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Abstract
With the recent development of speech-to-text algorithms it has becoming increas-
ingly plausible to generate subtitles to a live stream or to transcribe the content of
a meeting in real time. Most of these algorithms specialise in this speech-to-text
task, while omitting the sometimes important information of who is saying what.
The objective of this thesis project is to design and implement a real time speaker
identification system to complement existing speech-to-text systems. The thesis
compares using Gaussian mixture models (GMM) versus multi-layer perceptrons
(MLP) as classifiers for mel-frequency cepstral coefficients (MFCCs). The primary
performance experiment was conducted on a continuous conversation-like test based
on the LibriSpeech ASR corpus. For 12 seconds of training data per speaker the
system achieved a 99 % identification accuracy for 2 speakers, but the performance
declined linearly down to 88 % for 12 speakers. The result was therefore deemed
unsatisfactory for the intended application and more modern features and classifiers
are recommended.

Keywords: speaker identification, speaker recognition, limited data, real time, mel-
frequency cepstral coefficients, Gaussian mixture model, multi layer perceptron,
neural networks, deep learning.

v





Contents

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Project Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Research Aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Theory 5
2.1 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Short-time Fourier transform . . . . . . . . . . . . . . . . . . 5
2.1.2 Mel-frequency spectral coefficients . . . . . . . . . . . . . . . . 6
2.1.3 Mel-frequency cepstral coefficients . . . . . . . . . . . . . . . . 8
2.1.4 Delta coefficients . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Gaussian mixture models . . . . . . . . . . . . . . . . . . . . . 9

2.2.1.1 Training . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1.1.1 K-means algorithm . . . . . . . . . . . . . . 11
2.2.1.1.2 Expectation–maximisation algorithm . . . . 11

2.2.1.2 Classification . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Multi-layer perceptron . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2.1 Activation Function . . . . . . . . . . . . . . . . . . 13
2.2.2.2 Training . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2.2.1 Regularisation . . . . . . . . . . . . . . . . 14
2.2.3 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Method 15
3.1 System Prototype Implementation . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.2 Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 System Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.1 Speech corpora . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1.1 LibriSpeech ASR corpus . . . . . . . . . . . . . . . . 18
3.2.1.2 English Language Speech Database for Speaker Recog-

nition . . . . . . . . . . . . . . . . . . . . . . . . . . 19

vii



Contents

3.2.2 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.3 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.3.1 Ongoing frame-based test . . . . . . . . . . . . . . . 20
3.2.3.2 Segmented-based test . . . . . . . . . . . . . . . . . 21

4 Results 23
4.1 Performance and the Amount of Training Data . . . . . . . . . . . . 24
4.2 Speech Corpora Comparison . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 Performance and the Speaker Set Composition . . . . . . . . . . . . . 25
4.4 System Setup Comparison . . . . . . . . . . . . . . . . . . . . . . . . 26
4.5 Performance Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.6 Real-Time Plausibility . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Discussion 31
5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6 Conclusion 35

Bibliography 37

viii



List of Figures

2.1 An pulse code modulated signal of the word “examensarbete” to-
gether with the corresponding magnitude spectrogram. . . . . . . . . 6

2.2 The mel-scale filter bank using 13 filters. The number of coefficients
extracted (not all necessarily used) equals the number of filters. . . . 7

2.3 The mel-spectrogram in decibel of the same signal used in Figure 2.1. 8
2.4 The cepstrum of the same signal used in 2.1. The first coefficient has

been removed for visualisation purposes. . . . . . . . . . . . . . . . . 9
2.5 Seven mixture components trained to fit larger distribution repre-

sented by a 2D dataset in the shape if an arc. . . . . . . . . . . . . . 10
2.6 A multi-layer perceptron with three neurons in the input layer (blue),

two hidden layers of five neurons and two neurons in the output layer
(purple). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 A schematic flowchart over the speaker identification system and its
two phases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 An illustration of a completed ongoing frame based test consisting
of four different speakers from the LibriSpeech corpus. The colours
indicate the classification of each frame, with the lighter shades indi-
cating a misclassification. The total accuracy was 95 %. The session
consisted of two utterances for each speaker, one shorter (>3 s) and
one longer (>8 s). Notice that the utterances from speaker 6367 are
placed next to each other. . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1 A schematic flowchart over the evaluation process of the speaker iden-
tification system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 The average identification accuracy over 50 repetitions for a given
number of speakers and total length of sampled speech for training.
The 95 % confidence interval is illustrated by the shades . . . . . . . 24

4.3 The performance of the identification system when using different
speech corpora. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.4 The average identification accuracy of different speaker set composi-
tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.5 A confusion representing the share of frames belonging to a given
speaker (per row) by how it was classified (per column). The labels
are the IDs from LibriSpeech. Males are in blue and females are in red. 27

4.6 The performance of the identification system when using different
system setups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

ix



List of Figures

x



List of Tables

3.1 The best practice values used for feature extraction parameters used
in the hyperparameter optimisation. . . . . . . . . . . . . . . . . . . . 17

4.1 The table shows a re-creation of the speaker identification experi-
ment from [11]. The prototype of the system implemented in this
thesis is compared with the Reynolds-Rose algorithm implemented
in [11] and the convolutional deep belief network and support vector
machine combination introduced in [11]. For the system prototype,
LibriSpeech replaced TIMIT as corpus. . . . . . . . . . . . . . . . . . 28

4.2 Table showing average execution time for different components of the
system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

xi



List of Tables

xii



1
Introduction

Speaker recognition is the automatic recognition of a speaker’s identity via speech.
The recognition make use of speech differences between speakers that arise from
both physiological characteristics of speech production, e.g. size and shape of the
vocal folds and vocal tract, and speaking style, e.g. intonation and rhythm [1]. These
differences further tend to vary between the genders and different age groups, and de-
pend on the speaker’s emotional and physical state [2]. Within speaker recognition,
a distinction is made between speaker identification (identifying a known speaker
from a set of candidates) and speaker verification (verifying the claimed identity of
a given speaker). Another distinction is also made based on the constraints on the
speech used in the application. In text-dependent speaker recognition the speech is
constrained to sentences or words known in advance; in text-independent speaker
recognition the speech is unconstrained [3].

As two examples of applications, speaker verification has been used as voice authen-
tication for transactions over telephone, while speaker identification has been used
for automatic speaker labelling of audio segments [3]. Speaker identification is also
used to recognise the voices of the different users in consumer products such as Ama-
zon Alexa and in military and police intelligence to monitor internet or telephone
conversations [4]. A recent example of the latter is the EU-funded Speaker Identifi-
cation Integrated Project that completed its final field test in November 2017 [5].

In this thesis, speaker identification will be used to identify the current speaker in
an ongoing conversion. With the recent development of speech recognition, it is
plausible to perform a real-time transcription of what is being said with increas-
ing reliability. However, many of these algorithms focus exclusively on the speech
recognition, while omitting the occasionally important information of who is saying
what. This information could instead be provided by a dedicated speaker iden-
tification system that complements existing speech recognition systems. Possible
applications include real time closed captioning of live streaming or transcription of
meetings. While the concept of real time could be considered vague as all physical
implementations will inherently introduce some delay, real time will in this thesis
be specified to allow a delay of up to 0.1 seconds. For humans any delay less than
0.1 or 0.2, depending on the person, is perceived as simultaneous by humans [6].
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1. Introduction

1.1 Project Objective

The objective of this thesis project is to design and implement a text-independent
speaker identification system. The system will let M different speakers speak for
T seconds each in a setup phase, and should then be able to identify the current
speaker, m ∈M , as a conversation separate from the setup recordings is progressing.
The problem can be considered a case of supervised learning, where the setup and
identification phases corresponds to training and classification. The system is not to
be expected to have any prior knowledge about the speakers and should be able to
display the current speaker without a noticeable delay running on a normal laptop
(specified to be 100 ms between the end of a speech frame and its identification).
The number of speakers is expected to be small (M ≤ 12) and the training time is
constrained (T ≤ 12 s), so that the system will be easy to configure. The system
should be able work in a multi-language environment.

1.2 Previous Work

Besides commercially available systems like the previously mentioned Amazon Alexa,
several scientific studies have been made on the design of speaker recognition sys-
tems. In a highly cited paper published in 1995, Reynolds & Rose introduced a
method based on mel-frequency cepstral coefficients (MFCCs) and Gaussian mixture
models (GMMs) as a computationally inexpensive and robust speaker identification
system [7]. Since then, there has been several follow-up studies that explored differ-
ent variants and applications of this system. While focusing on speaker verification,
Cambell & Reynolds include various incremental improvements, e.g. using the first
order derivative delta-cepstra values, that can be generalised to apply to speaker
identification as well [3]. They also conclude that alternative cepstral features such
as using linear prediction coding spectral analysis instead of Fourier transform based
spectral analysis yields similar performance.
In recent years joint factor analysis has been introduced as a way of reducing channel
variability between sessions [8]. Follow-up studies by the same authors have found
that these features also contain speaker information. This observation was used to
develop new features based on joint factor analysis called identity vectors (i-vectors)
for speaker verification in an article published 2010 [9]. I-vectors have also been used
in speaker identification with impressive results for limited training data compared
to the MFCC-GMM method [10]. Instead of classifying the features directly, the
i-vectors are based on the deviation from a pre-trained background model.
In addition to MFCCs and i-vectors several deep learning methods have also been
studied. In a highly cited article published in 2009 [11], Lee et al demonstrate
that features from pre-trained convolutional deep belief network (CDBN) together
with support vector machines (SVMs) perform well in various speech and speaker
recognition tasks. The CDBN was trained unsupervised on a large data set and the
extracted features corresponded to phones/phonemes. The CDBN-SVM method
outperformed an implementation of MFCC-GMM for speaker identification, espe-
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1. Introduction

cially with few training utterances. In another deep learning article a convolutional
neural network (CNN) was applied on the spectrogram directly to identify and clus-
ter speakers [12].
Neural networks have also been used as classifiers with MFCCs as features. In [13]
an extreme learning machine (a type of artificial neural network where the hidden
nodes are not updated) in combination with MFCCs is demonstrated to outperform
MFCC-SVM for speaker verification with limited training data. In [14] MFCCs
with or without delta-cepstral values are used with probabilistic neural network.
While no direct comparison was performed, the initial experiment showed promising
performance.

1.3 Scope

The particular application of speaker identification for the thesis provide some chal-
lenges that will affect the selection of base algorithm. Perhaps most notably the
limited training data excludes direct deep learning approaches such as the CNN
approach described in the previous work section. To use a pre-trained deep learning
feature extractor, such as the CDBN, would however still be a valid option in this
regard.
The data demanding process of training the feature extractor can be performed in
advance, when data is available, and the resulting network saved for later applica-
tion. It is however not clear how the pre-trained extractor will perform if the speech
used in the session differs considerably from the speech used for training the ex-
tractor. If for example the extractor is trained on English, but the session language
is Swedish, or if the session environment is more noisy, the accuracy is showed to
decline.
The background model related to i-vectors suffers from the same problem. The
performance is significantly degraded when the features in the session are less similar
to the data in the pre-training. While methods of compensating or solving this
have been researched [15], the limited time and resources of the project have to be
considered. Instead, the more basic MFCCs will be used as features in the project
with different classifiers. Specifically, a multi-layer perceptron will be compared
with the standard Gaussian mixture model. Although modern (post 2010) speaker
identification systems primarily use either i-vectors or some sort of deep learning,
the performance should be reasonable for this introductory project. To limit the
scope of the thesis, the session is assumed to be relatively noise free.

1.4 Research Aim

The research aim of this thesis project is to compare Gaussian mixture models
and multi-layer perceptrons as classifiers for limited data text-independent speaker
identification with mel-frequency cepstral coefficients as features, and determine the
most suitable classifier for this specific application. This real-time application will

3



1. Introduction

also require adaptation of existing algorithms which are not designed for real-time
usage.
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2
Theory

2.1 Feature Extraction

Amongst the most popular methods of feature engineering for speaker recognition
(before 2010s) is to transforming the speech signal into feature vectors consisting
of mel-frequency cepstrum coefficients (MFCCs). The feature vector is thought of
as a more compact, less redundant and more statistical modelling friendly way of
representing speech. The coefficients capture the speakers vocal tract structure,
which is a substantial part in how the voices differ. The following chapter explains
how to extract these coefficients [16].

2.1.1 Short-time Fourier transform

The first step in extracting mel-frequency cepstral coefficients is to divide the pulse
code modulated speech signal into smaller frames and perform a Fourier transform
on each frame to determine the containing frequencies. This process is known as
short time Fourier transform and allows the frames to be analysed separately. In
speech processing the length of the frame is usually between 10 to 30 ms when the
vocal tract parameters are assumed to be constant.
In order to reduce misclassification, a voice activity detector is often used to de-
termine if the frame contains voice activity or if it’s noise or silence that can be
ignored. This activity detection can be performed on the frame directly, at a later
stage of the extraction, or at the feature itself depending on the type of detector.
A pre-emphasis filter (a type of finite impulse response filter) that enhance high
frequencies is optionally applied on the frame. The filter has the following form
where x(n) is a single sample point from the signal

x∗(n) = x(n)− ax(n− 1), a ∈ [0.95, 0.97]. (2.1)

Before the discrete Fourier transform is applied, the signal is tapered by using a
Hamming window to reduce the spectral leakage. The Hamming has the following
weight function

w(n) = α− (1− α) cos
(2πn
N

)
. (2.2)

5



2. Theory

Figure 2.1: An pulse code modulated signal of the word “examensarbete” together
with the corresponding magnitude spectrogram.

Here N is the number of samples in the frame, n is the sample index and α = 0.54.
The tapering implies a loss of data whereby a 50 % overlap between frames is used
to compensate for this effect.
A fast Fourier transform is now applied with the sample points in the frame zero
padded to nearest power of two resulting in a spectrum of (K) frequency binsXk, k ∈
K. Since the output of the Fourier transform is symmetric, only the first half (K/2)
is used to form the magnitude spectrum of the frequency bins |Xk|. The magnitude
spectrum from several consecutive frames can be illustrated in a spectrogram as
seen in Figure 2.1. In some articles, the power spectrum |Xk|2 is used instead of the
magnitude spectrum, however this will only result in a scaling of the end feature as
will be apparent in the next section.

2.1.2 Mel-frequency spectral coefficients

In the second step of the feature extraction, mel frequency spectral coefficients
(MFSC) is generated from the magnitude of the frequency bins from the previous
step.

6



2. Theory

Figure 2.2: The mel-scale filter bank using 13 filters. The number of coefficients
extracted (not all necessarily used) equals the number of filters.

Instead of using spectrum directly, a spectral envelope in the form of a mel-frequency
filter bank is used to set the focus on the most significant information and reduce
the size of the feature vector. The mel-frequency filter bank a series of triangular
overlapping band pass filters where the placement of the filters is based on the
mel-frequency scale. This frequency scale is designed to mimic the human hearing
perception of equal distance between different pitches [17]. The relationship between
a frequency f in Hertz and the corresponding mel-frequency fm is given by

fm = 2595 log10

(
1 + f

700

)
. (2.3)

If the number of filters in the filter bank is denoted by L, the L + 2 points needed
to form the triangles are taken from the linearly spaced interval from fmin

m to fhigh
m

projected back to standard frequency scale f0, ..., fL+2. fmin
m and fhigh

m are set to the
limits of the voice frequency band, or to 0 and the Nyquist frequency (fsample/2).
The filter bank is illustrated in Figure 2.2 for L = 13. In other words, each individual
filter {hl[n]}L

l=1 is given by

hl[f ] =

f−fl−1
fl−fl−1

fl−1 ≤ f ≤ fl

fl+1−f
fl+1−fl

fl < f ≤ fl+1

0 otherwise
(2.4)

The matrix of all discrete mel frequencies thus takes the form HL ∈ RL×(K/2). The
mel frequency spectral coefficients are now given by

S = HL|X|, (2.5)

where |X| = {|X0|, ..., |XK/2|} is the magnitude spectrum as before.
In the source–filter model of speech production, the speech spectrum equals the
product of the vocal source and the vocal tract. This can be expressed in magnitude

7



2. Theory

Figure 2.3: The mel-spectrogram in decibel of the same signal used in Figure 2.1.

form as |F (ω)| = |S(ω)| · |V (ω)|, where |S(ω)| is the vocal source spectrum and
|V (ω)| is the magnitude of the Fourier transform of the impulse response of the
vocal tract. To separate the two, they are decorrelated by converting all frequency
spectral coefficients into decibel scale S̃ = 20 log(S). An illustration of this mel-
frequency spectrum in decibel is shown in Figure 2.3.

2.1.3 Mel-frequency cepstral coefficients

As a final step, the mel-frequency spectral coefficients are transformed into mel-
frequency cepstral coefficients by applying discrete cosine transform as follows

ci =
L−1∑
l=0

S̃l cos
(
i(l − 1

2)π
L

)
, i = 0, 1, ..., C (2.6)

where C ≤ L and ci are the mel-frequency cepstral coefficients (MFCCs). The coeffi-
cients that correspond to frequencies irrelevant for speech are sometimes discarded.
The cepstral coefficients are thought to better capture the pitch of the speech in
the frame and be more robust to noise compared with the spectral coefficients [18].
Consecutive cepstral coefficients form a cepstrum. A cepstrum can be seen in Figure
2.4

2.1.4 Delta coefficients

In order to capture dynamic information about how the extracted coefficients change
in time, linear regression is applied resulting in the following expression for each
component

8



2. Theory

Figure 2.4: The cepstrum of the same signal used in 2.1. The first coefficient has
been removed for visualisation purposes.

∆ci =
∑t

k=−t kci+k∑t
k=−t |k|

. (2.7)

Here ∆ci is the delta coefficient for component i and t is the number of time adjacent
coefficients you want to include. The new vector of the same length as previous (M)
is then appended to the feature vector. Since the new feature vector is not defined
for the first or last t frames, these feature vectors are skipped [19].

2.2 Classifiers

The goal of classification is to learn a mapping of inputs x to outputs y ∈ {1, ...,M},
where M is the number of different classes. Alternatively, it can also be thought of
as a function approximation. If y = f(x) for some unknown function f , the goal is
to estimate a function f̂ that predicts the label of an input ŷ = f̂(x). In supervised
learning the classifier is given a set of training examples with their corresponding
labels in order to learn its mapping (estimate its function). Ideally the retrieved
rule generalise to also apply to new inputs separate from the training set [20].

2.2.1 Gaussian mixture models

A Gaussian mixture model (GMM) is a statistical model that mix K weighted
Gaussian probability distributions to form a new mixture model. The mixture model
probability density function p thus has the following form

p(xi|θ) =
K∑

k=1
wkN (xi|µk,Σk), (2.8)

9



2. Theory

Figure 2.5: Seven mixture components trained to fit larger distribution represented
by a 2D dataset in the shape if an arc.

with the sum of the weights ∑k wk = 1. Given enough number of mixture com-
ponents, a GMM can approximate any density defined on RD [20]. An illustration
of how a mixture of Gaussian distribution is used to fit a dataset is illustrated in
Figure 2.5

2.2.1.1 Training

For speaker identification, a separate model is trained for each speaker m with its
corresponding parameters λm = {wm, µm,Σm}. The individual component density
of the GMM is thought to represent some underlying set of acoustic classes that
characterise a speaker’s voice that the model finds during the training. Put differ-
ently, the goal of the training is to iteratively update the parameters of the mixture
model to maximise the likelihood function of the given training data observation.
This is usually done in two steps. First the model is initialised on random or by us-
ing algorithms such as the k-means algorithm. Next, the expectation maximisation
algorithm is applied. These will be explained the following subsections.
While the co-variance matrix Σ determines the shape of the Gaussian, it is important
to note that any shape of a full co-variance matrix can be achieved using multiple

10



2. Theory

diagonal co-variance matrix components. It is both computationally faster and
empirically more favourable to avoid full co-variance matrices [7].

2.2.1.1.1 K-means algorithm The goal of using the k-means algorithm is to
initialise the K different mixture components before the expectation-maximisation
algorithm (EM-algorithm) is applied. The initialisation is important as an attempt
to avoid converging to local optima. In the k-means algorithm the mixture compo-
nents are assumed to have fixed variance (Σm = σ2ID) and fixed weights (wk = 1

K
),

and the components are instead referred to as clusters. Only µm is left to be assigned.
The algorithm is therefore sometimes also referred to as hard EM.
After the clusters have been initiated, either randomly assignment or using other
algorithms, the goal is to assign each point to its closest euclidean centre

arg mink||xi − µk||2 (2.9)

The cluster center is then updated by computing the mean of all its assigned points.

µk = 1
Nk

∑
xi (2.10)

The points are then reassigned and the processes repeated until convergence.

2.2.1.1.2 Expectation–maximisation algorithm GivenK pre-initialised mix-
ture components as described in the previous section we define the parameters in
iteration t as {wk, µk,Σk}(t) = θ(t). Let rik = p(zi = k|xi, θ

(t−1)) denote the respon-
sibility that cluster k takes for datapoint i for the latent variable z. The algorithm
iterates over the E step and the M step.
Using this notation the E step (the expected value of the log likelihood function of
xi given θt−1

k ) is simply

rik = wkp(xi|θt−1
k )∑

k′ wk′p(xi|θ(t−1)
k′ )

(2.11)

In the M step we instead try to find the parameters that maximise the log likelihood
function with regard to w and θk. It follows that each parameter have the following
update rule

wk = 1
N

N∑
i=1

rik = rk

N
(2.12)

µk =
∑

i rikxi

rk

(2.13)

Σk =
∑

i rik(xi − µk)(xi − µk)T

rk

=
∑

i rikxixT
i

rk

− µkµ
T
k (2.14)
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2. Theory

These are now the new estimates θ(t) = {wk, µΣk} for k = 1, ..., K. The processes
is repeated until convergence [20].

2.2.1.2 Classification

Once a model with the corresponding parameters for every speaker has been trained
λm,m ∈ {1, ...,M}, the classified identity of a speaker m̂ for a given feature vector
xt from frame t is given by the maximum posterior probability

m̂ = arg max
1≤m≤M

p(λm|xt) = arg max
1≤m≤M

p(xt|λm)p(λm)
p(xt)

(2.15)

from Bayes’ rule. Assuming that all speakers are equally likely (p(λm) = 1/M), the
equation simplifies to

m̂ = arg max
1≤m≤M

p(xt|λm). (2.16)

The performance can generally be improved by averaging over a segment of consec-
utive T frames X = {x1, ...,xT}. The same assumptions still holds and Equation
2.16 instead becomes

m̂ = arg max
1≤m≤M

p(X|λm). (2.17)

Using logarithm and the independence between observations, this simplifies to

m̂ = arg max
1≤m≤M

T∑
t=1

log p(xt|λm). (2.18)

There is a trade-off in the choice of T . A large value of T is good for averaging
out bad frames, but produce errors when the conversation transitions to another
speaker [7].

2.2.2 Multi-layer perceptron

A multi-layer perceptron is a type of feed forward artificial neural network with at
least three layers. In this simple type of neural network, there are no cycles or loops
in the network, instead the information is fed forward from the input layer down
to the output layer. In the MLP the neurons are fully connected, meaning that
every neuron is connected to all of the neurons in the following layer. For multi-
classification the size of the input layer is simply the size of the feature, and the
output layer is simply the number of different classes. An illustration of multi-layer
perceptron is seen in Figure 2.6.
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2. Theory

Figure 2.6: A multi-layer perceptron with three neurons in the input layer (blue),
two hidden layers of five neurons and two neurons in the output layer (purple).

2.2.2.1 Activation Function

Except for the weights connecting the neurons and possibly a bias, the neurons
also need an activation function to achieve non-linearity. While different activation
functions have been experimented in the past, the standard choice today is the
rectified linear unit.

g(x) = max(0,x) (2.19)

However, in classification the activation function in the output layer is the softmax
function, which allows the output to be interpreted as probabilities.

p(m = i|x) = g(x) = exi∑M
m=1 e

xm
(2.20)

2.2.2.2 Training

Once a network has been initiated with starting weights and biases, they need to
be updated to minimise the cost function C. Depending on application there are
several cost functions to choose between, but for classification, cross entropy is the
most popular. The cross entropy for N datapoints and M classes is defined as

C(θ; yim, pim) = − 1
N

N∑
i=1

M∑
m=1

yim log pim (2.21)

Here yim is a latent variable indicating if label m is the correct classification for data
point i, and pim is the probability data point i being classified as label m.
Using this loss function, the feed forward network has historically been updated
simply using gradient descent backpropagation. Modern learning algorithms instead
rely on variants of stochastic gradient descent, which only use a small sample (batch)
of training data for each step. This has proved especially advantageous for stochastic
objective functions. One such algorithm is Adam [21]. Given a step size α and
exponential decay rates β1&β2, the gradient is calculated as gt = ∇C(θt−1; y,p) for
each iteration t. The gradient is then used to retrieve the first and second moments
mt and vt as
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mt = β1mt−1 − (1− β1)gt (2.22)

vt = β2vt−1 − (1− β2)g2
t (2.23)

A bias adjustment is then performed as

m̂t = mt/(1− βt
1) (2.24)

v̂t = vt/(1− βt
2) (2.25)

The parameter is finally updated according to

θt = θt−1 − αm̂t/(v̂t + ε) (2.26)

2.2.2.2.1 Regularisation As artifical neural networks (ANNs) have a tendency
to overfit on the training data, L2 regularisation is sometimes applied to discourage
parameters to become too strong. This is achieved by adding a penalty function to
the loss function. One common such penalty function is the L2-regression.

α||vec(θr)||2 (2.27)

2.2.3 Classification

With softmax as the activation function for the output layer, the classification is
functionally identical for the multi-layer perceptron and the Gaussian mixture mod-
els. A small difference might be that MLP consists of a single model with the number
of outputs equal to the number of classes, while the GMM has one model per class.
Although primarily discussing speech recognition, ANNs have been argued to be
preferable to GMMs in speech processing. ANNs are specifically thought to be
better at modelling data that lie on or near a non-linear manifold in the feature
space [22].
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Figure 3.1: A schematic flowchart over the speaker identification system and its
two phases.

3.1 System Prototype Implementation

In order to fulfil the project objective and research aim, a prototype of the system
needs to be implemented. This system differs from most other speaker identification
systems in three notable ways: the limited data constraint, the real-time constrain
and the way it accounts for an ongoing conversation.
The first two constraints are self-explanatory. As mentioned in Chapter 1, in order
to make the system practically useful there is a strong constrain on the recording
time per speaker (T ≤ 12 s) in the training phase. This limitation on training data
excludes a naive implementation of certain machine learning methods. The real-time
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constraint furthermore, implies that the implementation needs to be computational
efficient in order to display the result in real-time. This scaled down prototype also
has to leave a margin for additional delay from the full system.
The third notable difference is the process of identifying the current speaker in
an ongoing conversation between multiple speakers. This differs from most other
systems described in the scientific literature where a speaker is identified in a seg-
ment containing a single speaker. This distinction is motivated by the additional
challenges that the ongoing conversation brings.
In a segment-based case, the system can analyse the entire segment under the as-
sumption that there is only one speaker to identify. If some frames are uncertain,
the combination of frames in the segment will hopefully provide a more clear result.
Either if the system is given presegmented snippets containing only a single speaker
or if the system can continue to sample until the system has reached a certain level
of confidence. Variants of this type of test are common in the literature as it is
easy to implement and simple enough to avoid test complexity. Real applications
that takes this form could be if the speakers all used different distinguishable source
microphones.
In contrast, in an ongoing frame-based case, no such assumption about neighbouring
frames belonging to the same speaker can be safely assumed. Instead it is up to
the system to detect when the current speaker is switched. Since the conversation
is also ongoing and not pre-recorded, the system can only access frames up to the
current frame, but not beyond. This means the system has to present the result, no
matter the confidence level, in order to meet a real-time criterion. This is closer to
the intended application of this thesis.
To simplify the development process of the system, a prototype was implemented
in Python with the actual live audio recording replaced by a speech corpus module
designed to have a similar behaviour. The prototype was designed so that this
speech corpus module could be easily replaced with a recording module once it was
implemented. A schematic overview of the prototype can be seen in Figure 3.1.

3.1.1 Feature extraction

As stated in the introduction, mel-frequency cepstral coefficients were used as feature
representation of the audio for the system to classify. The algorithm for extracting
these coefficients from a speech frame was implemented in Python from scratch
based on the theory described in the Section 2.1.
Pre-emphasis was disabled as it appeared to deteriorate the performance. The mag-
nitude spectrum was used instead of the power spectrum in the Short-Time Fourier
Transform step as it appears to increase the performance. The use of delta coeffi-
cients are questionable for this real-time system as they would require information
about the upcoming frame, or alternatively shift identification backwards with at
least 10 ms for each value of t. Because of this only t = 1 was considered.
The parameters in the extraction of mel-frequency ceptral coefficients can be tuned
extensively with varying results. To achieve the best result, they should be included
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Table 3.1: The best practice values used for feature extraction parameters used in
the hyperparameter optimisation.

Parameter Value
Frame size 20 ms
Frame overlap 50 %
Number of filters 26
Number of coefficients 20
Delta k 1
Pre-emphasis Disabled

in the hyperparameter search. In order to save simulation time however, the best
practice parameters seen in Table 3.1 are used instead. The hyperparameter search
is generally be considered a difficult task in machine learning and some sort of
limitation is inevitable.
After first attempting to implement other voice activity detectors based on analysis
of the frame as well as the extracted features, the Python package py-webrtcvad for
the voice activity detector from the WebRTC project1 was used instead. This voice
activity detector outperformed all previous attempts, both in terms of false positive
and false negatives. Voice activity detection could in general constitute a separate
thesis. In hindsight it can be stated that it would have been more time-efficient to use
the existing implementation of the feature extraction from the open source package
python-speech-features2, with some modifications for this real-time application.

3.1.2 Classifiers

As stated in the introduction, Gaussian mixture models and multi-layer perceptrons
were compared as classifier for the system. The classifiers were implemented so that
the system could easily switch between them. Both classifiers used the implementa-
tions from Scikit-learn3 as base classifiers. These implementations follow the theory
as described in Section 2.2. The hyperparameter optimisation is described in Chap-
ter 4.
For the Gaussian mixture model, one instance of the GaussianMixture class was
user per speaker with a diagonal covariance matrix, a varying number of components
and the EM-algorithm with tolerance set to default 0.001. The log likelihood of each
frame was then compared to identify the speaker. For the multi-layer perceptron, a
single instance of the MLPClassifier class was used. Each speaker was treated as
a separate label and softmax was used in the output layer to emulate probability.
The hidden layer was varied, but the rest was set to default. The training continued
until the loss value (cross entropy) did not improve more than a threshold of 0.0001
over two iterations.

1https://webrtc.org/
2https://python-speech-features.readthedocs.io/
3http://scikit-learn.org
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While the speech is not segmented in advance, a moving segment can be used to
increase the performance since it is safe to assume that the current speaker is not
switched every frame. There is obviously a trade-off. An increased size of this
moving segment will improve accuracy for longer passages, but conversely deteriorate
performance when the speaker actually changes and this assumption is false. To
compensate this, a linear weighting was applied to give more recent frames higher
importance.

ŷ = arg max
i

N∑
n=1

wnpi, (3.1)

where pi denote the likelihood or the emulated probability of label i from the GMM
and MLP (see Section 2.2), N as segment length and wn as linearly scaled scalar
weight.

3.2 System Evaluation

In order to compare the classifiers for the research aim and tweak parameters of
the system, an evaluation process was designed and implemented. The evaluation
processed system was designed to be able to handle both an ongoing conversation
and the more standard segment-based test for benchmarking with other articles. It
was also designed to handle multiple separate speech corpora. Two different corpora
were used in the test.

3.2.1 Speech corpora

Instead of recording training and testing material, pre-existing speech corpora was
be used for this prototype. Unfortunately there is no single standard speech corpus
favoured in the literature, which would have made comparisons between algorithms
easier. Different corpora feature different languages, speaker compositions and levels
of background noise etc. More distinct speakers, less background noise and richer ut-
terances can be assumed to make the classification easier and improve the accuracy.
The closest corpus of being considered standard within speaker identification might
be the TIMIT Acoustic-Phonetic Continuous Speech Corpus by the United States
Defense Advanced Research Projects Agency [23], but as this is a non-free corpus,
this thesis will instead use LibriSpeech ASR corpus and English Language Speech
Database for Speaker Recognition. Both corpora have divided the speech from each
speaker into separate labelled files that can be combined for longer sessions.

3.2.1.1 LibriSpeech ASR corpus

The primary speech corpus used in this thesis project is the LibriSpeech ASR corpus,
which is a free-to-use corpus derived from audiobook readings from the LibriVox
project [24]. The full corpus contain approximately 1000 hours of speech, but for
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this project only the train-clean-100 subset was used. This subset contains on
average 25 minutes of audio book readings (different source texts) from 251 different
speakers (126 males and 125 females) speaking English with an American accent
recorded with high quality. For technical reasons the files where converted from
original Free Lossless Audio Codec (flac) format to Waveform Audio File Format
(wav) in advance. The speakers were recorded with a sample rate of 16 kHz.

The benefit of using this corpus is the ample amount of data it provides, but for
the intended application, the different recording settings (microphone etc) could
be a potential source of error. It could be the case that the system will include
characteristic of the recording setting in the identification of a speaker instead of
just the speech itself. Another potential issue is that reading aloud from a book is
not necessary the same sort of speech as used in conversations.

3.2.1.2 English Language Speech Database for Speaker Recognition

As a complement to LibriSpeech, the smaller free-to-use English Language Speech
Database for Speaker Recognition (ELSDSR) will also be used. This corpus consist of
22 (12 males and 10 females) different non-native English speakers (mostly Danish)
recorded with the same recording setting.

The corpus is split into a training set and a test set. In the training set, the speakers
all read the same source text (on average 83 s). In the test set, the source text is
different (on average 17.6 s) [25].

The limitation of ELSDSR is the comparatively limited number of speakers and
data. The benefit for this application however is the use of the same microphone
for all speakers and the optional ability to compare the performance of having a
training set where the speakers use the same source text.

3.2.2 Training

What differs the training of this system compared to many other machine learning
applications is the maximum allowed training data. For each speaker, the system
was given T seconds of consecutive speech to train on. The speech was taken from
the beginning of file, until T seconds had been reached. The file was concatenated
with another file if it wasn’t long enough. The selection to the file was either selected
so that the used the same source text if possible, or complete at random if this was
to be avoided

The training files were then put aside and separated from the test set. In the end
application, the system has to be retrained for each session and while the training
should obviously not generalise for other speakers, it should ideally generalise for
the same acoustic classes used in a different context.
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3.2.3 Testing

As described in the Section 3.1, the most common type of speaker identification
system and the corresponding test is a system that expects pre-segmented series
of speech containing only one speaker per segment. The main test for this system
was instead an ongoing conversation that contains multiple speakers, returning one
frame at the time. The pre-segmented test was however implemented to be able to
compare the performance with other articles.

3.2.3.1 Ongoing frame-based test

The ongoing frame-based test was designed to resemble an ongoing conversation
in order to be more representative of the intended application. However, a “con-
versation” is a vague concept that can take many shapes and forms depending on
situation, language and culture. Parameters to consider include the length of the
replies and the length of the gap between them, the level of overlapping speech and
the level of background noise etc. It is obvious that a quick exchange of information
between two close friends on a music festival is a very different conversation from a
formal meeting with 12 participants in a quiet meeting room. As for language/cul-
tural differences, the average length of the gap between replies was determined to
be 470 ms in Danish, while only 7.3 ms in Japanese [26].

It is not certain that there is a definite optimal solution for all types of conversations
(the bias-variance trade-off) and it could therefore be argued that separate perfor-
mance evaluations should be implemented for the various types of conversations. To
simplify the process however, a general test was be performed in this case.

For the ongoing frame-based test, it is important to note that not all frames will
contain voice activity. The correct classification of these frames will be undefined,
so these frames will instead be referred to as silence or noise. The voice activity
detection from the WebRTC project will be used here as well. Depending on how
strong the threshold for voice activity is, the accuracy when using this measurement
can be adjusted to only include “good” frames which are easier to classify. Through
out this test the voice activity detection in WebRTC will be set to level 1.

The actual test was implemented as follows: Given a list of snippet lengths, the test
system takes uninterrupted snippets of at least these lengths from the corpus. The
actual snippet could however be longer, since the end cut of the snippet is not made
until the first inactive frame after the specified length is discovered. This adds some
additional randomness to the test as the resulting snippet could be substantially
longer than the specified minimum. The snippets are then shuffled and concate-
nated into a complete test session with a uniformly distributed silent gap separating
them (on average 470 ms). The speaker identification system was fed one frame at
the time. The accuracy score (Aongoing) is then calculated as the number of cor-
rectly classified frames divided by the number of active frames (Equation 3.2). An
illustration of a test session and its classification can be seen in Figure 3.2.
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Figure 3.2: An illustration of a completed ongoing frame based test consisting
of four different speakers from the LibriSpeech corpus. The colours indicate the
classification of each frame, with the lighter shades indicating a misclassification.
The total accuracy was 95 %. The session consisted of two utterances for each
speaker, one shorter (>3 s) and one longer (>8 s). Notice that the utterances from
speaker 6367 are placed next to each other.

Aongoing = Number of correctly classified frames
Total number of frames− Number of noise frames (3.2)

This test is more similar to the end application than the segment-based test, yet
some obvious simplifications can be noted. The speakers will politely “speak in turn”
with no overlapping speech in the frames, as it would be undefined who the correct
speaker is in these mixed frames. The rhythm of the conversation will be unnatural
as the segments will be taken out of context and no additional noise will be added
to the test session (although noise from the source material could be included).

3.2.3.2 Segmented-based test

The segmented-based test is quicker to implement and less flexible, making it more
suitable for benchmarking in academic contexts. In some version of this test, the
segments are set to the different files in the corpus. In this testing system, however
the segments are generated by taking a specified number of snippets of a fixed length
generated from one or several files from the speech corpus. The classification is then
performed by taking the average log probability of each frame in the entire segment.
Inactive frames are excluded from the averaging in hope of increasing the accuracy.
The accuracy was then calculated the number of correctly classified frames divided
by the total number of frames (Equation 3.3).
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Asegment = Number of correctly classified segments
Total number of segments (3.3)
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4
Results

A total of six different experiments were conducted and are presented in this chapter
along with their results. To make the comparison between the classifiers fair, a
simplified hyperparameter optimisation was performed for each data point in the
experiment, unless otherwise specified. The reported accuracy was then given by
the system with the best performing hyperparameters averaged over 50 repetitions.
A schematic flowchart of this process can be seen in Figure 4.1.

Figure 4.1: A schematic flowchart over the evaluation process of the speaker iden-
tification system.

Since MFCCs are a well researched topic by now, the best practice parameters
were used as fixed hyperparameters to limit the search space to the hyperparam-
eters of the classifiers. Also, only the number of mixture components were con-
sidered for the GMM and only the size and shape of the hidden layers were con-
sidered for the MLP. The rest of the parameters were left as their default val-
ues in Scikit-learn. This is obviously not ideal, but necessary to meet the project

23



4. Results

Figure 4.2: The average identification accuracy over 50 repetitions for a given
number of speakers and total length of sampled speech for training. The 95 %
confidence interval is illustrated by the shades

time scope. In this simplified grid search, the number of mixture components for
the GMM were [8, 16, 32, 64, 128] and the hidden layer shapes for the MLP were
[(30, ), (50, ), (100, ), (30, 30), (30, 50), (30, 100), (30, 30, 30), (50, 50, 50), (100, 100, 100)].
Unless otherwise specified the lengths of the speech snippets in the frame-based test
were [3, 8] seconds. An equal number of males and females were randomly selected
for each repetition.

4.1 Performance and the Amount of Training Data

In the main performance experiment of the thesis, the accuracy of the system proto-
type was tested for a givenM number of speakers, and T seconds of sampled speech
as training data for each speaker. Using the same setup as described in the chapter
introduction, each combination of M = [2, 4, 6, 8, 10, 12] and T = [6, 9, 12] used a
separate hyperparameter optimisation. The result is presented in Figure 4.2. Each
data point in the result plot represents the average of 50 repetitions for the discov-
ered best setup of hyperparameters. As seen in the figure, the performance declines
with an increasing value of M and a decreasing value of T . The MLP consistently
outperforms the GMM. For up to around 6 speakers the performance seems to be
similar for the different lengths of training speech, but longer speech seem to have
a more defined accuracy advantage with 8 speakers or more.

4.2 Speech Corpora Comparison

To get an indication of how the speech corpus itself affect the result, the perfor-
mance of using ELSDSR and LibriSpeech was compared. The comparison used a
fixed number of speakers M = 6 and T = 12 seconds of sampled speech for train-
ing. In order to fit the limited test files in ELSDSR, the minimum test utterance
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Figure 4.3: The performance of the identification system when using different
speech corpora.

lengths was set to [2, 4] instead of [3, 8]. With the exception of the number of speak-
ers, the utterance lengths and the sampled training data, the same hyperparameter
optimisation as described in the chapter introduction was used. Two separate con-
figurations of ELSDSR were used. In the ordered configuration the speech used as
training data was selected so that all speakers were reading the same source text.
In the shuffled configuration the training data were randomly selected.
The performance when using different speech corpora can be seen in Figure 4.3.
Using LibriSpeech generates a higher accuracy than ELSDSR. Using the same source
text within ELSDSR decreases the performance. MLP outperforms GMM, but the
general relationship between the performance of using the different corpora is the
same.

4.3 Performance and the Speaker Set Composi-
tion

To see how different speaker compositions affect the performance, the gender ratio
in a set of M = 8 speakers were varied by changing the number of males. Each
speaker was sampled for T = 12 seconds for training data. With exception of this
gender ratio, the number of speakers and the sampled training data were constant.
The same hyperparameter optimisation was performed as described in the chapter
introduction. The result can be seen in Figure 4.4. As seen in the figure, the
accuracy peaks for a balanced mixture of the two genders. However the result is
also tilted so that a majority male composition results in a better performance than
majority female.
As an additional result a confusion matrix of a single test is displayed in Figure 4.5.
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Figure 4.4: The average identification accuracy of different speaker set composi-
tions.

As seen in this figure misclassifications were mostly made within the gender groups.

4.4 System Setup Comparison

To get an indication of how different aspects of the identification system contribute
for the total accuracy, different setups of the system were compared. The com-
parison also serves as a motive for assuming certain parameters to be fixed in the
hyperparameter optimisation used in the other experiments. The experiment start
with a base configuration and then one additional aspect is activated per different
level. These configuration setups were:

• Setup 0 - The base case, the classification is based on the single current frame.
The delta coefficients are turned off.

• Setup 1 - As setup 0, but with the classification now extended to be made
on a 0.7 seconds long moving segment of the frames leading up to the current
frame. 0.7 was selected as the optimal segmentation time based on a simplified
grid search for this configuration.

• Setup 2 - In this setup, the weighting of classification segment is added. This
lets the more recent frames have a higher importance. The classification length
is now set to 0.9 after a random search.

• Setup 3 - Finally the delta coefficients are turned on which corresponds to

26



4. Results

Figure 4.5: A confusion representing the share of frames belonging to a given
speaker (per row) by how it was classified (per column). The labels are the IDs
from LibriSpeech. Males are in blue and females are in red.

the full system.
The performance of different configuration setups is shown in Figure 4.6. As seen in
the figure, the introduction of classification segment improves the classification dras-
tically. For the segmentation weighting and delta coefficients the result is less clear.
The segmentation weighting seems negligible at best, while the delta coefficients
seem to decrease the performance.

4.5 Performance Benchmark

To compare the system prototype implementation and the selection of speech corpus
with others, the speaker identification experiment from [11] is repeated. This article
use a 168 speaker (112 males, 56 females) subset of TIMIT with 10 utterances per
speaker. Their own system and an implementation of Reynolds-Rose are trained on
a given number of these utterances and then tested on the remaining utterances.
The experiment can’t be fully repeated without the expensive TIMIT corpus, but
some approximation of it can be performed using free corpora. The full corpus
consist of 6300 utterances with a total length of 5.4 hours. This results in a total of
3.1 seconds per utterance on average.
Using this approximation, the system prototype was tested with a segment-based
test similar to the test in their report, but with TIMIT replaced by LibriSpeech.
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(a) GMM (b) MLP

Figure 4.6: The performance of the identification system when using different
system setups.

Table 4.1: The table shows a re-creation of the speaker identification experiment
from [11]. The prototype of the system implemented in this thesis is compared with
the Reynolds-Rose algorithm implemented in [11] and the convolutional deep belief
network and support vector machine combination introduced in [11]. For the system
prototype, LibriSpeech replaced TIMIT as corpus.

Number of utterances System prototype Reynolds-Rose in [11] CDBN + SVM in [11]
1 63.5 % 40.2 % 90.0 %
2 78.5 % 87.9 % 97.9 %
3 84.5 % 95.9 % 98.7 %
5 89.5 % 99.2 % 99.2 %
8 94.4 % 99.7 % 99.7 %

The result, together with the result presented in their report, is shown in Table
4.1. Again note that the comparison is only approximate and the performance will
depend on the corpus (see section 4.2), but based on the comparison, the system
prototype seems to be on par with their Reynolds-Rose implementation, but lag
behind their new system.

4.6 Real-Time Plausibility

For the system prototype, the actual recording module and graphical interface is still
missing. This makes the real time requirement difficult to verify correctly. However,
the plausibility of the requirement can be examined by clocking the extraction time
of a feature from a frame and the MLP classification time of a feature.
Once the training data is sampled, there will inevitably be a small delay for the
training of the classifiers as well. If the delay is too long, the user experience will
deteriorate. Therefore the training time for the system was clocked as well.
In this thesis real-time is defined as less than 100 ms delay between speech and
identification. Using Python’s time library the best hyperparameters for M = 12
speakers with T = 12 seconds of training data were used. All other applications
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were closed while running the test. The result were averaged over 25 repetitions and
can be seen in Table 4.2.

Table 4.2: Table showing average execution time for different components of the
system.

Measurement Average Execution Time
Feature Extraction 160 µs
Feature Classification 120 µs
Training Time 9.2 s

As seen in the table both feature extraction time and classification time are several
orders of magnitude lower than the allowed delay, and the training time is lower
than the sampling time for a single speaker.
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Discussion

As a general comment, the MLP seems to outperform the GMM in every test.
This is a surprising result since MFCC-GMM was considered to be the preferred
combination for speaker identification until the introduction of i-vectors and more
advanced deep learning methods. However, it is important to keep in mind, that
the application in this thesis is different from most articles in the field and that this
result might not apply to speaker identification in general. Because of the simplified
hyperparameter search, where all feature extraction parameters were fixed and the
hyperparameters of the classifiers were limited to the number of mixture components
(GMM) and the shape of the hidden layer (MLP), it cannot be guaranteed that the
optimal performance for any classifier was achieved. It could be the case that the
solution found was just a local optimum, but missed the global optimum if any. It
seems reasonable however to believe that the conclusion would still be the same even
with different parameters.

The key experiment of the report was how the amount of training data affected
the performance. From the project objective stated in the introduction, the system
could at maximum be allowed T = 12 seconds of training data. The result of the
experiment showed that the accuracy of the system for T = 12 started at 99 % of
all active frames for two speakers, and declined almost linearly down to 88 % for
12 speakers. Considering that: this was the maximum allowed amount of training
data, this was only the average performance, the actual performance could be even
worse as indicated by the speaker corpora comparison, the session was relatively
noise free and contained no overlapping frames; the result has to be deemed as
unsatisfactory for the intended application. While 100 % might be unrealistic, 88 %
is too unreliable for practical purposes. If the system was run as a complement to a
speech recognition system, and it could use the output from the speech recognition
to more easily derive the correct speaker from the context of the speech. As this is
not the case for this setup, an accuracy below 95 % would imply too many mistakes
for practical purposes.

Having said that, there are two simple adjustments that would automatically im-
prove the accuracy. The first would be to ease the constraint of the sampling time
being limited to 12 seconds. This would make the system less convenient to use, but
certainly increase the accuracy up to some point. The second adjustment would be
to let the voice activity detector be more aggressive in rejecting frames. A prediction
based on a somewhat noisy frame is more error prone than a prediction based on
a clean frame. A more aggressive voice activity detector would remove more of the
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noisy frames and thereby improve the accuracy.

The thesis introduced the distinction between the ongoing frame based test and
the segment-based prerecorded test. To my knowledge, no other articles have used
a similar ongoing test, which is more telling about the performance in the end
application, but makes it more difficult to compare with others. As demonstrated
by both the speech corpora comparison speaker set comparison, the corpus and
configuration have a substantial impact on the accuracy. It is therefore import to
find a standardised test using the free corpora.

The result from the speech corpora comparison seems to indicate that the system
learned to recognise features of the recording environment to identify the speakers.
In the intended application, these features would largely be unavailable as everyone
is recorded by the same microphone. To some extent the distance and intensity
of the speech could possibly be used. The finding that using the same source text
deteriorated the performance was also unexpected. Intuitively, it seems like an
easier task to contrast the different speakers based on the pronunciation of the same
acoustic class. Given this result it seems more like that placed the classes to near
each other and thus increased the errors when there was doubt.

As mentioned in the introduction, there are several traits that differ the groups in
terms of voice. These include age, emotional and physical state etc. For ELSDSR
and LibriSpeech it was easy to make a partition based on gender. In terms of voice
the most distinguishing aspect between the groups is the fundamental frequency of
the voice. It is thereby not surprising that a heterogeneous group of the two genders
results in a higher accuracy than a homogeneous group, or that it seems most
misclassifications occur within the same gender group. What is more surprising is
the tilting of the curve that shows a majority male group generates a higher accuracy
than a majority female group. This result demonstrates that the optimal solution
could depend on the speaker set composition. The explanation behind the difference
is beyond the scope of the thesis, but a possible explanation could be a lower variance
among the voices (or the MFCC representation) within either this set or within the
group. Another hypothesis is that males have a more stable monotonous voice over
both training and classification, while females vary more. The variations could be
either within the corpus set or within the group at large.

The result from the setup comparison was very surprising. The two additional
features of weighting the moving segment and including the delta k coefficients
sounded good in theory, but seems to have been superfluous in practice.

The performance benchmark test demonstrate the difference between the frame-
based and the segment-based models. The performance for 12 speakers in the frame-
based test was 88 %, for 168 speakers in this test the performance was 89.5 %. It
was nonetheless disappointing that the system was not closer in performance to the
one used as reference. Without more details about the speech corpus it is difficult
to say if this due to the speech corpus difference or error in the system.

Given the performance from the real-time plausibility experiment, the system seems
to be well on its way to reach the real-time constraint. The remaining steps of
recording the live speech and displaying it on a graphical interface, now have almost
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two thirds of the maximum delay allowed left to use.

5.1 Future Work

As with every project, a scope has to be placed to make the project feasible to
complete within the project time. Beyond what was treated in this thesis, there are
several other directions to explore.
Some simple modifications to improve the performance of the system were suggested
in the previous section of this chapter. This included extending the sampling time
of the training data and making the voice activity detector more aggressive. While
these changes most certainly would improve the accuracy, the extent of the improve
might still not reach satisfactory result. Instead the the use of modern features
such as i-vectors and CDBNs mentioned in the section 1.2. It is still not clear how
these features would perform in a more noisy environment or when the voices in
the session differ substantially from the pre-training. The language issue could be
solved by first detecting language used, and then switch between different pre-trained
configurations to match the session language. Instead of using MLP as classfier,
ELM has shown promising results in other articles although a direct comparison has
not been found.
Some improvements could probably also be achieved by analysing the the log-
probabilities directly further. Unreasonably short classification segments before or
in a longer segment of a given speaker is a sign of misclassification that could be
adjusted. Especially if the likelihood value make it is a close call.
When switching from the static segment based test to an ongoing frame based test,
the base algorithms had to be adjusted. A different approach could have been
to focus on converting the ongoing session into a series of segments by instead
attempting to detect the change of speaker. This would have been a very different
project and more difficult if the real time requirement was to be kept.
The frame-based test was designed to closer model the intended end application, but
should only be seen as a primitive model. For more reliable results, more careful
definition of the end application is needed and the test modified accordingly. But
even with a more refined model, a real life test is also needed.
At the start of the project, additional functionality to detect new speakers not in
the training session was planned. In the end, there was no time to implement this
and it thus left as future work.
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Conclusion

The results of this thesis suggest that neither classifier, Gaussian mixture models
or multi-layer perceptron, in combination with mel-frequency cepstral coefficients
generate satisfactory performance for the intended application. It would probably
still be possible to increase the performance of the existing system by either easing
the constraints or making the voice activity detector more aggressive in rejecting
frames. To reach the desired performance without these changes,however, more
modern features and classifiers are recommended.
The intended application motivated adjustments of existing algorithms to suit this
specific application rarely covered in the literature. This make the study and its
results unique. A significant proportion of the project time was spent on design-
ing and implementing a more proper evaluation method. While being far from a
complete model, it provides some aspects left out in traditional benchmarks.
The result is difficult to compare with other articles as the application is different and
the thesis relied on free, but uncommon speech corpora. To get indications of how the
speaker set composition and the corpus affect the accuracy, two separate experiments
were conducted. The result from these experiments indicate that these choices can
affect the accuracy with around two percentage point each, which is worth taking
note of when reading other articles. Especially the speaker set composition could
be investigated further to find an explanation and possibly a solution.
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