1 CHALMERS |

UNIVERSITY OF TECHNOLOGY

) UNIVERSITY OF GOTHENBURG

Real Time 5G Simulator

Master’s thesis in Computer science and engineering

ADI HRUSTIC

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2022

MASTER’S THESIS 2022

Real Time 5G Simulator

ADI HRUSTIC

UNIVERSITY OF
GOTHENBURG

CHALMERS

UNIVERSITY OF TECHNOLOGY

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2022

Real Time 5G Simulator

ADI HRUSTIC

© ADI HRUSTIC, 2022.

Advisor: Olof Diisterdieck, Ericsson

Advisor: Giovanni Viola, Ericsson

Examiner: Marina Papatriantafilou, Networks and Systems
Supervisor: Romaric Duvignau, Networks and Systems

Master’s Thesis 2022

Department of Computer Science and Engineering
SE-412 96 Gothenburg

Telephone +46 31 772 1000

Typeset in BTEX
Gothenburg, Sweden 2022

v

Real Time 5G Simulator

Adi Hrustic
Department of Computer Science and Engineering
Chalmers University of Technology

Abstract

As we shift towards the introduction of 5G in the world, it is indisputable that tools
for continuously testing such an environment are needed in order to ensure its suc-
cess. Ericsson wants to become one of the leaders of 5G solutions with their Evolved
Packet Gateway (EPG), which acts as a gateway between a radio network and the
Internet. A core component of the EPG is the User Plane (UP), who is responsible
for inspecting and transferring payload data of network packets, one of the process-
heaviest parts of the entire communication. To test the efficacy of the UP, Ericsson
has several simulators at their disposal depending on the intended goal. FEricload is
one such simulator that can send bidirectional data to the UP as a means to load test
it. Currently, Ericload is able to generate model-based traffic, i.e., traffic calculated
using mathematical models. While this approach is sensible, it does not entirely
reflect the common properties found in real world traffic, such as self-similarity and
long-range dependency. Trace-based modelling is a second approach of traffic gen-
eration, whose goal is to introduce the real world traffic properties into a simulation
by replaying already captured network traces back to networks. The purpose of this
thesis is to extend Ericload and implement scalable trace-based traffic modelling and
load testing, as well analyze how this adage compares to model-based load testing.
The analysis was done using metrics such as packet and data throughput, latency,
as well as several verification approaches to ensure a correct trace-based simulation.
The results conclude that the implementation of a basic trace-based traffic modelling
was successful, and performs load tests well exclusively by itself or together with
model-based traffic, without causing any severe performance issues. The results also
shows, theoretically, how scaling captured traces affects its self-similar properties,
and how to take these effects into consideration when making any further future
improvements.

Keywords: packet capture, pcap, bg, simulator, replay, trace-based, load testing.

Acknowledgements

Thanks to Olof and Giovanni at Ericsson, Romaric and Marina at Chalmers, for
their time and contribution to this thesis. Special thanks to my Mother and Father
for granting me my life without my permission.

Adi Hrustic, Gothenburg, July 2022

vii

Contents

List of Figures
List of Tables

1 Introduction

1.1 Introduction
1.2 Backgroundo
1.3 Aim . ..

1.3.1 Research Questions

1.3.2 Goals.
1.4 Related Work
1.5 Limitations
1.6 Outline.

2 Background

2.1 Definitions
2.1.1 Packet Capture
2.1.2 Cloud Native
2.1.3 Configuration File

2.2 Traffic Modeling
2.2.1 Analytic Model-Based Traffic Generation
2.2.2 Trace-Based Traffic Replaying

2.3 4G and 5G architecture L
2.3.1 4G architecture
2.3.2 5G architecture L

2.4 Ericload
241 Setup
2.4.2 Execution

3 Implementation

3.1 Time-lapse overview
3.2 Designing groups and processing pcap files L.
3.3 Referencetable
3.4 Creating and sending packets
3.5 Receiving packets and finishing execution

4 FEvaluation

xi

xiii

17
17
18
19
20
22

23

ix

Contents

4.1 Metrics Lo
4.1.1 Total amount of packets and data
4.1.2 Latency
4.1.3 Throughput

4.2 Replay verification o
4.2.1 Correct packet creation
4.2.2 Traffic repetition L.
4.2.3 Scaling
4.2.4 pcap traces used for verification

4.3 Performance
4.3.1 Maximum rate using model-based traffic
4.3.2 pcap traces used for performance evaluation

4.4 Inter-arrival times and long-range dependency

Results

5.1 Replay verification 0 Lo
5.1.1 UDP trace
51.2 TCPtrace

5.2 Performance
5.2.1 UP performance
5.2.2 Replay performance
5.2.3 Trace-based and model-based performance

5.3 Inter-arrival times and long-range dependency

Discussion

6.1 Replaying traffic. o o
6.2 Performance Lo
6.3 Inter-arrival times and long-range dependency

7 Conclusion
Bibliography

A Appendix 1

31
31
31
32
34
35
36
39
42

45
45
46
49

51

53

2.1

2.2
2.3

24
2.5
2.6
2.7

4.1

4.2

4.3

5.1

0.2

5.3

5.4

2.5

2.6

List of Figures

The anatomy of a TCP packet. The width of this packet is 32 bits.

Every field except for the Data field is part of its header.
Difference between containers and virtual machines.
Example of a traffic volume control strategy for interactive replay

tools [3].
Basic EPC architecture for LTE [19].
Reconstruction of EPG into CUPS architecture [9].
Hlustration of a simulated 5G network [9].
Process flow of Ericload from start to end of execution.

Wireshark output showing a small UDP trace. Filtered for relevant
packets. Timestamps are shown as time passed between each dis-
played packet.
Wireshark output showing a small TCP trace. Filtered for relevant
packets. Timestamps are shown as time passed between each dis-
played packet.
Packet size distribution shown of the two pcap traces used to evaluate
Ericload and UP performance.

Wireshark output showing packets created by Ericload the moment
before being sent to the UP. Filtered for relevant UDP and PFCP
packets. Timestamps are shown as time passed between each dis-
played packet.
Wireshark output showing captured UP traffic by Ericload. Filtered
for relevant UDP and PFCP packets. Timestamps are shown as time
passed between each displayed packet.
Wireshark output showing packets created by Ericload the moment
before being sent to the UP. Filtered for relevant TCP and PFCP
packets. Timestamps are shown as time passed between each dis-
played packet.
Wireshark output showing captured UP traffic by Ericload. Filtered
for relevant TCP and PFCP packets. Timestamps are shown as time
passed between each displayed packet.
Measurements from replaying 60mbTCP.pcap where the trace is re-
peated 28 times.
Measurements from replaying youtubeLarge.pcap where the trace is
repeated twice.

el

List of Figures

5.7 Histogram of inter-arrival times and LRD calculation of 60mbTCP.pcap
with the combinations: no repetitions or scaling, scaled 100 times, re-

peated 100 times, and repeated and scaled 100 times each. 43
6.1 Measurements from replaying youtubeLarge.pcap where the latency

rises during the matching high output peaks from Figure 5.6 A7
6.2 Measurements from replaying 60mbTCP.pcap at a scale factor of two,

with unusual high latency numbers in the beginning. 47

6.3 Measurements from replaying a combination of 60mbTCP.pcap and
youtubeLarge.pcap, where both traces are scaled by a factor of two. 48

6.4 Measurements from replaying 60mbTCP . pcap of scale factor one, with
an added 100k uplink UDP traffic. The sampling frequency shown
here is 10 samples per second. 49

6.5 Measurements from replaying 60mbTCP . pcap of scale one and youtubeLarge . pcap
of scale three, with an added 100k uplink UDP traffic. The sampling
frequency shown here is 10 samples per second. 49

xii

3.1

4.1

5.1

0.2

2.3

5.4

9.9

2.6

List of Tables

Time-lapse description of the simulator when generating, sending and
receiving replay packets. 0oL

Hypothetical accumulation of statistical variable data over the span
of onesecond.o

Loss ratio, incoming throughput and median millisecond delay of Er-
icload sending traffic to the UP for 60 seconds at different packets per
second rates, flows and directional combinations.
Performance of the pcap files presented in Section 4.3.2. The peak
values are the highest total amount of packets measured at a 100ms
interval. Ratio represents the loss ratio, and Delay is the median
millisecond delay of the whole simulation.
Loss ratio, throughput and median millisecond delay of Ericload re-
playing traffic from pcap files, in different combinations, to the UP
for 60 seconds.
Loss ratio, throughput and median millisecond delay of Ericload re-
playing traffic from pcap files, in different combinations, to the UP
for 60 seconds. This includes an added steady rate of 25 000 packets
per second UDP traffic using 10 flows.
Loss ratio, throughput and median millisecond delay of Ericload re-
playing traffic from pcap files, in different combinations, to the UP
for 60 seconds. This includes an added steady rate of 50 000 packets
per second UDP traffic using 10 flows.
Loss ratio, throughput and median millisecond delay of Ericload re-
playing traffic from pcap files, in different combinations, to the UP
for 60 seconds. This includes an added steady rate of 100 000 packets
per second UDP traffic using 10 flows.

xiii

List of Tables

Xiv

1

Introduction

1.1 Introduction

Going through the history of the past century, our increasing dependency for telecom-
munication seems almost self-evident. Since the discovery of radio waves and their
first use in wireless communication, the advances in telecommunications technology
have progressed so fast, that we are only a few years away from stable interconnectiv-
ity of any electronic device capable of connecting to the Internet, however small and
redundant. Today, 5G technology is the standard promising such a solution. With
its increased bandwidth and speed compared to its predecessor 4G, it is expected
to be a serious competitor to existing solutions relying on wired connections.

The company Ericsson has taken upon itself to become one of the leading distributors
of these 5G solutions. One of the products in Ericsson’s portfolio is the Evolved
Packet Gateway, EPG, which acts as a gateway between the radio network and
the Internet. During the transition to 5G, the EPG will be split into a Control
Plane Function (CPF) (previously Session Management Function or SMF) and a
User Plane Function (UPF) to better meet the high requirement on scalability,
robustness, and performance. The purpose of CPF and UPF is to handle session

management and packet routing, respectively [8]. The CPF and UPF are sometimes
also referred to as Control Plane (CP) and User Plane (UP).

As with any commercial solution, significant testing needs to be done before a prod-
uct can be released to the public. Ericsson uses their own 5G cloud native simulators
to test the performance of their 5G network, one of these is named Ericload. A pre-
vious thesis has been successful in extending and using Ericload to load test the UP
at Ericsson [9]. The authors have mentioned that, while their work managed to pro-
duce simulations based on several common traffic models, the models themselves do
not accurately represent how real world data would look like. These models include
setting packet sizes to a fixed rate and size, either manually or based on Poisson
processes.

The problem with using Poisson processes is mainly that the packet arrival process
is memory-less, while real network traffic is shown to be time dependent and exhibit
long-term memory, also called long-range dependence (LRD). The traffic is also self-
similar, meaning that the behavior of the traffic is preserved irrespective of scaling
in space or time. In other words, while Poisson processes assume that traffic is
memory-less and smooth, empirical evidence shows that traffic is actually memory
dependent and comes in bursts [12, 13].

1. Introduction

1.2 Background

Figure 2.6 shows a simplified! version of the data flow when a client tries to connect
to the Internet. The flow of data can go two ways: in the uplink direction where the
client sends data to servers on the Internet, and the downlink direction where the
servers send data to the client. When a client sends data in the uplink direction,
it has to do so by first connecting to a base station nearby. The station assigns a
Tunnel Endpoint Identifier (TEID) to the data to have it tunneled to a UP, along
with an ARP request for mapping the MAC addresses to IP addresses. The UP
itself can distinguish traffic to and from users by their user sessions. Several of these
sessions can be maintained in parallel by the UP, but the tunnels themselves are
unique per each established session. The data transfer is done by using the General
Packet Radio Service Tunneling Protocol (GTP).

What makes UP effective is that it can run on virtual containers deployed on dif-
ferent platforms with the role of forwarding data packets via the Internet. One
UP consists of several worker threads mapped each to a separate CPU core that
await and process packets, and their routes, in parallel. The routing information for
the packets is received from the CP and the most efficient route is then calculated.
The UP and CP communicate with each other with the Packet Forwarding Control
Protocol (PFCP) using Sx interfaces. The downlink direction is technically very
similar. The only difference is that since the client is mobile and allowed to change
base stations depending on its movement, the destination of packets needs to be
checked regularly. This is made possible by using a Mobility Management Entity
(MME) which manages clients and their connected gateways.

At its current state, the Ericload simulator can generate traffic for the UP using
model-based load testing methods such as a basic steady-rate traffic, step-wise rate
and Poisson processes. This leaves the potential to extend the simulator even more,
by introducing traffic generation based off of reading and replaying historical data,
instead of relying on mathematical models to generate traffic.

1.3 Aim

The overall aim of this project is to answer whether it is possible to load test a 5G
simulator by replaying captured real time traffic data. The following subsections
will present what research questions are proposed, along with how the available
technology will be used to answer them.

1.3.1 Research Questions

o What are the approaches needed to implement scalable trace-based traffic
modelling and load testing?

1Simplified as in that there otherwise can exist several UP-components between the base station
and the final UP, forwarding the packets to the Internet

1. Introduction

o How does trace-based load testing compare to model-based, in terms of pro-
ducing realistic and configurable traffic?

1.3.2 Goals

The simulator at Ericsson will be improved with the aim to answer the above-
mentioned research questions. More specifically, the goals are expressed as follows:
« Captured data comes from packet capture (pcap) files. An implementation to
automate the extraction of necessary data from these files must be created.
e The simulator must be improved to be able to import captured real traffic
data, recreate the packets and inject them into another network.
o Analyze old and new performance data. Find ways to plot the output data in
a relevant way for analysis with old and new data, will be implemented. This
will most likely involve using programs providing graphical tools, in order to
help clarify the data.
e General basic code improvements of old code that could yield better overall
performance.

1.4 Related Work

Previous research on 5G simulators is relatively slim. Given that the technology is
still in its early stages, companies are not incentivized to publish work around it,
as it could hurt their position on the competitive stage. A few open source simula-
tors do exist, however. One of these is the GTEC 5G Link-Level Simulator, an open
source simulator based on MATLAB which offers highly flexible implementations based
on modules, that allows it to simulate different wireless communications standards,
including 5G [7]. The downside is that it focuses on single-link performance and
does not support multi-user or multi-transmitter (multi base stations) scenarios,
making it too narrow of a use case for this project. Another simulator is the Vi-
enna Cellular Communications Simulator (VCCS) suite that offers Link-Level (LL)
and System-Level (SL) simulation [18, 22]. The main difference between a LL- and
an SL-simulator is the former focuses on the physical layer of wireless communica-
tion allowing for the investigation of issues such as Multiple-Input Multiple-Output
(MIMO) gains or modeling of channel encoding and decoding, while the latter fo-
cuses more on network-related issues like interference, scheduling and mobility han-
dling. The SL-simulator acts, in other words, on top of the LL-simulator, using the
LL-simulators inputs. However, the SL-simulator is not build to work with existing
5G components.

The ns-3 simulator is another type of simulator that uses open source modules to
form a generic network simulator [16]. The module focuses mainly on the physical
level of wireless communication but, unlike the Vienna simulators, does not distin-
guish pure LL-simulation from SL-simulation. This creates an inevitable degree of
abstraction. The 5G K-SimNet is another network simulator that extends the ns-3
simulator to allow for layer simulation of the 5G network stack [2]. One of these
extensions are the management of UPF and SMF functionality. However, it is not

1. Introduction

constructed to work with real UPF-components. Furthermore, the simulator can
only simulation traffic in the down-link direction and not the up-link direction. So
while the ns-3 simulator has more in common with Ericload than the others men-
tioned, it too can only act as a reference.

Finally, since this project is a continuation on 5G User Plane Load Simulator [9],
many implementation solutions and measurements are inevitably inspired by the
paper. Core components of Ericload, such as setting up proper network connections
towards the EPG, remain the same and will not be changed for this project unless
deemed necessary. The main focus will be on extension and adding traffic replay
functionality to the simulators runtime phase.

1.5 Limitations

The biggest limitation of this projects comes to the traffic data used. There is
both a privacy and confidentiality issue with using and publishing real data traces
that Ericsson has captured. Instead, the traces mainly stem from our own personal
networks using our own personal devices. Expanding on this, the scope of this thesis
also limits the total amount of traces that can be used, making the thesis a proof of
concept implementation at best. Ideally, a larger amount of pcap traces would be
needed to better confirm the results. Lastly, further tests on larger UP nodes will
also be needed to better assess the results in more depth.

1.6 Outline

Chapter 2 consists of several parts. The first gives explanation to basic definitions
used throughout the paper. The second part gives a detailed introduction to traffic
modeling. The third and final part introduces the 5G architecture at Ericsson and
how it evolved from its predecessor 4G, as well as an introduction to the main
simulator used: Ericload. Chapter 3 describes the implementations done to Ericload
in order to grant it packet replay functionality. Chapter 4 discusses what results are
expected from the simulator, and Chapter 5 presents what was actually obtained.
The two final chapters, Chapter 6 and 7 analyzes and discusses the results obtained
and then presents a final conclusion to the thesis.

2

Background

This chapter consists of three parts. The first explains reoccurring definitions used
throughout this thesis. The second goes deeper into the theory of traffic modeling
and data replay. The final part describes the network architecture Ericsson uses for
its G traffic simulator Ericload, as well an introduction to the simulator itself.

2.1 Definitions

2.1.1 Packet Capture

Packet capture is the process of intercepting and logging traffic that passes over
a computer network or part of a network. The data of the network packet is a
formatted unit of data that consists of control information and user data (payload).
The control information of packets contain data for delivering the payload and are
typically found in their headers. What determines the arrangements inside the data
packet is the communication protocol used, which is simply a system of rules that
allows two or more machines over a network to reliably transfer information to each
other. Figure 2.1 shows the Transmission Control Protocol (TCP), which is one of
the main protocols used on the Internet.

Source Port Destination Port

Sequence Mumber

Acknowledgement HMumber

gf?;:t Reservad Flags Window (sliding window)
Checksum Trgent Pointer
Cptions Padding
Data

Figure 2.1: The anatomy of a TCP packet. The width of this packet is 32 bits.
Every field except for the Data field is part of its header.

The tools used for capturing packet are called packet analyzers or packet sniffers.
As data signals flow across a network, the analyzers capture each packet in the flow
and decode their raw data, showing the values mapped to different fields. pcap [23]
is an API written in C for capturing network traffic, that also allows the reading or

2. Background

writing of data from or into .pcap files. The simulator used in this thesis, which
runs on a Linux system, implements packet capture from the standard Linux library
libpcap. This library contains an extensive collection of functions that can be used.
However, this thesis uses only a handful of them, deemed necessary for improving
the simulator. A full listing of relevant functions can be found in both Listing 4
and 5.

Most of the data in the packets is preserved during replay, since the intention is to
essentially have a complete mirror of the original traffic. However, the IP addresses
inevitably need to be changed in order to send the packets on another network.
Further, the content of the packet payloads is not of importance for this thesis. It’s
critical that the size of the payloads remain the same for performance measurements,
but its content might as well be random data or a corrupted version of the original.
This last point is taken advantage of for latency calculations and is further explained
in Chapter 3.

2.1.2 Cloud Native

The simulator used for this project is cloud native based. Cloud native refers to
the property of being able to run (or virtualize) any application on a machine,
regardless of the operating system (OS) and/or system architecture it uses. This is
in one case made possible by providing an encapsulating platform called containers
for the applications. Containers include all the code, libraries, and dependencies
of the application. Similarly, using Virtual Machines (VMs) is another approach
of achieving cloud based properties. VM’s rely on a piece of software called a
hypervisor, which is a small layer enabling multiple OS’s to run alongside each other,
sharing the same physical resources. VM’s can therefore been seen as emulation of
physical computers. In comparison, (see Figure 2.2), containers do not rely on a
hypervisor and are therefore considered to be more light-weight, since the bottom-
up approach of virtualizing underlying hardware and an OS is a more complex
and resource intense strategy. The encapsulation of applications into one or more
containers is also sometimes referred to as a microservice.

Virtual Machine | [Virtual Machine Virtual Machine
Containerized Applications
.

App A App B

App A
App B
App C

Figure 2.2: Difference between containers and virtual machines.

2. Background

Ericload achieves a containerized architecture by using Docker [6, 9]. Docker creates
containers at runtime by using so-called Docker images, which are executable pack-
ages of software including all necessary building blocks to run an application: code,
runtime, system tools, system libraries and settings. The instructions for building a
Docker image comes from a Dockerfile, which is essentially a text file that contains
all the commands a user could call on the command line to assemble an image
These commands can be anything from port configuration to directory permission
settings.

2.1.3 Configuration File

YAML [25] is used for setting up configuration files, with its main advantage being
ease of use and readability compared to similar languages. A YAML configuration
file is processed by the simulator during run time. The simulator sets up load
parameters and the network environment by communicating with the connected
network [9]. Parsing the YAML file into the C language of the simulator, involves
simple mapping of key/value pairs using an appropriate data structure. In the usual
case for C, the composite data type declaration struct is used. Listing 1 and 2 shows
how such a translation could look like.

session_group:
name: base
start_ue_address: 22.64.0.1
nr_sessions: 2
start_teid: 839248
predefined_type: simplest
core_network_instance: sgil
node_id_fqdn: pgwc.com

Listing 1: Excerpt from the Ericload YAML-configuration file.

typedef struct session_group {
charx* name;
uint8_t start_ue_address;
uint32_t nr_sessions;
uint32_t start_teid;
charx predefined_type;
charx* core_network instance;
charx* node_id_fqdn;
} session_group_t;

Listing 2: Data structure translation to C from the YAML-configuration file in
Listing 1.

2. Background

2.2 Traffic Modeling

There are usually two different approaches of generating test traffic: so called the
analytic model-based traffic generation and trace-based traffic replaying [11]. This
section explains the differences between both, their pros and cons, and why the
latter approach is used for this thesis.

2.2.1 Analytic Model-Based Traffic Generation

The analytic model-based approach uses mathematical models for different traffic
characteristics and generates the traffic to adhere to the models [11]. This can
be tricky since the characteristics must be empirically measured beforehand while
knowing what specific characteristics are considered important. Thus, while more
simple models such as steady rate increases might be a reasonable tool for load test-
ing systems, they do not necessarily mimic the behavior of actual traffic data [9].
For a very long time, the use of Poisson processes were a common approach to traffic
modelling [12, 13].

Poisson processes are processes where discrete events at irregular times are observed
over a continuous time interval. Packet arrival times are a plausible representation
for this in network traffic [17]. A characteristic of Poisson processes are that the
events are statistically independent, meaning that past and future events are not
dependent on each other. Hence, as Poisson process is described as memoryless.
Another property is that the more traffic sources are introduced and aggregated,
the more smooth the traffic becomes. However, in 1993, Leland and colleagues dis-
covered that this was not at all the case for LAN traffic [13]. What they found
was that the traffic was rather self-similar, characterized by bursts, and long-range
dependent (LRD) instead of memoryless. Later, the failure of Poisson modeling in
wide-area traffic would also be discovered, calling for the abandonment of Poisson-
based modeling altogether in traffic modeling [21].

Self-Similarity and Long-Range Dependence

In short: self-similarity describes the phenomenon where process behavior is pre-
served irrespective of scaling in space and time [13]. LRD means that the behavior
of a time-dependent process shows statistically significant correlations across large
time scales [12]. What was found was that traffic would come in so-called fractal-like
bursts. At every timescale, ranging from milliseconds up to hours, this property was
still evident. Also, aggregating traffic streams would only intensify this self-similar
characteristic instead of smoothing it.

To describe these two properties in the context of time-series analysis, consider the
stochastic process X (t). Sometimes X can represent discrete time series {X,;},t =
0,1,..., N, through either periodic sampling or by averaging its value across a series
of fixed intervals. In the case of network traffic X describes the volume of pack-
ets observed in a link every time interval t. It is also possible to characterize the

8

2. Background

dependence between the process’s values at different times by evaluating the pro-
cess’s auto-correlation function (ACF), which is p(k). The ACF measures similarity
between X; and a shifted version X :

E[(Xy — p)(Xpsr — p)] (2.1)

o2

p(k) =

where p and o are the mean and standard deviation. If we have that:

ki 1p(k)] = o0 (2.2)

then we say that the stationary process X is long-range dependent. For self-
similarity, we say that the stochastic process X distributed over time is self-similar
if:

X(at) = a"X(t),a >0 (2.3)

a is a scaling factor and H is the Hurst exponent. Should the Hurst exponent be in
the interval 0.5 < H < 1, we say that the process exhibits long range dependency [13,
20]. To estimate the Hurst exponent, we can use two different type of models:
time domain operators and the frequency or wavelet domain operator [12]. Both
investigate the power law behavior of specific statistical properties in a time series.
They are, however, very complex to calculate, resulting in the Hurst exponent not
being able to be definitively calculated, only estimated. Moreover, these models
produce conflicting results, with it also not being clear which produces the most
accurate estimations [12].

2.2.2 Trace-Based Traffic Replaying

Instead of using models to generate traffic as similar to real network traffic as pos-
sible, one can use tools [23] to capture live network traffic on a packet-level basis,
and replay it back to a test network in order to investigate performance. This is
what is referred to as trace-based traffic replaying [11]. Intuitively, using captured
traffic should result in a higher result accuracy when investigating performance. The
reasoning behind this is that since we do not have to first empirically study data
network traffic, then use mathematical tools to generate traffic similar to it, we do
not have to care about the quality of the replayed data. It is, after all, real data
that has been sent over a network.

However, because this data is produced from state machines, keeping track of the
state of TCP connections is of utmost importance in order to obtain usable re-
sults [11]. Results obtained from data not captured in a stateful manner will not be
a good representation unless the congestion situation of both networks are exactly
the same [3]. Therefore, so-called direct replay tools [1, 10, 24] whose aim is to
simply inject captured IP packets into a test network, are not a good approach to
performance investigation. Since they do not take the semantics of the networks into
account, they give rise to problems such as ghost packets, which severely worsen the

2. Background

testing results [3, 11].

To avoid the issues from the unidirectional strategy of the direct replay tools, another
form of replay tools take the approach combining model- and trace-based methods
into what is called interactive replay [3, 11, 15]. By instead using bidirectional
traffic transformation techniques, i.e., partitioning input traffic into an internal and
external part according to their direction, they are able to map captured traffic
into target network conditions. For instance, before sending a packet, the system
first extracts state information (sequence number, acknowledgement number, data
length, etc.) from its header. Then it compares the information to the current state
of its TCP connection in order to determine whether the packet is allowed to be sent.
Should it fail, the packet will be buffered. Once passed, the state of its connection
is updated. This traffic volume control strategy allows for recreating congestion
scenarios that would likely happen in a real network [3]. Figure 2.3 illustrates an
example of this scenario.

" —~" Filtered Acknowledged
&
(\“\Dc

Teee ved.

e
0(\\\6“0
A) .
Input Packets ——<state-checking passes—| Playout Unacknowledged m R
87,
“l‘e,c 4]
timeout

7

[
c){ﬂ:fc?f;‘,l-f?
Coren >
————— Cconnection state updarc
Figure 2.3: Example of a traffic volume control strategy for interactive replay
tools [3].

One should keep in mind that although many of these tools may include the stateful
properties needed to correctly emulate traffic low on a node-to-node network, the
number of actual nodes on a scaled-down simulated network is much less than an ac-
tual live wireless network. Not taking multi-node interactions into account properly
might therefore also negatively affect the final testing results [15].

2.3 4G and 5G architecture

This project uses a simulator intended for 5G traffic. 5G itself is a successor to 4G,
with more advanced hardware and different architectural design. Therefore, in order
to understand 5@G, it makes sense to first underlying concept of 4G technology. This
section explains, on a basic and relevant level for this thesis, how 4G and 5G work.

2.3.1 4G architecture

Many concepts regarding 4G architecture in this section are directly taken from the
book EPC and 4G packet networks: driving the mobile broadband revolution [19)].
As seen in Figure 2.4, the basic architecture of a 4G network is divided mainly into
three parts:

10

2. Background

s MME HSS
C L TE o1 External
(D ~ networks
L siume | = o . B 17
eNodeB Serv GW_—>>>" _ PDN GW :
S1-U

Figure 2.4: Basic EPC architecture for LTE [19].

« LTE Network - A network consisting of a User Equipment (UE) and at least
one base station, also called an Evolved Node B (eNodeB).

« Evolved Packet Core (EPC) - Several network components used mainly
to forward traffic back and forth between the UE and its destination, usually
a server on the Internet.

« External IP networks - devices connected to the Internet.

When a user wants to establish a wireless connection, it first connects to the closest
base station available, the eNodeB. The base station then forwards the user traffic
to the EPC, which itself consists of four parts:

« Mobility Management Entity (MME) - Handles LTE-related control
plane signaling, that is traffic from UE to eNodeB. It is also responsible for
mobility and security functions, as well as session management.

« Serving Gateway (SGW) - As the names suggests, it serves the data to
different components depending on the direction of the traffic. If the traffic
is down-link, the data will be forwarded to the UE. For up-link, the data is
forwarded to the PGW.

« Packet Gateway (PGW) - Establishes mainly a connection with the SGW
and the external IP network. It also includes functionality such as IP address
allocation, packet filtering and maintaining statistical data for charging and
accounting.

« Home Subscriber Server (HSS) - Used mainly for subscriber information
such as billing plans. This component is ignored throughout this thesis as it
is not deemed relevant.

For all the components to communicate with each other, several interfaces are used:

e S1-MME - Connects the UE with the MME. It should be noted that this
interface is used mainly for signaling events and not payload data. That is,
the messages sent are used to establish as coordinated connection between
different components of the EPC.

e S1-U - Where SI-MME is used to coordinate communication between com-
ponents, the S1-U interface is used to send actual payload data in either the
up- or down-link direction between the UE and the SGW. The General Packet

11

2. Background

Radio Service Tunneling Protocol (GTP) is used to transfer the payload data
between the LTE and EPC network.

e S11 - Connects the MME and SGW. Handles important functions such as
creating, deleting and modifying sessions toward the external IP network.

« S5/S8 - Connects the SGW and PGW. S5 transfers payload data, whereas
S8 transfers signaling events. Both are based on GTP, which ensure connec-
tivity should a user move through space and connect to different base stations
(roam).

e SGi - Connects the PGW with the external IP network. From the network’s
point of view, the PGW is seen as a normal IP router.

e S6a - Connects the MME with the HSS to handle subscription related infor-
mation.

2.3.2 5G architecture

As mentioned, with 5G being the successor to 4G, it will have more advanced hard-
ware and different architectural design. This section goes into further detail explain-
ing the differences between both architectures.

Shown in Figure 2.3.1, the core functionality in an 4G architecture is located in the
EPC. The two main gateways, SGW and PGW, are sometimes clumped together into
what is called an Evolved Packet Gateway (EPG). Further, these two gateways are
also split into two components: a User Plane (UP) component and a Control Plane
(CP) component. The UP is responsible for inspecting and transferring payload
data, while the CP handles signaling events. They both use the above-mentioned
interfaces (S5/S8) for their corresponding goals. This splitting into UP and CP
components of the EPG, is an essential part of the future 5G architecture and is
referred to as Control- and User Plane Separation (CUPS) [9, 14].

EPG EPG EPG

[SGW-U | SGW-C] [PGW-U & SGW-U] [User Plane (UP)]
Ss/S8-U| S5/58-C| D SXa/Sxp :11 D Sx/Sx,

[PGW-U | PGW-C] [PGW-C&SGW-C] [Control Plane (CP)]

Figure 2.5: Reconstruction of EPG into CUPS architecture [9].

Figure 2.5 how the separation of the EPG for an 5G architecture will look like. As
mentioned, the core idea is to separate the user- and control plane into different
components. The main advantage is that it allows the CP and UP to scale indepen-
dent of each other without affecting existing functionality [9]. Further, it reduces
expenditure and energy consumption of base stations, as well as providing more
simplified network management with the help of software [14].

Two new interfaces are introduced for the communication between components in
the CUPS architecture: Sx, and Sx;,. Sx, is used for the SGW, while Sxj, is used

12

2. Background

for the PGW. Both follow the Packet Forwarding Control Plane (PFCP) protocol,
whose purpose is to deliver UDP signaling events between the UP and CP [4].

LTE EPC PDN
User Equipment GPG \ —_—
- =2
Control PI
D [on (rgp) ane]
fl Sxa/Sxp| PFCP e %
((())) s = User plane
O) N 7R
() (). () i
Base station Servers
) A //

Figure 2.6: Illustration of a simulated 5G network [9].

Figure 2.6 illustrates a possible 5G network that utilized the new CUPS architec-
ture. While very similar to a 4G network in its structure, there are a few notable
differences. To start with, when the UE connects to a base station, the station
assigns a Tunnel Endpoint Identifier (TEID) to the UE’s data before connecting to
the UP. An ARP request is then sent to the UP in order to map a MAC address
to the IP addresses of the transport layer. Connected to the UP, the data is then
transferred using GTP, which in turn is forwarded to servers on the Internet, so
called PDNs. It should be noted that it is possible for the data to travel through
several UP components before arriving at its intended destination.

The UP component is run on virtual machines and containers deployed on several
platforms. A single component in turn has several worker threads, each mapped to
a separate CPU core on the UP, allowing for parallel processing of data traffic. The
CP in turn sends routing information to these parallel processes using PFCP. The
down-link version of this flow works similarly. However, since the UE might have
changed position due to roaming, MME is utilized as seen in the 4G architecture.

2.4 Ericload

Ericload is the name given at Ericsson to one of their simulators, and is in its essence
a tool used for load testing the UP by sending and receiving network packets to and
from it. A load is defined as different approaches of generating and using numerous
packets, while a load test is thus simply monitoring and analyzing the performance of
a system (UP in our case) under these different loads. In 5G User Plane Load Sim-
ulator, three different load tests of generating model-based traffic were introduced
and analyzed: steady-rate, step-wise, and Poisson process [9]. Poisson processes are
the most complicated of these and are described in section 2.2.1. The other two are a

13

2. Background

variation of generating and sending a fixed amount of packets during a certain time
span, as well as being able to incrementally increase this maximum amount during
different time intervals. All three of these load tests fall into the same category:
simulated packets from a fixed distribution, and many current design decisions of
Ericload have therefore been formed around this. In this thesis, we explore the feasi-
bility and scalability of trace-based simulation. To compare the two approaches, we
use as baseline the simplest and most efficient simulated packet approach, namely
the steady-rate one. Further, in the above-mentioned thesis, the goal was primarily
to perform detailed load tests and calculate the efficacy of the UP. Traffic modelling
was of secondary thought. In this thesis, we instead focus on the latter. Hence,
testing for scalability by only scaling the number of PDNs was deemed sufficient,
since the final number of flows end up being the same as when scaling the number
of users too. Refer to 5G User Plane Load Simulator for comparing scaling in the
number of PDNs and scaling in the number of sources, i.e., number of flows versus
number of users [9)].

2.4.1 Setup

Ericload sets up its own working environment by processing, and applying, param-
eter values found in the configuration file (see Listing 1). Other than technical
specification such as routing info and endpoint addresses, one specifies several pa-
rameters like number of groups, the amount of user clients per groups and flows (a
network connection where up- and downlink traffic is possible) per user in a group.
With this information, Ericload calculates the number of UEs and PDNs with IP
connectivity needed to perform the simulation. Packets to and from these units are
always encapsulated inside GTP, which allows us to choose IP addresses arbitrarily.
Further, each flow is associated with a load type, where users in the same group are
assumed to have the same load type. Details about the load types are also defined
inside the configuration file, with the primary ones being how many packets to send
in both directions and the time interval of the load type. With this, Ericload cal-
culates the total amount of packets to generate and send during its entire run time.
Further, Ericload uses data from the same configuration file to establish the overall
simulation-ready network. Here, DPDK is used in order to bypass the kernel and
ultimately boost the performance of the simulation [5]. ARP requests are used to
establish a connection with the devices connected to the UP, and a PFCP session
is established with the UP. This session allows Ericload to set up user sessions with
the UEs and PDNs. Tunnel Endpoint Identifiers (TEID) are also used here by the
UP to differentiate between the devices and know how to correctly route the traffic.
Finally, Ericload uses a set value in the configuration file as the total number of
seconds a simulation should be run for, before Ericload exits its entire process.

2.4.2 Execution

Ericload is run inside a docker container, where work is divided into two primary
threads. Both threads are used for processing incoming packets and log output data,
while only one is responsible for creating and sending packets. During run time, a

14

2. Background

local timer that represents the total time passed since the start of the simulation is
continuously updated. This timer is available for both threads. For instance, the
thread responsible for creating and sending packets refers to this timer value when
deciding whether it is allowed to perform any action at its current point in time.
Packet sending is done in bursts of 32 packets. If the simulator cannot send packets
quick enough, it stores away the leftover packets and resends them in the future
in order to maintain the set flow rate. Packet creation depending on direction is
more or less the same, with the caveat being that uplink packets need to specifically
be encapsulated inside a GTP message with the correct TEID since they are going
through a GTP tunnel. Otherwise, correct source and destination addresses are set
to the corresponding local UE and PDN addresses. The payload of all the packets is
completely arbitrary but is set to a fixed size and appended with a timestamp which
is later used to calculate the delay of the packet. The receiving process is similar
in that it also is done in 32 packet bursts, although these are successively repeated
until all packets are received. Around every five seconds, Ericload prints statics to
the output terminal used, as well as writes statistics to a CSV file on disk which
include information about traffic quantity, rate and latency. The sampling amount
used for the CSV is set in the configuration file mention above and is defined as
samples per second. The simulator continues running until the cut-off time from
the configuration file is reached. Omnce this happens, it stops the simulation and
performs a clean exit.

Using Ericload with the model-based load types described has shown that the
strength of the UP is to handle large number of flows simultaneously, rather than
giving higher rates to fewer flows [9].

Time expired ?
Setup network Start main > Send halt > Shutting
environment loop packets down
A i
Receive halt
packets
Setup load
parameters
4 d hal
5 secon alt
logging trigger? >
Parse
- Print and
fig fil
contlg fite log statistics halt

Figure 2.7: Process flow of Ericload from start to end of execution.

15

2. Background

16

3

Implementation

All code extensions and improvements introduced to Ericload are added in a mod-
ular way as to not interfere with the existing code. Many core solutions like setting
up proper connections to the UP using PFCP, or processing incoming packets from
the UP, have not been changed and remain compatible with the new code. The
main addition is how traffic is generated. As mentioned briefly in section 2.4, many
design choices in the current code were made with model-based traffic generation in
mind. Thus, current packet generation functionality cannot be reused in order to
create trace-based traffic and many new solutions are introduced around this.

This chapter discusses the implementation of this traffic replay functionality. It
starts by introducing a time-lapse of the steps from reading a pcap file, to having
the reconstructed packets of the file received backed from the UP. It then explains
in detail what happens during these steps and argues for the choices made.

3.1 Time-lapse overview

Replaying traffic in Ericload is essentially divided into two phases. The first phase
prepares a buffer array of packets from a pcap file for the simulator to use, and
a reference table with IP addresses. This is shown as the first step in Table 3.1.
The contents of this array are never modified and stored in memory. We do this in
order to skip reading from disk every time we want to generate packets from the
pcap file, which would otherwise slow down the simulation. In the second phase
the simulator is actually running its main loop where it generates, sends and re-
ceives packets based off of local timestamps. It iterates through the stored array
and compares the packet timestamps with its local ones. If a packet is allowed to
be sent over the network, it copies this packet to another local packet array, where
it simultaneously changes the packet’s content using the mentioned reference table.
It then sends all packets found in its local array to the UP. In the next and final
step, it checks for incoming packets from the UP. These should be the ones sent in
step two, which have traveled across the network back to the simulator to process.
Statistical calculations are done for every packet received.

The simulator then goes back to the second step and repeats this process until a
specified cut-off time is reached, shutting down the simulator. All these steps are
explained in more detail in the upcoming subsections. Note that the initial setup
and shutdown phases of the simulator are omitted in this time-lapse, since nothing

17

3. Implementation

new has been added implementation wise.

Step

Functionality used

Output

1. Reading and
processing a pcap file.

Functions from libpcap
library used to
temporary load the pcap
file into memory and
process its contents

Hash map M containing
the mappings from
packet addresses to local
simulator addresses.
Packet buffer array P
filled with identical
copies of the original
packets. Both are stored
in memory.

2. Sending packets.

[terating through the
packets from the array P
and deciding whether to
send them out on the
network by comparing
their timestamp with the
current timestamp of the
simulator.

Partial, or full array O of
packets ready to be sent
over the network. Every
added packet is copied
from P to O. The
content of the packets in
O are changed based on
the mappings in M. The
current timestamp is
also injected into their
payloads.

3. Receiving packets.

Inspecting all incoming
packets and extracting
the timestamps found in
their payloads. These
timestamps are used for
statistical calculations.

CSV file containing
statistical raw data
about the traffic such as
total packet quantity,
total data quantity and
latency.

Table 3.1: Time-lapse description of the simulator when generating, sending and
receiving replay packets.

3.2 Designing groups and processing pcap files

Unlike the model-based approach of traffic generation, trace-based methods have
the advantage of already knowing the final representation of the traffic sought to
mimic. Models set small initial parameters that in future run time can bloom into
complex traffic patterns. Traffic captures, on the other hand, rely on as much past
historical details of traffic as possible. Both methods approach to the time domain
can almost be seen as each other’s inverse, and thus greatly affects the design ap-
proach of creating packets for a simulator.

As mentioned in section 2.4, Ericload generates packets based on initial parameters

for the traffic type of a particular flow group. For instance, when using step-wise
traffic flow, one can set up- and downlink rates, number of users in a group, along

18

3. Implementation

with a time interval ¢. The simulator uses this time interval to, at any time ¢,,
calculate how many packets need to be generated in either direction and to whom.
Then later, at starting time, Ericload calculates the necessary amount of UEs and
PDNs needed, as well as their network properties like local addresses to complete
the whole simulation.

There are some issues with this approach from the perspective of replayed traffic.
First, setting initial traffic rates does not make sense since all the rates can be ex-
tracted from the trace itself. Further, these rates can vary greatly depending on
what point in time of the trace we are currently looking at, and are also impos-
sible to predict beforehand given that there are unlimited ways for network flows
to exist. Next there is the issue of randomly picking a packet p, from a time ¢,
and determining attributes like which direction (up- or downlink) it is supposed to
be sent, in order to maintain traffic states. A reference table is required here with
network addresses where one can map the source and destination addresses of the
packet p, with the local UE and PDN addresses of the current flow group. Lastly,
constructing packets is very costly if accessing the pcap file from disk is done every
time. Accessing physical disks during simulation should therefore happen scarcely.

To solve these issues, the simulator makes use of the functions from Listing 5 to
create a buffer array consisting of identical packet copies found in the original pcap
file. This array becomes a one-to-one representation of the original pcap file. It is
then saved to memory, which circumvents the need of rereading the pcap file from
disk in the future. To correctly construct this array, a hash map is constructed as a
reference table between the local addresses used by the simulator and the addresses
found in the pcap file. Each address found is treated as a unique key in the hash
map, and it points to a value containing its local simulator address.

3.3 Reference table

Let us use the pcap file from Figure 4.1 as an example to show how the reference
table for the simulator addresses is created. When picking the first packet pg, the
initial hash map is empty. Since the source address sy of the packet does not exist
as a key in the hash map yet, we treat it as a user trying to establish a connection
with a server and thus as a packet in the uplink direction. It should be noted that
this approach does not necessarily result in the correct directional mapping every
time, and may in fact cause the reverse translation to happen. The reason for this
is that if py for example is captured in the middle of a UDP traffic exchange, simply
inspecting the packet does not help conclude which address initiated the connection.
However, this is merely an esthetical issue. The simulator itself does not care, nor
gets affected by the directional setup. A key/value pair is inserted into the hash
map, with sg as the key pointing to a value UFE, containing the fixed local UE
address given by the config file. Next we do the same procedure but use the address
dy as a key. This time, the value placeholder which the key dy points to the start
address of flow group’s local PDN address. This is calculated using the following

19

3. Implementation

equation:

P.D]\/vZ = PDNstart + PDNtotal
PDNtotal = PDNtotal +1

Where PD Ny, is the starting PDN address of the flow group found in the config
file, and PD Nyyq; is the total number of PDN addresses used, where the value gets
incremented by one each time a new address is added. We have now a reference table
containing an entry point for the first packet in our capture file. Next, we inspect
the second packet from the capture file, which shows how addresses are extended.
This packet contains a new flow with a unique, unknown, source address s; but an
already seen destination address d; pointing to UEj in our hash map. Therefore,
we treat this flow as the PDN sending a packet to the UE and therefore map the
source address s; with a new PDN address PDN;. In the third packet both the
source and destination have known mappings to U Ey and PD N, and the hash map
will thus not be updated with any new values. We continue these operations until
all the packets from the capture file have had their addresses correctly mapped to
our reference table. This hash map is then stored in memory for later use. The total
number of local PDN addresses used PD Nyyq1, is also stored in memory. The final
hash map constructed for this scenario is shown in Listing 3.

(3.1)

PCAP_TRACE_HASH_MAP
{
10.48.0.2 -> { 16.0.0.1 }, # UEO
60.0.0.1 -> { 192.0.0.0 }, # PDN O
106.0.0.3 -> { 192.0.0.1 } # PDN_1
}

Listing 3: Abstract representation how the pcap trace in Figure 4.1 translates into
a hash map.

3.4 Creating and sending packets

For the flow group to properly make use of the constructed packet array, a few
more variables are set beforehand. First, a variable repetitions is used to determine
how many times the complete flow of the packet buffer array will sequentially be
repeated. Its value is set manually in the configuration file for the simulator. Ac-
companying this, an extra variable t;,,;:;4;, holding the initial time stamp of the first
packet, is also set. Second, the variable instances;,q; is set that represents the total
number of parallel instances the whole packet array uses. An instance is defined as
the correct replay of all the packets inside the packet array from beginning to end,
using local addresses unique to the given instance and no other. That is, the second
instance of our packet array would reuse the addresses from our hash map, but shift
all of them to new, unused ones. Scaling this way treats all copies of the local flows
within a pcap file as unique, even though their structures are identical. An instance
variable initialized to zero is also set to keep track of the current instance. Lastly,

20

3. Implementation

we also introduce an index variable with an initial value of zero, representing the
index of the current packet being processed.

During the actual execution phase of the simulation, the simulator sends packets
in bursts, where each burst can contain a maximum of 32 packets at a time [9].
The simulator is also able to keep track how much time 5.4 has passed since the
simulator started. Using this, we determine if a packet is allowed to be sent by
comparing tp.sseq With the difference:

At = p(index) — Linitial (3,2)

where tp(indger) is the timestamp of the current packet p(index). If At < t,455ea We
are allowed to send the packet and proceed to allocate a simulator packet where we
copy the contents from the packet of the buffer array to this simulator packet. In
this copy we first determine which addresses are UE and PDN respectively, then
change their address to match the current instance with the help of this formula:

PDN = PDNgurt + (PDNyoiq - instance) (3.3)

Here instance is used as a scaling factor, guaranteeing no instance shares the same
local addresses as another.

Next, the first 64 bits of the data field of the packet are overwritten with #4554 in
order to later compare and calculate the transit delay of the packet. This corrupts
the original payload but causes no overall issues since we are not interested in the
actual value of the payload. Finally, the proper headers are encapsulated depending
on which direction the packet is headed. For uplink packets, we encapsulate with a
GTP and Ethernet header, while a downlink packet only receives an encapsulated
Ethernet header. The packet is then ready to be used by Ericload and is thus added
to the burst array. Lastly, we increment instance by one and check if it matches
the value of instances;yq. If true, we reset instance to zero and increment index
by one, allowing us to process the next packet in the array. If false, we know that
there are future instances left that need to process the same packet again, and we
thus only increment instance by one.

There are two scenarios in which we are not allowed to send packets due to timing
constraints. The first is when the above At > t,455¢4. This means that the packet
timestamp is ahead of our simulator timestamp and thus not allowed to be processed
yet. Here we simply keep doing nothing until the comparison does not hold anymore.
The second scenario is when index is out of bounds since all the packets have been
sent, but repetitions still holds a value greater than zero. This means that all
the timestamps in the packets need to be shifted to accommodate for the time
passed. We manage this by taking the time difference of the last and first packets
in the array, and appending this value to the timestamp of all elements. Then we
decrement repetitions by one, reset instance and index to zero, and exit. Thus,
we have completed a full replay of the original pcap trace and reset it for another
rerun.

21

3. Implementation

3.5 Receiving packets and finishing execution

Receiving packets is also done in 32 packets bursts, much like sending. However,
different from sending, receiving packets is repeated in successive bursts until all cur-
rent packets received from the UP have been handled. When a packet is received, it
gets decapsulated to extract the timestamp contained in the data field. This times-
tamp is calculated against the current timestamp and logged as the transit delay
of the packet in a CSV file. The simulator keeps running until the set simulation
duration is met, where it then proceeds to correctly exit the loop and the whole
simulation in general. Even though we can calculate the minimum amount of time
needed to replay the traffic from all pcap files by looking at the timestamps and
all scaling variables, there is nothing predicting the exact execution time in general.
Further, since replaying traffic is intended to be done in parallel with model-based
traffic which goes on infinitely, manual set times are preferred.

22

4

Evaluation

This chapter introduces different evaluation approaches used throughout the thesis
and how these are applied to properly interpret results.

4.1 Metrics

During simulation, Ericload calculates several metrics over a given sampling step
and write them to a CSV file. The frequency of these samples are set by a value
in the configuration file representative of the number of samples per second. Each
sample step contains information about the outgoing and incoming traffic at the
current step, as well as latency measurements. The final CSV file is fed into a
simple python script, where the output is represented as graphs for further analysis.

4.1.1 Total amount of packets and data

Every time Ericload sends or receives packets, it stores information about the total
amount of packets processed. It uses two different arrays to accomplish this, one
for outgoing (sending) traffic and one for incoming (receiving). The elements in the
array are integer values that represent either the current total amount of packets,
or the current total amount of bytes. These elements are further grouped by the
interfaces used during the simulation: uplink or downlink. This alone grants a total
of eight data points to be used for statistical calculations. All the statistical vari-
ables in Ericload are accumulative over time. Statistics for any sample point s, is
therefore defined as the difference between the total variable data at time t(n) and
the total variable data at time ¢(n — 1) where n > 0. It is assumed that all variables
are set to zero at t(0).

Table 4.1 shows an example where data has been gathered over the span of one
second. Since samples are configured as samples per second, and there are a total of
five sampling points showing, the columns at any point n therefore shows a sampling
at every 200th millisecond. The total outgoing uplink packets of the simulator at 600
milliseconds would in this case happen at sample point s3 and simply be calculated

23

4. Evaluation

as:

Sp =1t(n) —t(n —1)
s3 =1(3) — t(2)
S3 = 6—4

83:2

(4.1)

This difference in outgoing uplink packets happens to be the same no matter what
sampling point n we choose in the table. Should we therefore choose to plot this on
a graph, we would see a flat graph showing a steady rate of two packets per sampling
point.

1123 4] 5
1123 14] 5
10 [20 | 30 | 40 | 50
2 1416|810
40 | 60 | 80 | 100
2 1416|810
20 | 40 | 60 | 80 | 100
1123 4] 5
10 [20 | 30 | 40 | 50

t(n)

Downlink Packets Out
Downlink Bytes Out
Uplink Packets Out
Uplink Bytes Out
Downlink Packets In
Downlink Bytes In
Uplink Packets In
Uplink Bytes In

O OO DO OO oo oo
DO
[a]

Table 4.1: Hypothetical accumulation of statistical variable data over the span of
one second.

4.1.2 Latency

Latency is defined as the elapsed time from when a packet was sent from the UP,
to when the same packet has been returned and processed by the UP again. The
latency of a packet p is measured by comparing the timestamp ¢, when receiving
the packet, with the timestamp t, found in the data field of the same packet. t,
was the current timestamp during the data injection. Both timestamps come from
inspecting the total time passed of the current simulation, represented as t,qs5cq in
Section 3.4. The latency calculation is then expressed with the following equation:

Latency(p) = t,(p) — ts(p) (4.2)

Latency, like all other variables, is an accumulative data point and is therefore
calculated like any other data point for a sample shown in Eq. (4.1). However,
the CSV file will contain information about the average directional (incoming or
outgoing) latency for a specific sample point. This is simply calculated as the total
latency at that point over the total amount of packets sent of the same point, of a
given direction.

4.1.3 Throughput

As shown in Section 4.1.1, since both the total amount of packets and the total
amount of bytes are measured at every sampling point, the throughput at every

24

4. Evaluation

sampling point is already given. Note that the throughput, like latency, can be
measured for any combination of the direction of the traffic and the interface it is
being sent on. The average throughput of the entire simulation can also easily be
calculated by taking the average of the sum throughput across all sampling points:

kY Throughput(s;)
n

(4.3)

AvgThroughput =

Where n is the total amount of sampling points and k& the amount of samples per
second.

4.2 Replay verification

This section presents different approaches to confirm that Ericload indeed can replay
packet capture files on the most basic level.

4.2.1 Correct packet creation

It is expected of the simulator to reconstruct all the packets found from the inputted
pcap file, and to correctly change some parameters of the packets in order to be able
to send it over the network. This is confirmed by having the simulator write its
own pcap file to disk and append every packet created during run time to it. This
file can then be compared with the original to check whether the correct packet
manipulations have been done. It also allows us to determine if the simulator has
sent the packets in the same order as the original file, which is also a strict criterion
for a successful replay. It should be noted that writing pcap files to disk in this way
is only a temporary debugging solution to verify the traffic, and not something that
is done during each run of the simulator.

4.2.2 Traffic repetition

Another function of the simulator is that it must be able to correctly repeat the
traffic of a pcap file for any number of time given. Correct in this case means that
it must abide by the time constraints found in the file. For example, if the pcap
file used contains 100 packets sent over the span of a second and is set to repeat 10
times, the simulator is expected to produce traffic for a minimum of 10 seconds with
around 100 packets sent each second. The key takeaway here is that the time domain
must be respected during traffic replay as well, regardless how fast the simulator is
capable of processing the replay trace.

4.2.3 Scaling

Scaling in the replay sense is defined as being able to resend the same packets of
a pcap file in parallel, but introduced as new unique flows. Meaning that if the
first packet py of the pcap file is given the local destination address PDN, when
reconstructed by the simulator, scaling would instead give a new packet the local
addresses PDN;. PDN; is only used in the flow group the packets are constructed

25

4. Evaluation

for, and not as local addresses for any other packet p, in other flows groups, as
shown in Eq. 3.3. By comparison to the scenario in section 4.2.2, scaling this file by
a factor of 10 would result in a minimum of 10 seconds of traffic with around 1000
packets sent each second. The new addresses introduced will range from PD N, to
PDN,.

4.2.4 pcap traces used for verification

Two very small pcap traces will be used in order to confirm that Ericload correctly
replays traffic. The reason for this is that Ericload does a write-to-disk call for ev-
ery single packet found, which would severely impact performance if larger traces
were to be used instead. Both traces will later be shown as a sending trace and
as a receiving trace. The sending trace will consist of packets to be sent to the
UP by Ericload. These packets are what Ericload constructs and logs during run-
time right before sending the packet out. The received trace, instead, consists of
packets received by Ericload from the UP. It is expected that both the sending and
receiving trace match as closely as possible. This however not a guarantee since the
receiving trace depends on every packet traveling across the network and back to
the UP and simulator. Delays might affect the ordering of the packets, depending
on how quickly they are sent and received. Also, since received packets are currently
processed by two threads in Ericload, these might compete for the write-to-disk call
and reorder the packets due to their timestamp being different. It is not expected
that the sending trace have these problems since it is processed only by one thread,
and since it abides by stricter timing constraints from the original pcap trace it is
trying to replay. It is expected however that the amount of packets in the traces
match one by one, due to their smaller size.

UDP trace

The first trace is a UDP trace shown in Figure 4.1 consisting of ten packets, each
134 bytes in size. This trace includes three unique addresses. It is expected that
the source address from the first packet be converted to an UFE, address, and the
destination address to an PD N, address by Ericload. The second packet introduces
the third unique address, sending UDP data to the source address of the first packet.
Here, we expect Ericload to convert this third address to PD N, since the desti-
nation address of the second packet is already mapped to UFEy. Finally, this trace
repeated once, making it a total of 20 packets to be sent and expected to be received
back.

26

4. Evaluation

Source 5 b Destination Dport Protocol Length

3 0.000000 10.48.0.2 556001 60.0.0.1 80 UbDP 134
4 0.000001 106.0.0.3 80 10.48.0.2 55601 UDP 134
5 0.000003 10.48.0.2 556001 60.0.0.1 80 UDP 134
6 0.000001 106.0.0.3 80 10.48.0.2 55001 UDP 134
7 0.000003 10.48.0.2 550081 60.0.0.1 80 UDP 134
8 0.000001 106.0.0.3 80 10.48.6.2 556001 UDP 134
9 0.000003 10.48.0.2 556081 60.0.0.1 80 UDP 134
10 0.000001 106.0.0.3 80 10.48.0.2 556001 UDP 134
11 ©0.000003 10.48.0.2 556001 60.0.0.1 80 UDP 134
12 0.000001 106.0.0.3 80 10.48.0.2 556001 UDP 134

Figure 4.1: Wireshark output showing a small UDP trace. Filtered for relevant
packets. Timestamps are shown as time passed between each displayed packet.

TCP trace

The first trace is a TCP trace shown in Figure 4.2 consisting of 20 packets in
total with varying sizes. Here only two unique addresses are found, therefore it is
expected that the source address from the first packet be converted to an U E| ad-
dress, and the destination address to an PD Ny address by Ericload. This trace will
be scaled once and will introduce a second PDN address, PDN;, which is expected
to be mapped to the same destination address as PDN,. Due to the scaling, it
is also expected that Ericload correctly takes turn when sending the packets while
still keeping the correct order. In total, 40 packets are expected to be shown in the
traces due to the scaling factor.

. Time Source Destination Dport Protocol Length
1 0.000000 192.168.4.1 62497 119.235.235.118 9418 TCP 74
2 9.321877 119.235.235.110 9418 192.168.4.1 62497 TCP 66
3 0.008368 192.168.4.1 62497 119.235.235.118 9418 TCP 56
4 0.000015 192.168.4.1 62497 119.235.235.110 9418 TCP 134
5 0.326269 119.235.235.110 9418 192.168.4.1 62497 TCP 54
6 0.007078 119.235.235.110 9418 192.168.4.1 62497 TCP 140
7 0.001590 119.235.235.110 9418 192.168.4.1 62497 TCP 1414
8 0.006786 192.168.4.1 62497 119.235.235.118 9418 TCP 56
9 0.002563 192.168.4.1 62497 119.235.235.118 9418 TCP 56
10 ©.316771 119.235.235.110 9418 192.168.4.1 62497 TCP 874
11 28.587167 192.168.4.1 62497 119.235.235.110 9418 TCP 56
12 0.141542 192.168.4.1 62497 119.235.235.116 9418 TCP 135
13 ©.315115 119.235.235.110 9418 192.168.4.1 62497 TCP 54
14 0.006169 119.235.235.110 9418 192.168.4.1 62497 TCP 264
15 0.005298 192.168.4.1 62497 119.235.235.118 9418 TCP 56
16 ©.091501 192.168.4.1 62497 119.235.235.110 9418 TCP 135
17 ©.356405 119.235.235.110 9418 192.168.4.1 62497 TCP 54
18 4.934943 192.168.4.1 62497 119.235.235.118 9418 TCP 56
19 0.322772 119.235.235.110 9418 192.168.4.1 62497 TCP 54
20 0.005157 192.168.4.1 62497 119.235.235.118 9418 TCP 56

Figure 4.2: Wireshark output showing a small TCP trace. Filtered for relevant
packets. Timestamps are shown as time passed between each displayed packet.

4.3 Performance

The below sections describe how we are expected to interpret and compare the
results from the simulator when successfully replaying traffic. The expectation is
that trace-based traffic does not affect the maximum rate of the simulator any more
than model-based. Further, any strengths of the UP, such as handling many users

27

4. Evaluation

without performance impact [9], are also expected to hold.Nevertheless, it is still of
value to perform the same measurements and compare these to previous ones. All
these different tests, model- and trace-based, will be conducted for 60 seconds in
total. Lastly, the latency for all tests involving replaying traffic will be presented
as the median over all the averages in the sampling point. The reason for this is
to account for any latency spikes that may appear during simulation because of the
bursty nature of the traffic, that would normally yield skewed mean latency results.

4.3.1 Maximum rate using model-based traffic

To find at which packet per second rate the UP is able to perform sufficiently,
a model-based approach will be used by generating steady rate traffic for 60 sec-
onds. Further, an arbitrary fixed packet size of 1400 bytes will be set to measure
throughput performance. This value does not include the added sizes due to packet
encapsulation. The tests performed will be separated into three categories: down-
link, uplink and a combined up- and downlink test. All three categories will measure
three scenarios each using one, 10 and 100 flows. Measurements will be performed
on the throughput, median delay and the ratio of packet loss. Packet loss ratio
is defined as one minus the amount of incoming packets received from the UP to
Ericload, over the amount of outgoing packets sent from Ericload to the UP. This
ratio will be the main measurement used to find a stable performing rate for the
UP, with 2% set as the maximum amount of acceptable packet loss.

4.3.2 pcap traces used for performance evaluation

Two separate pcap traces will be used in order to evaluate the performance of Eri-
cload and the UP. One trace is used for sending mainly TCP traffic, while the other
is used for UDP traffic. Both traces will be used in different testing scenarios to
compare how well Ericload and the UP can handle replaying traffic. Testing will
be done using either the traces alone, in combination with each other, or in com-
bination with model based traffic produced by Ericload in the form of steady rate
UDP traffic. Figure 4.3 shows the packet size distribution of the traces as well as
their total amount of packets. Further detail about the traces themselves will be
explained below.

60mbTCP .pcap

The TCP traced used is a recording of a 60Mb file downloaded over a local Wi-
Fi network. The recording took place until the file transfer was completed and
took around two seconds with a little over 60k packets being sent. A majority, 68%
percent, of the packets are 1514 bytes and contain the actual payload of the file
being downloaded. The remaining packets around 54 bytes in size are the acknowl-
edgements sent from the host to the server. The full file transfer took around two
seconds. This trace is always repeated 28 times during every test case it is used for,
in order to be present as much as possible during the 60-second simulation, but still
shy from the mark to leave a bit of room for all the packets to be processed before

28

4. Evaluation

the simulation ends.
youtubelLarge.pcap

The main UDP trace is a recording of viewing an hour-long YouTube video for
around 26 seconds, totaling in around 40k packets. The reason behind this choice
was to leave the video on long enough for the packets to arrive in different sized
bursts, spread out at different time intervals. This recording will always be replayed
twice in order to be present as much as possible during the simulation. 89% of the
packets recorded in the trace are 1250 bytes in size. The largest spike in packets sent
happens around 8.6 seconds with 2221 packets being sent over the span of 100ms.
If any latency issues arise, it is expected to happen around this period and the 35-
second mark, since the trace is repeated.

B 60mbTCP.pcap 68%

40000 { ™™ youtubelarge.pcap

89%

30000 A

Packets

20000 - 29%

10000 A

0% 0% 0% 0% 0% 0% 1% 0% &0'0%
0-19 20-39 40-79 80-159 160-319 320-639 640-1279 1280-2559
Size ranges

Figure 4.3: Packet size distribution shown of the two pcap traces used to evaluate
Ericload and UP performance.

4.4 Inter-arrival times and long-range dependency

As mentioned in Section 2.2.1, network traffic comes in fractal-like bursts. There-
fore, even when replaying the same traffic in the simulator, we should expect this
characteristic to still hold. Further, since long-range dependency is preserved ir-
respective of scaling in space in time [12, 13|, we should also expect long-range
effects to be present when correctly repeating and scaling the traffic ourselves us-
ing the simulator. Theoretical calculations will be performed on the 60mbTCP.pcap
to present Ericloads potential effects on LRD. First, the inter-arrival times of the
packets from the trace will be gathered in a list simply by calculating the times-
tamp difference of each packet. This list will then be plotted as a histogram of the
inter-arrival times. Due to the properties of network traffic, we expect to see an
exponential distribution in the times, with higher amounts closer to zero seconds
inter-arrival times. The same list will then be used to performed calculation on

29

4. Evaluation

the LRD properties using Eq. 2.2. This will be plotted as a graph, where we ex-
pect to see a trend toward infinity in order for the data to showcase LRD properties.

The calculations will be performed in four scenarios: using the original trace as it is,
scaling the trace 100 times, repeating the trace 100 times sequentially, and repeating
and scaling the trace 100 each. Repetition is replaying the same trace again once it
has finished replaying in its entirety. Since the inter-arrival times remain the same,
this is the same as copying the above-mentioned list by a set factor and appending
these smaller lists into a bigger one to perform calculations on. The 60mbTCP . pcap
trace used is a recording of downloading a 60mb file from start to finish, and since
the repetitions represents repeating this scenario 100 times over, we should expect
to see no direct impact on LRD. Scaling on the other hand is seen as introducing
more of the same, already present flows, to the traffic. The effects of this type of
scaling is expected to occur immediately for every single packet sent from the trace,
since this is essentially sending a copy of the same packet at the same point in time.
For our calculations, the scaling will be represented as adding more packets to the
list with zero seconds inter-arrival times. Here we should see a negative impact in
both plots. The exponential distribution should see a larger initial spike, and LRD
should start converging to a specific value, indicating that the traffic no longer holds
the typically seen properties of network traffic.

30

O

Results

This section presents the results obtained during the thesis. The first section will
present a confirmation that the new replay functionality of Ericload works as in-
tended. The later sections will present the results obtained by performance testing
this replay functionality together with model-based data. The chapter will then con-
clude by presenting theoretical analysis done on the inter-arrival times of packets
from a specified trace.

5.1 Replay verification

This section presents the results when running both the pcap traces mentioned
in Section 4.2. Both tests have two traces each: one created by Ericload when
reconstructing packets before sending them out to the UP, and one for packets
received by the UP. It is important to keep in mind that the timestamps of the
packets are presented as the time elapsed between each shown packet, and not as the
usual recorded time of capture.

5.1.1 UDP trace

The UDP trace used was set to be repeated once, expected to show a total of
20 replayed packets. Figure 5.1 shows the trace constructed by Ericload during
runtime when sending packets to the UP. The first two packets show the PFCP
connection Ericload establishes with the UP before sending out actual traffic. The
rest of the packets shown are the replayed packets from the original trace. The
packets have different protocols depending on their direction, where packets in the
uplink direction (UE to PDN) are wrapped with an GTP header, whereas packets in
the downlink direction have not received this extra wrapping. Similarly, Figure 5.2
shows the incoming packets to Ericload as received by the UP. Here, one extra
fragmented packet shows up in the beginning of the PFCP establishment. The
rest are translated packets from the original trace, as identified by their source and
destination addresses. Ome thing to note here is that this trace has had several
irrelevant packages filtered out, hence why the numbering of the packets seem odd.
Finally, the visible packet protocols for this trace is the reverse of Figure 5.1. This is
due to the packets now traveling in the opposite direction, i.e., uplink packets being
regarded as downlink packets and vice versa.

31

5. Results

. Source S L Destination Dport Protocol Length
1 0.000000 B8.20.0.0 8805 1688.2.0.1 8805 PFCP 81
2 1.152470 8.20.0.0 8805 108.2.0.1 8805 PFCP 267
3 2.248439 16.0.0.1 55001 194.0.0.0 80 GTP <UDP> 178
4 0.080047 194.0.0.1 80 16.0.0.1 55001 UDP 138
5 0.0080023 16.0.0.1 55001 194.0.0.0 80 GTP <UDP> 178
6 0.080027 194.0.0.1 80 16.0.0.1 55001 UDP 138
7 0.0080022 16.0.0.1 55001 194.0.0.0 80 GTP <UDP> 178
8 0.000028 194.0.0.1 80 16.0.0.1 55001 UDP 138
9 0.000029 16.0.0.1 55001 194.0.0.0 80 GTP <UDP> 178
10 0.000034 194.0.0.1 80 16.0.0.1 55001 UDP 138
11 ©.000022 16.0.0.1 55001 194.0.0.0 80 GTP <UDP=> 178
12 0.000027 194.0.0.1 80 16.0.0.1 55001 UDP 138
13 0.000023 16.0.0.1 55001 194.0.0.0 80 GTP =UDP> 178
14 0.000027 194.0.0.1 80 16.0.0.1 55001 UDP 138
15 0.000022 16.0.0.1 55001 194.0.0.0 80 GTP <UDP> 178
16 0.000031 194.0.0.1 80 16.0.0.1 55001 UDP 138
17 0.000022 16.0.0.1 55001 194.0.0.0 80 GTP <UDP> 178
18 0.000027 194.0.0.1 80 16.0.0.1 55001 UDP 138
19 ©.000022 16.0.0.1 55001 194.0.0.0 80 GTP <UDP> 178
20 0.000027 194.0.0.1 80 16.0.0.1 55001 UDP 138
21 0.000022 16.0.0.1 55001 194.0.0.0 80 GTP <UDP> 178
22 0.000028 194.0.0.1 80 16.0.0.1 55001 UDP 138

Figure 5.1: Wireshark output showing packets created by Ericload the moment
before being sent to the UP. Filtered for relevant UDP and PFCP packets. Times-
tamps are shown as time passed between each displayed packet.

Dport

0] 2.8, . 1380
24 ©.158454 108.2.0.1 8805 8.20.0.0 8805 PFCP 161
27 2.849734 16.0.0.1 55001 194.0.0.0 80 UDP 138
28 0.000043 16.0.0.1 556001 194.0.0.0 80 UDP 138
29 0.000000 16.0.0.1 556001 194.0.0.0 80 UDP 138
30 0.000000 16.0.0.1 55001 194.0.0.0 80 UDP 138
31 0.000000 16.8.0.1 556001 194.0.0.0 80 UDP 138
32 0.000000 16.0.0.1 55001 194.0.0.0 80 UDP 138
33 0.000000 16.0.0.1 556001 194.0.0.0 80 UDP 138
34 0.000054 194.0.0.1 80 16.0.0.1 55001 GTP <UDP> 174
35 0.000000 194.0.0.1 80 16.0.0.1 556001 GTP <UDP> 174
36 0.000085 194.0.0.1 80 16.0.0.1 55001 GTP <=UDP> 174
37 0.000000 194.0.0.1 80 16.0.0.1 55001 GTP <UDP> 174
38 0.000000 194.0.0.1 80 16.0.0.1 55001 GTP <=UDP= 174
39 0.000000 194.0.0.1 80 16.0.0.1 55001 GTP <UDP> 174
40 0.000000 194.0.0.1 80 16.0.0.1 556001 GTP <=UDP> 174
41 0.000000 194.0.0.1 80 16.0.0.1 55001 GTP <=UDP> 174
42 0.000000 194.0.0.1 80 16.0.0.1 55601 GTP <UDP> 174
43 0.000000 194.0.0.1 80 16.0.0.1 556001 GTP <UDP= 174
44 0.000003 16.0.0.1 55001 194.0.0.0 80 UDP 138
45 0.000000 16.0.0.1 556001 194.0.0.0 80 UDP 138
46 0.000050 16.0.0.1 55001 194.0.0.0 80 UDP 138

Figure 5.2: Wireshark output showing captured UP traffic by Ericload. Filtered
for relevant UDP and PFCP packets. Timestamps are shown as time passed between
each displayed packet.

5.1.2 TCP trace

The TCP trace used was set to be scaled by a factor of two, expected to show a total
of 40 replayed packets. Figure 5.3 shows the trace constructed by Ericload during
runtime when sending packets to the UP. The first two packets show the PFCP
connection Ericload establishes with the UP before sending out actual traffic. We
note that after these packets, all the 40 expected packets do indeed show up. Fur-
ther, an added flow between UEj (local address 16.0.0.1) and PDN; (local address

32

5. Results

194.0.0.1) is visible. This comes from introducing the scaling factor, which for this
replay doubles the amount of packets produced by Ericload compared to the original
trace. These extra packets are injected right after the packet of the first flow (U Ey
to PDNj in this case) has been constructed. For example, we notice that packet
number six is an extra, immediate, injection of a packet to be sent from the UE to
PDN before the simulator continues on with replaying the original trace. The receiv-
ing trace from Figure 5.4 shows, like in the above UDP example, incoming packet to
Ericload received from the UP. We also noted the fragmented PFCP packet in the
beginning here before the rest of the remaining trace is presented. In further simi-
larity with the receiving UDP trace of Figure 5.2, the skewed identification number
of the packets are due to filtering out irrelevant packets. Finally, in both figures,
we notice the different added protocol wrappings of the packets depending on their
direction of travel.

Source Destination Dport Protocol Length

1 0.000000 8.20.0.0 8805 108.2.0.1 8805 PFCP 81

2 1.147836 8.20.0.0 8805 108.2.0.1 8805 PFCP 267
3 2.207626 16.0.0.1 62497 194.0.6.0 9418 GTP <TCP> 118
4 0.000045 16.0.0.1 62497 194.0.0.1 9418 GTP <TCP> 118
5 0.274589 194.0.0.0 9418 16.8.0.1 62497 TCP 70

6 0.000021 194.0.0.1 9418 16.8.0.1 62497 TCP 70

7 0.008347 16.0.0.1 62497 194.0.0.0 9418 GTP <TCP> 180
8 0.000026 16.0.0.1 62497 194.08.0.1 9418 GTP <TCP> 180
9 0.000018 16.0.0.1 62497 194.0.0.0 9418 GTP <TCP> 178
10 0.000029 16.0.0.1 62497 194.0.0.1 9418 GTP <TCP> 178
11 ©0.326211 194.0.0.0 9418 16.0.0.1 62497 TCP 58

12 0.000015 194.0.0.1 9418 16.8.0.1 62497 TCP 58

13 0.007063 194.0.0.0 9418 16.8.0.1 62497 TCP 144
14 0.000028 194.0.0.1 9418 16.0.0.1 62497 TCP 144
15 0.001562 194.0.0.0 9418 16.8.0.1 62497 TCP 1418
16 0©.000219 194.0.0.1 9418 16.0.0.1 62497 TCP 1418
17 0.006567 16.0.0.1 62497 194.0.0.0 9418 GTP «TCP> 180
18 0.800023 16.0.0.1 62497 194.0.0.1 9418 GTP <TCP> 180
19 0.002540 16.0.0.1 62497 194.0.0.0 9418 GTP <TCP> 180
20 0.000022 16.0.0.1 62497 194.08.0.1 9418 GTP <TCP> 180
21 0.316749 194.0.0.0 9418 16.0.0.1 62497 TCP 878
22 0.000136 194.0.0.1 9418 16.8.0.1 62497 TCP 878
23 28.586971 16.0.0.1 62497 194.0.0.0 9418 GTP <TCP> 100
24 0.000042 16.0.0.1 62497 194.0.6.1 9418 GTP <TCP> 1@0
25 0.141500 16.0.0.1 62497 194.0.0.0 9418 GTP =TCP> 179
26 0.000037 16.0.0.1 62497 194.0.0.1 9418 GTP <TCP> 179
27 0.315078 194.0.0.0 9418 16.8.0.1 62497 TCP 58

28 0.000020 194.0.0.1 9418 16.0.0.1 62497 TCP 58

29 0.006149 194.0.0.0 9418 16.8.0.1 62497 TCP 268
30 0.000047 194.0.0.1 9418 16.8.0.1 62497 TCP 268
31 0.005251 16.0.0.1 62497 194.0.0.0 9418 GTP <TCP> 180
32 0.000023 16.0.0.1 62497 194.08.0.1 9418 GTP <TCP> 180
33 0.091478 16.0.0.1 62497 194.0.0.0 9418 GTP <TCP> 179
34 0.000035 16.0.0.1 62497 194.0.0.1 9418 GTP <TCP> 179
35 0.356370 194.0.0.0 9418 16.0.0.1 62497 TCP 58

36 0.000018 194.0.0.1 9418 16.8.0.1 62497 TCP 58

37 4.8934925 16.0.0.1 62497 194.0.0.0 9418 GTP <TCP> 180
38 0.000031 16.0.0.1 62497 194.0.0.1 9418 GTP <TCP> 180
39 0.322741 194.0.0.0 9418 16.8.0.1 62497 TCP 58

40 0.000015 194.0.0.1 9418 16.0.0.1 62497 TCP 58

41 0.005142 16.0.0.1 62497 194.0.0.0 9418 GTP «TCP> 180
42 0.000022 16.0.0.1 62497 194.0.0.1 9418 GTP <TCP> 180

Figure 5.3: Wireshark output showing packets created by Ericload the moment
before being sent to the UP. Filtered for relevant TCP and PFCP packets. Times-
tamps are shown as time passed between each displayed packet.

33

5. Results

Dport Protocol Length

IPv4

23 0.000303 108.2.0.1 8805 8.20.0.0 8805 PFCP
24 0.189544 108.2.0.1 8805 8.20.0.0 8805 PFCP
42 2.048732 16.0.0.1 62497 194.0.0.0 9418 TCP
43 0.000033 16.0.0.1 62497 194.0.0.1 9418 TCP
45 0.275242 194.0.0.1 9418 16.0.0.1 62497 GTP <TCP>
46 0.000033 194.0.0.0 9418 16.0.0.1 62497 GTP <TCP>
47 0.008371 16.0.0.1 62497 194.0.0.0 9418 TCP
48 0.000011 16.0.0.1 62497 194.08.0.1 9418 TCP
49 0.000004 16.0.0.1 62497 194.0.0.0 9418 TCP
50 0.000018 16.8.0.1 62497 194.08.0.1 9418 TCP
51 0.326302 194.0.0.0 9418 16.0.0.1 62497 GTP <TCP>
52 0.000032 194.0.0.1 9418 16.0.0.1 62497 GTP <TCP>
53 0.006981 194.0.0.0 9418 16.0.0.1 62497 GTP <TCP=>
54 0.000030 194.0.0.1 9418 16.0.0.1 62497 GTP <TCP>
55 0.001529 194.0.0.0 9418 16.0.0.1 62497 GTP <TCP>
56 0.000032 194.0.0.1 9418 16.0.0.1 62497 GTP <TCP=>
57 0.806712 16.0.0.1 62497 194.0.6.0 9418 TCP
58 0.000032 16.0.0.1 62497 194.0.0.1 9418 TCP
59 0.002450 16.0.0.1 62497 194.0.0.0 9418 TCP
60 0.000032 16.0.0.1 62497 194.08.0.1 9418 TCP
61 ©.316801 194.0.0.0 9418 16.0.0.1 62497 GTP <TCP>
62 0.000031 194.0.0.1 9418 16.0.0.1 62497 GTP <TCP>
171 28.587125 16.0.0.1 62497 194.0.0.0 9418 TCP
172 0.000025 16.0.0.1 62497 194.0.0.1 9418 TCP
173 ©.141482 16.0.0.1 62497 194.0.0.0 92418 TCP
174 0.000033 16.0.0.1 62497 194.0.0.1 9418 TCP
192 ©.315083 194.0.0.0 9418 16.0.0.1 62497 GTP <TCP>
193 0.000007 194.0.0.1 9418 16.0.0.1 62497 GTP <TCP=>
195 0.006121 194.0.0.1 9418 16.0.0.1 62497 GTP <TCP>
196 0.000032 194.0.0.0 9418 16.0.0.1 62497 GTP <TCP>
197 0.805277 16.0.0.1 62497 194.0.0.0 9418 TCP
198 0.000034 16.0.0.1 62497 194.08.0.1 9418 TCP
199 ©.891579 16.0.0.1 62497 194.0.0.0 9418 TCP
200 0.000034 16.0.0.1 62497 194.08.0.1 9418 TCP
201 0.356345 194.0.0.0 9418 16.0.0.1 62497 GTP <TCP>
202 0.000032 194.0.0.1 9418 16.0.0.1 62497 GTP <TCP>
225 4.936167 16.0.0.1 62497 194.0.0.1 92418 TCP
226 0.000386 16.0.0.1 62497 194.0.0.0 9418 TCP
227 ©.321113 194.0.0.0 9418 16.0.0.1 62497 GTP <TCP>
228 0.000032 194.0.0.1 9418 16.0.0.1 62497 GTP <TCP=>
229 ©.005114 16.0.0.1 62497 194.08.6.1 9418 TCP
230 0.000EE8 16.0.0.1 62497 194.0.0.0 9418 TCP

Figure 5.4: Wireshark output showing captured UP traffic by Ericload. Filtered
for relevant TCP and PFCP packets. Timestamps are shown as time passed between
each displayed packet.

5.2 Performance

This section presents results from measurements done on the UP using Ericload.
First, we will go through finding an optimal rate of the UP by using steady rate
traffic. Secondly, results are shown from only replaying the pcap files presented in
Section 4.3.2 and how the UP handles this. Finally, the results from combining both
trace-based and model-based traffic will be shown.

34

5. Results

5.2.1 UP performance

Rate (pps) 1 flow 10 flows 100 flows
Ratio | Gbps | Delay || Ratio | Gbps | Delay || Ratio | Gbps | Delay
100 000 0.0 1.16 0.35 0.02 1.14 0.27 0.02 1.14 | 0.26
110 000 0.0 1.28 0.5 0.02 | 1.26 | 0.35 0.02 | 1.26 0.3
120 000 0.08 | 1.28 | 9743 | 0.02 | 1.37 | 0.28 0.02 | 1.37 0.3
130 000 0.11 1.29 | 14798 || 0.02 1.49 0.31 0.02 1.49 0.31
140 000 0.1 1.4 | 124.92 || 0.02 1.6 0.33 0.02 1.6 0.34
150 000 0.15 1.48 | 127.26 || 0.02 1.71 0.35 0.02 1.72 0.4
160 000 0.21 | 1.47 |126.91| 0.02 | 1.83 | 0.39 0.02 | 1.82 | 0.87
170 000 0.27 | 1.45 | 123.78 || 0.02 | 1.93 | 0.49 0.02 | 1.94 | 0.59
180 000 0.34 | 1.33 | 124.97 || 0.02 | 2.04 | 0.64 0.02 | 2.04 | 091
190 000 0.33 | 1.47 | 123.91 || 0.03 | 2.14 0.9 0.03 | 2.16 | 1.27
200 000 0.36 1.5 | 122.11 || 0.04 | 2.23 1.27 0.04 | 2.23 2.1
Uplink and Downlink traffic
100 000 0.0 1.1 0.38 0.02 | 1.13 | 0.36 0.02 | 1.13 | 0.34
110 000 0.0 1.21 0.56 0.02 1.24 0.39 0.02 1.24 | 0.33
120 000 0.03 | 1.28 | 19.16 || 0.02 | 1.36 | 0.32 0.02 | 1.35 | 0.37
130 000 0.04 | 1.43 | 5852 | 0.02 | 1.47 | 0.35 0.02 | 1.47 | 0.38
140 000 0.08 | 1.48 | 117.42 | 0.02 | 1.58 | 0.33 0.02 | 1.58 | 0.37
150 000 0.14 | 1.49 | 120.07 || 0.02 | 1.69 0.5 0.02 | 1.69 | 0.54
160 000 0.19 | 1.49 | 108.16 || 0.02 1.8 0.39 0.02 | 1.81 | 042
170 000 0.23 1.5 | 114.47 || 0.02 1.91 0.51 0.02 1.91 0.74
180 000 0.3 1.44 | 116.66 || 0.03 | 2.01 | 0.71 0.03 | 2.01 | 0.95
190 000 0.31 | 1.52 | 114.88 || 0.03 | 2.11 | 0.97 0.04 | 2.09 | 1.81
200 000 0.35 | 1.49 | 120.06 || 0.06 | 2.16 | 2.35 0.06 | 2.15 | 2.66
Uplink traffic
100 000 0.0 1.18 | 0.41 0.02 | 1.15 | 0.31 0.02 | 1.16 | 0.26
110 000 0.0 1.29 1.0 0.02 | 1.27 | 0.26 0.02 | 1.27 | 0.23
120 000 0.0 1.41 | 12.85 0.02 1.39 0.25 0.02 1.39 0.25
130 000 0.03 1.48 | 111.0 0.02 1.51 0.26 0.02 1.51 0.29
140 000 0.1 1.41 | 121.08 || 0.02 1.62 0.26 0.02 1.62 0.34
150 000 0.16 1.42 | 126.33 || 0.02 1.74 0.31 0.02 1.74 | 0.37
160 000 0.21 | 1.48 | 124.02 || 0.02 | 1.84 | 0.37 0.02 | 1.85 | 0.57
170 000 0.25 | 1.51 | 125.82 | 0.03 | 1.95 0.5 0.02 | 1.96 | 1.19
180 000 0.3 1.49 | 121.7 || 0.04 | 2.03 | 0.93 0.04 | 2.07 | 1.02
190 000 0.33 1.51 | 122.84 || 0.04 | 2.16 0.95 0.05 | 2.18 1.32
200 000 0.36 1.51 | 120.85 || 0.05 | 2.23 1.42 0.05 | 2.28 2.21

Downlink traffic

Table 5.1: Loss ratio, incoming throughput and median millisecond delay of Eri-
cload sending traffic to the UP for 60 seconds at different packets per second rates,
flows and directional combinations.

35

5. Results

To find the optimal performance of the UP in use, multiple steady rate tests were
conducted as described in Section 4.3.1 that lasted 60 seconds each. A starting rate
of 100k packets per second was chosen where the value was incremented by 10k
at each new simulation, up until a max rate of 200k packets per second was hit.
Table 5.1 shows the results of all these measurements, divided up into three main
categories based on the direction of the traffic used. From this table we notice that
the packet loss rate is below 2% on a single flow at around 110-120k packets per
second, pushing around 1.2Gbps incoming throughput on average, before severely
starting to drop in performance. The median delay also increases fast once the
packet loss rate has been exceeded. Noticeable performance improvements appear
once more flows are introduced. Here we see peaks of around 170k packets per
second with a 2Gbps incoming throughput before performance degradation begins.
The median delay is also lower compared to single flow traffic, but also begins to
increase once the 2% packet loss rate is exceeded. Steady rate simulations using 10
flows seem to perform slightly better overall than 100 flows, and this flow amount
was therefore used in later tests for model-based traffic when combining them with
trace-based traffic.

5.2.2 Replay performance

Scale || Peak out | Peak in | Ratio | Gbps | Delay
1 5317 4874 0.0 0.26 | 0.71
2 10646 10310 0.0 0.52 | 0.71
3 15913 14903 0.05 | 0.74 | 0.37
4 21256 16725 0.2 0.8 0.5
) 26615 15684 0.39 | 0.77 | 0.67

60mbTCP . pcap
1 2113 2421 0.0 0.01 16.7
2 4172 3131 0.0 0.03 1.03
3 6339 4721 0.0 0.04 | 0.55
4 8452 6422 0.0 0.05 | 0.47
) 10430 8269 0.01 | 0.06 | 0.79
6 12678 9336 0.01 | 0.08 | 0.82
7 14546 10760 0.04 | 0.09 1.25
8 16904 12600 0.06 0.1 1.3
9 19017 13349 0.09 0.1 1.53
10 22160 13247 0.11 | 0.12 1.86
youtubelarge.pcap

Table 5.2: Performance of the pcap files presented in Section 4.3.2. The peak
values are the highest total amount of packets measured at a 100ms interval. Ratio
represents the loss ratio, and Delay is the median millisecond delay of the whole
simulation.

36

5. Results

The first replay test cases were conducted on both pcap files presented in Sec-
tion 4.3.2, where each file was replayed alone at incremental scaling values until
roughly the same packet per second rates found in Table 5.1 were reached. For the
UDP based capture file, this limit was around a scaling factor of 10, and five for
the TCP based one. Table 5.2 shows the results of these measurements. Although
a bit harder to conclude from the TCP trace, packet loss starts exceeding 2% where
the peak of total outgoing packets sent from Ericload reaches around 12,5k using
100ms interval samples. Theoretically, scaling this to a whole second would yield
125k, which would be on par with the results seen in Table 5.1. Figure 5.5 and
Figure 5.6 show detailed results from the first row of Table 5.2 for each file. Note
that the peak amounts do not match the result from the table when accounting
for the time intervals, due to the figures showing samples every second whereas the
data from the tables are at 10 samples per second instead. Latency numbers seem
to roughly coincide with the model-based traffic numbers, although slightly higher
numbers appear in some instances, particularly for the replayed UDP trace. Here
we also see an abnormally high median latency on the first test case compared to
all others.

Outgoing packets total: 1755k Incoming packets total: 1755k

40 0 10 20 30 40 50
Time (secont ds) Time (secon ds)

Average throughput: 0.26Gbps Average throughput: 0.26Gbps

I Downlink
= Uplink

Figure 5.5: Measurements from replaying 60mbTCP.pcap where the trace is re-
peated 28 times.

37

5. Results

Outgoing packets total: 80k Incoming packets total: 80k

20 30 40
Time (secon ds)

Average throughput: 0.01Gbps Average throughput: 0.01Gbps

Figure 5.6: Measurements from replaying youtubeLarge.pcap where the trace is
repeated twice.

TCP 1 scale 2 scale 3 scale

UDP Ratio | Gbps | Delay || Ratio | Gbps | Delay || Ratio | Gbps | Delay
1 scale 0.0 0.26 | 27.49 0.0 0.51 | 8.01 0.08 | 0.69 | 5.33
2 scale 0.0 0.28 | 27.11 0.0 0.52 | 8.68 0.06 | 0.72 | 594
3 scale 0.0 0.29 | 27.0 0.01 | 0.53 | 9.52 0.08 | 0.75 | 6.83
4 scale 0.0 0.3 | 27.18 || 0.01 | 0.56 | 10.44 || 0.07 | 0.74 | 6.98
5scale || 0.01 | 0.32 | 28.6 0.02 | 0.57 | 10.87 || 0.09 | 0.76 | 7.76
6 scale || 0.01 | 0.33 | 31.12 || 0.03 | 0.56 | 11.25 || 0.09 | 0.74 | 8.13
7scale || 0.02 | 0.33 | 29.25 || 0.04 | 0.56 | 11.37 || 0.10 | 0.74 | 8.16
8 scale || 0.04 | 0.34 | 29.19 || 0.05 | 0.59 | 12.06 || 0.11 | 0.78 | 8.74
9 scale || 0.05 | 0.34 | 2894 | 0.07 | 0.57 | 11.8 0.13 | 0.78 | 8.79
10 scale || 0.07 | 0.35 | 28.1 0.08 | 0.57 | 11.62 || 0.13 | 0.75 | 8.48

Table 5.3: Loss ratio, throughput and median millisecond delay of Ericload replay-
ing traffic from pcap files, in different combinations, to the UP for 60 seconds.

Table 5.3 shows test cases performed using different combinations of the two pcap
files. For every column, the scale of 60mbTCP.pcap increases by one, whereas for
every row, the scale of youtubelLarge.pcap increases by one. The threshold of 2%
packet loss is reached twice, one when the TCP trace has a scale factor of one and
the UDP trace a scale factor of seven, and the other time when the TCP trace has
a scale factor of two and the UDP trace a scale factor of five. Taking into account
the outgoing peaks from Table 5.2 and combining these would not yield a correct
representation of peaks from the combined replays, since their peaks might be spread

38

5. Results

out. Upon closer inspection of the CSV file produced by Ericload for the two test
cases mentioned above, however, we noticed peak values of around 19k outgoing
packets and 20k outgoing packets respectively, when using a sampling frequency of
10 samples per second. For the median latency values, we see unusually high values
compared to the test cases where traces were not combined.

5.2.3 Trace-based and model-based performance

The final test cases performed were a combination of all pcap test cases shown previ-
ously with the added model-based steady rates of 25k, 50k, and 100k UDP packets
respectively, all using 10 flows. The only exception was the removal of the third
scaling of the TCP pcap trace, since performing tests with this combination yielded
a high packet loss already from the start. All the results can be seen in Table 5.4,
Table 5.5 and Table 5.6. From the results, we see that the addition of steady rate on
top of the already replayed pcap traffic, most of the time, does not affect the overall
performance of the UP. The loss ratio increases by only a very small margin, around
1%-2%, in most cases. The biggest deviation to this is when a 100k packets per
second of additional steady rate is applied to the test cases, where 60mbTCP. pcap is
scaled by a factor of two. Here we notice an increase in packet loss by 10% already
in the first test case. When looking at the median delay, we notice two things.
Firstly, adding only additional steady rate traffic in the uplink direction impacts the
delay less than all other cases where downlink, or a combination of up- and down-
link traffic, is introduced. Seeing the heavy downlink rates that are produced from
both the pcap replays, when looking at Figure 5.5 and Figure 5.6, we can conclude
that this results in a more evenly distributed directional traffic for the test cases.
Secondly, this increase in delay is not being affected in any of the test cases where
only youtubeLarge.pcap is being replayed together with the steady rate traffic.

Overall, it can be concluded that the UP handles the combination of model- and
trace-based traffic well, with the best performance produced when trying to evenly
distribute the amount of traffic flowing in both the uplink and downlink direction.

39

5. Results

Scenario Up- and Downlink Uplink Downlink
Ratio | Gbps | Delay || Ratio | Gbps | Delay || Ratio | Gbps | Delay
TCP1 0.01 | 0.55 | 34.72 || 0.01 | 0.53 | 2.01 0.01 | 0.54 | 69.66
TCP2 0.01 | 0.78 | 15.82 || 0.01 | 0.77 | 1.24 0.01 | 0.79 | 30.46
UDP1 0.02 0.3 0.22 0.02 0.3 0.2 0.0 0.3 0.2
UDP2 0.02 | 0.31 | 0.22 0.02 | 0.31 | 0.23 0.02 | 0.31 0.2
UDP3 0.0 0.33 | 0.26 0.02 | 0.32 | 0.24 0.02 | 0.33 | 0.24
UDP4 0.02 | 0.34 0.3 0.01 | 0.33 | 0.29 0.02 | 0.34 0.3
UDP5 0.02 | 0.35 | 0.42 0.02 | 0.35 0.4 0.02 | 0.35 0.4
UDP6 0.02 | 0.36 | 0.47 0.02 | 0.36 | 045 0.02 | 0.36 0.5
UDP7 0.03 | 0.37 | 0.58 0.03 | 0.37 | 0.53 0.03 | 0.37 | 0.63
UDPS 0.04 | 0.38 | 0.76 0.05 | 0.37 | 0.77 0.04 | 0.38 | 0.82
UDP9 0.02 | 0.39 | 1.02 0.05 | 0.38 | 0.94 0.06 | 0.39 | 1.08
UDP10 0.07 | 0.39 | 1.13 0.08 | 0.39 | 1.16 0.07 | 0.39 | 1.28
T1 x Ul 0.01 | 0.55 | 16.15 || 0.01 | 0.54 | 2.67 0.01 | 0.55 | 29.71
T1 x U2 || 0.01 | 0.56 | 15.71 0.0 0.57 | 3.05 0.01 | 0.57 | 28.59
T1 x U3 || 0.01 | 0.57 | 15.37 || 0.01 | 0.57 | 3.38 0.0 0.59 | 27.38
T1 x U4 || 0.02 | 0.58 | 15.39 || 0.01 | 0.58 | 3.69 0.01 | 0.59 | 26.94
T1 x Ub 0.01 0.6 15.1 0.02 | 0.59 3.92 0.01 0.6 26.49
T1 x U6 || 0.04 | 0.62 | 15.52 || 0.02 0.6 4.23 0.02 | 0.61 | 26.86
T1 x U7 || 0.03 | 0.61 | 15.19 || 0.03 | 0.61 | 4.35 0.03 | 0.61 | 26.49
T1 x U8 0.04 | 0.62 | 15.06 0.05 | 0.61 4.42 0.04 | 0.62 | 26.22
T1 x U9 || 0.05 | 0.62 | 15.0 0.05 | 0.62 | 4.62 0.05 | 0.63 | 25.78
T1 x U10 || 0.07 | 0.62 | 15.03 | 0.06 | 0.63 | 4.62 0.07 | 0.63 | 25.77
T2 x Ul 0.01 | 0.79 | 35.77 || 0.01 | 0.79 | 5.22 0.01 0.8 68.1
T2 x U2 || 0.01 | 0.81 | 33.46 || 0.01 0.8 5.79 0.01 | 0.81 | 63.21
T2 x U3 || 0.01 | 0.82 | 31.61 || 0.01 | 0.81 6.1 0.09 | 0.74 | 58.86
T2 x U4 || 0.02 | 0.82 | 30.59 || 0.02 | 0.82 | 6.47 0.02 | 0.83 | 55.95
T2 x U5 || 0.01 | 0.85 | 29.13 || 0.03 | 0.82 6.7 0.09 | 0.77 | 53.44
T2 x U6 || 0.04 | 0.83 | 29.46 || 0.04 | 0.82 | 7.26 0.04 | 0.84 | 53.61
T2 x U7 || 0.05 | 0.84 | 28.32 | 0.05 | 0.83 | 7.32 0.05 | 0.84 | 51.87
T2 x U8 || 0.06 | 0.84 | 27.89 || 0.06 | 0.83 | 7.39 0.06 | 0.85 | 50.78
T2 x U9 || 0.07 | 0.84 | 2745 || 0.07 | 0.84 | 7.48 0.05 | 0.88 | 49.35
T2 x U10 || 0.08 | 0.84 | 27.32 || 0.09 | 0.83 | 7.73 0.08 | 0.85 | 48.59

Table 5.4: Loss ratio, throughput and median millisecond delay of Ericload re-
playing traffic from pcap files, in different combinations, to the UP for 60 seconds.
This includes an added steady rate of 25 000 packets per second UDP traffic using
10 flows.

40

5. Results

Scenario Up- and Downlink Uplink Downlink
Ratio | Gbps | Delay || Ratio | Gbps | Delay || Ratio | Gbps | Delay
TCP1 0.01 | 0.82 | 23.33 || 0.01 | 0.81 | 0.56 0.01 | 0.83 | 49.13
TCP2 0.02 | 1.06 | 13.66 || 0.02 | 1.05 | 0.51 0.02 | 1.07 | 27.72
UDP1 0.02 | 0.58 | 0.21 0.02 | 0.58 | 0.25 0.02 | 0.59 | 0.19
UDP2 0.02 0.6 0.23 0.02 | 0.59 | 0.25 0.02 0.6 0.23
UDP3 0.02 | 0.61 | 0.27 0.02 0.6 0.28 0.02 | 0.62 | 0.25
UDP4 0.02 | 0.62 0.3 0.02 | 0.62 | 0.32 0.02 | 0.63 | 0.29
UDP5 0.02 | 0.63 | 0.39 0.02 | 0.63 | 0.43 0.02 | 0.64 0.4
UDP6 0.0 0.64 | 0.52 0.0 0.64 | 0.51 0.03 | 0.65 | 0.47
UDP7 0.04 | 0.65 | 0.59 0.0 0.64 | 0.59 0.03 | 0.66 | 0.63
UDPS 0.04 | 0.66 | 0.77 0.04 | 0.65 | 0.82 0.08 | 0.66 | 0.75
UDP9 0.06 | 0.66 | 0.92 0.06 | 0.65 | 0.89 0.01 | 0.68 | 0.97
UDP10 0.04 | 0.67 | 1.11 0.08 | 0.65 | 1.07 0.06 | 0.67 | 1.12
T1 x Ul 0.04 | 0.84 | 23.14 0.01 0.83 1.76 0.01 0.84 | 47.55
T1 x U2 0.01 0.85 | 22.09 0.01 0.84 2.11 0.01 0.86 | 44.43
T1 x U3 0.01 0.86 | 21.22 0.01 0.85 2.35 0.01 0.87 | 42.33
T1 x U4 || 0.02 | 0.87 | 20.56 || 0.02 | 0.86 | 2.79 0.02 | 0.88 | 40.5
T1 x U5 || 0.02 | 0.88 | 20.09 || 0.02 | 0.87 | 2.75 0.02 | 0.89 | 39.28
T1 x U6 || 0.03 | 0.88 | 20.12 0.0 0.89 | 3.19 0.03 0.9 | 39.22
T1 x U7 || 0.04 | 0.89 | 19.51 || 0.04 | 0.88 | 3.15 0.01 | 0.92 | 38.32
T1 x U8 || 0.05 | 0.89 | 19.37 || 0.05 | 0.88 | 3.21 0.05 0.9 | 37.73
T1 x U9 || 0.06 | 0.89 | 19.15 || 0.09 0.9 3.39 0.06 | 0.91 | 36.7
T1 x U10 || 0.08 | 0.89 | 19.22 || 0.05 0.9 3.53 0.07 | 0.91 | 36.2
T2 x Ul 0.03 | 1.06 | 13.82 || 0.03 | 1.05 | 1.24 0.03 | 1.08 | 27.34
T2 x U2 || 0.03 | 1.08 | 13.43 || 0.03 | 1.06 1.5 0.03 | 1.09 | 26.19
T2 x U3 0.02 1.11 | 13.25 0.04 1.07 1.75 0.03 1.1 25.59
T2 x U4 0.04 1.09 | 12.98 0.01 1.11 1.92 0.02 1.13 | 25.13
T2 x Ub 0.02 1.13 | 12.84 0.04 1.09 2.04 0.04 1.11 | 24.52
T2 x U6 0.03 1.13 | 12.91 0.05 1.1 2.23 0.04 1.12 | 24.38
T2 x U7 || 0.06 | 1.11 | 12.84 || 0.06 | 1.09 | 2.59 0.06 | 1.12 | 24.14
T2 x U8 0.07 1.1 12.92 0.05 1.12 2.43 0.07 | 1.12 24.0
T2 x U9 0.08 1.11 | 12.95 0.07 1.1 2.48 0.07 | 1.12 | 23.77
T2 x U10 || 0.08 1.11 | 12.63 0.1 1.09 2.71 0.1 1.11 | 24.24

Table 5.5: Loss ratio, throughput and median millisecond delay of Ericload re-
playing traffic from pcap files, in different combinations, to the UP for 60 seconds.
This includes an added steady rate of 50 000 packets per second UDP traffic using
10 flows.

41

5. Results

Scenario Up- and Downlink Uplink Downlink

Ratio | Gbps | Delay || Ratio | Gbps | Delay || Ratio | Gbps | Delay

TCP1 0.02 | 1.39 | 11.74 || 0.02 | 1.37 | 0.37 0.02 1.4 | 25.48
TCP2 0.09 | 1.53 | 10.09 || 0.12 | 1.49 | 0.86 0.09 | 1.55 | 20.88

UDP1 0.02 | 1.15 | 0.26 0.02 | 1.14 | 0.31 0.02 | 1.17 | 0.24
UDP2 0.02 | 1.17 | 0.28 0.02 | 1.15 | 0.53 0.02 | 1.18 | 0.22
UDP3 0.02 | 1.18 | 0.33 0.02 | 1.17 | 0.36 0.02 | 1.19 0.3
UDP4 0.02 | 1.19 0.4 0.02 | 1.18 | 0.43 0.02 1.2 0.33
UDP5 0.0 1.21 | 047 0.03 | 1.18 0.6 0.03 | 1.21 | 0.44
UDP6 0.03 1.2 0.55 0.03 | 1.19 | 0.71 0.0 1.23 | 0.52
UDP7 0.0 1.21 | 0.62 0.04 | 1.19 | 0.69 0.04 | 1.22 0.6
UDPS8 0.05 | 1.21 | 0.96 0.06 | 1.19 | 0.81 0.06 | 1.22 | 0.73
UDP9 0.06 | 1.21 | 0.87 0.07 | 1.19 1.0 0.06 | 1.23 | 0.98
UDP10 0.07 | 1.21 | 1.02 0.08 | 1.19 | 1.18 0.07 | 1.22 | 1.05

T1 x Ul 0.02 1.4 | 11.69 || 0.02 | 1.38 | 0.6 0.0 1.44 | 24.91
T1 x U2 0.02 | 1.41 | 11.42 || 0.02 1.4 0.81 0.02 | 143 | 24.13
T1 x U3 0.02 | 1.42 | 11.11 || 0.02 1.4 0.94 0.02 | 1.44 | 23.24
T1 x U4 0.03 | 1.43 | 10.94 || 0.03 | 1.41 1.09 0.03 | 1.44 | 22.42
T1 x Ud 0.0 1.45 | 10.87 || 0.01 | 1.42 | 1.29 0.04 | 145 | 22.17
T1 x U6 0.04 | 1.43 | 10.88 || 0.05 1.4 1.33 0.04 | 145 | 223
T1 x U7 0.06 | 1.43 | 10.74 || 0.06 1.4 1.43 0.05 | 1.45 | 21.9
T1 x U8 0.06 | 1.43 | 10.69 || 0.04 | 1.41 1.53 0.06 | 1.45 | 21.63
T1 x U9 0.07 | 143 | 10.7 0.08 1.4 1.61 0.07 | 1.44 | 21.53
T1 x U10 || 0.08 | 1.43 | 10.74 || 0.09 1.4 1.68 0.08 | 1.45 | 21.29

T2 x Ul 0.09 | 1.54 | 10.18 || 0.13 | 1.47 | 1.34 0.09 | 1.56 | 20.69
T2 x U2 0.1 1.54 | 10.09 || 0.13 | 149 | 1.34 0.1 1.56 | 20.18
T2 x U3 0.11 | 1.53 | 9.94 0.14 | 149 | 1.46 0.1 1.57 | 19.61
T2 x U4 0.11 | 1.55 9.8 0.14 1.5 1.53 0.12 | 1.55 | 19.94
T2 x Ub 0.12 | 1.55 | 9.92 0.15 | 149 | 1.74 0.12 | 1.56 | 19.35
T2 x U6 0.13 | 1.54 | 10.04 || 0.16 | 1.48 | 1.81 0.12 | 1.57 | 19.43
T2 x U7 0.13 | 1.55 | 9.91 0.14 | 1.51 1.85 0.16 | 1.49 | 20.86
T2 x U8 0.12 | 1.57 | 9.84 0.17 | 148 | 1.89 0.14 | 1.56 | 19.21
T2 x U9 0.13 | 1.56 | 9.98 0.18 | 148 | 2.07 0.12 | 1.59 | 18.99
T2 x U10 || 0.13 | 1.54 | 9.97 0.19 | 148 | 2.08 0.15 | 1.57 | 19.0

Table 5.6: Loss ratio, throughput and median millisecond delay of Ericload replay-
ing traffic from pcap files, in different combinations, to the UP for 60 seconds. This
includes an added steady rate of 100 000 packets per second UDP traffic using 10
flows.

5.3 Inter-arrival times and long-range dependency

Theoretical calculations were performed on the inter-arrival times of the 60mbTCP . pcap
file to show how scaling and repetition affects properties like LRD. Figure 5.7 shows
the results from this. These are separated into two columns: the left shows the
histogram och the inter-arrival times of packets, while the right plots the result of

42

5. Results

using Eq. 2.2 to calculate the LRD.

Interarrival times

10°

103 4

Packets

3

101 4

0.00 0.01 0.02

Difference (seconds)

107 o

105 .

103 4

Packets

&

101 4

0.00 0.01 0.02

Difference (seconds)

107

105 4

Packets

103 4

3

0.00 0.01 0.02

Difference (seconds)

107 .

105 .

Packets

103 4

i

0.00 0.01 0.02

Difference (seconds)

Long-range Dependency

10.0

7.5 A

5.0 A

2.5 A

<

0k 20k 40k
Packets

40 1

30 A

20 A

10 A

N

oM 2M aM 6
Packets

2 -

1000 -

750 1

500 A

250 A

©

oM 2M 4M 6
Packets

2 -

1500 -

1000 -

500 A

S

oM 5M 10M

Packets

Figure 5.7: Histogram of inter-arrival times and LRD calculation of 60mbTCP.pcap
with the combinations: no repetitions or scaling, scaled 100 times, repeated 100
times, and repeated and scaled 100 times each.

43

5. Results

The top two figures shows calculations performed on the original file, as is. We
note the exponential distribution in the histogram when counting and plotting the
inter-arrival times as well as the trend toward infinity when plotting the LRD. The
second rows shows the results from scaling the trace by a factor of 100. Since scaling
using this approach in practice results primarily in sending extra packets instantly,
we notice the immediate effects of faking the data this way: the histogram is more
heavily skewed toward packets with zero seconds inter-arrival time, and the LRD is
beginning to diverge away from infinity, showing that the data no longer holds the
time-dependent properties of typical network data. In the third row the calculations
were performed as if the original file was repeated 100 times sequentially. Here we
note the similarities with the top results, indicating that repeating a trace this way
is a realistic form of scaling data. The final row shows the the results of combining
both the scaling and repetition. Again we see the negative effects scaling has on
traffic properties, both in the skewed histogram and the convergence bend in LRD.
This time the effects are not as severe, likely due to the repetitions being introduced.

44

O

Discussion

This chapter presents an analysis of the results found in Chapter 5.

6.1 Replaying traffic

Looking at the results from Section 5.1, we can conclude that Ericload successfully
manages to perform trace-based traffic replays on a basic level. We see that it not
only is able to scale in the time domain by repeating the same input trace any given
amount of times, but it is also capable of scaling in the number of flows a trace
will be used. This latter case stems from it being able to correctly translate the
source and destination addresses found in the trace to local ones on the network, by
utilizing a reference table of addresses it creates during runtime, as described back
in Section 3.3. Further, it is correctly able to abide by the time constraints in the
pcap files it is trying to reproduce, as shown in Figure 5.1 and Figure 5.3. This
produces a correctly ordered packet trace that is sent to the UP, as well ensuring
correct time delays between packets. The slight exception to this is when looking
at the results of the UDP trace from Figure 5.1 and Figure 5.2. In the former fig-
ure, we see an increase in the time between each packet by a factor of around 20
when comparing it to the original trace found in Figure 4.1. An explanation for this
might be in the already low time numbers between the packets in the original trace.
Having a one to three microseconds delay between each packet is unrealistic and
might suggest that this trace might have been recorded on a local network where
speeds exceed those found in the real world. These short time difference might also
help explain why the packets came out of order in the latter figure shown, instead
of the expected ping-like scenario between the UE and the PDN. The packets are
not only separated into groups of what direction on the network they were sent, but
also have a zero-second time difference between each other.

When looking at the trace produced for the replayed TCP trace found in Figure 5.4,
the above-mentioned timing problems are not present. The major reason for this
is the more realistic time between the packets in this trace, compared to the UDP
trace. Not only is the trace in the completely expected order, but the difference in
time between packets is similar to its original trace. The only exception to this is in
some scaled packets, for example in the last two packets of the trace. Here the order
should be swapped when compared to the send trace from Figure 5.3. However,
due to the low time difference between packets when scaling in the amount of flows,
and the added time delay it takes for the packets to be received back, it is not

45

6. Discussion

surprising that the order of the packets might appear reversed in some cases in the
final output trace. This slight anomaly is of lesser importance than maintaining
the original trace order, however, and we can still conclude that the simulator still
behaves as expected.

6.2 Performance

When looking at the results from Section 5.2, we can first conclude that the tests
when finding a steady performance value of the UP, coincide with previous results
found that the strengths of the UP is handling multiple flows in parallel rather than
performing well on a single flow [9]. Further, the UP shows similar performance
output when using trace-based generated traffic compared to model-based ones. As
expected, packet loss starts being noticeable when Ericload is trying to push roughly
the same amount of packets in both approaches, around 120k packets per second
in these instances. In combining both pcap traces, we noticed higher output spikes
when measuring the results using 10 sample points per second. These would at
points reach as high as 20k, which scaling this to a whole second would yield an
output of 200k packets per second. This could also hint to the aforementioned UP
advantage of better handling multiple flows in parallel.

As for the occasional odd delay results, most notably when trying to replay the
UDP trace with a scale factor of one, these results are harder to explain. Plotting
the sampled delay points of this trace as presented in Figure 6.1, we can see that
the delay increases happen around the same time as the high output spikes occur
in Figure 5.6. This was somewhat to be expected. Why this test case in particular
yielded higher delays compared to the other test cases, however, remains unclear.
We see similar high delay spikes when inspecting the factor two scaled TCP trace
shown in Figure 6.2. Here, on the other hand, the only increase occurs right at the
beginning of the simulation, where it later evens out to a more stable rate. Why
only at this point in time and no other, given that this trace is always repeated
28 times, also remains unclear. A combination of these two factors might explain
the higher delays when combining both traces, as shown in Table 5.3. Here we see
an extreme increase by a factor of 50 at some points. Upon plotting the delays of
one of these results as shown in Figure 6.3, we see a very high initial latency, and
two smaller bumps consistent with the increases from the UDP trace. We can thus
conclude that both traces probably affect the overall delay during the test cases.

46

6. Discussion

Average latency : 39.91ms

70 1

Latency (ms)
S w ()]
o o o

w
o
1

20 1

10 1

0 10 20 30 40 50 60
Time (seconds)

Figure 6.1: Measurements from replaying youtubeLarge.pcap where the latency
rises during the matching high output peaks from Figure 5.6

Average latency : 5.35ms

I Mean
140 A

120 A

100 ~

80 -

Latency (ms)

60 1

40

20 1

0- T T T T T
0 10 20 30 40 50

Time (seconds)

Figure 6.2: Measurements from replaying 60mbTCP.pcap at a scale factor of two,
with unusual high latency numbers in the beginning.

47

6. Discussion

Average latency : 15.40ms

140 - Il Mean

120 A

100 A

Latency (ms)
[e)} [ee]

o o

1 1

N
o
1

N
o
1

30 40 50 60
Time (seconds)

Figure 6.3: Measurements from replaying a combination of 60mbTCP.pcap and
youtubeLarge.pcap, where both traces are scaled by a factor of two.

For the final test cases where model-based and trace-based traffic was combined, we
can conclude that Ericload is able to perform well while both of these traffic gen-
eration approached are used simultaneously. This further confirms the previously
mentioned strengths of the UP. The unusual low delay numbers, when combining
youtubeLarge.pcap with model-based traffic, might be explained by the amount of
packets generated by both approaches. The total amount of packets generated by
replaying this pcap file is 80k packets for the whole 60-second simulation. At the
largest scale, this averages around 13k packets per second, which would effectively
be drowned out by the model-based traffic. We might therefore conclude that these
test cases with the UDP trace only, is not sufficient to comment on the overall per-
formance due to the skewed numbers in outgoing packets generated.

There is no good explanation for the better delay numbers when only introduc-
ing model-based uplink traffic. One might theorize that the UP is better suited
for handling traffic when it is more evenly spread in both directions, but then we
should have also noticed similar results when doing performance measurements us-
ing model-based traffic only, as shown in Table 5.1. This is not the case, however.

The final thought regarding these tests is that the introduction of basic trace-based
traffic generation to Ericload has been successful, even when this is used in combi-
nation with model-based traffic. With the heaviest extra load of an extra 100k UDP
packets per second, the UP touches an overall 150k incoming packets per second
throughput in some instances. Most notably when replaying using only the TCP
pcap trace, and when this trace is combined with the UDP pcap trace. Figure 6.4
and Figure 6.5 illustrate this more clearly.

48

6. Discussion

Incoming packets total: 7567k

B Downlink
14 A mmm Uplink

12 4

10 1

Kilopackets

0 10 20 30 40 50 60
Time (seconds)

Figure 6.4: Measurements from replaying 60mbTCP.pcap of scale factor one, with
an added 100k uplink UDP traffic. The sampling frequency shown here is 10 samples
per second.

Incoming packets total: 7771k

,,_.
~
n

B Downlink
mmm Uplink

= = =
~ o ™~ w
wn o w o

Kilopackets

w
=)

2.5

0.0 -

30
Time (seconds)

Figure 6.5: Measurements from replaying 60mbTCP.pcap of scale one and
youtubeLarge.pcap of scale three, with an added 100k uplink UDP traffic. The
sampling frequency shown here is 10 samples per second.

6.3 Inter-arrival times and long-range dependency

Looking at Figure 5.7, we notice the expected behavior repetition and scaling has on
traffic property as discussed in Section 4.4. The original file shows the exponential
distribution of inter-arrival times trace-based traffic has, as well as LRD by not
seemingly trying to converge to a specific value. Performing the same calculations as
if repeating the original trace 100 times over, we notice no significant impact on the
characteristics of either plots, compared to the original. This affirms that repeating
traces this way still keeps the self-similar nature of the traffic. When scaling by
artificially introducing more zero-second inter-arrival times, however, we see these
properties no longer hold. As expected, the histogram distribution is skewed more

49

6. Discussion

heavily toward these instant packets, which has the effect of the traffic losing its
self-similar properties it showed before. This is most notable when only introducing
scaling by itself. When combining it with the repetitions, this negative effect is
not as large, most likely due to the error muddling out as the total packet amount
increases with the repetitions. The negative effect scaling has could potentially be
corrected for by not introducing the additional packets as having zero seconds inter-
arrival times, but instead randomly drawing the time that a packet would be sent
according to the original time and a random offset.

50

/

Conclusion

During this project, Ericload has been enhanced with the capability of replaying
packet traces on a basic level to the User Plane (UP). It accomplishes this by first
reading the traces from disk, loading them into buffer memory and sending these
packets out to the network. To decide whether a packet is allowed to be sent out
during a given time, Ericload compares its internal timestamps to the timestamp
of the packets found in their original trace. Should enough simulation time have
passed to match the elapsed time of any packet p; compared to the timestamp of
the first packet pg from its corresponding trace, Ericload will send out the packet to
the network. It uses this method primarily to mimic both the order and time delays
found in the original trace. Furthermore, Ericload is capable of scaling the traffic
from a pcap trace both in time and in the number of parallel flows introduced that
sends identical trace-based traffic. The time scaling is solved by having the full trace,
i.e.; all packets, replayed before being allowed to replay from the beginning of the
trace again. Scaling in the number of flows is solved by having an arbitrary packet
at time t,, being resent immediately, but with its packet information accommodated
for the flow it belongs to. The two modes of scaling gives Ericload the capability of
controlling the amount of trace-based traffic as a property of continuous time and
the amount of packets generated at a given point in time.

Performing load tests using different combination of trace-based and model-based
traffic generated by Ericload to the UP, further confirmed that the simulator is ca-
pable of replaying traffic on a basic level. At times, we noticed high latency values
for trace-based traffic compared to sending model-based traffic only. These seemed
to correlate with the burst spikes found in the traces themselves, which would af-
fect the latency of the overall simulation. The exact reason for this still remains
unclear. However, the overall performance of the simulator and the UP was not
affected by these unusual latency numbers. Also, theoretical calculations performed
on the inter-arrival times of one of the traces used, confirmed the known self-similar
properties found in real life network traffic. It also suggests a more appropriate flow
scaling to accommodate the negative impact instantly copied and sent packets can
have on the self-similar properties of the final traffic output.

With all this, we conclude that the simulator is capable of generating scalable trace-
based traffic for the UP. Whose performance is on par with the already implemented
model-based traffic, when either running trace-based traffic alone or in combination
with model-based traffic. Future work in this area might yield more interests results
if focused on the following topics:

51

7. Conclusion

52

» Improved replay state machine - Replaying the traces correctly relies heav-

ily on abiding by the time constraints of the timestamps of each packet. A
complex state machine could improve correctness by taking into account more
properties like current network conditions or more detailed state information
of packets.

Improved network - Scaling in flows was limited by only using one static UE
address. While this did not seem to affect the overall performance, it does not
entirely mimic a properly scaled traffic flow. A solution to incorporate more
UE addresses would possibly provide better analysis on, scaled, trace-based
traffic.

Improved traffic analysis - Ericload can currently only create its own trace,
of the traffic it is generating, inside the simulation itself and completely re-
stricts any capture performed from the outside, which does not allow detailed
traces of larger replays to be produced without severely impacting perfor-
mance. A solution to this might yield better and more interesting results
when analysis of the final output of the replayed traffic.

[12]

[13]

Bibliography

Yu-chung Cheng et al. “Monkey See, Monkey Do: A Tool for TCP Tracing and
Replaying”. In: In USENIX Annual Technical Conference. 2004, pp. 87-98.
Siyoung Choi et al. “56G K-SimNet: End-to-End Performance Evaluation of 5G
Cellular Systems”. In: 2019 16th IEEE Annual Consumer Communications
Networking Conference (CCNC). 2019, pp. 1-6. pOI: 10.1109/CCNC.2019.
8651686.

Weibo Chu et al. “Model-based real-time volume control for interactive net-
work traffic replay”. In: 2012 IEEE Network Operations and Management
Symposium. 2012, pp. 163-170. DOI: 10.1109/NOMS.2012.6211895.

Control and User Plane Separation of EPC nodes (CUPS). URL: https://
www . 3gpp - org/news-events/3gpp-news/1882-cups. Accessed: Friday 1%
July, 2022.

Data Plane Development Kit (DPDK). URL: https://www.dpdk.org/. Ac-
cessed: Friday 15% July, 2022.

Docker. URL: https://www.docker.com/. Accessed: Friday 15 July, 2022.
Tomas Dominguez-Bolano et al. “The GTEC 5G link-level simulator”. In: 2016
Ist International Workshop on Link- and System Level Simulations (IWSLS).
2016, pp. 1-6. por: 10.1109/IWSLS.2016.7801585.

Marcin Dryjanski. 5G Core Network Functions. 2018. URL: https://www.
linkedin.com/pulse/5g-core-network-functions-marcin-dryjanski.
Accessed: Friday 15¢ July, 2022.

Olof Diisterdieck and Tasdikul Huda. 5G User Plane Load Simulator. Master’s
Thesis. Gothenburg, Sweden, 2019.

Wu-chang Feng et al. “TCPivo: a high-performance packet replay engine”. In:
(Jan. 2003), pp. 57-64. DOI: 10.1145/944773.944783.

Seung-Sun Hong and S. Felix Wu. “On Interactive Internet Traffic Replay”.
In: Recent Advances in Intrusion Detection. Ed. by Alfonso Valdes and Diego
Zamboni. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 247-264.
ISBN: 978-3-540-31779-1.

T. Karagiannis, M. Molle, and M. Faloutsos. “Long-range dependence ten
years of Internet traffic modeling”. In: IEEE Internet Computing 8 (2004),
pp. H7-64.

Will E. Leland et al. “On the self-similar nature of ethernet traffic.” In: Com-
puter Communication Review. Vol. 25. 1. Bellcore, 1995, pp. 202-213. URL:
https://search.ebscohost.com/login.aspx?direct=true&db=edselc&
AN=edselc.2-52.0-0029179676&site=eds-1live&scope=site&authtype=
guest&custid=s3911979&groupid=main&profile=eds.

53

https://doi.org/10.1109/CCNC.2019.8651686
https://doi.org/10.1109/CCNC.2019.8651686
https://doi.org/10.1109/NOMS.2012.6211895
https://www.3gpp.org/news-events/3gpp-news/1882-cups
https://www.3gpp.org/news-events/3gpp-news/1882-cups
https://www.dpdk.org/
https://www.docker.com/
https://doi.org/10.1109/IWSLS.2016.7801585
https://www.linkedin.com/pulse/5g-core-network-functions-marcin-dryjanski
https://www.linkedin.com/pulse/5g-core-network-functions-marcin-dryjanski
https://doi.org/10.1145/944773.944783
https://search.ebscohost.com/login.aspx?direct=true&db=edselc&AN=edselc.2-52.0-0029179676&site=eds-live&scope=site&authtype=guest&custid=s3911979&groupid=main&profile=eds
https://search.ebscohost.com/login.aspx?direct=true&db=edselc&AN=edselc.2-52.0-0029179676&site=eds-live&scope=site&authtype=guest&custid=s3911979&groupid=main&profile=eds
https://search.ebscohost.com/login.aspx?direct=true&db=edselc&AN=edselc.2-52.0-0029179676&site=eds-live&scope=site&authtype=guest&custid=s3911979&groupid=main&profile=eds

Bibliography

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

54

K. Liang et al. “Performance Analysis of Cellular Radio Access Networks Rely-
ing on Control- and User-Plane Separation.” In: IEEE Transactions on Vehic-
ular Technology, Vehicular Technology, IEEE Transactions on, IEEE Trans.
Veh. Technol 68.7 (2019), pp. 7241-7245. 1sSN: 0018-9545. URL: https://
search.ebscohost.com/login.aspx?direct=true&db=edseee&AN=edseee.
8721118&site=eds-1live&scope=site&authtype=guest&custid=s3911979&
groupid=main&profile=eds.

Hongri Liu et al. “An Interactive Traffic Replay Method in a Scaled-Down
Environment”. In: IEEE Access 7 (Oct. 2019), pp. 1-1. DOI: 10.1109/ACCESS.
2019.2947062.

Marco Mezzavilla et al. “5G MmWave Module for the Ns-3 Network Simula-
tor”. In: MSWiM ’15. Cancun, Mexico: Association for Computing Machinery,
2015, pp. 283-290. 1SBN: 9781450337625. DOI: 10.1145/2811587 .2811619
URL: https://doi.org/10.1145/2811587.2811619.

J Susan Milton and Jesse C Arnold. Schaum’s Outline of Introduction to Prob-
ability Statistics: Principles Applications for Engineering the Computing
Sciences. McGraw-Hill Higher Education, 1994.

Martin Miiller et al. “Flexible multi-node simulation of cellular mobile commu-
nications: the Vienna 5G System Level Simulator”. In: EURASIP Journal on
Wireless Communications and Networking 2018 (Sept. 2018). DOI: 10.1186/
513638-018-1238-7.

Magnus Olsson and Catherine Mulligan. EPC and 4G packet networks: driving
the mobile broadband revolution. Academic Press, 2012.

Kihong Park and W. Willinger. “Self-Similar Network Traffic and Performance
Evaluation”. In: 2000.

V. Paxson and S. Floyd. “Wide area traffic: the failure of Poisson modeling”.
In: IEEE/ACM Transactions on Networking 3.3 (1995), pp. 226-244. poL:
10.1109/90.392383.

Stefan Pratschner et al. “Versatile mobile communications simulation: the Vi-
enna 5G Link Level Simulator”. In: EURASIP Journal on Wireless Communi-
cations and Networking 2018 (Sept. 2018). DOI: 10.1186/s13638-018-1239-
6.

tepdump. URL: https://www.tcpdump.org/. Accessed: Friday 15¢ July, 2022.
tcpreplay. URL: https : //tcpreplay . appneta . com/. Accessed: Friday 1%
July, 2022.

YAML. URL: https://www.yaml.org/. Accessed: Friday 1°° July, 2022.

https://search.ebscohost.com/login.aspx?direct=true&db=edseee&AN=edseee.8721118&site=eds-live&scope=site&authtype=guest&custid=s3911979&groupid=main&profile=eds
https://search.ebscohost.com/login.aspx?direct=true&db=edseee&AN=edseee.8721118&site=eds-live&scope=site&authtype=guest&custid=s3911979&groupid=main&profile=eds
https://search.ebscohost.com/login.aspx?direct=true&db=edseee&AN=edseee.8721118&site=eds-live&scope=site&authtype=guest&custid=s3911979&groupid=main&profile=eds
https://search.ebscohost.com/login.aspx?direct=true&db=edseee&AN=edseee.8721118&site=eds-live&scope=site&authtype=guest&custid=s3911979&groupid=main&profile=eds
https://doi.org/10.1109/ACCESS.2019.2947062
https://doi.org/10.1109/ACCESS.2019.2947062
https://doi.org/10.1145/2811587.2811619
https://doi.org/10.1145/2811587.2811619
https://doi.org/10.1186/s13638-018-1238-7
https://doi.org/10.1186/s13638-018-1238-7
https://doi.org/10.1109/90.392383
https://doi.org/10.1186/s13638-018-1239-6
https://doi.org/10.1186/s13638-018-1239-6
https://www.tcpdump.org/
https://tcpreplay.appneta.com/
https://www.yaml.org/

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

A

Appendix 1

N
*
*

¥ % X X X ¥ X * %

*x/

\
*
*

Compiles

p:

fp:

str:
optimize:
netmask:

¥ % %X %X X ¥ %X % X * %

returns:

*x/

Main function used to read a pcap file from disk.
fname: string containing the full path of a pcap file.
errbuf: string of the error messages generated during

function call.

returns: pointer to a pcap_t, the handle used for reading the

captured packets. A failed reading fills an error
messages into errbuf.

pcap_t* pcap_open offline(const char* fname, char* errbuf);

a filter string and returns a filter program. Ezample

of a filter string could be "port 80 or 22" which would filter
out all packets except those sent on port 80 and port 22.

handle for reading packets from packet capture.
pseudo-machine-language compiled from filter siring.
string representation of the filter to apply.
controls whether optimization is performed on result.
IPv4 netmask of the network.

success or failure of the function call.

int pcap_compile(pcap_t* p, struct bpf_program+ fp, const char* str,

int optimize, bpf_u_int32 netmask);

Listing 4: Relevant functions used from the libpcap library.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

A. Appendix 1

VLTS

*
*
*
*
*
*
*
*
*
*

int

/*x
* Applies a filter program to a processed pcap file and filters
* out unwanted packets.
*
* p: handle for reading packets from packet capture.
* fp: pseudo-machine-language compiled from a filter string.
*
* returns: success or failure of the function call.
*%/
int pcap_setfilter(pcap_t* p, struct bpf_program* fp);
VLT
* Packet processing loop which process packets provided by the
* handle and executes the provided callback function and tis
* arqguments on the packets. Future calls of this function will
* make it continue where it left off 4if any packets remain
* since the previous call.
*
* p: handle for reading packets from packet capture.
* cnt: max number of packets to be processed.
* 0 or -1 represents infintty.
* callback: callback function applied on every processed packet.
* user: user arguments provided to the callback function.
*
* returns: total number of processed packets or an error wvalue.
*x/
int pcap_dispatch(pcap_t* p, int cnt, pcap_handler callback,

u_char* user);

Function used to process packets in a step-wise manner.
One packet is processed from the handle per function call.

p: handle for reading packets from packet capture.

pkt_header: points to the 'header' part of the processed packet
containing timestamps.

pkt_data: points to the 'data' part of the processed packet
containing actual data.

returns: success or failure of the function call.

*x/

pcap_next_ex(pcap_t* p, struct pcap_pkthdr** pkt_header,
const u_char** pkt_data);

Listing 5: Continuation of Listing 4.

IT

	List of Figures
	List of Tables
	Introduction
	Introduction
	Background
	Aim
	Research Questions
	Goals

	Related Work
	Limitations
	Outline

	Background
	Definitions
	Packet Capture
	Cloud Native
	Configuration File

	Traffic Modeling
	Analytic Model-Based Traffic Generation
	Trace-Based Traffic Replaying

	4G and 5G architecture
	4G architecture
	5G architecture

	Ericload
	Setup
	Execution

	Implementation
	Time-lapse overview
	Designing groups and processing pcap files
	Reference table
	Creating and sending packets
	Receiving packets and finishing execution

	Evaluation
	Metrics
	Total amount of packets and data
	Latency
	Throughput

	Replay verification
	Correct packet creation
	Traffic repetition
	Scaling
	pcap traces used for verification

	Performance
	Maximum rate using model-based traffic
	pcap traces used for performance evaluation

	Inter-arrival times and long-range dependency

	Results
	Replay verification
	UDP trace
	TCP trace

	Performance
	UP performance
	Replay performance
	Trace-based and model-based performance

	Inter-arrival times and long-range dependency

	Discussion
	Replaying traffic
	Performance
	Inter-arrival times and long-range dependency

	Conclusion
	Bibliography
	Appendix 1

