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Dynamic Network Architectures for Deep Q-Learning

Modelling Neurogenesis in Artificial Intelligence

Pontus Eriksson

Love Westlund Gotby

Department of Computer Science and Engineering

Chalmers University of Technology and University of Gothenburg

Abstract

Artificial neural networks have become popular within a range of machine learning
fields for their ability to solve complex problems, with one of the uses as function
approximators in Q-learning. These networks generally have static architectures,
which is a problem in the regard of artificial general intelligence, since no single
specific architecture is optimal for all problems. In this thesis, we implement and
evaluate a proof of concept for a novel approach of a dynamic network architec-
ture, resulting in a model that can be seen as a combination of compressed classical
table-based Q-learning and artificial neural networks. The model presented performs
true tabula rasa deep Q-learning, starting with an empty network that is gradually
extended with nodes when experiencing “surprising” events, and is capable of gener-
alization by abstracting important features from noisy input. Finally, we show that
the model can learn from delayed rewards in simple environments and compare it
with the well-established DQN algorithm.

Keywords: dynamic neural network, artificial neural network, ANN, Q-learning,
DQN, deep learning, machine learning, reinforcement learning.
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Introduction

The field of artificial intelligence (AI) has become part of both science and everyday
life, as its applications range from producing images of black holes [1] to finding
media content similar to what you like. While successful, the algorithms are often
tailored to a specific problem and used for that purpose only. The subbranch arti-
ficial general intelligence (AGI) aims at creating more generalized models that can
understand and solve multiple problems without manual reconfiguration from an
engineer.

Artificial neural networks (ANNs), often used for reinforcement learning, generally
have static architectures decided by an engineer, while the weights are updated ac-
cording to experiences. This static design of the networks is a problem in the regard
of AGI since no single specific architecture is optimal for all problems, exposing
a need for a dynamic design instead. Similarly, biological brains are continuously
rewired for adaptation [2, 3], further motivating a dynamic architecture for ANNs.

In this thesis we implement and evaluate a proof of concept model from a novel
approach for a dynamic network architecture in the form of a combination of com-
pressed classical table-based Q-learning and artificial neural networks, based on the
work of Strannegard et al. [4]. The model presented performs true tabula rasa deep
Q-learning, starting with an empty network that is gradually extended with nodes
when experiencing “surprising” events, and is capable of generalization by abstract-
ing important features from noisy input. Finally, we show that the model can learn
from delayed rewards in simple environments.

Although theorized, the dynamic network model by Strannegard et al. has not pre-
viously been implemented and compared to other related techniques. Therefore, the
purpose of this thesis is to implement the dynamic model combined with Q-learning
and compare it experimentally to a regular deep Q-learning network that is the stan-
dard reinforcement algorithm used today, and also to compare it on an idea-level to
other methods for dynamic networks.

The structure of the thesis is as follows. Chapter 2 will present a background to
reinforcement learning, the limitations of regular neural networks, and also describe
the idea that the thesis builds upon, the novel dynamic model. Related work in
the field of dynamic neural networks will also be given at the end of this chapter.
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Chapter 3 will go through the implementation details and evaluation methods used.
In Chapter 4 the evaluation results of the dynamic model are presented. The results,
advantages and disadvantages of the dynamic model, similarities with previous dy-
namic architecture models, and future work are discussed in Chapter 5, and final
conclusions about the model as a whole are presented in Chapter 6.
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Background

This chapter aims at providing the reader with the necessary background to the sub-
ject, introducing the fundamental concepts of reinforcement learning, Q-learning,
and limitations of traditional neural networks. The novel model for dynamic ar-
chitectures is then presented, followed by some changes made to the baseline DQN
networks that have been shown to improve its performance [5, 6, 7, 8] and that were
used in experiments, and finally related work to dynamic models.

2.1 Reinforcement Learning

One field of machine learning called reinforcement learning (RL) deals with problems
where a software agent, i.e. a decision-making program, is to maximize an arbitrary
reward over time by choosing actions at discrete timesteps in an observable enwi-
ronment. The general idea is to use some policy for choosing actions, evaluate the
chosen actions in some environmental state by interpreting a change in the environ-
ment as a positive or negative reward, and feeding the new state into the agent for
the next decision, illustrated in Figure 2.1. By using a combination of the chosen
action, which state the action was taken in, and the reward it led to, the agent can
learn from the experience by updating its policy used for taking actions in that state
accordingly. This is repeated until reaching a terminal state, e.g. game over or a
win-condition. All states from the start up until the terminal state together form
what is called an episode.

2.1.1 Markov Decision Process

Markov decision processes (MPDs) can be used to model discrete systems wherein
each state s, a number of actions can be taken, and each action a has a stochas-
tic outcome in the form of a new state s’ and a corresponding real-valued reward
r = R(s,a,s’). Although the state transitions are stochastic, the probability for a
transition into state s’ depends only on the current state s and the taken action
a, satisfying the Markov property. This implies that the current state is the only
information needed to make a well-informed decision. The typical problem formu-
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Action

‘ Environment ’ Learning

State

Figure 2.1: Illustration of a reinforcement learning model. The agent takes an
action based on the current state, leading to a change in the environment. From
this a reward is extracted and is together with the new state fed into the agent,
which updates its policy and takes a new action given the new state.

lation when using MDPs is to find a policy that maximizes either the accumulated,
average, or discounted reward over a long time, where a policy can be described as
a set of rules to follow for which action to take given any state. For this reason, RL
problems are commonly formulated as MDPs.

2.2 Q-Learning

Neural networks within Al have proven to be successful for deciding which action
to take given the current state of a system. For most real-life situations such as
mimicking an animal or playing games, however, the optimal action for a single
timestep might not be the optimal one in the long run. A simplified slightly related
example is the Stanford marshmallow experiment, where a subject can either choose
to eat a treat straight away or wait for a short period of time in order to get two
treats instead [9].

To solve this type of decision by finding optimal discounted reward-maximizing poli-
cies in Markov decision processes, Watkins introduced a new form of reinforcement
learning which he termed @-learning [10]. The basic idea is to estimate the quality
Q@ of a legal action a in state s:

Q(s,a) =r+maxQ(s',d),

i.e. the predicted sum of the highest QQ-value from the actions available in the next
state s', plus the reward r of a in s.

Aopt = argmax (s, a) (2.1)

Following the policy in Equation (2.1), therefore, maximizes the total discounted
reward over all succeeding steps from the current one.

4



2. Background

The Q-value estimations are stored in a table and updated iteratively according to

Qs ar) < Q(sy,ar) +1- (Tt +7 - max Q(st1,a) —  Q(st, ar) ) (2.2)
—— ——

predicted Q-value

target Q-value predicted Q-value

where s; and a; is the observed state and action taken at time ¢, respectively, 7 is
the learning rate, r; is the reward received from taking action a, in state s;, and
v € (0,1) is the discount factor that controls how future rewards are valued in
comparison to instantaneous rewards. A value of v = 0 lets the policy ignore future
rewards and only choose actions based on immediate rewards, and v = 1 values
immediate rewards equally much to future rewards. As the Q-values represent the
predicted discounted return for taking an action and then following an optimal policy,
the target Q-value of the prediction is the sum of the reward of the action plus the
discounted maximum Q-value of the next state. The update rule in Equation (2.2)
adds a fraction of the difference between the prediction and the target, shifting the
approximation towards the target Q-value.

2.2.1 Deep Q-learning

While Q-learning is built on solid principles, for large state-spaces it is often unfea-
sible to store a table of Q-values for each state. Based on the assumption that the
same action in similar states will yield similar rewards and similar following states,
a function approximator for the Q-values can be used instead.

Neural networks have proven successful for function approximation, but can run
into issues with convergence [11]; the networks can go into a tail-chasing behavior,
causing their weights to diverge which in turn leads to devastating results.

With a couple of improvements targeting the problem of convergence, a combination
of deep neural networks and Q-learning, called deep Q-networks (DQNs), has been
successfully used as Q-value estimators to let software Al play Atari arcade games [5].

2.3 Limitations of regular neural networks

In the context of AGI, there are some issues with regular neural networks, three
of which will be motivated here as desired properties for more general intelligence:
lifelong learning, transfer learning, and generality.

While there are existing methods targeted at improving neural networks using dif-
ferent approaches to dynamic architectures, e.g. Progressive Neural Networks [12]
and the Cascade-Correlation Learning Architecture [13], they are not meant to be
a complete solution towards a general model, but rather solutions specifically for
transfer learning and generality in the sense of being able to solve multiple prob-
lems, respectively.
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2.3.1 Lifelong learning

As the objective of AGI is a model that repeatedly can figure out and solve new and
previously unseen problems, learning cannot be bound by a limited time frame, but
must rather happen continuously during the entire life of the agent.

Catastrophic interference is the undesired inclination of neural networks to shift their
focus towards whatever they are learning at the moment, causing them to quickly
forget previously learned information if not experiencing an even distribution of the
data. While information that has not been used for a longer period of time could
arguably be forgotten, it is not desirable to forget for example how to do your job
as a chef just because you took a weekend course in art.

2.3.2 Transfer learning

The ability to use information from past experiences to understand newly encoun-
tered problems is one of the reasons a single human being can excel at many different
things. This ability equips us with a basic toolbox in new situations so that even if
we have not yet mastered the new problem, we have a better chance at tackling it
right off the bat than if we were to try any action at random. As the goal of AGI is
for one and the same model to be able to handle in principle any problem without
having to start training from scratch, transfer learning is essential.

2.3.3 Generality

The success of ANNs for various Al tasks has surpassed many expectations and
continue to fuel the hype as further achievements are reached. But the majority of
these networks are designed specifically for the problem at hand, and not for general
problem-solving. Bigger networks can theoretically learn more complex behaviors,
but due to the fully connected style often used this also increases the computational
effort during training and the risk of overfitting [14]. For further advancements in
the sense of truly general Al, the same model needs to be able to learn to solve a
number of different problems with a training cost that is linear in the number of
problems.

2.4 The dynamic network architecture

The new dynamic model consists of a few notions: concept nodes, a focus set, learn-
ing by adding new nodes, learning through backpropagation, and generalization [4].
The following sections will go through this list and describe each notion in detail,

6



2. Background

and then explain how they are combined into a complete machine learning model
as a dynamic network.

The following notation is required for this section on the dynamic model:
e The input to a network will be denoted by the vector x.

o Concept nodes will be denoted c;'- where ¢ and j specifies the layer ¢ and its
index 7 in the layer.

o A subscripted vector uy indicates component k of u.

e The depth of a network is equal to the number of layers with concept nodes,
and the width of a layer is the number of concept nodes in that layer. The
notion of depth and width is further explained with the help of Figure 2.2.

Input Concept Concept
layer layer 1 layer 2

%K

2 .\

3@ 02

Figure 2.2: This network has a depth of two as it has two layers of concept nodes.
The width of layer 1 is two as there are two concept nodes in that layer, and the
width of layer 2 is one as it has only one concept node. A deeper network means
that concept nodes are used as inputs to other concept nodes, and deeper layers
therefore capture more detailed concepts. Concept node ¢? builds on both ¢ and ¢}
which indicates that in this case it is relevant to know not only when ¢! and ¢} are
active independently, but also when they are active simultaneously. A wider layer
only adds further concepts at the same level of detail.

2.4.1 Concept nodes

Concept nodes are the equivalent of a neuron in regular neural networks. The
similarities and differences between the two are:

1. Unlike a neuron in a regular neural network that is connected only to the
previous layer of neurons, a concept node can be connected to any external
input and any other concept node in previous layers. It cannot, though, be
connected to an external input via more than one direct or indirect connection,
i.e. each concept node may depend on one specific value, and one specific value
only, of each external input. To clarify, a concept node cannot depend on a

7
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single external input to be for example both 0.3 and 0.7, as this could never
lead to a full activation of the concept node.

2. A concept node remembers specific values v; for each of its inputs that it can
compare with external inputs z; in order to compute how well it recognizes a
complete state x. This is done via a function h(z;;v;) with image [0, 1], and
all of this is illustrated with an example network in Figure 2.3. Outputs 0
and 1 are equal to no recognition and full recognition respectively. For inputs
other than concept nodes no saved value is required since the activation of a
concept node always is in the range [0, 1], as explained below in Item 3. The
input to a concept node is then a vector with a component h (z;;v;) for each
of its external inputs j, and a component with the activation of each input
that is a concept node in a previous layer.

Input Concept Concept
layer layer 1 layer 2
X hzjvg)  g(xi)  h(ziv)  g(x})

Figure 2.3: An illustration of how the inputs to the two concept nodes ¢f and c?

are computed. The triangles are nodes that computes the similarity of an input to a
concept node from the function h(x;; v;) given an input value z; and the remembered
value v; of input j. The input to ¢! is the vector x! = [h(z1;v1), k(223 v5)] " given vy
and vy remembered by ¢!, and the input to 2 is x2 = [g(x}), h(zs; vs)] " where g(x})
is the activation of ¢ and given vz remembered by c3.

3. Similarly to a neuron, a concept node cé- has an activation a§ given a network
input x. This activation is computed from an activation function g(xé-), where
x; is the input to concept node ¢j. Each concept node also has a corresponding
weight vector w} with trainable weights for each of its inputs. Initially, all
weights of a concept node are set to 1. See Figure 2.4 for an example network
with further explanation.

4. Unlike regular neurons, all concept nodes are connected directly to the nodes
in the output layer of the network in addition to any concept nodes in deeper
layers. This means that a concept node cé has connections to all output nodes
representing the different actions in the environment. Every concept node
has a vector of weights for these connections, similar to the weights on its
inputs, but these weights represent the concept nodes Q-value estimations of
the corresponding actions. This vector is denoted as Q;, and the predicted

Q-value of action k by concept node cj is then (Q;)k
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Input Concept Concept
layer layer 1 layer 2
x hizjivy)  g(xi)  hlzpy)  g(xF)

3 Q (W),

Figure 2.4: The activation of the concept node ¢} is computed from the activation
function ¢ (xi) and similarly for ¢ the activation is g (x?). Regarding the inputs
to concept nodes, see Figure 2.3. Each concept node has a weight vector w§. with
i

components (W )k corresponding to input components (Xz)k of an input vector X3

J J

The total predicted Q-value Q) of action k is computed with a function f (k; F)
where F'is the focus set introduced in the next section. Figure 2.5 illustrates
this with an example network.

Input Concept Output
layer layer 1 layer
X

() f(,F)

() F2F)

Figure 2.5: Predicted Q-values for every output by each concept node. A concept
node c;'- has a corresponding vector Qé- of predicted Q-values (Q;)k for each action
k. The predicted Q-values by the network are computed from a function f (k; F)
where F' is the focus set given a state x.

2.4.2 Focus set

When computing the output from a state x in a given network, the individual
activation of each node is computed layer by layer in the network. Then, for all
concept nodes, a concept node c is selected to be part of a focus set F' (x) of maximum
size M € N if:

1. ¢ has an activation A at least ¢,



2. Background

2. there are no concept nodes in deeper layers that depend on ¢ that has an
activation of at least ¢, and

3. cis among the M nodes with the highest importance I that also satisfy Item 1
and 2,

where ¢ € (0,1) is a real-valued activation threshold parameter and the importance
I? of a concept node ¢} is defined as

1= g (@),

Importance is used because a concept node that does not have the highest activation,
but still higher than ¢, which predicts a Q-value with large magnitude for some
action should have the possibility to take precedence over other concept nodes with
higher activation but with Q-values of smaller magnitude; a concept node with a
larger magnitude Q-value may indicate that its concepts might be of greater value
in the given state.

The purpose of the focus set is to select one or more concept nodes that are used to
compute the final output of the network, that is the Q-values of all possible actions.
More specifically, the Q-value of action k is computed from a function f (k; F') that
depends on the focus set F.

If the focus set F'(x) = ) for some input x, i.e. no concept node recognized its
concept, a random action will be performed in the current state and the model will
check whether it should add a new node for the state or not.

2.4.3 Adding new nodes

The absolute difference between target Q-value and the predicted Q-value of an
action in a given state is called prediction error. An error that is larger than a
set surprise threshold is interpreted as an unknown experience, i.e. the model is
surprised that the predicted Q-value is so far off from the target Q-value, and that
the current configuration is not yet equipped to handle the given state properly. To
accommodate this, a new node that recognizes this and similar states, and associates
it with the remembered action and corresponding Q-value, is added to the network
at a depth directly after the deepest concept input. This gives the model a variant of
one-shot learning, meaning that the error from a single experience sparks an attempt
to learn to avoid that error the next time a similar state is seen. The reason for this
not being true one-shot learning is because there is no guarantee that the target
Q-value is the true Q-value for the given state and action, it is only a guess.

10
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2.4.4 Reinforcement learning through backpropagation

In the opposite case of a large error and adding new nodes, when the prediction
error is smaller than the set threshold the current state is treated as a variation of
the state that the network remembers through its concept nodes. Learning is in this
case done by regular reinforcement learning using backpropagation. In contrast to
regular neural networks, where all nodes are trained by default, only the concept
nodes that are chosen to be in the focus set and their ancestors, i.e. all nodes that the
nodes in the focus set build from, are updated according to their partial derivative
on the target-prediction error. In short, only the parts of the network that was
allowed to affect the final Q-values are trained with backpropagation.

2.4.5 Generalization of concepts

The model should be able to handle noisy environments, meaning that if two distinct
concept nodes actually represent the same specific situation, but with varying noise
from the environment, the model should be able to recognize this and create a new
and generalized concept node in place of the other two concept nodes. This can
proposedly be done in two different ways:

1. The model should realize when two concept nodes have similar Q-value vectors
and have an intersection of inputs that is not empty, they might actually
represent the same concept but with a different noise. The model should then
create a generalized concept node with the inputs of the new concept node as
the intersection of the inputs to the old concept nodes, and using the average of
the relevant saved values of external inputs, input weight vector components,
and Q-value vectors.

2. The second idea for generalization is called abstraction and suggests that if an
input to a concept is environmental noise, the model should eventually realize
this and prune this input, leaving an abstraction of the previously too specific
concept which was fitted to input noise. This can happen in two cases. First,
a concept node’s memory of an input may not be specific enough, meaning
that a memory should be of some specific input value rather than all possible
values. Second, one component of the weight vector of a concept node gets
under a parameter threshold, meaning the activation of the input does not
have a large enough impact on the activation of the concept node. After an
input has been pruned, a merging step can be applied where the newly pruned
concept node is compared to other concept nodes with the intention of merging
the two, as the removal of an input could make the resulting node too similar
to another one.
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2.4.6 A complete model

Using the notions from Section 2.4, a machine learning model is constructed. This
model is introduced as the Dynamic agent, cf. a Deep Q-Learning Network agent
(DQN agent). To summarize, the network in a Dynamic agent is built similarly to
the network of a DQN agent: there are concept nodes in different layers, computing
the output consists of a layer-by-layer feed-forward pass and choosing a focus set
to compute predicted Q-values for all actions, and fine-tuning the concept nodes
is done by backpropagation. However, the things setting the architectures of the
dynamic and the DQN agent aside from each other is what is done dynamically by
the Dynamic agent:

1. Concept nodes are added to the layer only as the need arises by a large pre-
diction error on some state.

2. During feed-forward, a layer is not dependent only on the immediately previous
layer, as in most artificial neural networks, but may depend on any previous
layer in the network.

3. The output, meaning the prediction of how good an action in a given state is,
may depend only on a part of the network. It follows from this that only that
part of the network is trained when fine-tuning parameters with backpropa-
gation.

2.5 Reinforcement learning improvements

Additional relevant techniques that have been proven to improve reinforcement
learning, deep learning, and machine learning in general, are presented in this sec-
tion.

Due to the success of Mnih V. et al. [5] and that the ideas presented there became
the de facto standard for deep Q-learning, the methods used there, namely the
preprocessing, training details, evaluation procedure, and experience replay, were in
this project considered part of traditional DQNs.

2.5.1 Experience replay

Some situations in e.g. games will produce a sequence of very similar states, actions,
and rewards. In these cases, training can bias the model towards focusing on that
specific situation, even though it is not more important than any other. To combat
this, the DeepMind project used a technique called experience replay, inspired by the
biological process with the same name [5]. The idea is to save transitions used for Q-
learning, that is (state, action, next state, reward, terminal state)-tuples, in a data
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set, usually of some fixed size. New transitions are added to the data set as they are
received and old transitions are removed on a first-in-first-out basis when the array
has been filled. Transitions are then uniformly sampled from this data set instead of
always training on the current state of the environment. When successively sampling
transitions in this manner they are unlikely to be closely connected to the current
state, and also temporally to each other, resulting in more stable training. Another
benefit is that it is possible to sample a transition from very long ago, counteracting
the issue of catastrophic interference as old transitions can be used for training.

This technique can be further expanded by weighting the probability of replaying
experiences based on how important that specific experience is for further learning.
This improvement is called prioritized experience replay and has been shown to yield
a more efficient learning [6].

The priority p of a transition is computed from the error |Y; — Y, | between the target
and predicted Q-values for a given state as

p = (error + €)”

with an « such that 0 < a < 1 and some small € > 0. The addition of € takes care of
the case when the error is zero and the transition therefore never sampled. How much
the magnitude of the error should affect the probability of sampling a transition is
governed by the parameter a. Setting o = 0 means that every probability is equal,
making it equivalent to the uniform case described above, while & = 1 means that
the memories are sampled with priority equal to their error.

2.5.2 Double DQN

Textbook case Q-learning tends to overestimate Q-values as the maximum Q-value
from the next state is used to evaluate the chosen action. In order to manage this,
a modification was introduced by [7] called Double Q-learning which involves using
two Q-value estimators, choosing an action from the two estimators, and finally
updating one of them from random choice by having them evaluate each other’s
actions.

As the same parameters that are updated from learning are also used for computing
the Q-values during training, causing us to move closer to the target while also
moving the target, resulting in runaway values. To combat this, a modification
to the standard DQN algorithm was presented by Mnih et al. [5]. The resulting
modified DQN algorithm had a target network with parameters 6~ and an online
network with parameters 6. The target network is used to compute the target Q-
values during training, and the online network chooses actions and is trained using
the target QQ-values. Thanks to a separate network being used to compute target
values, the training of the online network becomes more stable. The parameters from
the online network are periodically copied to the target network every 7 timesteps.
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The target Q-values for the modified DQN at timestep t is then
YtDQN =Ry + Vm(?XQ (St+17 a; 9;) .

A further improvement called Double DQN was introduced by van Hasselt et al. [8],
which also uses two networks similar to the DQN used in [5], but with a modification
to how the target is calculated so that the action is chosen by the online network,
but its value is evaluated by the target network. The target Q-values can the be
written as

YtDoubleDQN = Rt-i-l + 'YQ (St—i-h arg max Q (St+1, a; Qt) ) 0;) .

This helps to reduce the Q-value overestimation issue with the original Q-learning
algorithm, leading to a more stable training with faster convergence, and has been
shown to give better results [8].

2.5.3 Exploration

At the start of learning with no a priori experience, it is useful to first explore the
environment, both to probe the state space and to try different actions in every
state, with the purpose of avoiding quickly getting stuck in local optima.

A widely used strategy for exploration, also used in this project, is the annealed
e-greedy strategy, which at every step explores the environment with probability
€, called the exploration rate, by choosing a random action, and exploits learned
knowledge by choosing an action according to its policy with a probability 1 — e.
The exploration rate is set to linearly decay from a value € close to or equal to 1,
down to a small value e > 0. This is to explore the environment early in order to
learn which actions lead to higher rewards in which states. When ¢ is small, most
chosen actions will be based on what is known of the environment, but it is still
important to keep € non-zero as otherwise, it is possible to get stuck in local optima.

2.6 Related work

Machine learning is not a new field, and related works to this project are found
mainly in the two preceding areas of reinforcement learning and growing neural
networks. Two of the related works of interest are introduced below.

2.6.1 Progressive Neural Networks

To improve on the learning of DeepMind, a technique called Progressive Neural
Networks [12] lets the network use information already learned from previously en-
countered similar games and situations. This is done by letting the nodes from
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previously trained networks supply information to the nodes in the new network for
the newly encountered specific game, enabling transfer learning.

2.6.2 Cascade-Correlation

In The Cascade-Correlation Learning Architecture [13] Fahlmanand and Lebiere in-
troduce a new model for learning using growing deep neural networks. In a simplified
explanation, the input weights of a number of candidate neurons fully connected to
all previous neurons are trained separated from the active network, with the goal
of maximizing the sum of the magnitude of the correlation between a candidate
neuron’s output and the residual output error of every output node of the network.
When convergence is achieved, the candidate with the highest correlation is chosen
as the winner and is added to a new layer at the deepest level of the network with its
input weights frozen. Training resumes once again but now with the goal of finding
an output weight resulting in the smallest error. In this way, a classification network
can learn both in a smaller number of iterations and by using less computational
power than regular training with backpropagation in a fixed architecture, while not
compromising on the performance of the network.
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Method

This chapter presents the implementation and evaluation methods used. First, the
implemented agents are introduced, followed by some specifics about the dynamic
architecture in connection to concept nodes and generalization. Finally, the en-
vironments in which experiments where done, and the hyperparameters used for
evaluation in each environment, are given.

3.1 Agents

Two agents were implemented for comparisons. First, the textbook model and
today’s standard within reinforcement learning: a DQN agent that uses a deep Q-
learning network for decision-making. The DQN uses a static architecture network
with a fixed number of internal parameters. Second, the dynamic architecture net-
work based on the novel idea by Strannegéard et al. [4], hereafter called the Dynamic
agent. The Dynamic agent has a fixed number of inputs and outputs but is oth-
erwise not constrained in the number of internal parameters in the same way the

DQN is.

Double DQN and prioritized experience replay were implemented for both agents
in an attempt to increase performance and make a fair comparison. In case these
improvements were not beneficial for the Dynamic agent, as it is rather different
from regular DQNs, evaluations for comparisons were done both with and without
these improvements.

Both agents were also trained in batch mode, meaning that at each learning iteration,
instead of training using only one experience, a mini batch of experiences and an
average error of these was used to update the network parameters. An initial learning
delay equal to the batch size was also used, as the agents otherwise overfitted towards
the early experiences. As with the rest of the hyperparameters, the batch size was
changed to best fit each agent for each environment when evaluating.
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3.2 Concept nodes

A concept node requires a function A to compute the similarity between an external
input and a remembered state, and a function g to compute the activation of the
node. The functions chosen for h was the Gaussian function

_ (e—p)?

h(z) =e 27

for some external input z, a remembered value p, and a o specifying how deviations
from the remembered value affect the activation of the concept node. When adding
a new node that has some external inputs, a u equal to the value of each external
input was remembered by the new concept node. The same initial o was used for
all external inputs.

The activation function g used, given a weight vector w;'» and input X;- to the concept

node ¢, was
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where b is a trainable bias initially set to zero.

To compute the estimated Q-value of action k, i.e. f (k; F') where F is the focus set,
the function f used was
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This function computes the sum of Q-values from all concept nodes in the focus set,
weighted with the activation of the nodes.

When the network was surprised by a large prediction error, it checked whether
a new concept node should be created and added to the network. When creating
a new concept node, a parameter for restricting the maximum number of inputs
allowed was used. A low value of the maximum number of inputs has the potential
to force the network into building by depth instead of simply placing all of its nodes
in a single layer. If there is no limitation on the number of inputs, there will be
no new concept nodes in deeper layers until some concept nodes have had their
inputs pruned, as concept nodes are not allowed to build on the same external input
multiple times and new concept nodes always use as many inputs, first chosen from
the focus set and then from external inputs, as possible.

Further, the creation of a new node was only allowed if no node that recognizes
the current state was already present in the network. To check this, the proposed
concept node was tested if it had the same inputs as any other node, and if it did, the
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already remembered value pu, of each external input was compared to the proposed
value p,, of the new concept node. If the absolute difference | p,. — p,, | was smaller
than a threshold gy, for all remembered values, the current state was deemed to
already be represented in the network and backpropagation was applied instead of
adding a new node, even though the network was surprised by a large prediction
error.

3.3 Generalization through abstraction

After backpropagation learning, each concept node that took part in taking the
decision was subject for abstraction. If either an input weight was under a set
weight threshold, or the ¢ in the Gaussian function in connection with an external
input was larger than a set threshold, that input was considered to be unimportant
compared to other inputs or resulting in a high similarity for a too wide range of
values in order to be one specific concept, and would therefore be pruned.

If the input to be pruned was the only input to the concept node, the concept itself
was considered unimportant and was removed.

If pruning an input left only a concept input left, the node was removed and replaced
with an edge between the remaining input and the node’s children, as a concept node
needs either at least one state feature input or at least two concept inputs.

If and only if an input was removed from a node, the node was subject for gener-
alization, i.e. merging. The reasoning behind this is that there should be no other
way for two nodes to get similar enough, as nodes are created to be unique. When
comparing a pruned node with other nodes to see if they are similar, the same
comparison as described in Section 3.2 for creating new concept nodes was used.

3.4 Environments

Varying levels of environment difficulty were used for training and evaluating the
model, allowing an easy start and incremental increase of the required complexity
of the model.

3.4.1 Berry

The Berry environment is a simple classification problem. The state of the environ-
ment consists of three boolean values, called sweet, sour, and bitter. These inputs,
or rather flavors, together form a berry. Six berries were created, each with a label
corresponding to whether the berry should be eaten or not. If the action chosen by
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an agent in a given state, i.e. a certain berry, is the correct one according to the
berry’s label, the agent will receive a reward of 4+1. If the action is not the correct
one, the agent will instead receive punishment in the form of a negative reward of
—1. The environment was made sure to contain berries that shared two out of three
feature values but had different rewards in order for the agents to have to differ-
entiate berries on a single feature. One episode consists of one berry because the
berries are not correlated in any way. The maximum return of an episode is +1 as
an episode is only a single berry.

3.4.2 Noisy Berry

To extend on the binary tastes of the Berry environment, Noisy Berry introduces
four kinds of berries, each with a unique set of tastes but in 100 varieties. The variety
of each taste is drawn from a Gaussian distribution with different expectation values
in the range [0, 1] but with the same standard deviation. The taste values are also
clipped in the range [0,1]. One of the four berries gets one of its tastes drawn
completely random at uniform in [0, 1]. The rest of the task remains the same as in
Section 3.4.1.

The Noisy Berry environment tests if the agent can handle input noise, i.e. recognize
variations of the same state and not create a new node for each variation of the same
concept, and also its ability to abstract the random taste from one of the berries.

3.4.3 Grid

A simple environment that is able to test the temporal learning capabilities of an
agent was implemented, illustrated in Figure 3.1. An episode in this environment
terminates when reaching the reward-tile or if failing to reach it in 100 steps. The
rewards given are a small negative reward —(0.1 when the agent walks into a wall,
and when reaching the reward-tile it receives the reward

r=10—-0.1¢

where t is the current timestep equal to the number of steps taken by the agent. This
is to encourage the agent to not waste actions by walking into walls, and instead
reach the reward in as few steps as possible each episode. The return from one
episode is also equal to this reward, and the maximum return is 9.6.

Running the Dynamic agent in this environment gives the possibility to confirm
that the temporal learning works as expected by inspecting the estimated return,
i.e. the estimated Q-values, of all actions in a given state. The idea here is that
the agent should learn that the Q-value of moving down from the green tile is equal
to the reward received. Then, moving down from the red tile should result in that
the agent comes into a state, the green tile, where it knows it can get a reward.
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This leads to that the Q-value of moving down from the red tile should be the one
time discounted Q-value of action down on the green tile. Last, the agent should
learn that from the rightmost blue tile, moving right to the red tile should yield
Q-value equal to the one time discounted reward from action down on the red tile,
that is equal to the two times discounted reward from action down on the green
tile. Furthermore, as the reward for reaching the reward-tile can be different from
time to time, depending on the number of steps taken, an additional difficulty for
estimating Q-values is introduced.

reward

Figure 3.1: Grid environment. The agent starts in the leftmost blue tile and the
goal is to walk to the reward-tile from only seeing the color of the tile that the agent
is currently standing on. An action that would move the agent outside the grid
results in that the agent is not moved but stays in the same tile.

3.4.4 Discrete Catch

This is an environment of size 6 x 6 in discrete steps where the agent is tasked with
catching a ball that is falling straight downwards, illustrated in Figure 3.2. This
tests the abilities of an agent in a finite state space of size 6 -6 -6 = 216 and with
three actions: move left, move right, and stand still. An episode consists of the ball
starting at a random position along the ceiling and the paddle starting at a random
position along the floor. The ball then falls towards the floor and the agent tries
to position the paddle so that it will catch the ball. The input to an agent is the
horizontal and vertical position of the ball and the horizontal position of the paddle
as it is always positioned somewhere on the floor. There are sparse rewards of +1
when a ball is caught and zero otherwise. The maximum return of an episode is +1.

3.4.5 Continuous Catch

The Continuous Catch environment is considered a difficult problem but is similar
to the discrete catch environment in that the agent should catch a ball falling from
the ceiling before it hits the floor. The rewards are also the same: +1 if a ball is
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Figure 3.2: Discrete Catch environment. The agent’s task is to move the paddle
(rectangle) under the ball (circle) in order to catch it before it falls onto the floor.
The agent and the ball starts at random positions along the floor and ceiling, and
the agent is only allowed to move the paddle horizontally.

caught and zero otherwise, and the actions are also the same. The big difference
from Discrete Catch, though, is that the ball falls in a random direction downwards
within a set angle +30° from the vertical and with speed 1. An agent will now
additionally receive the horizontal and vertical velocity of the ball as inputs. Also
in contrast to Discrete Catch, the paddle always starts at the center of the floor
and moves a distance of 0.5 per move action. If the ball happens to hit a wall, it
bounces back in the reflected direction. The environment, along with the sideways
movement of the ball, is illustrated in Figure 3.3. The environment has height 3,
width 2, and the paddle has a width of 1. Initially, the size was similar to the one
of Discrete Catch but had to be reduced for the Dynamic agent to have any chance
of learning what do to.

O

(—

Figure 3.3: Continuous Catch environment. The agent is tasked with placing the
paddle (rectangle) under the ball (circle), which has a horizontal as well as a vertical
velocity, in order to catch it before it falls onto the floor.
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3.4.6 CartPole balancing

Another difficult problem is the task of balancing an inverted pendulum attached
to a cart which is allowed to move in a single dimension. This is the CartPole
environment, illustrated in Figure 3.4, a classical problem from automatic control,
implemented by OpenAI Gym [15]. The state consists of four real numbers describ-
ing the angle of the pole from the vertical, the angular velocity of the pole, the
position of the cart, and the velocity of the cart. An episode starts at the equi-
librium with a small random noise added to it. The performance in an episode is
evaluated by the number of timesteps the cart is able to balance the pole before
either the cart hits a wall or the pole falls too much to the side, terminating the
episode. The maximum return of an episode is 200.

Figure 3.4: The CartPole environment. The task of the agent is to balance the

pole upwards around a freely rotating joint, with a restriction to the magnitude of
the cart acceleration while staying on the black line.

3.5 Evaluation hyperparameters

A limited grid search was conducted to find good hyperparameters for each agent and
environment so that both agents performed as well as possible in each environment.
This makes for a more fair comparison as it is not expected for the two agents to
have the same optimal hyperparameters in a given problem.

For each environment and agent, the hyperparameters used are given in Tables 3.1
to 3.3
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Table 3.1: Parameters used by the Dynamic and DQN agent in the Noisy Berry
environment. The Dynamic agent did not converge in number of network parameters
in the case of activation threshold 8 = 0.0, marked with *, but did converge with
0 =0.5.

Parameter Dynamic agent DQN agent
Batch size 1 8
Memory capacity 1 20000
Memory « 0.0 0.7
Discount ~y 0.95 0.95
Learning rate n 0.0005 0.05
Target update interval 7 5 25
€ decay steps 5 5
Focus set size M 1000
Activation threshold 6 0.5%
Surprise threshold 2.2
Htn 0.2
o threshold 0.3
Weight threshold 0.5
Max number of inputs 3
Hidden neurons [16]

Table 3.2: Parameters used by the Dynamic and DQN agent in the Grid environ-
ment.

Parameter Dynamic agent DQN agent
Batch size 8 8
Memory capacity 8000 8000
Memory « 0.7 0.7
Discount -y 0.95 0.95
Learning rate n 0.01 0.01
Target update interval 7 50 50
e decay steps 5 200
Focus set size M 1000
Activation threshold 6 0.0
Surprise threshold 2.2
Hth 0.2
o threshold 0.5
Weight threshold 0.2
Max number of inputs 3
Hidden neurons 32]
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Table 3.3: Parameters used by the Dynamic and DQN agent in the Discrete Catch

environment,.
Parameter Dynamic agent DQN agent
Batch size 48 48
Memory capacity 8000 8000
Memory « 0.7 0.7
Discount ~ 0.95 0.95
Learning rate n 0.005 0.005
Target update interval 7 50 50
e decay steps 300 300
Focus set size M 1000
Activation threshold ¢ 0.0
Surprise threshold 2.2
Htn 0.2
o threshold 0.5
Weight threshold 0.2
Max number of inputs 3
Hidden neurons [16, 32, 32]
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Results

In this chapter the results of the evaluations in the environments from Section 3.4
using the parameters from Section 3.5 are presented and highlighted. All results are
averaged from many evaluations.

4.1 Berry

The Dynamic agent successfully classifies all berries in this environment, see Fig-
ure 4.1. As soon as it encounters a new berry, it creates a concept node, so that the
next time it sees the same berry it will know which action to choose, resulting in
receiving the maximum return per episode after about 25 episodes, see Figure 4.1a.
The Dynamic agent requires 72 parameters for the concept nodes of all six berries.
This is also what the network converges to, see Figure 4.1b. The DQN agent was
not evaluated in this environment as the purpose was to verify the Dynamic agent.

Berry-vO Berry-v0
1.0
&
0.8 G 60
()
c 0.6 g
5 © 40
= Q.
e 0.4 9
s
0.2 £ 20
o
0.0 —— DynamicAgent-v0 = —— DynamicAgent-v0
0
0 20 40 0 10 20 30 40 50
Episode Timestep
(a) The Dynamic agent learns how to (b) The Dynamic agent adds more pa-
receive a high return by differentiating rameters with each new concept node
the different berries. as it is presented with an unseen berry.

Figure 4.1: The Dynamic agent, using Double DQN and training on the current
state, in the Berry environment.
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4.2 Noisy Berry

In the Noisy Berry environment, see Figure 4.2, the Dynamic and the DQN agent
both learn how to solve the task quickly. The DQN agent is behind from the start as
it requires a delay since it uses a larger batch size in return for faster learning later.
However, the Dynamic agent manages to learn faster than the DQN agent, in the
sense of how much increase in return per episode the agents receive, see Figure 4.2a,
despite the DQN agent using a larger batch size and higher learning rate. Figure 4.2b
shows that the Dynamic agent quickly creates the concept nodes required for the
environment. It does not always converge in this environment though; an activation
threshold # = 0.5 leads to a converging network in the Dynamic agent, while # = 0.0
leads to a non-converging, or at least larger and slower converging network.

NoisyBerry-v0 NoisyBerry-v0

1.0 SRS 100 .
o
0.8 L 80
Q
c Y —— DynamicAgent-v0 g 60
=) 2
204 DQNAgent-v0 3
o —— RandomAgent-v0 =S 40
0.2 © —— DynamicAgent-vO0
© 2 /— Non-conv. Dynamic
0.0 = DQNAgent-v0
0
0 50 100 0 25 50 75 100
Episode Timestep

(a) The Dynamic agent learns slightly
faster than the DQN that has a delayed
training because of its larger batch size.
Both agents use Double DQN and prior-
itized experience replay. Random agent
as a reference.

(b) The DQN agent is static in size while
the Dynamic agent creates new concept
nodes when encountering an unrecog-
nized state. The convergence of the Dy-

namic agent depends on the activation
threshold 6.

Figure 4.2: DQN and Dynamic agent in the Noisy Berry environment. Note that in
the Noisy Berry environment an episode consists of a single timestep, so Figures 4.2a
and 4.2b are directly comparable.

4.3 Grid

The Dynamic agent outperforms the DQN agent in average episode return, see
Figures 4.3a and 4.3b, while requiring only a fraction of the number of parameters
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used by the DQN agent, see Figure 4.3c. The Dynamic agent learns how to reach
the reward-tile and so does the DQN agent, although not quite as fast. Unlike the
Dynamic agent, the DQN agent also does not learn to walk there in the fewest
number of steps possible.

It is clear from Figures 4.3a and 4.3b how important Double Q-learning and pri-
oritized experience replay is for the DQN agent, and that the Dynamic agent is
insensitive to the lack of these improvements in this environment.

Note that the DQN agent is using a tuned network architecture and hyperparameters
for optimal performance. The Random agent sets the baseline in this environment,
showing that a random walk where some actions in certain states do not lead to any
movement, it requires some 65 steps on average before reaching the reward-tile.

4.4 Discrete Catch

The DQN agent quickly learns how to solve the Discrete Catch environment, while
the Dynamic agent falls behind, see Figure 4.4. The hyperparameter search for
the Dynamic agent did not affect the results noticeably, with the exception of the
number of decay steps used, indicating an otherwise insensitivity to the change
of parameters in this environment. With more and more forced exploration for the
Dynamic agent, regulated by the decay steps, it learns the environment better at the
cost of more concept nodes. Note that as the Dynamic agent approaches the DQN
in performance, the parameters required also approaches the number of parameters
in the DQN agent.
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(a) The agents use Double DQN and pri-
oritized replay. The DQN agent learns
how to reach the reward-tile quite fast,
although not as fast as the Dynamic
agent that learns the environment after
just a couple of episodes.
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(b) The agents use standard DQN al-
gorithms and uniform replay. The Dy-
namic agent performs similarly as with
improvements, however the DQN agent
learns slower, not as well, and not as
stable as with learning improvements en-

abled.
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(c) Number of trainable network param-

eters in the two agents.

The delay of

learning and creation of nodes, equal to
the batch size, can be seen. After this,
the dynamic network creates nodes until
it converges after about 20 timesteps.

Figure 4.3: DQN and Dynamic agent in the Grid environment with Random agent
as a reference. The same Random agent was used in Figures 4.3a and 4.3b as it is

unaffected by learning improvements.
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(a) Depending on the decay steps used
by the Dynamic agent, it either quickly
learns to get decent, or slowly learns to
get good. The DQN agent shows better
performance regardless.
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(b) With more exploration the Dynamic
agent creates more nodes, allowing for
a better understanding of the environ-
ment.

Figure 4.4: DQN and Dynamic agent in the Discrete Catch environment with
Random agent as a reference. A number after the Dynamic agent indicates the
number of decay steps used for exploration.
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Discussion

In this chapter the results from experiments, the dynamic model itself, related works,
and future work, will be discussed.

5.1 Results

The results from evaluating the two agents, see Chapter 4, are discussed individually
for each environment in Section 3.4. We try to give an explanation of the results
based on how the dynamic model works in contrast to the DQN used for comparison.

5.1.1 Berry

The Dynamic agent performed well in the Berry environment, as it is a very simple
classification problem where the true Q-values are given as rewards for all berries.
One node for each berry is generated after an encounter, which is exactly as expected
as the environment was designed to not have any large enough overlap in the state
features for a concept node that actually remembers a different berry to be activated.
This in turn leads to an empty focus set for every not previously encountered berry,
which in combination with the rules for one-shot learning lets the agent create a
concept node for each new berry, and never picks the wrong action with that berry
if completely greedy. In conclusion, this environment shows both that the concept
nodes are working as expected and that the dynamic model works for at least some
classification tasks.

5.1.2 Noisy Berry

Similarly to the binary-taste berries, the model performs well in classifying noisy
berries. The Dynamic agent learns faster than the DQN agent even when the DQN
uses an aggressive learning rate of 0.05 that still allows it to converge. This is possible
for the Dynamic agent solely from being able to learn required parameters from a
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single sample by one-shot learning and, unlike the DQNs learning, not needing to
change existing parameters by backpropagation.

What was interesting with this environment was introducing one taste to be purely
random for one of the berries. This caused the creation of a few “duplicate” nodes
as the second experience with the same berry could have a taste very different from
the first. Here we saw that as training went on, either the o of the Gaussian function
grew, leading to wider variations of the random taste being accepted, or even more
to our satisfaction, the weight of that input to the concept node decreased, meaning
that the input was treated as less important compared to the others. This was
precisely what we hoped to see, as this is what is required for abstraction to work,
as described in Section 2.4.5.

For values of the activation threshold 6 too far from 0.5, the dynamic network no
longer converges in the number of parameters, see Figure 4.2b. This was seen both
when increasing and decreasing the activation threshold. This could be because
there is a certain range where the nodes created by the berry with one purely
random taste are included in the focus set, but nodes for other berries are not. As
the nodes in the focus set and their predecessors are trained by backpropagation, a
focus set containing the “wrong” nodes could explain the non-convergence.

5.1.3 Grid

Grid is the simplest environment used that introduces delayed rewards. This means
that this is the first environment where the discounted reward of Q-learning truly
comes into place. The Dynamic agent starts to explore completely at random until
it either runs into a wall, upon which it receives a negative reward, or it reaches the
reward-tile that provides a reward based on the number of steps the agent has taken.
Either reward opens up for the creation of a concept node that will either discourage
or encourage an action, based on the reward, in the future. When encountering the
same state again, the agent will always choose an action that either makes it move
towards the reward, or at least not make the same mistake as before.

This environment confirmed that the temporal learning of the Dynamic agent worked
as intended by inspecting the estimated Q-values associated with each state and
action. Although the environment being simple, this is a proof that the Dynamic
agent has the possibility of learning from delayed rewards. It also shows that the
Dynamic agent has the potential to outperform a regular neural network in some
types of problems.

5.1.4 Discrete catch

The Discrete Catch environment is the first environment tested in which the DQN
agent outperforms the Dynamic agent. Given the same amount of decay steps, they
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both learn at the same rate initially, but the Dynamic agent soon falls behind the
DQN agent that has completely solved the environment after about 200 episodes.
The Dynamic agent does not seem to be able to learn the environment perfectly,
although it comes close as the number of decay steps is increased from 300 to 2000.
Interestingly, the number of parameters used by the Dynamic agent also comes close
to the number of parameters in the DQN agent as the decay steps are increased.
This is probably a coincidence, as we saw that the Dynamic agent solved it decently
with a smaller number of decay steps, that lead to the creation of fewer concept
nodes.

Since this environment has a much larger state space than any of the previous
environments, it is almost expected that the Dynamic agent has some difficulties,
considering that it makes its decisions based on memories of specific states. For
example, there are 90 different states in which the ball is to the left of the paddle,
meaning that a lot of concept nodes are required for something that should not
be that hard to realize. There is still a possibility that the o used for computing
similarity of states is trained by backpropagation to be large, this is however unlikely,
as it would require that states with the only difference being the vertical position
of the ball is trained on many times so that backprogagation leads to a large o that
can be abstracted. Even if this managed to happen, the agent would still need 15
concept nodes for a concept that one could argue should be able to be recognized
with a single node, testing if the horizontal position of the ball is smaller than that
of the paddle or not.

5.1.5 Continuous catch and CartPole

The Dynamic agent performed worse in the Continuous Catch and CartPole envi-
ronments. The runtime performance is also poor because of the large number of
concept nodes created following the, in practice, infinite state spaces of these two
environments with multiple real valued and continuous inputs. This issue made
a search for hyperparameters practically infeasible, and no results are available in
these environments beyond the fact that the Dynamic agent has issues in large state
spaces because it is trying to remember everything in its current stage, while the
DQN agent still manages to solve the environments.

After a more successful solution to an environment similar to Discrete Catch, en-
vironments like Continuous Catch and CartPole could be tested if they are appro-
priately sized so that the Dynamic agent does not have to create too many concept
nodes for the variation of a single input, and that it instead could be taken care
of by the ¢ in the similarity function, or with a different kind of function used to
compute similarity of states.
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5.2 The dynamic model

Here we present what we found to be the most prominent advantages and limitations
of the model, as well as discuss the use of the focus set.

5.2.1 Advantages

e The most obvious advantage of the dynamic model is that one does not have

to choose a network architecture. Because of the endless possibilities in this
design, which in a truly exhaustive search should all be evaluated with another
exhaustive search of the other hyperparameters, getting optimal results with a
traditional DQN is time consuming and inefficient. The dynamic model adds
some new hyperparameters, but removes the need to choose the number of
layers and the size of each layer.

As the dynamic model supports immediate learning via creation of new nodes
for surprising events in “new” states, it can quickly learn simple behaviours.

The model seems to generalize well in the sense that reconfiguration of hy-
perparameters between environments does not considerably affect its decision-
making performance.

5.2.2 Limitations

36

o As the idea behind the nodes of the network in the dynamic model is rather

different than in traditional neural networks, the model itself has different
properties. In the implemented dynamic model there is no notion of differences
between state values, just memories of specific situations, e.g. “the ball was at
x = 0.5, and is now at x = 0.7, instead of “the ball is at x = 0.7 and traveling
with velocity v, = 0.2”. This limits the level of complexity in input that the
model is able to handle as it in its current state is not as good at function
approximation as it is at classifying inputs.

To avoid redundant memories, the difference between stored values in concept
nodes is compared to a hyperparameter threshold value. If different environ-
ments have different magnitudes of the state features, the threshold might
need to be reconfigured for each environment.

Transfer learning is likely to be an important part in successfully creating a
more general model that can learn multiple problems after each other. The
current dynamic model is not really capable of transfer learning between prob-
lems unless the state space of the problems overlap at least somewhat. In
regions where there is no overlap it is impossible to transfer any knowledge
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since the model cannot have any memories from inputs it has previously never
seen. For instance, learned knowledge from the Discrete Catch environment
is only transferable to the same environment with for example two more units
of height. If the problem is translated enough along the horizontal axis, the
remembered positions will lie outside of the input space, and nothing can be
transferred.

o One of the major drawbacks of the dynamic model is performance. Because
of the complexity of the model, the programs logical flow takes much more
time than the mathematical computations. As the majority of this logic is
sequential in contrast with the computationally heavy matrix multiplications
in DQNs, it cannot benefit from parallelization in the same way. What can be
done in parallel is the forward pass of each individual layer, as concept nodes
in a single layer are guaranteed to be independent of each other.

5.2.3 Focus set

The focus set used by the Dynamic agent is necessary when adding new nodes, as
this tells the model on which concepts it should build a new node from when the
agent made a bad estimation of Q-values. For decision-making however, we have
seen that setting the focus set size to 1000, a number larger than the number of
concept nodes created in any of the environments the Dynamic solved, we observed
no significant change in its decision-making performance. The reason for this is
probably because any unwanted interference in the estimation of Q-values will be
minimal as the “wrong” concept nodes does not get a high enough activation to
have a notable impact on the combined output of all concept nodes.

However, an activation threshold for nodes to be included in the focus set still seems
to be necessary for the network to converge and to avoid catastrophic interference
during training. The activation threshold was the difference between a converging
and a non-converging network in the Noisy Berry environment, as this allowed the
model to train only the concept nodes that were actually relevant to the current
state.

5.2.4 Lifelong learning, transfer learning, and generality

Regarding the three desired features lifelong learning, transfer learning, and gener-
ality, of a general intelligence, the dynamic model has the potential to better fulfill
these desires than regular neural networks if given more work.

Lifelong learning is achieved because there is no limit in how many parameters there
are in the network as a result of a static architecture. If the model encounters some
input upon which it acts and receives negative feedback, it will try to learn how to
make a better decision the next time it faces a similar input. It will do this without
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changing its current parameters that are needed to perform well given other inputs,
in contrast with how a regular neural network would and in the process “forget”
what to do given those other inputs. This is however also a limitation of the model,
as it may try to remember every input it has received and the size of its network
will grow beyond being practically usable.

Transfer learning is as previously mentioned considered to be achievable by the
model as well, but not with how it currently tries to recognize states. This recog-
nition limits the transfer of previous knowledge to the exact same input space in
the new problem, which is an issue that could be solved by remembering relations
between the inputs instead of exact values.

In the context of generality a similar issue as with transfer learning is encountered;
although a dynamic architecture allows for a more general model than a static, the
parameter fu,, used to set the minimum difference between state input values for
them to be considered unique memories, does need to be adjusted according to the
magnitude of the state features of each problem. For a truly general model, this
would need to be addressed.

5.2.5 A parable with table-based Q-learning

As the dynamic model builds a network of nodes for recognizing concepts and the
estimated Q-values associated with each concept, the network can be seen as a
compressed Q-table used in traditional Q-learning, combined with learning a la
backpropagation of neural networks. This is an interesting approach, as Q-tables
are the optimal solution, but are unfeasible when the state-space is large, leading to
neural networks being used as Q-function approximators. The implemented proof-
of-concept only uses value memories of states, but could be extended with more
types of nodes for better Q-table compression e.g. relation memory nodes.

The view of the dynamic model as a combination of traditional table-based Q-
learning and deep Q-learning networks could serve both as an intuitive explanation
of why it works, and a point of view during further development.

5.3 Previous models with dynamic architectures

The ideas behind the dynamic model and the previous models Progressive Neural
Networks and The Cascade-Correlation Learning Architecture are compared and
discussed in this section. The focus is to emphasize similarities and differences, and
what they do better or worse compared to each other.

38



5. Discussion

5.3.1 Progressive Neural Networks

While the progressive network approach introduced by [12] is one way of building an
agent that is capable of lifelong and transfer learning, the approach is not sustainable
as the number of problems an agent is trained on is increased, as pointed out by the
original authors Rusu et al. The idea behind the dynamic model suffers somewhat
from the same issues. Just like a progressive network, the dynamic model also
requires evaluation of all its concept nodes, and therefore the complexity will also
grow for each new problem. To handle this, the concept nodes that are used could
be changed so that they instead of remembering a single state and receiving a high
activation when that state is recognized, they should more remember a certain
relation between its inputs. Such a change would make a concept node be able to
have a high activation for many different inputs instead of a single one, reducing the
number of nodes needed.

Regarding transfer learning the dynamic model does not build a new node from all
previous nodes, as a progressive network does. Instead, by using the focus set as
input candidates it only build connections to previous nodes that are guaranteed
to be capable of some contribution. This is also commented on by Rusu et al. as
they suggest that the growth of parameters with new problems can be held back by
adding fewer layers or by pruning connections, with the latter being more similar to
how concept nodes are created. Additionally, progressive networks need information
on which column of the network should be used when evaluating a specific problem.
This is not the case for the dynamic model as concept nodes are not created and
trained for a single problem. An advantage of this is that it is not required to specify
what the current task is. A major drawback, though, is that the entire network is
always used. Consequently, parts of the network that may be completely irrelevant
to the problem at hand are still considered, leading to a lot of unnecessary work being
done. A two step approach, where the problem is first identified in order for the
correct sub-network to be applied to the problem, could also improve on unnecessary
work being done while still using only the relevant knowledge. A final remark on
how the progressive networks handle transfer learning is that if something is learned
in a successive problem, this can by design never be used in a previously learned
problem, even though the knowledge could be of great value. In contrast with how
a progressive net has multiple columns, one for each problem it has trained on, the
dynamic model does not have the same issue as nothing is learned for a specific
purpose.

5.3.2 Cascade-Correlation Learning Architecture

The idea in Cascade-Correlation to train candidate neurons to maximize the co-
variance of the candidate neuron activation and the output residual error is quite
similar to how new concept nodes are created in the dynamic model. Maximizing
the covariance means that for all inputs which generate a large residual error, we
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want the activation of the candidate neuron to be high. When the dynamic model
experiences a large enough error to create a new concept node, the inputs to this
node are chosen so that a similar input state will result in a high activation. As
the new concept node will be more detailed than its inputs, any inputs that are
concept nodes will be excluded from the focus set and will not affect the output.
As a result, the attempt at one-shot learning by the new node will ensure that a
high activation will be achieved from an input that previously generated a large
error. Because Cascade-Correlation has previously showed to be suitable not only
for supervised learning, but also for reinforcement learning problems [16, 17|, this
similarity of how new nodes are added to the two models suggests that the dynamic
model could also have the potential to outperform static neural networks at both
supervised and reinforcement learning. We have seen indications of this being true
from our experiments as well, which motivates further work with the dynamic model.

What Cascade-Correlation does not offer when compared to the dynamic model is
the ability to reduce the network when nodes that have been added are no longer
needed, along with the properties of lifelong and continuous learning; there is a
distinct training phase for adding new nodes when the existing nodes are not trained,
after which the network architecture is fixated. At this point, the network can be
used but nodes are neither added nor removed, and only the last layer is trained
further. For a general-purpose Al that should ultimately be able to encounter any
number of situations during its lifetime, this is not optimal as there could be later
times when the higher-order features detected in the now fixed layers are never
encountered again, or more importantly when there are other features present that
cannot be detected by the fixed layers.

5.4 Future work

Here we provide our thoughts on how the model could be improved to better handle
more complex inputs and what should be considered if continuing to work with the
model in the future.

5.4.1 Limitless focus set

In our evaluations we found that there seemed to be no benefit in limiting the
number of nodes to be included in the focus set. On the contrary, letting all nodes
with sufficiently high activation be included in the focus set allowed the model to
extract the important parts of concepts, ultimately leading to better generalization
and convergence of the network. With this knowledge it would be possible to skip
creating the focus set and instead only use the threshold currently required for being
included in the focus set.
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5.4.2 Different types of nodes

To let the dynamic model handle more complex situations than a momentary picture
of the environment, one could introduce other types of nodes, which instead of simply
remembering values can remember relations, e.g. differences, between values. This
would allow the agent to handle temporal differences without having to create a
node for each specific state. This could be especially useful in environments such as
the Discrete and Continuous Catch environments, where it is the relations between
state inputs that are interesting, e.g. a single concept node for “the ball is to the
left of the paddle, move left” instead of a concept node for each state in which the
ball is to the left of the paddle. This could give rise to a ball-following behaviour
using much fewer concept nodes. Although this kind of behaviour is not generally
preferred when the paddle is unable to keep up with the ball in speed, as we would
like the agent controlling the paddle to come up with a deeper understanding of how
it does not need to chase after a ball that is just about to bounce back from hitting
a wall, it would not force the behaviour on the agent. It does however provide a
more interesting way of building networks that potentially could solve more complex
environments.

5.4.3 Runtime performance

The implemented dynamic model compared to a regular DQN is not as fast with
regards to runtime on a CPU. There are three main reasons for this:

1. DQN implementations are normally done with matrices and matrix operations
that are very efficient on GPUs because of how well they parallelize. This is
evident even when running on a CPU when the networks are small enough
as to not being able to utilize as many computational cores, as in our ex-
periments. Although some matrices and matrix operations were used in the
implementation of the Dynamic agent, the matrices were all very small, e.g. a
matrix as input to every concept node and vectors with weights, and the gain
in performance from this is therefore also small. This area should be further
investigated however. We believe that an implementation with larger regular
matrices or perhaps a sparse matrix representation would perform better.

2. There is a lot of logic required for the idea to be applied to reinforcement
learning that is not required in for example supervised learning, where we
have seen the model to perform well in terms of inference from the berry
environments.

3. The prime focus of the thesis was to implement and evaluate a proof of con-
cept of the new idea for a dynamic network architecture within reinforcement
learning, in order to see if the idea has any potential. The focus was not to
implement the Dynamic agent in the most computationally efficient way, as
there was no telling if it would work at all in the first place. Emphasis has
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therefore been on getting further understanding of the model and implement-
ing it in a way that makes it easy to follow instead of trying to optimize all of
the previously mentioned logical operations required.

If the model should be useful in practice the runtime performance of the implemen-
tation needs to be improved upon. An example of such improvements, although
small, could be to apply batch-learning and generalization at set intervals, instead
of at every iteration.
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Conclusion

The dynamic model works well in the case of classification tasks and the simple Grid
environment, both in which it outperforms the DQN. As the state space grows larger
in the Discrete Catch environment, and even more so in Continuous Catch and Cart-
Pole, the dynamic model will require further improvements in order to keep up with
the well-established DQN. Noteworthy similarities between the dynamic model and
Progressive Neural Networks and the Cascade-Correlation Learning Architecture,
which both have proven successful in reinforcement learning applications, indicate
that the dynamic model has potential to do the same given more time and effort.
Additional comparisons with the purpose of drawing inspiration from said techniques
could also be useful for future development.

The dynamic model can be seen as a combination of classical table-based Q-learning
and the more recent DQNs, as it in a sense is a compressed table of Q-values in the
form of a neural network. This parable is interesting, as both Q-learning and DQNs
have been important milestones in reinforcement learning. With this reasoning in
mind, it would be compelling to develop the model with better ways to create a mix
of a compressed Q-table and a function approximator, for example with the addition
of relations between values rather than just combinations of specific values.

As DQNs can utilize optimized parallel matrix multiplications they are hard to beat
performance-wise, and might not even need improvements in this regard. Instead,
the approach presented in this thesis could be interesting for the research of more
general techniques, and useful for cases where for example the agent has to learn
quickly from just a few experiences.

As the implemented dynamic model is merely a proof of concept of a brand new re-
inforcement learning algorithm, it would be naive to expect the first implementation
to outperform such a successful algorithm as the DQN. We consider it an interesting
idea with a first round of results that merit further development and research.

To continue working with the dynamic model, the Discrete Catch environment or
one of similar difficulty with regards to state space and complexity in the input
is probably a good starting point to test whether new ideas solve the issues of
memorizing states and runtime performance.
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Appendix

A.1 PyTorch

PyTorch is a computing package for Python, well suited for machine learning tasks,
that can run computations on either a CPU or a GPU. One important difference
between PyTorch and one of its main alternatives TensorFlow is that PyTorch pro-
vides a define-by-run framework for automatic differentiation of the computations
done with tensors. This is optimal for a network such as [4], as the output, and
therefore the loss, will depend on different nodes each iteration. PyTorch makes it
possible to ignore this, as it builds a new graph each run, depending on which oper-
ations were used to compute the final output. Therefore, it is able to compute only
the necessary gradients for backpropagation depending on the path of computations
in the forward pass of a network.
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