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Modeling sound scattering from an audience - an application to a model of the
Gothenburg Opera House

Johan Hjalmar Wikstrand

Department of Civil and Environmental Engineering
Division of Applied Acoustics

Chalmers Room Acoustics Group

Chalmers University of Technology

Abstract

A traditional approach when modeling sound scattering from an audience in concerts
halls is to model the audience by a plane and specify the mean absorption coefficient
and mean diffusion coefficient of the plane in octave bands. A drawback with an ap-
proach like this is that the more detailed parts of the scattered sound field, such as
the scattering by the heads of the audience, is not modeled. The work of this thesis
has therefore revolved around making the simulation of the sound in the Gothenburg
Opera House more realistic by adding the contribution of sound scattered by hemi-
spheres (resembling the heads of the listeners) to the impulse response given by the
commercial computer software CATT Acoustics.

When the CATT Acoustics impulse responses had been modified they were convolved
with various anechoic recordings and listening tests could be performed. The results
of these tests exposed that the introduction of hemisphere scattering results in a clear
audible difference when the impulse responses are convolved with white noise. The
difference is not as clear when convolving with other anechoic recordings but results
indicate that expanded modeling could change that.

Keywords: Hemisphere Scattering, Fast Fourier Transform, Digital Signal Process-

ing, Cubic Spline Interpolation, Discrete Convolution, Auralization, Separation of Vari-
ables
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Modellering av ljudspridning frdn en publik - en tillimpning pa en modell av
Goteborgsoperan

Johan Hjalmar Wikstrand

Institutionen for bygg- och miljoteknik
Avdelningen for Teknisk Akustik
Chalmers rumsakustiska grupp
Chalmers tekniska hogskola

Sammanfattning

Ett traditionellt tillvagagangssdtt ndr man modellerar ljudspridning fran en publik i
konserthallar dr att modellera publiken med ett plan och specifiera planets absorption-
skoefficient och diffusionskoefficient i oktavband. En nackdel med detta tillvagagdngssatt
ar att de mer detaljerade delarna av det spridda ljudfiltet, sdsom spridningen fran
ahorarnas huvuden, inte modelleras. Darfor har detta examensarbete kretsat kring
att gora simuleringen av ljudet i Goteborgsoperan mer verklighetstrogen genom att
addera bidraget fran ljud som spritts fran halvsfarer (liknande ahorarnas huvuden) till
det impulssvar som ges av det kommersiella datorprogrammet CATT Acoustics.

Nar impulssvaren fran CATT Acoustics hade modifierats sa faltades de med olika ekofria
inspelningar och dérefter kunde lyssningstest genomforas. Resultaten fran dessa tester
visade att inférandet av halvsfarsspridning resulterar i en klart horbar skillnad dé im-
pulssvaren faltas med vitt brus. Skillnaden &r inte lika klar dd man faltar med andra
ekofria inspelningar men resultaten indikerar att utvidgad modellering skulle kunna
dndra detta.

Nyckelord: Halvsfarsspridning, Fast Fourier Transform, digital signalbehandling,
kubisk splineinterpolation, diskret faltning, auralisering, variabelseparation
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1 Introduction

This introductive chapter will give you a brief look into the scope of this thesis. The purpose of
this project and its implementation is also described in brevity.

1.1 Background and Purpose

Predicting accurately how something will sound in large concert halls is a difficult and
subtle problem. One needs the absorption and diffusion coefficients for all the elements
building up the entire hall. This is of course not enough. Since many elements in a con-
cert hall has complex geometrical properties one immediately runs into problems when
it comes to computing the scattered sound field. There exists analytical solutions for the
scattered sound field from a few simple bodies, but for more complicated structures one
has to start approximating in order to get anywhere. Many commercial computer soft-
ware are modeling the audience plane in concert halls by simply specifying the mean
absorption coefficient and the mean diffusion coefficient of the plane in octave bands. A
modeling approach like that will not resolve details such as scattering from the listeners
heads. This was one of the key conclusions leading me into picking sound scattering as
my field for the master thesis.

The purpose of this thesis is to investigate if one can obtain a more realistic modeling
of the sound in the Gothenburg Opera House by using the Impulse Response given by
CATT Acoustics and then add another impulse response corresponding to the scatter-
ing from hemispheres (resembling the heads of the listeners). The hemisphere impulse
responses are computed with a number of in-house coded Matlab scripts using the data
in the output files from CATT Acoustics as in parameters. Once the impulse response
from CATT Acoustics and the hemisphere impulse response have been added one can
perform listening tests investigating if there are any audible differences.

This master thesis is a natural continuation of my supervisor Georgios Natsiopoulos’
master thesis, see [3].



Traditional
approach

Alternative
approach

1=

Boss model

Figure 1.1:

The two approaches.
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2 Theory

This chapter will guide you through the theory forming the base for the equations used in the
Matlab scripts. The largest part of this chapter considers scattering for Neumann Boundary
Conditions. Furthermore the SumBank approximation and a way of modeling coupling are
introduced.

2.1 Scattering for Neumann Boundary Conditions

The theoretical starting point of this thesis is scattering for Neumann Boundary Condi-
tions. This means that the scattering surfaces are modeled as hard, impenetrable and
immobile. As a consequence the particle velocity normal to the surface is zero which in
turn implies that the gradient of the pressure also is zero.

In the coming subsections I will present a number of equations without derivation.
For an in depth derivation of these equations, see [1].

2.1.1 Scattering from a hard sphere

Our first step will be looking into the scattering from a hard sphere. Let us use the
following geometry

Figure 2.1: The geometry for scattering from a hard sphere.



We will assume that a point source is located at ro, that a sphere of radius a has its
center at r, and that the listening position is located at r relative the origin 0. For con-
venience, let us also introduce the following vectors and distances:

5 R

R,=r—r1, R, = |R,| R, ="
R0 =r)— Rao = [Rag| R, = R
a0 = X0 — I a,0 a,0 2,0 = R,

The scattered pressure can then be written as

psc(r,w) = —ikU(w Z m (KR (kR 0) P (R - Ry ) (2.1)
* iis the imaginary unit satisfying the equality > = —1

¢ k is the wave vector.
e U(w) is the source strength as function of frequency.

* Qy is the function determining the strength of the scattered field as a function
of frequency. Essentially it is a combination of spherical Bessel and Hankel func-
tions.

® hy, is the spherical Hankel function of the first kind.

* P, is the Legendre polynomial, mainly determining the directivity properties of
the scattered field. Note that its argument R, - R0 = cos(a).

2.1.2 Approximations

The following two relations are useful when approximating Eq. 2.1.

h,(,})(ﬂ) — —i " when n§ — oo (2.2)

Py(—x) = (—=1)"Py(x) (2.3)
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Farzone

The farzone approximation is obtained by letting kR, — oo. Practically this shall be in-
terpreted as letting the listening position slide infinitely far away from the sphere along
the line that leaves a unchanged. Using Eq. 2.2 the result is

1kR,, 00

R Z l_QO kﬂ) (kRa O)Pm( aO) (24)

Psc(r,w) =~ —ll

Farfield

The field approximation is obtained by letting kR, o — oo. Practically this shall be inter-
preted as letting the source slide infinitely far away from the sphere along the line that
leaves « unchanged. Using Eq. 2.2 the result is

N lkRaO 00 R R
Psc (I‘, w) U R 0 Z Z_QO ka) ( )Pm(Ra : Ra,O) (2-5)
av m=0
Farzone and Farfield

The result when applying the farzone and farfield approximations simultaneously (us-
ing both Eq. 2.2 and Eq. 2.3) is

lk(Rﬂ +Ra 0

Z (ka)Py(—R; - Ryp) (2.6)
Ra T2\ —

It is worth mentioning that a factor ¢/*R corresponds to a time delay of R/c seconds

and that distance from source to receiver via the sphere center is R, + R, 0.

5 CHALMERS, Applied Acoustics, Master’s Thesis 2007:20



2.1.3 Scattering from a hard hemisphere on a hard infinite plane

For the hemisphere scattering, let us use the following geometry

Figure 2.2: The geometry for scattering from a hard hemisphere.

When calculating the scattered sound field from a hard hemisphere on an hard infi-
nite plane one can make use of the solution for the hard sphere. By replacing the plane
with a mirror source (at the specific coordinate rj) one obtains an equivalent scenario -
at least mathematically equivalent - above the plane. The new vectors and distances are

1‘8 =TIy — 2‘Ra,0 . fl‘ﬁ

Rig=15—1,=R;0—2[Ryp - i|fa

R;,O = Rap

We can now formulate an expression for the scattered field from a hemisphere on a
plane. It is done by adding what is scattered when the source at r, radiates on a sphere

at r, to what is scattered when the mirror source at rj radiates on the same sphere. In
mathematical terms this is formulated as

[ee]
A

Psc(r, ) + pic(r,w) = —ikl:l(w) Z Qm(k“)hM(kRa)hm(kRa,O)[Pm(Ra'Ra,O) +Pm<Ra‘R:,O)]
m=0
(2.7)

The farzone and farfield approximations are applicable in this case too, due to the
principle of superposition.
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2.2 Modeling finite impedance

What we have dealt with so far is when Neumann Boundary Conditions apply. If we
want to model the more realistic case - the case of a hemisphere with finite impedance
- we will have to take a closer look at Q,,(ka) in Eq. 2.1. The general expression is:

_ o (Ka) + iBjim (ka)
Qum(ka) = (2m + Uhin (ka) + iBhn(ka) (2.8)

where B is the specific admittance. See [4] page 425 for details.

When Neumann Boundary Conditions apply we have § = 0, so the expression for
Qm(ka) can be simplified into

(k) — kajurs1 (ka)
mhy, (ka) — kahy, 11 (ka)

= (2m+1) (2.9)

For finite impedances § will be none-zero. A suitable admittance to make use of in
our case could be the admittance of a thick, porous and locally reacting absorber.

B(k) = % (2.10)

1=

oock

Z is the flow resistivity of the porous absorber. See [5] page 169 for details.

Going all the way with finite impedance modeling would mean taking into account
that the plane which the hemispheres are resting on is not infinitely hard. This has not
been done in this project. A consequence of this is that the part of the scattered sound
tield originating from the mirror source at r; (see Figure 2.2) will be slightly overesti-
mated, especially for high frequencies.

2.3 The SumBank approximation

If we take a close look at Eq. 2.1 we can see that some cumbersome calculations will
be required if you want to compute the scattered pressure exact. We will have to start
approximating to get anywhere. A first step is to truncate the infinite sum. This is com-
monly done by breaking the summation when the ratio between a partial sum and the
previous partial sum is of a certain order. The next step might be to apply the farzone
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and farfield approximations. In spite of the fact that these approximations would re-
duce the number of parameters needed for the summation from four (Q, (ka), h,, (kR,),
hw(kRy0) and Py(R; - Ryp)) to two (Qpu(ka) and Py (R, - Ryp)) the computation time
might have to be cut even more. This is when the SumBank approximation comes into
the picture.

As you can see in equation Eq. 2.6 we need a wave vector k and the angle « (remember
that R, - R0 = cos(a)) in order to compute the sums value. If we in advance knew
the frequency range of interest and the angle « associated with each wave hitting the
scattering object we could easily compute the sums value, store it in a clever way and
later call for it with instant access. The computation itself would be done. Based on
this idea I built up the so called SumBank. As the name hints it is a bank of sums. The
picture below will expose its structure.

0=0 0=5 - - - - - - - —— - — =180

Figure 2.3: Structure of the SumBank.

In Figure 2.3 you can see the matrix structure of the SumBank. Each column vector
constitutes the sums value for a specific value of the angle a given the wave vector
range ki, ky, ..., k,. Obviously a is now a discrete parameter. Therefore another approx-
imation needs to be introduced. We will need to round a to the oy (ay = d-5°, d =
0,1,2...,,36) that minimizes |« — w,| in order to pick the most suitable column vector in
the SumBank matrix.

CHALMERS, Applied Acoustics, Master’s Thesis 2007:20 8



2.4 Modeling coupling

Since the modeling I have described so far has not included coupling we will need to
incorporate this somehow. The reason for this is that without coupling each scattering
object is viewed as existing alone. A sound wave scattered from one scatterer can not
be impeded by another scatterer, which is unphysical. To include full coupling in the
analytical equations is very hard but one can use a simplified model which at least will
give a more accurate result than if we modeled no coupling at all.

L & & . &

L ] ]

L ] L ]

d+2a
L ] L ]
* . . * . d
a

(a) Sketch depicting two sequences (b) Sketch of a sequence of scat-
of scatterers surrounding the listen- terers. This is what the scattered
ing position. wave sees on its way to the re-

ceiver if all other scatterers lie in
the same plane, evenly spaced.

Figure 2.4: Figures describing the simplified way of modeling coupling.

Imagine a scattered sound wave propagating through a sequence of scatterers (as in
Figure 2.4(b)) on its way to the listening position. Let us then define the fraction of
opening, R

=
Il

d+2a 2.11)

We can now let R” be the factor scaling the amplitude of the scattered pressure wave.
n is an integer representing the number of scattering sequences there are on the way
towards the listening position.

9 CHALMERS, Applied Acoustics, Master’s Thesis 2007:20
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3 Implementation

This chapter will walk you through the implementation of my project. The idea is to follow the
project chronologically, starting with the modeling in CATT Acoustics, then moving on through
the Matlab scripts and finally the listening tests.

Before we get into specifics I would like to show a schematic sketch of this project’s
implementation. I will divide this chapter into sections agreeing with Figure 3.1

CATT Acoustics

Commercial computer
software modeling the

Matlab $

- ; MATLAB
CATT’s output parameters rzosa

are used to compute Impulse
Gothenburg Opera House. Responses for different sets of
scattering hemispheres.

Impulse Responses

Left ear IR from CATT Acoustics and Matlab scipts

various anechoic
recordings and let

listening tests search : ) ® @ ® W @ U @ @ m

Time [ms]

f(:)r aLlclible dlff!:‘ rences. Right ear iR from CATT Acoustics and Matlab scripts

100 120 140 160 180 200
Time [ms|

Figure 3.1: Schematic sketch of the implementation.

11



3.1 CATT Acoustics

Figure 3.2: Screen shot from CATT Acoustics showing source (black square) and listen-
ing position (white circle).

The implementation starts in a commercial computer software called CATT Acous-
tics. This program has a wide range of features but I have mainly used it for two pur-
poses: firstly to obtain the full detailed calculated impulse response of the Gothenburg
Opera House and secondly to extract data such as arrival times, angles of incidence and
amplitude for a number of user defined receiver points.

As mentioned earlier, the main task of this project is to investigate the effect of intro-
ducing hemisphere scattering into the present acoustical modeling. Therefore step one
is to - as detailed as possible - calculate the impulse response without scattering hemi-
spheres present. This is exactly what CATT Acoustics does. Step two would then be
to refine an impulse response corresponding to the hemisphere scattering exclusively,
enabling us to start comparing. How step two is implemented will be discussed in the
next section, however one shall note that the raw data used for the analysis of hemi-
sphere scattering is created in the first step by CATT Acoustics.

CHALMERS, Applied Acoustics, Master’s Thesis 2007:20 12



3.1.1 Absorption and diffusion of the audience plane in CATT Acoustics

It is important to emphasis that CATT Acoustics has its own way of modeling absorp-
tion and diffusion for the audience plane. The following table will give you an idea of
how.

| Octaveband f. || 125Hz | 250 Hz | 500 Hz | 1kHz | 2kHz | 4kHz |

« (%) 40 60 75 88 88 85
6 (%) 30 40 45 70 80 90

Table 3.1: Parameters defining the absorption and the diffusion of the audience plane
in CATT Acoustics.

The octave band averages of the absorption coefficient, seen in Table 3.1, served as
guidelines when the value of the flow resistivity, = in Eq. 2.10 was set. = was chosen so
that the tabulated « values from CATT Acoustics agreed fairly well with values given
by Eq. 3.1.

Ly
B = i ranp Ty 41 @)

Jt denotes the real part of a complex quantity.

f[Hz]

Figure 3.3: Absorption coefficient as a function of frequency according to Eq. 3.1.
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3.1.2 Full detailed calculation of impulse response

CATT Acoustics computes the impulse response in a rather complex manner. The early
part of the impulse response (typically 300-500 ms in concert halls) consists of first order
reflections, second order specular reflections and the direct sound. This part is handled
deterministically. In the late part of the impulse response a method handling diffuse
reflections is needed. The method utilized by CATT Acoustics is called Randomized
Tail-corrected Cone-tracing (RTC). This is a method combining features of both specu-
lar cone-tracing, standard ray-tracing and the image source modeling.

3.1.3 Gathering data for analysis of hemisphere scattering

Since there is no way to model hemisphere scattering exact in CATT Acoustics, re-
ceivers were placed around the listening position at the coordinates where hemispheres
were wanted. After an early part detailed image source modeling in CATT Acoustics
(where the highest reflection order was set to 2) a separate text file is generated for each
receiver. The parameters needed for the calculation of hemisphere scattering are all in
these text files. Before we move on to how the Matlab scripts extract and use these
parameters, let me show some typical receiver configurations.

CHALMERS, Applied Acoustics, Master’s Thesis 2007:20 14
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Figure 3.5: Listening position (white circle) surrounded by two receiver clusters.
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Figure 3.7: Listening position (white circle) surrounded by four receiver clusters.

CHALMERS, Applied Acoustics, Master’s Thesis 2007:20
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3.2 Matlab scripts

I I_AD_01.TXT - Notepad (=1 E3]
File Edit Format Yiew Help
.
#DATAFIELDS
TYPE DELAY ORDER AZIMUTH ELEVATION SPL125 SPL250 SPLS00 SPLIK SPL2K SPLAK
#DATA
d 0. 0000 4] G0, 00 G0, 00 5.7 58,7 gl.4a ad. 4 67,5 0.1
s 0. 0015 1 80,52 110.49 53.5 4.7 55.6 55.4 58.3 gl.59
3 21.1245 1 128.45 80,92 52.4 55.5 8.5 al.5 64.3 66,9
s 21.1276 2 122.11 116.42 50.2 51.5 52.4 52.3 55.1 8.6
s 22.1116 1 128,52 90,01 52.3 55.3 58.4 al.3 64,2 66, 7
s 22,1130 2 140,41 103,33 50,1 51.4 32.3 52.1 55.0 38,5
s 22,6388 1 137.74 70,21 52.2 55.3 58.3 al.3 64,2 66,7
s 22.6422 2 142.47 115.85 50,0 51.3 52.3 2.1 4.9 58.4
3 24,5747 1 157.67 Q0. 05 52.0 55.1 58.1 6l.1 63.9 66.4
s 24,5757 2 155,25 G0, 04 49,8 51.1 52.1 51.9 54.7 8.2
s 47,2672 1 46, 83 89, 0F 45,8 52.8 55.8 58.8 6l.6 64.0
s 47,2684 2 44,97 103,08 47,84 48,0 49,8 40,46 2.4 35.8
s 47.4834 2 46,33 04,40 47,5 48.8 45,8 45,4 52.4 55.7
s 78,9507 1 341,27 45,07 47.4 50.5 53.4 6.4 54,2 6l.3
3 78.9569 2 328.70 11%9.81 45,2 46,5 47.4 47.2 50.0 53.1
s 84,3003 2 356,58 ag. 77 46,6 49,8 52.8 55.8 8.6 a0, 7
s 89,5543 2 182,33 B2.37 46.3 46,5 52.5 55.5 5.2 60.4
s 03,7863 1 101,74 820,01 45,6 46,8 47.5 48.7 5l.4 33.4
s 03, 7882 2 102,08 110,47 43.4 42,9 41.5 30,45 42,2 45.2
s 04,1277 2 101,74 G3.75 45.2 46.5 47.3 458.4 51.2 53.2
3 101.0656 2 353.68 51.12 45,7 48.8 51.8 4.8 57.5 9.6
#END
b
£ >

Figure 3.8: A typical output text file from CATT Acoustics used to extract in parameters
for the Matlab scripts.

Above in Figure 3.8 you can see how one of the output text files from CATT Acoustic
looks. Each row contains data about a specific reflection. The first column called TYPE
states if the reflection is direct (d), specular (s) or diffuse (*). Since we are only con-
cerned with the deterministic scattering from hemispheres the diffuse reflection order
is set to zero, hence no (*) in the first column. The second column called DELAY simply
states the delay time of the reflection in ms relative to the direct sound. The third col-
umn called ORDER states the reflection order. The column called AZIMUTH contains
the incident angle in the receiver’s horizontal plane. The column called ELEVATION
contains the incident angle in the receiver’s vertical plane. Finally the last six columns
specify the sound pressure level as octave band averages.

The first task for the Matlab scripts is to extract the parameters needed to calculate
the pressure scattered by the hemispheres out of files such as the one in Figure 3.8. Since
every output text file has the same structure it is easy to code a Matlab routine going
through the files and saving the data needed in a clever way.

17 CHALMERS, Applied Acoustics, Master’s Thesis 2007:20



3.2.1 Shaping a spectrum from six octave band averages

As you can see in Figure 3.8 there are six parameters describing the spectrum of a reflec-
tion. Using all these parameters in conjunction with a cubic spline interpolation gave a
more fine-tuned modeling of the spectrum compared to previous modeling. Since the
values given from CATT Acoustics were octave band averages, each value was normal-
ized with the number of frequency components in the actual octave band. Let me show
a typical example using this approach.

| | SPL125 | SPL250 | SPL500 | SPL1k | SPL2k | SPL4k |
| Oct. bandav. || 535 | 547 | 556 | 554 | 583 | 619 |

Table 3.2: Sequence describing the spectrum for a typical reflection.

03—
0_25_:..5. R
0.2 i
R
= :
01 Fin L

0.05 _

0.0 Lt L i Liiii L L
o 10’ 0 10 10
f[Hz]

Figure 3.9: Modeling the spectrum for the reflection in Table 3.2, using cubic spline in-
terpolation and normalizing each octave band value with its number of fre-
quency components.

3.2.2 The SumBank routine

Once all the needed parameters have been calculated, the Matlab routine H_SumBank.m
(attached in the Appendix) can be executed. What this routine does in essence is that
it uses the in parameters and the SumBank (described in Chapter 2) to compute the
frequency response of the hemispheres. If the number of hemispheres is greater than
one the output parameter of this routine will be a matrix with dimension (number of
frequency components x number of hemispheres). Consequently each column in this out-
put matrix constitutes the frequency response of one specific hemisphere. This comes

CHALMERS, Applied Acoustics, Master’s Thesis 2007:20 18



in handy later if one wants to look at the impulse response for a specific set of hemi-
spheres.

Some important parameter values involved when using the SumBank should also be
stated. The radius of the hemisphere was set to approximately 8.9 cm. Since I wanted
the sampling frequency to agree with sampling frequency of the CATT Acoustics im-
pulse responses I set N = 88200 (N = number of frequency components) and df = 0.5
(df = the frequency interval between two adjacent frequency components). These pa-
rameter values will generate a rather large SumBank. I will be the first to admit that
the size of the SumBank could have be reduced drastically by saving the value of the
sum with a much larger value of df and then interpolate. Nevertheless, the parameter
values stated above were the ones I used during this work.

Since our goal is to find out whether the introduction of hemispherical scattering re-
sults in a an audible change or not we need the impulse response for the scattering
hemispheres. This impulse response is obtained by taking the inverse Fast Fourier
Transform (FFT) of the frequency response computed by H_SumBank.m. Since the FFT
algorithm assumes the time signal to be periodic, the level in the end of the impulse
response will in some cases rise in a very un-physical way, contradicting causality. To
minimize this effect all the impulse responses were translated 10 ms forward in time.
When the inverse FFT has been done it is also important to keep in mind that various
errors such as interpolation errors can affect the levels of the impulse response. It is
crucial for the validity of this work that x dB in CATT Acoustics correspond to exactly
x dB in the Matlab scripts. A bullet-proof way of making sure that this is really the case
is to have a look at the specular impulse responses. By summing the squared pressure
values of the impulse response from CATT Acoustics and the Matlab scripts in the time
domain one can make sure that the fotal energy content of the signals is the same, al-
though some variations will occur if one compares octave band per octave band.

The specular impulse response calculated by the Matlab scripts should ideally be an
identical copy of the specular impulse response calculated by CATT Acoustics. How-
ever this is very hard to put into practice since there is no phase information at all (we
only have the six octave band values at disposal). Knowing this we can still try to com-
pensate a possible mismatch between the two impulse responses by scaling the impulse
response calculated by the matlab scripts with a factor. This factor is the factor which
will make the energy content of the two impulse responses equal. Once this is done we
know that we have comparability and the possibility of combining impulse responses
calculated by CATT Acoustics and the Matlab scripts. At this point we are ready to
start the final part of the analysis. That is to search for audible differences through a
listening test.
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3.3 Listening tests

Two parts formed this listening test. The purpose of the first part was to investigate if
there is an audible difference between modeling with or without hemispherical scatter-
ing. Part number two deals with the comparison between the exact and the approxi-
mative solution for the scattered sound field.

The test was performed in the VR lab at the Division of Applied Acoustics, Chalmers.
In order to keep the background level as low as possible the computer was placed out-
side the room where the test was performed. This resulted in a background level of 35
dBA. The sound pressure level at the left ear when playing the reference signal was 73
dBA.

Figure 3.10: Moa during the listening test.

3.3.1 Part 1 - The effect of hemisphere scattering

This part had five subparts. Each one of them had the same structure. The main idea
is to compare a reference signal with four other samples. The listener was asked to an-
swer if he or she could hear an audible difference between the reference signal and any
of the other four samples. If the answer was yes, then then listener was asked to state
the number of the samples that differed and if more than one sample differed from the
reference signal they were also asked to state the one differing the most. Let me explain
the the content of the various signals.
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Reference: Impulse response from a full detailed calculation in CATT Acoustics
convoluted with digital recording.

Sample 1: The sum of the impulse response given from CATT Acoustics and the
impulse response for one set of scattering hemispheres (see Figure 3.4) convolved
with digital recording.

Sample 2: The sum of the impulse response given from CATT Acoustics and
the impulse response for two sets of scattering hemispheres (see Figure 3.5) con-
volved with digital recording.

Sample 3: The sum of the impulse response given from CATT Acoustics and the
impulse response for three sets of scattering hemispheres (see Figure 3.6) con-
volved with digital recording.

Sample 4: The sum of the impulse response given from CATT Acoustics and
the impulse response for four sets of scattering hemispheres (see Figure 3.7) con-
volved with digital recording.

The digital recordings used for convolution in the five different subparts were

Part 1.1: White Noise

Part 1.2: No convolution (i.e. pure impulse responses)
Part 1.3: Anechoic recording of an acoustic guitar
Part 1.4: Anechoic recording of a female talker

Part 1.5: Anechoic recording of a trumpet
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3.3.2 Part 2 - Exact vs. approximative solution

The other main question with the listening test was: Is there an audible difference be-
tween the exact and the approximative solution? A simple situation aiming to answer
that question was therefore refined.

Listener

He111i51.“rl'1e1*e Hemisl.‘:l'lere

W

Source

Figure 3.11: Situation refined for comparing the two solutions.

The situation in part 2 can be seen in Figure 3.11. The distance between the source
and the listening position (/) was set to 16 m. Furthermore the source is not actually
in the same plane as the listening position and the hemispheres, it is elevated approx-
imately 3 m above the plane. The angle a« was set to [0°,30°,60°,120°,180°] and the
distance between the listening position and the hemispheres (d) was for each value of «
set to [d, 2d,4d]. For each combination of « and d the impulse response for the two hemi-
spheres was computed, exact and approximately. The two impulse responses were then
convolved with white noise. When this was done for all the configurations the pairwise
comparisons between the exact and the approximative solution could begin.

3.3.3 Identical samples

In order to judge the reliability of results accurately it is important to study the case
when identical samples are compared by the listeners. In the test there were three
different pairs of samples which were a bit special. The two samples forming each
of these pairs were identical. The outcome of this test will serve as a reference when
analyzing the listening test.
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4 Results

The aim of this chapter is to give the reader a short and precise presentation of the results from
the analysis in Matlab and the listening tests. In the end of the chapter there is also a discussion

about the results.

4.1 Analysis in Matlab

Many hours have been spent on making different kinds of investigations with the Mat-
lab scripts. The plots could go on and on for pages. However, the most important once
can be seen here.

Irmpulse Response from CATT Acoustics
ED T T T T T

&0

L, 1) dB rel. 20,Pa
(W) =y
_ =

[an]
=

10

1] 200 400 600 800 1000 1200
t [ms]

Figure 4.1: Full detailed calculation of the impulse response made by CATT Acoustics.
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Specular IR fram Matlab scripts

B0
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|
100

120

Figure 4.2: Specular impulse response calculated with the Matlab scripts using out pa-

rameters from CATT Acoustics.

The following sequence of impulse responses correspond to the four receiver config-
urations shown in Figure 3.4 - Figure 3.7. Note that the plots concern the hemisphere

scattered sound exclusively.
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Impulse Response for one cluster of hemispheres

a0F

=
o
T

L,{t) 9B rel. 20,Pa
=]

201 b
10F A
] I 1 |N l I | ' | “ | X 1
0 20 40 60 g0 100 120
t [rns]

Figure 4.3: Impulse response for one cluster of hemispheres.

Irpulse Response for two clusters of hemispheres
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Figure 4.4: Impulse response for two clusters of hemispheres.
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Impulse Respansge for three clusters of hemispheres
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Figure 4.5: Impulse response for three clusters of hemispheres.

Irpulse Response for four clusters of hermispheres
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Figure 4.6: Impulse response for four clusters of hemispheres.
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Let us also have a look at the plots showing the impulse response from CATT Acous-

tics in the same figure.

Impulse Response for one cluster of hemispheres
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Figure 4.7: IR from CATT Acoustics together with IR for one cluster of hemispheres.

Impulse Response for two clusters of hemispheres
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Figure 4.8: IR from CATT Acoustics together with IR for two clusters of hemispheres.
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Impulse Responsge for three clusters of hemispheras
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Figure 4.9: IR from CATT Acoustics together with IR for three clusters of hemispheres.
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Figure 4.10: IR from CATT Acoustics together with IR for four clusters of hemispheres.
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4.2 Listening test

4.2.1 Part 1 - The effect of hemisphere scattering

Here follows the compiled results of part 1 of the listening test.

Part || Can distinguish | Can distinguish Can distinguish ref. and Largest difference

ref. from any more than one between ref. and

of the samples | sample fromref. | 1 ‘ 2 ‘ 3 ‘ 4 1 ‘ 2 ‘ 3 ‘ 4
1.1 15/15 11/15 6/15 | 6/15 | 9/15 | 15/15 | - - | 1/15 | 14/15
12 3/15 2/3 - 1/15 | 1/15 | 3/15 | 1/3 | - 1/3 | 1/3
1.3 7/15 1/7 - 1/15|2/15 | 5/15 | - | 1/7 | 2/7 | 4/7
1.4 8/15 4/8 5/15|1/15|3/15| 3/15 | 3/8 | - | 2/8 | 3/8
1.5 9/15 7/9 5/15|3/15|3/15| 8/15 [ 1/9 | 1/9| 1/9 | 6/9

Table 4.1: Results from part 1.

4.2.2 Part 2 - Exact vs. approximative solution

Here follows the compiled results of part 2 of the listening test.

o d=0.6m d=12m d=24m
Do hear a difference | Do hear a difference | Do hear a difference
0° 10/15 5/15 5/15
30° 10/15 4/15 8/15
60° 15/15 4/15 8/15
120° 12/15 7/15 4/15
180° 12/15 6/15 3/15
Table 4.2: Results from part 2.
29
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4.2.3 ldentical samples

The comparisons of the pairwise identical samples came out as follows

H Could hear a difference

Identical pair 1 3/15
Identical pair 2 2/15
Identical pair 3 3/15

Table 4.3: Results from from comparisons of identical samples.

Another way of presenting the results from the study of identical samples is the fol-
lowing

* 9/15 listeners gave 0 erroneous answers (i.e. claimed that there was a difference)
when comparing the samples forming these three pairs.

* 4/15 listeners gave 1 erroneous answers (i.e. claimed that there was a difference)
when comparing the samples forming these three pairs.

* 2/15 listeners gave 2 erroneous answers (i.e. claimed that there was a difference)
when comparing the samples forming these three pairs.

* 0/15 listeners gave 3 erroneous answers (i.e. claimed that there was a difference)
when comparing the samples forming these three pairs.

4.3 Discussion

It is hard to foresee the influence of hemisphere scattering by just visually inspecting
the plots in Figure 4.3 - Figure 4.10. As one can see in Figure 4.3 - Figure 4.6 the im-
pulse response grows more and more dense as the number of scattering hemispheres is
increased. This makes sense since you are increasing the number of objects scattering
sound to the listening position. But the important question still remains: Will the hemi-
sphere scattering be audible when its impulse response is added up will the impulse
response from CATT Acoustics? The next four plots in Figure 4.7 - Figure 4.10 can give
us a first idea to the answer. We can see that there are time regions where the CATT and
HEMI levels are of the same order. Nevertheless, one could still argue that these time
regions are too short. So, in order to continue a meaningful discussion we also need the
results from the subjective listening tests.
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By looking at Table 4.1 we can conclude that 100% (15 out of 15 test subjects) could
tell a difference between the reference and any of the four samples in the case of white
noise convolution. 14/15 claimed that sample number four produced the greatest dif-
tference. This is good news but also expected news. It is no secret that differences in
pitch and level are easily exposed when convolving the different impulse responses
with white noise. If we take a look in the other end of the spectra we are studying
Part 1.2 where the impulse responses are not convolved at all, we are just listening to
pure impulse responses. In that case only 3/15 could tell the difference between the
reference and any of the four samples. If you take a look in Table 4.3 you can see that
the fraction 3/15 constitutes some kind of truncation criterion. This is because three
out of fifteen subjects claimed that there was a difference when comparing completely
identical signals. Consequently, we can with highest likelihood state that hemisphere
scattering - modeled in a small scale like here - do not change the audible impression
of the pure impulse responses. However, if we proceed with parts 1.3-1.5 there is no
doubt that people do hear a difference. In the last part where the impulse responses
have been convolved with an anechoic recording of a trumpet 9/15 subjects heard a
difference and 6/9 claimed that sample number four produced the greatest difference.

In Table 4.2 the results of the listening test’s part 2 are compiled. Since the impor-
tant approximations done are the farzone and farfield approximations you would hope
that few people could tell a difference between exact and approximated solutions as
you increase the distance d. This is the case when a > 90° but not when & < 90°. Per-
haps this is not too surprising after all since increasing d when a < 90° means moving
the scattering hemisphere closer to the source (consequently the farfield approximation
breaks down). It sure seems like that is the case because when you look at the results
from the last two angles (¢ = 120° and a = 180°) the trend looks more like what one ex-
pects. The number of test subjects being able to distinguish between the two solutions
is decreasing as the distance d is increased. It would have been desirable to perform
this experiment for a greater number of angles though. More information about the
angular dependence can be found in [1], pages 17-18.

It is also important to remember that this expanded way of modeling sound scatter-
ing - in this scale - only concerns the early part of the impulse response. If one hade
the computational capacity and time to fill the entire audience plane with receivers the
results might have looked different. However, doing that would in turn require a better
way of modeling coupling.
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5 Conclusions

Introducing hemisphere scattering into the present acoustical modeling makes a dif-
ference. To exactly quantify the differences between modeling with and without hemi-
sphere scattering is a tough task. To analyze the differences I have essentially dealt with
two kinds of impulse responses.

¢ A:The impulse response from a full detailed calculation in CATT Acoustics.

¢ B: The impulse response from a full detailed calculation in CATT Acoustics with
an impulse response corresponding to hemisphere scattering added to it.

My studies show that there is a substantial audible difference when comparing the
white noise convolution of A with the white noise convolution of B. When convolving
A and B with other anechoic recordings (such as musical instruments and speech) the
differences are not as clear but can nevertheless be pointed out through listening tests.

A very central part of this project has been coding a set of Matlab scripts solving for the
sound field scattered by hemispheres. This is a very time consuming procedure (even
for a modern computer). Therefore the so called SumBank was built. By combining
the farzone and farfield approximations the SumBank greatly reduces the computation
time.

Important to note is that what I present in this report is a first attempt to investigate
the influence of introducing hemisphere scattering. The largest set of hemispheres I did
calculations for was a set containing four clusters (80 hemispheres). Everyone knows
that there are more than eighty spectators in a large opera house such as the Gothen-
burg Opera House. Still, even with incomplete audience modeling the results from the
listening tests show that hemisphere scattering does make a difference and should not
be neglected.
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Future work would be to expand and improve the modeling. A larger number of hemi-
spheres would make the modeling more realistic and would probably also increase the
audible difference between A and B. However, a new way of modeling coupling would
then be desirable.

Another area worth improving if continuing this work is the modeling of finite impedance
for the plane on which the hemispheres are resting. The starting point for this would
be [7] and [8].
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A Matlab Scripts

A.1 Main program: ConvertCATTtoMATLAB

000: clear all, clc, close all

001:

002: % Parameters and directory paths for CATT-import etc
003:

004: commonpath = ’C:\jhw\Xjobbet\’;

005: datadir = [ commonpath ’CATT\GOP\GOP.UT\’];
006: hrtfdir = [ commonpath ’HRTFs\’];

007: anechstr = [ commonpath ’WAV\WhiteNoise .wav’];
008:

009: srcid = ’a0’;

010: recid = ’01°;

011:

012: bossidmnbr = [ 11:18 21:92 ];

013: Nboss = length(bossid nbr);

014: a.i = 2.54%3.5/100 .* ones(1,Nboss);

015:

016: % Creating a matrix where each column vector represents the plane normal
017: % acossciated with a certain boss

018: pn = [-0.0356 -0.1782 0.9834]7;

019: planenormal = repmat(pn,1,Nboss);

020:

021: % Due to nummerical rounding in CATT we need to normalize the plane normals
022: for j = 1:size(plane_normal,2)

023:

024: plane normal(:,j) = planemnormal(:,j)/sqrt( sum( planenormal(:,j)."2 ) );
025:

026: end

027:

028: Df = 0.5;
029: N = 88200;

030:

031: disp(’Read CATT-file’)

032:

033: [ c, Rbar_Ok, theta_dk, phi_dk, Ak,

034: R.i, R_ik, cos_ik, cos_ik_star, A_ik,

035: theta_i, phi-i, nxni_si, nynisi, nznisi ] = ...

036: coordinates_CATT(datadir, srcid, recid, bossid_nbr, plane_normal);
037:

038:

039: % Ger data fr kontrollutkrift av ankomsttiderna i lyssnarpositionen

040: [ SpecularArrivals.ms DiffuseArrivalsms ] = ArrivalTimes( Rbar_Ok, R_ik, R_i, c);
041:

042:
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043: disp(’Calculate sound field’)

045: k = 2xpi/c*(1:N)*Df;

047: % Creating the SumBank

048: % SumBank2 = CreateSumBank2( a_i(1)*k, 1e-6 );

049: % [ SumBank , NOI ] = CreateSumBank( a_i(1)*k, 1e-6 );

051: % Translating both spectras td seconds
052: td = 0.01;

054: FR_-hemi = H_SumBank(k, a_i, R.i, R_ik, cos_ik, cos_ik_star, A_ik,
055: nxni si, nynisi, nzni_si, plane normal, N, Df, td);

056:

057: FR_spec = H_spec_CATT(k, Rbar_Ok, Ak, N, Df, td);

058:

059: % Fraction of opening, R

060:

061: R = 0.6/(0.6 + 2%a_i(1));

062:

063: FR1 = FR_hemi(:,1:8);

064: FR2 = FR_hemi(:,9:24).*R;

065: FR3 = FR_hemi(:,25:48).%R"2;

066: FR4 = FR_hemi(:,49:80).*R"3;

067:

068: FR_hemi = [FR1 FR2 FR3 FR4];

069:

070: disp(’Plotting’)

071:

072: % Plotting of frequency response (FR) and impulse response (IR)

073: FR_spec_sum = sum(FR_spec,2) ;

074: FR_hemi_sum = sum(FR_hemi,2) ;

075:

076:

077: plotting( 2, Df, N, [ FR_spec_sum FR_hemi_sum 1,

078: strvcat( ’Specular part’, ’Scattered part’ ))

079:

080: plotting( 3, Df, N, [ FR_spec_sum FR_spec_sum+FR_hemi_sum ],

081: strvcat( ’Specular part’, ’Total field’ )

082:

083: Boss_IR_Plotting( 4, Df, N, FR_hemi, FR_spec )

084:

085:

086: disp(’Calculate BRIR’)

087:

088: [ BRIR_L_spec, BRIR_R_spec ] = brir( hrtfdir, FR_spec, phi_-dk, theta_dk, Df );
089: [ BRIR_L_hemi, BRIR_R_hemi = brir( hrtfdir, FR_hemi, phi_i, theta_i, Df );
090: [ BRIR_L_hemi_1, BRIR R hemi_1 ] = brir( hrtfdir, [FR1], phi,i(1:8), theta_i(1:8),
Df );

091: [ BRIR.L_hemi_2, BRIR.R_hemi_ 2 1 = brir( hrtfdir, [FR1 FR2], phi_i(1:24), theta i(1:24),
Df );

092: [ BRIR_L.hemi_3, BRIR_R_hemi_3 ] = brir( hrtfdir, [FR1 FR2 FR3], phi_i(1:48), theta_i(1:48),
Df );

093: [ BRIR.L_hemi 4, BRIR_R_hemi_4 ] = brir( hrtfdir, [FR1 FR2 FR3 FR4], phi_i(1:80),
theta_i(1:80), Df );

094 :
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095:
096:
097:
098:
099:
100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:

136:
137:
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BRIR_L_hemi = BRIR_L_hemi._4;

BRIR_R_hemi = BRIR_R_hemi._4;

BRIRL = BRIR_L_spec + BRIR_L_hemi;

BRIRR = BRIR R_spec + BRIR_R_hemi;

BRIR_hemi = [ BRIR_L.hemi, BRIRR_hemi ];
BRIR hemi_ 1 = [ BRIR L hemi_1, BRIR R hemi_1 ];
BRIR_hemi 2 = [ BRIR_L hemi_2, BRIR R hemi 2 ];
BRIR hemi 3 = [ BRIR_L hemi_3, BRIR R hemi 3 ];
BRIR hemi 4 = [ BRIR_L_hemi_ 4, BRIR R hemi 4 ];
BRIR = [ BRIR.L, BRIRR ];

disp(’Convolution with anechoic recording’)

% The source signal and its spectrum

[ AnechoicSignal, fs ] = wavread( anechstr );

NormalizedAnechoicSignal =

AnechoicSignal / max( abs(AnechoicSignal) );

BRR_spec = brr( BRIR_L_spec, BRIR R_spec, NormalizedAnechoicSignal );
BRR_hemi = brr( BRIR_L_hemi, BRIR_R_hemi, NormalizedAnechoicSignal );
BRR_hemi_1 = brr( BRIR_L_hemi_1, BRIR R hemi_1, NormalizedAnechoicSignal ) ;
BRR_hemi_ 2 = brr( BRIR_L_hemi_2, BRIR R _hemi_2, NormalizedAnechoicSignal );
BRR_hemi_ 3 = brr( BRIR_L_hemi_3, BRIR R hemi_3, NormalizedAnechoicSignal );
BRR_hemi 4 = brr( BRIR_L_hemi 4, BRIR_R_hemi 4, NormalizedAnechoicSignal );
BRR = brr( BRIR.L, BRIRR, NormalizedAnechoicSignal );

% Auralization

disp(’Auralization’)

disp(’Only Specular Reflections’)
wavplay ( BRR_spec/max (max(abs(BRR_spec))), fs, ’sync’ )

disp(’Specular and Hemisphere Reflections’)
wavplay ( BRR/max(max(abs(BRR))), fs, ’sync’ )

disp(’0Only Hemisphere Reflections’)
wavplay( BRR_hemi/max(max(abs(BRR.-hemi))), fs, ’sync’ )
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A.2 Important function: H_SumBank

00: function H_sc_SumBank = H_SumBank(k, a_i, R.si, R.ni_si, cos_ni_si, cosni_si_star, Ani_si, N, df,td)
01:

02: load SumBank GRANDE.mat

03:

04: f = (1:N)*df;

05: sf = 680;

06:

07: Nboss = length(a_i);

08: H_sc_SumBank = zeros( length(k),Nboss );
09:

10: k =k’;

11: boss = 0;

12:

13: % Loop for bosses

14: for ii = 1:Nboss

15:

16: boss = boss + 1

17: NOR = length(Rni_siii);

18:

19: BossSpectra = zeros( length(k),1 );
20:

21: kr = k*¥R_si(ii);

22:

23: % Loop for reflections associated with boss ii

24: for nn = 1:NOR

25:

26: alpha = 180/pi*acos(cosmni_siii(nn));
27: alpha_star = 180/pi*acos(cosni_si_starii(nn));
28:

29: kr 0 = k*Rni_siii(an);

30: A = Ani_siii(an,:);

31:

32: kol = floor(alpha/5) + 1;

33: kol_star = floor(alpha_star/5) + 1;
34:

35: p-sc = SumBank(:,kol) + SumBank(:,kol_star);
36:

37: BossSpectra = BossSpectra + ...

38: i.*k .* Interpolate(A, N, df)’ .* exp(i.*kr_0)./kr O .*exp(i.*kr)./kr .*p_sc;
39:

40: end

41:

42: H_sc_SumBank(:,ii) = BossSpectra.*exp(i*2*pi*f’*td)/sf;
43:

44: end
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A.3 Important function: Interpolate

00:
01:
02:
03:
04:
05:
06:
07:
08:
09:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:

41

function yy = Interpolate( YY, N, df )
fs = Nxdf;

% xx - the frequency vector or if one wants points of evaluation
f = (1:N)*df;

% XX - discrete X values of the intrepolant
XX = [ 125 250 500 1000 2000 4000 1;

% YY - discrete Y values of the intrepolant
YY = YY."2;
for i=1:length(XX)
nofc(i) = length( find( £>=XX(i)/sqrt(2) & £<=XX(i)*sqrt(2) ) );
end
Y¥pfc = YY./nofc;
fc = find(f == £s/2);
yy2 = spline( [0 XX fs/2 f(fc+l:end)], [Y¥Ypfc(l) YYpfc O zeros(size(f(fc+l:end)))], £);

yy = sqrt(yy2);
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