

Thanks to the use of wiring and wrappers that provide the same in-
terfaces as the original components, only the configuration file with the
wiring requires modifications while the application itself is left completely
unchanged.
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Dump and loading logs

At compile time or at boot time, each wrapper must be connected with the
central module, and identified with an unique id that must not change across
reboots.

Allowing generic wrappers means that no assumptions can be made on
the size of the entries of their logs. There can exist wrappers that have
entries larger than the MTU, so to transfer the logs over the serial port a
protocol has been designed. Every event is preceded by a packet indicating
the unique wrapper id, the wrapper type and the entry size as shown in
Figure 3.4, and then followed by a variable number of packets containing the
raw binary data for the entry, as provided by the wrapper, and unprocessed
by the central logger module.

0 7 8 15 16 23

wrapper id size wrapper type

Figure 3.4: Packet format for the packet preceding a series of messages
describing one single event. The wrapper type field is needed by the sink,
to provide indication on how to process the following raw data.

The central module will dump the log querying all the wrappers multiple
times until all their internal logs are empty. At that point a special message
to indicate that the dump is complete will be sent.

The unique id per wrapper is necessary because when loading the logs it
will be used by the central module to determine to which wrapper the event
should be routed.

The events can be loaded back into the motes by sending the same
sequence of header packet, plus raw binary data. Wrapper modules are
expected to handle their own raw data.

The central module must be able to dump and load event logs while
the mote is still operating, but it must be granted that while doing these
operations the mote is not in log or replay states, which means that no
mutual exclusion support must be implemented to access the logs.

3.1.4 Initial state

To generate the snapshot of a node, generating the same events is not enough
to faithfully reproduce a program flow. Also its initial internal state must
be reproduced. Several approaches have been considered for this problem.
The idea of logging from boot and only allow replay from the boot con-
figuration has been considered but deemed to bring too many limitations
on the system. Resources in general and the logging space in particular are
quite limited on WSNs, so the log could only span a few seconds or minutes,
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depending on the activity of the node. Also, it would have been impossi-
ble for the application to turn on the logging only when a specific event is
triggered.

Our approach is to let the developer manually indicate which variables
and data structures need to be preserved. When the mote’s state is set to
log it will copy all the indicated variables to a separate memory area, which
will be dumped to the host system together with the events.

Collecting the initial state is also responsibility of the central module and
it should be done in the same atomic section as informing all the wrappers
that the state was changed. When switching to replay mode, the initial
state which is stored in a separate memory area needs to be restored before
events can be replayed.

The memory area for the initial state must obviously be large enough
to contain all the initial state, and hopefully no larger than that. In this
model pointers pose a problem because they must be handled manually by
the developer which must add both the pointer and the pointed area to
the set of variables that constitute the initial state. The creation of a tool
to automatically deal with pointers was considered but abandoned since
pointers can have multiple levels, loops, and similar complexities.

3.2 Sink

TinyOS offers different interfaces to access the serial port. On the lowest
level the interface allows sending one byte at a time and generates an event
when the byte was sent[14]. The implementation of this level is also platform
specific and not portable, so instead an higher level portable implementation
was chosen, where frames and packets are used on the serial port; so the code
on the sink must implement the same protocol to be able to communicate
with the nodes.

As specified by TEP113[14], communications PC-to-mote support ac-
knowledgments that indicate the sequence number of the message, so the
software on the sink can implement a timeout and can retry if an ACK is
not received within a certain time.

The implementation on the sink must be able to provide a reasonably
easy to use library to work with the events, abstracting from packets as
much as possible. It is very important that the events are not treated as
obscure binary data because the events that are logged on multiple nodes
need to be used to provide a global ordering of the events on the WSN. To
allow future expansion the implementation needs to be flexible enough to
easily add new event types.
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Node 1 Node 2 Node 3

1
Timer Timer Message receivd
\ \ \
Timer Message send >Message receivg
/'
'\ / '\ '\
Message receiv Timer Timer
A A A
Timer Message sent Timer

Figure 3.5: The figure shows a dependency graph for the events of three
nodes. The first receive event logged does not have a counterpart so it will
not depend on anything.

3.2.1 Event sorting

Since all the events carry a sequence number that is unique on every node,
sorting the local events on a node is immediate. Events such as radio events
or dissemination send have (or can have) a received counterpart on the other
nodes. These events are used to obtain a global order of events.

To obtain a partial global ordering of events, on the sink every event is
treated as a node of a dependency graph. Events that are only locals (e.g.
timers) depend on their predecessor in the event log of the node, while in
general events can depend on events on other nodes.

One event on a node can only be replayed if the events it depends on
have been replayed.

In a sequence of events only containing local events, it is not possible
to obtain a global sequence of events for the WSN, but it does not matter
because local events are not affected by nor affect the other nodes in the
network.

In Figure 3.5 is shown how the dependencies work. The event message
sent does not depend on a message received for the reason that a message
could be lost, so it would be incorrect to do such an assumption. Also the
processing times of the sending and receiving nodes are unknown so it might
very well be that the real time when the events occur does not have a precise
order.

The drawback of this scheme is that in case of a network with a number
of nodes that are just sending data, all the events from a sender node could
occur before all the events from the other nodes (which is very unlikely to
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Figure 3.6: Events ordering based on dependencies, including the observa-
tion that if a node receives two messages, the second one must have been
sent after the first was received.

happen in reality). To address the problem, rather than adding timestamps
or unrealistic dependencies, the taken approach was based on the observation
that if node B receives two messages from node A, then the second message
must have been sent after the first one was received, or it would have been
lost instead. This leads to the dependency scheme shown in Figure 3.6 that
does not have the limitation.

Clearly lost sent messages don’t have a corresponding receive event so
they will automatically considered as local events instead.

The approach of using local sequence numbers and then locating depen-
dencies on the other nodes in fact generates the same outcome as if vector
clocks had been used. Letting the computation and comparison to be per-
formed at a later time on the sink node has the advantage of not requiring
the nodes to keep track of the clocks of the other nodes thus saving memory,
and exchanging messages containing the local clocks is not necessary. The
nodes will then not generate extra messages that might influence the run of
the program with unseen side effects and interleavings, and large networks
will not cause problems requiring proportionate memory overheads in the
nodes.

Message matching

Matching a send event with a receive event correctly is central to obtain
correct results. For TinyOS radio messages the procedure involves using
the length byte, to compare only the meaningful part of the buffer and
discard the garbage at the end. Sequence numbers are also zeroed before
the comparison.

When the sequence number resets there is a risk of matching the wrong
messages, if they happen to contain the exact same content. However gen-
erally the log space for the message wrapper is much smaller than the 256
messages needed to overflow the sequence number so the situation is not
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taken into account.
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Chapter 4

Implementation

In this chapter we describe the specific implementation choices that were
made.

4.1 Nodes

The major task of logging events is made simpler by the fact that event based
programming is common on WSNs, so events logged are directly mapped on
events provided by TinyOS.

The functional tests were carried out using the Cooja[9] simulator. In all
the tests the Serial Socket plug-in was used to provide an interface between
the motes inside the simulation and the sink.

During the work difficulties arose to synchronize the simulation with the
code running on the host (for example it was necessary to insert some sleeps
in the host code to give time to manually decrease the simulation speed
before initiating the replay). To mitigate the problem a Cooja plug-in[31]
was implemented to provide some functions to control the simulation over
the D-Bus[32] IPC system, allowing code running on the host outside Cooja
to control the simulation.

4.1.1 Central module

The central module provides an interface that allows other modules to con-
trol the state of the logging.

It also provides a parametrized interface meant to be wired with the
wrappers. This interface is the sole way of communication between the
wrappers and the central module.

It allows the central module to change the state in the wrappers, and
allows the wrappers to require unique event IDs or to notify the central
module to stop the logging because the memory for the log is full.

The event
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event error_t enqueue_partial
(nx_uint8_t *buf, uint8_t start, uint8_t len);

is used to load events from the sink. One event can be loaded to the
wrapper in several partial chunks, so it is up to the wrapper to decide when
the event is complete. The need for this arises from the fact that events
have variable lenght, and the central module is not aware of the lenghts of
the events from the various wrappers. Being able to transmit one event in
several packets allows events of any size. All the chunks are always delivered
in order, so it is possible for the wrapper to know when one event is complete
and more data belongs to the next event, as shown in Algorithm 6.

Algorithm 6 buf is the pointer to the start of the event chunk. start refers
to where the chunk is located in the global event and len is the size of the
current chunk.

1: procedure ENQUEUEPARTIAL(buf, start,len)

2: static partial[logEntrySize] > Accumulator for the events
3: memepy(partial + start,buf,len) > appends the chunk to the
accumulator

4: if start+len = logEntrySize then > When the event is complete, is
added to the log

5: Q.enqueue(partial)
6: end if
7: end procedure

To replay an event, first the wrapper with the event with the lowest 1D
must be located, and then it can be instructed to replay the event as shown
in Algorithm 7.

Since wrappers log events and commands, but only events are replayed, a
wrapper must execute the procedure shown in Algorithm 8. As it is possible
to see, the procedure of replaying one event is not very efficient and despite
a list of wrapper ID ordered according to the event priority could have been
generated on the sink and uploaded to the nodes, it was decided not to do
so, because this procedure is only called at debug time in the simulator and
we don’t care about the performances in this scenario, as long as they are
reasonable.

Dump task The task of dumping the logs is implemented using the com-
mon TinyOS event-based model, so when one packet is sent, an event is
raised and some internal status is checked to determine which packet will
be sent after. As a consequence, other tasks posted by other modules can
run while a log dump is being performed, so the node can continue to work
normally while dump is in progress. Clearly the more task posting them-
selves are running, the longer they will all take to complete their operation.
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Algorithm 7 The central module queries all the wrappers to know which
one has the event with the lowest ID, and then replayes that event.

1: procedure REPLAYONEEVENT
2: min < MAXINT

3 w <+ Nil

4 for i € wrappers do

5 if i.headld < min then

6: min < 1.headld

7 W 41

8 end if

9 end for

10: if w # Nil then

11: w.replay > Replayes one event.
12: end if

13: end procedure

Algorithm 8 E is the set of the event types, Q is the log queue, used as a
list in this case.

1: procedure HEADID(Q)
for i € () do
3 if i.type € E then
4: return i.id
5: end if
6
7
8

o

end for
return MAXINT
: end procedure
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So performances will be degraded, but the node will work. Symmetrically
when loading a log, the messages are handled as they reach the node and
nothing blocking occurs so the node can operate normally.

4.1.2 Queue

The queue provided by TinyOS has been extended to allow read/write ac-
cess of all the stored items, to permit the modification of items, and allowing
certain procedures without the need of a linked-list. All the following algo-
rithms use such extended queue structure.

The following commands were added to the standard queue.

command t element(uint8_t idx);
command t* elementptr(uint8_t idx);
command void clear();

element allows to retrieve arbitrary elements from the queue, where 0 is
always the head of the queue.

elementptr returns the pointer to the nth element, in fact allowing the
modification of elements that are already in the queue. This feature
is used to implement Algorithm 3.

clear allows the central module to have a way to quickly wipe out all the
logs, if necessary.

4.1.3 Wrappers

All wrappers provide/implement two interfaces called In and Out (or similar
names), that must be manually wired by the developer around the compo-
nent that she wishes to wrap.

Internally the wrappers must implement and provide both interfaces
and connect one to another, to make the application work as if the wrapper
was not there, during normal mode, and to intercept and generate different
events during the other modes.

All the wrappers wire to the central logger using an unique parameter,
generated at compile time by the ncc compiler, ensuring that every wrapper
gets a different ID. This lets the developer create as many wrapper instances
as they want, since more IDs will be generated at compile time. And by
using uniqueCount the central module can know how many wrappers are
wired to it.

Timer wrapper

A generic module was implemented to wrap the TinyOS timers.
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It has the precision tag and is generic so it can wrap around any TinyOS
timer. Its TimerIn and TimerOut interfaces are to be wired with the timer
and with the application.

Despite the message is meant to be sent over the serial port, the internal
log format is a normal struct, so that in case padding is needed for the
platform the compiler is free to insert it, to make the logging of the event
as fast as possible.

When dumping or loading log, the events in the internal log are converted
in a network format, using an nz_struct, as shown in Fig 4.1.

0 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

timer

id type

Figure 4.1: Data structure to log an entry for a timer event. The timer field
stores the value of the timer, the ID field is the global ID obtained from
the central logger module, and the type indicates which kind of event or
command the entry is referring to.

Timer interfaces in TinyOS provide ten commands. In the wrapper
to avoid massive code duplication, since all the commands are handled in
almost the same way, a multiplexer function was created, that acts as shown
in Algorithm 9, which is an implementation of what shown in Algorithm 2.

Message wrapper

This wrapper logs radio messages, it provides and uses Send and Receive
interfaces, so only one wrapper is required to use send and receive.

Internally the structure to handle events and commands is very similar
as the structure described in Algorithms 1 and 2 so it is not described here.

In the internal log format the radio message is stored with a message_t
type, so it can just be copied by logging.

However, problems arise because the size of the message_t type can be
changed at compile time, so an event entry sent over the network would have
a different size depending on that; and that would cause the tools running
on the sink to be unable to recognize the format.

To avoid random failures and indicate a problem the compilation of the
program for the node will fail if the size of the message_t struct is not the
expected one. This will let the programmer know that she will need to
modify the tools on the sink to work with the new size.

A very neat macro from [26] was defined to recreate the behavior of the
static_assert present in C++11 compilers[1]. As NesC code is compiled into
C, the macro needs to work in C
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Algorithm 9 The generic command multiplex procedure can log and replay
any command. All the commands call to it and pass a different type, that
uniquely identifies the specific command. The function Commandl is an
example of how a command would use the multiplexer.

1: procedure command_multiplex( result,type )
2: allocate ev > creates a variable for a log entry

3: if S=NORMAL then

4: return result

5: else if S = LOG then

6: ev.id < getUniqueld() > prepares the log entry

7 ev.timer < result

8: ev.type < type

9: Q.enqueue(ev) > logs the entry

10: return result

11: else if S = REPLAY then

12: for i € () do

13: if i.type € C' then > C is the set of types corresponding to
commands

14: i.type = Nil

15: return :.timer

16: end if

17: end for

18: end if

19: end procedure

20: procedure Commandl > this shows how the multiplexer is called by
the various commands

21: r < RealTimer.Commandl()

29: return command_multiplex(r, 1)

23: end procedure
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id

result

type

message

s same size as message_t

Figure 4.2: Packet format for the dump of a message event.

#define STATIC_ASSERT(COND,MSG) typedef char
static_assertion_##MSG[(COND)71:-1]

On failure the assert will display an error message, that will contain also
the string indicated in the macro, giving some information to the developer
to understand why the compilation failed.

Dissemination wrapper

TinyOS provides a Dissemination interface. Applications can use it to spread
values across the network and receive them. The interface does not explain
how the values are to be transmitted, so the interface needs to be wired with
one implementation to be used.

In case the dissemination implementation is to be considered correct,
rather than storing all the radio messages, it is possible to only log the
dissemination events, to save log space.

The biggest challenge to implement a dissemination wrapper is caused
by the fact that the TinyOS interface for dissemination allows the type of
the variable to be disseminated to be set at compile time. And there can
be many instances of dissemination modules on the same node, each with a
different type.

As a result the required size to store one event can have significant
variations and is known at compile time. Because of that it is possible to
let the wrapper just use the needed space rather than allocate extra space.
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Internally two queues are used instead of one; one holds the extra infor-
mations added by the wrapper and the other one holds the dissemination
value, when dumping or loading the values from the two queues are concate-
nated in a single buffer.

This is possible because the central module queries every wrapper about
the size of their log entries one by one regardless of the type of the wrapper
(timer, radio, and so on), thus allowing separate wrappers of the same type
to have log entries with different size.

On the side of the sink, matching the events is just a matter of comparing
the variable field to find the ones that match. However performing more
complex operations and read the content of the variable can be complex if
multiple variables are being disseminated, because the type and wrapperld
association is established at compile time.

Since the dissemination update interface has no events, during replay the
wrapper just dequeues events without doing anything. The updater needs
a wrapper anyway so that the events can be matched on the sink with the
received updates on the other nodes.

The set command, used to set default values is left untouched by the
wrapper, since it is meant to be used just to set the initial default. On
replay if there are no events recorded, and hence the value never changed,
that default will be returned.

4.1.4 Initial state

When starting the log, the initial state needs to be copied to a separate
memory area.

The implementation is to have an array containing pointers and sizes of
all the needed variables, and a function iterate and copy them using memcpy
one immediately after another in the destination memory. No padding is
used, making the copy potentially slower than necessary.

Post-processor tool

The procedure to copy the initial state involves an array of tuples describing
the memory location and the size of all the variables to preserve.

This information is available at compile time but current compilers do
not implement optimizations to move arrays to the constant pool if they are
totally constant and the values they hold are known at compile time.

To keep the list of pointers and sizes on the constant pool, a Python tool
was written. It parses the C program generated by the ncc compiler before
it is compiled by gcec and finds all the variables that are marked to be part
of the initial state to keep in storage when logging. Then it will rewrite the
C code inserting instructions to generate the array in a static way so that
they can be placed on the constant pool rather than on RAM.
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This tool is also capable of counting the exact amount of space needed
to store the initial space, thus avoiding the need to use memory areas with
a static size larger than the expected amount of data they need to contain.

To inform the post-processor that a variable must be kept in the set of
variables needed to be stored for the initial state, the developer must call a
special function, passing the pointer to the variable and its size. The function
is defined inside one of the header files and is just an empty function; its
only purpose is to let the ncc compiler mangle the names of the parameters
so that the post-processor can look for calls to that function in the resulting
C file, collect them and use them to generate the array of pointers without
needing to know the module where they had been originally declared.

Dump message format

The entire initial state will be stored in one array, and the offset of the
variables in this array will depend on the compilation stage, so in general
this memory area has to be considered as an obscure blob with unspecified
format. Its exact format can be retrieved by inspecting the C code that is
passed to gcc.

The format of this memory area is highly volatile and changes depending
on which variables are being preserved and where are they declared in the
code, no tools are provided to manipulate it. The host tools will simply
collect the information and send it back to the mote to be restored.

If needed, the post-processor tool can be modified to generate code able
to access this memory. This code would be of limited use anyway, because
in case of native structs being stored, the tool only knows their size and not
their internal format, so without any major re-factory, the code would only
be able to produce a raw binary field.

Since this memory area can be larger than the MTU, to dump it, ad-
ditional information is needed to be able to restore it at a later time. The
message format used, shown in Figure 4.3, uses packets as large as the MTU,
and describes chunks of the memory area containing the initial state.

These messages need to be stored and can be send back from the sink
at any time.
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offset
Size information

size

raw binary
data

s Message

Figure 4.3: Packet format for the dump of the initial state. The offset and
size fields are used to copy the message in the right part of the memory area
that contains the initial state.

4.2 Sink

The TinyOS serial protocol[14] was implemented on the sink, using the
Python language. The mig tool provided by TinyOS to implement mote-
PC communication can generate Python code amongst the other targets,
but the Python generated code doesn’t have as much features as the other
targets, so an implementation from scratch was preferred.

4.2.1 Enums

When dealing with constant values it is useful to be able to define enums
to group related constants together. The Enum class was added in Python
3.4[4]. Unfortunately the implementation is made to run on Python 2.7
so the support is not available. An Enum class was implemented to have
similar functionalities.

The enum must extend the enum class and directly define the constants
in the body of the class. The abstract class provides a function to get the
name of the constant given the value.
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4.2.2 Communication
Frames

A Frame object has been implemented to map in software the concept of
frames in the transmission. The frames use two special bytes to delimit the
frames and to escape if those bytes appear in the payload. So upon receiving
the frame is first decoded using the format shown in Figure 4.4 and then
the CRC is checked to make sure it is correct. An exception is raised if the
check fails

PROTO

\ Payload

CRC
2 byte CRC

Figure 4.4: TinyOS serial frame after having been decoded.

The class can also do the reverse and generate valid frames given a
payload.

Constants for the various protocols are defined. One of such protocols
is used for the ACK messages, the frame payload will contain the sequence
number of the packet being acknowledged. The frame class doesn’t handle
ACKs itself, because it has no knowledge of sequence numbers as well.

Packet

Frames that do not contain ACKs, contain packets. Another class has been
implemented to deal with this layer.

A packet structure (shown in figure 4.5) contains many useless fields
(such as source and destination) because it is the same structure that TinyOS
uses for the radio stack, where the medium is not point to point.
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seq dest src len |8roup| AM

payload

Figure 4.5: TinyOS packet format.

In the implementation, the class ignores the sequence number, because
the same packet could be transmitted several times but every of these times
it would need to have a different sequence number to be accepted.

The AM field is quite important. It is used by TinyOS to route the
messages to the various modules, so the field determines which function of
the mote will receive the message. An enum is defined with the values used
in the AM field by the logger module. It is important to note that should
these values collide with those used by some specific application on the mote
and hence be changed, the sink code should be adapted as well to reflect the
change.

Handler

The Handler module takes care of the connection with one mote. It can
send and receive messages.

When sending the handler can accept a payload and an AM or directly
a packet. To make things more straightforward the handler can accept lists
of packets and will send them all.

The handler keeps track of the sequence number and will construct the
correct data-stream to send to the node. The send method is implemented
in a blocking fashion and in case of a missing ACK the handler will do a
few attempts of retransmission before giving up and raising an exception.

Reading data from an handler is a bit more complex. An handler has a
blocking file descriptor pointing to its mote, and exposes a read() method.
The application must select() or poll() on all the file descriptors from the
handlers to know when it is possible to call their read() method.

Handlers don’t make use of locks so if they are used in a threaded appli-
cation instead, the application should make sure that no concurrent reads
or writes are called on the same handler.

Handlers have a packet attribute, that lists all the packets received by
the handler. This is done because a read can often get partial frames that
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cannot be parsed by the upper layers, so partial data is kept in a buffer and
decoded into packets only when the frames are complete.

4.2.3 Event handling

A generic nz_struct class to deal with packed structs was written, it accepts
the binary data and a tuple describing the struct and initializes the object
creating the necessary fields. The class is also able to pack the struct again,
after modifications; and to print a nice representation of itself.

A class to represent events nz_event, subclasses nx_struct, and its main
purpose is to offer a function to convert the event into a list of packets that
the nodes could understand.

Then more subclasses are provided for each event type, and they are
associated with the wrapper type field shown in Fig 3.4. Those subclasses
are very minimal: they just provide an indication of the internal format used
by the wrapper to store the log.

As a result of this implementation, letting the sink be able to work with
a new type of wrapper is not very hard and only requires indicating the
internal binary format and associating the class with the constant number
used to indicate that wrapper.

4.2.4 Sink tool

A general sink tool is provided; it is able to connect to several motes using
sockets, and can instruct them to start/stop the logging, gather the log
dump and load it, to tell the nodes to replay it.

Parallel map

Most of the operations that need to be performed on all the nodes are
implemented using map on the list of the connections, to have all the nodes
do the same operation. For long operations (namely dumping a log and
loading it on the node) it is convenient to have a parallel map that can
execute all the operations in parallel and still return the same result as the
sequential map. In this way, even if the nodes are slow when compared to a
common PC, the time of the operation can be decreased because the time
waiting for a node to reply does not block the communication with the other
nodes.

Python provides a parallel map implementation, but unfortunately that
implementation does not allow file descriptors to be transfered from the
parent process to the subprocesses. So a new parallel map was implemented
in the python code. It runs several child processes using the POSIX fork(),
uses pipes to get their return value and serializes/de-serializes data to the
pipes to make sure python objects are correctly returned.
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The speedup obtained by this improvement is quite impressive, (see sec-
tion 5.1.1) and allows the sink tool to be more interactive.

4.2.5 Event sorting

Conceptually every event is a node in a dependency graph, that can depend
on multiple events. However a common pattern exists in having a group
of local events intermixed by events that cross the node boundaries. As a
result for the implementation it was chosen the approach of group events
into chunks, with the knowledge that every event in the chunk depends solely
by its predecessor, and a chunk can depend on multiple other chunks.

To implement this, the events in every node are grouped using send /receive
events as separator, every group is a chunk and will depend on the previous
chunk. During this chunking pass, two lists pointing to send and receive
events are kept and updated to speed up the 2nd pass.

On the 2nd pass, the list containing the receive events is scanned, and
for every item in it, the send list is scanned to find the matching event. If
the event is found then is added as predecessor of the receive event.

During this pass the predecessors from the same node are scanned to
search a receive event, which, if found, is added as dependency to the send
event.
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Chapter 5

Evaluation

5.1 Sink benchmarks

5.1.1 Parallel or serialized dump and load

The sink can need to manage networks with a certain amount of nodes.
In the original implementation when dumping the log of events, the 1st
node would be queried and the sink would have waited until the dump was
complete, to proceed with the 2nd node and so on. The same implementation
was used to load logs on the nodes. The improved version can communicate
with each node in parallel.

To perform this test the BlinkToRadio test application was used, and
the events were collected for 10s, on a network composed by 5 nodes. The
results are shown in Figure 5.1.

5.2 Node benchmarks

In this section we perform and show the results of some performance tests
on the nodes, to show the overhead introduced by the logging in the system.

All the tests were performed compiling the application with telosb target,
and then loading the binary file in Cooja, as a Sky mote.

MSPsim[10] was used in conjunction with Cooja for the tests. The sim-
ulator offers the possibility of counting the cycles of the mote’s CPU, and
Cooja has the capability of pausing the simulation based on various events.
MSPsim’s cycle counter was modified to output the current count on the
standard output when the update button is pressed or when the simulation
is started /paused. This allows for shell tools such as grep or tr to be used
to filter and collect the relevant data for further analysis.

In general counting CPU cycles has proven to be easier and more precise
than counting milliseconds, allowing us to ignore the effects of other pro-
cesses running on the host machine, so they were preferred in most of the
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Figure 5.1: Time needed respectively to dump the event log from the WSN
and to load it on the nodes.

tests.

5.2.1 Aggressive blinking

To perform this test, an application that blinks the LEDs of the node was
written.

The application uses one timer and has one task that reads the value
from the timer, sets the LEDs on that value and posts itself. The task is
posted in the boot section, and never stops to post itself.

The timer is just used to read the time-stamp, but not to trigger events.

Cooja was configured to interrupt the simulation on LEDs events, and
the amount of cycles performed by the CPU until that moment were counted
and stored in a file.

A shell script was used to unpause the simulation at regular intervals,
which will automatically stop again almost immediately, on the next LED
event.

Three versions of the application were tested.

logging in this version the application uses the log for the timer and the
log is enabled at boot, before the task is posted.

normal in this version the timer is wrapped by the logger component, which
is not used to log the messages.

nolog in this version, there is no logging
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Figure 5.2: Cycles needed by the CPU to set a led for the first time

This application is very CPU intensive. It never stops waiting for events,
it always has a task pending.

As shown in Figure 5.2, the initialization time for a node is a higher if
the logging facility is included in the program, regardless of it being active
or not. The compiler can’t aggressively remove the code because the logger
listens to the serial port and can start logging if such a command is received,
so this shows that even if they seem not to be used, the logging capabilities
are loaded anyway.

In Figure 5.3 is shown how many CPU cycles occur between one LED
event and the next. And it appears evident that the logging has a certain
cost on the CPU. However common WSN applications aren’t CPU bound
and this test was performed specifically to show the drawbacks. The values
shown are an average calculated on the same program running on a long
period of time. The period used in the case of logging was shorter than the
other cases, to make sure that all the events could fit in the log.

5.2.2 More wrappers

A typical application will need to log more modules than a single timer. This
test focuses on exposing the effects of the increasing number of wrappers
within an application.

A blink application was written, to use from one to four timers, with
and without the logging modules compiled in. Then after all the timers are
instructed to fire periodically at different intervals, a task is scheduled to
increment a counter and set the LEDs with the value of the counter. The
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Figure 5.3: Average number of CPU cycles between successive led operations

task is also scheduled when any of the timers fires, but this is not important
for this test since just booting times were taken into account.

Figure 5.4 shows that adding more timers does not increase the time re-
quired to start the program, but having more wrappers around those timers
seem to generate a linear overhead instead.

The overhead added by each wrapper is quite small when compared with
the general overhead of using the logging, which comes in whatever number
of wrappers is used.

The specific values are likely to be different when different type of wrap-
pers are being used, but the test clearly shows that every wrapper will
impose a cost at boot time.

5.2.3 Fast radio

In this test the message wrapper is tested. The application is a variation of
the example RadioCountToLeds from TinyOS. All the nodes have the same
program, but the node with ID 1 sends messages and the other receive those
messages and set their leds accordingly. In the original example, messages
are sent periodically using a timer, but in this modified version a task is
used to send the messages, and the task is scheduled every time a sendDone
event is raised, to send messages as fast as possible.

It was observed that one radio message is sent every two radio medium
events signaled by Cooja, so half of the partial cycle counts had to be dis-
carded.

The results of the test are shown in Table 5.5 and in Figure 5.6. As it is
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Figure 5.4: Cycles needed to turn on one LED, using 1,2,3 and 4 timers,
wrapped or without logging.

normal | logger

boot ms 4482 4493
boot cycles 83947 | 116488
messages ms 4605 4627

messages cycles || 604388 | 681954

Figure 5.5: Cycles needed by the two versions to boot and to send 35 mes-
sages.

possible to see, for more complex applications the overhead is quite minimal
both because the application in itself is bigger and generates more load, and
because the impact on boot time is reduced by the fact that many modules
are used anyway by the application itself and don’t need to be loaded just
for the logger.

When logging, the messages needs to be copied entirely into the log, so
this imposes a limit on the maximum throughput achievable when logging
is in use.

The results of this test are aggregate results over 17 messages sent, so
the difference between the normal version and the logging version are em-
phasized.
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Figure 5.6: Comparison in milliseconds to: boot, boot and send 35 messages,
send 35 messages.

5.2.4 Cycles per radio message

In this test the same application used in the Fast radio test was used, but
instead of gathering data on the time needed, the focus is shifted on the
extra effort needed by the CPU to log a single radio message.

The simulation was configured to have just one node and to stop when
events occur on the radio medium rather than on the LEDs. The cycles
counter of the CPU was used to know the needed time between one message
and the other. The initial counter results were removed to avoid taking into
account the boot time, already considered in other tests.

From the sequences of values, new sequences were generating by cal-
culating the difference of every value with the previous one, to know how
many cycles elapsed between one message and the next. Then the average
was calculated on those values.

The number of transmissions done with the logging enabled was kept to
a minimum value because the logging automatically stops if the log space
is full and that would have yielded incorrect results on the average. So the
number of transmissions were enough so that all the messages could fit in
the log.

Figure 5.7 shows how the logger module brings no substantial overhead
when disabled, and when the overhead on the single message is compara-
tively very little. Table 5.8 shows the numerical averages between one packet
and the next in the different cases. It is possible to see that a disabled mes-
sage logger only causes a slight increase on the average.
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Figure 5.7: Comparison of the cycles needed by the application to send one
message, in a modified BlinkToRadio application.

logger enabled logger disabled no logger
16382 15848 15845

Figure 5.8: Average amount of cycles needed to send one message in a
modified BlinkToRadio application.

5.2.5 Memory usage

Using the logging module inside an application will have a cost in terms of
memory used.

The effects are due to the use of the serial stack, and by the need of
every wrapper to have a memory area to use for the log.

Wrappers have a default log size (defined inside an header file) so the
larger effect of adding a new wrapper in the application is that an array
of size n, with elements large enough for the event data structure will be
placed on memory.

Developers can (and should) tweak the default queue sizes according to
the specific need of the application, keeping in mind that the event structure
for different wrappers have different sizes.

In addition to that, a wrapper usually need to keep some more internal
state, that doesn’t depend on the size of the log.

In table 5.9 the memory usage is reported, the wrappers are used just
for the timers, and each of them has a size of 40 entries. As it is possible
to see, adding a wrapper requires an extra 346 B. The struct containing a
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# timers ROM RAM
1 timer normal | 2490 B | 38 B
logging | 7650 B | 688 B
2 timers normal | 2644 B | 48 B
logging | 8556 B | 1034 B
3 timers normal | 2698 B | 58 B
logging | 9318 B | 1380 B
4 timers normal | 2714 B | 68 B
logging | 10012 B | 1726 B

Figure 5.9: Memory usage as reported by the compiler for the many timers
application compiled with different amount of timers and adding/removing
log support

ROM RAM
message wrapper || 18454 B | 3654 B
normal message 16932 B | 1350 B

Figure 5.10: Memory usage increase to add a message wrapper over an
already logged application.

normal
logger
2500 logger+wrappers
2000
" -
£ 1500 -
[a]
1000 -
500 -
0 J

Figure 5.11: RAM usage as reported by the compiler for: blink application
with 1,2,3,4 timers and for RadioCountToLeds. Every wrapper can store 40
events.
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timer event has fields for 7 B, plus padding for 40 items it gives 320 B; that
account for most of the memory overhead caused by an extra timer wrapper.
10 B are actually being caused by having an extra timer. So this shows that
the impact on memory is strictly related by the size of the log.

Another interesting observation from the data is that also the size on the
ROM is increased, despite the wrappers are identical and share the same
code. This is caused by the NesC implementation of generic modules that
duplicates the code for every instance.

In table 5.10 is shown how large is the overhead to add a message wrapper
over an application that uses the radio and already has logging in place.
Normally a message_t struct takes 52B, the wrapper adds 4B to that for
extra information, so with a log of 40 entries, this requires 2240 B, which is
not a small amount on a node. This poses a limit on how many messages
can be logged in a real application, considering that more structures will be
needed by other modules and stack space is also needed to operate correctly.

Figure5.11 shows how on non-trivial applications the overhead of the
logger instrumentation is not this big, while the space necessary for the
wrapper can be substantial, if the size for the log is not modified.

5.3 Split-Phase Faults

Most long operations in TinyOS are implemented as split-phase, when for
example a command to initialize a device is sent from the application to the
lower layer, and then an event is sent back to signal that the initialization
is complete.

The authors of [29] use LEACH as a case study to explain how their
tracer helped in finding an implementation error.

LEACH is a TDMA-based dynamic clustering protocol. In the example
the problem was caused on the cluster head by a timer event trying to send
a debug message while another component was sending the informations
about the cluster to a node requesting access. The bug was caused by the
fact that in the timer event, the type of the message was set, although
the send itself would fail, the message itself was sent with a different type
(because there is only one buffer for the messages, and the original content
had been modified by an interleaving event) and acknowledged and ignored
by the receiver, which had no function associated with that type of message.

With our implementation the log on the non-head node would show no
activity, since the wrapper is placed at high level and the message would be
discarded before reaching it, and the head node would show an interleaving
of a timer between send and sendDone, and also carry enough information
to show that the buffer’s content was altered.
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Chapter 6

Conclusion

6.1 Limitations and future work

A number of possible future improvements are explored in this section. They
are meant to highlight the limitations of the present work and suggest ways
for further improvement.

As we have shown in the evaluation section, the memory expensive mes-
sage wrapper would need some improvements to be able to store more mes-
sages. For example, if no bugs occur the content of the message buffer after
it has been sent is identical, so there is no need to store it twice. Also,
the packet could present some redundancy and remain largely identical, so
storing a delta rather than an entire copy could improve the memory usage
at the expense of an increased CPU usage. The trade-off would need to be
evaluated carefully. A number of other specific wrappers can be devised and
implemented expanding the current architecture. They could also be used
to wrap around the lower level components, closer to the hardware layer in-
stead, if needed. They would have to overcome the current design limitation
forcing wrappers to ignore events while in replay mode.

The current implementation does not take scheduling into account but
assumes that in the interval between the command to enter replay mode, and
the first command to replay an event, enough time will pass to exhaust all the
queued tasks, and the replay will proceed undisturbed without influences.
This might not always be the case, and including the scheduler into the
logging model would help in this direction.

6.2 Conclusion

In this thesis we introduced a tool to log events from the nodes of a WSNs
and to replay them in a controlled environment to facilitate debugging.

We have shown how we exploit the concept of wiring in nesC to easily
introduce wrappers around the modules, that allow us to intercept and log all
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the interaction between two modules. The same design was used to perform
the reverse operation and simulate an interaction between modules.

We also illustrate how practically the system is implemented and made to
work, and the methods used to extend the concept of logging and replaying
from a single node to an entire network.

The investigated results show that the used approach has a tolerable
impact on performances. This, with the possibility of easily integrating our
system within pre-existing networks and distributed applications, makes the
use of the present work a viable solution to investigate and solve bugs in
WSNs applications.
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Appendix A

Add logging

In this chapter we show how the logging feature can be added into an existing
application. Some code is shown in diff format, to highlight the needed
changes into an already existing application.

A.1 Initial state

Variables part of the initial state need to be module-global, they are indi-
cated as part of the initial state by this function call:

bool variable;

task void do_task() {
+ LOG_STATE_VAR(&variable,sizeof (variable));

The function call is just a placeholder, it will not perform any operation
at runtime, but being it a function, that code needs to be placed inside a
function. It is not important inside which function it is located.

A.2 Timer wrapper
The app has this line:

uses interface Timer<TMilli> as MilliTimer;

In the wiring, that interface is wired to a TimerMilliC. We declare a
timer wrapper with the same precision and wire it to both the timer and
the application as shown in the following diff-style configuration.
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components new TimerMilliC();

App.MilliTimer -> TimerMilliC;

+

components new TimerLoggerC(TMilli) as TL;
TL.TimerIn -> TimerMilliC;
App.MilliTimer -> TL;

+ +

A.3 Radio wrapper
The application declares uses as follows:

uses {
interface Packet;
interface Receive;
interface AMSend;

And the configuration is changed to add the wrapper:

components new AMSenderC(AM_TYPE);
components new AMReceiverC(AM_TYPE);

+ components new MessageLoggerC() as ML;
+ ML.AMSendIn -> AMSenderC;

+ ML.ReceiveIn -> AMReceiverC;

+ ML.Packet -> AMSenderC;

- App.Receive -> AMReceiverC;

- App.AMSend -> AMSenderC;

+ App.Receive -> ML.ReceiveQut;

+ App.AMSend -> ML.AMSendOut;

App.Packet -> AMSenderC;
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