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Neural networks for predicting antibiotic resistance
- an analysis of performance
BEATRICE SKYMAN
Department of Mathematical Sciences
Chalmers University of Technology

Abstract

This thesis investigate the possibility of predicting bacteria resistant to antibiotic
treatment. The investigation is a part of developing a diagnostic tool for hospitals
to use when deciding which antibiotic a patient should be treated with. This tool
will be more and more relevant as antibiotic resistance and multidrug-resistance is
spreading in the world with an accelerating rate.

Neural networks are used for predicting the probability of a bacterium being resis-
tant to an antibiotic. The architecture of these networks is investigated and their
outcome and performance are analysed. The distribution of the predictions are in-
vestigated and then different classification limits are tested. A classification limit
gives a number of unclassified samples and errors, and these samples are investigated
with regards to age, gender and country. Finally, the performance of the model is
measured as the number of tested antibiotics is reduced.

When investigating the architecture of the neural networks the result are quite
similar regardless to the number of layers and neurons. For the predictions, some
antibiotics are more easily separated than other. This leads to a big variation in
the number of unclassified samples and error between different antibiotics. When
analysing the unclassified samples and errors only country could affect the predic-
tions. The performance of the model when having more than four antibiotics tested
as input is high. The conclusion is therefore that predicting antibiotic resistance
using neural networks is possible and could potentially be used to replace measure-
ments in the hospital laboratory.

Keywords: antibiotic resistance, neural networks, machine learning, predicting per-
formance, diagnostic
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1
Introduction

This chapter presents the purpose of this thesis. Firstly, some background is given,
explaining today’s situation regarding antibiotic resistance in the world. Secondly,
the aim and the importance of the topic is presented. Lastly, the method and what
is included in the thesis is presented.

1.1 Background
One of the biggest threats to global health today is antibiotic resistance. According
to the World Health Organization, WHO, antibiotic resistance is widely spread over
the world. An antibiotic is a drug used not to only to treat bacterial infections but
also to prevent them [1]. A bacterium being resistant to a specific antibiotic means
treating a patient with that antibiotic will be ineffective. Antibiotics can use different
ways to kill bacteria or prevent them from reproducing. Bacteria can be naturally
resistant to an antibiotic. An example is when an antibiotic attacks the process
creating cell membrane, if the bacteria lack this specific process, the antibiotic will
not work. Otherwise it could develop one or several defence mechanisms. A defence
mechanism could for example be to decrease the uptake of the antibiotic or deactivate
the antibiotic [2].

Bacteria can develop new resistance mechanism naturally. Today, antibiotics are
widely used in both healthcare and food production, but unfortunately, antibiotics
are also misused. The misuse leads to over consumption which accelerate the de-
velopment of antibiotic resistant bacteria [1]. A bacterium can be resistant to more
than one antibiotic, either because some resistance mechanism gives resistance to
several antibiotics or because the bacterium have developed several resistance mech-
anisms. This phenomena is called multidrug-resistance and implicates few or non
functional treatments [3]. When bacteria are resistant to several antibiotics resistant
patterns can arise. These patterns could, for example, be that developing resistance
against Antibiotic A often implicate being resistant to Antibiotic B.

With more antibiotic resistant bacteria infections like pneumonia and tuberculosis
will be harder to treat. Additionally, taking the increase of multidrug-resistant
bacteria into account the diseases will be even harder to treat. This is the reason

1



1. Introduction

why the increase of antibiotic resistance is one of the biggest current threats to
global health.

1.1.1 The process of finding an efficient antibiotic
When a patient has a bacterial infection and is in need of an antibiotic treatment, a
physician makes an empirical guess regarding which antibiotic to use [4]. Meanwhile,
a sample from the patient is sent to a lab where a few antibiotics are tested on the
sample to see if the bacteria is resistant to any of them. To get the result from one
antibiotic, it takes more than 36 hours. The process also takes a lot of resources,
meaning, what they think are just enough antibiotics are tested. If the bacterium
is resistant to all tested antibiotics, some other antibiotics are tested. This process
goes on until a test shows non-resistant. This can therefore take valuable time, time
a seriously ill patient does not have.

1.2 Aim of this thesis
Today, the process of finding an efficient antibiotic is very slow in the cases of
multidrug-resistant bacteria. The aim of this thesis is therefore to investigate the
possibility to speed up this process by predicting antibiotic resistance from the result
of only a few antibiotics. This could, if successful, make it unnecessary to perform
some of the antibiotic tests, which can lead to a patient getting an efficient treatment
faster while using less resources.

1.2.1 The importance of this topic
As mentioned before, there is a problem with antibiotic resistance and the problem
is increasing [1]. Especially problematic are multidrug-resistant bacteria where none
or only a few antibiotics have effect. If a patient has a multidrug-resistant bacterial
infection it is harder to treat and to find an efficient antibiotics. The process of
finding a functional antibiotics can, in some cases, take a lot of time. Being able
to predict antibiotic resistance would therefore speed up the process, save money,
resources and lives.

1.2.2 Specification
The aim of the thesis is to speed up the process of finding an antibiotic that the
analysed bacteria is not resistant to and which then can be given to a patient. This
will be done using neural networks. A part during the development is to answer the
question on how an optimal topology of a network would look like. This includes
the number of layers and their sizes.

When a neural network has been chosen, the performance will be evaluated. This
will be done by considering only the test result from a few antibiotics and see if
some combinations performs better than others. The importance of the number of
test results as inputs will also be investigated.

2



1. Introduction

1.3 Methods
In this thesis the prediction of antibiotic resistance is done using neural networks.
Before the predictions is done, the data, which is provided by ECDC extracted from
The European Surveillance System – TESSy, is gone through [5]. Then relevant
information from the data is extracted. This follows by an investigation regarding
the architecture of a neural network. After deciding one neural network the outcome
of the model is analysed regarding other aspects than test results, such as age of the
patient and country. Lastly, the performance of the model is studied, for example
how the performance change when giving the model less information.

1.3.1 Limitations
This master’s thesis is a continuation of a previous thesis, where if neural network
is a good method to predict antibiotic resistance was investigated. The neural
networks model performed well and got an average error rate of 5 % [6]. Therefore,
this thesis will continue the work on neural networks and not investigate other
prediction models.

The previous mentioned master’s thesis also briefly looked into the effect on adding
country as input of the neural network. There are also more variables from the given
data that could be added to the model, variables like a patient’s age and gender and
which bacteria it is. These aspects could be added as inputs to the model but due
to a limitation will not be added. However, the analysis of the performance of the
model will consider these aspects, for example to see if samples from some countries
are easier to predict than others.

It is sometimes hard for antibiotics to tell harmful bacteria apart from the harmless.
This means that antibiotics sometimes kills harmless bacteria, such as those in your
digestive system. This phenomena is called a side effect and can affect the patient
receiving the treatment. Different antibiotics have different side effects, some more
severe than others [3]. This means that a doctor prescribing an antibiotic to a
patient often prefers some antibiotics above others. It would be interesting to add
the aspect of side effect when trying different combinations of input of the model.
However, this thesis will have a mathematical perspective and therefore, the issue of
prioritising some antibiotics due to side effects will not be considered in this thesis.

3
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2
Theory and Method

In this chapter the investigation will be thoroughly explained step by step. In short,
the investigation consisted of four parts. First, some data was extracted of the whole
data set. Next, an architecture for the neural network model was found. Then, the
outcome of the model was analysed and a method for classifying the output was
chosen. Lastly, performance of the model was analysed for different combinations
of input.

2.1 Filtering and restructuring of data
The data from TESSy consisted of eleven files from years between 2000 and 2017.
Each file had results from several different pathogens [5]. Due to the size of the data,
a limitation was done by only using data from 2017 and the bacteria Escherichia coli
(E. coli). The data consisted of test results for those antibiotics that had been tested.
When an antibiotic was tested on a bacteria sample the result could be one of three
classes: resistant, intermediate and susceptible, for short R, I, and S, respectively.
A generalisation was made by merging S and I into one class, S, meaning heron the
test results will be one of two classes. The data also contained information about the
hospital, which country the result was registered in and which specimen the samples
came from, but also some information about the patient, like age and gender. The
data now looked as in Table 2.1. A ”-” in the table meant that antibiotic had not
been tested.

Table 2.1: An example of data extracted from the original data files from TESSy.
There is, for example, information about the patient’s age and gender, In the end
of the rows, there is the test result for all antibiotics as R or S, but if an antibiotic
had not been tested it was marked with ”-”.

Sample Country Age Gender Antibiotic 1 Antibiotic 2
1 Sweden 32 M R S
2 Germany 101 F S -

Different samples had a different number of antibiotics tested on it, coincidentally
as some antibiotics are more common to test than other. To narrow the research
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2. Theory and Method

a bit more only antibiotics used on more than 10 % of the samples were considered
and samples were less than 4 antibiotics had been tested were removed.

2.1.1 Construction of data sets for the neural networks
The first thing to do when developing a neural network was to structure the input
and the output data. Each antibiotic had their own network since the test results
from other antibiotics could affect each antibiotic differently. This meant, for each
antibiotic’s network there had to be two unique data sets, one for input data and the
other for output. Each antibiotic was represented by two variables: one for resistant,
R and one for susceptible, S. If a sample was resistant to an antibiotic the variable
R was set to 1 and S to 0, and the other way around if susceptible. However, if an
antibiotic was not tested both variables was set to 0.

For Antibiotic A, for example, the two data sets only consisted of samples where
A had been tested. The input data set was the test result of all antibiotics except
Antibiotic A. Then, the output was the test result for A. In both data sets, each
antibiotic was represented by two variables, as described above. An example of a
part of a input data set can be seen in Table 2.2.

Table 2.2: Example of a part of a input data set. The first sample was resistant
to antibiotic 1, susceptible to antibiotic 2 and antibiotic 3 was not tested.

Sample
Antibiotic 1 2 3

R S R S R S
1 1 0 0 1 0 0
2 0 1 0 0 0 1

To get an overview of the samples and the relation to countries a heat map was
made for the number of samples each antibiotic had been tested on in each country.
The ratio of resistant samples for different antibiotics varied a lot. Therefore, it
was interesting to see if the ratio varied in different countries. This was done by
constructing a heatmap over the ratios.

2.2 Investigating architecture of a neural network
A standard type of a neural network called multi layer perceptron (MLP) consists
of a number of layers, each with a given number of neurons in it. Figure 2.1 shows
an example of such an MLP. As in the figure, the layers are ordered sequentially
so that one layer comes after another one. The first layer is the input layers, then
there are zero or more so called hidden layers, and finally there is the output layer.
A layer is connected to the next layer by the neurons, meaning all neurons in, for
example, the first layer is connected to all neurons in the second layers. On these
connections, there are so called weights and on each neuron, there is a bias. The
input data is weighted and then the bias is added on each neuron. After a layer it
is common to use an activation function, usually to add non-linearity to the model
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[7]. This process is repeated for each layers. The output of a neural network model
could for example be a prediction of a fund’s risk or, as in this case, a prediction of
a sample being resistant to a specific antibiotic. The size of a layer and how many
to use is optional.

Input
layer

Hidden
layer

Output
layer

Antibiotic 1 - R

Antibiotic 1 - S

Antibiotic 2 - R

Antibiotic 2 - S

Antibiotic 3 - R

Output - R

Output - S

Figure 2.1: An example of a part of one of the neural networks. The input layer
consist of test results for all antibiotics except the one being predicted. The output
layer will give the probability of the input sample being resistant and susceptible,
respectively, to the given antibiotic.

A neural network model has a learning process that mathematically means that
the weights are optimised. In this thesis, supervised learning was used and meant
the model could learn from the test results. A comparison between predictions and
test results are done by a cost function, which, simplified, measures how far apart
they are. The weights are then optimised so that the cost function is minimised.
Then, usually gradient descent is used. This means updating the weight in the
direction where the gradient is steepest, since the cost function should be minimised
[7].. However, here the stochastic gradient descent was used which is an stochastic
approximation of the gradient descent method [8].

In this thesis there was one neural network for each antibiotic. Each network started
with one input layer, on the form described in Section 2.1.1 and in Table 2.2. This
meant each antibiotic was represented by two nodes, one for resistance and one for
susceptibility. The same was applied for the output layer, which only represented
one antibiotic. In Figure 2.1 the output layer and a smaller part of the input layer
is shown. As seen in the figure, there is one additional layer called hidden layer.
During the next part different number of hidden layers were considered with different
number of neurons.
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There are very many parameters when working with neural networks, such as number
of layer and neurons, activation functions and cost functions. Some limitations were
therefore made to make this part more apprehensibly. The first thing was to only
use one antibiotic during the investigation. Many antibiotics had a low resistant rate
and if so the model could set all predictions to susceptible and still get a very good
accuracy. Therefore, the antibiotic chosen was AMP where the rate was near 50 %.
Another limitation was to use ReLU as activation function for all layers except the
output layer. The ReLU function was defined as f(x) = max(0, x) with the addition
of bounding the maximum function value to 6 [9]. For the output layer, softmax
was used as activation function and was defined as

f(xi) = exi∑K
j=1 exj

(2.1)

where xi represents the value at neuron i and K is the number of neurons in the
considered layer. This function gave the probability of the sample being resistant or
susceptible [10]. This means the sum of all f(xi) is 1. As cost function Categorical
cross entropy was used and that was because it can handle outcome of the type
categorical probabilities [11].

The remaining parameters were the number of layers and the number of neurons
in each layer. To analyse how different number of layers and neurons affect the
predictions a simplified algorithm was used. This algorithm proceeded from the
optimal network from the previous number of layers and can be seen in Algorithm
1. The algorithm then built a network like this with 10 layers and a maximum of
20 neurons per layer.

Algorithm 1: Greedy algorithm
Result: Best size of layer i given a fixed size of all previous layers
architecture = []; // Size of layer i is placed at architecture[i].
for Layer i = 1:10 do

lowest_cost_function = infinity;
for neuron j = 1:20 do

test_architecture = architecture[1:(i-1)] + [j]; // Use the found
architecture for the previous layers and have j neurons in layer i.
cost_function ( test_architecture ); // Calculate the cost function for

the given architecture.
if cost_function < lowest_cost_function then

lowest_cost_function = cost_function;
architecture[i] = j; // If this architecture gives the lowest cost

function, save it.
end

end
end

The input layer was of size 40 and the greedy algorithm only considered up to 20
neurons per layer. Therefore, some arbitrary networks with larger layers were tested.
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This was done so that each hidden layer in the network had fewer neurons than the
previous layer. They had four to five hidden layers and used the same cost function
and activation functions as described above. For further investigation, a neural
network consisting of 4 hidden layers with 30, 22, 15 and 7 neurons respectively was
used.

All steps in developing the model was done in Python. The packages used for the
neural networks were Tensorflow and Keras. When training the model, 80 % of
the data was used for training and 20 % was used for validation. The data was
randomly split in these two sets. The model learned using training data and then
its performance was evaluated on the validation data. The model trained during
200 epochs.

2.3 Analysing the results of the model
An architecture had now been chosen and the neural networks was trained. Then,
the model could be analysed starting with looking at the distribution of the pre-
dictions, for example if it was a clear separation between the resistant and the
susceptible samples. Then, the different methods used to classify the outcome is
presented. The classification resulted in errors and unclassified samples, which is
further explained in Section 2.3.2. The errors and unclassified samples were looked
into to see if they had some common attributes. Lastly, unique classification limits
was found for each antibiotic. These limits was then used to investigate different
combinations of antibiotics as input of the model. The different parts will be more
detailed described below.

2.3.1 Visualise predictions
Since the activation function on the last layer in the neural network model was
softmax, the output variables were between 0 and 1 and the sum of them was
equal to 1, according to Equation 2.1. One way to visualise the predictions for an
antibiotic was to make a histogram over the samples. To put more information into
the visualisation the resistant and susceptible samples were visualised in different
colours, blue for the resistant and yellow for the others.

Because the output takes a number in the range 0 to 1 this can lead to a compact
distribution. This means many samples can take approximately the same values.
One way to overcome this was to use a logit transformation, after the activation
function, to stretch out the predication. The logit transform was defined as

g(x) = log
(

x

1 − x

)

and therefore gave values between the negative and positive infinity. For the trans-
formation base-10 logarithm was used.
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2.3.2 Analyse limits for classification of the predictions
When measuring the performance of this neural network model, having the output
as classes, instead of continuous variables, would make it easier. For example, the
number of errors cannot be calculated without the output as classes. Therefore,
classification limits were used and only the resistant variable of the output was
considered. There were two limits. The first one marked the susceptible samples,
meaning all samples with output variable below that limit was classed as susceptible.
If the variable was larger than the second limit, then it was classified as resistant.
This meant some samples were stuck between these two limits and they were called
unclassified. This method was used because the resistant and susceptible groups
were often separated. However, often some parts of the two groups were overlapping
and that is the reason for using two limits. The overlapping parts became the
unclassified sample. The classification could have been done using only one limits,
meaning none unclassified samples. The problem then would be that many samples
would be incorrect predicted.

Two approaches for classification were compared. The first approach was to set
several symmetric limits close to 0 and 1, respectively, and see how many errors and
unclassified samples each limit got. The errors were divided into two groups: major
and very major error. Very major error is when a resistant sample is classified as
susceptible and major error is the opposite. All limits were evaluate separately for
each antibiotic. The other approach was to compare the prediction to the proportion
of resistant samples, heron called the resistant ratio. The idea was that if the model
does not know whether a sample is resistant or not, then the prediction would be
close to the resistant ratio. To handle this problem, the chosen approach was to
use fix steps from the ratio but on the logit transformed prediction as described in
Section 2.3.1. The ratio was of course also logit transformed.

2.3.3 Analyse unclassified samples and errors
When using the approach of having two limits, samples could be between these
limits, so called unclassified samples. To understand the model more, these samples
and errors are important to analyse. For this analysis the logit transformation
method, as described in Section 2.3.2, with a fixed limit 1 unit of length from
the ratio. This was analysed by looking at the distribution of age, gender and
country in these samples and compare it with the distributions in the whole data
set. Again, this was done for each antibiotic separately because different samples
were unclassified for different antibiotics. Another interesting aspect was the number
of other antibiotics tested on the unclassified samples. This was also analysed in the
same way as age, gender and country.

2.3.4 Analyse correlation between variables and test result
As mentioned in Section 1.1, patterns sometimes arise between different antibi-
otics meaning that, for example, a bacterium being resistant to Antibiotic A always
implies being resistant to Antibiotic B but not the other way around. This was
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visualised by a correlation plot of all test results, separately for each antibiotic.

Apart from the test results, the correlation between some variables were measure,
starting with the age of the patient. The two other variables were the number
of other antibiotics tested and the number of antibiotics a sample was resistant
to. A conjecture was that resistance to more antibiotics increase the probability of
resistance to other antibiotics. A hypothesis about the correlation of the number of
other antibiotics tested was not equally straightforward. Nevertheless, both variables
are interesting to analyse in a correlation aspect. When calculating the correlation,
the Pearson correlation coefficient was used.

2.4 Antibiotic-unique classification limits
The model’s predictions for different antibiotics could varied in how much separa-
tion there were between the two classes, R and S. One could therefore argue that
antibiotic-unique limits for determine the classes should be used. When finding these
limits several approaches can be used, such as minimising the number of unclassified
samples and the number of errors. To classify a bacteria sample as susceptible when
it really is resistant is a severe mistake and it is therefore important to minimise
when developing a model. Hence, limits were set symmetric around the resistant
ratio so that the very major error rate would not exceed 5 %. During this procedure
the logit transformed predictions were used. After finding these limits the number
and percentage of unclassified samples and major errors could be analysed to see
how good these limits were depending on other aspects than very major errors.

2.5 Performance of the model
Performance can be measured in several ways. A naive way is to just count the
errors, preferably in percent. The problem with this naive measure is that the
unclassified samples are not considered. Therefore, a score system , where every
correct prediction gives one point, every wrong prediction gives one minus point
and every unclassified samples gives zero points, was used. The sum divided by the
total number of samples solves the problem of not considering unclassified samples
in the naive measure.

The procedure this thesis aims to make faster will use the test result of some an-
tibiotics to predict resistance of the other antibiotics. Therefore the performance
of different combination of antibiotics as inputs was investigated. To narrow the
investigation a bit only ten of the 21 antibiotics were considered when finding the
best combination to use as inputs. This meant that all the other antibiotics had
a zero-zero input, as if they had not been tested on that sample, and their predic-
tions were not evaluated. The ten antibiotics chosen were AMC, AMP, CAZ, CIP,
CTX, GEN, LVX, PIP, TOB and TZP. They were chosen because they did not
have extremely few resistant samples and used different resistance mechanisms.
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The combinations were the input of the model and consisted of zero to nine an-
tibiotics. This meant that only samples having test results on all antibiotics in the
combination was considered when calculating the performance. The remaining in-
put antibiotics was set to zero-zero, as if they have not been tested. Then the score
of each combination for every antibiotic was calculated. When analysing the perfor-
mance, the mean performance of the number of input antibiotics. The purpose was
to see if more antibiotics tested improved the performance. The evaluation was also
done for all antibiotic separately, meaning finding the best combination for every
number of inputs on every antibiotic respectively. Since some antibiotics could be
harder to predict it was relevant to analyse the model’s performance on antibiotics
separately.

2.5.1 Finding the best worst-case scenario
In the previous paragraph how to find the best combination for every antibiotics
was described. However, it may be more interesting to know the best worst-case
scenario. This since only looking at the overall best combination does not tell if all
other combinations are performing okay, well or bad. The best worst-case scenario
was computed for every number of inputs, i.e. one to nine. The steps were the
following, here for the example having 3 antibiotics as inputs.

1. Find all combinations of 3 antibiotics
2. For each combination:

(a) For every antibiotic left of the ten chosen, see Section 2.5, calculate the
score when having this combination as input

(b) Save the worst score
3. Take the combination with the best score, of those saved worst score.

The result from this will be one combination per number of inputs accompanied by
the score.
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3
Results

In the following chapter the result found during the investigation part will be pre-
sented. During the process, 21 different antibiotics were considered that is to many
too present in this report. Therefore, mainly the result from three antibiotics, AMP,
CIP and PIP, will be shown. These are chosen to show the wideness of the results.

3.1 Extraction of data
Table 3.1: Number of samples per antibiotic and distribution of resistant and
susceptible samples.

Antibiotic Number samples Number R Number S % R % S
AMC 68 996 22 595 46 401 32.75 67.25
AMK 67 198 630 66 568 0.94 99.06
AMP 83 626 44 832 38 794 53.61 46.39
AMX 30 966 16 919 14 047 54.64 45.36
CAZ 10 7270 10 129 97 141 9.44 90.56
CIP 110 511 24 108 86 403 21.82 78.18
COL 19 259 187 19 072 0.97 99.03
CRO 37 780 4 169 33 611 11.03 88.97
CTX 95 809 11 944 83 865 12.47 87.53
ETP 51 531 100 51 431 0.19 99.81
FEP 44 305 4 264 40 041 9.62 90.38
GEN 107 689 9 242 98 447 8.58 91.42
IPM 78 265 60 78 205 0.08 99.92
LVX 34 883 80 85 26 798 23.18 76.82
MEM 97 512 66 97 446 0.07 99.93
MFX 17 450 4 703 12 747 26.95 73.05
OFX 12 454 2 191 10 263 17.59 82.41
PIP 19 257 9 348 9 909 48.54 51.46
TGC 36 248 56 36 192 0.15 99.85
TOB 52 554 4 882 47 672 9.29 90.71
TZP 78 724 6 005 72 719 7.63 92.37

Relevant data was extract from TESSy’s register. This was done both by only
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choosing E. coli samples from 2017 and removing samples that have tested three
or less antibiotics. After filtering, 116 541 samples were left. The distribution over
these samples per antibiotic and number and ratio of resistant samples can be seen
in Table 3.1.

An overview of the samples in the form of heat maps can be seen in Figure 3.1.
Figure 3.1a shows on how many samples an antibiotic had been tested on in each
country. A white cell means that antibiotic had not been tested on any samples in
that country. Figure 3.1b shows the percentage of resistant samples, which means
values in the heatmap are between 0 and 100 %. Again, a white cell means no
resistant samples for that specific antibiotic in that country.
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Figure 3.1: Two heat maps of the distribution of samples and resistance ratio in
different countries. The white parts represents when an antibiotic is not used at all
in a country.

Next, unique data sets were constructed for the antibiotics specific neural networks.
For Antibiotic A’s network the samples used to train and evaluate the model had
to have a test result from Antibiotic A. This meant a sample can only be used in
the training set to those antibiotic-networks the sample have been tested for. The
number of samples used in training and validation for each network was the same
as Number samples in Table 3.1.

3.2 Investigation of the network architecture
The first part of the investigation regarding a neural network’s architecture was the
simplified algorithm, explained in Section 2.2, where different number of layers and
neurons were tested with up to ten layers and with a maximum of 20 neurons in
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each layer. The result of the algorithm can be seen in Table 3.2. The cost function,
Categorical crossentropy, can also be seen in the table. Note that the cost function
on, for example, layer 3 is for the model having 18 neurons in the first layer, 18
neurons in the second layer and 15 neurons in the third layer.

Table 3.2: Result of the simplified greedy algorithm introduced in Section 2.2.

Layer Number neurons Categorical crossentropy
1 18 0.3115
2 18 0.3080
3 15 0.3066
4 15 0.3057
5 8 0.3062
6 6 0.3062
7 19 0.3064
8 17 0.3060
9 12 0.3063
10 11 0.3062

Some arbitrary architectures for the neural network considering layers of bigger size
were also tested. Several architectures were tried and the one that performed best
was the model found in Table 3.3.

Table 3.3: Result of the best, non-greedy and arbitrary, chosen model. Note that
the categorical crossentropy is, in general, lower than for greedy algorithm.

Layer Number neurons Categorical crossentropy
1 30 0.3106
2 22 0.3062
3 15 0.3064
4 7 0.3050

3.3 Analysis of the outcome of the model
In this section the results of the outcome will be presented. This includes the distri-
bution of predictions and how different limits affect the number of errors. The results
of the analysis of the unclassified samples is shown with regard to age, country, gen-
der and the number of other antibiotics tested. Then, the correlation between the
test results and number of samples is presented.

3.3.1 Visualisation of the predictions
The output of the model was two continuous values between zero and one for the
probability of resistance and susceptibility. A plot of the resistant variable for three
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antibiotics can be seen in Figure 3.2. The true resistant samples are coloured blue
and the susceptible ones are coloured yellow..
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Figure 3.2: Here are distributions of the output of the model for three antibiotics:
AMP, CIP and PIP. The blue parts are the resistant samples and the yellow are
susceptible. The predictions shown are only the resistant variable, which means a
prediction close to 1 represents the model predict the sample being resistant.

As mentioned in Section 2.3.1, a logit transformation of the prediction could be
relevant to apply. A visualisation of the logit transformed predictions can be seen
in Figure 3.3. To get a point of reference when analysing these plots the logit
transformed resistant ratio is plotted as a black line.
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Figure 3.3: Distribution plots of the logit transformed output for three antibiotics:
AMP, CIP and PIP. The blue parts are the resistant samples and the yellow are
susceptible. The logit transformed resistant ratio is shown as a black line.

The difference in prediction depending on country is visualised. This means that
all samples are grouped by country. Each plot shows an antibiotic’s predictions for
the respective country. The result for antibiotic CIP can be seen in Figure 3.4.
Countries with less than 500 samples are marked with a red title.
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Figure 3.4: Logit transformed predictions of antibiotic CIP for every country. The
black line represents the resistant ratio of all samples, i.e. it is not unique for every
country. For some countries the predictions are well separated, for examples see
Germany, DE, and for some countries the resistant and the susceptible samples are
overlapping, see Spain, ES.

3.3.2 Investigate limits for classification of the predictions

Since the output of the model was a continuous variable it is preferable to set
limits where a sample is classified as resistant or not. Here, two limits are used;
one, where samples predicted under it are classified as susceptible and one, where
samples predicted over it are classified as resistant. This meant some samples could
be between these limits and are thus unclassified. The first analysis was on the
outcome of the model, i.e. not transformed. Different limits were set close to 0 and
1. Then the major and very major error rate were calculated for every pair of limits
together with the percentage of samples that were unclassified. The result for AMP,
CIP and PIP can be seen in Figure 3.5.
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Figure 3.5: Investigation of different symmetric limits on the output for the three
antibiotics: AMP, CIP and PIP.. The percentage of errors and unclassified samples
are shown as a function of the distance to 0 and 1, respectively. The results are
clearly very different for the three antibiotics, both regarding the percentage of
errors and unclassified samples, but also the increase and decrease depending on the
distance.

The other approach was to use the logit transformed predictions and starting from
the resistant ratio, then taking a fixed step from the ratio as limits. The result for
AMP, CIP and PIP using this method is shown in Figure 3.6. The percentage of
error and unclassified is this time a function of the distance from the ratio.
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Figure 3.6: Percentage of unclassified samples and errors divided in: major and
very major error depending on the distance from the limits to the resistance ratio,
logit transformed for the antibiotics AMP, CIP and PIP. As in Figure 3.5, the results
differs between the antibiotics. If comparing with other approach, again see Figure
3.5, the graphs here do not increase and decrease in the same ways as the others..

3.3.3 Analysing unclassified samples and very major errors
As seen in the Figures 3.5 and 3.6 there were both errors and samples that got
unclassified. To improve the model it is important to understand why samples
get unclassified or not predicted correctly. This section will show the results from
analysing the unclassified samples, where the predictions were logit transformed and
limits for the classification were set to 1 unit of length of each side of the resistant
ratio. The very major error cases was also analysed. The attributes age, gender,
country and number of antibiotics tested, were investigated to see if these samples
had things in common. The figures in this section only considers the antibiotic,
AMP,that had 39 388 unclassified samples and 214 very major errors. This corre-
sponds to 47 % and 0.3 %, respectively, of the whole data set for AMP.
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3.3.3.1 Age

The first interesting parameter was age. For most samples the patient’s age was
known. The analysis consisted of a comparison of the age distribution for all data
and for the unclassified and very major error respectively. A comparison for antibi-
otic AMP can be seen in Figure 3.7.
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(a) The distribution of age on the whole
data set for AMP compared with the
distribution for the unclassified samples.
The distributions are very similar apart
from a minor decrease around 80 for the
unclassified samples.
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(b) The distribution of age on the whole
data set for AMP compared with the
very major errors. Even with very few
samples, the very major errors seems to
follow the whola data sets distribution.

Figure 3.7: Two comparisons of the age distribution for antibiotic AMP, for the
whole data set against the unclassified samples and the very major errors, respec-
tively. The classification limits are set symmetrically to 1 unit of length around the
ratio.

3.3.3.2 Gender

For each bacteria sample there was information about the patient’s gender, they
were called F for female and M for male. However, sometimes the gender was un-
known, which here is called UNK. This analysis shows if one of the genders are
more common among the very major errors or the unclassified samples. The dis-
tribution comparisons for AMP is shown in Figure 3.8. The differences are quite
small, meaning a specific gender did not seem to be more common.

3.3.3.3 Country

Antibiotics were not equally common in all countries and for some countries only
a small number of antibiotics are reportedly used. As seen in Figure 3.1b antibi-
otic resistance is more spread in some countries. The result of investigating the
distribution of country can be seen in Figure 3.9.
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(a) The unclassified samples analysed in
regard with gender. Comparison of gen-
der’s distribution on the whole data set
and the distribution of the unclassified
samples. The differences between the
two groups are very small.
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(b) The very major errors analysed in
regard with gender. Comparison of gen-
der’s distribution on the whole data set
and the distribution of the unclassified
samples. The distributions look very
similar.

Figure 3.8: Analysing if genders affect the probability of a sample being correctly
classified. The figures present the distribution of gender in the whole data set for
AMP compared with the unclassified samples and the very major errors, respectively.
The classification limit is set to 1 unit of length symmetric around the ratio.
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whole data set compared with the dis-
tribution for the unclassified samples.
Note how less common Germany, DE, is
among the unclassified samples than in
the whole data set for AMP.
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(b) The distribution of country on the
whole data set compared with the very
major error samples. Note that Ger-
many, DE, who was less common in
among the unclassified samples, now is
more common among the very major er-
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Figure 3.9: This figures investigate the countries influence on a sample being
classified correctly. The distributions for AMP differs for most countries, but usually
very little.The classification limit is set to 1 unit of length symmetric around the
ratio.
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3.3.3.4 Number of antibiotics tested

The last parameter investigated was the number of antibiotics tested on a sample.
An hypothesis is that with only a few antibiotics tested the model has less informa-
tion and therefore has a harder time predicting. The result of this analysis can be
seen in Figure 3.10.
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(a) Here, the distribution of the num-
ber of antibiotics tested on every sample
for the whole data set is compared with
the distribution in the set of unclassi-
fied samples. Note that the distribution
for the unclassified samples are shifted
to the left. This means, in general, that
samples with less antibiotics tested had
a higher probability of not being classi-
fied.
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(b) The distribution of number of an-
tibiotics on the whole data set com-
pared with the very major error sam-
ples. ’VME’ stands for very major er-
ror. Here, testing many antibiotics is
more common among the very major er-
rors compared with the whole data set.

Figure 3.10: Comparing distributions of the number of antibiotics tested for AMP.
The distributions in the group of unclassified samples and the group of very major
errors are compared with the distribution in the whole data set, respectively. The
classification limit is set to 1 unit of length symmetric around the ratio.

3.3.4 Analysis of correlation

The correlation between the input and output of the model was analysed. The
correlation plot for antibiotic AMP can be seen in Figure 3.11. Apart from the test
results, also the age, the number of antibiotics tested and the number of antibiotics
a samples was resistant to were added to the correlation plot. When calculating the
correlation, all samples were considered, even those where an antibiotic had not been
tested. The number of antibiotics tested on a sample and the number of antibiotics
the sample was resistant to were particularly interesting. Theses variables together
with age and the test result for an antibiotic are shown in a smaller correlation
matrix that can be seen in Figure 3.12.
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Figure 3.11: Correlation plot of all input and output of the neural network for
AMP. The variable age, the predictions, R and S, the number of other antibiotics
tested on a sample and the number of resistant test results are also shown. In the
figure it is clear that some test results, antibiotics, affect the predictions, predic-
tion_R and prediction_S, more than others. Note the very low correlation between
age and all other variables.
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Figure 3.12: The correlation of some variables for AMP, CIP and PIP. As in Figure
3.11, the correlation between age and the other variables are very low. On the other
hand, the correlation of number of antibiotics a sample is resistant to and the test
result for the given antibiotic is over 0.5 for all three antibiotics.

3.4 Unique classification limits for antibiotics
As mentioned before, unique limits for classification were produced. The limits were
set so that the very major error rate for an antibiotic did not exceed 5 %. In Table
3.4 the unique limits are listed. When fixating the very major error rate the number
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of unclassified samples and major errors were not considered. They are therefore
also listed in the table. Other limits were also produced to not exceed 1 % very
major error and the result can be seen in Table C.1 in Appendix.

Table 3.4: Classification limits for every antibiotic, where the limits are set at the
ratio plus minus delta. For every limit there is a percentage of unclassified samples
and errors. Note how the percentage of unclassified samples differs between different
antibiotics, for example MEM has 100 % while PIP has 0 %. Also, note that the
percentage of major error are less than 5 % for most antibiotics.

Antibiotic Ratio Delta % unclassified % very major % major
AMC -0.31 0.29 16.15 4.96 9.97
AMK -2.02 1.58 26.71 4.94 0.61
AMP 0.06 0.48 36.57 4.46 0.61
AMX 0.08 0.40 16.56 4.91 0.77
CAZ -0.98 0.00 0 2.88 3.71
CIP -0.55 0.65 32.69 5.00 1.90
COL -2.01 2.30 79.64 4.81 0.02
CRO -0.91 0.00 0 2.50 3.00
CTX -0.85 0.19 3.327 4.98 3.32
ETP -2.72 2.90 20.62 4.04 0.02
FEP -0.97 0.00 0 2.02 4.31
GEN -1.03 0.55 23.66 4.95 4.67
IPM -3.11 1.18 98.94 1.67 0.33
LVX -0.52 0.00 0 2.23 1.13
MEM -3.17 0.14 100 0.00 0.00
MFX -0.43 0.62 22.81 4.66 0.31
OFX -0.67 0.51 12.88 4.84 0.43
PIP -0.03 0.00 0 0.28 3.33
TGC -2.81 2.39 99.90 0.00 0.05
TOB -0.99 0.03 0.46 4.97 5.65
TZP -1.08 0.28 18.07 4.98 10.1

3.5 Performance of the model

When analysing the model’s performance ten antibiotics were chosen. Only predic-
tions of these antibiotics were considered and the remaining antibiotics were set as
not tested in the input data frames. From these ten antibiotics different combination
of inputs were made and the score for all combinations on all antibiotics, respec-
tively, was calculated. The combinations were grouped by the number of antibiotics
in the combination. The mean value of all scores in each group was then calculated
and the result can be seen in Figure 3.13a. Then, the best score for all number of
antibiotics tested in the input was analysed and done individually for all antibiotics.
The result is shown in Figure 3.13b.
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Figure 3.13: Two measurements of the model’s performance with regard to the
number of antibiotics as input to the model.

3.5.1 The best worst-case scenario
For every number of antibiotics as inputs a combination and the corresponding score
was found as the best worst-case scenario. The method used is explained in Section
2.5.1 and the result can be seen in Table 3.5.

Table 3.5: This table presents the best worst-case scenario of each number an-
tibiotics as a score. At the right the combination corresponding to each score is
shown.Note how high the score are for most number of inputs and also how more
common some antibiotics are in the found combination.

Score AMC AMP CAZ CIP CTX GEN LVX PIP TOB TZP
9 0.9649 AMC AMP CAZ CTX GEN LVX PIP TOB TZP
8 0.9536 AMC CAZ CTX GEN LVX PIP TOB TZP
7 0.9287 AMC CIP CTX GEN PIP TOB TZP
6 0.9034 AMC CIP CTX PIP TOB TZP
5 0.8374 AMC CIP CTX PIP TOB
4 0.7578 AMC CIP PIP TOB
3 0.4783 AMC CIP LVX
2 0.2813 AMP CTX
1 -0.4294 PIP
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4
Discussion

In this chapter there will be a discussion of the results and findings. It will start
with the results found in the previous section and reflect over the chosen method.
Lastly some improvements and further work will be presented.

4.1 The data

The amount of data available for this project was large. However, the used data
only considered one bacteria, E. coli, from one year. Using only data from one
bacteria is a reasonable limitation, since considering several bacteria would need an
investigation whether different bacteria could use the same neural network or not.
If not so, the number of networks would increase by about twenty for every new
bacteria.

After filtering the data 116 541 samples were left. All antibiotic were not tested on
every sample, the number of samples per antibiotic can be seen in Table 3.1. The
difference in number of samples are up to one order of magnitude. In this table the
number and percentage of resistant samples can also be seen. Again, the differences
between the antibiotics are big, from barely 0.1 % resistant samples to over 50 %.
The differences are important to have in mind later when analysing the model’s
performance. The next thing looked into was the number of samples in relation to
countries. In Figure 3.1a the distributions of the number of samples per country is
shown. France and Germany stand out as having a lot more samples than other
countries and they use nearly all kinds of antibiotics, compared with Denmark that
only use seven antibiotics. There are some antibiotics, for example MFX, ofx and
PIP, that are used only in a few countries. In Figure 3.1b that shows the ratio of
resistant samples in different countries, it is clear that the percentage are higher for
some antibiotics, which can be substantiated by Table 3.1, but also that resistance
is more widely spread in some countries. For example resistance to TOB seemed to
be more common in Bulgaria and Malta than the rest of the countries. However,
from Figure 3.1a both these countries seems to have a very low number of samples,
which then means the colours in Figure 3.1b are not always reliable.
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4.2 The architecture of the neural network model
During the analysis of the architecture of the neural network two approaches were
used. The first one was a simplified and greedy algorithm. The result for this
approach can be seen in Table 3.2. The cost function, Categorical crossentropy,
decreases when using more layers, but is quite stable after 3 layers. Nevertheless, the
best performance is with 4 layers, even tough the difference is very small. The second
approach was to test some arbitrary models with larger layers in the beginning of
the network and in with fewer layers. The result of the best model can be found
in Table 3.3. This was the one network chosen to be used in the rest of the thesis.
The cost function for the first layers in the chosen model is a bit better than for
the first layer of the greedy algorithm. After the first layer the performance goes up
and down a bit until the end where the cost function takes the lowest value of both
approaches.

4.3 Analysis of the outcome of the model
After a neural network model was chosen the outcome of the model was analysed.
Firstly, only the predictions were looked at, how separated they were and if a trans-
formation was possible to make them more separated. Secondly, how to classify the
output was analysed. After the classification some samples were unclassified and
some were missclassified. Therefore, these samples were looked into with regards to
age, gender, country and the number of antibiotics tested. The last thing analysed
was the correlation of some of the samples’ variables. In this section the aspects
and the results of this investigation will be discussed.

4.3.1 Predictions
Firstly, the model’s prediction was plotted, both as it was and after logit transfor-
mation. The distributions for antibiotic AMP, CIP and PIP can be seen in Figure
3.2 and 3.3. It is clear from the figures that predictions of some antibiotics are
very easy to separate, for example see PIP, and others are harder. For both AMP
and CIP the predictions for the resistant and susceptible samples are overlapping.
However the main part of the resistant samples are on the right hand side of the
resistant ratio and the main part of the susceptible samples are on the left hand
side. The reason for logit transforming the predictions was to stretch out this distri-
bution. Comparing the two ways of visualising, it is less overlapping after the logit
transformation.

The logit transformed predictions were also analysed per country, see Figure 3.4.
Before looking at the different distributions it is important to notice the different
proportion of samples in every country, for example Germany had 22756 samples but
Latvia only had 25 samples. Regarding the separation of the predictions Germany
(DE), again, stands out. The country seems to have nearly all samples predicted
correctly. For Spain (ES) that have over 5 000 samples the separation is not so good
and the resistant and susceptible samples are overlapping around the resistant ratio.
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The conclusion is that the country parameter has an impact on how separated the
predictions are.

4.3.2 Analysis of limits for classification

Since the predictions are not always distinctively separated, using different limits
for classification was investigated. This was done both with and without the logit
transformation of the predictions. However, the approaches were different in the
two cases. Firstly, limits for the predictions without logit transformed was tried.
The approach was to set the limits close to 0 and 1 respectively. The result for
three antibiotics can be seen in Figure 3.5. The results are as expected, the number
of errors is increasing and the number of unclassified samples are decreasing when
the limits gets further from the ends. However, the result are different for different
antibiotics, for example the percentage of errors differed one order of magnitude
between AMP and PIP. The number of unclassified samples is expected according
to the predictions figure, see Figure 3.2. It is not surprising that PIP has a lower
number of unclassified than the others since its predictions are far more separated.

The second approach was to use the logit transformed predictions and, instead of
starting from the ends, start from the resistant ratio and set symmetric limits around
it. The result can be seen in Figure 3.6. Again, the result are different for the three
antibiotics showed. When the distance is 0 from the ratio, naturally no samples
are unclassified. An interesting observation is the low percentage of errors for PIP.
Setting the limits further away from the ratio results in an decreasing the error rate.
However, setting the limits so that there are no errors results in that over 50 % of
the samples are unclassified for all three antibiotics.

For both approaches the percentage of unclassified samples and errors was studied
instead of total number and the reason for this is that the three antibiotics do not
have the same amount of samples. Comparing the two approaches the result are
quite similar for both AMP and PIP. However, looking at 5 % very major errors
in Figure 3.5 for CIP, it corresponds to about 40 % unclassified samples without
the logit transformation but only 30 % for the logit transformed, in Figure 3.6. The
difference is not very big but a small advantage for the logit transformed. Therefore,
this approach was chosen.

4.3.3 The unclassified samples and the very major errors

To understand the model more, an investigation of the unclassified samples and the
very major errors was made. The question here was whether some other factors
from the samples would lead to the sample being wrongly predicted or unclassified.
The method used was to plot the distribution of all samples and compare with the
unclassified samples and the errors respectively. During this analysis the limits for
the predictions were set to one unit of length from the resistant ratio on each side.
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4.3.3.1 Age

The first variable investigated was age. The result for AMP can be seen in Figure
3.7. Starting with the unclassified samples, the difference was very small, only a
minor decrease around the age of 80. For the very major errors, there were only
214 samples and since the samples were group by years and not in bigger intervals,
like for example age 30 − 40, the amount was to small to say something definite.
Nevertheless, the distribution of the age of the very major errors seemed to be quite
similar to the distribution of all data. Since the differences were so small in both
cases, the age appeared not to influence the prediction.

4.3.3.2 Gender

A patient’s gender was divided in three classes: female, male and unknown. The
result for AMP can be seen in Figure 3.8. From the figure approximately 10 % of the
samples had the gender set to unknown. For the rest of the samples, female was more
common than male. For both the very major error and the unclassified samples the
class unknown was less common, but in both cases the difference was very small.
The difference for the classes female and male was only a few percentage points.
The conclusion is that gender was not a factor in which samples got unclassified or
missclassified.

4.3.3.3 Country

As mentioned before, the number of samples per country and antibiotics varied a
lot, see Figure 3.1a. The variable country was investigated as the previous variables
age and gender and the result for AMP is found in Figure 3.9. For the unclassified
samples, most countries were roughly equally common as in the whole data set,
but some of the countries were not, for example Denmark and Germany. Denmark
was more common among the unclassified samples and Germany was much less
common. One could argue that samples from Germany was easier to predict since
less of them were unclassified. However, for the very major error Germany was a lot
more common than for all data and therefore it is important to look at both figures.
The big differences for Germany and Denmark could indicate that the country affect
the model’s prediction.

The reason for the differences in distributions could be the accuracy in the different
countries reporting. If so, adding country as an input variable could confuse the
model if the country becomes more thorough. Also, if one hospital in a country is
much more thorough than the others, then the output of the model will probably
be less accurate for that hospital. Another argument is that bacteria does not care
which country the patient are from. Travelling is very common today and a bacterial
disease can be caught anywhere. Therefore, only the test result as input of the model
would probably be less biased than using a country variable as well.
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4.3.3.4 Number of antibiotics tested

The last variable to investigate was the number of antibiotics tested on each sample.
The result for AMP can be seen in Figure 3.10. A hypothesis was that if giving
less information to the model, i.e. fewer test results, it would be harder for the
model to predict correctly. This seemed to agree for the unclassified samples, where
particularly 5 and 6 number of antibiotics tested stood out as much more common.
However, for the very major error it was the opposite, 5 and 6 number of antibiotics
tested were barely represented at all. One reason for this could be the low amount
of samples in total having over 16 antibiotics tested. This gives less data to train
on, which then makes it harder for the model to predict that kind of samples.

4.3.4 Correlation of the samples’ variables
The result for AMP can be seen in Figure 3.11. Considering the test results, most of
them have a correlation close to 0. Looking at CAZ_R and CTX_R the correlation
is almost 1 meaning that the test results for these two often were the same. A
problem with the plot is that it also takes the not tested cases in account. This could
be why many boxes are lightly coloured, indicating a low correlation. Regarding the
predictions, the correlation between the predictions and the test results is bigger
than between only the test results. The correlation tells how much different test
results impact the predictions and in the plot there are some antibiotics that have
a much higher correlation than the others.

Three variables were chosen for further investigation, these were age, the number
of antibiotics tested and the number of resistant test results. These three together
with the test result of the resistant variable were plotted in a correlation matrix.
The result for three antibiotics can be seen in Figure 3.12. The highest correlation is
between the resistant variable and the number of resistant test results. This means
that the probability of a sample being resistant to a specific antibiotic increase if it is
resistant to several others. The correlation between the number of other antibiotics
tested and the resistant variable is between 0.2 and 0.3 for all three examples.
Comparing with the number of resistant test result the latter have more impact on
the outcome. For the variable age, the correlation is not so high with any of the
other variables. The reason for this could be that age was a discrete number between
0 and around 115 compared to the other variables that were continuous values from
0 to 1. Also, the age is well distributed which makes it harder to find a correlation.

4.4 Unique limits for classification
Because the separation of the predictions varied a lot between different antibiotics
unique limits were produced. These limits were set so that the very major error
rate did not exceed 5 %. The limits can be seen in Table 3.4. The limits differ a
lot between 0 for PIP up to 2.90 for ETP. As mentioned before, a reason for the
variation is the variation in the separation of predictions. The method also only
consider the number of very major errors meaning that the limits could be very
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different if the number of unclassified samples or the total number of errors were
considered instead.

For each unique limit the percentage of errors and unclassified samples can also
be seen in Table 3.4. Even here, the results varies a lot, especially among the
unclassified where some has 0 % unclassified samples and others up to 100 %. An
intresting thing is that the percentage of major error are almost always less than
5 % and often a lower rate than the very major error. This implied that setting a fix
limit for the very major error rate did not make the major error rate increase a lot.
The low number of major error and very major error can sometimes be explained
by the high number of unclassified samples, which means one can not only focus on
the errors.

4.5 Performance of the model
When analysing the performance of the model the first thing investigated was the
importance of the number of antibiotics tested. The score for all combination was
measured. For every number of antibiotics as input the mean value of the score were
calculated and plotted, see Figure 3.13a. From the figure it is clear that having more
test results as input makes the model performed better. However, the increasing
faded from the middle and upwards. The conclusion is that having more inputs is
better for the model.

Then, the differences between the performance of the antibiotics was investigated.
This time, only the best score for every number of antibiotics was considered. The
result can be seen in Figure 3.13b. For zero number of inputs the model did not
perform well for any antibiotic except TZP. When adding just one input all antibi-
otics increase their performance and stays on the same level until 9 inputs where all
decreases slightly. A naive way of thinking would be that more information make
it easier for the model to predict. It seem true for the mean, see Figure 3.13a, but
not when taking the best combination. It could be because test results from some
antibiotics confuses the model and that it is better to not know some test results.

4.5.1 The best worst-case scenario of the model
The last investigation was to find the best worst-case scenario. How this was com-
puted is explained in Section 2.5.1. For every number of inputs the best worst-case
scenario was found with regards to score. In Table 3.5 the result is shown as score
and which combination of inputs it belongs to. The increase of these scores was
quite similar to the increase in Figure 3.13a, regarding the stagnation at the end.
According to the table, the model performs quite well from 4 antibiotics as input
and really well from 6 inputs. Looking at the combinations it is clear that some
antibiotics are more common than others, for examples AMC are in all but two
combinations. An antibiotic that is hard for the model to predict would probably
not be the one predicted in the combination for the best worst-case scenario, there-
fore the probability of that antibiotic would be in the combination instead increases.
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From Figure 3.13b AMC had the lowest performance almost all times which could
be the reason for the high occurrence in the combinations of the best worst-case
scenarios.

4.6 Improvement and further work
Some things in the method of this thesis were simplified and some things could
have been done in several other ways. Therefore, a discussion about some improve-
ments follows here, starting with the data set and the network and ending with the
classification of the predictions.

4.6.1 The data
When extracting the data some antibiotics were removed due to too few test results.
However, in this process the number of resistant test results were not considered.
For example TGC has only 56 resistant samples, equal to 0.08 % of TGC’s data set,
which perhaps is too few for a model to learn from. There are four antibiotics with
less than 100 resistant samples, which all represents less than 1 % of the samples of
that antibiotic. Predicting these four antibiotics could result in the model setting all
input samples to susceptible and still get a very high accuracy. Therefore, developing
models for these antibiotic could be challenging. However, this does not necessarily
mean that they should not be a part of the input for the other antibiotics. A pattern,
where being resistant to one of these four antibiotics always implies a resistance to
another antibiotics, could still exist which then should be an important feature of
the input. Therefore, the importance of different antibiotics in the model should be
studied more.

An unstudied and possible issue of the data is the accuracy. Test results are reported
by staff at a hospitals and is voluntary. Looking at the number of samples from each
country and compared with the population size it indicates that not all test results
are reported. One could only speculate in which test results that are reported. To
get a more accurate training data it is important that all test result is reported
regardless specimen, hospital or country. Another thing about the data is the lack
of information for some categories. For example in Figure 3.8 nearly 10 % of the
AMP samples do not have information about the patient’s gender.

4.6.2 The neural network model
After extracting relevant parts of the data the data frames of input and output
were constructed for each antibiotic. In this thesis the test results were represented
by two variables, as explained in Table 2.2. This could have been done in several
other ways, for example having three variables instead where the third represent not
tested. Another way could be to only have one variable where 1, 0 and −1 represents
resistant, not tested and susceptible respectively. One reason for not using the last
option is that the different classes not necessarily are ordered with equal separation.
A less naive approach could then be to set ”not tested” to a number between −1
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and 1 that corresponds to the resistant ratio. Nevertheless, such a model, or the
one with three variables, could be a better approach than using two variables and
the question is therefore in need of further investigation.

The approach of analysing different number of layers and neurons in the neural
network is very simplified. However, the result from both this approach and when
testing some larger, arbitrary networks is nearly the same, see Table 3.2 and Table
3.3. Since many parameters are fixated during the investigation of the networks
architecture, it would be interesting to analyse the model more regarding these
parameters. Two examples of interesting parameters are activation function and
drop out rate, which is when some neurons in the network is dropped out during
the training to reduce overfitting. The most important parameter would be the cost
function. The output of the model is two continuous variables between 0 and 1 that
represented the probability of the sample being resistant or susceptible. Since the
output hardly ever is exactly 0 or 1, every sample will add to the cost. However,
using the method with logit transformed predictions and limits which decides if a
sample is resistant or not, see Section 2.4, could be a better way to compute the cost.
The output would then be resistant, susceptible or unclassified. The cost function
should then punish the unclassified and the errors. For example by the scoring
system that is used when evaluating the performance of the model, see Section 2.5.

Along with the cost function is the question on how to estimate the performance
of the model. Is it only important to minimise the errors, or are very major error
worse than major errors and if so how much worse. Now, the cost function only
considered how far from the truth the prediction is. However, a very major error
have a more severe consequence than a major error. Therefore it would be interesting
to investigate how the two types of errors could be penalised differently and how
that would impact the performance of the model. Creating a new cost function that
takes this into account would probably improve the performance.

When the architecture was investigated, only the antibiotic AMP was considered.
At that time the variation in difficulty level for separating the prediction was not
known, but after the model was developed the fact was clear: some antibiotics
are harder to predict than others. Therefore, it would be interesting to use other
antibiotics for this part and see how the architecture varies. Perhaps a better idea
would be to have an unique architecture for each antibiotic.

4.6.3 Limits for classification
The unique limits discussed in Section 4.4 only considered the percentage of very
major errors and was sat symmetric around the resistant ratio. From the prediction
figures, for examples see Figure 3.2, the susceptible samples seemed to be easier to
predict correct then the resistant samples. Setting limits symmetric could give more
unclassified samples than errors it removes. Therefore, it would be interesting to let
the right limit be set so that the major error rate does not exceed 5 %. This means
the new limits would not be symmetric.
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5
Conclusion

A general conclusion during the work with this thesis is how different the model
behave for different antibiotics. It starts with how well separated the predictions are
which then leads to different classification limits and percentage of errors. However,
for most antibiotics the model performs very well having unique limits and with
regards to the number of unclassified samples and errors. When measuring the best
worst-case scenario the results implies that the model works very good when having
four or more test results as inputs.

The purpose of this thesis is to investigate the possibility of speeding up the process
of finding a functional antibiotic treatment. From the results it appears that using
a model like this one could be a helpful tool in this process. There are some things
that could improve the model, such like training the model with a cost function that
punish very major errors more than major errors and trying unique architectures
for different antibiotics. A conclusion is therefore to develop the model more to get
even better results.
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6
Disclaimer

The views and opinions of the authors expressed herein do not necessarily state or
reflect those of the ECDC. The accuracy of the authors’ statistical analysis and the
findings they report are not the responsibility of ECDC. ECDC is not responsible
for conclusions or opinions drawn from the data provided. ECDC is not responsible
for the correctness of the data and for data management, data merging and data
collation after provision of the data. ECDC shall not be held liable for improper or
incorrect use of the datam
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A
Additional ways to analyse limits
for classification of the predictions

When the predictions are analysed two types of classification limits are used, as
described in Section 2.3.2. However, the classification could be done in several
ways. Two other methods are therefore investigated. The first one proceeds from
the resistant ratio and move fix steps from it. This method is similar to the one
used in the report but without the logit transformation. In Figure A.1 the result for
AMP, CIP and PIP can be seen. The ratio is unique for all antibiotics which mean
that some antibiotics could not increase their step length as much as others.
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Figure A.1: Percentage of unclassified samples and errors depending on the dis-
tance to the ratio for three antibiotics: AMP, CIP, PIP. Note how difference between
the antibiotics.

The other method also proceeds from the resistant ratio, but uses fix percentage
steps of the distance between the ratio and the edge, meaning 0 and 1. The result
for AMP, CIP and PIP can be seen in Figure A.2.
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Figure A.2: Percentage of unclassified samples and errors as a function of the
percentage of distance from the ratio to the end. Here is the results for antibiotics
AMP, CIP, PIP. Interesting is the differences between the antibiotics.
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B
Additional figures for analysing
unclassified samples and errors

In Section 3.3.3, the results from analysing unclassified samples and errors for an-
tibiotic AMP are presented. In this chapter the results for two more antibiotics are
presented, CIP and PIP. The number of unclassified samples are 57466 and 1348 for
CIP and PIP, respectively. For number of very major error, CIP have 235 which is
a very major error rate of 0.97 %. However, PIP have 3 very major errors, which is
a 0.03 % rate. Therefore, no conclusions can be made from the results of PIP’s very
major error.
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(a) Differences in the distributions are
very small, with only a minor decrease
for the unclassified samples around the
age of 80.
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Figure B.1: The distribution of age on the whole data set compared with the
distribution of unclassified samples for antibiotic CIP and PIP. The classification
limit is set to 1 unit of length around their respective resistant ratio.
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Figure B.2: The distribution of age on the whole data set compared with the
distribution of very major errors for antibiotic CIP and PIP. The classification limit
is set to 1 unit of length around their respective resistant ratio.

B.2 Gender
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(b) For PIP, the differences are around
5 percentage points for both female,
F, and male, M. That results in a 10
percentage points difference for the un-
known, UNK, samples.

Figure B.3: The distribution of gender on the whole data set compared with the
distribution of unclassified samples for antibiotic CIP and PIP. The classification
limit is set to 1 unit of length around their respective resistant ratio.
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Figure B.4: The distribution of age on the whole data set compared with the
distribution of very major errors for antibiotic CIP and PIP. The classification limit
is set to 1 unit of length around their respective resistant ratio.
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(a) The differences are quite big for some
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Figure B.5: The distribution of country on the whole data set compared with the
distribution of unclassified samples for antibiotic CIP and PIP. The classification
limit is set to 1 unit of length around their respective resistant ratio.
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(a) Again, most countries have a differ-
ences between the two groups. However,
in some cases, for example UK, the coun-
try is more common in the unclassified
group but less common in amongst the
very major errors.
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Figure B.6: The distribution of country on the whole data set compared with the
distribution of very major errors for antibiotic CIP and PIP. The classification limit
is set to 1 unit of length around their respective resistant ratio.

B.4 Number of other antibiotics tested
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(a) For CIP, the distribution is shifted to
left compared with the whole data set.
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Figure B.7: The distribution of number of other antibiotics tested on the whole
data set compared with the distribution of unclassified samples for antibiotic CIP
and PIP. The classification limit is set to 1 unit of length around their respective
resistant ratio.
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Figure B.8: The distribution of number of other antibiotics tested on the whole
data set compared with the distribution of very major errors, here called VME, for
antibiotic CIP and PIP. The classification limit is set to 1 unit of length around
their respective resistant ratio.
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C
Additional results having other

classification limits

In Section 3.4, the classification limits when not letting the very major error rate not
exceed 5 % is shown, see Table 3.4. However, one could argue that a model having
5 % very major errors could be to much errors. Therefore, the same procedure was
done, but for a very major error rate of 1 % The result, as in the limits but also the
percentage of errors and unclassified samples, can be seen in Table C.1.

Comparing with the result having 5 % very major errors, the obvious thing is that
the limits now are further away from the ratio. This means, the percentage of
unclassified samples have increased. Here, 7 antibiotics can classify less than 50 %.
This is more than a doubling compared with 5 % very major error case. However, the
percentage of major error are very low, under 1 %, for most antibiotics. The same
goes for the percentage of very major error, which actually are 0 for 5 antibiotics.

Taking the percentage of unclassified samples in regard, the conclusion is to not have
this very strict limits. These limits results in to high number of samples not being
classified. However, it could be possible to use if the model got better on separating
the resistant samples apart from the susceptible ones.
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C. Additional results having other classification limits

Table C.1: Unique limits for all antibiotic models together with percentage of
unclassified and errors. The ratio and delta is logit-transformed. Specifically, look
at the high percentage of unclassified samples there are for many antibiotics.

Antibiotic Ratio Delta % unclassified % very major % major
AMC -0.31 0.70 34.76 0.91 3.59
AMK -2.02 2.59 99.66 0.00 0.08
AMP 0.06 0.80 46.02 0.64 0.37
AMX 0.08 0.69 25.72 0.93 0.38
CAZ -0.98 0.93 9.34 1.00 1.77
CIP -0.55 0.97 51.61 0.99 0.84
COL -2.01 2.97 95.58 0.53 0.01
CRO -0.91 0.94 8.09 0.95 0.22
CTX -0.85 1.01 26.36 0.99 0.25
ETP -2.72 3.58 99.89 0.00 0.01
FEP -0.97 0.58 3.54 0.99 2.93
GEN -1.03 1.26 57.50 0.81 0.98
IPM -3.11 1.32 99.38 0.00 0.32
LVX -0.52 0.85 5.39 0.80 0.59
MEM -3.17 0.14 100 0.00 0.00
MFX -0.43 1.41 44.23 0.98 0.07
OFX -0.67 1.43 39.69 0.96 0.04
PIP -0.03 0.00 0.00 0.28 3.33
TGC -2.81 2.39 99.90 0.00 0.05
TOB -0.99 1.14 19.57 0.99 0.05
TZP -1.08 1.11 44.05 0.95 0.51
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