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Abstract 

 

Process data for an electrostatic precipitator (ESP) from Uddevella Energi AB is 

measured with one-hour resolution. There are 23 predictors which are ash 

concentrations, steam productions, voltages, currents, flue gas properties (volumetric 

flowrate, temperature, pressure, oxygen, and water content), and exhaust gas 

compositions (HCl, CO, NOX, CO2 and SO2). The data is preprocessed by removing 

outliers using standard deviation method and Mahalanobis distance, resulting in 3 

different scenarios (s1, s2, and s3). To avoid overfitting, data in each scenario is split 

into training and test sets for 7 cases having different amount of data in training and test 

set (i.e., the training/test set percentages of data were: 50-50, 55-45, 60-40, 65-35, 70-

30, 75-25, and 80-20). The main predictive models are linear regression and support 

vector machines (SVM). Each of them is additionally applied with principal component 

analysis (PCA) and partial least squares (PLS) for dimensionality reduction. Thus, there 

are 6 models in total (i.e., Linear regression, Principal component regression (PCR), 

Partial-least square regression (PLSR), SVM, SVM with PCA, and SVM with PLS). 

From investigation, scenario 2 with outliers removed by standard deviation method 

gives the best performance in most cases. For the prediction trend, linear regression, 

PCR and PLSR models have bad prediction at very low and very high efficiency. With 

all 23 predictors, SVM with PLS give the best prediction trend among 6 models, and 

case 65-35 provides the best performance with RMSE of 0.0035, R2 of 0.86, MARE of 

0.26% and MaxARE of 1.45%. Feature selection is performed to improve the models. 

The best predictor combination to be removed is CO2, SO2, H2O, HCl, CO, O2wet, Pin, 

and NOX, leaving 15 predictors for the models. Unusual trend of SVM and SVM with 

PCA from using all predictors is reduced or even disappeared, while all models get 

improved when this reduced set of 15 predictors is used. SVM with PCA model gives 

best performance for all splitting cases with 15 predictors and case 50-50 provides the 

best indicator values with the lowest RMSE of 0.0029, highest R2 of 0.9161, lowest 

MARE of 0.19% and MaxARE of 1.94%. Thus, SVM with PCA model with 15 

predictors using scenario 2 and case 50-50 is recommended for ESP efficiency 

prediction.  

 

Key words: Electrostatic precipitator (ESP), Linear Regression, Support Vector 

Machines (SVM), Principal Component Analysis (PCA), Partial Least Square (PLS) 
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Notations 

 

Upper case letters 

A   Effective collection area (m2)  

C  Box constraint 

𝐷(𝑋, 𝜇) Mahalanobis distance 

G(xi,xj)  Gamma matrix, kernel function  

I   Current 

𝐿𝜀  Epsilon loss function 

𝐿(𝛼)  Lagrangian loss function 

NDe   Deutsch number, NDe = WA/Q 

Q   Flue gas flow rate (m3/s) 

V  Voltage 

W  Particle migration velocity (m/s) 

Xij   ith observation on the jth predictor variable 

Z   Principal component 

 

Lower case letters 

bk   Fitted coefficients 

fk(Xij)   Scalar-valued function of the predictor variables Xij. 

k   Dimensionless parameter with value from 0.4-0.6 

ri  Residual   

yi   ith response 

𝑦̂𝑖   Predicted response 

𝑦̅   Mean response 

 

Greek upper-case letters 

Σ  Covariance 

Φp1   Loading vector (Φ11, Φ21, …, Φp1) of first principal component 

 

Greek lower-case letters 

αn, αn
*   Lagrange multipliers 

βk   kth coefficient 

β0   Constant term in the model 

εi   ith noise term, or random error 

ε   Epsilon margin 

𝜂  ESP efficiency 

𝜇   Mean of the distribution 

𝜉𝑛 , 𝜉𝑛
∗   Slack variables 

𝜌𝑑  Apparent dust resistivity 

𝜎   Standard deviation of the distribution 

𝜎𝑋𝑌   Covariance of X and Y 

φ(x)   Transformation that maps x to a high-dimensional space 
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1 Introduction 

As environmental regulations on air quality standards have become increasingly 

stringent over the past few decades, the removal of particulate matter (PM) entrained 

in the flue gases from various industrial combustion processes is of vital importance. 

An electrostatic precipitator (ESP) plays a significant role to do this task. It is the most 

common and highly efficient device that is used to control and reduce PM suspended 

in the flue gas stream by mean of electrostatic forces. ESP has ability to treat large gas 

volume at high removal efficiency up to 99.9% with low pressure drop. To maintain 

high performance of ESP is important. Thus, it becomes the interest of this thesis on 

how to bring technology to help this together with day-to-day operation in the plant. 

The main interest is to use machine learning as a technique to find correlations between 

operating parameters that influence ESP performance. 

 

Machine learning brings together statistics and computer science to enable computers 

to learn how to do a given task while not being programmed to do so. The algorithm is 

a trial-and-error process using computational methods to learn information directly 

from data and find a model that fits the data as best as possible and then make 

predictions based on that. For examples, one can use machine learning to predict 

weather temperatures based on a set of relavant measured data, or predict sales based 

on many important factors, or even use it for image recognition and fraud detection. 

There are a lot more industrial applications that it can be applied. With the potential of 

machine learning, ESP process data can be used to train predictive models and then 

these models can be used to predict ESP efficiency to ensure that it is operated with 

good performance or to be aware of bad performance that may occur. More specifically, 

the models use relative parameters that have an impact on ESP performance as predictor 

variables for effiency prediction. In this work, the models include observed parameters 

which are ash concentrations, oxygen and water content, and exhaust gas compositions, 

together with operating parameters such as gas properties (volumetric flowrate, 

temperatures, and pressures), and electric field (voltage and current). The models are 

best to be used for exploratory purposes in order to see that what kind of predictors 

influence the ESP efficiency in what way and in what extent. In other words, to use 

these models ones must know the values of the predictor variables and must know under 

which conditions the ESP is operating at a given moment. The usage of the models is 

not to predict what will happen in the next moment, but to propose models of operation 

(i.e., combination of parameters) that the ESP can work better.  

 

The simplest model typically used in engineering applications is linear regression that 

describes a response as a linear function of one or more predictors. More advanced 

models such as Support Vector Machine (SVM) can be used for non-linear regression 

to find deviation from the measured data by a small amount, with parameter values that 

are as small as possible to minimize sensitivity to error. On the other hand, 

dimensionality reduction techniques such as Principal Component Analysis (PCA) and 

Partial least-squares (PLS) are commonly applied when dealing with high-dimensional 

data. PCA uses orthogonal transformation to convert a set of observations of possibly 

correlated variables into a set of linearly uncorrelated variables. PLS regression is a 

technique used with data that contain correlated predictor variables. Like PCA, this 

technique constructs new predictors as linear combinations of the original predictors; 

however, PLS constructs these new predictors by considering the observed response 

values. This gives PLS reliable predictive power.  
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This thesis aims to develop statistical models to predict ESP performance using 

machine learning algorithms based on supervised learning. The main models are linear 

regression and support vector machine regression. PCA and PLS are additionally 

applied to both models to reduce dimensionality as there are 23 predictors used in 

predicting efficiency. The work is executed using MATLAB (R2019b). The objectives 

of this study are to investigate the model accuracy and generalizability performance, 

examine effect of outlier removal methods and the effect of training/testing cross 

validation, as well as perform sensitivity analysis of operating parameters.  
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2 Theory 

This section aims to introduce the reader to the knowledge required to understand and 

interpret the results of this work. Firstly, an overview of an electrostatic precipitator 

(ESP) is presented. Secondly, a general overview, types and techniques of machine 

learning are presented, followed by detailed description of each model used in this 

study. 

 

2.1 Electrostatic Precipitator (ESP) 

An electrostatic precipitator (ESP) is the most common and highly efficient device that 

is used to control and reduce PM suspended in the flue gas stream by means of 

electrostatic forces. ESP has the ability to treat large gas volume at high removal 

efficiency up to 99.9% with low pressure drop. There are two main components inside 

an ESP chamber which are high-voltage discharge electrode system and a series of 

neutral grounded collection plates. The high negative voltage provided by a 

transformer-rectifier (TR) set is applied to the discharge electrode creating an electric 

field in the space between the electrode and collection plates (Figure 2.1.1). When the 

flue gas enters an ESP, the dust particles are charged negatively by mobile ions 

generated at the high voltage electrode. The electrostatic force created by the electric 

field on the charged particles results in accelerating of the particles towards the 

collection plates. The charged particle impacts the collection surface where it sticks and 

loses its charges. With more and more particles, an ash layer is formed. The layer is 

removed by rapping the plates, causing the dust to fall into hoppers located below the 

plates. [1-4] 

 
Figure 2.1.1: ESP operating principle and main components [3] 
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A well-known Deutsch-Anderson equation is the simplest equation for estimating the 

ESP collection efficiency. It is based on many ideal assumptions which are uniform 

size distribution and no particle re-entrainment. It considers the particle dielectric 

constant, but not the resistivity which is the most common factor considered when 

designing an ESP. Matts-Öhnfeldt equation is a modified Deutsch-Anderson equation 

which is more commonly used for an ESP design, as shown in Equation (2.1). It 

includes an additional exponent of a dimensionless parameter k which ranges from 0.4 

to 0.6 depending on the dust properties and standard deviation of the particle size 

distribution. It is used to provide a more conservative estimate of the removal 

efficiency.[3,5-8] 

 

𝜂(%) = {1 − 𝑒𝑥𝑝[(−𝑁𝐷𝑒)𝑘]} × 100%           (2.1)  

where   

NDe is the Deutsch number that is NDe = WA/Q 

A is the effective collection area (m2)  

Q is the flue gas flow rate (m3/s) 

W is the particle migration velocity (m/s) 

k is the dimensionless parameter with value from 0.4-0.6 

 

Apart from the design parameters in Matts-Öhnfeldt equation, a literature review [7] 

shows that ESP performance can be influenced by several operating parameters such as 

gas properties (velocity, temperature, density, pressure and humidity), PM properties 

(size, density, concentration, velocity, shape, adhesivity, resistivity, and dielectric 

constant) and electric field (voltage, current, and electric field strength). For voltage 

and current, Equation (2.2) shows the relationship that is often found in many industrial 

ESP with 𝑛 ≈ 2. A higher collection efficiency can be achieved when the ESP is 

operated at the maximum available voltage. [6,9] 

  𝜂 = 𝑉𝑛𝐼               (2.2) 

ESP performance is affected by the apparent dust resistivity (ρd) (Figure 2.1.2). For 

good performance of a dry ESP, ρd value should be within 102 and 5x108 Ωm. The dust 

resistivity can be affected by gas temperature, water content, and the gas composition. 

Usually, the peak value of ρd appears at 150-200°C. [6] 

 

Figure 2.1.2: ESP collection efficiency [10] 
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More literature reviews [11-13,15] show that ESP efficiency increased with decreasing air 

flow velocity, increasing of gas temperature, increasing of applied voltage, and 

decreasing in gas volume. One parameter related to the gas volume is oxygen content. 

Significant variations in oxygen may indicate large swings in the gas flow rate that may 

decrease ESP performance. [15] For gas temperature, it can affect the resistivity of the 

particulate. It can also affect the gas properties to such an extent that they will change 

the relative levels of voltage and current and the density and viscosity of the gas stream, 

which affect particle migration parameters. [14-15] 

 

ESP operation depends on electronegative gases (such as oxygen, water vapor, carbon 

dioxide, and sulfur dioxide/trioxide) to generate an effective corona and to transport the 

electrons from the discharge electrode to the collection plate. The presence of one or 

more of these gases is necessary to enhance ESP performance, and the relative level in 

the gas stream is not always important to ESP operation. In most processes, these gases 

are available. For CO2 and O2, they are often monitored on combustion sources as a 

measure of excess air and combustion efficiency and not as an indicator of the potential 

ESP operation. The presence of water vapor and/or acid gases may be useful as 

resistivity modifiers or conditioners, and they may be necessary for proper ESP 

performance. On the other hand, they may cause a sticky particulate that is difficult to 

remove, for example, SO2 generation in an ESP servicing kraft pulp recovery boilers. 

Moreover, particle concentrations are usually measured. The difference between the 

amount of material at the inlet and outlet of the gas streams provides the basis for 

removal efficiency calculations. [15] 

 

These literature reviews present the importance of each operating parameter as well as 

how they may relate or affect to one another. In this study, several operating parameters 

mentioned above are selected to analyze their influence on the ESP collection 

performance. These parameters are ash concentrations, steam production, voltage, 

current, volumetric flowrate, temperature, pressure, oxygen and water content, and 

exhaust gas compositions (HCl, CO, NOX, CO2 and SO2). For simplicity, only 

parameters that can be measured easily and continuously are taken into account in this 

thesis work. Since laboratory tests are needed to analyze those important particulate 

properties such as resistivity and particle size distribution, they are discarded.  
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2.2 Machine Learning 

Machine learning algorithm is a trial-and-error process that use computational methods 

to learn information directly from data and find a model that fits the data as best as 

possible. The goal of this model training procedure is to develop a model that can make 

accurate predictions on new, previously unseen data. The various algorithms adaptively 

improve the model performance when there are more samples available for learning. 

There are two types of machine learning which are unsupervised learning, and 

supervised learning. Various algorithms for each category are shown in Figure 2.2.1. 

 

 

Figure 2.2.1: Machine Learning Algorithms [16] 
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2.2.1 Unsuperivsed Learning 

Unsupervised learning finds hidden patterns or intrinsic structures in data. It is used to 

draw inferences from datasets consisting of input data without labeled responses. The 

most common technique for this type of machine learning is Clustering. It is used for 

exploratory data analysis to find groupings in data. Applications for clustering include 

gene sequence analysis, market research, and object recognition. [16] 

 

2.2.2 Supervised Learning 

Supervised machine learning aims to develop a model that makes predictions based on 

evidence in the presence of uncertainty. Its algorithm takes a known set of input data 

and known responses of the data (output) and trains a model to generate reasonable 

predictions for the response to new data, in other words, trains a model on known input 

and output data so that it can generalize by predicting out of training sample outputs. 

By comparing the model output to the true output data, the algorithm can improve the 

statistical model and minimize the error between the two outputs. Supervised learning 

uses classification and regression techniques to develop predictive models. [16] 

 

Classification techniques predict categorical responses which is the response type that 

can be labeled to belong on a certain group. Classification models classify input data 

into categories. Typical applications include medical imaging, image and speech 

recognition, and credit scoring. Regression techniques predict continuous responses 

such as numerical or signals type of data. Typical applications include electricity load 

forecasting and algorithmic trading. [16] 

 

This study aims to generate statistical models of the electrostatic filter in a waste to 

energy plant with high modelling accuracy. Therefore, machine learning algorithms 

based on supervised learning are selected. As all data is available as continuous 

variables, regression techniques will be used with the main focus on Linear Regression 

and Support Vector Machine (SVM). These are further explained in the next section. 

 

2.3 Linear Regression 

A linear regression is a model described the relationship between a dependent variable 

(or response, y) and one or more independent variables (or predictors, X). Suppose that 

there is a design matrix of n observations on p predictors. A response yi of the ith 

observation can be expressed as a function of predictors Xij on that observation. If there 

is only one predictor in the model (p = 1), it is called a simple linear regression model. 

If there are more than one predictor, it is known as a multiple linear regression model 

which can be described as a function shown in a following equation.  

                  𝑦𝑖 = 𝛽0 + 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2 + ⋯ + 𝛽𝑝𝑋𝑖𝑝 + 𝜀𝑖                𝑖 = 1, … , 𝑛              (2.3) 

where 

yi is the ith response 

βk is the kth coefficient 

β0 is the constant term in the model 

Xij is the ith observation on the jth predictor variable, j = 1, ..., p. 

εi is the ith noise term, or random error 
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In general, a linear regression model can be a model of the form 

                  𝑦𝑖 = 𝛽0 + ∑ 𝛽𝑘𝑓𝑘(𝑋𝑖1, 𝑋𝑖2, … , 𝑋𝑖𝑝)

𝐾

𝑘=1

+ 𝜀𝑖                     𝑖 = 1, … , 𝑛              (2.4) 

where fk(Xij) is a scalar-valued function of the predictor variables, Xij.  

 

The functions f(X) can be in any form including nonlinear functions or polynomials. 

The linearity in the linear regression models refers to the linearity of the coefficients βk. 

That is, the response variable y is a linear function of the coefficients βk. 

 

The usual assumptions for linear regression models are that the noise terms (εi) are 

uncorrelated, having independent normal distributions of zero mean (E(εi) = 0), and 

constant variance (V(εi) = σ2) as shown in equation (2.5) and (2.6). The variance of yi is 

the same for all levels of Xij and the responses yi are uncorrelated. 

𝐸(𝑦𝑖) = 𝐸 (∑ 𝛽𝑘𝑓𝑘(𝑋𝑖1, 𝑋𝑖2, … , 𝑋𝑖𝑝)

𝐾

𝑘=0

+ 𝜀𝑖) = ∑ 𝛽𝑘𝑓𝑘 (𝑋𝑖1, 𝑋𝑖2, … , 𝑋𝑖𝑝)

𝐾

𝑘=0

           (2.5) 

𝑉(𝑦𝑖) = 𝑉 (∑ 𝛽𝑘𝑓𝑘(𝑋𝑖1, 𝑋𝑖2, … , 𝑋𝑖𝑝)

𝐾

𝑘=0

+ 𝜀𝑖) = 𝑉(𝜀𝑖) = 𝜎2                                      (2.6) 

The fitted linear function is in the form of an equation (2.7) 

                                     𝑦̂𝑖 = ∑ 𝑏𝑘𝑓𝑘(𝑋𝑖1, 𝑋𝑖2, … , 𝑋𝑖𝑝)

𝐾

𝑘=1

               𝑖 = 1, … , 𝑛                  (2.7) 

 

where 𝑦̂𝑖 is the estimated response and bk are the fitted coefficients  

 

The coefficients are estimated to minimize the mean squared difference between the 

prediction vector 𝑦̂ and the true response vector y, that is (𝑦̂ − 𝑦)2/𝑛. This method is 

called the method of least squares. Under the assumptions on the noise terms, these 

coefficients also maximize the likelihood of the prediction vector. In a linear regression 

model of the form y = β1X1 + β2X2 + ... + βpXp, the coefficient βk expresses the impact 

of a one-unit change in predictor Xj on the mean of the response E(y), provided that all 

other variables are held constant. The sign of the coefficient gives the direction of the 

effect. [17,18,19] 
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2.4 Support Vector Machines (SVM) 

Support Vector Machines (SVM) is a supervised learning algorithm which can be used 

for both classification and regression problems. These are also known as support vector 

classification (SVC) and support vector regression (SVR), respectively. In this section, 

detailed description of SVR will be the main focus, as it is used as predictive models in 

this study. 

 

2.4.1 Support Vector Regression (SVR) 

Support Vector Regression (SVR) has the flexibility to define how much error is 

acceptable in a model. It constructs a hyperplane in multi-dimensional space to fit the 

dataset in the best possible way with a predefined or threshold error value. [20] SVR is 

different from a simple regression in a sense that simple regression tries to minimize the 

error rate while SVR model tries to fit the error within a certain threshold.  

 

Several important terms associated with SVR are presented as follows: 

Kernel is a function used to map a lower-dimensional data points into higher 

dimensional data points. There are many types of kernel such as Polynomial Kernel, 

Gaussian Kernel, Sigmoid Kernel, etc. 

Hyperplane: In SVM, a hyperplane is a line used to separate two data classes in a higher 

dimension than the actual dimension. In SVR, a hyperplane is a line that is used to 

predict continuous value. 

Support Vector: Data points that lie closest to the boundary. The distance of the points 

is minimum or least. The support vectors can be on the boundary lines or outside it. 

Boundary Line are two parallel lines drawn to the two sides of Support Vector with the 

error threshold value (𝞮). These lines create a margin between data points.  

 

Characteristics of SVR are usage of kernels, absence of local minima, and capacity 

control on margin. It contains all the main features that characterize maximum margin 

algorithm. [21] The Figure 2.4.1 shows an example of one-dimensional linear regression 

function with epsilon intensive band. Slack variables (ξ) measure the cost of the errors 

on the training points. These are zero for all points that are inside the band. 

 

 
Figure 2.4.1: One-dimensional linear regression with epsilon intensive band [22] 
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2.4.1.1 Linear SVM Regression: Primal Formula 

For a training data set that has xn as a multivariate set of N observations with observed 

response values yn, the goal of SVR is to find a function f(x) that deviates from yn by a 

value no greater than ε for each training point x, and at the same time is as flat as 

possible. Linear function f(x) with the minimal norm value (β′β) can be in a form (2.8). 

Together with slack variables, they allow regression errors to exist up to the value 

of ξn and ξ*
n. This leads to the objective function, known as the primal formula (2.9) [23-

24]. SVR is formulated as minimization of the following functional: 

 

                                                                 𝑓(𝑥) = 𝑥′𝛽 + 𝑏                                                   (2.8) 

                                              𝐽(𝛽) =
1

2
𝛽′𝛽 + 𝐶 ∑(𝜉𝑛 + 𝜉𝑛

∗)

𝑁

𝑖=1

                                         (2.9)  

subject to following constraints:  

∀n: yn − (xn′β + b) ≤ ε + ξn   

∀n: (xn′β + b) – yn ≤ ε + ξn
*    

∀n: ξn
*

 ≥ 0  

∀n: ξn ≥ 0 

 

The constant C is the box constraint, a positive numeric value that controls the penalty 

imposed on observations that lie outside the epsilon margin (ε) and helps to prevent 

overfitting (regularization). This value determines the trade-off between the flatness of 

f(x) and the amount up to which deviations larger than ε are tolerated. 

The linear ε-insensitive loss function ignores errors that are within ε distance of the 

observed value by treating them as equal to zero. The loss is measured based on the 

distance between observed value y and the ε boundary. This can be described as: 

𝐿𝜀 = {
0                               if |𝑦 − 𝑓(𝑥)| ≤ 𝜀
|𝑦 − 𝑓(𝑥)| − 𝜀       otherwise             

          (2.10) 

 

2.4.1.2 Linear SVM Regression: Dual Formula 

As for the dual formula, a Lagrangian function from the primal function is constructed 

by introducing nonnegative multipliers αn and α*
n for each observation xn. This leads to 

the dual formula, where it minimizes 

𝐿(𝛼) =
1

2
∑ ∑(𝛼𝑖 − 𝛼𝑖

∗)(𝛼𝑗 − 𝛼𝑗
∗)𝑥𝑖

′𝑥𝑗

𝑁

𝑗=1

𝑁

𝑖=1

+ 𝜀 ∑(𝛼𝑖 + 𝛼𝑖
∗)

𝑁

𝑖=1

+ ∑ 𝑦𝑖(𝛼𝑖
∗ − 𝛼𝑖)

𝑁

𝑖=1

  (2.11) 

subject to the constraints 

∑ (𝛼𝑛 − 𝛼𝑛
∗ )𝑁

𝑛=1 = 0    

∀n: 0 ≤ αn ≤ C 

∀n: 0 ≤ αn* ≤ C 

 

The β parameter can be completely described as a linear combination of the training 

observations using the equation 

                                                         𝛽 = ∑(𝛼𝑛 − 𝛼𝑛
∗ )

𝑁

𝑛=1

𝑥𝑛                                               (2.12) 
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The function used to predict new values depends only on the support vectors: 

                                              𝑓(𝑥) = ∑(𝛼𝑛 − 𝛼𝑛
∗ )(𝑥𝑛

′ 𝑥) + 𝑏

𝑁

𝑛=1

                                    (2.13) 

The Karush-Kuhn-Tucker (KKT) complementarity conditions are optimization 

constraints required to obtain optimal solutions. For linear SVM regression, these 

conditions are 

∀n: αn (ε + ξn – yn + xn′β + b) = 0 

∀n: αn
* (ε + ξn

* + yn − xn′β – b) = 0 

∀n: ξn (C − αn) = 0 

∀n: ξn
* (C – αn

*)
 
= 0 

 

These conditions indicate that all observations strictly inside the epsilon tube have 

Lagrange multipliers αn = 0 and αn
* = 0. If either αn or αn

* is not zero, then the 

corresponding observation is called a support vector.  

2.4.1.3 Nonlinear SVM Regression: Primal Formula 

Some regression problems cannot adequately be described using a linear model. In such 

a case, the Lagrange dual formulation can be extended to nonlinear functions. 

A nonlinear SVM regression model can be obtained by replacing dot product x1′x2 with 

a nonlinear kernel function G(x1,x2) = <φ(x1),φ(x2)>, where φ(x) is a transformation that 

maps x to a high-dimensional space. Table below describes several semidefinite kernel 

functions. [23] 

Table 2.4.1: Kernel functions 

Kernel Name Kernel Function 

Linear (dot product) 𝐺(𝑥𝑗, 𝑥𝑘) = 𝑥𝑗′𝑥𝑘  

Gaussian 𝐺(𝑥𝑗, 𝑥𝑘) = exp(−∥ 𝑥𝑗 − 𝑥𝑘 ∥2)  

Polynomial 𝐺(𝑥𝑗, 𝑥𝑘) = (1 + 𝑥𝑗
′𝑥𝑘)

𝑞
, where q is in the set {2, 3, …} 

 

The Gram matrix is an n-by-n matrix that contains elements gi,j = G(xi,xj). Each 

element gi,j is equal to the inner product of the predictors as transformed by φ. 

However, it can use the kernel function to generate Gram matrix directly. Using this 

method, nonlinear SVM finds the optimal function f(x) in the transformed predictor 

space. [23] 
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2.5 Principal Component Analysis (PCA) 

Principal Component Analysis (PCA) is an unsupervised statistical technique that uses 

orthogonal transformation to convert a set of observations of possibly correlated 

variables into a set of values of linearly uncorrelated variables. It is primarily used for 

dimensionality reduction in machine learning to reduce multidimensional data to lower 

dimensions while retaining most of the information. [25,26]  

 

Model overfitting is a frequent problem associated with high dimensionality. If a model 

is overfitting, it loses the ability to generalize other observations beyond the training 

dataset. This makes it much harder for the model to predict the response correctly when 

dimensionality of the dataset increases. To avoid such a problem, PCA is applied to 

remove redundant features so that the model becomes more efficient as PCA helps 

boosting the learning rates and diminishing computational costs. [25] 

 

PCA transforms an n-dimensional feature space into a new n-dimensional space of 

orthogonal components, called principal components. Principal components have axis 

direction that minimizes projection error and maximizes variance. The total number of 

principal components generated is equal to the dimensionality of the feature set. They 

are determined in order of decreasing variance. It means that the first principal 

component captures most of the variance. The second principal component is the 

direction of maximum variance which is not accounted by the first component and so 

on. For a given dataset with n observations and p predictors (X¹, X²..., Xp), the principal 

component can be expressed as follows: 

 

     𝑍1 =  𝛷11𝑋1 + 𝛷21𝑋2 + 𝛷31𝑋3 + ⋯ + 𝛷𝑝1𝑋𝑝           (2.14) 

 

where Z1 is first principal component. Φp1 is the loading vector comprising of loadings 

(Φ11, Φ21, …, Φp1) of first principal component. The loadings are constrained to a sum 

of square equals to 1 as large magnitude of loadings may lead to large variance. It also 

defines the direction of the principal component (Z¹) along which data varies the most. 

It results in a line in p dimensional space which is closest to the n observations. 

Closeness is measured using average squared Euclidean distance. X1, X2, …, Xp are 

normalized predictors that have mean of zero and standard deviation of one. Similarly, 

the second principal component can be computed from (2.14) by replacing Z2 and Φp2 

(Φ12, Φ22, …, Φp2) into the equation. [27] 

 

Figure 2.5.1 shows an example of principal components in two-dimensional data. The 

blue dots indicate original data. The black vectors are principal components generated 

by applying PCA. The size of the vectors indicates how much variance is explained by 

that component. Since the two components are orthogonal to each other, it means that 

they are uncorrelated. [27] 
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Figure 2.5.1: Principal components for two-dimensional data [27] 

 

PCA reduces dimensionality by discarding the principal components beyond a chosen 

threshold of explained variance. In general, the threshold can be 90-95% depending on 

the data. It aims to capture the maximum amount of variance with the fewest number 

of components. For example, suppose that the dataset has n observations with p predictor 

variables. The corresponding principal components will be in total of p axes. As shown 

in Figure 2.5.2 below, the principal components are plotted with their explained 

variance, but here the first 9 (out of p) principal components explain more than 95% 

variance of the data. Since the transformed variables contain almost the same amount of 

information as in the original data, the rest components can be discarded if the chosen 

threshold is 95%. In such a case, it would be assumed that the components that contain 

the last few percent of explained variance are likely to represent noise more than 

information. 

 
Figure 2.5.2: Explained variance of principal components in high-dimensional data 
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For a matrix X of n observations and p predictors, the dimensionally reduced form is 

given by: 

                                                               𝑧(𝑖) = 𝛷𝑟𝑒𝑑𝑢𝑐𝑒
𝑇 𝑥(𝑖)                                               (2.15) 

To reduce dimensionality of data, the first k columns of the n x n matrix 𝛷 are selected 

to form n x k matrix 𝛷𝑟𝑒𝑑𝑢𝑐𝑒. Since 𝛷𝑟𝑒𝑑𝑢𝑐𝑒
𝑇  is k x n matrix and x(i) is n x 1 vector, the 

product z(i) is k x 1 vector with reduced dimensions. The approximate reconstruction in 

the higher dimension can be computed from the following equation, giving x(i)
approx as 

n x 1 vector with the original number of dimensions. 

                                                       𝑥𝑎𝑝𝑝𝑟𝑜𝑥
(𝑖)

= 𝛷𝑟𝑒𝑑𝑢𝑐𝑒 ⋅ 𝑧(𝑖)                                            (2.16) 

In order to determine the number of principal components that are retained during the 

dimensionality reduction, the following two metrics are considered. The objective of 

PCA is to minimize the projection error given by (2.17) and the total variation in the 

data is given by (2.18). 

                                                        
1

𝑝
∑‖𝑥(𝑖) − 𝑥𝑎𝑝𝑝𝑟𝑜𝑥

(𝑖) ‖
2

𝑝

𝑖=1

                                         (2.17) 

                                                                  
1

𝑝
∑‖𝑥(𝑖)‖

2

𝑝

𝑖=1

                                                     (2.18) 

 

The rule of thumb is, choose the smallest value of k, such that, 

                                      

1
𝑝

∑ ‖𝑥(𝑖) − 𝑥𝑎𝑝𝑝𝑟𝑜𝑥
(𝑖) ‖

2
𝑝
𝑖=1

1
𝑝

∑ ‖𝑥(𝑖)‖2𝑝
𝑖=1

≤ 0.01 (𝑜𝑟 1%)                           (2.19) 

That is 99% of the variance is retained. As a consequence, the number of dimensions 

reduced is significant since many features are highly correlated. Generally, values such 

as 95−90% variance retention are used. [28] 

 

2.6 Partial Least Square (PLS) 

Partial least-squares (PLS) regression is a technique used with data that contain 

correlated predictor variables. This technique constructs new predictor variables, 

known as components, as linear combinations of the original predictor variables. PLS 

constructs these components while considering the observed response values. This 

gives PLS reliable predictive power. [29,30] 

 

Partial least-squares (PLS) is different from multiple linear regression and PCA that it 

takes response values into account. Multiple linear regression finds a combination of 

the predictors that best fit a response. PCA finds combinations of the predictors with 

large variance, reducing correlations. However, PLS finds combinations of the 

predictors that have a large covariance with the response values. Thus, PLS combines 

information about the variances of both the predictors and the responses, while also 

considering the correlations among them. [29] 

 

https://se.mathworks.com/help/stats/linear-regression-model-workflow.html
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Partial least squares (PLS) model is based on the principal components on both the 

independent data and the dependent data. The idea is to find the principal scores of 𝑋 ∈
ℝ𝑛×𝑝 and 𝑌 ∈ ℝ𝑛×𝑞 and use them to build a regression model between the scores. PLS 

regression is based on the basic latent component decomposition and can be expressed 

as [30,31]: 

       𝑋 =  𝑇𝑃𝑇  +  𝐸         (2.20) 

      𝑌 =  𝑇𝑄𝑇  +  𝐹          (2.21) 
 

The matrix X is decomposed into two matrices, 𝑇 ∈ ℝ𝑛×𝑑  which is the matrix that 

produces d linear combinations (scores) and 𝑃𝑇 ∈ ℝ𝑑×𝑝 which is matrix of coefficient 

referred as X-loading, plus an error matrix 𝐸 ∈ ℝ𝑛×𝑝. Similarly, Y is decomposed into 

T, 𝑄𝑇 ∈ ℝ𝑑×𝑞  (Y-loadings) and 𝐹 ∈ ℝ𝑛×𝑞  (random errors). The matrix T often 

denoted as ‘latent variables’ or ‘scores’ is estimated as the linear combinations as 

follows [30,31]:  

𝑇 =  𝑋𝑊           (2.22) 

 

where W are referred as the weights. There are many different approaches of finding 

W. One of that is the statistically inspired modification of PLS (SIMPLS). The criterion 

of SIMPLS is stated as: 

     𝑤𝑗  =  argmax
𝑤

𝑤𝑇𝜎𝑋𝑌𝜎𝑋𝑌
𝑇 𝑤           (2.23) 

 

subject to 𝑤𝑇𝑤 =  1, 𝑤𝑇Σ𝑋𝑋𝑤𝑗 = 0, for j = 1, …, k-1 

where wj are the columns of W and 𝜎𝑋𝑌 is the covariance of X and Y. 

 

When T is estimated, loadings are estimated by ordinary least squares for the model 

(2.21). The regression matrix for PLS is formulated as 

 

𝛽𝑃𝐿𝑆  =  𝑊𝑄𝑇           (2.24) 

Since 

    𝑌 =  𝑇𝑄𝑇  +  𝐹 =  𝑋𝑊𝑄𝑇  +  𝐹 =  𝑋𝛽𝑃𝐿𝑆  +  𝐹         (2.25) 

 

The latent components are then used for prediction in place of the original variables: 

once T is constructed, QT is obtained as the least squares solution of Equation (2.21): 

 

𝑄𝑇 = (𝑇𝑇𝑇)−1𝑇𝑇𝑌          (2.26) 

 

and the fitted response matrix 𝑌̂ may be written as 

 

𝑌̂ = 𝑇(𝑇𝑇𝑇)−1𝑇𝑇𝑌          (2.27) 

 

For an uncentered raw observation 𝑥𝑜′, the prediction 𝑦̂0
′  of the response is given by: 

                                              𝑦̂0
′ =

1

𝑛
∑ 𝑦𝑖′

𝑛

𝑖=1

+ 𝐵𝑇 (𝑥𝑜 −
1

𝑛
∑ 𝑥′

𝑛

𝑖=1

)                              (2.28) 
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2.7 Outlier Detection  

Observed data usually are multidimensional that has higher chance of having unusual 

observations. The problem is that a few outliers is always enough to distort the results 

of data by altering the mean performance, increasing variability, etc. Therefore, outlier 

detection should be of concern. In this section, outlier detection by standard deviation 

method and by Mahalanobis distance are mainly discussed. 

 

2.7.1 Mean and Standard Deviation Method 

One of the most simplest statistical tools for outlier detection is the Z-score, which the 

mean and standard deviation of the residuals are calculated and compared. Z-score 

indicates how far the value of the data point is from its mean for a specific feature. A 

Z-score with value of 1 means that the data point is 1 standard deviation away from its 

mean. Typically, Z-score values greater than +3 or less than -3 are considered outliers. 
[32] Z-score can be expressed as follows: 

                                                          𝑍 𝑠𝑐𝑜𝑟𝑒 =
𝑥𝑖 − 𝜇

𝜎
                                                (2.29) 

where σ is the standard deviation and 𝜇 is the mean of the distribution of feature x, and 

xi is the value of the feature x for the ith sample. 

However, this method can fail to detect outliers since all the outliers increase the 

standard deviation. The more extreme the outlier, the more the standard deviation is 

affected. Figure 2.7.1 below shows outlier detection by this method in which data points 

within 3 standard deviations are remained. 

 
Figure 2.7.1: Outlier detection by mean and standard deviation method 
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Outlier detection based on simple statistical tools generally assume that the features 

have normal distributions while neglecting the correlation between features in a 

multivariate dataset. More advanced method for outlier detection based on machine 

learning can handle correlated multivariate dataset, detect abnormalities within them, 

and do not assume a normal distribution of the features.[32] One method is to use 

Mahalanobis distance as explained in the following section. 

 

2.7.2 Mahalanobis Distance 

From geometric point of view, the Euclidean distance is the shortest possible distance 

between two points. However, the Euclidean distance measure does not consider the 

correlation between highly correlated variables. It assigns equal weight to such 

variables. Consequently, correlated variables get excess weight by Euclidean distance. 

 

An alternative approach is Mahalanobis distance that scale the contribution of 

individual variables to the distance value according to the variability of each variable. 

This approach differs from Euclidean distance as it considers the correlations between 

variables. The Mahalanobis distance is a measure between a sample point and a 

distribution which represents how far x is from the mean in number of standard 

deviations. This measure can be used to detect outliers if there are any outliers that do 

not behave as normal as usual observations at least in one dimension. The Mahalanobis 

distance from a vector x to a distribution with mean μ and covariance Σ is defined by 

the following equation (2.30). If the covariance matrix is the identity matrix, the 

Mahalanobis distance reduces to the Euclidean distance. [33] 

 

              𝐷(𝑋, 𝜇) = √(𝑋 − 𝜇)𝑇Σ−1(𝑋 − 𝜇)         (2.30) 

 

2.8 Statistical Indicators 

In this section, the regression metrics that are commonly used when evaluating 

regression models are presented. The equations use 𝑦𝑖 to refer to the actual response 

values of the model, where i = 1, 2, …, n, and 𝑦̂𝑖  to refer to the model's predicted 

response values. The value n is the number of observations in the data set, and 𝑦̅ is the 

mean of the actual response values. 

 

Residual (ri) is the model error for each data point.  

                                                                 𝑟𝑖 = 𝑦𝑖 − 𝑦̂𝑖                                                          (2.31) 

Mean Absolute Error (MAE) is the average magnitude of the residuals. This is an easy-

to-interpret metric that has the same units as the response. 

                                                           𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − 𝑦̂𝑖|

𝑛

𝑖=1

                                           (2.32) 

 

 

 

 



  

18  CHALMERS, Space, Earth and Environment, Master’s Thesis       

 

Mean Square Error (MSE) is the average of the squared residuals. Most types of 

regression will minimize this term to train the model. Because of the squaring term, it 

is more sensitive to large errors and outliers than the MAE. 

                                                            𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)2

𝑛

𝑖=1

                                       (2.33) 

Root Mean Square Error (RMSE) is the square root of the MSE. It has the same units 

as the response (like MAE), but also emphasizes large errors and outliers (like MSE). 

Ideally, this should be as close to 0 as possible. 

                                                       𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)2

𝑛

𝑖=1

                                      (2.34) 

Sum of squared errors (SSE) is the sum of the squared residuals (as opposed to the 

average value MSE). Used to calculate R2. 

                                                           𝑆𝑆𝐸 = ∑(𝑦𝑖 − 𝑦̂𝑖)2

𝑛

𝑖=1

                                             (2.35) 

Sum of squares total (SST) is a measure of the variance of the data points (𝑦̅ is the mean 

response). Used to calculate R2. It is as an error metric when the "model" is a simple 

baseline model that always uses the mean as the predicted value. 

                                                          𝑆𝑆𝑇 = ∑(𝑦𝑖 − 𝑦̅)2

𝑛

𝑖=1

                                              (2.36) 

R2 is the relative difference in the total error obtained by fitting a model. If a model fits 

the data well, the model error is small and R2 will be close to 1. If the model fits the 

data poorly, then the model error is large and R2 will be close to 0. This metric is also 

called the Coefficient of Determination. 

                                                             𝑅2 =
𝑆𝑆𝑇 − 𝑆𝑆𝐸

𝑆𝑆𝑇
                                                   (2.37) 

Mean Absolute Percentage Error (MAPE) is the average relative error, reported as a 

percentage. It measures how large the residuals are relative to the scale of the data, e.g., 

if the MAPE is 20%, the model predictions are off by an average of 20%. Ideally, it 

should be as close to 0 as possible. 

                                                      𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑦𝑖 − 𝑦̂𝑖

𝑦𝑖
| × 100

𝑛

𝑖=1

                                (2.38) 
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3 Methodology 

This chapter presents the machine learning workflow used in this thesis work as well 

as the procedure to implement different models for ESP efficiency predictions. The 

platform used in this work is MATLAB (R2019b), which has several built-in functions 

and applications for training models. 

 

3.1 Machine Learning Workflow 

This project aims to build and develop predictive models that are able to predict ESP 

efficiency (response variable) from several measured operating parameters (predictors). 

Supervised machine learning with regression is selected and used to create and train 

models. Machine learning workflow used in this study is shown in the Figure 3.1.1 

below. Note that the word “parameters”, “predictors” and “features” may be used 

interchangeably in the later part of the report. The same thing also goes to “efficiency” 

and “response”. 

 

Figure 3.1.1: Machine learning workflow 

 

First of all, the workflow starts by importing, exploring, and preprocessing data. The 

data is visualized to see correlation between parameters and cleaned by removing 

outliers. After that, the cleaned data will be split into training, validation, and test data 

sets. The training data is used during training models along with the validation data that 

is used to prevent model overfitting. Then, the trained models are used to predict the 

response by using the test dataset as an input to see if the trained model can generalize 

with the new dataset that was never used during training and validation. However, the 

training process to find the best model is an iterative process. Several models may be 

chosen to train and see if they give good results as well as only relevant features may 

be selected if they provide better prediction and less errors. After these steps, the final 

and selected models are compared by using various statistical indicators. More details 

for each step will be further explained in the later sections. 
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3.2 Data 

Selecting data to analyze is an important step. The more data of good quality we have, 

the better for the analysis and prediction. In this study, the ESP process data was 

measured and collected by process engineers from a waste to energy power plant, 

Uddevalla Energi AB, in Sweden. The data is obtained from 30 November 2019 until 

30 April 2020. It has one-hour resolution which means that each observation is 

measured every hour during the day. Therefore, there are in total of 3672 observations 

from a total of 153-day measurement. 

As mentioned earlier, several process parameters are selected according to either of 

their direct or indirect effect on efficiency, and only parameters that can be measured 

continuously in one-hour basis are chosen for simplicity. There are in total 24 

parameters to consider. One of them is the efficiency which is a response variable, and 

the rest 23 variables are called predictors. Thus, the data matrix has the size of 3672 

observations (rows) and 24 features (columns). The relevant process parameters with 

units and variable names are listed in Table 3.2.1 below. Noted that variable names are 

used as a short form in MATLAB codes and figures.  

Table 3.2.1: ESP process parameters 

Parameters Units Variable name 

Concentration of ash mg/Nm3 Ash_in, Ash_out 

Efficiency % Efficiency 

Steam Production kg/s Steam, RealSteam 

Voltage kV V1, V2, V3 

Current mA I1, I2, I3 

Volumetric flowrate Nm3/h Q 

Temperature °C T_in, T_out 

Pressure mbar P_in, P_out 

O2wet, O2dry, H2O % O2wet, O2dry, H2O 

Exhaust gas composition mg/Nm3 HCl, CO, NOX, CO2, SO2 

 

Some parameters such as ash concentration, temperature, and pressure are measured at 

the inlet and outlet of the ESP. Thus, their names are followed by “in” or “out” to 

indicate the location. The ESP at the plant has double chambers and each chamber has 

three stages along the gas flow direction. Operating parameters such as voltage and 

current are measured at each stage, therefore, they are named according to which stage 

they were measured. For steam production, there are two related variables named as 

“Steam” and “RealSteam”. Actually, “Steam” is referred to steam set point that is an 

input set in the system. “RealSteam” is referred to real steam production which is an 

output from the system that should be as close to the set points as possible, but it is also 

influenced by many other parameters in the process. 
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3.3 Data Visualization and Preprocessing 

After we collect and prepare all the data of interest, they are ready for data analysis. 

Firstly, all necessary and important data is imported and explored. This step is crucial 

as we can see how the data trends look like by exploring through different kind of 

visualization such as histograms and other plots. It may show interesting trends, for 

example, extreme outliers can be noticed easily and thus must be removed. Missing 

data and known error on certain dates are removed as well. This step is called data 

cleaning. Moreover, some correlation between predictors may also be seen. The data 

are further preprocessed and normalized. Different outlier removal methods are applied 

to the cleaned data. There are 3 different scenarios to consider depending on how 

outliers are removed, which are as follows: 

• scenario 1: no outliers removed  

• scenario 2: outliers removed by standard deviation method  

• scenario 3: outliers removed by Mahalanobis distance 

 

Scenario 1 serves as a base case for the other two. In all scenarios, the dataset was 

cleaned by removing observations with missing data and known error. From 

investigation, ESP has malfunctioned on certain dates. This results in too high 

efficiency being measured during these days which are 11-13 February, 6 April, and 25 

February during 11.00-15.00. Thus, these observations are removed, resulting in 3568 

rows of observations left. For more convenient interpretation, all 24 parameters are 

plotted and compared to each other for each scenario (see Appendix A). 

 

In scenario 2, outliers are removed by standard deviation method using +/-3 standard 

deviations. It is important to exclude outliers so that they cannot affect statistical values 

such as mean and variance as well as prediction results. However, this method of 

removing outliers is more suitable for data with normal distribution. Several predictors 

such as steam set point, oxygen and water content, and exhaust gas compositions are 

more likely to have constant values, giving narrow and high peaks for histograms 

without having a normal distribution. Meanwhile, voltage and current tend to have 

skewed distribution rather than normal distribution. Therefore, this method discards 

quite a lot of observations leaving 2948 observations for this scenario. According to 

Appendix A, better trends can be seen for each parameter where those extreme outliers 

were removed. However, it clearly shows that data in consecutive dates during March 

was removed as shown in Figure 3.3.1. 

 

 
Figure 3.3.1: Efficiency plots for scenario 1 and 2 
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In scenario 3, outliers are removed by Mahalanobis distance. This method is different 

from the standard deviation method in scenario 2. The standard deviation method would 

discard the whole row of observation as an outlier if there is just one or more predictor 

value outside +/- 3 standard deviation of itself. However, the Mahalanobis distance 

method (i.e., using  mahal function in MATLAB) would tell whether the whole row is 

an outlier compared to other rows and it scales the contribution of individual variables 

to the distance value according to the variability of each variable. It also considers the 

correlations between variables. As a result, less observations were discarded in this 

method, resulting in 3390 observations left. Comparing Figure 3.3.1 and Figure 3.3.2, 

it clearly shows that several outliers were removed in scenario 3 compared to scenario 

1, and less data were removed during March compared to scenario 2. It can be noticed 

that wider range of data remaining in scenario 3. 

 

 
Figure 3.3.2: Efficiency plot for scenario 3 

 

3.4 Data Splitting 

After outlier removal, data for each scenario are mainly split into training set and test 

set. Now, there are 3 different scenarios of outlier removal. Data from each scenario is 

split into training and test sets for 7 cases (i.e., 50-50, 55-60, 60-40, 65-35, 70-30, 75-

25, and 80-20). Noted that these numbers represent how much data is split into either 

training or test sets. The first number indicates splitting percentage for training set 

whereas the second number is for test sets. For example, the 80-20 case means that 80% 

of the data will be training set and the rest 20% will be the test set. 

 

For each splitting case, there are two ways of splitting for either interpolation or 

extrapolation performance. For interpolation performance, data is split randomly 

regardless of their chronological order so that it has enough information to interpolate 

when predicting the response. However, for extrapolation, data is split by chronological 

order. That is, data from the first few months would fall into training set while data from 

the later months would be the test set. In this case, it is useful for predicting the future 

values such as predicting ESP efficiency in the following months. Models will be tested 

with the test set which is data from the future that the model had never seen and been 

trained before. This is to see if the model is able to extrapolate when predicting the 

response. Data from each splitting case is randomly split for 100 files in the case of 

interpolation and is also split by date to 1 file for extrapolation case. Thus, there are in 

total of 3 x 7 x 101 = 2121 preprocessed data files. 
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3.5 Predictive Modelling 

Now, all preprocessed data is available and ready to use for training predictive models. 

Predictive modeling is a technique used to predict an event or outcome with the help of 

an equation-based model that describes the phenomenon under consideration. The 

model is trained for a number of states, expressed as combination of predictor values, 

and to be used other combinations of the predictor values that may occur in the future. 

The model parameters help explain how model inputs influence the outcome. In this 

study, several models were trained using Regression Learner App in MATLAB. The 

program requires training dataset as an input. All operating parameters are specified as 

predictors and efficiency is the response of interest. In addition, the program has a 

function that users can decide whether validation shall be taken into account. Here, 

cross-validation is selected with k-fold technique, where k is set to be 5 as default. This 

technique is one of the most popular techniques for cross validation. It partitions part 

of the training set into k folds and uses each fold to validate the model trained using the 

remaining folds. The process is repeated k times so that each fold is used once for 

validation. However, it can take a long time to execute as the model needs to be trained 

repeatedly. Thus, k value shall not be set too high for high-dimentional data or advanced 

models to avoid the problem. 

 

In this study, the focused and selected models are linear regression, and support vector 

machines (SVM). Linear regression describes a continuous response variable as a 

linear function of one or more predictor variables. It is simple, fast to train, easy to 

interpret, and often the first model to be fitted to a new dataset. It is best used as a 

baseline model for evaluating other, more complex, regression models. Meanwhile, 

Support Vector Machines (SVM) is a more advanced model that find deviation from 

the measured data by a small amount, with parameter values that are as small as possible 

to minimize sensitivity to error. It is best used for high-dimensional data. Using high 

dimensional data when training can lead to complex models that overfit the data. It 

means that a model exactly predicts the training data (overfitting) but generalizes poorly 

to new data like test sets. Cross-validation technique is used to avoid this. The two 

focused models are additionally applied with principal component analysis (PCA) and 

partial least square (PLS) for dimensionality reduction so that only relevant information 

is retained in the models. Therefore, this results in total of 6 models as follows. 

• Linear Regression 

• Linear Regression with PCA, or Principal Component Regression (PCR) 

• Linear Regression with PLS, or Partial Least Square Regression (PLSR) 

• Support Vector Machines 

• Support Vector Machines with PCA 

• Support Vector Machines with PLS 

 

PCR and PLSR are methods to model a response variable when there are a large number 

of predictors, that are highly correlated or even collinear. Both methods construct new 

predictors, known as components, as linear combinations of the original predictors, but 

in different ways. PCR creates components to explain the observed variability in the 

predictors, without considering the response at all. On the other hand, PLSR does take 

the response into account, and therefore often leads to models that are able to fit the 

response with fewer components. 
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Next, the trained models will use test sets as a new input to predict the response. Since 

not all parameters that we have will be useful, sensitivity analysis of predictors will be 

conducted on these models to see which predictors are best used for predicting 

efficiency. This is the concept of feature selection which is part of model improvement. 

Lastly, all models are compared using statistical indicators to see the model 

performance. It should be noted that indicators from training sets will be averaged 

values from 100 random splits.  



 

 CHALMERS, Space, Earth and Environment, Master’s Thesis        25 

 

4 Results 

Prediction performance of ESP efficiency is compared and discussed on the effect of 

different outlier removal methods, models, and splitting cases as well as the effect of 

operating parameters will be presented. 

 

4.1 Correlation 

This section mainly discusses the correlation between each parameter which are 

presented in a form of correlation matrix (Figures 4.1.1-4.1.4). The correlation matrix 

shows the histogram of each parameter in the diagonal and the linear correlations for 

all pairs. Moreover, Pearson correlation coefficient are also presented which can tell 

how strong the pair is correlated. The correlation can be used as a tool for feature 

selection as we can compare the strengths of the linear relationships between the 

predictors and the response and discard weakly related features. Moreover, relatively 

strong correlations between predictors justify the use of PCA and PLS for 

dimentionality reduction. The value close 1 indicates strong positive linear relationship, 

and positive value means that one parameter tends to increase with another one. The 

value close to -1 indicates strong negative linear relationship, and negative value means 

that one parameter tends to increase when another one decreases. If the value close to 

0, it indicates weak or no linear relationship. 

 

The correlation between efficiency and all predictors is mainly focused. Obviously, the 

efficiency is greatly correlated with ash concentrations. The lesser the outlet ash, the 

better the efficiency. Other correlated predictors that have coefficients range from 0.3-

0.4 are V1, V2, V3, I1, and I2. The rest of predictors seem to have very weak or no 

linear relationship with efficiency as shown in Figure 4.1.1 to Figure 4.1.4. This is 

because these predictors tend to have mostly constant values at a certain level or at zero, 

or they are being controlled variables in the process. Thus, ash concentrations, voltages 

and currents seem to be the most important predictors. More investigation on this will 

be further discussed in the later sections. 

 
Figure 4.1.1: Correlation matrix of efficiency, ash concentration, steam production, 

oxygen, and water content from scenario 1 



  

26  CHALMERS, Space, Earth and Environment, Master’s Thesis       

 

 
Figure 4.1.2: Correlation matrix of efficiency, voltages, and currents from scenario 1 

 

 
Figure 4.1.3: Correlation matrix of efficiency, volumetric flowrate, temperatures, and 

pressures from scenario 1 
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Figure 4.1.4: Correlation matrix of efficiency and exhaust gas from scenario 1 

 

4.2 Effect of Outlier Removal Method  

Different outlier removal methods are firstly compared and discussed here to see the 

effect on efficiency prediction. For the ease of comparison, the interpolation 

performance is selected to see the general trend of the model. For all 3 scenarios, both 

training and test sets were used to predict the response and they are compared to see 

how well the model can generalize with new data like test sets. The dataset presented 

here is from 50-50 splitting case (interpolation file 1) with linear regression models and 

the presented efficiency is in terms of true and predicted response (Figure 4.2.1). 

 

With linear regression model, all 3 scenarios show the same trend but differ in term of 

outliers. Obviously, scenario 1 has the most outlier as only extreme outliers and known 

error were removed. Some data point from test sets are outside the trend, especially at 

very low efficiency that the prediction is scattered and not very accurate. Scenario 2 

and 3 show quite similar results, both of them having much less outliers. However, 

scenario 3 is more similar to scenario 1 that is less accurate at the very low efficiency. 

Among the 3 of them, scenario 2 seems to perform the best prediction which is aligned 

well with training set with high accuracy at both very low and high efficiency. 

However, this has trade-off with discarding a lot of data points. It should be noted that 

similar trends with respect to the best outlier removal method is also observed for other 

splitting cases and models. 

In addition to the trend, statistical indicators can be used to tell the prediction 

performance and to confirm the results (Table 4.2.1). There are 4 main indicators of 

interest which are RMSE, R2, MARE, and MaxARE. Noted that MARE is computed in 

the same way as MAPE in Equation (2.38), but it is reported in fraction not percentage. 

Since the table presents values for both training and test sets, indicator values of the test 

sets is more focused for predicting out of sample values. Firstly, all scenarios show 
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small error, RMSE, which ideally should be close to 0. For R2, ideally it should be close 

to 1 as much as possible. However, all 3 scenarios using linear regression do not present 

that good trend as the R2 value is only around 0.73 up to 0.85. For MARE and MaxARE, 

they show how much the model predictions are off by an average. Ideally, they should 

be as close to 0 as possible, where MaxARE shows the possible maximum error. 

Scenario 2 gives the best results for all these statistical indicators with the lowest 

RMSE, highest R2, and lowest MARE and MaxARE. This indicates that if linear 

regression model with scenario 2 is to be used for predicting future efficiency, it would 

give on average an error of 0.24%. For example, if the true efficiency is performed at 

98%, this model would predict in the range of 97.76 – 98.24% in average, which is an 

acceptable range. However, with the MaxARE as high as 0.0174, it is also possible that 

sometime the model may predict the response off by 1.74% with respect to the predicted 

value of 98%. This results in the largest possible range of 96.29 – 99.71%, which is 

more than acceptable. This much off prediction is mainly presented at both very low 

and very high efficiency.  

 

 
 

Figure 4.2.1: Comparison on different outlier removal methods with linear regression 

model and splitting case 50-50 

 

Table 4.2.1: Statistical indicators for linear regression (Case 50-50 interpolation)  

Statistical 

Indicators 

Data set and Scenario 

Train_s1 Test_s1 Train_s2 Test_s2 Train_s3 Test_s3 

RMSE 0.0048 0.0056 0.0033 0.0032 0.0043 0.0042 

R2 0.8038 0.7291 0.8518 0.8546 0.8016 0.8127 

MARE 0.0033 0.0035 0.0025 0.0024 0.0031 0.0030 

MaxARE 0.0434 0.0901 0.0172 0.0174 0.0332 0.0332 
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4.3 Prediction Trends 

This section aims to compare prediction trend from simple and advanced models, which 

are linear regression and SVM, respectively. The test sets of all 3 scenarios were used 

to predict the response, and they are compared to each other. 

4.3.1 Linear Regression and SVM 

The dataset presenting here is also from 50-50 splitting case (interpolation file 1) with 

linear regression and SVM models (Figure 4.3.1). The prediction trend can be seen from 

how well the dataset matches with the diagonal line. The more data lies on the diagonal 

line, the better the model performance. Linear regression model seems to lose ability to 

predict the response at the boundaries, i.e. at very low and very high efficiency. The 

model tends to predict the response beyond the possible maximum value which is at 1 

or 100%. Although the model has a good prediction on the response in the middle range, 

predicting beyond maximum point seems to be the big disadvantage of using linear 

regression. However, SVM shows much better performance as most predicted data lies 

very well on the diagonal line except at the very low value but only in small portion. 

Moreover, SVM predicts the response within the limit and it seems to be very accurate 

for high efficiency, which is the range of most interest.  

 
Figure 4.3.1: Case 50-50 interpolation on linear regression and SVM 

The same statistical indicators for SVM model are also presented in Table 4.3.1. By 

comparing Table 4.2.1 and Table 4.3.1, SVM model presents much better results than 

that of linear regression for most cases. Similarly, SVM model also shows that scenario 

2 gives the best values for all indicators. It provides lower RMSE, with R2 as high as 

0.96 for training set and 0.92 for test set. The model also results in as low as 0.15% 

MARE, but in a bit larger MaxARE of 1.86%. This large error can be found in Figure 

4.3.1 having few points scattering in the middle range. 

 

Table 4.3.1: Statistical indicators for SVM (Case 50-50 interpolation)  

Statistical 

Indicators 

Data set and Scenario 

Train_s1 Test_s1 Train_s2 Test_s2 Train_s3 Test_s3 

RMSE 0.0034 0.0047 0.0018 0.0025 0.0027 0.0031 

R2 0.9143 0.8211 0.9633 0.9242 0.9393 0.9142 

MARE 0.0014 0.0017 0.0011 0.0015 0.0013 0.0016 

MaxARE 0.0621 0.1062 0.0154 0.0186 0.0305 0.0306 
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4.4 Effect of Models 

Earlier section presented prediction trend of only linear regression and SVM models on 

the interpolating prediction performance. However, for the models to be more useful, 

we are more interested in predicting future ESP efficiency based on data we have. Thus, 

extrapolation performance using several models is discussed. Figure 4.4.1 shows six 

prediction plots from all six models which are linear regression, PCR and PLSR on the 

top row as well as SVM, SVM with PCA and SVM with PLS on the bottom row. All 

models were performed using all 23 predictors and the data representing in this figure 

is from a splitting case 65-35. This case can present the best trend among other cases. 

More details on effect of splitting case will be further discussed in the later section. 

Appendix B presents the results for the rest of the splitting cases. 

 

From Figure 4.4.1, SVM with PLS give the best prediction trend among 6 models as 

most of data points align well with the diagonal line. This can be confirmed with the 

statistical indicators, by comparing Table 4.4.1 to Table 4.4.6. This model results in R2 

as high as 0.86 with 0.26% MARE and MaxARE 1.45%. 

 

 
 

Figure 4.4.1: Extrapolation performance on several models of case 65-35  

(Linear, PCR, PLSR, SVM, SVM PCA, and SVM PLS) 
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4.4.1 Linear Regression, PCR, PLSR 

In this section, 3 linear regression base models are compared to each other to see how 

PCA and PLS techniques improve the model performance. From Figure 4.4.1, all 3 

models show very similar trend, and it is hard to distinguish between them. However, 

all of them predict the efficiency in some cases as high as 102-103% which is 

impossible in reality. Both PCR and PLSR were specified with 95% of explain variance. 

For PCR, there are 12 components left in scenario 1, and 14 components left in scenario 

2 and 3 to explain this 95% variance. For PLSR, a lot less components were used to 

explain 95% variance which are 2 components in scenario 1, and 3 components in both 

scenario 2 and 3.  

 

For statistical indicators, scenario 2 gives the best results for all 3 models (Table 4.4.1 

to Table 4.4.3). Comparing indicator value from test sets in scenario 2, it shows that 

PCA has the best performance with the lowest RMSE, highest R2 and lowest MaxARE. 

However, MARE is the same for linear regression and PCR. This means that by 

applying PCA to linear regression model can help improve marginally the model 

performance. Nonetheless, applying PLS seems to give the opposite as it results in the 

worst results among the 3 models. 

 

Table 4.4.1: Statistical indicators for linear regression (Case 65-35) 

Statistical 

Indicators 

Data set and Scenario 

Train_s1 Test_s1 Train_s2 Test_s2 Train_s3 Test_s3 

RMSE 0.0036 0.0082 0.0028 0.0047 0.0031 0.0065 

R2 0.8610 0.6107 0.8830 0.7536 0.8750 0.6962 

MARE 0.0024 0.0058 0.0021 0.0038 0.0022 0.0048 

MaxARE 0.0655 0.0693 0.0159 0.0178 0.0265 0.0343 

 

Table 4.4.2: Statistical indicators for PCR (Case 65-35) 

Statistical 

Indicators 

Data set and Scenario 

Train_s1 Test_s1 Train_s2 Test_s2 Train_s3 Test_s3 

RMSE 0.0036 0.0082 0.0028 0.0045 0.0032 0.0065 

R2 0.8563 0.6382 0.8813 0.7755 0.8697 0.7063 

MARE 0.0025 0.0052 0.0021 0.0038 0.0023 0.0049 

MaxARE 0.0677 0.0978 0.0159 0.0172 0.0276 0.0336 

 

Table 4.4.3: Statistical indicators for PLSR (Case 65-35) 

Statistical 

Indicators 

Data set and Scenario 

Train_s1 Test_s1 Train_s2 Test_s2 Train_s3 Test_s3 

RMSE 0.0053 0.0087 0.0037 0.0053 0.0044 0.0077 

R2 0.7098 0.5988 0.7980 0.6977 0.7593 0.6219 

MARE 0.0033 0.0062 0.0028 0.0041 0.0033 0.0058 

MaxARE 0.0795 0.0831 0.0180 0.0200 0.0348 0.0358 
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4.4.2 SVM with PCA and PLS 

In this section, 3 SVM based models are compared to each other to see how PCA and 

PLS techniques improve the model performance. From Figure 4.4.1, it obviously shows 

that SVM with PLS gives the best prediction trend. There is an unusual trend of 

horizontal line prediction for both SVM and SVM with PCA which did not appear with 

interpolation performance. These horizontal lines are results of using all 23 predictors 

as an input although not all of them significantly affect the response. The models took 

every predictor equally significant when training, nevertheless, some of them were zero 

for a certain period, such as oxygen and water content as well as exhaust gas 

compositions (Appendix A). In addition, it could be the results from some predictors 

that have totally different trend in training and test set, for instance having fluctuation 

in training set but measured as zero in test set (e.g., as in the case of NOx). More details 

will be furthered discussed with parameter sensitivity analysis in later section. 

 

Similarly, number of components for SVM with PCA to explain 95% variance are the 

same as PCR which is 12 components left in scenario 1, and 14 components left in 

scenario 2 and 3. For SVM with PLS, less components were used which are 2 

components in scenario 1, and 3 components in both scenario 2 and 3. For statistical 

indicators, scenario 2 gives the best results for all 3 models, as shown in Table 4.4.4 to 

Table 4.4.6. It also shows that applying either PCA or PLS to SVM model can help 

improving the performance. SVM with PLS has the best performance for most of the 

indicators. 

 

Table 4.4.4: Statistical indicators for SVM (Case 65-35, 23 predictors) 

Statistical 

Indicators 

Data set and Scenario 

Train_s1 Test_s1 Train_s2 Test_s2 Train_s3 Test_s3 

RMSE 0.0032 0.0098 0.0015 0.0077 0.0019 0.0085 

R2 0.8986 0.5184 0.9714 0.5348 0.9594 0.5433 

MARE 0.0011 0.0068 0.0009 0.0062 0.0010 0.0061 

MaxARE 0.0990 0.0862 0.0161 0.0287 0.0257 0.0468 

 

Table 4.4.5: Statistical indicators for SVM with PCA (Case 65-35, 23 predictors) 

Statistical 

Indicators 

Data set and Scenario 

Train_s1 Test_s1 Train_s2 Test_s2 Train_s3 Test_s3 

RMSE 0.0028 0.0064 0.0014 0.0047 0.0018 0.0062 

R2 0.9246 0.7982 0.9735 0.8009 0.9651 0.7777 

MARE 0.0009 0.0038 0.0008 0.0033 0.0010 0.0047 

MaxARE 0.0889 0.0858 0.0157 0.0247 0.0239 0.0352 

 

Table 4.4.6: Statistical indicators for SVM with PLS (Case 65-35, 23 predictors) 

Statistical 

Indicators 

Data set and Scenario 

Train_s1 Test_s1 Train_s2 Test_s2 Train_s3 Test_s3 

RMSE 0.0049 0.0063 0.0025 0.0035 0.0034 0.0051 

R2 0.7524 0.7642 0.9023 0.8594 0.8535 0.8092 

MARE 0.0024 0.0042 0.0019 0.0026 0.0025 0.0038 

MaxARE 0.0841 0.0838 0.0103 0.0145 0.0237 0.0303 
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4.5 Effect of splitting cases 

From the previous section, SVM with PLS gives the best result on both prediction trend 

and statistical indicators. This section will compare several splitting cases for this model 

to see the effect of splitting case on model performance. Figure 4.5.1 shows all splitting 

cases of SVM with PLS models, while corresponding results for all other models are 

provided in Appendix B. Statistical indicators of this model for all splitting cases are 

presented in Table 4.5.1. The values are from test sets in scenario 2 since they provide 

the best results. Appendix C provides the corresponding values for all other scenarios.  

 

Figure 4.5.1 shows that when training set percentage becomes higher such as case 70-

30, 75-25 and 80-20, the prediction trend will be off the diagonal line, especially at very 

low efficiency. As a consequence, they could not perform well on the statistical 

indicators as well. The case that provides the best prediction trend and indicator values 

is 65-35. It provides the lowest RMSE, MARE of 0.26% and MaxARE of 1.45% (Table 

4.5.1). 

 

 
 

Figure 4.5.1: SVM with PLS performance on all splitting cases; a) top row: 50-50, 55-

45, 60-40, b) middle row: 65-35, 70-30, 75-25, c) bottom row: 80-20 
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Table 4.5.1: Statistical indicators for SVM with PLS (test set in Scenario 2) 

Statistical 

Indicators 

Splitting cases 

50-50 55-45 60-40 65-35 70-30 75-25 80-20 

RMSE 0.0041 0.0039 0.0041 0.0035 0.0039 0.0057 0.0069 

R2 0.8000 0.8208 0.8074 0.8594 0.8491 0.8718 0.8937 

MARE 0.0032 0.0031 0.0032 0.0026 0.0029 0.0045 0.0059 

MaxARE 0.0169 0.0155 0.0209 0.0145 0.0167 0.0204 0.0221 

 

4.6 Effect of parameters 

In this section, sensitivity analysis of each parameter will be performed to see their 

effect on the efficiency. Since not all predictors have a significant impact on the 

response, this analysis can help to discard some of them that may be irrelevant. For the 

ease of sensitivity analysis performance, SVM models that previously show unusual 

trend will be used. The splitting case 50-50 of scenario 2 will be used for sensitivity 

analysis since it has the most data points on test set. 

 

Firstly, test set with all 23 predictors was used to predict the response. The result show 

unusual trend as a horizontal line as shown in Figure 4.6.1. It indicates that no matter 

how ESP is operated, the model will always predict the same value of response as 

constant around 98%, while in reality the ESP efficiency would significantly fluctuate. 

Therefore, the model should be improved by removing some predictors. 

  

 
Figure 4.6.1: Predicted efficiency using scenario 2, SVM and 23 predictors 

 

Next, data trend for each operating parameter is investigated (Appendix A). It shows 

that some parameters such exhaust gas compositions (H2O, HCl, CO, NOX, CO2 and 

SO2) have significantly different trends in training and test sets which may affect the 

model testing. For H2O, it has mostly constant value at the beginning, then, it starts 

drastically fluctuating during late February to mid of March and then it remains zero 

before getting back to the same level during late April. This fluctuation and zero 

measurement are in the test sets. Other exhaust gas compositions such as HCl, CO, CO2 

and SO2 have very similar trend to each other. Mostly, they are measured as zero, but 

only during late February until mid of March fluctuate, which appears only in test set. 

Meanwhile, NOX gives an opposite trend. There is fluctuation of NOx in training set, 

but for the test set, it remains mostly constant at certain level since the beginning of 

March and it starts fluctuating again in late April. Therefore, the first try to remove 

some predictors will start from these exhaust gas compositions. 
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Now, several combinations of predictors are removed to test the model as well as each 

predictor is removed one by one to see how it affects the response prediction. The first 

try is to remove a combination such H2O and NOX. Unfortunately, they do not effect 

on the constant predicted output but only results in slightly higher of the last output 

peak during late April (Figure 4.6.2a). Next, steam production parameter was removed, 

but it does not seem to have any effect (Figure 4.6.2b). By further removed SO2, it gives 

better result with more fluctuated prediction in the later part, which is during April 

(Figure 4.6.2c). Next, the rest exhaust gas compositions such as CO2, CO and HCl were 

tested by removing one by one. When CO2 is further removed, it also gives better results 

with much less constant prediction. There is more fluctuation in the middle and the last 

output peak (Figure 4.6.2d). However, removing CO shows little to no effect on the 

response as it slightly changes the middle peak (Figure 4.6.2e). When HCl is removed, 

it gives better result with more fluctuation of the peak during mid of February (Figure 

4.6.2f). From this analysis, we see that removing some predictors such as SO2, CO2 and 

HCl affect the efficiency the most whereas removing H2O, NOX, CO, and Steam 

seemed to have little to no effect. 

 

 

 
Figure 4.6.2: Predicted efficiency on SVM (s2 case 50-50) when removing: a) H2O and 

NOX, b) Steam, H2O, and NOX, c) Steam, H2O, NOX and SO2, d) Steam, H2O, NOX, SO2 

and CO2, e) Steam, H2O, NOX, SO2 and CO, f) Steam, H2O, NOX, SO2 and HCl  
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The next focus is to remove simultaneously more than one predictor that affect the 

response the most. The chosen combination is CO2 and SO2. Although, these two 

previously give better result, removing just two of them does not make any good 

prediction. There is slightly change of middle peak (Figure 4.6.3a). By further removing 

H2O, it gives much better result with less constant output and more fluctuation, 

especially during the beginning of March and mid of April (Figure 4.6.3b). When HCl 

is further removed, it also gives better results with less constant prediction; there is 

output fluctuation during the middle of February (Figure 4.6.3c). Next, CO is further 

removed; the middle peak at the beginning of March fluctuates more (Figure 4.6.3d). 

 

Furthermore, when wet oxygen content parameter (O2wet) is removed, it gives better 

result with more fluctuation of middle peak at the beginning of March. It can be seen 

that the second and third peak are now connected (Figure 4.6.4a). Next, when inlet 

temperature (Tin) is removed, it only results in slightly change of the middle peak 

(Figure 4.6.4b). Removing inlet pressure (Pin) also gives better result with more 

fluctuation of the middle peak during late March (Figure 4.6.4c). Lastly, NOX is 

removed with the combination of CO2, SO2, H2O, HCl, CO, O2wet, and Pin. By 

removing this combination, it provides more fluctuation of the last output peak (Figure 

4.6.4d). Other predictors are also tested, but removing them does not affect the output 

and thus the model is not improved. These predictors are dry oxygen content (O2dry), 

steam productions (both set points and real production: Steam and RealSteam), 

volumetric flowrate (Q), outlet pressure (Pout), outlet temperature (Tout), voltages (V1, 

V2, and V3), and currents (I1, I2, and I3). 

 

Statistical indicators are calculated and used to confirm whether removing such 

combinations help improving the model performance. Table 4.6.1 presents 4 indicator 

values which are RMSE, R2, MARE and MaxARE. Noted that each column 

corresponds to several predictors being removed including the combination of previous 

column as well. These combinations match with Figure 4.6.3 and Figure 4.6.4. For 

example, the second column refers to the combination in Figure 4.6.3b, and the last 

column refers to the combination in Figure 4.6.4d. The indicators show that the more 

predictors removed, the better the performance as it gives better values of all indicators. 

Thus, removing 8 predictors gives the best performance as it has the lowest RMSE of 

0.0041, highest R2 of 0.83, lowest MARE of 0.26% a lowest MaxARE of 2.54%. 

MARE is reduced by more than half compared to the case of using 23 predictors. 

 

Thus, the best predictor combination to be removed is CO2, SO2, H2O, HCl, CO, O2wet, 

Pin, and NOX. Removing this combination improves the model in such a way that all 

data points could get predicted (Figure 4.6.5). Figure 4.6.5 also shows that the unusual 

horizontal trend is reduced, however, it does not disappear, which is the result from bad 

prediction during late March and late April. Scatter plot shows that test set fits quite 

well with the training set. 

 

Table 4.6.1: Statistical indicators for SVM (test set in scenario2, case 50-50) 

Statistical 

Indicator 

Removing predictors 

None 
CO2 

SO2 
H2O HCl CO O2wet Pin NOX 

RMSE 0.0079 0.0078 0.0064 0.0057 0.0050 0.0047 0.0045 0.0041 

R2 0.2741 0.2960 0.5675 0.6648 0.7296 0.7674 0.7954 0.8300 

MARE 0.0062 0.0061 0.0047 0.0040 0.0033 0.0030 0.0028 0.0026 

MaxARE 0.0326 0.0326 0.0326 0.0293 0.0293 0.0290 0.0262 0.0254 
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Figure 4.6.3: Predicted efficiency on SVM (s2 case 50-50) when removing: a) CO2 and 

SO2, b) H2O, CO2 and SO2, c) H2O, HCl, CO2 and SO2, d) H2O, HCl, CO, CO2,and SO2 

 

 
 

Figure 4.6.4: Predicted efficiency on SVM (s2 case 50-50) when removing: a) O2wet, 

H2O, HCl, CO, CO2, and SO2, b) Tin, O2wet, H2O, HCl, CO, CO2,and SO2, c) Pin, O2wet, 

H2O, HCl, CO, CO2,and SO2, d) Pin, O2wet, H2O, HCl, CO, NOX, CO2, and SO2 
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Figure 4.6.5: Predicted efficiency using scenario 2, SVM and 15 predictors 

 

Moreover, the best predictor combination found in the sensitivity analysis is applied to 

other models to see if they provide similar improvement. Since it is found that splitting 

case 65-35 of scenario 2 gives the best result so far, this predictor combination will be 

removed from this case. Table 4.6.2 shows statistical indicators from test set of all 6 

models with 15 predictors remained. Figure 4.6.6 shows the model performance in 

scatter plots comparing training and test sets as well as plots of efficiency with time 

comparing true and predicted response of the test set. 

 

By removing 8 predictors (CO2, SO2, H2O, HCl, CO, O2wet, Pin, and NOX), the 

prediction trends are improved for all models (i.e., comparing Figure 4.4.1 with Figure 

4.6.6). The linear regression, PCR, and PLSR models have better alignment of training 

and test sets and their efficiency prediction has less error and closer to maximum limit. 

However, the comparison of the statistics in Table 4.6.2 and Table 4.6.3 shows only 

marginal improvement for these models. On the contrary, the prediction trends and 

statistics of SVM-based models are significantly improved, especially SVM and SVM 

with PCA. It clearly shows that the horizontal line is reduced in SVM and disappeared 

in SVM with PCA while the trend and statistics are the same for SVM with PLS.  

 

Next, statistical indicators for all models with 15 and 23 predictors are compared in 

Table 4.6.2 and Table 4.6.3. When all 23 predictors are used, SVM with PLS provides 

the best performance. All models improve when using 15 predictors. Table 4.6.2 shows 

that SVM with PCA provides the best performance with the lowest RMSE, highest R2 

of 0.9, and lowest MARE of 0.24% whereas SVM with PLS gives the lowest MaxARE 

of 1.46%. Further investigation on other splitting cases shows that SVM with PCA has 

the best performance for all splitting cases with 15 predictors (Appendix D and E). 

More specifically, the SVM with PCA of case 50-50 provides the best indicator values 

with the lowest RMSE of 0.0029, highest R2 of 0.9161, and lowest MARE of 0.19% 

whereas the lowest MaxARE is from SVM PLS in case 55-45 with value of 1.42%. 
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Figure 4.6.6: Performance of 6 models with scenario 2 case 65-35 and 15 predictors 
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Table 4.6.2: Statistical indicators for all models (test set, s2, case 65-35, 15 predictors) 

Statistical 

Indicators 

Models 

Linear 

regression 
PCR PLSR SVM 

SVM 

PCA 

SVM 

PLS 

RMSE 0.0043 0.0044 0.0052 0.0047 0.0032 0.0035 

R2 0.7873 0.7860 0.6996 0.7997 0.9055 0.8573 

MARE 0.0034 0.0037 0.0041 0.0031 0.0024 0.0027 

MaxARE 0.0181 0.0175 0.0193 0.0252 0.0173 0.0146 

 

Table 4.6.3: Statistical indicators for all models (test set, s2, case 65-35, 23 predictors) 

Statistical 

Indicators 

Models 

Linear 

regression 
PCR PLSR SVM 

SVM 

PCA 

SVM 

PLS 

RMSE 0.0047 0.0045 0.0053 0.0077 0.0047 0.0035 

R2 0.7536 0.7755 0.6977 0.5348 0.8009 0.8594 

MARE 0.0038 0.0038 0.0041 0.0062 0.0033 0.0026 

MaxARE 0.0178 0.0172 0.0200 0.0287 0.0247 0.0145 
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5 Conclusion 

 

ESP process data obtained from 30 November 2019 until 30 April 2020 with one-hour 

resolution has 23 predictors which are ash concentrations (Ashin and Ashout), steam 

productions (Steam and RealSteam), voltages (V1,V2 and V3), currents (I1, I2 and I3), 

volumetric flowrate (Q), temperature (Tin and Tout), pressure (Pin and Pout), oxygen and 

water content (O2wet, O2dry, and H2O), and exhaust gas compositions (HCl, CO, NOX, 

CO2 and SO2). It should be noted that these 23 predictors can be groupped as i) flue gas 

input parameters (Q, Tin, and Pin) that can be affected by the process system before the 

ESP, ii) ESP process parameters (V1, V2, V3, I1, I2, and I3) that can be controlled for the 

ESP operation, and iii) ESP output parameters (Tout, Pout, O2wet, O2dry, H2O, HCl, CO, 

NOx, CO2 and SO2) that can only be observed. However, out of this list of parameters, 

the most problematic one is outlet ash concentration (Ashout) as it is similar to the model 

output (i.e., it cannot be controlled to improved the ESP operation). The rest of the 

variables can be in some extent controlled or known before the ESP operation so that 

the ESP controller can use them as inputs to the model in order to see what would be 

expected. The obtained data is preprocessed by removing missing data, and known 

errors. Then, the data is cleaned by removing outliers using different methods and 

results in 3 different scenarios which are s1: no outliers removed, s2: outliers removed 

by standard deviation method, and s3: outliers removed by Mahalanobis distance. Data 

in each scenario is split into training and test sets for 7 cases having different percentage 

of training and test set. The splitting cases are 50-50, 55-45, 60-40, 65-35, 70-30, 75-

25, and 80-20. The main models are linear regression and SVM. Each of them is 

additionally applied with PCA and PLS for dimensionality reduction. Thus, there are 6 

models in total.  

 

Firstly, correlation between parameters is calculated and it is found that efficiency 

correlates with ash concentrations and V1, V2, V3, I1, and I2 the most. Effect of outlier 

removal methods is also investigated. It shows that scenario 2 with outliers removed by 

standard deviation method gives the best performance in most cases, although the 

standard deviation method discards a lot of data points. For the prediction trend, linear 

regression fails to predict efficiency at very low and very high efficiency. The big 

disadvantage of using linear regression base models is that it predicts the response 

beyond the maximum possible limit of 100%. The SVM based models provide better 

performance as data points align very well with the diagonal line, in the case of 

interpolation performance. However, SVM and SVM with PCA give unusual horizontal 

line when predicting future efficiency values. With all 23 predictors, SVM with PLS 

give the best prediction trend among 6 models. All 7 splitting cases are compared. The 

results show that case 65-35 provides the best performance with R2 of 0.86, MARE of 

0.26% and MaxARE of 1.45%. 

 

Finally, sensitivity analysis is performed to see how each predictor affects the 

efficiency. In this context, feature selection is performed to improve the models by 

removing several predictor combinations. It is found that the best predictor combination 

to be removed is CO2, SO2, H2O, HCl, CO, O2wet, Pin, and NOX. Thus, there are 15 

predictors left on each model. Unusual trend of SVM and SVM with PCA from using 

all predictors is significantly reduced and generally all models are improved in some 

extent when the aforementioned combination of predictors is removed. Moreover, SVM 

with PCA model gives best performance for all splitting cases with 15 predictors. More 

specifically, SVM with PCA of case 50-50 provides the best indicator values with the 
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lowest RMSE of 0.0029, highest R2 of 0.9161, and lowest MARE of 0.19% whereas 

the lowest MaxARE of 1.42% is from SVM with PLS in case 55-45. 

 

In conclusion, SVM with PCA model with 15 predictors is recommended for ESP 

efficiency prediction. To get the closest prediction, outliers should be removed by 

standard deviation method and the data should be split by half for training and test set 

(case 50-50). Cross validation should be used when training the model to prevent 

overfitting. This model prediction is off by the average of around 0.2% with maximum 

different up to 1.42%. Moreover, these models can be used in optimization scenarios, 

where the ESP controller finds the optimal predictor values of ESP operation for various 

scenarios of flue gas properties. Again, in this way, the most problematic predictor is 

outlet ash concentration (Ashout) as neither the ESP operator nor the process engineers 

that control the process prior to the ESP can affect this predictor (whereas Ashin can be 

in some extent affected by the type of waste burned etc., but even if it cannot be affected 

it is an important input parameter that it makes sense to be used for any kind of 

predictive model of the ESP). 

 
ESP [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] ML [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] 

[28] [29] [30] [31][32] [33] 
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7 Appendix 

7.1 Appendix A: ESP Process Data  

ESP process data with one-hour resolution, measured from 30 November 2019 to 30 

April 2020, are cleaned and treated differently. This splits into 3 scenarios which are 

S1: no outliers removal, S2: outliers removed by standard deviation method and S3: 

outliers removed by Mahalanobis distance. Figures below clearly show that extreme 

outliers from the original data are removed in S2 and S3, especially in S2 that several 

dates during March (12th -22nd) were removed. 
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Figure 7.1.1: Comparison of ESP process data variables for each scenario 
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7.2 Appendix B: Extrapolating prediction performance 

This section presents the extrapolating prediction results of the 6 models using all 23 

predictors. The results from all 7 splitting cases are shown and compared. 

 

 
 

Figure 7.2.1: Case 50-50 model performance (23 predictors) 

 

 
 

Figure 7.2.2: Case 55-45 model performance (23 predictors) 

 



 

 CHALMERS, Space, Earth and Environment, Master’s Thesis        51 

 

 

 
 

Figure 7.2.3: Case 60-40 model performance (23 predictors) 

 

 

 
 

Figure 7.2.4: Case 65-35 model performance (23 predictors) 
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Figure 7.2.5: Case 70-30 model performance (23 predictors)  

 

 

 
 

Figure 7.2.6: Case 75-25 model performance (23 predictors) 
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Figure 7.2.7: Case 80-20 model performance (23 predictors) 
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7.3 Appendix C: Statistical indicators for SVM with PLS 

This section presents statistical indicators for SVM with PLS of all splitting cases with 

23 predictors as shown in Table 7.3.1 to Table 7.3.7. 

 

Table 7.3.1: Statistical indicators for SVM with PLS (Case 50-50, 23 predictors) 

Statistical 

Indicators 

Data set and Scenario 

Train_s1 Test_s1 Train_s2 Test_s2 Train_s3 Test_s3 

RMSE 0.0050 0.0058 0.0029 0.0041 0.0037 0.0060 

R2 0.7562 0.8251 0.8627 0.8000 0.8384 0.7643 

MARE 0.0020 0.0042 0.0022 0.0032 0.0026 0.0046 

MaxARE 0.0865 0.0804 0.0127 0.0169 0.0350 0.0288 

 

Table 7.3.2: Statistical indicators for SVM with PLS (Case 55-45, 23 predictors) 

Statistical 

Indicators 

Data set and Scenario 

Train_s1 Test_s1 Train_s2 Test_s2 Train_s3 Test_s3 

RMSE 0.0054 0.0059 0.0027 0.0039 0.0041 0.0064 

R2 0.7126 0.8094 0.8949 0.8208 0.7968 0.7311 

MARE 0.0025 0.0042 0.0020 0.0031 0.0029 0.0050 

MaxARE 0.0904 0.0818 0.0116 0.0155 0.0325 0.0284 

 

Table 7.3.3: Statistical indicators for SVM with PLS (Case 60-40, 23 predictors) 

Statistical 

Indicators 

Data set and Scenario 

Train_s1 Test_s1 Train_s2 Test_s2 Train_s3 Test_s3 

RMSE 0.0052 0.0065 0.0028 0.0041 0.0036 0.0057 

R2 0.7221 0.7613 0.8868 0.8074 0.8373 0.7888 

MARE 0.0026 0.0045 0.0021 0.0032 0.0026 0.0043 

MaxARE 0.0887 0.0836 0.0155 0.0209 0.0239 0.0302 

 

Table 7.3.4: Statistical indicators for SVM with PLS (Case 65-35, 23 predictors) 

Statistical 

Indicators 

Data set and Scenario 

Train_s1 Test_s1 Train_s2 Test_s2 Train_s3 Test_s3 

RMSE 0.0049 0.0063 0.0025 0.0035 0.0034 0.0051 

R2 0.7524 0.7642 0.9023 0.8594 0.8535 0.8092 

MARE 0.0024 0.0042 0.0019 0.0026 0.0025 0.0038 

MaxARE 0.0841 0.0838 0.0103 0.0145 0.0237 0.0303 

 

Table 7.3.5: Statistical indicators for SVM with PLS (Case 70-30, 23 predictors) 

Statistical 

Indicators 

Data set and Scenario 

Train_s1 Test_s1 Train_s2 Test_s2 Train_s3 Test_s3 

RMSE 0.0031 0.0069 0.0024 0.0039 0.0027 0.0068 

R2 0.9029 0.8457 0.9115 0.8491 0.9083 0.7864 

MARE 0.0016 0.0043 0.0018 0.0029 0.0019 0.0046 

MaxARE 0.0857 0.0859 0.0191 0.0167 0.0293 0.0448 
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Table 7.3.6: Statistical indicators for SVM with PLS (Case 75-25, 23 predictors) 

Statistical 

Indicators 

Data set and Scenario 

Train_s1 Test_s1 Train_s2 Test_s2 Train_s3 Test_s3 

RMSE 0.0035 0.0082 0.0025 0.0057 0.0041 0.0076 

R2 0.8660 0.6758 0.9088 0.8718 0.7951 0.7658 

MARE 0.0021 0.0050 0.0019 0.0045 0.0029 0.0055 

MaxARE 0.0797 0.0812 0.0144 0.0204 0.0265 0.0419 

 

Table 7.3.7: Statistical indicators for SVM with PLS (Case 80-20, 23 predictors) 

Statistical 

Indicators 

Data set and Scenario 

Train_s1 Test_s1 Train_s2 Test_s2 Train_s3 Test_s3 

RMSE 0.0043 0.0094 0.0026 0.0069 0.0021 0.0072 

R2 0.8024 0.6054 0.8963 0.8937 0.9462 0.9058 

MARE 0.0027 0.0057 0.0019 0.0059 0.0014 0.0054 

MaxARE 0.0820 0.0869 0.0184 0.0221 0.0198 0.0386 
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7.4 Appendix D: Model performance (15 predictors) 

This section presents the extrapolating prediction results of the 6 models using 15 

predictors and scenario 2. The results from all 7 splitting cases are shown. 

 

 
 

Figure 7.4.1: Case 50-50 model performance (scenario 2, 15 predictors) 

 

 
 

Figure 7.4.2: Case 55-45 model performance (scenario 2, 15 predictors) 
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Figure 7.4.3: Case 60-40 model performance (scenario 2, 15 predictors) 

 

 
 

Figure 7.4.4: Case 65-35 model performance (scenario 2, 15 predictors) 
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Figure 7.4.5: Case 70-30 model performance (scenario 2, 15 predictors) 

 

 
 

Figure 7.4.6: Case 75-25 model performance (scenario 2, 15 predictors) 
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Figure 7.4.7: Case 80-20 model performance (scenario 2, 15 predictors) 
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7.5 Appendix E: Statistical indicators (15 predictors) 

This section presents statistical indicators for all 6 models of all splitting cases with 15 

predictors using test set in scenario 2 as shown in Table 7.5.1 to Table 7.5.7. 

 

Table 7.5.1: Statistical indicators for all models (s2, case 50-50, 15 predictors) 

Statistical 

Indicators 

Models 

Linear 

regression 
PCR PLSR SVM 

SVM 

PCA 

SVM 

PLS 

RMSE 0.0039 0.0039 0.0050 0.0041 0.0029 0.0037 

R2 0.8139 0.8167 0.7131 0.8300 0.9161 0.8342 

MARE 0.0029 0.0030 0.0039 0.0026 0.0019 0.0029 

MaxARE 0.0188 0.0177 0.0206 0.0254 0.0194 0.0157 

 

Table 7.5.2: Statistical indicators for all models (s2, case 55-45, 15 predictors) 

Statistical 

Indicators 

Models 

Linear 

regression 
PCR PLSR SVM 

SVM 

PCA 

SVM 

PLS 

RMSE 0.0039 0.0041 0.0050 0.0043 0.0030 0.0036 

R2 0.8039 0.8006 0.7092 0.8056 0.9070 0.8467 

MARE 0.0030 0.0033 0.0039 0.0027 0.0022 0.0027 

MaxARE 0.0181 0.0178 0.0193 0.0251 0.0178 0.0142 

 

Table 7.5.3: Statistical indicators for all models (s2, case 60-40, 15 predictors) 

Statistical 

Indicators 

Models 

Linear 

regression 
PCR PLSR SVM 

SVM 

PCA 

SVM 

PLS 

RMSE 0.0041 0.0042 0.0051 0.0044 0.0030 0.0036 

R2 0.7970 0.7947 0.7050 0.8022 0.9062 0.8448 

MARE 0.0032 0.0034 0.0040 0.0029 0.0022 0.0028 

MaxARE 0.0181 0.0175 0.0201 0.0252 0.0176 0.0159 

 

Table 7.5.4: Statistical indicators for all models (s2, case 65-35, 15 predictors) 

Statistical 

Indicators 

Models 

Linear 

regression 
PCR PLSR SVM 

SVM 

PCA 

SVM 

PLS 

RMSE 0.0043 0.0044 0.0052 0.0047 0.0032 0.0035 

R2 0.7873 0.7860 0.6996 0.7997 0.9055 0.8573 

MARE 0.0034 0.0037 0.0041 0.0031 0.0024 0.0027 

MaxARE 0.0181 0.0175 0.0193 0.0252 0.0173 0.0146 
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Table 7.5.5: Statistical indicators for all models (s2, case 70-30, 15 predictors) 

Statistical 

Indicators 

Models 

Linear 

regression 
PCR PLSR SVM 

SVM 

PCA 

SVM 

PLS 

RMSE 0.0044 0.0044 0.0055 0.0049 0.0033 0.0038 

R2 0.7804 0.7807 0.6925 0.7977 0.9039 0.8718 

MARE 0.0035 0.0037 0.0040 0.0033 0.0025 0.0028 

MaxARE 0.0185 0.0175 0.0203 0.0254 0.0182 0.0173 

 

Table 7.5.6: Statistical indicators for all models (s2, case 75-25, 15 predictors) 

Statistical 

Indicators 

Models 

Linear 

regression 
PCR PLSR SVM 

SVM 

PCA 

SVM 

PLS 

RMSE 0.0046 0.0043 0.0061 0.0050 0.0034 0.0055 

R2 0.8005 0.8197 0.6970 0.8058 0.9097 0.8715 

MARE 0.0038 0.0033 0.0044 0.0034 0.0023 0.0043 

MaxARE 0.0188 0.0194 0.0221 0.0255 0.0206 0.0216 

 

Table 7.5.7: Statistical indicators for all models (s2, case 80-20, 15 predictors) 

Statistical 

Indicators 

Models 

Linear 

regression 
PCR PLSR SVM 

SVM 

PCA 

SVM 

PLS 

RMSE 0.0046 0.0044 0.0066 0.0037 0.0036 0.0069 

R2 0.8478 0.8511 0.7906 0.8921 0.8825 0.8922 

MARE 0.0032 0.0033 0.0051 0.0023 0.0023 0.0060 

MaxARE 0.0201 0.0191 0.0232 0.0220 0.0210 0.0217 

 


