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Abstract

This report aims to present a way to do lexical analysis incrementally instead of the
present norm: sequential analysis. In a text editor, where updates are common, an
incremental lexer together with an incremental parser could be used to give users real
time parsing feedback. Previous work has proven that regular expressions can be imple-
mented incrementally [11], we make use of these findings in order to show that it can
be expanded to a lexical analyzer. The results in this report shows that an incremen-
tal lexer is efficient, it can do an update in Θ log n time which makes it suitable when
updates are common. In order for an incremental lexer to be applicable it has to be
precise, only correctly lexed tokens are relevant. It is required that an incremental lexer
is robust, a lexical error for a partial result must be handled gracefully since it may
not propagate to the final result. To achieve incrementality a divide and conquer tree
structure, fingertrees, is used that stores the intermediate lexical results of all the partial
trees. When an update to the tree is made only the effected node and its parents are
updated. The state machine in the implementation is generated by Alex since it is effi-
cient and enables support for lexical analysis of different languages. The report finishes
with giving suggestions for improvements to the drawbacks found during the work, The
suggestions given are mainly for improving space complexity. This report shows that an
implementation of an incremental lexer can be precise, efficient and robust.





Acknowledgments

We would like to take the chance of thanking our supervisor at department of computer
science, Jean-Philippe Bernardy, with which we have had a lot of constructive discus-
sions. We would also like to thank our examinator at the department of computer science
Bengt Nordström. Lastly we would like to thank everyone that has helped proof read
this report.

Jonas Hugo & Kristofer Hansson, Göteborg May 2015
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Glossary

Alex Is a lexical analyzer generating tool written in Haskell.

Finger Fingers are the first and last elements of a tree and they can be accessed in
O(1) time.

Fingertree Is a tree data structure with fast access time to elements.

Incremental (computation) Save running time by only update directly depending
data.

Lazy Evaluation Evaluate an expression first when the value is needed.

Lexeme Is the string representation of a token.

Lexer Given a string, find abstract tokens represented by the string.

Monoid Is a mathematical structure for a binary operator and an identity element.

Normal Form Is the form of an expression when no more computations can be made.

Regular Expression Is a pattern for which a sequence of symbols can follow.

Regular Language Is a formal language where all lexems in the language can be ex-
pressed using regular expressions.

Sequence Is a data structure which represents a finite ordered collection of elements.

Spine Is the subtree of a fingertree.

Token Is an abstract class for a lexeme matching a pattern.
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Glossary

Transition Is a path in a Finite Automata from an in-state to an out-state given a
string.

Transition Map Is a collection of all possible transitions for a string in each state.
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Introduction

Editors normally have regular-expression based parsers, which are efficient and robust,
but lack in precision: they are unable to recognize complex structures. Parsers used
in compilers are precise, but typically not robust: they fail to recover after an error.
They are also not efficient for editing purposes, because they have to parse files from the
beginning, even if the user makes incremental changes to the input. More modern IDEs
use compiler strength parsers, but they give delayed feedback to the user. Building a
parser with good characteristics is challenging: no system offers such a combination of
properties.

In order to implement a parser with the characteristics described above; robust, precise
and efficient; a lexer that has the same properties is needed. This project aims to
implement such a lexer.

1.1 Scope of work

Existing lexical analyzers are sequential. When the text is updated the lexer must start
the lexical analysis from the beginning. The goal of this project is to create an algorithm
that, after an update to the text, only needs to recalculate the update and the part of the
result effected by the update. The recalculation should have time complexity Θlog(n) in
order to be run in real time, for example in a text editor with immediate update.

Chapter 2 gives a general understanding of how lexical analyzers work. Chapter 3
presents tools needed for a divide and conquer implementation to work. Chapter 3 also
gives an overview of the ideas behind a divide and conquer lexer in order to give enough
understanding for the algorithm this report proposes. A robust implementation of the
algorithm is presented in chapter 4 with explanations on how different cases are handled.
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1.2. RELATED WORK

Tests for preciseness, time performance and space performance are explained and their
corresponding result are presented in chapter 5. A discussion on where a divide and
conquer lexer is useful is presented in chapter 6.

1.2 Related Work

This project revolves around the idea of using incremental regular expressions. Piponi
wrote a blog post about how to implement incremental regular expressions using finger
trees [11]. The solution to matching regular expressions incrementally in the blog post
gives a good starting point to this project, however a lexer does not match a string
against one expression. A lexer matches a string against a set of regular expressions and
returns which expressions where matched and in what order rather then answering if the
string matched the expressions. The “longest match” rule for lexers further complicates
the issue [11].

Bernardy and Claessen [3] wrote a paper titled “Efficient Divide-and-Conquer Parsing
of Practical Context-Free Languages” that describes an efficient parallel parser built on
Valiants algorithm [16]. The paper proves that for a defined set of input the complexity
for the parser will be Θlog3(n). Since the implementation of the parser is done in
BNFC [6] it uses a sequential lexer generated by alex [5]. The lexical analyzer this
project purposes is a divide and conquer solution which could be integrated to the
parser proposed by Bernardy and Claessen to get a divide and conquer solution from
the programming code to the result of the parser.
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2

Lexer

This chapter describes the concepts of a lexer, lexical analyzer, in detail. A lexer can be
seen as a pattern matcher and is the first part of a syntactical analyzer. A lexer has the
responsibility to translate a text into abstract tokens. Abstract tokens typically tell what
a part of the text belongs to, for example classes of words, numbers or symbols. The
resulting tokens of the lexer is given to the syntactical analyzer which is responsible for
identifying expressions and statements which the tokens represent [13]. To implement
a lexer several fundamental concepts of formal language theory can be used. Concepts
like regular expressions, regular sets and finite automata [1].

2.1 Benefits of Disjointed Parsing

It is common that a parser has a pre-step where the plain text is transformed in to
some more computer readable form. This step is performed by a lexical analyzer. The
computer-friendly output is then then given to the syntactical analyzer of the parser.
Splitting up a parser into a number of different tasks have several benefits [13]. Here
follows some benefits from breaking out the lexical analyzer from the syntactical ana-
lyzer.

If the lexical analysis is stripped out of the parser, the parsing step can be designed
in a cleaner way. The lexical analyzer can also be designed in a cleaner and smarter
way. A lexer can for instance ignore to pass along unneeded (for the parser) data, like
white spaces and comments. This opens up for a cleaner design when defining a new
programming language. The syntactical part of the parser will only receive the output
from the lexer as input. The output of the lexer is described in more detail further on
in this chapter [2].
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2.2. FUNDAMENTALS OF LEXICAL ANALYSIS

Splitting a big problem into smaller specific sub-problems enables methods that are
refined on specific tasks to be used. This can result in a more efficient parser [2]. The
lexical part of a parser make up for a big portion of the overall compilation time of a
compiler, therefore breaking out this step enables the possibility to explicit optimize the
lexer [13].

Breaking out the lexical analyzer from the parser makes it possible for the syntactical
analyzer to solve its problem in a generic way. When changing language to parse, the
only part that needs to be changed in the parser is the lexical analyzer. This opens up
for portability [2][13].

If there is an illegal character sequences inside the code it will be detected by the lexer
and feedback will be given to the user [13]. Because the lexer can find and report these
errors to the user, there is no need to go into the syntactical analysis of the parser. Hence
saving running time for giving the user feedback.

2.2 Fundamentals of Lexical Analysis

As mentioned earlier in this chapter, the responsibility of the lexical analyzer is to
transform a human readable text to an abstract computer readable list of tokens. There
are different techniques a lexer can use when finding the abstract tokens representing
a text. This section describes the techniques used when writing rules for the tokens
patterns.

2.2.1 Regular Expressions

Regular expressions are used to verify if a sequence of symbols matches a pattern. Due
to the definition of regular expressions they cannot describe all possible patterns. How-
ever, they are in most cases good enough for lexers.

Example 2.2.1 (Valid C Idents [2]). A valid C identifier must start with a letter char-
acter and then have zero or more characters or digits. To describe this an element
letter ∈ {a. . . z} ∪ {A. . .Z} ∪ { } is introduced and another element digit ∈ {0 . . . 9}.

By using these elements the regular expression for describing all legal C identifiers can
be expressed in the following way: letter(letter|digit)∗.

4



CHAPTER 2. LEXER

Definition 2.2.2 (Regular Expressions [1]).

1. The following characters are meta characters: meta = {′|′, ′(′, ′)′, ′∗′}.
2. A character a /∈ meta is a regular expression that matches the string a.
3. If r1 and r2 are regular expressions then (r1|r2) is a regular expression that matches

any string that matches r1 or r2.
4. If r1 and r2 are regular expressions. (r1)(r2) is a regular expression that matches

the string xy iff x matches r1 and y matches r2.
5. If r is a regular expression r∗ is a regular expression that matches any string of

the form (x1)(x2) . . . (xn), n ≥ 0; where Xi matches r for 1 ≤ i ≤ n, in particular
(r)∗ matches the empty string, ε.

6. If r is a regular expression, then (r) is a regular expression that matches the same
string as r.

�

Consider the definition of regular expressions seen in definition 2.2.2, by introducing a
priority level and associativity to the different operators parentheses can be eliminated.
The operator with the highest priority is the ∗ operator. The second highest is the
concat operator (r1)(r2) and the operator with the lowest level is the or operator |. The
∗ operator can not have a associativity since it only takes one argument. The two binary
operators concat and or are left-associative [1].

2.2.2 Languages

A language is built up by an alphabet which is represented by a finite collection of
characters. These symbols can build up strings and a language is a countable set of
these different strings [2]. For example the alphabet Unicode used by computers to
represent text includes over 100,000 different symbols [2]. This means that a language
can be enormous.

There are different types of languages. Formal languages are described by a set of
systematic rules and they are a subset of all the languages. The lexer can however
not work with all formal languages, only with the languages which can be described by
regular expressions, these are called regular languages [12].

2.2.3 Regular Definitions

To be able to reuse already written expression, an identifier d can be assigned to an
expression, d can then be used in expressions. However this introduces the problem of
recursive definitions. To counteract this the properties for the identifiers and expressions
are defined as follows.

5



2.3. TOKENS, ATOMS OF A LANGUAGE

A set of regular definitions for an alphabet Σ is given, which can be seen in fig. 2.1

d1 → r1

d2 → r2
... →

...

dn → rn

Figure 2.1: List of definitions and their regular expressions

The following property apply to the definition identifiers d1...dn: a definition identifier
di is a new symbol not already present in the alphabet Σ and not equal to any other
definition identifier dx ∈ d1...dn where i 6= x. A new regular expression ri can work on
the alphabet and all the previously defined identifiers, Σ ∪ d1...di−1 [2].

2.3 Tokens, Atoms of a Language

When rules have been defined for a language, the lexer needs structures to represent the
rules and the result from lexing the text. This section describes the structures which the
lexical analyzer uses for representing the abstract data; what these structures are used
for and what is forwarded to the syntactical analyzer.

The following three different structural concepts are vital to the lexical analyzer:

• A token is an abstract for representing an atomic code segment. The token is
represented by a name and an optional attribute for holding the value of the token
[2].

• A pattern is the regular expression for describing the text format on which a token
can be represented [2]. For example a string in most languages is represented by
first a ” character and zero or more characters and finally ends with a ” character.

• A lexeme is the text that matches the pattern bound to the token. Therefore a
lexeme can be viewed as an instance of an abstract token [2].

As mentioned before, a token can carry an optional attribute. When a token can be
represented by several different instances, lexemes, this attribute is used for giving the
specific value. For example a string token can be represented by the different strings
””, ”a”, ”b” and so on. However different parts of the compiler may need to know which
token instance that was found. Therefore the lexer need to pass the information further
on [2].

To summarize, a lexer reads characters from a code and finds the largest continues
sequences which builds up valid tokens [13]. As mentioned before it is not always relevant
to return an attribute to the token. These cases can be when finding keywords of the

6



CHAPTER 2. LEXER

language, like in if , for and while. There are cases when it make no sense to return
the found token. Example of such cases could be tokens for comments and white-spaces,
which in most languages has no relevance to the compiled code. In these cases the lexer
just drops the token and continues the lexical routine [2]. example 2.3.1 shows how
a small piece of code is divided in to abstract tokens using the rules in fig. 2.2. The
complete language specification can be found in appendix A.

〈letter〉 ∈ {‘a’ - ‘z’} ∪ {‘A’ - ‘Z’} ∪ {‘_’}

〈digit〉 ∈ {0 - 9}

〈identifier〉 ::= 〈letter〉 (〈letter〉 | 〈digit〉)*

〈string〉 ::= ‘"’ [∧ ‘"’]* ‘"’

〈multi-line comment〉 ::= ‘/*’ ([∧ ‘*’] | ‘*’ [∧ ‘/’])* ‘*/’

〈reserved-words〉 ::= ‘(’ | ‘)’ | ‘{’ | ‘}’ | ‘;’ | ‘=’ | ‘++’ | ‘<’ | ‘+’ | ‘-’ | ‘*’

Figure 2.2: Grammar rules for example 2.3.1 & example 2.4.1

Example 2.3.1 (Logical grouping [13]).
Consider the following text; to be lexed:

f i leName = f i l e P a t h + ” . png ” ;

Given the regular language defined in appendix A, the lexical analyzer would use the
rules defined in fig. 2.2 and produce the resulting tokens shown in fig. 2.3.

Token Lexeme

Identifier fileName

Reserved =

Identifier filePath

Reserved +

String ”.png”

Reserved ;

Figure 2.3: Result of lexing the code in example 2.3.1

7



2.4. FROM A TEXT TO TOKENS

2.4 From a Text to Tokens

The previous section show how Regular expressions can be used to express patterns
for tokens. In this section the different techniques on how to transform a sequence of
characters into abstract tokens using these patterns is described.

2.4.1 Transition Diagrams

To recognize tokens from a pattern transitions diagrams can be used, these are directed
graphs consisting of nodes and edges [13]. The nodes correspond to the discrete states
in the transformation process. In the transition diagram there are three kinds of states.
The first is the the starting state, there can only be one starting state in the graph. It is
from this state the process start when a new token should be found. There are at least
one accepting state, these states represents that a valid token has been found. Then
there can be zero or more none-accepting states. These states represents that a token
has not yet been found [2].

The edges in the graph are represented by the input character which must be found to
be able to traverse between the two states which the edge connects. If there is no valid
edge out of an accepting state, the found token is said to be the longest match (see
section 2.4.2) then that token is returned and the lexer starts reading the next character
from the starting state [2].

2.4.2 Longest Match

If there are multiple feasible solutions when performing the lexical analysis, the lexer
will return the token that is the longest. To manage this the lexer will continue in the
transition diagram if there are any legal edges leading out of the current state, even if it
is an accepting state [2].

The above model introduces a new problem. If the lexer ends up in a state that is not
accepting and do not have any legal edge out of that state, the lexer can not return a
token. To solve this the lexer has to keep track of what the latest accepting state was.
When the lexer reaches a state with no legal edge out of it, the lexer returns the token
corresponding to the last accepting state. The tail of the string, the part that was not
in the returned token, is then lexed from the initial state as part of a new token [2].

Example 2.4.1 (Longest Match). Consider the following text; to be lexed.

/∗ f i leName = f i l e P a t h + ”. png ”;

Although this piece of C code is not syntactically correct, there are no lexical errors
in it. Since the text starts with a multi line comment sign the lexer will try to lex it

8



CHAPTER 2. LEXER

Token Lexeme

Reserved /

Reserved ∗
Identifier fileName

Reserved =

Identifier filePath

Reserved +

String ”.png”

Reserved ;

Figure 2.4: Result of lexing the code in example 2.4.1

as a comment. When the lexer encounters the end of the text it will return the token
corresponding to the last accepting state and begin lexing the rest from the initial state.
The rules relevant to this example are defined in fig. 2.2 the rest of the rules can be
found in appendix A.
The result can be found in fig. 2.4.

2.4.3 Finite Automata

To recognize members of regular languages, which are languages that lexers can be used
with, a mathematical machine called finite automata can be used [13]. Finite automata
are like regular expressions, purely recognizers. A finite automate only say if an input
sequence is valid or not [2].

There are two different forms of finite automata, which both are capable of working on
regular languages [2]:

Non-deterministic Finite Automata (NFA): As the name suggest there are no re-
quirements of a deterministic path for an input sequence in this type of automata.
A state may have multiple edges for the same symbol. Also edges my take no
symbol, the empty string ε.

Deterministic Finite Automata (DFA): In this form there can only be one path
for an input. That is, a state must have exactly one edge per input symbol leaving
the state and edges are not allowed to have the empty string ε as symbol.

There are two common ways of representing a finite automata, transition diagram and
transition table. A transition diagram is a directed graph where the nodes are the
states in the automata and the edges represent the symbol needed for the next state. A
transition table is a table where the rows represents the current state, the columns the

9



2.4. FROM A TEXT TO TOKENS

next symbol and the cell is the next state. Examples of how a NFA can be described by
both a transition diagram and a transition table can be seen in example 2.4.3 [2].

Non-deterministic Finite Automata

A string is recognized as an accepted string by a NFA if there exist at least one path
from the starting state to one of the accepting states where the edges symbols along this
path builds up the string [2].

The formal definition of a non-deterministic finite automaton follows:
Definition 2.4.2 (Non-deterministic Finite Automata [14]). A finite automata is a 5-
tuple (Q,Σ, δ, q0, F ), where

1. Q is a finite set called the states,

2. Σ is a finite set called alphabet,

3. δ : Q× Σ→ P (Q) is a transition function,

4. q0 ∈ Q is the start state, and

5. F ⊆ Q is the accepting states.

Example 2.4.3 shows how the transition diagram and transition table representation will
look like for a given regular expression. Since a state can have several edges with the
same symbol, the transition function does not map to a single state.

Example 2.4.3 (Regular Expression to Transition Diagram & Transition Table [2]).
Given the regular expression (a|b|c)(a|c) ∗ c a transition diagram can be created that
represents the expression, see fig. 2.5. The transition table in fig. 2.6 represents the
same graph.

0start 1 2

a

b

c

a

c

c

Figure 2.5: Transition Diagram, accepting the pattern (a|b|c)(a|c) ∗ c

Transition tables store all possible transitions which gives it a quick lookup time. How-
ever there is often a majority of states which does not have any transitions for some
input symbols. And since the table stores all states it will need a lot of data space,
especially for situations when the alphabet for the language is large [2].

10



CHAPTER 2. LEXER

State a b c ε

0 {1} {1} {1} ∅
1 {1} ∅ {1,2} ∅
2 ∅ ∅ ∅ ∅

Figure 2.6: Transition Table, accepting the pattern (a|b|c)(a|c) ∗ c

Deterministic Finite Automata

DFA is a NFA with stricter rules. These rules are that edges can not be labeled with
the empty input ε and there is exactly one edge for each symbol in the alphabet out of
every state [2].

Finite Automata can be generated from regular expressions. That is, a NFA can be
generated from regular expressions and a DFA can be generated from a NFA. This goes
the other way as well, and DFA can be converted into a regular expression. A lexer uses
a DFA as the algorithm to match a lexeme to a specific token [2].

The formal definition of a deterministic finite automaton follows:
Definition 2.4.4 (Deterministic Finite Automata [14]). A finite automata is a 5-tuple
(Q,Σ, δ, q0, F ), where

1. Q is a finite set called the states,

2. Σ is a finite set called alphabet,

3. δ : Q× Σ→ Q is a transition function,

4. q0 ∈ Q is the start state, and

5. F ⊆ Q is the set of accepting states.

Example 2.4.5 (DFA representation of Regular Expression [2]). A DFA representation
of the regular expression from example 2.4.3 is shown in fig. 2.7

0start 1 2

a

b

c

a

c

a

c

Figure 2.7: DFA, accepting the regular expression: (a|b|c)(a|c) ∗ c
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3

Divide-and-Conquer Lexer

An incremental divide and conquer lexer works by dividing the sequence to be lexically
analyzed, into small parts; analyzes them and then combines them. In the base case
the lexical analysis is done on a single character. The conquer step then combines the
smaller tokens into as large tokens as possible. The end result is a sequence of tokens
that represent the code. How this is done is described in this chapter.

3.1 Divide and Conquer in General

This section gives an idea of how the Divide and Conquer algorithm works in general,
before addressing in detail how to apply it to lexing. It describes the power of divide
and conquer in terms of executing time and how laziness can be applied to these algo-
rithms.

3.1.1 The Three Steps

The general idea of a divide and conquer algorithm is to divide a problem into smaller
parts, solve them independently and then combine the results. A Divide and Conquer
algorithm always consists of a pattern with the steps described in fig. 3.1 [7].

3.1.2 Associative Function

An associative function, or operator, is a function that does not care in what order it is
applied. An example of such a function is addition (+) of numbers, which is associative
since it has the property in example 3.1.1, that is, a+ (b+ c) = (a+ b) + c.

12



CHAPTER 3. DIVIDE-AND-CONQUER LEXER

Divide: If the input size is bigger than the base case then divide the input into sub-
problems. Otherwise solve the problem using a straightforward method.

Recur: Solve the subproblems by recursively calling itself with each sub-problem as
argument.

Conquer: Given the solutions to the subproblems, combine the results to solve the
original problem.

Figure 3.1: The three steps of a Divide-and-Conquer algorithm

In divide and conquer algorithms working on sequences this is essential. In the divide
step of the divide and conquer algorithm there is no certain order of how the subproblems
are going to be divided. This means that the order the subproblems are being conquered
can not have an impact on the algorithm, hence the conquer step must be associative.

Example 3.1.1 (Associativity of the conquer step). Let f(x,y) be the conquer function,
where x and y are of the same type as the result of f , then:

f(x,f(y,z)) = f(f(x,y),z)

Otherwise the algorithm can give different results for different division of the input, but
for the same data.

3.1.3 Time Complexity

To calculate the running time of any divide and conquer algorithm the master method
can be applied [4]. This method is based on the following theorem.

Theorem 3.1.2 (Master Theorem [4], as described by [3]).
Assume a function Tn constrained by the recurrence

Tn = αTn
β

+ f(n)

(This is typically the equation for the running time of a divide and conquer algorithm,
where α is the number of subproblems at each recursive step, n/β is the size of each
subproblem, and f(n) is the running time of dividing up the problem space into α parts,
and combining the results of the subproblems together.)
If we let e = logβ α, then

1. Tn = O(ne) if f(n) = O(ne−ε) and ε > 0

2. Tn = Θ(ne log n) if f(n) = Θ(ne)

3. Tn = Ω(f(n)) if f(n) = Ω(ne+ε) and ε > 0 and α ·f(n/β) ≤ c ·f(n)
where c < 1 and all sufficiently large n

�
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3.1.4 Hands on Example

The divide and conquer pattern can be performed on algorithms that solves different
problems. A general problem is sorting, or more precisely sorting a sequence of integers.
This example shows merge-sort [7].

Divide: The algorithm starts with the divide step. Given the input S the algorithm
will check if the length of S is less then or equal to 1.

• If this is true, the sequence is returned. A sequence of one or zero elements
is always sorted.

• If this is false, the sequence is split into two equally big sequences, S1 and S2.
S1 will be the first half of S while S2 will be the second half.

Recur: The next step is to sort the subsequences S1 and S2. The sorting function sorts
the subsequences by recursively calling itself twice with S1 and S2 as arguments
respectively.

Conquer: Since S1 and S2 are sorted combining them into one sorted sequence is trivial.
This process is what is referred to as merge in merge-sort. The resulting sequence
of the merge is returned.

Algorithm 1 shows a more formal definition of merge-sort. The merging step is associative
which ensures that the algorithm always returns the same result for the same input.

Algorithm 1: MergeSort

Data: Sequence of integers S containing n integers
Result: Sorted sequence S

1 if length(S) ≤ 1 then
2 return S

3 else
4 (S1,S2)← splitAt(S,n/2)
5 S1 ←MergeSort(S1)
6 S2 ←MergeSort(S2)
7 S ←Merge(S1, S2)
8 return S

Given the merge-sort algorithm, time complexity can be calculated as follows using the
master method. There are 2 recursive calls and the subproblems are 1/2 of the original
problem size, so α = 2 and β = 2. To merge the two sorted subproblems the worst case
is to check every element in the two list, f(n) = 2 · n/2 = n.

T (n) = 2T (n/2) + n
e = logβ α = log2 2 = 1

14
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Case 2 of the theorem 3.1.2 applies, since

f(n) = Θ(n)

So the solution will be:

T (n) = Θ(nlog2 2 · log n) = Θ(n · log n)

3.1.5 Incremental Computing

For an algorithm to be incremental means that when a point in the data source is
updated, the algorithm only needs to update the directly effected path in the data
source [15]. fig. 3.2 illustrate the updated nodes in a tree structured data source.

r′

c′

a

− −

b′

x y′

d

−

− −

−

− −

Figure 3.2: When the node y changed recomputed nodes are marked with a ′.

For a divide and conquer lexer this means to only recompute the changed token and
the token to the right of the changed token. This is done recursively until the root
of the tree is reached. The expected result of this would be that when a character is
added to the code of 1024 tokens, instead of recalculating all the 1024 tokens the lexer
only needs to do 10 recalculations, since log21024 = 10. This can be explained by the
theorem 3.1.2.

Only one branch in the tree will be followed at every level and the problem is already
divided. Therefore the parameters will be set to:

α = 1, β = 2 and f(n) = 1. e = logβα = log2 1 = 0

Case 2 of the theorem 3.1.2 applies, since

f(n) = Θ(ne)

The complexity is therefore:

T (n) = Θ(ne · log n) = Θ(log n)
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3.2 Fingertree

A fingertree is a tree structure that is built to make access to the beginning and end of
a collection easy. In the following section fingertrees are explained. The code examples
are simplified for demonstrative purposes, for instance in real implementations lists are
not used since they do not give good performance for what fingertrees are designed to
do.

3.2.1 Structure of Fingertrees

To achieve fast access to the beginning and end of the tree the leaves for the 1-4 first
elements and 1-4 last elements are placed in the root of the tree, these are called fingers.
The rest of the elements constitutes the spine which is another fingertree, with one
difference, instead of having the first 1-4 elements the second level will instead have two
2-3 tree of depth 2 at the beginning and end of the tree. The third level will have 2-3
trees of depth 3 and for level n the 2-3 trees in the beginning and end will have depth
n. An illustration of how a fingertree can look can be seen in fig. 3.3 [8].

1 2

3 4 5 6 7 8 9 10 11

12 13 14

Figure 3.3: Illustration of Fingertree

As can be seen in fig. 3.4 there are three constructors for a fingertree, there are the trivial
cases for an empty tree and for a tree with one element. The last constructor calls itself
with Node a instead of just a. This is what determines the depth of the 2-3 tree on each
side of the spine. The reasons for the first level of the tree having fingers of size 1-4 is
because of insertion and deletion which is covered in section 3.2.2 [8].

Accessing an element at place d in the tree will take O(log(min(d,n− d))) time. This is
because the closer to the end of the fingertree the element is the closer the surface it is.
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This in turn gives the time complexity of accessing an element, which in worst case is
O(log n) and for the first and last element is O(1) [8].

data FingerTree a = Empty
| S i n g l e a
| Deep ( Dig i t a ) ( FingerTree (Node a ) ) ( D ig i t a )

type Dig i t a = [ a ]

data Node a = Node2 a a | Node3 a a a

Figure 3.4: Definition of the Fingertree data type [8]

3.2.2 Insertion and Deletion

The fingertree described so far can only handle insertion and deletion to the beginning
and end of the tree.The fingers in a tree have two different states called dangerous and
safe. The safe states is when there are 2 to 3 elements in the finger and when the finger
is safe an insertion or deletion from the tree will not be anything more then an insertion
or deletion in that finger [8].

When a finger has 1 or 4 elements the finger is called dangerous. In this case there might
be implications down the spine. The first case is when there is an insertion into a finger
that has 4 elements, in this case there are 5 elements that is assigned to the same level.
If the insertion was done to the end of the tree the last 2 elements will be the new finger
which is then a safe finger. The first 3 elements are used to create a new Node3 which
is passed down the spine as a single element to be inserted at the next level. Inserting
an element to the end of a tree can be seen in fig. 3.5, conversely adding an element to
the beginning of a tree is the mirror to this function [8].

( |>) : : FingerTree a −> a −> FingerTree a
Empty ( |>) a = S i n g l e a
S i n g l e b ( |>) a = Deep [ b ] Empty [ a ]
Deep pr m [ e , d , c , b ] ( |>) a = Deep pr (m ( |>) Node3 e d c ) [ b , a ]
Deep pr m s f ( |>) a = Deep pr m ( s f ++ [ a ] )

Figure 3.5: Adding an element to the end of the sequence [8]

The other dangerous operation is when a deletion from a finger of size 1 is done. In this
case, if the deletion is made to the end of the tree, the last element of the end finger in
the spine is deleted and used as the finger for the level where the the finger would have
been empty. Since the element in the finger below will either be a Node2 or a Node3
the new finger will be safe. Deletion of an element at the end or beginning of a tree
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is implemented similarly to head for lists, the functions viewL which returns the first
element and the rest of the tree can be seen in fig. 3.6 [8].

viewL : : FingerTree a −> ViewL a
viewL Empty = EmptyL
viewL ( S i n g l e x ) = x :< Empty
viewL ( Deep pr m s f ) = head pr :< deepL ( t a i l pr ) m s f

deepL : : [ a ] −> FingerTree (Node a ) −> Dig i t a −> FingerTree a
deepL [ ] m s f = case viewL m of

EmptyL −> toTree s f
a :< m’ −> Deep ( nodeToDigit a ) m’ s f

deepL pr m s f = Deep pr m s f

data ViewL a = EmptyL
| a :< FingerTree a

Figure 3.6: Adding an element to the end of the sequence [8]

Since the dangerous states propagate actions down the spine insertion and deletion will
not take O(1) time in the worst case. Since each new level will take at most O(1) time
the insertion or deletion of an element will in the worst case take O(log n) time. However
since 3 out of 4 operations are safe for insertion and deletion respectively the expected
time consumption for an insertion or deletion at the beginning or end of the tree will
be O(1). This is because each operation on a dangerous finger will render it safe for the
next time it is accessed [8].

3.2.3 Concatenation of Fingertrees

When 2 fingertrees are concatenated there are a number of different cases which can
occur. To begin with, when a concatenation of two trees is done a function called app3
is called with the two trees and an empty list of “between” elements. As can be seen in
fig. 3.7 there are 4 trivial cases, the first two is when either tree is empty in which case
the “between” elements is added to the nonempty tree. The other two are when there is
exactly one element in one of the trees in which case that element is added to the other
tree after the “between” elements [8].

In the last case two trees of more then one elements are concatenated. In this case, a
new tree is created which has the first finger set as the first finger from the first tree and
the last finger set as the last finger from the second tree. The spine will be created by
calling app3 recursively with the spine from the first tree as the first tree, the last finger
of the first tree plus “between” elements plus the first finger of the second tree as the
new “between” elements and the spine from the second tree as the second tree [8].
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(><) : : FingerTree a −> FingerTree a −> FingerTree a
xs (><) ys = app3 xs [ ] ys

app3 : : FingerTree a −> [ a ] −> FingerTree a −> FingerTree a
app3 Empty t s xs = t s <| ’ xs
app3 xs t s Empty = xs |> ’ t s
app3 ( S i n g l e x ) t s xs = x <| ( t s <| ’ xs )
app3 xs t s ( S i n g l e x ) = ( xs |> ’ t s ) |> x
app3 ( Deep pr1 m1 s f 1 ) t s ( Deep pr2 m2 s f 2 )

= Deep pr1 ( app3 m1 ( nodes ( s f 1 ++ ts ++ pr2 ) ) m2) s f 2

(< | ’ ) : : [ a ] −> FingerTree a −> FingerTree a
(< | ’ ) = f l i p ( foldr (< |) )

( |> ’ ) : : FingerTree a −> [ a ] −> FingerTree a
( |> ’ ) = fo ld l ( |>)

Figure 3.7: Concatenation function for Fingertree [8]

nodes : : [ a ] −> [ Node a ]
nodes [ a , b ] = [ Node2 a b ]
nodes [ a , b , c ] = [ Node3 a b c ]
nodes [ a , b , c , d ] = [ Node2 a b , Node2 c d ]
nodes ( a : b : c : xs ) = Node3 a b c : nodes xs

Figure 3.8: Help function for transforming a list of element into a list of Nodes [8]

The time complexity for concatenation can be reasoned as follows. As can be seen in
fig. 3.7 the only operation that is run recursively is nodes, fig. 3.8. nodes will run in
O(1) time since the most amount of arguments passed to it will be 12 in which case
4 Node3 elements will be returned. Since each recursive step takes at most O(1) time
and the function terminates when the bottom of the shallower tree has been reached the
total time to concatenate two trees is θ(log(min(n,m))) where n and m is the size of the
trees being concatenated [8].

3.2.4 Measurements

To make fingertrees useful for a divide and conquer lexer a measure of the tree needs to
be added. A measure of a tree may for example be how many elements is in the tree or
as will be shown later in the report, the lexed tokens of the text in a tree. To implement
measures time efficiently the data type that is chosen should be a monoid. A monoid
is in abstract algebra a set S and an operator (<>) which satisfies the rules in fig. 3.9
[8].
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Closure ∀a,b ∈ S : a <> b ∈ S
Associativity ∀a,b,c ∈ S : (a <> b) <> c = a <> (b <> c)
Identity element ∃e ∈ S : ∀a ∈ S : e <> a = a <> e = a

Figure 3.9: Monoid rules over a set S with operator <>

An example of a monoid is the natural numbers, which under addition form a monoid
where the identity element is 0. Using Haskells class system measures are defined as
in fig. 3.10. mempty will henceforth be used as the identity element in examples and
definitions.

class ( Monoid v ) => Measured a v where
measure : : a −> v

Figure 3.10: Definition of the Measure class [8]

Since the measure is a monoid, when two trees are concatenated the measure of the
new tree is simply measure tr1 <> measure tr2. The Digit data type in the trees are
always of constant size, however the elements in Digit are of type Node a which grows
with the depth of the tree. Because of this the Node a data type is also measured as
can be seen in fig. 3.11 [8].

instance ( Measured a v ) => Measured ( Dig i t a ) v where
measure xs = fo ld l (\v x −> v <> measure x ) mempty xs

data Node v a = Node2 v a a | Node3 v a a a

node2 : : ( Measured a v ) => a −> a −> Node v a
node2 a b = Node2 ( measure a <> measure b) a b

node3 : : ( Measured a v ) => a −> a −> a −> Node v a
node3 a b c = Node3 ( measure a <> measure b <> measure c ) a b c

instance ( Monoid v ) => Measured (Node v a ) v where
measure ( Node2 v ) = v
measure ( Node3 v ) = v

Figure 3.11: Measure of the data type Node [8]

Figure 3.12 shows the fingertree implementation with measures which is similar to the
implementation without measures, fig. 3.4. The new data type, deep, is used as the
constructor for trees with more then one element. Because of how fingertrees are imple-
mented the type of the elements will change, in the beginning it is a at the second level
it is node v a. However the measure will always be of type v [8].
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data FingerTree v a = Empty
| S i n g l e a
| Deep v ( Dig i t a ) ( FingerTree v (Node v a ) ) ( D ig i t a )

deep : : ( Measured a v ) =>
Dig i t a −> FingerTree v (Node v a ) −> Dig i t a −> FingerTree v a

deep pr m s f = Deep ( measure pr <> measure m <> measure s f ) pr m
s f

instance ( Measured a v ) => Measured ( FingerTree v a ) v where
measure Empty = mempty
measure ( S i n g l e x ) = measure x
measure ( Deep v ) = v

Figure 3.12: Fingertrees Measure function [8]

Fingertrees offers a data structure where the time complexity for operations on the
tree scales logarithmically with the size of the tree. Because of this and the fact that
operations on the measure in the fingertree has constant time it makes the data structure
suitable for a divide and conquer lexer [8].

3.3 Divide and Conquer Lexing in General

In section 3.1 the general divide and conquer algorithm was covered. This section cov-
ers the general data structures and algorithms for an incremental divide and conquer
lexer.

3.3.1 Tree structure

The incremental divide and conquer lexer should use a structure where the code-lexemes
can be related to its tokens, current result can be saved and easily recalculated. A divide
and conquer lexer should therefore use a tree structure to save the lexed result in. Since
every problem can be divided into several subproblems, until the base case is reached.
This is clearly a tree structure of solutions, where a leaf is a token for a single character,
and the root is a sequence of all tokens in the code.

3.3.2 Transition map

When storing a result of a lexed string it is a good idea to store more then just the
tokens. In particular the in and out states are needed when combining the lexed string
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with another string. The information needed can be bound to a type synonym like in
fig. 3.13. This report will henceforth refer to this as a transition.

Since the lexer does not know if the current string is a prefix of the entire code or not it
can not make any assumptions on the in state. Because of this the lexer needs to store
a transition for every possible in state, fig. 3.13. the report will henceforth refer to this
as a transition map.

type Trans i t i on = ( State , [ Token ] , State )
type trans i t ionMap = [ Trans i t i on ]

Figure 3.13: Type synonyms for the transition map

The Base Case

When the lexer tries to lex one character it will create a transition map using the DFA
for the language. It will, for each state, create a transition that has the state as in state,
a list containing the character as the only token and by using the DFA, lookup what out
state the transition should have. For the character ’o’ part of a transition map might
look like fig. 3.14.

In fig. 3.14, fig. 3.16 and fig. 3.17 the first number refers to the in state, the middle
part is the sequence of tokens and the second number is the out state, that can be
accepting.  0 [′o′] Accepting5

1 [′o′] 1

10 NoState


Figure 3.14: The Base Case for divide and conquer lexing

NoState transition is used to tell the lexer that using that particular transition will
result in a lexical error. For reasons being covered later in this section, they can not be
discarded.

Conquer Step

The conquer step of the algorithm is to combine two transition maps into one transition
map. This is done by, for every transition in the left transition map, combining the
transition with the transition in the right transition map that has the same in state as
the left transitions out state. This can be described by the function in fig. 3.15 where
map1 and map2 refers to the first and second transition map.
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merge : : t rans i t ionMap −> trans i t ionMap −> trans i t ionMap
merge map1 map2 = [ ( i , t1><t2 , o ) | ( i , t1 , o1 ) <− map1 , ( i2 , t2 , o ) <−

map2 , o1==i 2 ]

Figure 3.15: Function for merging two transition maps into one transition map

The most general case is a naive lexer that takes the first accepting state it can find.
When two transitions are combined there are two different outcomes:

Append: If the out state of the first transition is accepting, the sequence in the transi-
tion that starts in the starting state of the second transition map will be appended
to the first.

appendTokens : : Tokens −> Tokens −> Tokens
appendTokens tokens1 tokens2 = tokens1 >< tokens2

Merge: If the out state of the first transition is not accepting, the transition in the
second transition map with the same in state as the out state of the first transition
will be used. The last token of the sequence from the first transition will be merged
with the first token in the second transition into one token and put between the
two sequences.

mergeTokens : : Tokens −> Tokens −> Tokens
mergeTokens tokens1 tokens2 = p r e f i x 1 |> newToken >< s u f f i x 2

where p r e f i x 1 |> token1 = tokens1
token2 <| s u f f i x 2 = tokens2
newToken = token1 ‘ combinedWith ‘ token2

For both the cases the in state of the first transition will be the new in state and the
out state of the second transition will be the new out state. An example of both cases
is shown in fig. 3.16.[

0 [′o′] Accepting5

1 [′o′] 1

]
‘combineTokens‘

[
0 [′ ′] Accepting2

1 [′ ′] 1

]
=[

0 [′o′,′ ′] Accepting2

1 [′o ′] 1

]

Figure 3.16: The Conquer step for Divide and Conquer lexing

This will not work as a lexer for most languages since the longest match rule is not
implemented. For example, it will lex a variable to variables where the length is a single
character, for example “os” will be lexed as two tokens, “o” and “s”. To solve this some
more work is needed.
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Longest Match

To ensure that only the longest token is returned some stricter rules for combinations are
needed. Firstly, if two transitions can be combined without having the outgoing state
NoState then merge those transition. When two transitions are merged the last token
of the left transition is merged with the first token of the right transition into one token.
Secondly, If the combination of two transitions would yield NoState, the transitions are
appended instead. When two transitions are appended the right transition starting from
the starting state is appended to the left transition. As can be seen in fig. 3.17

[
0 [′o′,′ ′] Accepting2

1 [′o ′] 1

]
‘combineTokens‘

 0 [′/′,′∗′] Accepting4

1 [′∗/′] Accepting3

2 NoState

 =

[
0 [′o′,′ ′,′ ∗′ ,′/′] Accepting4

1 [′o ∗ /′] Accepting3

]

Figure 3.17: The Conquer step when the longest match rule is applied

When two transitions are appended another rule needs to be accounted for. If the last
token of the first transition does not end in an accepting state a lexical error is found.
How lexical errors are handled and stored is explained in section 3.3.3.

3.3.3 Lexical Errors

Even though lexical errors can not halt the lexer it is still useful to keep them since they
tell the user what is wrong. In an incremental lexer there are different ways this can
be achieved. The simplest way is to store the lexical error, instead of the tokens and
outgoing state, when an error is encountered. To use this method the transition need
to be modified to store the error, see fig. 3.18. The advantage of this is that when a
lexical error is encountered nothing more will be computed for that transition, however
all other transitions in the transition map will be computed as normal. If this style is
used in a text editor and a lexical error is encountered, the user will only get feedback
from that error.

type Trans i t i on = ( State , Either ( [ Token ] , State ) Error )

Figure 3.18: Transition that can either contain tokens or a lexical error

Another way is to keep as much of the correct tokens as possible and only store errors
for the lexeme that does not match anything else. With this approach the lexer would
store all tokens up until a lexical error is encountered. When an error is encountered,
the error is stored and the lexer tries to lex the rest of the text starting from the starting
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state. For this to work the sequence that stores the tokens needs to store the lexical
errors as well, see fig. 3.19. With this approach the lexer will continue combining tokens
after a lexical error is found, the drawback with this is that extra token computations
needs to be made that may not be useful in the final lexical analysis. If this approach
is used in a text editor the user will see the minimal combination of characters that
construct a lexical error. After that error, tokens that are lexed from the starting state
is returned.

type Trans i t i on = ( State , [ Either Token Error ] , State )

Figure 3.19: Transition contains a sequence of tokens and errors

Example 3.3.1 (A Java lette light lexer, see appendix A). Lexical analysis is done on
the string“Hello /*World”. When global error handling, the transition contains one error
or a sequence of tokens, is used the result of the lexical analysis will be as in fig. 3.20(a).
When local error handling, the transition contains a sequence of tokens and errors, is
used the result of the lexical analysis will be as in fig. 3.20(b).

String Type

’/’ Error

(a) Global Error

String Type

’Hello’ Ident

’ ’ Space

’/’ Error

’*’ Reserved

’World’ Ident

(b) local Error

Figure 3.20: Difference in error handling

If local error handling is used and the comment in the string would later on be closed,
the tokens after ’/’ would be thrown away since another transition would be used which
constructs a multi line comment. If global error handling is used the user will get little
to no use of the lexical analysis until the lexical error is corrected, however run time is
saved since nothing is computed after the lexical error is found for that transition.

3.3.4 Expected Time Complexity

Incremental computing states that only content which depends on the new data will
be recalculated. That is, follow the branch of the tree from the new leaf to the root
and recalculate every node on this path. As shown by fig. 3.2. Only one subproblem is
updated in every level of the tree. Using the master method to calculate the expected
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time complexity gives: e = logb a where a is number of recursive calls and n/b is size of the
subproblem where n is the size of the original problem. As shown by fig. 3.2, the number
of needed update calls at every level of the tree is 1, therefore a = 1. The constant b
is still 2. This will give e = log2 1 = 0. Thus the update function of the incremental
algorithm will have an expected time complexity of Θ(n0 · log n) = Θ(log n)

Since the fingertree is lazy, when an element is added to the root level of the tree, root
elements might be pushed down in the tree. The measure of the lower levels does not
need to be immediately recalculated. Instead they are recalculated when they are used.
Paying for this expensive operation like described in the section about bankers method
[8].
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4

Implementation

In this chapter the tools, data structure and implementation of the incremental divide
and conquer lexer is explained. The implementation of the incremental divide and con-
quer lexer uses fingertrees for storing the intermediate tokens and the lexed text. It
has an internal representation of the tokens to keep track of the data needed when two
fingertrees are combined. The lexical routines for combining the internal token data
type take advantage of functional composition in order to get lazy updating of the to-
kens when two fingertrees are combined. The complete implementation can be found in
appendix B.

4.1 The DFA Design

The DFA used in the incremental lexer was created using Alex. Alex is a Haskell tool
for generating lexical analyzers given a description of the language in the form of regular
expressions, it is similar to lex and flex in C and C++. The resulting lexer is Haskell 98
compatible and can easily be used with the parser Happy, a parser generator for Haskell
[5]. Alex is notably used in BNFC which is a program to generate among other things
a lexer, parser and abstract syntax from Backus-Naur Form [6].

The reason for using Alex to generate the DFA is that it optimizes the number of
elements in the transition table. Instead of having an array for every possible character
and state combination, 5 arrays are generated that takes advantage of the fact that for
most characters the same state will be used the majority of time. This saves a lot of
elements that would otherwise be the same in the array.
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The trade off for using the Alex generated DFA is that some minor arithmetic opera-
tions are used and some extra lookups are needed. These operations are far less time
consuming then the rest of the lexical operations.

4.2 Token data structure

To keep all the information that might be needed when combining two texts, a data
structure for the tokens was created. This data type contains more information about
the last token than what a sequential lexer would save, exactly what is explained in
section 4.2.2.

Since this project is about creating a real-time lexing tool, performance is important.
Therefore there are advantages of using sequences instead of lists, since they have better
time complexity. The most notable place where this is used is in the measure of the
fingertree, where the tokens are stored in a sequence rather then a list. Sequences are
also used elsewhere in the project but the measure is the most notable place since it is
frequently updated.

4.2.1 Tokens

The internal structure used to store lexed tokens is called Tokens. There are three
constructors in the Tokens data type, see fig. 4.1.

data Tokens = NoTokens
| Inval idTokens ( Seq Char)
| Tokens { currentSeq : : ( Seq Token )

, lastToken : : S u f f i x
, outState : : State }

Figure 4.1: Tokens Data Type

NoTokens is a representation of when an empty string has been lexed. InvalidTokens
represents a lexical error somewhere in the text that was lexed, the sequence of charac-
ters is the lexical error or last token lexed. The Tokens constructor is the case when
legal tokens have been found. currentSeq are all the currently lexed tokens save for
the last, lastToken are all the possible ways that the last token can be lexed, in this
implementation this is referred to as the suffix and what it is and why it is needed will
be explained next.
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4.2.2 Suffix

When a text is lexed it is uncertain that the last token is the actual end of the file since
it may be combined with something else. To ensure that all possible outcomes will be
handled the last token can take one of three different forms. The part of the text lexed
can end in:

• a state that is not accepting,

• an accepting state,

• a state that is not accepting, but the text can also be a sequence of multiple tokens.

To keep track of these cases a data structure that captures them was implemented, see
fig. 4.2.

data S u f f i x = Str ( Seq Char)
| One Token
| Multi Tokens

Figure 4.2: Suffix Data Type

The Str constructor is used to keep track of partially complete tokens, an example of this
is when a string is started but the end quotation character have not yet been found.

The One constructor is used when exactly one token has been found, it may or may not
be the token that is used in the final result of the lexing. Since this constructor is a
special case of the Multi constructor it can be omitted. However the One constructor
makes certain cases redundant since the lexer makes assumptions that can not be made
for the Multi constructor.

The Multi constructor is used when at least one token has been found but the lexeme
for the suffix does not match exactly one token. The entire suffix still needs to have an
out state. This type of suffix can typically be found when the beginning of a comment
is lexed. for example the text /*hello world would be lexed to a sequence of complete
tokens, “/”, “*”, “hello” and “world”, but the lexer still needs to keep track of the fact
that it may be in the middle of a multi-line comment. Note that in this case the Tokens
data structure would have one out state, the state for the middle of a comment, and the
suffix would have another, the end of an ident.

4.3 Transition Map

The transition map is a function from an in state to Tokens. As shown in fig. 4.1 the
Tokens data type contains the out state.
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type State = Int

type Trans i t i on = State −> Tokens

getTokens : : Trans i t i on −> State −> Tokens
getTokens t rans s t a t e = trans s t a t e

Figure 4.3: Transition Data Type

This data type is used in the lexical routines. The reason for using transition maps is
that the lexer does not know what the in state for a lexed text is, hence the tokens for
all possible in states must be stored. The transition map can be implemented in two
ways, a table format and a function composition format.

The table format uses an array to store the currently lexed tokens where the index of
the array represents the in state for that sequence of tokens. This is useful when the
tokens need to be stored since it ensures that the tokens are computed.

When combining lexed tokens it is useful to use functional composition since it ensures
that no unnecessary states will be computed. The drawback is that it does not guarantee
that the actual tokens are computed which may result in slow performance at a later
stage in the lexing. Since Haskell does not evaluate functional composition to (f.g)x but
rather f(g x) all incrementality will be lost with this data structure.

Both these representations are used in the incremental divide and conquer lexer. The
table format is used when storing the tokens in the fingertree to allow for fast access and
incrementality. The function composition is used when combining tokens to ensure that
only needed data is computed.

4.4 Fingertree

The fingertree is constructed with the characters of a text being the leaves and with the
table format transition map as it is measure. The Table data type has to be a monoid
in order to be a legal measure of the fingertree.

type LexTree = FingerTree Table Char

type Table = Array State Tokens

Figure 4.4: The data type for storing the tokens and text

The monoid class in Haskell has two different functions, mempty which is the identity
element and mappend which is an associative operator that describes how two elements

30



CHAPTER 4. IMPLEMENTATION

are combined. As can be seen in fig. 4.5, mempty creates an array filled of empty
Tokens. mappend extracts the functions from the old tables, combines them using
combineTokens then creates a new table filled with the combination.

tabu la t e : : ( State , State ) −> Trans i t i on −> Table
a c c e s s : : Table −> Trans i t i on

tabu la t e range f = listArray range [ f i | i <− [ f s t range . . snd
range ] ]

a c c e s s a x = a ! x

instance Monoid Table where
mempty = tabu la t e stateRange (\ −> emptyTokens )
f ‘mappend ‘ g = tabu la t e stateRange $ combineTokens ( a c c e s s f )

( a c c e s s g )

Figure 4.5: The tabulate functions and monoid implementation

There are two helper functions that convert between the table format that is stored as
the measure and the function composition format that is used in the lexical routines.
These can be seen in fig. 4.5.

4.5 Lexical routines

The lexical routines are divided into five functions. They each handle different parts of
the lexical steps that are needed in an incremental divide and conquer lexer.

4.5.1 Combination of Tokens

combineTokens : : Trans i t i on −> Trans i t i on −> Trans i t i on
combineTokens t rans1 trans2 i n s t a t e

| i s I n v a l i d toks1 = toks1
| isEmpty toks1 = trans2 i n s t a t e
| otherwise = combineWithRHS toks1 t rans2

where toks1 = getTokens t rans1 i n s t a t e

Figure 4.6: The combineTokens function

combineTokens is the function called when two fingertrees are combined. The function
starts by checking if the tokens generated from in state from the first transition is empty
or invalid in which case the output is trivial. If the tokens generated are valid, the tokens
are passed on to combineWithRHS together with the second transition.
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4.5.2 Combine Tokens With Right Hand Side

combineWithRHS checks how the tokens from the first transition are to be combined
with the second transition.

combineWithRHS : : Tokens −> Trans i t i on −> Tokens
combineWithRHS toks1 t rans2 | isEmpty toks2 = toks1

| i s V a l i d toks2 =
let toks2 ’ = mergeTokens ( lastToken toks1 ) toks2 t rans2
in appendTokens seq1 toks2 ’

| otherwise = case lastToken toks1 of
Multi su f fToks −>

let toks2 ’ = combineWithRHS suf fToks t rans2
in appendTokens seq1 toks2 ’

One tok −> appendTokens ( seq1 |> tok ) ( getTokens t rans2
s t a r t S t a t e )

Str s −> inva l idTokens s
where toks2 = getTokens t rans2 ( outState toks1 )

seq1 = currentSeq toks1

Figure 4.7: CombineWithRHS function

combineWithRHS starts by creating tokens from the second transition, toks2, using
the out state from the first tokens, this can result in three different cases, the definition
of the variable names can be found in fig. 4.7.

isEmpty If toks2 is empty toks1 is returned.

isValid If toks2 is valid it means that the last token from the toks1 can be combined
into one token with the first token in toks2.

otherwise If toks2 is not valid the lexer checks the suffix of toks1 to see if it ends in
an accepting state or a valid state.

• if the One constructor is found the suffix ends in an accepting state which
means that tokens created from the start state can be appended to toks1.

• If the Multi constructor is found the tokens from the suffix, suffToks, is
extracted and a recursive call to combineWithRHS is made with suffToks
as argument instead.

• If the Str constructor is found the suffix does not end in a valid state and
InvalidTokens will be returned.
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4.5.3 Merge Two Tokens

mergeTokens combines the last token from the first tokens with the first token of the
second tokens, for the code see fig. 4.8.

mergeTokens : : S u f f i x −> Tokens −> Trans i t i on −> Tokens
mergeTokens s u f f 1 toks2 trans2 = case v iewl ( currentSeq toks2 ) of

token2 :< seq2 ’ −> let newToken = mergeToken s u f f 1 token2
in toks2 { currentSeq = newToken <| seq2 ’}

EmptyL −> case a l e x a c c e p t ! o u t s t a t e of
[ ] −> let newSuff = mergeSuff s u f f 1 ( lastToken toks2 ) t rans2

in toks2 { lastToken = newSuff}
acc −> let lex = suf fToStr s u f f 1 <>

su f fToStr ( lastToken toks2 )
in toks2 { lastToken = One $ createToken lex acc }

where o u t s t a t e = outState toks2

Figure 4.8: MergeTokens function

• If there are more then one token in toks2, suff1 is combined into one token with
the first token in toks2 and the rest of the tokens in toks2 is appended and returned.

• If there is exactly one token in toks2, the suffix from toks2 is combined with suff1.
When two suffixes are combined some extra checks are needed. If toks2 has an
accepting out state, the two suffixes can be combined into one token. If toks2 does
not have an accepting out state the work is passed on to mergeSuff .

4.5.4 Merging Suffixes

mergeSuff checks which pairs of suffixes it has and takes the appropriate actions.

• If the first suffix is of type Multi the function calls combineWithRHS. If the
resulting tokens is invalid a recursive call is made with the suffix from the new
tokens as first suffix.

• If the first suffix is of type Str the result will always be another Str no matter
what is in the second suffix so the string is extracted and appended.

• if the first suffix is of type One and the second Str a new Multi suffix is created.
A new second tokens is created using the start state on the second suffix, if this
results in a valid Tokens, the token from the first suffix is prepended. If it is not
valid the Str is just added to the end of the new suffix.

• When both suffix are One they can be combined into a single token.

• When the first suffix is One and the second isMulti it is passed ontomergeTokens.
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mergeSuff : : S u f f i x −> S u f f i x −> Trans i t i on −> S u f f i x
mergeSuff ( Multi toks1 ) s u f f 2 t rans2 = Multi $

let newToks = combineWithRHS toks1 t rans2
in i f i s V a l i d newToks

then newToks
else let newSuff = mergeSuff ( lastToken toks1 ) s u f f 2 t rans2

in toks1 { lastToken = newSuff}
mergeSuff ( Str s1 ) s u f f 2 = Str $ s1 <> su f fToStr s u f f 2
mergeSuff (One token1 ) ( Str s ) t rans2 =

let toks2 = getTokens t rans2 s t a r t S t a t e
in i f i s V a l i d toks2

then Multi $ toks2 { currentSeq = token1 <| currentSeq toks2 }
else Multi $ createTokens ( s i n g l e t o n token1 ) ( Str s ) (−1)

mergeSuff s u f f 1 (One token2 ) = One $ mergeToken s u f f 1 token2
mergeSuff s u f f 1 ( Multi toks2 ) t rans2 =

Multi $ mergeTokens s u f f 1 toks2 trans2

Figure 4.9: MergeSuff function

4.5.5 Append to Sequence of Tokens

appendTokens checks if there is a lexical error in toks2. if there is an error, that error
is returned, otherwise toks2 is appended to toks1.

appendTokens : : Seq IntToken −> Tokens −> Tokens
appendTokens seq1 toks2 | i s V a l i d toks2 =

toks2 { currentSeq = seq1 <> currentSeq toks2 }
| otherwise = toks2
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Result

The incremental lexer has three requirements, it should be robust, efficient and precise.
Robustness means that the lexer does not crash when it encounters an error in the
syntax. That is, if a string would yield an error when lexed from the starting state the
lexer does not return that error but instead stores the error and lexes the rest of the
possible input states since the current string might not be at the start of the text. The
implementation this report propose is robust since it stores errors in the data structure
rather then returning an error.

For it to be efficient the feedback to the user must be fast enough, or more formally the
combination of two strings should be handled in Θ(log(n)) time.

Finally to be precise the lexer must give a correct result. This chapter is describing how
these requirements are tested and what the results are.

In the sections below, any mention of a sequential lexer refers to a lexer generated by
Alex using the same Alex file as was used when creating the incremental lexer [5]. The
reason why Alex was used was because the DFA generated by Alex was used in the
incremental lexer, thus ensuring that only the lexical routines differs.

5.1 Preciseness

For an incremental lexer to work, the lexer must be able to do lexical analysis of any part
of a text and be able to combine two partial texts. If the lexical analysis of one partial
text does not result in any legal token it must be able to be combined with other partial
texts that makes it legal tokens. The lexical analysis of a text might not always result in
the same tokens than the combination of the text with another text would give.
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To test these cases a test was constructed which did a lexical analysis on two partial
texts using the incremental lexer and then combining the results into one text. The
result of the combination should be the same as the lexical analysis of the entire text
using the incremental lexer and the result using a sequential lexer.

It is not enough to test if the combination of two partial texts yields the same sequence
of tokens as the text. To test that the result of the incremental lexer was the correct
sequence of tokens, it was compared to what a sequential lexer generated. This compar-
ison was an equality test that compared token for token that they were the same kind
of token and had the same lexeme.

fig. 5.1 shows the test for equality:

checkCorrectTokens : : IncLex . Tokens −> Alex . Tokens −> Boolean
checkCorrectTokens i t o k s atoks =

l e t tokTupple = z ip i t o k s atoks
in [ ] == f i l t e r (\ ( iToken , aToken ) −> iToken ‘ notEquals ‘

aToken ) tokTupple

notEqual function is a function which pattern-match on the two different tokens and
returns true if they are not of the same type.

Figure 5.1: Code for testing tokens from IncLex is equal to tokens from Alex.

Tests were performed on different files that were cut in different places when the update
was tested. In all the tests the incremental lexer produced the same tokens as the
sequential lexer. When these tests were done no text that would produce a lexical error
was used. Some partial texts did produce lexical errors but the texts passed through
the sequential lexer and compared to the result of the incremental lexer did not produce
lexical errors.

5.2 Performance

All tests, where time performance was measured, were done with the help of Criterion, a
Haskell library. Criterion has tools to ensure that the functions being tested is evaluated
to normal form. Criterion runs the tests 100 times with a warm up run by default.
The warm up run makes sure that all inputs to the functions being tested are evaluated
before the actual testing begins, this ensures that nothing but the function being tested
is measured [10].

To make sure that the time performance tests were not skewed under a certain system
they were tested on different hardware and operating systems. The results were similiar
on all the systems tested. The results presented below were done on an intel i5 quad
core at 2900MHz with 8GB memory under the linux Red Hat operating system.
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To measure the performance of the incremental step two fingertrees were created, each
representing one half of a text. By creating the two fingertrees the transition map
for the code in those trees are created as well. The benchmarking was then done on
the combination of the two trees. The results of the incremental lexer benchmarking
suggested a running time of Θ(log(n)). To get a reference point the same text was lexed
using a sequential lexer. The benchmarks can be found in fig. 5.3 and fig. 5.2.
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Figure 5.2: Benchmarking times of an incremental update

0 20 40 60 80 100 120 140 160
0

10

20

∗1000 characters

m
s

Update compared to sequential

Incremental update
Sequential lexing

Figure 5.3: Comparison between an incremental update and sequential lexer

The running time when constructing the tree was not as fast as either the update or the
sequential lexer. The tests for the running time, when constructing a new tree, sugged
Θ(n log(n)), this was expected since there are Θ(log(n)) updates for every character.
The result can be found in fig. 5.4.
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Figure 5.4: Comparison between the sequential lexer and the incremental lexer when lexing
an entire file

The space a fingertree takes is dependent on the size of the measurement of the tree.
In the case of the incremental lexer the measurement of the tree is the transition map.
To test how much space the transition map takes a DFA for an early Java version that
has 90 states was used. The transition map was serialized and stored to the disc us-
ing the Haskell library Data.Binary. The test suggested that the size of the transition
map grows linearly with the size of text being lexed, the results can be found in fig. 5.5.
Because of how the transition map is constructed it will also grow linearly with the num-
ber of states in the DFA. The test shows that the transition map has space complexity
Θ(mn).
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Figure 5.5: Space usage of the transition map using a DFA with 90 states
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Our conclussions on the space complexity is based on the assumption that there is no
data sharing for our measurement between levels in the fingertree

To measure the space of an entire fingertree each level of the tree must be regarded. As
shown in fig. 3.3 the n:th level of a fingertree has two 2− 3 trees of depth n with leaves
in them. The root level will therefore have a measure for all leaves stored, that is if the
measure takes Θ(f(n)) space, the measure in the root will take that much space. For
the second level two 2 − 3 trees of depth 1 has been removed, so the measure will be
Θ(f(n − 2 ∗ 2)) in the worst case. For the third level two more 2 − 3 trees have been
removed and in general on the x:th level the measure will take:

Θ(f(n− 2 ∗
x∑
y=1

2y))

Since the measure from all the levels in the tree are stored, the total amount of data the
measures takes is a sum over all the levels, the resulting approximation can be seen in
fig. 5.6. For the entire equation see appendix C.

log(n−1)∑
x=0

(n− 2 ·
x∑
y=1

2y) = (n+ 4) log(n− 1)− 7n+ 16⇒ Θ(n log n)

Figure 5.6: The number of characters being measured in a tree with n characters

Because of time limitations the size of the fingertrees were never tested. If the approxi-
mation of the space needed for a fingertree is correct the space complexity for the trees
generated by this lexer will be Θ(mn log n).
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Discussion

During the course of the project there were some setbacks. The first setback was that
our initial solution had bad running time, was hard to understand and did not handle
longest matching correctly.

After the first solution came a solution that was easier to understand but still had
problem with the longest match. The running time was greatly improved from the first
version but was still not faster then sequential lexers.

To solve this our last implementation which is described in chapter 4 made use of arrays
and a DFA from Alex. The longest match problems that existed in the earlier versions
of the lexer was mainly due to difficulty finding the correct solution.

6.1 Used Programming Language and Data Structure

The project is written in Haskell. One of the reasons is that similar research and projects
have been done in Haskell, for instance [11] and [8]. Haskell also has the tools and the
data structures used in the project. For instance Alex was used in two parts, first
the DFA generated was used and second a lexer generated by Alex was used to get a
comparison of the time for lexing.

There are other advantages of using Haskell as implementation language, namely higher
order functions, lazy evaluation and function composition. Functional composition is
useful in the lexical routines since the transitions are implemented as functions and are
more or less just evaluated by composing. The lexical routines can be implemented as
lazy, however this makes the incremental step in the lexer ineffective. Because of this the
lexical routines are implemented strict, that is all values are always calculated.
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The project could have been done in other languages. There are for example lexer
generators in other languages, lex, Flex and Jlex, which can be used to create an efficient
DFA. There have also been earlier articles that handle problems similar to this project
written in Java [9].

The advantage of using fingertrees in an incremental lexer is that it is easy to keep track
of which tokens correspond to which part of the text, since the tokens are in the measure
of the tree. Fingertrees also has the advantage of keeping track of earlier result. When a
tree is split up the tokens that match the partial texts are already calculated. The time
complexity for combining two trees is low, O(log n), where n is the size of the smallest
tree. The lexical routines revolve around combining two lexical results. Because of this
it is advantageous to use fingertrees since combination of two fingertrees are fast. The
main reason to not use any other type of tree is that another tree would not keep track
of measure for the partial trees. In the case of splitting a tree the tokens would have to
be recalculated.

6.2 Trials and Errors

The first version of the lexical routines only had the goal to get an idea of how a divide
and conquer lexer could be implemented. As a result a lot of unnecessary information was
stored and computed and some necessary information was stored and computed more
than once. The solution was to calculate uncertain tokens until a satisfactory result was
found or all possibilities was exhausted. This meant that for each combination the worst
case was O(2n).

The next step was to make sure that the information was stored in the right places and
that no unnecessary information was stored. To solve this an overhaul of the projects
data structure was made. The result is close to the structure used in the final result.
This solution still had some problem with the running time. The main reason was that
the lexical result was not explicitly stored in the fingertrees. That is, the functional
composition was stored in the finger trees and since Haskell is lazy in nature the result
was not computed resulting in slow running time when combining trees.

The final version of the project ensured that the lexer ran fast and made sure that
fringe cases were computed correctly. The solution to this was to use arrays in the
measure of the fingertrees since arrays are always explicitly evaluated to normal form
and that they have quick lookup time O(1). Since the lexical routines can take advantage
of the transitions in the form of functions that representation was used in the lexical
routines and functions for converting between the arrays and function representation
was implemented.
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6.3 Implementation Suggestions

The updating step of the lexer is fast since the only computation needed is the combi-
nation of the last token of the first tree with the first token of the second tree and the
combination of the actual trees. If an incremental lexer is used the fingertrees should
be stored instead of the raw text. If the fingertrees are not stored the fingertree would
need to be recalculated each time the file was opened.
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Conclusion and Future Work

As mentioned in the result chapter the incremental lexer was both robust and precise.
This means that without considering the time and space efficiency an incremental lexer
will produce the same result as a sequential lexer with the difference being how lexical
errors are handled. The incremental lexer is efficient in the sense that updates are done
in Θ log(n) time. However when a tree is built up from scratch the incremental lexer
takes Θn log(n) time compared to the sequential lexer that takes Θn time.

7.1 Conclusions

Incremental lexers are not suited to be used in a stand alone lexer since a sequential
lexer is more efficient then an incremental lexer when an entire text is being lexed. If a
development environment that uses an incremental lexer was used, the stand alone lexer
can be omitted since the tokens are already generated, saving one step in the compilation
process.

It is however suited in an environment where updates are likely to happen, for example
to give lexical feedback in a text editor where each key stroke would be an update.
Insertion of a character in the text will be faster with an incremental lexer compared
to a sequential lexer since the lexical analysis does not need to be done on the entire
text. This means that the lexer could be run in real time without a user noticing it. The
result from an incremental lexer can be passed to an incremental parser, giving parsing
feedback to the user instead. However, loading times when opening files will be longer
if the tree containing the tokens are not stored.

The space requirements for the incremental lexer grows with the tree. There is infor-
mation for the entire text in all levels of the tree and each level has information for all
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possible in states. The space of a tree grows with Θmn log(n), where m is the number
of states in the DFA. This means that the memory usage will be big for large files and
complex languages.

7.2 Future Work

To solve the problem with the space requirements for this implementation an implemen-
tation using sequence of characters could be used instead. That is, instead of using a
character as the base case, a sequence of characters is used which is sequentially lexed,
an example of a sequence is one line of code. This would shrink the tree from log(n) to
log(n/x) where x is the mean length of a line. Since lines in the code are roughly of the
same length there will be no impact on the worst case scenario time, for instance lexing
10 characters always takes the same amount of time. Since the lines in general are short
updating a line will not take long time.

Another solution which could be used is to limit how big a tree can be. When that
text is bigger then what fits in a tree, the tree is split into two trees. This will result in
smaller trees at the expense of run time since the combination of the trees needs to be
calculated on the fly.

In general a lot of in states will have the same sequence of tokens. The implementation
suggested by this report will store all such sequences separately. An improvement would
be if somehow the sequences of tokens that are identical could be stored in a separate
table and the in state in the transition map points to the corresponding sequence for
that in state. This would not improve the space complexity, but the practical space
needed would shrink.
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A

Modified Java Lette Light

Here is a simplified version of Java that only have variables, numbers, strings and some
simple operators. The language includes while loops but the lexical analyzer will read
“while” as an identifier, The syntactical analyzer will later determine if it is a loop. The
expressions that matches rules without a name are discarded since they are not needed
for the syntactical analyzer.

Character sets

capital → [A-Z]

lower → [a-z]

letter → [a-zA-Z]

digit → [0-9]

ident → letter | digit | [ ’] Identifier Characters

white → [ \t\r\n\v\f] White space characters

Rules

white+

// [.]* Single line comment

/\*) ([∧\*] | (\*) [∧/])* (\*)+ / Multi line comment

Identifier → letter ident*

Integer → digit+

Double → digit+ \. digit+
String → \” [∧ \”]* \”
Reserved → \( | \) | \{ | \} | ; | = | \+\+ | < | \+ | - | \* |
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B

Incremental Lexer Source Code

Below follows the main part of the lexical routines and the data structures used in this
project.

type State = Int
type Trans i t i on = State −> Tokens −− Trans i t ion from in s t a t e to

Tokens
data Tokens = NoTokens

| Inval idTokens ! ( Seq Char)
| Tokens { currentSeq : : ! ( Seq IntToken )

, lastToken : : ! S u f f i x
, outState : : ! State }

−− The s u f f i x i s the sequence o f as long as p o s s i b l e a c c e p t i n g
tokens .

−− I t can i t s e l f conta in a s u f f i x f o r the l a s t token .
deriving Show

−− This i s e i t h e r a Sequence o f tokens or one token i f i t h i t s an
a c c e p t i n g

−− s t a t e wi th l a t e r c h a r a c t e r s
data S u f f i x = Str ! ( Seq Char)

| One ! IntToken
| Multi ! Tokens

deriving Show
type S i z e = Sum Int
type LexTree = FingerTree ( Table State Tokens , S i z e ) Char
data IntToken = Token { lexeme : : ! ( Seq Char)

, token id : : Accepts}
type Accepts = [ AlexAcc ( Posn −> Seq Char −> Token ) ( ) ]

t abu la t e : : ( State , State ) −> ( State −> b) −> Table State b
a c c e s s : : Table State b −> ( State −> b)
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APPENDIX B. INCREMENTAL LEXER SOURCE CODE

{−− Funct iona l Table v a r i a n t
newtype Table a b = Tab {getFun : : a −> b}
t a b u l a t e f = Tab f
a cces s a x = ( getFun a ) x
−−}

type Table a b = Array State b
tabu la t e range f = listArray range [ f i | i <− [ f s t range . . snd

range ] ]
a c c e s s a x = a ! x

instance Monoid ( Table State Tokens ) where
mempty = tabu la t e stateRange (\ −> emptyTokens )
f ‘mappend ‘ g = tabu la t e stateRange $ combineTokens ( a c c e s s f )

( a c c e s s g )

−− The base case f o r when one c h a r a c t e r i s l e x e d .
instance Measured ( Table State Tokens , S i z e ) Char where

measure c =
let bytes = encode c

cSeq = s i n g l e t o n c
baseCase i n s t a t e | i n s t a t e == −1 = Inval idTokens cSeq

| otherwise = case fo ld l automata
i n s t a t e bytes of

−1 −> Inval idTokens cSeq
os −> case a l e x a c c e p t ! os of

[ ] −> Tokens empty ( Str cSeq ) os
acc −> Tokens empty (One ( createToken cSeq acc ) ) os

in ( tabu la t e stateRange $ baseCase , Sum 1)

createToken : : ( Seq Char) −> Accepts −> IntToken
createToken lex acc = Token lex acc

createTokens : : Seq IntToken −> S u f f i x −> State −> Tokens
createTokens seq su f s t a t e = i f null seq

then NoTokens
else Tokens seq su f s t a t e

inva l idTokens : : ( Seq Char) −> Tokens
inva l idTokens s = Inval idTokens s

emptyTokens : : Tokens
emptyTokens = NoTokens

−−−−−−−−− Combination f u n c t i o n s , the conquer s t e p

−− Combines two t r a n s i t i o n maps
combineTokens : : Trans i t i on −> Trans i t i on −> Trans i t i on
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APPENDIX B. INCREMENTAL LEXER SOURCE CODE

combineTokens t rans1 trans2 i n s t a t e | i s I n v a l i d toks1 = toks1
| isEmpty toks1 = trans2

i n s t a t e
| otherwise = combineWithRHS

toks1 t rans2
where toks1 = trans1 i n s t a t e

−− Tries to merge tokens f i r s t , i f i t can ’ t i t e i t h e r appends the
token or c a l l s

−− i t s e l f i f the s u f f i x co nt a in s Tokens i n s t a e d o f a s i n g l e token .
combineWithRHS : : Tokens −> Trans i t i on −> Tokens
combineWithRHS toks1 t rans2 | isEmpty toks2 = toks1

| i s V a l i d toks2 =
let toks2 ’ = mergeTokens ( lastToken toks1 ) toks2 t rans2
in appendTokens seq1 toks2 ’

| otherwise = case lastToken
toks1 of

Multi su f fToks −>
let toks2 ’ = combineWithRHS suf fToks t rans2 −− t r y to

combine s u f f i x wi th t r a n s i t i o n
in appendTokens seq1 toks2 ’

One tok −> appendTokens ( seq1 |> tok ) ( t rans2 s t a r t S t a t e )
Str s −> inva l idTokens s

where toks2 = trans2 $ outState toks1
seq1 = currentSeq toks1

−− Creates one token from the l a s t token o f the f i r s t sequence
and and the f i r s t

−− token o f the second sequence and i n s e r t s i t between the i n i t
o f the f i r s t

−− sequence and the t a i l o f the second sequence
mergeTokens : : S u f f i x −> Tokens −> Trans i t i on −> Tokens
mergeTokens s u f f 1 toks2 trans2 = case v iewl ( currentSeq toks2 ) of

token2 :< seq2 ’ −> let newToken = mergeToken s u f f 1 token2
in toks2 { currentSeq = newToken <| seq2 ’}

EmptyL −> case a l e x a c c e p t ! o u t s t a t e of
[ ] −> toks2 { lastToken = mergeSuff s u f f 1 ( lastToken toks2 )

t rans2 }
acc −> let lex = suf fToStr s u f f 1 <> su f fToStr ( lastToken

toks2 )
in toks2 { lastToken = One $ createToken lex acc }

where o u t s t a t e = outState toks2

−− Creates on token from a s u f f i x and a token
mergeToken : : S u f f i x −> IntToken −> IntToken
mergeToken s u f f 1 token2 = token2 { lexeme = su f fToStr s u f f 1 <>

lexeme token2}

−− Creates the a p r o p i e t new s u f f i x from two s u f f i x e s
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mergeSuff : : S u f f i x −> S u f f i x −> Trans i t i on −> S u f f i x
mergeSuff ( Multi toks1 ) s u f f 2 t rans2 = Multi $

let newToks = combineWithRHS toks1 t rans2
in i f i s V a l i d $ newToks

then newToks
else toks1 { lastToken = mergeSuff ( lastToken toks1 ) s u f f 2

t rans2 }
mergeSuff ( Str s1 ) s u f f 2 = Str $ s1 <> su f fToStr s u f f 2
mergeSuff (One token1 ) ( Str s ) t rans2 =

let toks2 = trans2 s t a r t S t a t e
in i f i s V a l i d toks2

then Multi $ toks2 { currentSeq = token1 <| currentSeq toks2 }
else Multi $ createTokens ( s i n g l e t o n token1 ) ( Str s ) (−1)

mergeSuff s u f f 1 (One token2 ) = One $ mergeToken s u f f 1 token2
mergeSuff s u f f 1 ( Multi toks2 ) t rans2 = Multi $ mergeTokens s u f f 1

toks2 t rans2

−− Prepends a sequence o f tokens on the sequence in Tokens
appendTokens : : Seq IntToken −> Tokens −> Tokens
appendTokens seq1 toks2 | i s V a l i d toks2 =

toks2 { currentSeq = seq1 <> currentSeq toks2 }
| otherwise = toks2

−−−−−−−−−− Constructors

makeTree : : String −> LexTree
makeTree = fromList

measureToTokens : : ( Table State Tokens , S i z e ) −> Seq Token
measureToTokens m = case a c c e s s ( f s t $ m) s t a r t S t a t e of

Inval idTokens s −> error $ ”Unacceptable token : ” ++ t o L i s t s
NoTokens −> empty
Tokens seq s u f f o u t s t a t e −>

snd $ fo ld lWithIndex showToken (Pn 0 1 1 , empty ) $ intToks seq
s u f f

where showToken ( pos , toks ) ( Token lex accs ) =
let pos ’ = fo ld l alexMove pos lex
in case accs of

[ ] −> ( pos ’ , toks )
AlexAcc f : −> ( pos ’ , toks |> f pos lex )
AlexAccSkip : −> ( pos ’ , toks )

intToks seq ( Str s t r ) = error $ ”Unacceptable token : ” ++
t o L i s t s t r

intToks seq (One token ) = seq |> token
intToks seq ( Multi ( Tokens seq ’ s u f f ’ ) ) = intToks ( seq

<> seq ’ ) s u f f ’

treeToTokens : : LexTree −> Seq Token
treeToTokens = measureToTokens . measure
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−−−−−−−−−−−−− U t i l funs

i s V a l i d : : Tokens −> Bool
i s V a l i d ( Tokens ) = True
i s V a l i d = False

isEmpty : : Tokens −> Bool
isEmpty NoTokens = True
isEmpty = False

i s I n v a l i d : : Tokens −> Bool
i s I n v a l i d ( Inval idTokens ) = True
i s I n v a l i d = False

su f fToStr : : S u f f i x −> Seq Char
su f fToStr ( Str s ) = s
su f fToStr (One token ) = lexeme token
su f fToStr ( Multi toks ) =

concatLexemes ( currentSeq toks ) <> su f fToStr ( lastToken toks )

i sAccept ing : : Tokens −> Bool
i sAccept ing ( Tokens s u f f ) = case s u f f of

Str −> False
One −> True
Multi toks −> i sAccept ing toks

i sAccept ing NoTokens = True
i sAccept ing ( Inval idTokens ) = False

concatLexemes : : Seq IntToken −> Seq Char
concatLexemes = foldr ((<>) . lexeme ) mempty

inse r tAtIndex : : String −> Int −> LexTree −> LexTree
inse r tAtIndex s t r i t r e e =

i f i < 0
then error ”index must be >= 0 ”
else l <> ( makeTree s t r ) <> r

where ( l , r ) = sp l i tTreeAt i t r e e

sp l i tTreeAt : : Int −> LexTree −> ( LexTree , LexTree )
sp l i tTreeAt i t r e e = sp l i t (\ ( , s ) −> getSum s>i ) t r e e

s i z e : : LexTree −> Int
s i z e t r e e = getSum . snd $ measure t r e e

−− S t a r t i n g s t a t e
s t a r t S t a t e = 0
−− A t u p l e t h a t says how many s t a t e s t h e r e are
stateRange = let ( s ta r t , end ) = bounds a l e x a c c e p t
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in ( s ta r t −1,end )

−− Takes an in s t a t e and a b y t e and r e t u r n s the corresponding out
s t a t e us ing

−− the DFA genera ted by Alex
automata : : Int −> Word8 −> Int
automata (−1) = −1
automata s c = let base = a l ex ba s e ! s

ord c = fromEnum c
o f f s e t = base + ord c
check = a lex check ! o f f s e t

in i f ( o f f s e t >= (0) ) && ( check == ord c )
then a l e x t a b l e ! o f f s e t
else a l e x d e f l t ! s
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C

Space Complexity Fingertrees

The equation in fig. C.1 describes the how the space complexity for the measures in a
fingertree is reached.

log(n−1)∑
x=0

(n− 2 ·
x∑
y=1

2y) = n+ n log(n− 1)−
log(n−1)∑
x=0

2 ·
x∑
y=1

2y =

n+ n log(n− 1)−
log(n−1)∑
x=0

2(2x+1 − 2) = n+ n log(n− 1)−
log(n−1)∑
x=0

(2x+2 − 4) =

n+n log(n−1)+4 log(n−1)+4−
log(n−1)∑
x=0

2x+2 = n+(n+4) log(n−1)−2log(n−1)+3+8 =

n+ (n+ 4) log(n− 1)− 8(n− 1) + 8 = (n+ 4) log(n− 1)− 7n+ 16⇒ Θ(n log n)

Figure C.1: The number of characters being measured in a tree with n characters
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