
Wireless transmission of HDMI signals

Bachelor Thesis

SVEN ERIKSSON
MIKAEL LARSSON
JACOB ROSÉN

Department of MC2
Chalmers University of Technology

Gothenburg, Sweden 2013

� THIS PAGE HAS INTENTIONALLY BEEN LEFT BLANK �

Wireless transmission of HDMI

signals

Bachelor Thesis

by

Sven Eriksson, Mikael Larsson, Jacob Rosén

Supervisor:

Zhongxia He

Examiner:

Vessen Vassilev

Department of MC2

Chalmers University of Technology

Gothenburg, Sweden 2013

Wireless transmission of HDMI signals
SVEN ERIKSSON (svene@student.chalmers.se)
MIKAEL LARSSON (mikalar@student.chalmers.se)
JACOB ROSÉN (jacobro@student.chalmers.se)

c©Sven Eriksson, Mikael Larsson, Jacob Rosén, 2013.

MCCX02 - Bachelor thesis at Microtechnololgy and Nanoscience
Bachelor Thesis No. MCCX02-13-09

Supervisor: Zhongxia He
Examiners: Vessen Vassilev

Department of Microtechnololgy and Nanoscience
Chalmers University of Technology
SE-412 96 Göteborg
Sweden
Göteborg, Sweden 2013

mailto:svene@student.chalmers.se
mailto:mikalar@student.chalmers.se
mailto:jacobro@student.chalmers.se

Abstract

A growing trend of physical separation of digital content and human

interfaces is driving the demand for wireless solutions for streaming

high bit rate data from one unit to another. This gives the end user

freedom of placing equipment wherever wanted without any thought

of problems with cables.

The goal is to serialize and later deserialize HDMI signals to enable

it to be sent over a radio link. A Xilinx Spartan-6 LTX is used as a

hardware platform. To limit the scope of the project it was decided

that communication would only go one way. This prevents the negoti-

ation between the HDMI source and monitor from taking place. The

negotiation has to be implemented on the hardware platform.

A system design for serialization and sending of the serialized HDMI

data was successfully created. Most of the di�erent parts of the system

have been veri�ed to work individually, but not together. A fully

working prototype is not far away.

Sammandrag

En växande trend av att fysikt separera gränssnitt och lagring på-

verkar behovet för trådlösa alternativ för att strömma höghastighets-

data från en enhet till en annan. Detta ger slutanvändaren frihet i att

placera sin utrustning fritt utan att behöva begränsas av kablar.

Målet är att serialisera HDMI-signaler för att kunna skicka dem

över en radiolänk. En Xilinx Spartan-6 LTX har använts som hårdva-

ruplattform. För att begränsa projektets omfattning bestämdes det att

kommunikationen över radion bara kommer gå åt ett håll. Detta gör så

att den förhandling som normalt äger rum mellan en HDMI-källa och

en mottagare inte kan ske. Förhandlingen måste istället implementeras

i hårdvaruplattformen.

En systemdesign för serialisering och överföring av HDMI-signaler

skapades. De �esta av delarna i designen har, genom tester eller simu-

leringar, veri�erats att fungera ensamma. En fullt fungerande prototyp

är därför inte långt borta.

Acknowledgements

First we would like to thank Zhongxia He helping us through this project
with ideas and support during the project. We would also like to thank Jens
Kjellerup from Chalmers School of Entrepreneurship who gave us inspiration
for applications of wireless transmission of video data. The students Stefan
Buller, Joel Magnusson and Torbjörn Rathsman helped us by providing a
working LATEX template for the �rst pages of this report. They did also read
through our report and gave valuable comments.

The Authors, Gothenburg, July 30, 2013

II

Contents

1 List of abbreviations 1

2 Introduction 2
2.1 Purpose . 3
2.2 Method and Planning . 3
2.3 Hardware Platform and Development Tools 5

2.3.1 The FPGA compared with ASIC and microprocessor . 5
2.3.2 Selection of Hardware Platform 6
2.3.3 Software- and Hardware-Tools 6

2.4 Limitations . 7
2.4.1 One way communication 7
2.4.2 Maximum speed . 7

3 The High Speed Serial I/O Interface 7
3.1 8b/10b encoding . 8
3.2 Design- and Veri�cation-Method 9
3.3 Implementing a High Speed Radio Interface 10

3.3.1 The Frame Generator 12
3.3.2 The Multi-Gigabit Transceiver 13
3.3.3 The Frame Splitter . 15
3.3.4 Generation of Output Clock 17

3.4 Veri�cation of High Speed Radio Interface 18

4 HDMI 20
4.1 HDMI speci�cation . 20

4.1.1 Hardware . 20
4.1.2 Software . 21

4.2 Using FPGA to implement sender / receiver 23
4.2.1 Sender . 23
4.2.2 Receiver . 24
4.2.3 Implement Method and Environment 24

4.3 Veri�cation . 25
4.3.1 PC to FPGA, EDID 25
4.3.2 PC to FPGA to screen, HDMI signal 26
4.3.3 PC to FPGA to screen, HDMI signal, with RGB pixel

data . 26

5 Results 26

6 Discussion 28
6.1 Future . 28

6.1.1 New testing environment for HDMI 29

III

A I2C protocol 31

B EDID data 32
B.1 First block . 32
B.2 Extension block . 33

1

1 List of abbreviations

ASIC Application Speci�c Integrated Circuit
CEC Consumer Electronics Control
DDC Display Data Channel
DVI Digital Visual Interface
EDID Extended display identi�cation data
FPGA Field-programmable gate array
HDL Hardware description language
HDMI High De�nition Multimedia Interface
HPD Hot Plug Detect
HSync Horizontal Synchronisation
I2C Inter-Integrated Circuit
IC Integrated Circuit
I/O Input/Output
IP-core Intellectual Property Core
ISE Integrate Software Environment
JTAG Joint Test Action Group
MGT Multi-Gigabit Transceiver
RGB Red, Green, Blue
PC Personal Computer
SCL Serial Clock Line
SDA Serial Data line
TMDS Transition-Minimized Di�erential Signalling
USB Universal Serial Bus
VHDL VHSIC Hardware Description Language
VHSIC Very-High-Speed Integrated Circuits
VSync Vertical Synchronisation

2

2 Introduction

The amount of digital content available to both consumers and professional
users is constantly growing. The rate of growth is not likely to decrease while
the production and distribution of material keep getting faster. Following
this comes a demand of fast and easy access to, and ability to present, content
at any time. The rapid advancement in the technical �eld also tends to
render hardware outdated within a couple of years. This is why it is usually
a bad investment to build all of the physical information infrastructure into
buildings as it doesn't provide future �exibility regarding communication
standards and placement of equipment. Infrastructure is getting even more
important as the trend is to separate content storage, processing and human
interfaces. For example, a home user may want to display an online video
in the living room using the internet to connect with the workstation in the
o�ce, controlling it all from a keyboard sitting on the users knee.

Driven by the telecommunication industry, the capacity of wireless trans-
mission is almost continuously increasing. For example, microwave based
point-to-point transceivers can now reach multi-Gbit/s data rates. These
improvements open great opportunities of transferring real-time multimedia
wirelessly. A wireless infrastructure is better in meeting many of today's
requirements such as fast setup, ease of replacement and the possibility of
more independent placement.

A widely used standard for transmission of real-time digital video and au-
dio is HDMI (High De�nition Multimedia Interface). The standard de�nes
both the physical layer and how pixel, audio and auxiliary data are sent.
Using a pair of microwave radios in combination with appropriate HDMI
interfaces one can transfer this kind of data wirelessly. With the use of high
speed manipulation, additional data may also be sent along with HDMI.
This technology applied to the scenario described above is illustrated in �g-
ure 1. Another interesting application is integration into hand held units,
e.g. tablets and mobile phones, making it possible to easily stream a video
to any receiver regardless of if it has been used before.

As many radios only work with serial data while the HDMI send parallel
data streams, some sort of interface must be used between the HDMI source
and the radio transmitter and then again between the radio receiver and the
display. The aim of this project is to make an interface capable of turning
the parallel data from the HDMI signal into serial data and then back to
parallel data in the form of a HDMI signal. The possibility to incorporate
extra features into the solution will also be investigated.

3

Figure 1: A home application of multi-Gbit/s radio

2.1 Purpose

The purpose of the project is to develop an application utilizing and demon-
strating the capabilities of certain high end microwave radio equipment. The
purpose is broken down into a primary and secondary goal.

• Primary: Design and implement an interface between HDMI and a
microwave radio accepting and providing serial data at 2.5 Gbit/s.

• Secondary: Incorporate one or more commercially viable extra fea-
tures, such as the ability to embed other signals in the serial data
stream or manipulation of HDMI-video, in the solution.

2.2 Method and Planning

The group decided to break down the problem into smaller tasks to be solved
in parallel. The interfaces between the parts were not extensively de�ned
due to the nature of the project, crucial information such as the number of
channels that had to be serialized was to be determined as work progressed.
The work within each part would be iterated as seen i �gure 2. The literature

4

used in this project consisted of the two data sheets for the hardware, the
HDMI speci�cation, speci�cations of other protocols and various user guides
from Xilinx.

Figure 2: Iterative work�ow

The project was initially divided into three tasks. Communication with
HDMI devices and with the radio equipment were needed to complete the
project. Incorporation of extra features was a stretch goal if we had the
time. Each task includes both sender and receiver end versions.

1. Communicate with connected HDMI device. Receive or transmit HDMI
data.

2. Incorporate extra feature.

3. Communicate with radio equipment. Serialize and deserialize data.

The two main tasks were worked on in parallel with the focus to get a working
prototype done before the end of the project. Figure 3 illustrates how the
tasks are related.

5

Figure 3: Principal view of the separate subsystems, during development a
coaxial cable will be used instead of the radios.

2.3 Hardware Platform and Development Tools

2.3.1 The FPGA compared with ASIC and microprocessor

An FPGA Field-programmable gate array) is an IC (integrated circuit) with
the ability to be con�gured and recon�gured after manufacturing. It is com-
mon to use some form of HDL (Hardware description language) to describe
the intended functionality and then download the design onto an FPGA.
There are several HDLs to choose from. This is not an issue as one design
might use di�erent languages through the use of modules. A module is a
piece of logic written in one of the many HDLs, it must have both inputs
and outputs ports. A module responds to changes in the inputs and calcu-
lates the outputs. Every module can instantiate and connect others, creating
a hierarchical structure [1].

HDL can also be used to describe the functionality of ASICs (Application
Speci�c Integrated Circuit). ASICs are much cheaper per unit but requires
much higher initial investment. If the design of an ASIC isn't working as
intended, one must manufacture new units with a new initial investment.
Development using FPGAs is an inexpensive way of testing a design before

6

larger productions. If the productions are small or the product might need
future updates it is a good idea to use FPGAs [2].

The FPGA's logic can be programmed to do several tasks simultaneously,
unlike a processor which can only perform a single instruction at a time. FP-
GAs are more expensive than processors. The FPGA's logic is programmable
while the processor has predetermined instructions that the developer must
use.

2.3.2 Selection of Hardware Platform

An FPGA was chosen to work with because of its ability to process data in
parallel and as it can be recon�gured. MGTs (Multi Gigabit Transceivers)
are needed for the communication with a radio. The FPGA must contain
atleast two MGTs. One for serial input and one for serial output.

The following hardware platforms was used by the project group during the
project.

• Enclustra Mars MX2, Xilinx Spartan-6 LXT FPGA Module [3]

• Enclustra Mars Starter, Base Board for Mars FPGA Modules [4]

2.3.3 Software- and Hardware-Tools

The HDLs that were used in this project were VHDL (VHSIC Hardware De-
scription Language) and Verilog. New modules were designed using VHDL.
Already existing modules used in the project were written in Verilog. As the
compiled programming �le for an FPGA is very platform-dependent, the
group used development tools from Xilinx as they are the manufacturers of
the FPGA.

The software Xilinx ISE (Integrate Software Environment) was used to gen-
erate a programming �le for the FPGA from the HDL code. The processes
necessary for this translation are called synthesizing, mapping, placing and
routing.

With the Xilinx ISE comes a simulation software called iSim. This can be
used to verify the functionality of a design. iSim provides the ability to
trace inputs, outputs and internal signals over the time period simulated.
ModelSim is another simulation tool that was used. It works in a similar
way as iSim and some of the group members had experience in working with
it.

7

A standard PC (Personal Computer) was used for both code writing and the
translation from HDL to a programming �le. The generated programming
�le was used to program the FPGA using a program called ChipScope and
a JTAG (Joint Test Action Group) connector. Using ChipScope the internal
signals of the FPGA could be monitored.

2.4 Limitations

Some simpli�cations and limitations of the �nal product where made during
the project.

2.4.1 One way communication

The HDMI system normally uses two way communication in order for the
two devices to agree to some parameters they should use, e.g. resolution
and color encoding. Two way communication is more di�cult to implement
than one way communication over the high speed serial I/O (Input/Output).
When using one way communication between the sender and the receiver
the FPGAs must handle negotiation with the HDMI devices. In order to
solve this, the sender FPGA will only accept signals all HDMI devices shall
support.

2.4.2 Maximum speed

The hardware is working with a serial data rate of 2.5 Gbit/s. This is lower
than the maximum rate of 4.95 Gbit/s of the HDMI speci�cation version
1.3. Because of this the resolution of the video must be limited. This is done
during negotiations with the HDMI source.

3 The High Speed Serial I/O Interface

As the demands for higher data rates are growing in virtually all electronic
products and on all levels within each system, the industry is currently ex-
periencing a shift from parallel to high speed serial I/O solutions. The use
of serial interfaces brings several bene�ts such as smaller connectors, lower
electromagnetic interference, and better noise immunity. Many of these ben-
e�ts also lead to a lower production cost [5]. In this context, data rates
from around 1 Gbit/s up to roughly 10 Gbit/s are considered high speed or
Multi-Gigabit.

8

On today's market, there are mainly three providers of FPGAs with MGTs,
these are Altera, Lattice and Xilinx. Using any of these products one can
perform real-time processing for applications like image processing, automo-
tive safety systems or wireless communication systems. The Xilinx Spartan-6
LXT used in this project contains several MGTs that can be utilized by the
serial interface.

3.1 8b/10b encoding

When transmitting serial data from one device to another, there are issues
that have to be dealt with. The following issues are addressed by the 8b/10b
(eight-bit-ten-bit) encoding scheme [6].

1. The frequency of the serial data stream may fall below the lower band-
width boundary of the transmission medium.

2. Transitions may occur too rarely for the receiver to align its sampling
clock.

3. The receiver does not know where the word-boundaries are.

The �rst two are caused by the risk of having data composed of many con-
secutive ones or zeros. The third issue is caused by the fact that all possible
words can be made up by parts of two di�erent words, making it impossi-
ble to spot the beginning and end in the stream of ones and zeros. This
phenomenon is illustrated in �gure 4.

Figure 4: Illustration of word alignment issue

To prevent the transmission of long rows of ones or zeros and in that way
overcome the �rst two issues, the 8b/10b scheme adds two bits to each 8 bit

9

data word. Every 8 bit word has two unique 10 bit representations. Most of
these have the same number of ones and zeros. Some 10 bit words have four
ones in the �rst representation and six in the other. Enabling the transmitter
to choose from these representations, a minimum frequency as well as enough
transitions for clock recovery to work can be maintained.

As the encoder adds two extra bits, there are some 10 bit words that can
never occur while transmitting encoded 8 bit words. These words, called
K-characters, can be used for special purposes. In this project one such K-
character is used to solve the third problem described earlier in this section.
The receiver aligns its word boundaries to that character and then stay
properly aligned to the following words.

3.2 Design- and Veri�cation-Method

The serial interface was designed using the software described in section
2.3.3. Additionally, to access the MGT in HDL code, a so called IP-core
(Intellectual Property Core) had to be instantiated. An IP-core can be seen
as a protected or "black-box" module accessible to the user but not editable.
This was instantiated and con�gured with the help of the Core Generator
built into the ISE. The Core Generator is a software accessible from within
the Xilinx ISE that enables the user to generate custom IP-cores through a
wizard.

To impose stimulus to the data inputs during simulation, a so called test
bench was written. A test bench is a simulation-only module that can read
from the outputs and write to the inputs of the design being simulated.
In this case, the transmitter output was connected to the receiver input.
This connection, working as a virtual loop-back cable, enabled simultaneous
simulation of both transmitter and receiver.

When the transmitter was working correctly in simulation, the design was
also veri�ed on the hardware platform. As the MGT pins of the FPGA are
connected to the HDMI connector on the Mars starter board, this veri�cation
was done by connecting the custom made adapter board shown in �gure 5
to that HDMI connector. One of the coaxial cables was then connected to
the oscilloscope.

10

Figure 5: HDMI pins to coaxial connector adapter board

3.3 Implementing a High Speed Radio Interface

The microwave radio that is to be interfaced works at a �xed data rate of 2.5
Gbit/s and does only accept serial data. This means that the only possible
data transfer between the FPGA and the radio is a serial data stream at this
rate. As the HDMI usually is sent over several wires, these channels have to
be serialized to be sent over the radio link. In the receiving end, these have
to be deserialized again. Another important function is to handle di�erences
in the data rate of the HDMI data and the serial data stream. The various
modes of HDMI use di�erent data rates that may be lower than 2.5 Gbit/s.
On top of this, the interface should also take care of all the problems, e.g.
word alignment, addressed by the 8b/10b encoding scheme, preferably by
implementing exactly that. The functionality to implement is listed below.

1. Sender rate matching and transmission of K-character

2. Serialization

3. 8b/10b encoding

4. 8b/10b decoding and word alignment

5. Deserialization

11

6. Receiver rate matching

An explanatory overview of the transmitter design can be seen in �gure 6.

Figure 6: An explanatory view of the transmitter design

Starting from the right in �gure 6, the output is a serial data stream at 2.5
Gbit/s. The MGT/Encoding block contains functionality for both serializa-
tion and 8b/10b encoding. As the encoding extends each 8 bit word to a
length of 10 bits, the input rate must be 2.0 Gbit/s to achieve the desired
output rate. Hence, one process takes data from the FIFO (First in-First
out) bu�er and writes it to the MGT at a rate of 2.0 Gbit/s. The bu�er is
fed with data by another process that samples the HDMI signals and writes
their values to the bu�er. The rate matching functionality of the system is
needed when the incoming HDMI data is slower than the bu�er output of 2.0
Gbit/s. When the FIFO bu�er is read from at a higher rate than it is �lled,
it will eventually run empty. In that case, the output takes on a default
value. This default value is chosen to be a K-character such as described
i section 3.1. These special characters are in this way used to �ll out the
bandwidth during serial transmission and can later be detected and sorted
out in the receiver.

As the receiver's function mainly is to revert the operations made by the
transmitter, its structure is also similar to that in �gure 6.

12

Figure 7 contains a view of the actual implementation of the serial interface.
The �gure shows the so called top module that contains all the other software
modules used in the design. Descriptions of the various modules are found
in the subsequent sections.

Figure 7: Top module of serial interface

3.3.1 The Frame Generator

The FRAME_GEN module is responsible for the sender rate matching and
the transmission of K-characters for alignment. This module is fed all three
clocks used in the serial interface.

HDMICLK_IN Provided by HDMI interface. DATA_IN is sampled on each positive edge
TXUSRCLK Provided by MGT. Running at the byte-rate, e.g. 250 MHz
TXUSRCLK2 Provided by MGT. Running at 32-bit-word-rate, e.g. 62.5 MHz

To transmit data using the MGT in the con�guration used for this project,
a 32-bit vector has to be written to its TXDATA-port on the positive edge
of TXUSRCLK2. As the width of the DATA_IN-bus is 8 bits, this can be
sampled a maximum number of four times during one TXUSRCLK2-cycle.
Due to this, four internal vector signals are used to store the sampled input
data during the TXUSRCLK2-cycle. Using a simple counter, the �rst sample
is written to "vec0", the second to "vec1" and so on. On the positive edge

13

of TXUSRCLK2, these four vectors are concatenated to form a 32-bit word
which is written to the TXDATA-port of the MGT. After each concatenation
and transmission to the MGT, the vectors are reset to their default value
of a K-character. If the HDMICLK_IN runs too slow to �ll the whole 32-
bit word in one TXUSRCLK2-cycle, the receiver will spot this through the
detection of one or more K-characters. This technique enables the radio to
run at a �xed rate higher than the HDMICLK_IN. It also makes it possible
for the receiver to calculate the rate of the transmitter's HDMICLK_IN.

To avoid unde�ned behavior that might occur if the internal vectors are
concatenated at the same time the DATA_IN is sampled, the mechanism
shown in �gure 8 was added.

Figure 8: Relationship between MGT-clocks and the reading-signal

The �gure shows how an internal signal called "reading" is driven high just
before the positive edge of TXUSRCLK2, and then driven low again just after
that same edge. This signal is controlled by a process running on the negative
edge of TXUSRCLK, the topmost clock in �gure 8. As TXUSRCLK2 is
edge-aligned to every fourth positive edge of TXUSRCLK, it is possible to
use a simple counter to drive "reading" high on the last negative edge of
TXUSRCLK before data is written to the MGT. The sampling process only
writes to one of the four internal vectors if "reading" is low. If it is high at the
time of a positive HDMICLK_IN edge, the sample is written to a temporary
vector. On the next sampling occasion, both the current DATA_IN and the
value stored in the temporary vector is written to two of the four standard
vectors.

3.3.2 The Multi-Gigabit Transceiver

The MGT contains functionality for both the serialization, deserialization
and 8b/10b encoding and decoding. Figure 9 shows the contents of theMGT
module previously shown in �gure 7. This contains the module called gtp
and supporting clock modules. GTP is Xilinx's name for this version of their
MGT. The gtp module shown here is just a wrapper for the actual instance
of the GTP IP-core which contains more inputs and outputs. The wrapper
is auto-generated by the Core Generator and allows the user to choose which
pins are relevant for their application. All the dynamic inputs and all the
relevant outputs are shown in �gure 9, but there are some con�gurations

14

done inside the wrapper.

Figure 9: Contents of the MGT module

One instance of the GTP actually contains two transceivers, zero and one,
many of the inputs and outputs come in pairs. In this design, transceiver
zero is used for transmission and transceiver one is dedicated for receiving,
allowing the same software module to be used in both the sender and receiver
implementation. This was done to speed up the design process as both
sender and receiver share some key resources such as clocking. It also makes
simultaneous simulation of both transmitter and receiver easier.

One of the few things that must always be provided for the MGT to work is
correct clocking. The �rst clock to provide should keep a rate corresponding
to the line rate divided by 20. In our case this gives us 2.5 GHz / 20 =
125 MHz. On board the hardware platform is a 50 MHz clock connected to
the FPGA. The MGT_USRCLK_SOURCE_PLL1 is a wrapper for a clock
divider accessible through the standard library IEEE. It takes as input the
50 MHz clock and outputs a new clock running at the correct rate of 125
MHz. This is connected to both the CLK00 and the CLK01 port of the
MGT.

On the right side of the GTP module is an output port called TXOUTCLK0.

15

This contains an automatically generated clock signal at byte-rate, i.e. 10
serial bits are sent during one cycle. If 8b/10b encoding is enabled, this cor-
responds to 8 bits worth of data. In this design, with a target line rate of 2.5
Gbit/s, this clock runs at 2.5GHz/10=250MHz. On the left side of the GTP
module there are two input ports called TXUSRCLK and TXUSRCLK2.
These are clocks used by the transmitter and must be provided by the user.
TXUSRCLK should run at the same byte-rate described earlier, and TXUS-
RCLK2 should run at one fourth of this rate. These two clocks should also
be positive-edge aligned. To generate the slower of the two, TXOUTCLK0
is connected to a clock divider module similar to the one described earlier
in this section. This module outputs two clocks, one at the same rate as the
input clock and one at the input rate divided by 4. These are connected to
the two transmitter-clock inputs on the GTP.

An almost identical solution is used for the RXUSRCLK and RXUSRCLK2
which are used by the receiver. The only di�erence is that RXRECCLK1 is
used instead of TXOUTCLK0. This is because the RXRECCLK1 contains
a clock that is not only at the correct byte-rate, but kept aligned with the
incoming serial data.

In �gure 9 there are also two instances of BUFG and one of bu�o2. These
are so called bu�ers, they are necessary for the electrical routing inside the
FPGA but do not a�ect the logic function.

3.3.3 The Frame Splitter

The FRAME_SPLITTER module is responsible for the receiver rate match-
ing. This means that it should reverse the operations made by the frame
generator described in section 3.3.1. The frame generator in the transmit-
ter allows for slower input than output by adding K-characters to the serial
data stream. These K-characters have to be removed by the frame splitter
before data is sent to the HDMI interface. It is also necessary to create an
output clock with the same rate as the HDMICLK_IN. The technique used
to create this clock is described in section 3.3.4.

Table 3.3.3 contains the inputs to the FRAME_SPLITTER module.

HDMICLK_OUT Provided by the clock generation module
RXUSRCLK2 Provided by MGT. Recreated and running at 32-bit-word-rate, e.g. 62.5 MHz
RXDATA Provided by MGT. Received and deserialized data

RXCHARISK Provided by MGT. Indicates the positions of identi�ed K-characters in RXDATA

The MGT provides its received and deserialized data through the 32-bit
RXDATA-bus. This should be read on the positive edge of RXUSRCLK2.

16

As the function of the frame splitter is to allow for an output slower than
32 bits per RXUSRCLK2-cycle, the data has to be bu�ered. Using a sim-
ple counter variable called "readcounter", an internal 96-bit vector called
�datavec� is successively �lled with the contents of the RXDATA-bus. Af-
ter three RXUSRCLK2-cycles, �datavec� is completely �lled. On the next
edge of RXUSRCLK2, the �rst 32 bits of this vector are overwritten and the
procedure is in�nitely repeated.

The MGT also detects the K-characters in the incoming data stream and
indicates their positions within the RXDATA through the RXCHARISK-
bus. Each bit in this four bits wide bus corresponds to one of the four
bytes in RXDATA. If RXCHARISK, for example, holds the value �0110�,
this means that the second and third byte in RXDATA have been identi�ed
as K-characters. This information is read at the same time as RXDATA and
is also bu�ered by the frame splitter in a vector called �Kvec�.

The output of the frame splitter is driven by HDMICLK_OUT. On each
positive edge of this clock, data stored in �datavec� should be written to
the DATA_OUT-bus. As illustrated in �gure 10, a simple counter variable
called "readcounter" is used to step through �datavec� and output a new
8-bit byte every HDMICLK_OUT-cycle.

Figure 10: The Frame Splitter vectors

To avoid outputting potential K-characters, the "readcounter" process checks
the �Kvec� and skips the bytes marked with ones. The skipping of K-
characters is illustrated in �gure 11.

17

Figure 11: Bytes marked as K-characters in Kvec are skipped in the receiver

The technique used to avoid collision between the"readcounter" and the
"writecounter" is presented in section 3.3.4.

3.3.4 Generation of Output Clock

The HDMICLK_GEN module shown in �gure 7 is responsible for the gen-
eration of the output clock, or HDMICLK_OUT, used by the frame splitter.
The average rate of this clock must be approaching the rate of the HDMI-
CLK_IN used by the frame generator. If HDMICLK_OUT is slower than
HDMICLK_IN, the"writecounter" shown in �gure 10 will eventually catch
up with the slow "readcounter". This will result in unde�ned behavior at
the point of collision and subsequent data loss. If HDMICLK_OUT is faster
than HDMICLK_IN, the fast "readcounter" will eventually catch up with
the "writecounter", resulting in similar problems. One solution to this is to
use a predetermined rate for HDMICLK_IN. This approach is used by the
clock generation module.

The use of a predetermined rate is not on its own a complete solution. This
is due to the fact that HDMICLK_IN and HDMICLK_OUT are gener-
ated by di�erent oscillators that can never share exactly the same frequency.
Over time, even a small di�erence will lead to the unwanted behavior de-
scribed earlier. To address the problem of clock generation, the frame splitter
is equipped with a 2-bit output-bus called PHASE. On each positive edge
of the HDMICLK_OUT, the distance between the "readcounter" and the
"writecounter" is calculated. The nominal distance is four bytes, as indi-
cated in �gure 10. If the distance gets greater than a preset value, PHASE
is set to two. Similarly, if it gets too small, PHASE is set to zero. If the
distance is between these boundaries, PHASE is set to one.

Inside the clock generation module, three clocks are generated. These are
based on the 50 Mhz oscillator aboard the hardware platform. One of the

18

clocks is generated in a way that its rate is as close to the predetermined rate
of the HDMICLK_IN as possible. One is generated to be certainly faster
than HDMICLK_IN and one to be certainly slower. The di�erence between
these three clocks is minimized. The PHASE-bus from the frame splitter
is connected to the clock generation module. Based on the value on the
PHASE-bus, one of the three clocks is output to serve as HDMICLK_OUT.
By selecting the slower clock when the distance between the counters is too
small and the faster clock when the distance is too big, a simple control
system is implemented.

3.4 Veri�cation of High Speed Radio Interface

An early version of the serial interface was tested on the hardware platform.
The version of the Serial Interface tested contained just the MGT and sup-
porting clock modules. During this test, the 8b/10b functionality of the
MGT was not enabled. The data transmitted was not dynamically changing
but was put directly into VHDL-code. Figure 12 shows the output from the
MGT on the oscilloscope.

Figure 12: Veri�cation of transmitter function

The hard-coded data consisted of the 8 bits "00010101". These were re-

19

peatedly output to the oscilloscope. As can be seen in �gure 12, the inverse
of the transmission data is shown on the screen of the oscilloscope. As the
polarity of the output as well as the input on the oscilloscope is a matter
of convention that can be changed easily, the inversion is not considered a
problem. It can also be noted that the signal does not rise to more than
about 50 percent of its �nal level in one bit-period. As this is a phenomenon
derived from the cables, connectors and the oscilloscope used rather than
the software, neither this is considered a problem in this project. After this
test, the basic functionality of the MGT-transmitter was considered veri�ed.

Later versions of the serial interface have only been tested using the iSim
simulator. Repeated simulations were carried out through the addition of
the frame generator, the frame splitter and the activation of 8b/10b encod-
ing. At this time of project closure, all functionality of the serial interface,
except from the clock generation, has been successfully tested in simula-
tions. The working principle for the clock generator has been decided but
not implemented in HDL. Figure 13 shows the result of the latest simulation
where the only deviation from a hardware implementable design is that the
HDMICLK_OUT is directly driven by the same source as HDMICLK_IN,
instead of by the clock generator. The common HDMI-clock is running with
a period of 9 ns, or roughly at 111 Mhz. This HDMI-clock rate was chosen
as it gives rise to a need for the insertion of K-characters into the serial data
stream. The input data is created by a counter and consists of the binary
representations of the numbers 0-255 in sequence. As can be seen in �gure
13, the output from the frame splitter is, indeed, the binary representations
of sequential integers. By observing the values at a certain point in time,
the time each byte spend in the system, i.e. the delay, can be calculated. If
the point 950 ns is chosen, the value on the input holds the value 105 and
the value of the output is 78. By multiplying the di�erence between these
values with the byte period, which in this case is 9 ns, an approximate delay
is calculated. Using these calculations it can be noted that it takes approxi-
mately 243 ns for each byte to pass through the system. This is considered
a good result as such small delays are not noticeable to humans [7].

Figure 13: Final simulation

20

Figure 14: The di�erent types of HDMI connectors, source: [9]

4 HDMI

HDMI is an interface that is designed to transfer video and audio data from a
source to a compatible sink, e.g. a monitor or a projector. The video signals
are compatible with those of the DVI (Digital Visual Interface) standard [8,
p. 136].

Several di�erent video and audio formats can be transferred with HDMI [8].

4.1 HDMI speci�cation

The HDMI standard de�nes both the physical layer and how pixel, audio
and auxiliary data are sent.

HDMI system architecture consists of sources and sinks. All HDMI inputs
shall follow the standard for an HDMI sink and all HDMI output shall follow
the standard for an HDMI source [8, p. 8].

The HDMI version we have used in this project is version 1.3, see the stan-
dard for further reference. This section contains a summary of the major
parts of the HDMI standard and other standards related to HDMI.

4.1.1 Hardware

The HDMI standard does currently have �ve types of connectors, as illus-
trated in �gure 14. Each connector contains atleast 19 pins and cables, as
seen in �gure 15.

21

Figure 15: Pinout of the Type A HDMI connector, source: [10]

4.1.2 Software

The di�erent pins of the HDMI connector have di�erent purposes. All pins
except number 14, 18 and 19 is used in three kinds of data channels. The
di�erent channels are illustrated in �gure 16.

TMDS
Audio, video and auxiliary data is transmitted through the three TMDS
(Transition-Minimized Di�erential Signalling) channels. There is a TMDS
clock that is used by the receiver as reference when it recovers data from the
three data channels [8, p. 8].

In order to transfer audio and auxiliary data through the TMDS channels,
HDMI uses a packet structure. The TMDS encoding converts 8 bit video
data into a 10 bit transition minimized sequence. This is done in order to
reduce the electromagnetic interference over the cables. 8 bit sequence of
audio or auxiliary data is converted into a 10 bit sequence using an error
reducing algorithm [8, p. 8-9].

DDC
The DDC (Display Data Channel) is used by the source to request EDID

22

HDMI
Transmitter

HDMI Receiver

TMDS Channel 0

TMDS Channel 1

TMDS Channel 2

TMDS Clock Channel

Video

Audio

Control/status

Video

Audio

Control/status

EDID
ROM

DDC

CEC Line

Figure 16: The di�erent data channels in the HDMI system

(Extended display identi�cation data) information from the sink. The EDID
information describes the capabilities of the sinks [8, p. 112]. The DDC
connection uses two lines, one for a clock and one with data. Data transferred
through this channel will be synchronized with the SCL (Serial Clock Line)
signal and timings shall comply with the Standard Mode of the I2C (Inter-
Integrated Circuit) speci�cation [11]. The maximum rate for the SCL is 100
kHz [8, p. 122]. A more detailed description of I2C can be found in appendix
A.

The DDC source �rst sends an address to the sink, if the source receives an
answer it proceeds to write or read data. The sink will compare the received
address with a stored values, if it doesn't match it will not do anything,
however if it match one of the stored values it will answer. The sink accepts
two addresses. First the source sends the address 0xA0 for writing what part
of the EDID memory should be read and then 0xA1 for reading contents of
the memory at the current block [12].

CEC
The CEC (Consumer Electronics Control) channel is optionally used for
high-level functions between the source and sink, e.g. automatic setup tasks
[8, p. 112]. This channel has not been implemented.

The EDID contains information about which kind of video and audio the
sink can use. What resolution the video should be in is also described in
the data. The data is sent in 128 byte blocks with the possibility of several
extension blocks. HDMI requires atleast one extension block. A sinks EDID
data can contain up to 256 blocks of 128 bytes [13].

23

Xapp495
TMDS Receiver

High Speed Serial
I/O Interface

RGB Pixel Data(2..0)

EDID Memory

HDMI Connector TMDS(3..0)

Hsync

Vsync

DDC

Figure 17: Block diagram of the HDMI part in the sender

The sink will apply some voltage to the HPD (Hot Plug Detect) pin when it
is ready to send EDID data. This will only be done once the sink detects a
voltage supply from the source on the +5V pin [8, p. 122].

4.2 Using FPGA to implement sender / receiver

4.2.1 Sender

The HDMI part in the sender FPGA has two purposes.

• The �rst purpose is to negotiate with the HDMI source by sending
EDID data through the DDC channel. This is veri�ed in section 4.3.1
and 4.3.2.

• The second purpose is to reformat the video data in the received TMDS
signal so that it can be transferred through the high speed interface.
This will be veri�ed in section 4.3.3.

The �rst part has to be done before the second part can begin, as many
sources will not send TMDS signals until the negotiation has been done.
The TMDS signals are needed to develop a module that will ful�l the second
purpose. See �gure 17 for an overview of this part.

Negotiation
As the sender can't know which format the monitor connected to the receiver
side can support, the EDID data of the sender will force the source to send
video in a format that all HDMI devices must support (640x480 at 60Hz).
The EDID data of the sender contains only two blocks. The two data blocks
contains only the necessary information needed to be identi�ed as a HDMI
device. The data of these two blocks are described in appendix B.

24

Xapp495
TMDS Receiver

High Speed Serial
I/O Interface

RGB Pixel Data(2..0)

Vsync

Hsync HDMI ConnectorTMDS(3..0)

Figure 18: Block diagram of the HDMI part in the receiver

As the +5V pin isn't a port on the FPGA itself, the FPGA can't detect
voltage on this pin. It can therefore not be programmed to automatically
respond with voltage on the HPD pin. This problem was solved by using
two buttons to apply high or low voltage on the HPD pin.

DDC
Dmitry Petrov has published a freeware I2C module written in VHDL [14].
This was used as a base and heavily modi�ed to suit our purpose.

Video data from TMDS
Xilinx have provided an example code for converting a TMDS signal into
RGB (Red, Green, Blue) pixel data. This can be modi�ed and used in the
project. If that is done only the RGB ports of the example module will be
connected to the serializer. This will decrease the amount of data sent as
only video data will be sent. XAPP495 is the example from Xilinx with the
example code [15].

4.2.2 Receiver

The HDMI part in the receiver will receive data from the high speed transceiver
and reformat it to TMDS data. The same example [15] as mentioned in sec-
tion 4.2.1 does also show how to convert RGB pixel data into a TMDS signal.
As the video is in a format all HDMI devices must support, no DDC and
EDID parts are needed for negotiation. As seen in �gure 18. This part will
be veri�ed in section 4.3.3.

4.2.3 Implement Method and Environment

Hardware environment
The FPGA and the board it is mounted on have been connected to a com-
puter with HDMI and USB (Universal Serial Bus) ports during testing. The
HDMI port is used as a HDMI source and the FPGA as a sink. The USB
port is used for the FPGA to be programmed and monitored through its
JTAG connection.

25

PC
Debug

ISE

ChipScope

PC EDIDViewer FPGA

EDID
HDMI

JTAG

Figure 19: Block diagram of the test: PC to FPGA, EDID. The purpose of
this test is to see if the DDC communication is working correctly.

A multimeter was used to determine how the FPGA was connected to the
pins.

Software environment
EDIDViewer is a software that can show EDID information from the screens
a computer has been connected to. EDIDViewer was used to show the EDID
information that was programmed onto the FPGA.

4.3 Veri�cation

The tests outlined in this section will verify that the HDMI parts in the
sender and receiver works.

4.3.1 PC to FPGA, EDID

Figure 19 presents a block diagram of this test. The purpose of this test is
to see if the DDC channel is working and if the data sent from the FPGA is
correct. A PC with EDIDViewer installed is connected to the FPGA with a
HDMI cable. Another PC monitors the internal signals of the FPGA by using
a JTAG connector and the program ChipScope. If the PC with EDIDViewer
is able to read the EDID data from the FPGA this test is successful.

26

PC
Debug

ISE

ChipScope

PC EDIDViewer FPGA

EDID

HDMI

JTAG

TMDS

Monitor

HDMI

Figure 20: Block diagram of the test: PC to FPGA to screen, HDMI signal.
The purpose of this test is to see if the TMDS signals sent by PC can be used
by the monitor.

4.3.2 PC to FPGA to screen, HDMI signal

Figure 20 presents a block diagram of this test. The purpose of this test is
to see if a TMDS signal is sent from the PC that had previously read the
EDID data. The TMDS signal is simply repeated in the FPGA and sent to
another HDMI connector. This HDMI connector is connected to a screen.
If the screen shows some kind of picture from the PC this test is successful.

4.3.3 PC to FPGA to screen, HDMI signal, with RGB pixel data

Figure 21 presents a block diagram of this test. The purpose of this test is
to see if transmitter and receiver from Xilinx XAPP495 is working properly.
This test uses the same setup as test 4.3.2 with the di�erence that the TMDS
signal will be converted to RGB pixel data and back to a TMDS signal in
the FPGA. If the screen shows some kind of picture from the PC this test is
successful.

5 Results

An early version of the serial interface was tested by programming it to the
FPGA and then using an oscilloscope and appropriate cables to monitor
its output. This version of the serial interface contained just the MGT,
with hard-coded transmission data, and supporting clock modules. Figure
12 shows the output from the MGT on the oscilloscope. As the waveform
corresponded to the hard-coded transmission data, this basic functionality

27

FPGA

EDID

HDMI

JTAG

Monitor

HDMIPC EDIDViewer

PC
Debug

ISE

ChipScope

Xapp495
receiver

Xapp495
Transmitter

Figure 21: Block diagram of the test: PC to FPGA to screen, HDMI signal,
with RGB pixel data. The purpose of this test is to see if the code from Xilinx
example XAPP495 is working correctly.

of the MGT within the FPGA was considered veri�ed.

The functionality of the later and more comprehensive versions of the serial
interface were only veri�ed through simulations. These simulations were
carried out repeatedly through the addition of the desired functions. At
this time of project closure, all functionality described in section 3, except
from the clock generation which is yet to be �nished, have been successfully
tested in simulations. In �gure 13, the output of the latest simulation is
presented. In this simulation, the input data rate was chosen in a way such
that all implemented functionality of the system was utilized. That is, the
input rate was too slow to �ll out the whole 2.5 Gbit/s, giving rise to a need
for rate matching. The input data was created by a counter and consisted
of the binary representations of the numbers 0-255 in sequence. As can be
seen in �gure 13, the output from the frame splitter was, indeed, the binary
representations of sequential integers. This indicates that the rate matching
in both the sender and in the receiver is working properly. By following
the reasoning in the end of section 3.4, it can also be noted that the time
the serial interface delayed the data was much smaller than what would be
noticeable to a human user.

The HDMI part of the project is almost done. The FPGA is now recognized
as a monitor by the HDMI source. This shows that the buttons for HPD
activation works. Using EDIDViewer we have seen that the EDID data is
transferred correctly. This indicates that both the DDC and EDID is now
working properly. The tests in section 4.3.2 and 4.3.3 have not yet been done
because the hardware we bought didn't work as expected.

28

6 Discussion

A large part of this project was to learn how HDMI and other standards
worksd. This took a lot of time but could maybe have been done more
e�ciently. The HDMI standard was vague when it described how data was
sent through the DDC. When we understood that it was based on two other
standards it went much better. It did take time to understand the two other
standards as well.

Since the EDID were needed before the source sent any video data, we
couldn't work with the TMDS channels at all until the EDID were sent
properly. Once the EDID was sent properly a malfunction in the graphic
card of the computer we used prevented us to detect any screen using the
HDMI port of the graphic card. It took almost a week to realise what caused
the problem. When we used another computer as source it worked without
recon�guration.

Our testing equipment for generating HDMI signals were normal HDMI
sources. There are testing equipment designed for testing the di�erent parts
of the HDMI signal. With access to such equipment we could have worked
on the EDID and TMDS parts in parallel. We did not have access to such
equipment nor did we ask for it. We have an idea how better testing envi-
ronment than the one we used could be made of a normal HDMI source and
a HDMI monitor. This will be described in section 6.1.1.

Another reason the start went slow were lacking knowledge of how FPGAs
work and how to program them to function as wanted. We learnt this during
the project. At the start of the project we didn't have access to a full version
of XILINX ISE, making troubleshooting of the programmed FPGA almost
impossible. When we got the license six weeks into the project it didn't take
long until we started �nding errors in the code that worked when simulated
but not when programmed onto the FPGA.

A problem we encountered late in the project were that one of the HDMI
ports which was connected to MGT pins in the FPGA, we couldn't get this
port to work with our usual signals. This stopped our tests to just send
HDMI data through, since we didn't have a port to output it on.

6.1 Future

The development board have two HDMI connectors but one of those is used
for MGT so only one HDMI connector is available for HDMI data. There are
80 pins on the back of the development board to which a HDMI connector

29

could be soldered. This would enable us to complete the two tests described
in section 4.3.2 and 4.3.3.

Once the HDMI parts are done the high speed serial interface is to be con-
nected to the HDMI parts and tested on the development board. The current
version of the Serial Interface accepts only an 8-bit wide bus as its input.
As it, in a late phase of the project, was decided that only �ve channels
were needed for HDMI-video, the system is far from optimized. The current
FRAME_GENERATOR can be used for HDMI-video transmission if the
three super�uous bits are set to a constant value in the transmitter and left
open in the receiver. This solution is, however, a waste of bandwidth. Better
is to modify the FRAME_GENERATOR- and the FRAME_SPLITTER-
modules to work with a 5-bit bus. A better utilization of the available
bandwidth will allow for higher video-resolutions to be transmitted. If these
modi�cations are successful one could continue with the secondary goal of
the project described in section 2.1.

All of the other connectors that are available on the development board,
USB, Ethernet etc., requires two way communication in order to work with
other units. So if other data signals are to be transferred over the high speed
serial I/O two way communication must be implemented.

6.1.1 New testing environment for HDMI

By using HDMI terminal blocks it is possible to separate the cables that
make up the DDC from those that make up the TMDS channels. The DDC
could be sent to one device and the TMDS channels to another.

During a test of the FPGAs DDC and EDID, the TMDS channels would be
sent to a monitor to see if a picture is received. During this an oscilloscope
and ChipScope could be used to monitor the signals.

During a test of the FPGAs TMDS receiver and sender the DDC cables could
be sent directly to a monitor. The TMDS would be sent to the same monitor
when they have passed through the FPGA. During this an oscilloscope and
ChipScope could be used to monitor the signals.

This idea is based on separating the cables inside the HDMI cables and
sometimes connect them to several places at once. This will maybe violate
the HDMI standards description of the functionality of the HDMI cable. It
might still work but it must be constructed and tested before it can be used.

30

References

[1] FPGA, http://www.origin.xilinx.com/fpga/ [May 16, 2013]

[2] FPGA vs. ASIC, http://www.origin.xilinx.com/fpga/asic [May
16, 2013]

[3] "Xilinx R© Spartan R©-6 LXT FPGA Module", http://www.enclustra.
com/en/products/fpga-modules/mars-mx2/ [May 21,2013]

[4] "Base Board for Mars FPGA Modules", http://www.enclustra.com/
en/products/base-boards/mars-starter/ [May 21,2013]

[5] A. Athavale. and C. Christensen (2005, April), High-Speed
Serial I/O Made Simple(Edition 1.0) [E-book]. Available:
http://www.xilinx.com/publications/archives/books/serialio.pdf

[6] Appendix E: - 8B/10B Line Coding, Video Systems in an IT Environ-
ment (Second Edition), Focal Press, Boston, 2009, Pages 445-446

[7] International Telecommunication Union. (November 1998). RECOM-
MENDATION ITU-R BT.1359-1, RELATIVE TIMING OF SOUND
AND VISION FOR BROADCASTING [Recommendation]. Available:
http://www.itu.int/rec/R-REC-BT.1359-1-199811-I/en

[8] High-De�nition Multimedia Interface, Speci�cation Version 1.3a,
November 10 2006

[9] http://en.wikipedia.org/wiki/File:HDMI_Connector.jpg

[10] http://www.showmecables.com/images/catalog/product/
HDMI-PINOUT.jpg

[11] THE I2C-BUS SPECIFICATION, Version 2.1, January 2000

[12] ENHANCED DISPLAY DATA CHANNEL STANDARD, Version 1.1,
March 24, 2004

[13] VESA ENHANCED EXTENDED DISPLAY IDENTIFICATION
DATA STANDARD, Structure Version 1 Revision 4 Release A, Revision
2, September 25, 2006

[14] D. Petrov, "i2c slave receiver", http://www.mikrocontroller.net/

attachment/50416/i2cs_rx.vhd, Sep. 11, 2005 [mar. 13, 2013]

[15] B. Feng, "Implementing a TMDS Video Interface in the Spartan-
6 FPGA", http://www.xilinx.com/support/documentation/

application_notes/xapp495_S6TMDS_Video_Interface.pdf, Dec.
13, 2010 [May 21, 2013]

http://www.origin.xilinx.com/fpga/
http://www.origin.xilinx.com/fpga/asic
http://www.enclustra.com/en/products/fpga-modules/mars-mx2/
http://www.enclustra.com/en/products/fpga-modules/mars-mx2/
http://www.enclustra.com/en/products/base-boards/mars-starter/
http://www.enclustra.com/en/products/base-boards/mars-starter/
http://en.wikipedia.org/wiki/File:HDMI_Connector.jpg
http://www.showmecables.com/images/catalog/product/HDMI-PINOUT.jpg
http://www.showmecables.com/images/catalog/product/HDMI-PINOUT.jpg
http://www.mikrocontroller.net/attachment/50416/i2cs_rx.vhd
http://www.mikrocontroller.net/attachment/50416/i2cs_rx.vhd
http://www.xilinx.com/support/documentation/application_notes/xapp495_S6TMDS_Video_Interface.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp495_S6TMDS_Video_Interface.pdf

31

A I2C protocol

The I2C (Inter-Integrated Circuit) standard is developed by Philips for trans-
mitting data from one IC (Integrated Circuit) to another using few pins at
the cost of reduced speed. The interface uses one or more masters that
control one or more slaves. All the units connected to the I2C net have
predetermined addresses for access. The data is then transmitted over two
wires, SCL (serial clock line) and SDA (serial data line). The SCL is driven
by the active master and the SDA is driven either by the active master or
the active slave.

The transmitting sequence has three stages: address-, register- and data-
transmission. First the master transmits a start sequence to signal other
units connected to compare the following byte with their stored address.
If the address matches the stored address of any unit in the net, the unit
sends an acknowledgement by driving the SDA low for a SCL clock pulse
to tell the master it received the call. The master then sends a register
address, the slave answers with another acknowledgement driving the SDA
low. A byte of data is then sent to or read from the slave, followed by an
acknowledgement from the receiving unit. The master then proceeds to do
a stop sequence. SDA and SCL are left in high impedance until a new start
sequence is transmitted.

32

B EDID data

This is the EDID information that
the FPGA contains. It is written in
the format:
Byte number. value �comments

B.1 First block

This is the �rst EDID block. It con-
tains general information about the
monitor such as the name of the de-
vice and the size of the screen.

0. 00 �header
1. FF
2. FF
3. FF
4. FF
5. FF
6. FF
7. 00
8. 0E �name CTH
9. 88 �name CTH
10. 00 �ID Product Code
11. 00
12. 00 �ID serial Code
13. 00
14. 00
15. 00
16. 2A �Week of manufacture
17. 17 �Year of manufacture
18. 01 �EDID version
19. 03 �EDID revision
20. A2 �Video input de�nition
21. 00 �Size width
22. 00 �Size height
23. 01 �GAMMA
24. 03 �Feature support
25. 06 �Colour characteristics1
26. EE �Colour characteristics2
27. 91 �Colour characteristics3

28. A3 �Colour characteristics4
29. 54 �Colour characteristics5
30. 4C �Colour characteristics6
31. 99 �Colour characteristics7
32. 26 �Colour characteristics8
33. 0F �Colour characteristics9
34. 50 �Colour characteristics10
35. 20 �Estabished Timings only 640x480
36. 00 �Estabished Timings only 640x480
37. 00 �Estabished Timings only 640x480
38. 31 �Pixelwidth (640)
39. 40 �4:3 ratio, 60Hz
40. 01 �Standard Timing2, do not
use
41. 01 �Standard Timing2, do not
use
42. 01 �Standard Timing3, do not
use
43. 01 �Standard Timing3, do not
use
44. 01 �Standard Timing4, do not
use
45. 01 �Standard Timing4, do not
use
46. 01 �Standard Timing5, do not
use
47. 01 �Standard Timing5, do not
use
48. 01 �Standard Timing6, do not
use
49. 01 �Standard Timing6, do not
use
50. 01 �Standard Timing7, do not
use
51. 01 �Standard Timing7, do not
use
52. 01 �Standard Timing8, do not
use
53. 01 �Standard Timing8, do not
use
54. D6 �Detailed Timing 1, pixel clock
55. 09 �Detailed Timing 1, pixel clock
56. 80 �Horizontal pixels (640)
57. A0 �Hblank pixel (160)

33

58. 20 �The two above in 12 bit for-
mat, the �rst 4 bit is in this byte.
59. E0 �Vertical Pixel (480)
60. 2D �Vblank pixel (45)
61. 10 �The two above in 12 bit for-
mat, the �rst 4 bit is in this byte.
62. 58
63. 2C
64. 04
65. 05
66. 00 �Screen size (0mm)
67. 00 �Screen size (0mm)
68. 00 �Screen size (0mm)
69. 30
70. 21
71. 1E -FLAGS
72. 00 �Monitor description block
73. 00 �Monitor description block
74. 00 �Descriptor
75. 0A �Dummy
76. 00 �Descriptor
77. 00
78. 00
79. 00
80. 00
81. 00
82. 00
83. 00
84. 00
85. 00
86. 00
87. 00
88. 00
89. 00 �end of description block, dummy
90. 00 �Monitor description block
91. 00 �Monitor description block
92. 00 �Descriptor
93. 0A �Dummy
94. 00 �Descriptor
95. 00
96. 00
97. 00
98. 00
99. 00

100. 00
101. 00
102. 00
103. 00
104. 00
105. 00
106. 00
107. 00 �end of description block,
dummy
108. 00 �Monitor description block
109. 00 �Monitor description block
110. 00 �Descriptor
111. 0A �Dummy
112. 00 �Descriptor
113. 00
114. 00
115. 00
116. 00
117. 00
118. 00
119. 00
120. 00
121. 00
122. 00
123. 00
124. 00
125. 00 �end of description block,
dummy
126. 01 -1 extension
127. A9

B.2 Extension block

This extension block and speci�cally
the part vendor speci�c data block
contains the data that describes that
the sink is a HDMI receiver.

0. 02 �see table 38 in CEA-861-E
1. 03
2. 41
3. 00

34

4. 41 �video
5. 81
6. 23 �audio
7. 09
8. 07
9. 07
10. 83 � speaker
11. 01
12. 00
13. 00
14. 65 �vendor speci�c data block
15. 03
16. 0C
17. 00
18. 00
19. 00
20. 00 �padding
21. 00
22. 00
23. 00
24. 00
25. 00
26. 00
27. 00
28. 00
29. 00
30. 00
31. 00
32. 00
33. 00
34. 00
35. 00
36. 00
37. 00
38. 00
39. 00
40. 00
41. 00
42. 00
43. 00
44. 00
45. 00
46. 00
47. 00

48. 00
49. 00
50. 00
51. 00
52. 00
53. 00
54. 00
55. 00
56. 00
57. 00
58. 00
59. 00
60. 00
61. 00
62. 00
63. 00
64. 00
65. 00
66. 00
67. 00
68. 00
69. 00
70. 00
71. 00
72. 00
73. 00
74. 00
75. 00
76. 00
77. 00
78. 00
79. 00
80. 00
81. 00
82. 00
83. 00
84. 00
85. 00
86. 00
87. 00
88. 00
89. 00
90. 00
91. 00

35

92. 00
93. 00
94. 00
95. 00
96. 00
97. 00
98. 00
99. 00
100. 00
101. 00
102. 00
103. 00
104. 00
105. 00
106. 00
107. 00
108. 00
109. 00
110. 00
111. 00
112. 00
113. 00
114. 00
115. 00
116. 00
117. 00
118. 00
119. 00
120. 00
121. 00
122. 00
123. 00
124. 00
125. 00
126. 00
127. C6 �checksum

	List of abbreviations
	Introduction
	Purpose
	Method and Planning
	Hardware Platform and Development Tools
	The FPGA compared with ASIC and microprocessor
	Selection of Hardware Platform
	Software- and Hardware-Tools

	Limitations
	One way communication
	Maximum speed

	The High Speed Serial I/O Interface
	8b/10b encoding
	Design- and Verification-Method
	Implementing a High Speed Radio Interface
	The Frame Generator
	The Multi-Gigabit Transceiver
	The Frame Splitter
	Generation of Output Clock

	Verification of High Speed Radio Interface

	HDMI
	HDMI specification
	Hardware
	Software

	Using FPGA to implement sender / receiver
	Sender
	Receiver
	Implement Method and Environment

	Verification
	PC to FPGA, EDID
	PC to FPGA to screen, HDMI signal
	PC to FPGA to screen, HDMI signal, with RGB pixel data

	Results
	Discussion
	Future
	New testing environment for HDMI

	I2C protocol
	EDID data
	First block
	Extension block

