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Abstract
The CHABOT project entailed the construction of a humanoid robot torso. The robot was to be used in the
master program course TIF160 Humanoid Robotics as a laboratory material to be utilized in student group
projects. The robot was given the name CHABOT by the customer together with a specified list of functional
requirements and a request of an aesthetically pleasing exterior.

The main goal of the design was to provide an expandable platform that could be altered with additional
functions in the future. This was achieved by using a CAN bus for communication and a combination of 3D
printed parts, metal plates and threaded rods creating the supportive skeletal structure. A USB connection
between the robot and a computer, allows students to control the entire structure. A polycarbonate plastic
shell was crafted to create an engaging and attractive appearance.

The final CHABOT prototype fulfilled the stated goals of being both modular, re-creatable and aesthetically
pleasing.

Keywords: Humanoid Robotics, Electromechanic, CAN, Robot Aesthetics
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Nomenclature

API (Application Programming Interface) Is a set of functions that are implemented in the interface of a
library or device.

CAD (Computer Aided Design) A virtual tool for modelling and simulating purposes.

CAN (Control Area Network) A serial bus for reliant communication between nodes.

ECAD Electronic CAD. A software suite used for designing circuits and PCB designs.

MCAD Mechanical CAD. A software suite for designing mechanical constructions.

MCU (Microcontroller Unit) A microprocessor with built in memory and io devices.

PCB (Printed Circuit Board) A physical circuit board.

RAM (Random Access Memory) A volatile memory for storing temporary data.

SPI (Serial Peripheral Interface Bus) A bus intended for connecting a MCU with external devices.

TTL (Transistor–Transistor Logic) A digital logic level standard for 5 V logic.

USART (Universal Synchronous/Asynchronous Receiver/Transmitter) A specialised digital unit intended for
serial communication.
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1 Introduction

The field of robotics is one of constant improvement. Since the first automated machines seen in the beginning
of the industrial revolution, robots have steadily increased both in number and in complexity. Today there
are robots capable of performing tasks seen only in science fiction films a decade ago. Yet, one of the biggest
challenges is still ahead of us. That of creating a viable human sized machine that is convincingly able to
mimic human movement and versatility. The humanoid robots are a technology whose proposed utility lies
within the variety of tasks they can perform and their ability to work and operate in an environment primarily
built for humans. In order to achieve this, additional studies are required in the field, and the CHABOT will
serve as the base for many such studies.

The goal of this project is the creation of a fully functional humanoid robotic torso as well as a detailed manual
to be used to recreate and mass-produce said robot for a fraction of the cost. The robot and its copies are to
be used in educational purposes for experimentation and examination of student’s knowledge in the field of
humanoid robotics. It should also be able to be used in exhibitions to promote the university. The machine
envisioned serves as an upgradeable platform created as to be easily expanded and improved upon in the
future.

1.0.1 TIF160 Humanoid Robotics

The course TIF160 Humanoid Robotics is a part of the curriculum of the master program Complex Adaptive
Systems given at Chalmers University of Technology. The goal of the course is for the students to achieve a
higher understanding of the construction and implementation of humanoid robotics. TIF160 includes a group
project utilizing a robot. The students must decide on a task of their own choice for the robot to perform.
Thereafter they must program, redesign or change the robot to fit the specifications of their objective so that
the task can be fulfilled.

1.1 Project Definition

The project is defined as such to further develop and improve upon an existing humanoid robot used for
educational purposes. The robot will be utilized as a part of the course TIF160 where the students participate in
a group project. The project consists of a humanoid robot used as a platform to solve a problem or manipulated
to perform a certain task. The tasks may range from fairly simple to relatively complex, therefore the robot
should be of general and modular design, which will enable the students to freely laborate. The design should
also facilitate the possibility of further development of the robot in the future. It should have an aesthetically
pleasing appearance so that it could be used as an advertisement tool for Chalmers at exhibitions and similar
events.

1.2 Project Management

Taking into consideration the small size of the team executing a large project, there must be a solid project
management objective. The team planed and executed the project management strategies in compliance to the
teachings of the Value Model[1].

According to the value model planning should be divided into three different parts; defining the project (the
red phase), establishing a plan (the amber phase) and managing the project until completion (the green phase).
The teachings and strategies were then presented in a project plan in the very beginning of the project to the
customers so that there were no misunderstandings of when and what was to be expected as the result of the
project.
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1.3 Objectives

The different parts of the project is divided into the following objectives that are requested by the cus-
tomer.

• The robot will be of modular design to enable future additional work and allow the students to manipulate
the construction easily.

• The robot will consist of a torso with a head and at least one arm.

• The robot will be compatible with a Microsoft Kinect device.

• The arm will be equipped with an exchangeable manipulator of some kind, such as a gripper or a humanoid
hand.

• The robot will have an aesthetically pleasing design.

• The final cost of the prototype will be under a budget of 10 000 SEK and will be able to be reproduced
for under 5 000 SEK.

• The head’s camera, microphone and speaker will be handled by a computer through a USB connection
and not by control electronics in the robot.

• The robot’s weight will not exceed the weight that an average build student can carry the robot in a
double lined paper bag.

• The head will be equipped with a LED matrix as a mouth.

1.4 Limitations

A humanoid robot is a very advanced construction. For the aforementioned objectives to be completed in the
allotted time, a number of restrictions are required.

• The robot will only be equipped with one camera, though it will be possible to add stereo vision in the
future.

• The head will only be able to tilt up and down.

• The robot will not have any legs, only the possibility to add them in the future.

• There will be no outer shell constructed for the arms.

• The robot will only be equipped with an API for C++.

• The robot will not be equipped with batteries.

• The instruction manual and assembly guide found in the appendix of this report are reserved for changes
due to the shell not being able to be completed by the due date of the report.
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2 Design

As stated in the project definition, the central objective of the project is to design and construct a humanoid
robot that has the ability to mimic both the appearance and the movement of humans. The overall design of
the robot must include all parts of the robot ranging from the construction of the skeleton to the software
program.

2.1 Visualization Methods

To visualize the prototype before the construction begins, sketches and computer generated virtual models
are made using various CAD-programs. To create the models of the electronic parts, ECAD-programs
are used that are specifically designed to generate PCBs. While all the mechanical parts are created in a
MCAD-program.

Both the construction of the mechanical and the electrical parts are first sketched on paper and then translated
into a 2 or 3 dimensional model on the computer in the aforementioned programs. This has a number of
advantages over regular schematics, as it is possible to utilize the programs features to simulate various
manipulations to avoid construction mistakes.

The MCAD-program used for the skeleton and the shell is CATIA V5 R19 that is available to students registered
at Chalmers. The servomotors and the claw, chosen by the group for the prototype, already have finished
downloadable 3D models of the components. This makes it possible to size the neighboring components exactly
after those components as well as creating a complete assembly of the different pieces into a virtual machine.
The virtual machine is then manipulated in different ways to simulate movement in the entirety of the model
and find clashes between parts reducing or eliminating the need of creating physical models for testing. An
example of simulating the assembly can be found in Fig. 2.1.

To visualize the circuit board, an ECAD application is used. The chosen program for CHABOT is Altium
designer. Altium is chosen for it’s powerful and easy to use interface. A good ECAD program will provide
features that assist in transferring a schematic drawing into a final PCB layout. With the help of rules, the
ECAD application can provide help in indicating potential errors such as violated wires and room constraints.
These rules also provide help in designing PCB layouts such as indicating missing connections, but also to help
with differential pair routing and path length matching.

The end results of an ECAD suite is a set of PCB layers that can be exported to gerber files for mechanical
milling or printed for chemical milling.

2.2 Design & Aesthetics

There are many different qualities that come into play when it comes to the design of the robot. The desired
outcome is achieving an appealing look of the exterior that has a sound foundation, all recreating a resemblance
of the human form. These two qualities are to be divided between the role of the skeleton and the role of shell.
The skeleton is designed to carry the entire structure and resemble the shape of a human upper body. The shell
covers the skeleton and all the electronic components at the same time conveying an aesthetically pleaseing
appearance.

An important aspect of humanoid robotics is for the robot to engage with and replicate the movement patterns
of humans. For a successful interaction between humans and robots, humans have previously been shown to be
more comfortable with robots that have an appealing appearance. According to the results of an experiment
conducted at the University of Texas [2], people respond positively to a wide range of robots from simple
abstract robots to extremely realistic human-like robots. The experiment was conducted on a group of 25
participants aged between 18 and 77. The partakers were shown images of humanoid robots ranging from the
abstract to uncanny realistic silicon masked robots. They were then asked to rate the robots on a scale from
1-10 on their perception of the robots “human-like”, appealing, familiar and eerie qualities. The data recovered
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Figure 2.1: Simulated assembly of torso in Catia v5
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showed that although the participants found that the more realistic robots were more “human-like” and slightly
more familiar, they found that the more abstract robots were more appealing.

The study is related to a previous paper by Masahiro Mori discussing how to avoid the “uncanny valley”.
The “uncanny valley” is a vernacular of the sudden dip in a plot derived of a study plotting the experience of
familiarity of humanoid robots on the y-axis to the human-like resemblance on the x-axis. The study shows a
sudden dramatic dip in familiarity when the robot has around an 80% human-like resemblance. This is called
the “uncanny valley”. The robots are then experienced as uncomfortable or zombie-like. Mr. Mori recommends
robot designers to avoid this valley by creating an exterior appearance that mimics the human form without
recreating every single detail such as fingerprints and eyelashes. [3]

CHABOT was intended to have an abstract almost toy-like appearance with influences from both sci-fi and
films from the 1950’s, with high familiarity with an appealing design. Thereby, in relation to both the study
conducted by Mr. Mori and the further work of administered at the University of Texas, several design aspects
were taken into consideration. An example of how the team opted to avoid the “uncanny valley” was to design
the head with a resemblance of the human head’s shape but disregard any facial features. Another instance of
this would be in regards to the shape of the torso. The torso consists of a breastplate and ”backplate” that do
not take the shape of a human torso precisely, but the proportions are measured after a human that gives the
illusion of the form. This can be seen in the sketches in Fig. 2.2 and Fig. 2.3.

Figure 2.2: First sketches of CHABOT
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Figure 2.3: Additional sketches of CHABOT
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2.3 Cost analysis

An important part of the project is to construct a prototype that is possible to recreate on a larger scale for a
fraction of the cost per robot. The directive from the customer is to calculate the cost to reproduce six to eight
robots for the price of 5 000 SEK per piece. The prototype robot is given a budget of 10 000 SEK.

To achieve this goal, it is imperative to consider every component and material that the robots will consist of.
Since the reproductions are to be produced on a larger scale, there is the possibility to purchase materials in
bulk to attain a lower final cost. Different suppliers are taken into consideration that have the possibility to
offer discounts if one were to come back with a larger order. To calculate the final costs of the prototype versus
the final costs of the reproductions a cost analysis is made.

2.3.1 Component Evaluation Method

To decide on which components to purchase, the appropriate method is to weigh different models of the
component against each other before purchasing. The component-to-component matrix entails looking at all
the attributes of the different components and evaluating which attributes are relevant to the task in hand and
which component fulfills the desired specifications the best. This method was inspired by the Pahl and Beitz
method and other general weighted evaluation methods, but was modified to suit the team’s need.

The first step is to list all attributes of the components in a matrix to easily visualize the different specifications
to thereby compare them. The next step is to name a component as a reference and then compare the remaining
components by every attribute in the list to the reference in a separate matrix. If one of the components is
superior to the reference on a specific attribute, the component is scored with a plus one point. In the same
fashion, if the reference is superior to the compared component, it receives a score of minus one point. After
repeating the process for every attribute and making every component the reference for a round of scoring, the
points are added up. The component with the highest score is the supposedly superior component.

This evaluation method will not be implemented on all the components, only the ones where there are several
attributes that come into consideration when deciding. Certain simpler components will only be evaluated and
chosen when it comes to the price point or the performance.

7



Figure 3.1: 3D Model of CHABOT’s neck with and without a Microsoft Kinect

3 Procedure

To achieve the undertaking of creating CHABOT, a number of different disciplines were involved. Mechanical
engineering expertise was needed for tasks such as the skeleton and shell construction. Electronic engineering
skills were applied in the form of creating controller cards for the electromechanic components. Extensive
software engineering was involved such as creating the firmware for controller cards and software for the
communication between CHABOT and a host computer. Beyond the purely technical engineering aspects, there
was also a certain level of artistic proficiency required to fulfill the preset goal of an appealing design.

3.1 Skeleton

The design of the skeleton was intended to concentrate all forces working on the CHABOT into the spine
and shoulders. The resulting technical drawings from the visualization methods, became the blue prints for
the impending structure. The team constructed and assembled the skeleton with the resources offered by the
Prototype Laboratory at Chalmers along with additional materials and components acquired.

The skeleton consists of a torso acting as the main load bearing construction, two arms, a head with a flexible
neck and lastly a detachable stabilizing platform to serve as a base. The proportions of the CHABOT were
inspired by the human body of one of the team members to make sure the CHABOT has a human like posture
and reach. The larger parts of the skeleton, such as the torso and head, are constructed out of aluminum,
steel plates, and threaded rods, while the arms are assembled out of 3D-printed rapid prototyping parts. The
shoulder beam is constructed out of sheet steel due to the realization that an aluminum beam of the suggested
size was not be able to carry the load of both arms and the shell without extensive bending.

The 3D-printed parts were created by the rapid prototyping system inherent in the Catia v5 program that
enabled the parts to be printed directly from the CAD-drawing and schematics. This guaranteed a high
repeating precision of the individual parts even if the parts themselves needed some slight polish to fit securely
in the construction due to the inherent roughness of the printing procedure. The 3D-printed parts are both
light and strong in relation to their size and foremost they are easy to both reproduce in smaller numbers
making it a prioritized material and technique when aiming to replicate CHABOT.

The neck was initially meant to be able to rotate as well as tilt. Unfortunately, time constraints meant it had
to be simplified and the rotation was cut from the final product as rotating the waist could solve the rotational
movement. It was important that the neck was stable enough to be able to support the weight and size of the
Microsoft Kinect. This required a redesign in the top plate of the neck to conform the preexisting screw holes
in the Microsoft Kinect. See Fig. 3.1.

The waist of the CHABOT had to be redrawn several times during the construction phase due to the complexity
of the construction. The final waist was a compromise of completing the project on time and a robust enough
design and is composed of plastic parts revolving around a central axis of steel and brass.

The methods used to create the parts are as followed:

8



Metal parts:

• Drilling

• Lathe work

• Bench work

• Bending

• Cutting

• Sanding

Plastic parts:

• 3D printed rapid prototyping

• Sanding

3.2 Shell

The goal of CHABOT’s design was an abstract, sleek minimalistic design with organic curves to realize an
appealing appearance to achieve the desired effect discussed in the previous chapter. After a couple of different
materials and construction methods were considered, a polycarbonate plastic shell was decided upon.

The polycarbonate plastic shell was formed through a process of heat and vacuum shaping. The process of
shaping polycarbonate plastic entails first heating the plastic in an oven at 220 degree Celsius. When the
plastic is soft enough and becomes elastic, the sheet is then removed from the oven and placed over the mold
on a vacuum box very quickly before it hardens. The plastic is left to stabilize over the mold to take the shape
of the mold. It is crucial that the mold is as close to perfect in shape and texture as possible because every
imperfection will show.

3.2.1 Polycarbonate Vacuum Shaping Experiment

An initial experiment of the polycarbonate vacuum forming was conducted to find what shapes gave the best
result when used as molds. In certain instances, the plastic creased when formed over sudden topographical
changes in the mold. Round shapes with soft transitions proved to give the best outcomes as no folds around
the edges were created. These results can be seen in Fig. 3.2 and Fig. 3.3. It was thereby beneficial to make
the molds more organic in shape, slowly changing in shape to minimize the potential of unwanted lumps and
creases. This also lead to the change in the fastening between the shell pieces. The original design was that
the shells would overlap and then be fastened with a simple screw or bolt. It showed that it would be much
easier to fit the pieces together by adding a rubber ledge on the inside of one of shell pieces and have the
corresponding one rest on that ledge. Then it was simple to align them and then fasten with a thin metal clip
instead.

3.2.2 Mold Construction

The most important factor when creating the shells was that the molds had to be as close to perfect in shape as
possible and the surface roughness had to be minimized. The primary plan was to create molds out of stacking
levels of thin wooden planks cut into the outer shape of cross sections taken from the 3D models of the shells.
This proved to be extremely time consuming and the time the team had available in the prototype lab at the
end project did not allow for this method. It was then suggested by the staff at Chalmers to create the molds
out of a sold block of wood and then shape them through sawing and sanding the desired shape of the mold.
An image of this can be seen in Fig. 3.4 and a close up of the finish of the plugs can be seen in Fig. 3.5.This
resulted in the molds not having the exact form of the model as the molds were shaped free handed by one of
the team members.

9



Figure 3.2: Polycarbonate vacuum forming initial experiment
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Figure 3.3: Polycarbonate vacuum forming initial experiment close up
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To reduce the amount of plugs, the head was redesigned to have an identical front and back to be able to
construct only one plug for the head that could be used for both sides. The shell covering the support was
constructed out of thin aluminium instead of plastic, to not only to reduce the amount of plugs but also to
create a more robust support system.

3.3 Mechanics

To make sure the construction does not fall apart due to it’s own weight or the stress at the joints induced by
the movement of the robot, several different calculations were made for the key parts such as the waist, neck,
and shoulder joints. The parts not affected by movement were simply designed after recommendations from
the engineering instructors at the Chalmers Prototype lab. To make sure the construction of the arms, neck
and waist were structurally sound, the result of the estimates were assumed to lie below or between the mean
value and the worst case method. The CHABOT is assumed to move slowly and in controlled movements, thus
minimizing forces caused by acceleration and deceleration.

3.3.1 Equations

In order to make predictions on the mechanical properties of the robot, the following equations using Newton’s
laws of motion were made with the some simplifications. The physical model is reduced to a two dimensional
problem which handles the momentum and the force along two axises. As the CHABOT’s size is somewhat
limited, no equations regarding mechanical fracturing were deemed necessary. Instead, the focus lied on the
capabilities of the Dynamixel servomotors. All products are rounded to the third decimal using safe rounding.
Load, mass and stress are rounded up and the servomotor’s torque and material strength are rounded down.
The calculations are performed using both stall torque/footnote The maximum instantaneous and static torque
and operational torque.

mb Mass shoulder bracket

ma Mass arm

mv Mass wrist

mc Mass claw

mx Mass load

A Waist

B Shoulder

BC Shoulder bracket

CD Arm

DE Wrist

EF Claw

GH Neck-Head

Mean value: In these calculations the mass of a given length is assumed to be placed in the center of the given
length. The only exception is the work load that is calculated using the worst case method. The mean value
method gives a more realistic value than the result of the worst case method.(Fig:3.6)

Worst case: In these equations the entire mass of a given length is assumed to be placed in such a way as to
generate the maximum accumulated force possible. This is achieved by placing the mass at the far end of each
element. This method is primarily used in calculations as it automatically calculates the maximum stress on
the construction and the momentum applied on the servomotors. The maximum work load is calculated using
the same method3.6.

By mechanical isolation of the different systems, such as the arm, shoulder and waist, it becomes possible
to calculate momentum for each key joint. The momentum around the waist is calculated by doubling
the momentum generated from a single arm holding the absolute maximum load in a horizontal position
perpendicular to the chest of CHABOT at the stall torque. Thereafter, adding the momentum generated
by the head when mirroring the movement of the arm results in the ultimate momentum generated at the
waist(Fig:3.8). This result is equivalent to three times the stall torque of the Dynamixel servomotor.

The torques and loads affecting key joints calculated using Newtons second law of motion.
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Figure 3.4: Solid wood plugs of the torso front and head
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Figure 3.5: Solid wood torso plug close up
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Figure 3.6: Mean value / Worst case method
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Mechanical forces of the neck using worst case method:
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Figure 3.7: Forces affecting the neck of CHABOT
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Figure 3.8: Forces affecting the waist of CHABOT
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Stall torque (Ms): 1.53 Nm
Operational Torque (Mo): 0.765 Nm
Acceleration (g): 9.82

Shoulder joint:

The momentum effecting the shoulder joint.

MB =

[
BC

2
mb +

(
BC +

CD

2

)
ma +

(
BD +

DE

2

)
mw +

(
BE +

EF

2

)
mc

]
g (3.1)

MB〈MAX〉 = [(BC)mb + (BD)ma + (BE)mw + (BF )mc] g (3.2)

Operational Load:

Load allowed in normal movement.

mo =
Mo −MB

BFg
(3.3)

mo〈MAX〉 =
Mo −MB〈MAX〉

BFg
(3.4)

Maximum Load:

Load allowed when CHABOT is stationary

mm =
Ms −MB

BFg
(3.5)

mm〈MAX〉 =
Ms −MB〈MAX〉

BFg
(3.6)

Neck:

Momentum effecting the neck.

MG =
GHmn

2
(3.7)

MG(max) = GHmn (3.8)

Waist:

Momentum effecting the waist.

MA = GHmn + 2
[
MB〈MAX〉 + BF (mo〈MAX〉)

]
(3.9)

3.3.2 Theoretical values

The equations above was used to calculate the theoretical required torque for the key joints as well as the
lifting power of the CHABOT and the results are presented below.

16



Shoulder joint

The subsequent joints in the arm are subjected to less force making the shoulder the most important joint of
the arm. Fig.(3.6)

The momentum affecting the shoulder using the mean value method: 0. 694 Nm (3.1)

The momentum affecting the shoulder using the Worst case method: 0. 954 Nm (3.2)

Operational Load:

Calculated load allowed in normal movement using the mean value method: 21 g (3.3)

Calculated load allowed in normal movement using the Worst case method: -59 g (3.4)

Maximum Load stationary:

Calculated load allowed when stationary using the mean value method: 258 g (3.5)

Calculated load allowed when stationary using the Worst case method: 178 g (3.6)

Neck

The neck is subjected to different forces depending on the current ”head” mounted on the CHABOT. The
following calculations assume the Microsoft Kinect being equipped. Fig.(3.7):

The momentum affecting the neck using the mean value method: 0.237 Nm (3.7)

The momentum affecting the neck using the Worst case method: 0.473 Nm (3.8)

Waist

Unlike the previous parts, the forces on the waist is not applied directly on a Dynamixel servomotor but on the
support structure and axis used to change the facing of the CHABOT. Fig.(3.8)

The momentum affecting the waist using the Worst case method: 4.59 Nm (3.9)

3.3.3 Component Sizing

Sizing the parts for the required task demanded a balance of weight, material strength as well as an ease of
machining and assembly. The main limiting factor in sizing components was the AX-12A Dynamixel servomotor,
as the specified torque and size could not be altered. Thereby, the surrounding parts had to be constructed and
fitted with their limitations in mind. All pieces printed using rapid prototyping were designed to have a snug fit
with the AX-12A. The 3D printed pieces required another way of thinking when designing the parts than with
the other mechanical constructions. Instead of adding material to an internal construction, the piece derives
from a simple solid shape and then by removing material the piece takes on the desired shape. This process
translates the constructing methodology from building parts into something more akin to sculpting.

3.4 Communication Protocol

Since CHABOT is intended to be of a modular design, there is a need for some sort of communication between
the different systems. A communication protocol should help with message passing and to choreograph nodes
within the design. In CHABOT there is a need for a protocol that can send control information to the different
parts of the robot, but also return information such as sensor data and error messages such as a notice of
overload. The protocol also needs to be expandable and able to handle additional systems as they are built and
integrated into the CHABOT.
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3.4.1 Communication busses

Communication can be done over a bus that can be seen as a motorway for information. A bus can either be
parallel or serial, both have different uses and applications. A parallel bus is a mean of transferring data over
multiple data pins including control and clock wires.

SCLK
MOSI
MISO
SS

D0 D1 D2 D3 D4 D5 D6 D7

D0 D1 D2 D3 D4 D5 D6 D7

D0
D1

D2

CLK

D3
D4

D5
D6
D7
RD
WR

D0 D0 D0 D0 D0 D0 D0 D0

D1 D1 D1 D1 D1 D1 D1 D1

D2 D2 D2 D2 D2 D2 D2 D2

D3 D3 D3 D3 D3 D3 D3 D3

D4 D4 D4 D4 D4 D4 D4 D4

D5 D5 D5 D5 D5 D5 D5 D5

D6 D6 D6 D6 D6 D6 D6 D6

D7 D7 D7 D7 D7 D7 D7 D7

Figure 3.9: A Serial SPI bus and a simple parallel bus

A serial bus, contrary to a parallel bus, uses fewer data lines. Instead of one data line per bit, multiple data
lines are multiplexed into one or a few data lines. The main benefits with serial buses are that they are easier
to wire due to their lower pin count. The Fig. 3.9 compares a serial bus called SPI [4] with a simple parallel
bus. This graph shows how higher transfer rates per clock cycles are sacrificed for fewer physical wires.

Communication over a serial bus can conform to different standards with different levels of abstraction such as
RS485, Ethernet, CAN, etc.

3.4.2 Communication

In situations where there are requirements of communication between different computers or control units,
there is a need of shared standard between the two.

A common way of illustrating these different standards is to use the OSI model.

7. Application The application layer is where standards between different applications are defined. Exam-
ples: HTTP, Modbus, FTP
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6. Presentation This layer contains how to interpret received packages and in what way to format a package
for sending.

5. Session The session layer is the layer where authorization occurs. Examples: PAP, SOCKS

4. Transport Managing flow control and optional error handling occurs in the transport layer. Examples:
TCP, UDP

3. Network The Network layer handles addressing of packages between different members in the same
network. Examples: IPv4, IPv6

2. Data link The data link layer is where the packages are broken up into frames and addressed to the
correct controller. Examples: MAC, CAN

1. Physical This is the wiring used to transport the individual bits in each package meant to be submitted.
Examples: RS232, RS485

From this point on, the Presentation and Session layer will be ignored since it’s not applicable to this report.
[5].

RS485 & Modbus

RS485 is a multipoint serial bus using differential signals. Differential signaling is used to decrease sensitivity
to environmental noise. RS485 is a physical layer and does not contain any standard for addressing, routing,
collision detection or error correction. This means that the developers are required to add these features
themselves. [6].

A solution is to use a Modbus. Modbuses are available in several different versions, the most commons types
are Ethernet and a Master / Slave version. The Master / Slave version is the one used on RS485. In the rest of
this text only the Master / Slave version will be discussed.

A Modbus has a simple protocol with one master and several slaves, where the master handles all communication.
This avoids the problem with collisions in the bus, while prohibiting slaves from sending messages back to the
master without a request.

Modbuses simply handle reads and writes to addresses on the slave node. This interface results in a simple yet
powerful protocol[7].

3.4.3 CAN

CAN is an abbreviation for Controller Area Network and was designed by BOSCH for the automotive industry.
CAN is a differential bus standard which implements both a data link and a physical layer. This means that
it implements both an electrical standard and a means for sending blocks of data. CAN provides means to
handle addressing and to detect errors in transmissions. CAN buses are restricted to sending up to 8 bits of
data per message, this means that there is a need for a higher level protocol to handle sending larger messages
and interpreting what messages mean. An example of such messages can be found in Fig. 3.10.

0 1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233343536373839404142434445464748495051

0 Identifier REX DLC Data CRC 1 1 1 EOF
} CAN

Message

Figure 3.10: Example CAN package

CAN uses it’s identifier to determine priority, a lower number means a higher priority. Another characteristic of
CANs is that all nodes see all messages and the identifier is used by the microcontroller or computer to filter out
the message of interest. CAN buses provide several ways of detecting errors to provide a safe communication
between nodes [8].
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3.4.4 Dynamixel servomotors communication protocol

Each Dynamixel servomotor contains a small memory area that contains all the different information parameters
of the servomotor such as position, temperature, torque, etc. These are changed through a half-duplex serial
protocol with TLL levels, meaning that the communication can only go in one direction at a time. A
communication package contains a start sequence following with the ID, length, data and ending with a
checksum as seen in Fig. 3.11.

0xFF 0xFF ID InstructionLength Parameter 1 Parameter N Check sum...

Figure 3.11: Dynamixel servo message

Depending on the ID and the instruction, a status package is returned. This package contains the status and
the potential parameter data as seen in Fig. 3.12. To broadcast a message to all nodes the ID 254 are used.
[9].

0xFF 0xFF ID ErrorLength Parameter 1 Parameter N Check sum...

Figure 3.12: Dynamixel servo status message

3.5 Electronic

Figure 3.13: Early prototype of the controller card

The electronic system in CHABOT was designed to be an interface between a computer and the individual
devices. Early versions of the steering electronics were developed using small interconnected modules on a
veroboard1 as seen in Fig. 3.13. Modules were designed to be a self-contained circuit board that provides a
specific function used by CHABOT. The use of wiring allowed for easier modification during the development
process. When all features were tested and verified, a PCB was manufactured.

1A prototype board consisting of even distributed circualr solder pads.
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3.5.1 Architecture

To computer

Controller board Controller board Controller board

CAN BUS

USB Hub
USB Camera

USB Sound Card
Power Supply

Servo Servo Servo

12 V

Figure 3.14: CHABOT architecture

The idea to allow an easy way to control different parts of the robot was important for the design of the
electronic system. An initial requirement was that all data should be handled through one USB connector.
This requirement along with the need to be upgradable resulted in an architecture that can be seen in Fig.
3.14. It was designed around two different buses. A CAN bus that transports the control commands between
the different controller boards and a USB bus where devices such as cameras and speakers could be connected.
One of the controller boards, also called master controller board, was connected to the USB to allow all
communication to a computer go through one single USB cable. This design allowed for the connection of
additional devices such as a Microsoft Kinect.

3.5.2 Controller

The controller boards were based around an ARM micro-controller evaluation board called ”Tiva-C Launchpad”.
A Tiva has two extension connectors that allows for custom boards to be attached. These are in general called
”booster packs”. The CHABOT controller board was designed as a booster back that provides communication
through CAN and USB. This booster pack design can be seen in Fig. 3.15. The servomotors are controlled
through a 5 V half duplex protocol. Since the Tiva is a 3.3 V device, a level shifter was required to allow
communication with the servomotors. This resulted in the use of a tristate buffer from the 74HCT series. This
device solves both the level problem and supports the half-duplex protocol.

CHABOT’s controller was designed to be powered through it’s CAN bus connector. This provides both 12 V
and 5 V for powering the servomotors and the Tiva board itself. The CAN bus was chosen to be used for
communication between the different controllers. A simple protocol was designed featuring 3 different kinds
of CAN messages: write, read and return. These messages allow one controller to manage another controller.
In the first plan, a DSUB-9 connector was intended to be used for as a CAN bus, but due to its large size,
a Firewire connector was chosen instead. A USB to USART adapter was added to allow a controller to be
reached from a host computer. A FTDI FT230 provided a virtual serial port on the host computer to simplify
development of a communication library.

A feature that was added was the different input and output devices. There were 2 analog input channels
providing 12 bit resolution and 2 digital inputs and 2 outputs added to the design. These features were added
to the controller’s protocol despite the fact that there were no connectors added. A PWM signal was added for
the reason that it was needed by the preassembled servomotor inside CHABOT’s purchased claw.
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Figure 3.15: Controller board

3.6 Software

Since CHABOT was intended to be used for educational purposes, a design where the intelligence was moved to
a host computer was chosen. CHABOT’s software was split into to two different software projects. One was the
Firmware used by the controllers and the other was the communication library residing in the computer.

3.6.1 Firmware

CHABOT’s firmware’s main purpose was to provide an interface to the different devices. The Firmware was
designed in a way that allowed the same code to be used independently whether a control board is a master or
a slave node. To allow a simple expandable interface, a memory map-like solution was chosen. Each device’s
parameters represent a unique 16 bit address. The firmware was provided with parameters for controlling
Dynamixel servomotors, digital in/out, analog in and PWM. This abstraction is used by the CAN protocol to
transfer commands in a compact binary rather than sending a command as a string. A simple protocol was
designed to transfer these read and writes. This protocol was also designed to be easy to extend with new
types of messages and allowing the addition of new types of devices without modification of the protocol itself.
For communication, a command interpreter was implemented to translate commands to a register write or to
be sent to another controller.

3.6.2 Communication library

The communication library was designed as a glue to provide an interface to the controllers. This library
was implemented in C++ using boosts and termios. The API was designed to be object oriented and to
provide a simple interface to the different devices. A multithreaded design was chosen to support asynchronous
communication. This allows the library to handle multiple commands simultaneously instead of waiting for each
command to be finished. Another aspect was that this kind of design allowed for adding exception handling
and to avoid buffer overflows.
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Figure 4.1: 3D Models of CHABOT

4 Results

4.1 Objectives

The team was very pleased with the final result of the prototype. Despite the changes, the following criteria
established at the beginning of the project were fulfilled:

• The robot is of modular design – both the arms and the head are easy to detach from the torso and can
be exchanged for any other desired component. The neck is designed to not only support the head, but is
also able support a Microsoft Kinect.

• The robot should serve as a platform for students to solve problems and learn how to manipulate the
robot to perform a certain task – the robot is equipped with an interface in a preexisting programming
language – C++, but it is prepared to be integrated with other languages. The entire torso has the
ability to rotate 300 degrees, the head can tilt up and down and the arms have 4 degrees of freedom.
These factors enable the students to control the robot to perform a wide range of tasks.

• There should be the possibility for further development of the robot – the base of the robot consisting
of a tabletop support is removable and the construction can be continued to be equipped with legs. As
stated above, the robot is prepared to be developed to support several programming languages and be
equipped with different toolsets. The bus chosen for CHABOT is expandable and makes it possible to
add new electronics without modifying existing components.

• The robot should be able to be used in exhibitions as a promotional device for Chalmers University of
Technology – the shell of the robot is designed and constructed to be aesthetically pleasing whilst it is
also easy to remove and exchange for a different cover.

Due to a range of different circumstances, some limitations and changes were made so that the actual final
product could be the best result as possible. The main changes were made in the construction of the skeleton
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and the design of the shell. The final results of the 3D models can be found in Fig. 4.1

Figure 4.2: CHABOT skeleton

4.2 Cost Analysis

The cost analysis of both the constructed prototype and the estimated costs of the seven reproductions are
found in the Appendix C. The CHABOT prototype was successfully constructed within the allotted budget of
10 000 SEK. Actually it came in quite a bit under budget. The final cost surmounted to around 7 000 SEK.
Unfortunately the budget of recreating seven robots with the same components as the prototype consists of
was impossible. The final cost per reproduced unit resulted in around 6200 SEK, thus a surmount of 1200
SEK. The estimated cost of the electrical components amounted to 4875 SEK the remaining 1325 SEK was en
estimate of the costs for the metal and plastic.

The most expensive component, that takes up the greater deal of the budget are the AX12-A Dynamixel
servomotors. Different vendors were weighed against each other to find the most cost effective deal to purchase
seventy-seven servomotors. It turned out that the cheapest alternative was not the one with the lowest unit
price per servo motor, but the one that gave a better discount for universities, had free shipping and the
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additional connecting shoulder brackets came at a fraction of the cost compared to other vendors. This brought
the final costs down substantially, but unfortunately not enough. To lower the final price even more the quality
of the web camera had to be downgraded to a cheaper model.

When creating the prototype the team was able to build the skeleton from metal parts and plastic rapid
prototyping parts offered by the prototype lab at Chalmers as a part of the organization in the bachelor thesis
course. In the beginning of the project, the customers showed an interest in investing in a 3D printer for
their department. Thereby the cost of reproducing the rapid prototyping parts were not included in the cost
analysis.

To recreate the skeleton and shell most parts need to be created by hand in a well equipped workshop. The
customer has the possibility to either construct all the parts themselves, or they could outsource the construction
to an outside party for an additional cost. The cost analysis only reflects the cost of the customer recreating all
the reproductions themselves.

The molds for the construction of the shells do not need to be recreated as they can be reused for all the
reproductions. Thereby there is no additional cost for wood that the molds are made of.

4.2.1 Component Evaluation Method

The components that were limiting when it came to sizing, were chosen through the component-to-component
evaluation method. These components were the servomotors and the mechanical claw/gripper. The matrices
can be found in the Appendix D and E. The servomotor matrix resulted in two different servomotors having
the same final score. The tie was broken by the customer insisting on the Dynamixel servomotor. This was not
an issue when it came to the claws, the Dagu mrk 2 was the clear winner.
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5 Discussion

As the project was of high complexity, there were several road bumps that required thought and changes in the
initial planning. CHABOT could not be completed by the time the report was to be presented and the work
will be continued during the coming two weeks until the presentation. Nonetheless, the majority of the goals
were fulfilled during that time. The team has reflected over all parts of the project and the outcomes of these
observations are presented in the section below.

5.1 Project Management & The Value Model

The teachings of the Value Model served as a perfect outline of how to successfully fulfill the primary objectives
of the project. The defining and planning stage gave a clear visual picture of the task to be taken on by the
team and established roles with designated responsibilities. As in many projects, the first plan is never the last.
The time schedule with the deliverables and due dates was revised a couple of times during the duration of the
project. It is difficult to say how this could have been avoided without establishing the fact that the group
should have created a more realistic plan from the beginning and setting the appropriate limitations. Apart
from that, a possible improvement could be to order the components in an earlier stage of the project. If the
team had decided on all the components earlier, there would have been the possibility to have more time in the
prototype lab to construct the final product.

5.2 Cost Analysis

In regards to the price point, the cost analysis played two parts; the first as a marker keeping track of the
expenses throughout the duration of the project, the other as a calculation of the theoretical reproduction
costs. The most challenging of the two was calculating the reproduction costs, as it was difficult to keep the
prospective costs under the set budget per reproduction. A great deal of work was put into finding the cheapest
alternative of all the components involved. Many different strategies were explored, buying components in bulk,
petitioning for discounts given to universities and even compromising some quality aspects to find a lower price.
The lowest unit price per reproduction was still 1200 SEK over budget.

There a couple of ways that the costs could be able to come under set budget. One option could be to reduce
the quality of the servomotors and opt for a cheaper version. The AX-12A Dynamixel servomotors were by far
the most expensive component of the robot. These were requested by the customer and were therefore included
in both the prototype and the reproduction cost analysis. Another approach would be to find a way to acquire
the metal and the plastic for the skeleton and shell through different means. By only purchasing the electronic
components for the seven reproductions, the final price point ends up at 4875 SEK. Both the final prototype
expense report and the reproduction cost analysis can by found in the Appendix B and Appendix C.

5.2.1 Component Evaluation Method

The component evaluation method was useful in steering the team in the right direction with providing concrete
courses of actions to be followed. Deciding on which machineries to purchase was not a simple assignment
attributed to the extensive volume of suitable components.

The component-to-component matrix served very useful in deciding on the servomotors and the mechanical
claws, more than the rest of the components involved. These two components entailed more relevant qualities
that were to be considered rather than just the price point. With the help of the matrix the team was able to
decide on the appropriate choice. The matrices can be found in the Appendix of this report.

Even though the evaluation methods were useful in the beginning of the project, they were of no relevant use
in the later part of the project. The decisions that where made as an outcome of this method could have been
taken directly simply through discussion. It could even be argued that the time spent on creating the matrices
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and recreating them for the purpose of including them in the report, could be spent on more pertinent issues
such as working on the construction.

5.3 Construction/Design Methods

The majority of the methods implemented in the project were very successful and the virtual tools were
recognized as vital to that success. The ability to pre-assemble and check the construction for mistakes before
building the actual prototype was used in all aspects of the project. As stated in the previous chapter, the final
result was, with the exception of the necessary extra limitations, to the team’s satisfaction.

Different parts of the CHABOT project could be separated into independent sub-projects, mainly into two
different paths with only minimal dependencies on each other. One part containing the electronic and the
software related tasks and the other containing the mechanical skeleton and the shell. This separation allowed
each branch to work in parallel. As a result of this, more features could be developed over a shorter period of
time. This strategy allowed the team to utilize the time of all the participants more efficiently.

5.4 Solid mechanics

The equations suggest that the current CHABOT is not very strong when moving and is not able to carry a
great load. However the lifting capacity of the CHABOT has yet to be tested in experiments. On the other
hand it is remarkably proficient in holding weights without moving the strained servomotor, which opens up the
capacity to move heavy loads by gripping items and turning the torso instead of the arms. Possible solutions
of the limited lifting power that is deemed to be too low in practical applications, is to replace the AX-12A
Dynamixel servomotor with the stronger AX-18A Dynamixel servomotor in key joints. Another option would
to replace the aluminum claws with a lighter gripper and thus reducing the weight of the arm.

The neck is able to carry a greater amount of weight due to the shorter distance of the load from the servomotor.
The forces affecting the waist and in extension the steel axle, was lower than initially feared. As the experiments
with CHABOT will continue, time will tell if the strain causes long term wear on the waist.

5.5 Skeleton

The design of the skeleton and the arms of CHABOT began before any set weight limit or dimensions were in
place. As a consequence, much had to be redone when the team decided on the servomotors. The end result
was influenced by those earlier design decisions such as the arm length and the overall size of the CHABOT. As
the plans for the shell were created simultaneously, drastic changes of either the form had to be worked around
when problems arose to avoid an entire rebuild of the mechanical structure. Calculations of the soundness of the
design was impossible to keep up to date, and in the end, the one constant to adhere to was the specifications of
the AX-12A Dynamixel servomotor. This led to the utilizing and reliance of the rapid prototyping technique as
it was both quicker and easier to completely design the parts virtually and send them for review to then adjust
them accordingly rather than making parts out of aluminum that were obsolete in three days time.

As stated earlier, the waist created a lot of trouble when it came to the design. As a system to relieve the
servomotors from forces perpendicular to the rotational axis often involves using cogs and different gears to
turn the axis indirectly. The suggested solution was proposed and implemented at a time the servomotor was
thought to only be able to rotate 300 degrees. This was a mistake due to a misreading of the data sheet causing
the entire weight of the moving parts of the CHABOT to rest on that single axis and the cylinder of rapid
prototyping plastic. Extensive testing of the waist system is therefore proposed to determine if the plastic is
sufficient to handle both the prolonged forces of friction and the forces created when CHABOT does heavy
lifting.
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5.6 Shell

The shell of CHABOT evolved over the course of the project from a rigid suit of armor covering most of the
robot into the final design of a head, breast plate and skirt combination. The arm-coverings were deemed
unnecessary as it apart from limiting the movement of the arms would also add unnecessary weight thus
reducing the amount of work CHABOT would be able to perform.

Due to the construction methods and mechanical limitations, the priority of the aesthetical factor in the primary
proposed design was downgraded. This was unfortunate as one of the main goals of the project was to create
an exiting new robot that would work as a promotional device for Chalmers at exhibitions and shows. On the
other hand, the request of the customer was to create a robot that was an improvement of the existing lab
robot in the course TIF160. By those standards the team did exceedingly well, as just the construction of the
skeleton can be seen as an improvement of the previous version.

5.7 Electronics

In the early stages of the project, it was decided to implement the controller board as a single board. Due to
the elevated price of creating this board, it was not able to be realized as the cost of reproducing these boards
were to high. Thereby a decision to build around a development board was taken. This proved to be the most
cost effective way of including a CAN bus, multiple USARTs and PWM devices. The selected card had two
CAN controllers, eight different PWM channels and eight USART packed in reasonable package. The Modbus
was primarily intended to handle the communication, but this was later changed since it was determined that
CAN provided more features, including a possibility to send messages from a slave with out the master actively
requesting the information.
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6 Conclusion

The team as a whole is very satisfied with the CHABOT as all tasks set by the objectives are fully realised in
the prototype with the notable exception being the LED display matrix. The CHABOT prototype is on all
accounts believed to be an improvement of the previous robot utilized in the course TIF160 and the team looks
forward to hearing actual usage feedback and data from the customer. Many different hurdles were overcome
to reach this point, and a valuable lesson is to always be open to changes in the design, as it is very hard to
predict how a project will develop when on the planning stage. By keeping the dialog open the team was
able to focus on the objectives of the project rather than getting stuck in a single mindset or certain ways of
reaching said objectives. The final incarnation of the CHABOT is not the same machine that was envisioned at
the beginning of the project, but it is a marvelous machine that certainly embodies the traits it was built to
emphasize; modularity, versatility and style.

6.1 Further work

The CHABOT team arrived at the following improvements and additions recommended to be carried out in
the future.

A desired mechanical upgrade of the CHABOT that would add even more versatility, is the addition of a means
of transportation. To keep to the humanoid theme the specific means proposed for CHABOT is a pair of
working legs or leg like appendages. The addition of a battery power option and an internal computer like a
Beagle Bone black or a Raspberry PI to allow wireless operation is also then suggested. This would eliminate
the requirement of being attached to a computer station.

An improvement that could be made if the robot was to remain immobile, would be to upgrade the means of
power supply. The current power supply is a fairly large switched regulator that can deliver 3A 5v. This power
supply could be made smaller by using a regulator with a higher switching frequency.

The re-inclusion of a visual mouth would be beneficial. As at the present, there are no means of live
communication, except for movements and gestures. The original idea was to use a LED display matrix with a
resolution of 16x8 pixels. The initial version of the firmware was developed and included a working display, it
would thereby not be such a large task to undertake this improvement.

The present version of the controller board has features like Analog input, Digital IO, PWM, CAN and Servo
motor. Unfortunately, there are no connectors for analog or digital IO, which makes usage of analog in and
digital IO more difficult to use.

There are several improvements to be made when it comes to the communication. CHABOT’s communication
protocol was originally intended to have a delivery assurance. Such features would be desirable in future
versions of the firmware. The current version of CHABOT’s communication library only includes support for
C++. A relevant improvement would be to add support for languages such as Python and Ruby. Another
addition could be to add support for Java and Matlab. Both Java and Matlab are used by many of Chalmers
introduction courses, which would allow the opportunity to expand the usage of CHABOT in different course
plans. By wrapping the C++ class into a container accessible from these programming languages could fulfill
most of these goals. CHABOT’s communication library only supports Unix like operating systems since the
communication is handled with help of ”termios”. This means that there is support for BSD derivatives, Linux
and Mac OS X but no support for Windows, which could also be a relevant expansion.

29



30



Bibliography

[1] P. Lindstedt and J. Burenius, The Value Model: How to Master Product Development and Create
Unrivalled Customer Value. Nimba, 2003, isbn: 9789163063497. [Online]. Available: http://books.
google.se/books?id=Gq4JS3Pxpp0C.

[2] D. Hanson, “Exploring the aesthetic range for humanoid robots”, Proceedings of Cognitive Science (CogSci
2006) Workshop on Android Science, 2006.

[3] M. Mori, The uncanny valley, Energy no. 7(4) 1970, 33–35, 1970, Translated by Karl F. MacDorman and
Takashi Minato.

[4] St spi protocol.
[5] K. W. R. James F. Kurose, Computer Networking: A Top-Down Approach, 6th ed. Pearson, 2012.
[6] C. K. T. K. Manny Sltero Jing Zhangm Chris Cockril, “Rs-422 and rs-485 standards overview and system

configurations”, Texas Instruments, Tech. Rep., 2010.
[7] Modbus application protocol specification v1.1b3, Modbus Organization.
[8] D. C. Watterson, “Controller area network (can) implementation guide”, Analog devices, Tech. Rep.,

2012.
[9] 2014. [Online]. Available: http://support.robotis.com/en/product/dxl_main.htm.

[10] P.-r. J. Ragnar Grahn, mekanik, statik och dynamik. Studentlitteratur, 2010.

31

http://books.google.se/books?id=Gq4JS3Pxpp0C
http://books.google.se/books?id=Gq4JS3Pxpp0C
http://support.robotis.com/en/product/dxl_main.htm


32



A Component list

33



Name # Manufacturing Material Code

Threaded	  rod	  8mm 3 Purchase,	  cutting Galvenized	  Steel SK1-‐T
Bottom	  Platform 1 Cutting,	  drilling 6mm	  Aluminium SK2-‐T
Square	  Support 1 Cutting,	  drilling 2mm	  Aluminium SK3-‐T
Angle	  Support 4 Cutting,	  drilling,	  bending 2mm	  Aluminium SK4-‐T
Torso	  Shoulder	  Beam 1 Cutting,	  drilling,	  bending 3mm	  Steel SK5-‐T
Torso	  Shell	  Front 1 Vacuum	  Shaping 2mm	  Polycarbonate	  Plastic SH1-‐T
Torso	  Shell	  Back 1 Vacuum	  Shaping 2mm	  Polycarbonate	  Plastic SH2-‐T
Support	  Shell	  Front 1 Cutting,	  bendin 2mm	  Aluminium SH3-‐T
Support	  Shell	  Back 1 Cutting,	  bendin 2mm	  Aluminium SH4-‐T
Accordian	  Cylinder	  150mm	  D 1 Purchase Plastic ACC-‐150
Servomotor 3 Purchase Electronic	  component DYN-‐SERV
Servomotor	  Bracket	  45	  Degree 2 Purchase Aluminium DYN-‐45
Rotation	  Top	  Part 1 3D	  Rapid	  Prototyping Plastic ROT1-‐T
Rotation	  Bottom	  Part 1 3D	  Rapid	  Prototyping Plastic ROT2-‐T
Rotation	  Shaft 1 Latheing Brass ROT3-‐T
Servomotor	  Support 1 3D	  Rapid	  Prototyping Plastic ROT4-‐T
AX12	  Power	  Transmission	  Coupling 1 Cutting,	  drilling,	  turning,	  welding Aluminium	  &	  Copper ROT5-‐T
Nut	  8mm 20 Purchase Steel M8
Screw	  8mm 8 Purchase Steel S8
Can	  Bus
IEEE1394 4 Purchase Electronic	  component CB1
Header,	  6-‐Pin 2 Purchase Electronic	  component CB2
Controller
Capacitor	  (Semiconductor	  SIM	  Model) 6 Purchase Electronic	  component CON1
Typical	  BLUE	  SiC	  LED 2 Purchase Electronic	  component CON2
IEEE1394 1 Purchase Electronic	  component CON3
USB,	  MINI,	  SMD,	  RA	  KME04-‐USBMU03A01 1 Purchase Electronic	  component CON4

Torso



Header,	  10-‐Pin,	  Dual	  row 2 Purchase Electronic	  component CON5
Header,	  3-‐Pin	  (Header	  3) 1 Purchase Electronic	  component CON6
Header,	  3-‐Pin	  (22-‐03-‐5035) 1 Purchase Electronic	  component CON7
Header,	  2-‐Pin 1 Purchase Electronic	  component CON8
Header,	  4-‐Pin 1 Purchase Electronic	  component CON9
Resistor 10 Purchase Electronic	  component CON10
3.3V	  CAN	  Transceiver	  SN65HVD230DR 1 Purchase Electronic	  component CON11
USB	  Basic	  UART	  Interface	  Chip,FT230XS-‐R 1 Purchase Electronic	  component CON12
74126 1 Purchase Electronic	  component CON13
Power	  Board
Polarized	  Capacitor	  (Radial) 1 Purchase Electronic	  component PB1
Polarized	  Capacitor	  (Radial) 1 Purchase Electronic	  component PB2
Zener	  Diode 1 Purchase Electronic	  component PB3
Inductor 1 Purchase Electronic	  component PB4
Plug 4 Purchase Electronic	  component PB5
Header,	  6-‐Pin 1 Purchase Electronic	  component PB6
Resistor 1 Purchase Electronic	  component PB7
SIMPLE	  SWITCHER®	  3A	  (LM2576T-‐5.0) 1 Purchase Electronic	  component PB8

Threaded	  rod	  4mm 8 Purchase,	  cutting Galvenized	  Steel SK1-‐A
Arm	  Plate 2 Cutting,	  drilling 2mm	  Aluminium SK2-‐A
Servomotor 4 Purchase Electronic	  component DYN-‐SERV
Servomotor	  Bracket 3 Purchase Plastic DYN-‐BR
Servomotor	  Horizontal	  Support 2 3D	  Rapid	  Prototyping Plastic SER-‐HOR
Servomotor	  Vertical	  Support 2 3D	  Rapid	  Prototyping Plastic SER-‐VER
Nut	  4mm Purchase Steel M4
Claw	  Adapter	  Part 2 Cutting,	  drilling,	  bending 2	  mm	  Aluminium CLAW-‐ADPT
Claw	  with	  Servomotor 1 Purchase Electronic	  component CLAW

Arm



Accordian	  Cylinder	  80mm	  D 1 Purchase Plastic ACC-‐80

Servomotor	  Vertical	  Support 1 3D	  Rapid	  Prototyping Plastic SER-‐VER
Servomotor 1 Purchase Electronic	  Component DYN-‐SERV
Neck	  Base	  Plate 1 Cutting,	  drilling 2mm	  Aluminium SK1-‐H
Head	  Shell	  Front 1 Vacuum	  Shaping 2mm	  Polycarbonate	  Plastic SH1-‐H
Head	  Shell	  Back 1 Vacuum	  Shaping 2mm	  Polycarbonate	  Plastic SH2-‐H
Accordian	  Cylinder	  100mm	  D 1 Purchase Plastic ACC-‐100
Head	  Base	  Plate 1 Cutting,	  drilling 2mm	  Aluminium SK2-‐H
Threaded	  rod	  4mm 4 Purchase,	  cutting Galvenized	  Steel SK3-‐H

Head



B Budget

Please note that the following figures are presented in the Swedish format, as such the commas are equivalent
to periods in the English format. All prices are in SEK (Swedish kronas)
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Cost	  Analysis	  of	  Prototype

Order	  #Supplier Article	  # Name # Unit	  Price Price
2314937 TM4C123G,	  LAUNCHPAD,	  EVAL	  KIT 3 155,63 466,89
2290395 DISPLAY,	  0.8 1 69,3 69,3
84521148 IC,	  CAN	  TRANSCEIVER,	  1MPS,	  8SOIC 3 6,59 19,77

Price 555,96
Shipping 48,47
Total	  Price 604,43

AX-‐12 Dynamixel	  AX12A	  	  (wires&screws) 12 287,01 3444,12
SSB-‐45 AX45	  bracket 2 89,17 178,34
SSB-‐SHORT AXShort	  bracket 2 77,67 155,34
Price 3777,8
Shipping 351,58
Total	  Price 4129,38

1739584 CD74HCT126 3 19,77 59,31
9979620 MOLEX 3 1,21 3,63
1200133 IEEE1394 6 15,35 92,1
2081321 FTDI	  FT230XS 3 22,22 66,66
1355761 MOLEX	  USB	  MINI	  A/B 3 14,81 44,43
2100134 FIREWIRE	  106,80 3 35,6 106,8
1564682 LM2576T-‐5.0 1 25,48 25,48
2322473 1N5822 1 5,4 5,4
1308471 CHOKE,	  100U	  PANASONIC 1 12,84 12,84
1219478 100UF	  50V	  PANASONIC 1 1,62 1,62
1848278 100UF	  10V	  PANASONIC 1 2,3 2,3

Price 420,57
Shipping 48,47
Total	  Price 469,04

DAGU	  ALUMINIUM	  CLAW	  &	  SERVO 2 297,99 595,98
Price 595,98
Shipping 264,97
Total	  Price 860,95

2334609 IDEAL	  POWER	  -‐25HK-‐AB-‐120A250 1 156,55 156,55
224972 PLUG	  DC13A 1 63,57 63,57
9733477 STIFTLIST 2 10,35 20,7
2084276 STIFTHYLSA 2 9,7 19,4

Price 260,22
Shipping 48,47
Total	  Price 308,69
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Cost	  Analysis	  of	  Prototype

5010546650 X-‐MINI	  II	  CAPSULE	  WHITE 1 189 189
5010463018 LOGITECH	  WEBCAM	  C310 1 299 299
5010049741 DLINK	  DUB-‐H4	  USB	  HUB	  4-‐PORT	  USB 1 135 135
Price 623
Shipping
Total	  Price 623

Total	  Costs 6995,49
Budget 10000
Difference 3004,51
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C Reproduction costs

Please note that the following figures are presented in the Swedish format, as such the commas are equivalent
to periods in the English format. All prices are in SEK (Swedish kronas)
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Supplier Article	  # Name # Unit	  Price Price
2314937 TM4C123G,	  LAUNCHPAD,	  EVAL	  KIT 21 135,99	  kr	  	  	  	  	   2	  855,79	  kr	  	  	  	  
8452148 IC,	  CAN	  TRANSCEIVER,	  1MPS,	  8SOIC 21 16,15	  kr	  	  	  	  	  	  	   339,15	  kr	  	  	  	  	  	  	  
1739584 CD74HCT126 21 4,40	  kr	  	  	  	  	  	  	  	  	  	   92,40	  kr	  	  	  	  	  	  	  	  	  	  
9979620 MOLEX 21 1,21	  kr	  	  	  	  	  	  	  	  	  	   25,41	  kr	  	  	  	  	  	  	  	  	  	  
1200133 IEEE1394 42 12,82	  kr	  	  	  	  	  	  	   538,44	  kr	  	  	  	  	  	  	  
2081321 FTDI	  FT230XS 7 22,22	  kr	  	  	  	  	  	  	   155,54	  kr	  	  	  	  	  	  	  
1355761 MOLEX	  USB	  MINI	  A/B 7 14,81	  kr	  	  	  	  	  	  	   103,67	  kr	  	  	  	  	  	  	  
2100134 FIREWIRE	  106,80 21 35,60	  kr	  	  	  	  	  	  	   747,60	  kr	  	  	  	  	  	  	  
1564682 LM2576T-‐5.0 7 25,48	  kr	  	  	  	  	  	  	   178,36	  kr	  	  	  	  	  	  	  
2322473 1N5822 7 5,40	  kr	  	  	  	  	  	  	  	  	  	   37,80	  kr	  	  	  	  	  	  	  	  	  	  
1308471 CHOKE,	  100U	  PANASONIC 7 12,84	  kr	  	  	  	  	  	  	   89,88	  kr	  	  	  	  	  	  	  	  	  	  
1219478 100UF	  50V	  PANASONIC 7 1,62	  kr	  	  	  	  	  	  	  	  	  	   11,34	  kr	  	  	  	  	  	  	  	  	  	  
1848278 100UF	  10V	  PANASONIC 7 2,30	  kr	  	  	  	  	  	  	  	  	  	   16,10	  kr	  	  	  	  	  	  	  	  	  	  
2334609 IDEAL	  POWER	  -‐25HK-‐AB-‐120A250 7 156,55	  kr	  	  	  	  	   1	  095,85	  kr	  	  	  	  
224972 PLUG	  DC13A 7 63,57	  kr	  	  	  	  	  	  	   444,99	  kr	  	  	  	  	  	  	  
9733477 STIFTLIST 14 9,05	  kr	  	  	  	  	  	  	  	  	  	   126,70	  kr	  	  	  	  	  	  	  
2084276 STIFTHYLSA 14 6,40	  kr	  	  	  	  	  	  	  	  	  	   89,60	  kr	  	  	  	  	  	  	  	  	  	  

Price 6948,62
Shipping 100
Total	  Price 7048,62

AX-‐12 Dynamixel	  AX12A	  	  (wires&screws) 77 294,31	  kr	  	  	  	  	   22	  661,87	  kr	  	  
SSB-‐45 AX45	  bracket 14 9,77	  kr	  	  	  	  	  	  	  	  	  	   136,78	  kr	  	  	  	  	  	  	  
Price 22798,65
Discount 1139,88
Shipping 0
Total	  Price 21658,77

5010627588 Deltaco	  webbkamera	  c-‐198 7 99,00	  kr	  	  	  	  	  	  	   693,00	  kr	  	  	  	  	  	  	  
5010049741 DLINK	  DUB-‐H4	  USB	  HUB	  4-‐PORT	  USB 7 135,00	  kr	  	  	  	  	   945,00	  kr	  	  	  	  	  	  	  

Price 1638
Shipping 100
Total	  Price 1738

DAGU	  ALUMINIUM	  CLAW	  &	  SERVO 14 297,99	  kr	  	  	  	  	   4	  171,86	  kr	  	  	  	  
Price 4171,86
Shipping 264,97
Total	  Price 4436,83
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AL	  PLÅT	  2000	  X	  1000	  X	  2,00 1 385,00	  kr	  	  	  	  	   385,00	  kr	  	  	  	  	  	  	  
AL	  PLÅT	  3000	  X	  1500	  X	  5,00 2 2	  345,00	  kr	  	   4	  690,00	  kr	  	  	  	  

Price 4690
Shipping 0
Total	  Price 4690
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63011 Gängstång	  8mm	  x	  2000 5 24,00	  kr	  	  	  	  	  	  	   120,00	  kr	  	  	  	  	  	  	  
55633 Gängstång	  4mm	  x	  1000 3 9,00	  kr	  	  	  	  	  	  	  	  	  	   27,00	  kr	  	  	  	  	  	  	  	  	  	  

321796 Bult	  M8	  100st 1 83,00	  kr	  	  	  	  	  	  	   83,00	  kr	  	  	  	  	  	  	  	  	  	  
58968 Mutter	  M6	  100st 2 60,00	  kr	  	  	  	  	  	  	   120,00	  kr	  	  	  	  	  	  	  

Price 350
Shipping 250
Total	  Price 600

2mm	  Polycarbonate	  plastic 7 500,00	  kr	  	  	  	  	   3	  500,00	  kr	  	  	  	  
Price 3500
Shipping
Total	  Price 3500

Total	  Costs 43	  672,22	  kr	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
Budget 35	  000,00	  kr	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
Difference 8	  672,22	  kr-‐	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
Unit	  Cost 6	  238,89	  kr	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
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D Servomotor Component-to-Component Matrix
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Dynamixel	  AX12 HS755HB HS805BB T0151
Price 293,00	  kr 238,00	  kr 296,00	  kr 153,00	  kr

Max	  load	  (Kg/cm) 16,5 13,2 24,7 3,3

Speed	  (s/60) 0,19 0,23 0,14 0,17

Weight 55g 110g 152g 44g

Rotation 360 360 360 360

Dimensions 50x32x38 59x29x59 66x30x58 42x20,5x39,5

Dynamixel	  AX12 HS755HB HS805BB T0151
Price 0 + -‐ +

Max	  load	  (Kg/cm) 0 -‐ + -‐

Speed	  (s/60) 0 -‐ -‐ -‐

Weight 0 -‐ -‐ +

Rotation 0 0 0 0

Dimensions 0 -‐ -‐ +

Total 0 -‐3 -‐3 1

Dynamixel	  AX12 HS755HB HS805BB T0151
Price -‐ 0 -‐ +

Max	  load	  (Kg/cm) + 0 + -‐

Speed	  (s/60) + 0 -‐ -‐

Weight + 0 -‐ +

Rotation 0 0 0 0

Dimensions + 0 -‐ +

Total 3 0 -‐3 1

Dynamixel	  AX12 HS755HB HS805BB T0151
Price + + 0 +

Max	  load	  (Kg/cm) -‐ -‐ 0 -‐

Dynamixel	  AX12	  compared	  to	  the	  others

HS755HB	  compared	  to	  the	  others

HS805BB	  compared	  to	  the	  others



Speed	  (s/60) + + 0 +

Weight + + 0 +

Rotation 0 0 0 0

Dimensions + + 0 +

Total 3 3 0 3

Dynamixel	  AX12 HS755HB HS805BB T0151
Price -‐ -‐ -‐ 0

Max	  load	  (Kg/cm) + + + 0

Speed	  (s/60) + + -‐ 0

Weight -‐ -‐ -‐ 0

Rotation 0 0 0 0

Dimensions -‐ -‐ -‐ 0

Total -‐1 -‐1 -‐3 0

Dynamixel	  AX12 HS755HB HS805BB T0151
5 -‐1 -‐9 5

T0151	  compared	  to	  the	  others

Total	  points



E Claw Component-to-Component Matrix
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Robotic	  Claw	  mrk	  2 Dagu	  aluminium	  gripper Vex-‐Claw	  kit
Price 151,00	  kr 440,00	  kr 132,00	  kr

Opening 50 50 80

Servo Additional	  purchase Yes No

Weight 290g 220g 181g

Robotic	  Claw	  mrk	  2 Dagu	  aluminium	  gripper Vex-‐Claw	  kit
Price 0 -‐ +

Opening 0 0 +

Servo 0 0 -‐

Weight 0 + +

Total 0 0 2

Robotic	  Claw	  mrk	  2 Dagu	  aluminium	  gripper Vex-‐Claw	  kit
Price + 0 +

Opening 0 0 +

Servo 0 0 -‐

Weight -‐ 0 +

Total 0 0 2

Robotic	  Claw	  mrk	  2 Dagu	  aluminium	  gripper Vex-‐Claw	  kit
Price -‐ -‐ 0

Opening -‐ -‐ 0

Servo + + 0

Weight -‐ -‐ 0

Total -‐2 -‐2 0

Robotic	  Claw	  mrk	  2 Dagu	  aluminium	  gripper Vex-‐Claw	  kit
-‐2 -‐2 4

Robotic	  Claw	  mrk	  2	  compared	  to	  the	  rest

Dagu	  aluminium	  gripper	  compared	  to	  the	  rest

Vex-‐Claw	  kit	  compared	  to	  the	  rest

Total	  amount	  of	  points



F Construction manual

Construction manual is omitted in the printed version of the thesis. Please consult the online version.
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CHABOT Robot Instruction Manual

Assembly Guidance

The subsequent manual is to be used in the following ways:

• The manual consists of assembly instructions of all mechanical parts, all the 
 electronic assembly is dealt with in a separate manual.

• Each section begins with a schematic image of the assembly routine and then  
 followed by technical drawings of the components that are to be produced by  
 metalworking.

• The component list contains all the parts included in the robot, from the electronic  
 parts to the bolts to the 3D printed parts. The list defines what material the part is  
 made of, what production methods are used to produce the part, the pertinent  
 product code and the amount to produced. With this information it should be  
 simple to produce all the parts. 

 

 The last part of manual depicts the assembly of the outer shell. This part is an ini-
tial rendering of how the shell is to be assembled. At the time the report was to be com-
pleted, the shell had not been assembled due to complications with the polycarbonate 
plastic delivery. 

•	 The AX-12A Dynamixel servomotors are mounted with the accompanied brackets,  
 screws and wires. Please review the AX-12A Dynamixel manual at 
 http://support.robotis.com/en/product/dxl_main.htm .

Karin Dankis
Alexander Davidsson

Eric Hardselius 

Bachelor Thesis in Automation & Mechatronics Engineering, Electrical Engineering
Department of Applied Mechanics

Division of Vehicle Engineering & Autonomous Systems
2014



CHABOT Robot Instruction Manual

List of Components
Name # Manufacturing Material Code

Threaded	  rod	  8mm 3 Purchase,	  cutting Galvenized	  Steel SK1-‐T
Bottom	  Platform 1 Cutting,	  drilling 6mm	  Aluminium SK2-‐T
Square	  Support 1 Cutting,	  drilling 2mm	  Aluminium SK3-‐T
Angle	  Support 4 Cutting,	  drilling,	  bending 2mm	  Aluminium SK4-‐T
Torso	  Shoulder	  Beam 1 Cutting,	  drilling,	  bending 3mm	  Steel SK5-‐T
Torso	  Shell	  Front 1 Vacuum	  Shaping 2mm	  Polycarbonate	  Plastic SH1-‐T
Torso	  Shell	  Back 1 Vacuum	  Shaping 2mm	  Polycarbonate	  Plastic SH2-‐T
Support	  Shell	  Front 1 Cutting,	  bendin 2mm	  Aluminium SH3-‐T
Support	  Shell	  Back 1 Cutting,	  bendin 2mm	  Aluminium SH4-‐T
Accordian	  Cylinder	  150mm	  D 1 Purchase Plastic ACC-‐150
Servomotor 3 Purchase Electronic	  component DYN-‐SERV
Servomotor	  Bracket	  45	  Degree 2 Purchase Aluminium DYN-‐45
Rotation	  Top	  Part 1 3D	  Rapid	  Prototyping Plastic ROT1-‐T
Rotation	  Bottom	  Part 1 3D	  Rapid	  Prototyping Plastic ROT2-‐T
Rotation	  Shaft 1 Latheing Brass ROT3-‐T
Servomotor	  Support 1 3D	  Rapid	  Prototyping Plastic ROT4-‐T
AX12	  Power	  Transmission	  Coupling 1 Cutting,	  drilling,	  turning,	  welding Aluminium	  &	  Copper ROT5-‐T
Nut	  8mm 20 Purchase Steel M8
Screw	  8mm 8 Purchase Steel S8
Can	  Bus
IEEE1394 4 Purchase Electronic	  component CB1
Header,	  6-‐Pin 2 Purchase Electronic	  component CB2
Controller
Capacitor	  (Semiconductor	  SIM	  Model) 6 Purchase Electronic	  component CON1
Typical	  BLUE	  SiC	  LED 2 Purchase Electronic	  component CON2
IEEE1394 1 Purchase Electronic	  component CON3
USB,	  MINI,	  SMD,	  RA	  KME04-‐USBMU03A01 1 Purchase Electronic	  component CON4

Torso

Header,	  10-‐Pin,	  Dual	  row 2 Purchase Electronic	  component CON5
Header,	  3-‐Pin	  (Header	  3) 1 Purchase Electronic	  component CON6
Header,	  3-‐Pin	  (22-‐03-‐5035) 1 Purchase Electronic	  component CON7
Header,	  2-‐Pin 1 Purchase Electronic	  component CON8
Header,	  4-‐Pin 1 Purchase Electronic	  component CON9
Resistor 10 Purchase Electronic	  component CON10
3.3V	  CAN	  Transceiver	  SN65HVD230DR 1 Purchase Electronic	  component CON11
USB	  Basic	  UART	  Interface	  Chip,FT230XS-‐R 1 Purchase Electronic	  component CON12
74126 1 Purchase Electronic	  component CON13
Power	  Board
Polarized	  Capacitor	  (Radial) 1 Purchase Electronic	  component PB1
Polarized	  Capacitor	  (Radial) 1 Purchase Electronic	  component PB2
Zener	  Diode 1 Purchase Electronic	  component PB3
Inductor 1 Purchase Electronic	  component PB4
Plug 4 Purchase Electronic	  component PB5
Header,	  6-‐Pin 1 Purchase Electronic	  component PB6
Resistor 1 Purchase Electronic	  component PB7
SIMPLE	  SWITCHER®	  3A	  (LM2576T-‐5.0) 1 Purchase Electronic	  component PB8

Threaded	  rod	  4mm 8 Purchase,	  cutting Galvenized	  Steel SK1-‐A
Arm	  Plate 2 Cutting,	  drilling 2mm	  Aluminium SK2-‐A
Servomotor 4 Purchase Electronic	  component DYN-‐SERV
Servomotor	  Bracket 3 Purchase Plastic DYN-‐BR
Servomotor	  Horizontal	  Support 2 3D	  Rapid	  Prototyping Plastic SER-‐HOR
Servomotor	  Vertical	  Support 2 3D	  Rapid	  Prototyping Plastic SER-‐VER
Nut	  4mm Purchase Steel M4
Claw	  Adapter	  Part 2 Cutting,	  drilling,	  bending 2	  mm	  Aluminium CLAW-‐ADPT
Claw	  with	  Servomotor 1 Purchase Electronic	  component CLAW

Arm

Accordian	  Cylinder	  80mm	  D 1 Purchase Plastic ACC-‐80

Servomotor	  Vertical	  Support 1 3D	  Rapid	  Prototyping Plastic SER-‐VER
Servomotor 1 Purchase Electronic	  Component DYN-‐SERV
Neck	  Base	  Plate 1 Cutting,	  drilling 2mm	  Aluminium SK1-‐H
Head	  Shell	  Front 1 Vacuum	  Shaping 2mm	  Polycarbonate	  Plastic SH1-‐H
Head	  Shell	  Back 1 Vacuum	  Shaping 2mm	  Polycarbonate	  Plastic SH2-‐H
Accordian	  Cylinder	  100mm	  D 1 Purchase Plastic ACC-‐100
Head	  Base	  Plate 1 Cutting,	  drilling 2mm	  Aluminium SK2-‐H
Threaded	  rod	  4mm 4 Purchase,	  cutting Galvenized	  Steel SK3-‐H

Head
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Chapter 1

Controller registers

CHABOT controller contains parameter which is used to control the different devices.
Main difference with these parameters from a normal memory-map based system is that
each address stores different multiples of bytes.

1.1 $1xxx Dynamixel

Register area 1000 to 1fff is dedicated for Dynamixel servo motors. On this controller
contains 6 different parameters to read from or written to. ’nn’ should be replaced with the
ID of the dyanmixel.

Address What Usage
$1nn0 r/w Raw dynamixel package Allow sending a raw command to dynamixel ’n’.
$1nn1 w Servo speed Update dynamixel ’n’ speed.
$1nn2 w Servo torque Update dynamixel ’n’ speed.
$1nn3 r/w Servo position Update or returns dynamixel ’n’ position.
$1nn4 r Servo moving Returns if dynamixel ’n’ is moving or not.
$1nn5 r Servo load Returns dynamixel ’n’ current load.

Table 1.1: ChaBOT registers

1.1.1 $1nn0 Raw dynamixel package

is register provides direct access to the dynamixels own bus. A typical message start with
a 2 byte address followed by one or more bytes.
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1.1. $1XXX DYNAMIXEL CHAPTER 1. CONTROLLER REGISTERS

Example:
write this 0x1020 0x1e 0x01 0xff

1.1.2 $1nn1 Servo speed

Changes speed on a servo. Requires 1 16bit parameter or 2 8 bit parameters containing the
new speed. Valid values are between 0 to 0x1ff.

Example:
write this 0x1061 0x1ff

1.1.3 $1nn2 Servo torque

Changes a servos torque. Requires 1 16bit parameter or 2 8 bit parameters containing the
new torque limit. Valid values are between 0 to 0x3ff.

Example:
write this 0x11a2 0x3ff

1.1.4 $1nn3 Servo position

Changes a servos torque. Requires 1 16bit parameter or 2 8 bit parameters containing the
new torque limit. Valid values are between 0 to 0x3ff. Can be used to return current position
of the servo. Note that servo position is not known before a initial position is set.

Example:
write this 0x1013 0x100

1.1.5 $1nn4 Servo moving

Return a non zero response if the servo is moving.

Example:
read this 0x1034
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CHAPTER 1. CONTROLLER REGISTERS 1.2. $2XXX IO DEVICES

1.1.6 $1nn5 Servor load

Return a load. Where a value between 0 to 1023 is a load in counter clock wise direction
where a value between 1024 to 2047 us a load in clock wise direction. Value 1024 is equal
to 0.

Example:
read this 0x1035

1.2 $2xxx IO Devices

IO devices are located in the 2xxx to 2fff region.

Address What Usage
$20n0 r/w Digital io Set a digital out put or reads a digital input.
$21n0 r Analog input Returns value of a analog input.
$2200 w PWM output Sets duty cyckle on PWM channel 0.

Table 1.2: ChaBOT registers

1.2.1 $20n0 Digital IO

e controller board contains 2 digital input and 2 digital outputs. e input and the
output is located on different pins. Reading a register will return current state on input. If
a input is active it will return 1 otherwise it will return 0. When writing it will change state
on the addressed output pin.

Type ID PIN on Tiva board
Input 0 PF0
Input 1 PF4
Output 0 PE1
Output 1 PE2

Table 1.3: Pinout for digital input and output
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1.2. $2XXX IO DEVICES CHAPTER 1. CONTROLLER REGISTERS

1.2.2 $21n0 Analog input

Return the current value from a 12bit analog to digital converter located on pin PB2 on the
Tiva board.

1.2.3 $2200 PWM output

Sets the duty rate on the PWM. A value between 0 to 255 is expected.

10



Chapter 2

Computer protocol

To communicate with the main controller a simple serial protocol is used. e main con-
troller also called Master will then communicate thru CAN to other nodes. A controller can
be in two different modes. One mode is called Debug mode which will turn the commu-
nication to a console and the non debug mode is intended to be used with a library. e C
library will not work with a controller in Debug mode.

2.1 Message types

A Controller can respond with 5 different message types. All messages are sent as a line
except # which is a indicator that a controller is ready for a new command.

# Hash is not a message by is sent from the controller when it’s ready to receive a command.
is response will not send a new line character. #

S Start message is the first message returned from a command, and it is used to return
command id, which is used to send response on a specific command. S [7];

E Error message is used to send error messages that is related to a specific command. E [7]
An error message here

// Comment message is a message that is safe to ignore, it’s main function is to make de-
bugging easier.

R Return message is the last message related to a command. is message will return status
and potential data. R [3] ERR;, R [7] OK; or R [7] OK (2) 0x1ff 0x22

11



2.2. COMMAND SET CHAPTER 2. COMPUTER PROTOCOL

2.1.1 Example communication

⇒#
⇐set 7 servo 2 position 0x1ff←↩
⇒S [22]←↩
⇒// Write dyanmixel(2) position: 0x01ff←↩
⇒// Package recived from: 0x02←↩
⇒// Length: 0←↩
⇒// Status: No error←↩
⇒// Checksum OK!←↩
⇒R [4] OK;←↩
⇒#
⇐set 7 servo 3 position 0x1ff←↩
⇒S [3];←↩
⇒// Write dyanmixel(1) position: 0x01ff←↩
⇒E [3] No response detected←↩
⇒R [3] ERR;←↩

Above is a example of a communication with a controller where⇒means that it’s data from
the controller and⇐ indicates that it’s from the user or a computer. ←↩ symbols indicates
a new line character. e above communication shows a computer instructing 2 different
servos to change their position to 0x01ff. Communication to servo 2 dose succeed where
servo 3 doesn’t respond and a error is retuned.

2.2 Command set

is is a list of commands supported by a controller. Each command will be presented with
a line similar to following line:

w(rite) [ctrl] [reg] [value]

Where characters inside ’()’ can be omitted for a shorter command and character inside ’[]’
are parameters.

2.2.1 Generic/Low-level

ere are two commands which is gives a user a low level access to different registers on
a controller. ese function are intended for communication with devices which contains

12



CHAPTER 2. COMPUTER PROTOCOL 2.2. COMMAND SET

pehrpiral not supported by the controller.

2.2.2 Write

Write is a small command to send a raw register write to a specific address

w(rite) [ctrl] [reg] [value]

Parameter Function Commona value
ctrl Specify target controller A node number between 1 to 254 for a external node.

0 or ’this’ for pointing to same node or 255 for broadcast.
reg A register address A value from 0 to 65535 used by a device
value A value to be written On ore more integers to be stored

Examples:
write this 0x1023 22
write 255 25 0x23 0x4f 0x01ff
w 7 0x1523 0x22

2.2.3 Read

Write is a small command to send a raw register write to a specific address

r(ead) [ctrl] [reg]

Parameter Function Commona value
ctrl Target controller A node number between 1 to 254 for a external node.

0 or ’this’ for pointing to same node or 255 for broadcast.
reg A register address A value from 0 to 65535 used by a device

Examples:
read this 0x1023
read 255 25
r 7 0x1523
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2.3 Devices

ere is also a sub set commando designed for simplifying control of different devices. In this
revision only Servo, PWM, Analog I/O and Digital I/O is supported. ese are controlled
thru set and get commands.

s(et) [ctrl] [device]

g(et) [ctrl] [device]

Parameter Function Commona value
ctrl Target controller A node number between 1 to 254 for a external node.

0 or ’this’ for pointing to same node or 255 for broadcast.
device A device name servo, pwm, analog, digital

2.3.1 Servo

Functions used to control dynamical type of servo.

Speed

Changes moving speed.

s(et) [ctrl] s(ervo) [ch] s(peed) [value]

Parameter Function Commona value
ctrl Target controller A node number between 1 to 254 for a external node.

0 or ’this’ for pointing to same node or 255 for broadcast.
device A device name servo, pwm, analog, digital
ch Servo id A id from 0 to 254

value Speed 0x000-0x1ff

Examples:
read this 0x1023
read 255 25
r 7 0x1523
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Position

Changes position or reading current position of a servo

s(et) [ctrl] s(ervo) [ch] p(osition) [value]

g(et) [ctrl] s(ervo) [ch] p(osition)

Parameter Function Commona value
ctrl Target controller A node number between 1 to 254 for a external node.

0 or ’this’ for pointing to same node or 255 for broadcast.
device A device name servo, pwm, analog, digital
ch Servo id A id from 0 to 254

value Speed 0x000-0x1ff

Examples:
set this servo 5 position 0x100
set 7 servo 1 position 0x1ff
s this s 5 p 0x1ff

Torque

Defines torque limit.

s(et) [ctrl] s(ervo) [ch] t(orque) [value]

Parameter Function Commona value
ctrl Target controller A node number between 1 to 254 for a external node.

0 or ’this’ for pointing to same node or 255 for broadcast.
device A device name servo, pwm, analog, digital
ch Servo id A id from 0 to 254

value Torque 0x000-0x1ff

Examples:
set this servo 5 torque 0x100
set 7 servo 1 torque 0x1ff
s this s 5 t 0x1ff
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Moving

Returns if a servo is moving or not.

g(et) [ctrl] s(ervo) [ch] m(oving)

Parameter Function Commona value
ctrl Target controller A node number between 1 to 254 for a external node.

0 or ’this’ for pointing to same node or 255 for broadcast.
device A device name servo, pwm, analog, digital
ch Servo id A id from 0 to 254

Examples:
set this servo 5 moving
set 7 servo 1 m
s this s 5 m

Load

Returns current load on a specific servo.

g(et) [ctrl] s(ervo) [ch] l(oad)

Parameter Function Commona value
ctrl Target controller A node number between 1 to 254 for a external node.

0 or ’this’ for pointing to same node or 255 for broadcast.
device A device name servo, pwm, analog, digital
ch Servo id A id from 0 to 254

Examples:
set this servo 5 load
set 7 servo 1 load
s this s 5 l

2.3.2 PWM

Controls a PWM signal with a specific duty cycle.
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s(et) p(wm) [ch] [value]

Parameter Function Commona value
ctrl Target controller A node number between 1 to 254 for a external node.

0 or ’this’ for pointing to same node or 255 for broadcast.
device A device name servo, pwm, analog, digital
ch channel Only on channel is available

value duty cycle A value from 0 to 255

Examples:
set 7 pwm 0 0x00
s this p 0 0xff

2.3.3 Analog in

Allows reading of analog signal from a external device or sensor.

g(et) a(nalog) [ch]

Parameter Function Commona value
ctrl Target controller A node number between 1 to 254 for a external node.

0 or ’this’ for pointing to same node or 255 for broadcast.
device A device name servo, pwm, analog, digital
ch channel Only on channel is available

Examples:
set 7 analog 0
s this a 0

2.3.4 Digital in

Digital inputs

g(et) d(igital) [ch]
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Parameter Function Commona value
ctrl Target controller A node number between 1 to 254 for a external node.

0 or ’this’ for pointing to same node or 255 for broadcast.
device A device name servo, pwm, analog, digital
ch channel 0 to 4

Examples:
set 7 digital 0
s this d 2

2.3.5 Digital out

Digital outputs

s(et) d(igital) [ch] [value]

Parameter Function Commona value
ctrl Target controller A node number between 1 to 254 for a external node.

0 or ’this’ for pointing to same node or 255 for broadcast.
device A device name servo, pwm, analog, digital
ch channel 0 to 4

value output 1 or 0

Examples:
set 7 digital 0 1
s this d 2 0

2.3.6 Display

Writing data to display row

s(et) display [row] [value]

Examples:
set 7 display 0 1
s this dpy 2 0
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Parameter Function Commona value
ctrl Target controller A node number between 1 to 254 for a external node.

0 or ’this’ for pointing to same node or 255 for broadcast.
device A device name servo, pwm, analog, digital
row row number 0 to 8
value line data A 16bit b/w image data

2.4 EEPROM

Functions to alter a controllers EEPROM. DO NOT USE THESE FUNCTIONS.

2.4.1 Write

Function to write a 32bit integer to the controllers EEPROM

ew(rite) [reg] [value]

Parameter Function Commona value
reg Address A value from 0 to 511.
value line data A 16bit b/w image data

Examples:
ewrite 0 0xff00ff00
ew 2 0x00ff00ff

2.4.2 Read

Function to read a 32bit integer from the controllers EEPROM

er(ead) [reg]

Parameter Function Commona value
reg Address A value from 0 to 511.

Examples:
eread 0
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er 2

2.5 Configuration

Configuration is used to set different parameter used by the controller such as CAN id or
to activate/deactivate debug mode.

2.5.1 List

Lists all parameters values.

c(onfig) l(ist)

2.5.2 Write

Writes a value to a paramter.

c(onfig) w(rite) [parameter] [value]

2.5.3 Read

c(onfig) r(ead) [parameter]
Read out a parameter.
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Chapter 3

CAN protocol

CAN is a serial bus designed by Bosch in 1983. ChaBOT uses a 1 Mb/s bus with 11 bit
id.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

0 Identifier REX DLC Data CRC 1 1 1 EOF
}CAN
Message

CAN support message from 1 to 8 byte.

3.1 Basic protocol

e basic protocol used is based around the idea of registers. All commands is sent thru
a small command set which let you write or read registers located in the controller. e
CAN protocol itself dose not determine how different type of units is controlled, this is
determined with help of register maps that expose the different parameters of each type of
unit.

3.1.1 Identification

A bus can contain 254 units with a ID between 1 to 254. ID 0 is reserved for special types
of broadcast and 255 is the dedicated broadcast address. Unit id constitute the lower 8 bit
of the CAN id where the upper 3 bit is priority. Controller firmware will translate ID 0 to
it’s own ID.
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0 1 2 3 4 5 6 7 8 9 10

Prio Unit ID
}
CAN Identifier

3.2 Message format

ere are currently 3 different messages supported by the CAN protocol: Read message,
Write message and Return message.

Structure of a typical message is a 3 to 8 byte size string containing

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 Type ex len ID PID

Data 1-4 byte

Name Function
Type Indicate message type
ex Indicates multiple message in transfer (NOT IMPLEMENTED)
len Length of response in message
ID Senders CAN id
PID Message ID.

3.2.1 Write message

A write message is a to a register with max 2 bytes of data.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 001 ex len ID PID

Register Data 1-2 byte

Name Function
Register Which register in controller to written to.
Data 1 to 2 bytes of data.
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3.2.2 Read message

Reads a register from a controller.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 010 ex len ID PID

Register

Name Function
Register Which register in controller to read from.

3.2.3 Return message

Response generated from a write or read message.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 011 ex len ID PID

Status Data 1-3 byte

Name Function
Status Status returns a non zero value on error
Data 1 to 3 bytes of data. (Only on read message)
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Chapter 4

CHABOT API

CHABOT API is a used by a computer to communicate with CHABOT control system.
It’s written in C++ and based on boost library.

4.1 How to use API

# i n c l ud e < i o s t r e am >
# i n c l ud e < b o o s t / l e x i c a l _ c a s t . hpp >
# i n c l ud e ” Runner . h ”

i n t main ( i n t a r g c , cha r * a r g v [ ] )
{

s t d : : c ou t << ”CLIENT␣ S t a r t i n g ␣Runner ” << s t d : : e n d l ;
c h a bo t : : Runner * r unn e r = new c h a bo t : : Runner ( ” /←↩

dev / cu . u s b s e r i a l ” , 9600 ) ;

i f ( runne r−> i s R e a d y ( ) )
{

g e t c h a r ( ) ;
s t d : : c ou t << ”CLIENT␣Send␣me s s a g e ␣ t o ␣←↩

node␣ (NON␣BLOCKING) ” << s t d : : e n d l ;
runne r−> s e t S e r v o P o s t i o n ( 1 , 1 , 0 x 3 f f ) ;

g e t c h a r ( ) ;
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s t d : : c ou t << ”CLIENT␣Send␣me s s a g e ␣ t o ␣←↩
node␣ (NON␣BLOCKING) ” << s t d : : e n d l ;

runne r−> s e t S e r v o P o s t i o n ( 1 , 1 , 0 x100 ) ;

g e t c h a r ( ) ;
s t d : : c ou t << ”CLIENT␣Send␣me s s a g e ␣ t o ␣←↩

node␣ (BLOCKING) ” << s t d : : e n d l ;
runne r−> s e t S e r v o P o s t i o n ( 1 , 1 , 0 x 1 f f ) ;
s t d : : c ou t << ”CLIENT␣Send␣me s s a g e ␣ t o ␣←↩

node␣ (BLOCKING)−DONE” << s t d : : e n d l ;

g e t c h a r ( ) ;
s t d : : c ou t << ” D e s t r o y i n g ␣ r unn e r ” << s t d←↩

: : e n d l ;
d e l e t e r unn e r ;

}
s t d : : c ou t << ”END” << s t d : : e n d l ;
r e t u r n 0 ;

}

To connect to CHABOT a class called chabot::Runner is used. is call will return a excep-
tion if no serial port is found. ere are both a hi level api that abstracts the controller and
a low level allowing to send raw message directly to the controller board available thru this
class.

c h a bo t : : Runner * r unn e r = new c h a bo t : : Runner ( ” / dev / cu .←↩
u s b s e r i a l ” , 9600 ) ;

To disconnect from the controller the delete function is used. is will cause the API to
stop and disconnect from the controller.

d e l e t e r unn e r ;

4.2 Lo-level API

addMessage and addMessageAsync sends a raw message to a controller. ey uses the syntax
from Chapter 2. ese function is intended to allow raw control of the controller and is
used by the higher-level api to execute their commands.

4.2.1 addMessage

26



CHAPTER 4. CHABOT API 4.3. DEVICE API

i n t c h a bo t : : Runner : : addMes s ag e ( s t d : : s t r i n g me s s a g e , i n t ←↩
* l e n g t h , i n t max l eng th , uns igned char * d a t a ) ;

is command will send a command and wait for the response from the controller.

Parameter Function
message A String containing a command
length Pointer to a integer for storing received length.
maxlength Buffer size
data Pointer to a local buffer

4.2.2 addMessageAsync

vo id c h a bo t : : Runner : : a ddMes s a g eA s ync ( s t d : : s t r i n g me s s a g e←↩
, Me s s ag eCb l c b l ) ;

Parameter Function
message A String containing a command
cal Is a callback function which is called when request is done.

addMessageAsync dose a non blocking function. is mean that the function doesn’t wait
for the request to be completed, instead it will allow the program to execute next instruc-
tion.

4.3 Device API

Device API is a set of function that is used for different input and output related to the
controller. e asynchronous function contains a callback function that is used to return
information such as received information and status. Callback function has no return value
and only a pointer as a parameter.

vo id c a l l b a c k f u n c t i o n ( Mes s ag e * msg )

4.3.1 setServoPostion

i n t c h a bo t : : Runner : : s e t S e r v o P o s t i o n ( i n t c o n t r o l l e r , i n t ←↩
s e r v o , uns igned s ho r t p o s i t i o n ) ;
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Parameter Function
controller Controller id, 0 to address the local controller.
servo A servo id.
position A position value between 0x000 - 0x3ff where 0x1ff is center position.

setServoPostion change a position on a servo.

4.3.2 setServoPostionAsync

i n t c h a bo t : : Runner : : s e t S e r v o P o s t i o n A s y n c ( i n t c o n t r o l l e r ,←↩
i n t s e r v o , uns igned s ho r t p o s i t i o n , Mes s ag eCb l c b l ) ;

Parameter Function
controller Controller id, 0 to address the local controller.
servo A servo id.
position A position value between 0x000 - 0x3ff where 0x1ff is center position.
cbl Is a callback function which is called when request is done.

setServoPostion change a position on a servo.

4.3.3 getServoPostion

i n t c h a bo t : : Runner : : g e t S e r v o P o s t i o n ( i n t c o n t r o l l e r , i n t ←↩
s e r v o , uns igned s ho r t * p o s i t i o n ) ;

Parameter Function
controller Controller id, 0 to address the local controller.
servo A servo id.
position A pointer to a short to store result in

Retrieves current position form servo.

4.3.4 getServoPostionAsync

i n t c h a bo t : : Runner : : g e t S e r v o P o s t i o n ( i n t c o n t r o l l e r , i n t ←↩
s e r v o , Mes s ag eCb l c b l ) ;

Retrieves current position form servo.

4.3.5 setServoSpeed
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Parameter Function
controller Controller id, 0 to address the local controller.
servo A servo id.
cbl Is a callback function which is called when request is done.

i n t c h a bo t : : Runner : : s e t S e r v o S p e e d ( i n t c o n t r o l l e r , i n t ←↩
s e r v o , uns igned s ho r t s p e e d ) ;

Parameter Function
controller Controller id, 0 to address the local controller.
servo A servo id.
speed A speed value between 0x000 - 0x3ff where 0x3ff is max speed.

setServoSpeed change the speed on a servo.

4.3.6 setServoSpeedAsync

i n t c h a bo t : : Runner : : s e t S e r v o S p e e dA s y n c ( i n t c o n t r o l l e r , ←↩
i n t s e r v o , uns igned s ho r t sp e ed , Mes s ag eCb l c b l ) ;

Parameter Function
controller Controller id, 0 to address the local controller.
servo A servo id.
speed A speed value between 0x000 - 0x3ff where 0x3ff is max speed.
cbl Is a callback function which is called when request is done.

setServoSpeed change the speed on a servo.

4.3.7 getServoLoad

i n t c h a bo t : : Runner : : g e t S e r v o L o a d ( i n t c o n t r o l l e r , i n t ←↩
s e r v o , uns igned s ho r t * v a l u e ) ;

Parameter Function
controller Controller id, 0 to address the local controller.
servo A servo id.
value A pointer to store the result.

Retrieves current load on servo.
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4.3.8 getServoLoadAsync

i n t c h a bo t : : Runner : : g e t S e r v o L o a d ( i n t c o n t r o l l e r , i n t ←↩
s e r v o , Mes s ag eCb l c b l ) ;

Parameter Function
controller Controller id, 0 to address the local controller.
servo A servo id.
cbl Is a callback function which is called when request is done.

Retrieves current load on servo.

4.3.9 getServoMoving

i n t c h a bo t : : Runner : : g e t S e r v o L o a d ( i n t c o n t r o l l e r , i n t ←↩
s e r v o , uns igned char * v a l u e ) ;

Parameter Function
controller Controller id, 0 to address the local controller.
servo A servo id.
value A pointer to store the result.

Retrieves if servo is moving servo. Data is non-zero while a servo is moving.

4.3.10 getServoMovingAsync

i n t c h a bo t : : Runner : : g e t S e r v o L o a d ( i n t c o n t r o l l e r , i n t ←↩
s e r v o , Mes s ag eCb l c b l ) ;

Parameter Function
controller Controller id, 0 to address the local controller.
servo A servo id.
cbl Is a callback function which is called when request is done.

Retrieves if servo is moving servo. Data is non-zero while a servo is moving.
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Parameter Function
controller Controller id, 0 to address the local controller.
servo A servo id.
val Set PWM ration.

4.3.11 setPWM

i n t c h a bo t : : Runner : : setPWM( i n t c o n t r o l l e r , i n t s e r v o , ←↩
uns igned s ho r t p o s i t i o n ) ;

Controls the ratio of the PWM signal where a large value is equal to a longer pulse.

4.3.12 setPWMAsync

i n t c h a bo t : : Runner : : setPWMAsync ( i n t c o n t r o l l e r , i n t ch , ←↩
uns igned char v a l , Mes s ag eCb l c b l ) ;

Parameter Function
controller Controller id, 0 to address the local controller.
servo A servo id.
val Set PWM ration.
cbl Is a callback function which is called when request is done.

Controls the ratio of the PWM signal where a large value is equal to a longer pulse.

4.3.13 setDigital

i n t c h a bo t : : Runner : : s e t D i g i t a l ( i n t c o n t r o l l e r , i n t ch , ←↩
uns igned char v a l ) ;

Parameter Function
controller Controller id, 0 to address the local controller.
servo A servo id.
val Set 1 or 0 to change output.

Controls the digital output pins.
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4.3.14 setDigitalAsync

i n t c h a bo t : : Runner : : s e t D i g i t a l A s y n c ( i n t c o n t r o l l e r , i n t ←↩
ch , uns igned char v a l , Mes s ag eCb l c b l ) ;

Parameter Function
controller Controller id, 0 to address the local controller.
servo A servo id.
val Set 1 or 0 to change output.
cbl Is a callback function which is called when request is done.

Controls the digital output pins.

4.3.15 getDigital

i n t c h a bo t : : Runner : : g e t D i g i t a l ( i n t c o n t r o l l e r , i n t s e r v o←↩
, uns igned char * v a l u e ) ;

Parameter Function
controller Controller id, 0 to address the local controller.
servo A servo id.
value Pointer to store the result.

Retrieves value of a digital input.

4.3.16 getDigitalAsync

i n t c h a bo t : : Runner : : g e t D i g i t a l A s y n c ( i n t c o n t r o l l e r , i n t ←↩
s e r v o , Mes s ag eCb l c b l ) ;

Parameter Function
controller Controller id, 0 to address the local controller.
servo A servo id.
cbl Is a callback function which is called when request is done.

Retrieves value of a digital input.
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4.3.17 getAnalog

i n t c h a bo t : : Runner : : g e t A n a l o g ( i n t c o n t r o l l e r , i n t s e r v o ,←↩
uns igned s ho r t * v a l u e ) ;

Parameter Function
controller Controller id, 0 to address the local controller.
servo A servo id.
value A pointer to where to store the 12 bit analog value returned from the controller.

Retrieves the 12bit value of a analog input.

4.3.18 getAnalogAsync

i n t c h a bo t : : Runner : : g e t An a l o gA s y n c ( i n t c o n t r o l l e r , i n t ←↩
s e r v o , Mes s ag eCb l c b l ) ;

Parameter Function
controller Controller id, 0 to address the local controller.
servo A servo id.
cbl Is a callback function which is called when request is done.

Retrieves the 12bit value of a analog input.
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Chapter 5

Schematics & PCB

In following pages is the schematic for the different custom boards used in CHABOT
project.

5.1 Controller Board

Controller board contains a CAN transceiver based on Texas Instruments SN65HVD320
used for communication between the different controllers. ere is also components to
allow connection to a Dynamixel. It’s based on a 74HCT126 that is both used for di-
rection control and logic level conversion. Last there is a USART to USB circuit with is
based on FTDI’s FT230X which is a USB to serial controller common in USB to RS232
adapters.
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5.2 CAN Hub board

CAN hub is used for interconnection between the controller boards. It’s a passive backplane
and doesn’t contain any logic it’s self. It’s intended to be connected to a power supply and
a 120Ω terminator. CAN busses requires two terminators, but the power supply contains
one the terminators.
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5.3 Power supply

e Power supply provides 5V with maximum 3A. It’s a switched power supply based on a
buck converter, using a low switch frequency.
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