
Anomaly Detection in Logs by
Utilizing Message Occurrence Analysis

A Machine Learning Approach to Log Analysis

Master’s Thesis in Computer Science and Engineering

Edin Tataragic

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2020

Master’s thesis 2020

Anomaly Detection in Logs by
Utilizing Message Occurrence Analysis

A Machine Learning Approach to Log Analysis

Edin Tataragic

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2020

Anomaly Detection in Logs Utilizing Message Occurrence Analysis
A Machine Learning Approach to Log Analysis
Edin Tataragic

© Edin Tataragic, 2020.

Supervisor: Patrik Olesen, Ericsson
Advisor: Maryam Lashgari, Chalmers University of Technology
Examiner: Paolo Monti, Chalmers University of Technology

Master’s Thesis 2020
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Gothenburg, Sweden 2020

iv

Anomaly Detection in Logs Utilizing Message Occurrence Analysis
A Machine Learning Approach to Log Analysis
Edin Tataragic
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
The process of analyzing logs and errors from software tests is a vital part of the
maintenance of any system. As anomalies can exist in these logs, detecting them is
critical in order to ensure efficiency of the software and the future development of it.
With the evolution of machine learning algorithms and computer hardware, more
tools are created to automate the log analyzing process. In this thesis, we explore
anomaly detection in the logs by using different machine learning algorithms, and
compare their performance in terms of accuracy, detection ability, and required time
to train. In addition to the comparison of different machine learning models, a new
method is proposed for pre-processing the data to handle differences in the logs,
which are caused by concurrency. The anomalies we aim to detect are sequential
anomalies, and the parameter anomalies are not considered in this thesis. The order
of the messages in the logs can change, but we proposed to observe the occurrences
of each log message in different windows over the log. Our proposed method leads
a long short-term memory (LSTM) recurrent neural network to be able to accept
permutations of the order of the messages rather than requiring a fixed order for
predictions. Applying LSTM in this way is compared with a traditional LSTM,
random forest, and classification by using a transition matrix. The results show
improvement in the performance by using the proposed method to apply LSTM as
more anomalies can be detected while requiring less time to train. Moreover, using
a transition matrix is proposed to save a lot of time for training, although, because
of concurrency the number of false positives will be higher which might increase the
required time to analyze the logs.

Keywords: Machine learning, neural networks, log analysis, anomaly detection,
LSTM, Random Forest, Markov-chain, Transition matrix.

v

Acknowledgements
My warmest regards to Lucas Jönefors, Patrik Olesen, and Simon Bood for giving
me the opportunity to do this thesis at Ericsson. I would also like to extend my
gratitude to Patrik Olesen and Simon Bood for supervising my work, sharing their
crucial domain expertise, their valuable inputs and discussions that helped guide
my work. I’m also grateful to Kent Persson for his help with understanding the logs
that were a core part of this work. A big thanks to my advisor Maryam Lashgari
whose constructive and helpful criticism helped guide my writing and Paolo Monti
for his kindness and feedback.
Finally, special thanks to my family for whose support made the completion of this
work possible.

Edin Tataragic, Gothenburg, November 2020

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Problem Description . 1

1.1.1 Related work . 2
1.1.2 Research questions . 3

1.2 Limitations and challenges . 3
1.2.1 Ever-changing logs . 3
1.2.2 Anomalies . 4
1.2.3 Other Challenges . 4

1.3 Sustainability and ethical aspects . 4
1.3.1 Societal effects . 4
1.3.2 Ethical Aspects . 5
1.3.3 Ecological Aspects . 5
1.3.4 Economical Aspects . 5

1.4 Contribution . 6
1.5 Thesis structure . 6

2 Theory 7
2.1 Logs . 7

2.1.1 Logs used in the project . 7
2.1.2 Parsing . 8

2.1.2.1 Drain . 8
2.1.2.2 One hot encoding . 8

2.2 Types of anomalies . 9
2.2.1 Sequential anomalies . 9
2.2.2 Parameter anomalies . 10

2.3 Neural Networks . 10
2.3.1 NN and Sequential Data . 11
2.3.2 Recurrent Neural Networks 11
2.3.3 Long Short-Term Memory . 12

2.4 Classifiers . 14
2.4.1 Random Forest . 14
2.4.2 Markov Chains . 15

ix

Contents

2.5 Evaluation techniques . 17
2.5.1 Confusion Matrix . 17
2.5.2 F1-Score . 17

2.6 Comparing logs using flow analysis 18

3 Methods 19
3.1 Log Processing . 19
3.2 Algorithms . 23

3.2.1 First LSTM model . 23
3.2.2 Second LSTM model . 26
3.2.3 Random forest model . 26
3.2.4 Markov-Chain model . 27
3.2.5 Aggregation of predictions . 27

3.3 Flow analysis . 28
3.4 Testing . 29

3.4.1 Test 1 . 29
3.4.2 Test 2 . 29

3.5 Evaluation . 30
3.6 Re-evaluation of ’good’ logs . 30

4 Results and discussion 33
4.1 Parsing and Preparation of Dataset 33
4.2 Individual Model Performance . 34

4.2.1 LSTM matrix . 34
4.2.2 LSTM2 . 35
4.2.3 Random Forest . 37
4.2.4 Markov Chain . 39

4.3 Aggregated predictions . 40
4.4 Test results . 41

4.4.1 Test 1 . 41
4.4.2 Test 2 . 44

4.4.2.1 Train on week 1, test on week 2 45
4.4.2.2 Train on week 1&2, test on week 3 46

4.5 Flow analysis . 48
4.6 Discussion . 49

5 Conclusion 51
5.1 Motivation and Importance of the Work 51
5.2 Key Steps and Intuition . 52
5.3 Main Results . 53
5.4 Future work . 53

x

List of Figures

2.1 Example log . 7
2.2 Example of one hot encoding. 9
2.3 A RNN . 11
2.4 The internals of a LSTM . 13
2.5 A decision tree for the concept "Go Outside" 14
2.6 Visualisation of predictions using Random Forest 15
2.7 Example of a Markov chain and transition matrix 16
2.8 A confusion matrix and its equations 17

3.1 Structured file. 20
3.2 Templates file. 21
3.3 Dataframe for 1 file . 21
3.4 Plot of LineId and TemplateId . 22
3.5 Example of what the sliding window sees. 23
3.6 Example of how the anomaly list is incremented depending on a faulty

prediction. 24
3.7 Plot of anomaly list. 25
3.8 Anomaly spotted from predicting on a ’good’ log. 30

4.1 (a) Example of spikes caused by new non anomalous messages (b)
Example of spikes caused by anomalies 34

4.2 Training loss when training with (a) 200 and (b) 25 epochs. 34
4.3 Prediction on test set (a) no anomalies, (b) with anomalies. 35
4.4 Plot of (a) categorical accuracy and (b) training loss. 36
4.5 (a) Categorical accuracy. (b) Training loss. 36
4.6 Plots of predictions done on a test set (a) with no anomalies and (b)

with anomalies. 37
4.7 Change in RFC’s predictions as a results of the increase in features

and improved hyperparametes. 38
4.8 Results from using the RFC as predictor. 38
4.9 Results of RFC predictions when training set and testing set are fur-

ther between in time on execution. 39
4.10 (a) Prediction on test set with no anomalies. (b) Prediction on test

set with anomalies. 40
4.11 Aggregation of all predictions . 41
4.12 Test 1’s (a) true positive rate and (b) true negative rate 42

xi

List of Figures

4.13 (a) Example where random forest predictions do not help reduce false
positives. (b) Example where random forest predictions help reduce
false positives. 44

4.14 (a) Prediction on full week 2 test set. (b) Prediction on subset of
week 2 test set. 45

4.15 (a) Prediction on full week 3 test set. (b) Prediction on subset of
week 3 test set. 47

4.16 Plot of true negative rate per model and combination of predictions. . 47
4.17 Example of markov FP due to concurrency 48

xii

List of Tables

4.1 Training time for test 1 . 41
4.2 Number of logs without anomalies that had false positive predictions. 43
4.3 Training time for test 2-1 . 45
4.4 Test 2-1: Number of logs that had FP and no anomalies 46
4.5 Training time for test 2-2 . 46
4.6 Test 2-2: Number of logs that had FP and no anomalies 48
4.7 Results of flow analysis. 49

xiii

List of Tables

xiv

1
Introduction

Artificial intelligence (AI) has been a popular topic among scientists and businesses
alike for a long time. Today, a subset of AI called machine learning (ML), is one
of the hottest topics. As machine learning gains more traction in digital businesses,
it becomes a must to embrace it and use it as a tool in order to get or keep a
competitive edge. One of the areas where machine learning shines compared to
AI is data analysis since machine learning is more than a technique for analyzing
data. It is a system that has the ability to learn and improve with the help of
algorithms that provide new insights without being explicitly programmed to do
so. But in order for this to be successful, a lot of data is needed. As ML systems
are fueled by data, they go hand in hand with big data [1]. Some organizations
with access to overwhelming amount of data are using multiple ML frameworks to
increase operational efficiencies and achieve greater business agility. ML is also used
to add elements of intelligence to software development and information technology
(IT) operations to improve operational efficiency.
By creating ML tools to process the heaps of data available, which would take a lot
of time to be processed manually by a human, companies can immensely increase
the value they get from the data while decreasing the costs of processing it.

1.1 Problem Description
Ericsson is an example of a company with large quantities of data that is investing
in the development of internal ML tools in order to boost the business values gained
from data. One of the areas where these kinds of tools are being developed for is
log analysis. Logs are computer-generated records, and the analysis of these records
refers to the process of reviewing, interpreting, and understanding them. Logs can
be generated from many different sources and one such example is from running
tests on software. With the growing complexity of telecommunication systems, the
generated logs from testing these systems also become more complex which makes
analysing them more difficult.
Currently, the logs that are being produced in the automated testing of Ericsson’s
MINI-LINK [2] contains copious amounts of data. Certain tests run continuously
while others only run once a day or even more infrequently. The tests are grouped
into test-suites depending on the functionality and area. On average, each suite takes
about 2-4 hours to run and if one test fails, the result is logged while the execution
of the suites continues. The tool JCAT (Java Common Auto Tester) is used to
create reports from these logs. JCAT is a feature and system testing tool used by

1

1. Introduction

various Ericsson organizations and the reports created with this tool show each test
step and the result of that particular test. The logs contain information about each
performed test step, including errors from the test system, and other printouts from
the embedded software. Other than the highlighting of some specific lines in the
log where an assertion has failed, the logs can seem overwhelming. Many errors can
be caused due to something that has happened some time before the actual error
happened, and new unknown problems will occur with a growing and continuously
updated system. Therefore, it is of interest to not only analyse the errors, but also,
the logs leading to the error to find suspicious anomalies and understand differences
between a passed and a failed execution of a certain test. In addition, as the order
of the log message can differ between different executions of the same test due to
concurrency, it is possible that this will have an effect on the predictive ability of
ML algorithms.
To fully understand an error that has occurred, a lot of time is required for the
engineer to understand what has caused the error and which parts of the system are
affected. Since this might require insight into many different parts of the system,
more resources might be needed to understand the error before solving it. Therefore,
it is valuable to add automation to the log analysis process and make it easier for
the engineer to understand the reason of the error.
However, it is not always the log of a failing test case that we would like to analyse.
Most of the automated tests perform a number of configurations on real hardware
and then compare the results with the expected results, sometimes side effects occur
that are not directly tested for in the exact test case. This can cause errors which
are not looked for in the aforementioned comparison. It is unreasonable to expect
an engineer to analyse logs of passed test cases with no indication of where to even
start looking as this would require a substantial amount of time and have a higher
cost compared to the value that can be obtained. The free-form nature of the logs
makes this a very challenging task. In addition to this, the order of the log messages
inside the log can change in each run as several processes can run at the same time.
By using ML techniques to do automated log analysis, many correlations can be
learned by the ML model that result in a better log analysis.

1.1.1 Related work
Much work has been done in the field of log analysis leading to the development
of many anomaly detection techniques. It is therefore possible to find numerous
implementations of methods meant to aid and improve the log analysis process. As
logs can contain vast amounts of data, a suitable methodology is to use machine
learning models and automate the anomaly detection process as ML models go well
with big data.
Some examples of different solutions are the works that use a principal component
analysis based anomaly detection [3, 4], invariant mining [5] (for an overview and
comparison of these methods, see [6]), and time series forecast using random forest [7,
8, 9].
Supervised methods [10], which use normal and abnormal vectors, train binary clas-

2

1. Introduction

sifiers to be able to detect anomalies. Due to the usage of labeled abnormal data
it is very possible for new unknown anomalies, that the models are not trained on,
to pass through the analysis process undetected. As we want to be able to detect
unknown anomalies, this method is not useful for us. In addition to this, it can be
very difficult to collect anomalous data for the training, especially if there are many
different types of anomalies that needs to be detected by the model. For this reason,
it is more beneficial to not limit the types of anomalies that the models can detect.
One example of the difficulty of collecting anomalies is shown in the dataset used in
several papers [11, 4, 12, 13]. The dataset used in these papers contained 24 million
lines of free-text logs from a 48-hour run of a production open-source application,
the Hadoop File System (HDFS) [14], running on a 203-machine cluster.
This work differs from the aforementioned research as it seeks out to tackle the
negative impact that concurrency in logs have on the performance of the LSTM.
Additionally, we seek to achieve a high detection rate and keep a low false positive
rate, while limiting the amount of logs available for training in order to reduce the
time needed to train and make it possible to use in a quickly changing production
environment.

1.1.2 Research questions
In this thesis we seek to provide insight for the following questions:

• Is it possible to use ML to learn what is expected from a log of a successful
test and highlight the differences in a failed test log?

• Can ML be used to detect abnormalities in logs?
• Will the usage of ML reduce the complexity or required time to analyse the

logs?
• How can this be used in other contexts? (e.g. customer logs, built-in software

logs)
• How does concurrency in logs affect the ML models and how can we avoid it?

1.2 Limitations and challenges
There are many possible areas and implementations of ML algorithms on logs, so
a defined scope is needed. Due to the massive amount of information available in
the logs, we focus on the printouts regarding to the test. The setup before and all
the printouts after a test case can vary to a great degree. By leaving this out, the
complexity of the task can be reduced while still resulting in a useful solution.

1.2.1 Ever-changing logs
As the tests keep changing and evolving, the logs generated by the tests will also
change. Therefore, a model trained on ’older’ test logs might not perform well on
’new’ logs. Consequently, a limit will be set for the project of how much time has
passed between the test executions of the logs in the training set, that the models will

3

1. Introduction

be trained on, and the test set which will be used to test the models’ performance.
This limit will be set to one week.

1.2.2 Anomalies
There are many different types of anomalies that can be found in the logs, this project
will limit the scope to sequential anomalies that are caused by either missing lines,
as a result of an incomplete message sequence in the logs, or new lines, caused by
errors, that differ from what is expected based on logs from a successful test case.

1.2.3 Other Challenges
A big challenge lies in the vast amounts of text that can be found in the logs. Since
the logs are "raw" logs, they most likely contain a great deal of irrelevant data, and
there is a possibility that some information can cause more harm than benefit in
training the model. There are also many variables related to changes in parameters
for the test that might differ vastly in each test. A solution to mitigate this problem
is implementing various data preprocessing techniques.
Another challenge is selecting the ML model to use and then tune the hyperparam-
eters to improve the accuracy [15]. This can be mitigated through the testing and
evaluation of various algorithms.
As mentioned in section 1.1, because of concurrency, the order of the log messages
in the log files can differ between various test executions. In addition, developers
are continuously working on the tests that create the logs. Therefore, we are faced
with two additional challenges: (i) the order of the log messages that appear in the
logs are varying, and (ii) new log messages will appear in the logs. Both of these
challenges can possibly have a negative impact on the predictive ability of a model.
In order to handle the first challenge (i.e., the issues caused by concurrency), we
need to investigate methods of how the data can be pre-processed and find a way
for how the selected ML model can be adapted to said data while minimizing the
effect concurrency has on the predictions. The second challenge can be handled if
the models are re-trained with good enough frequency. However, the time that is
required to train the model(s) needs to be taken into consideration in order to (i)
find a balance between the time and resources that are used for training, and (ii)
estimate the duration that the model(s) can be used as predictors.

1.3 Sustainability and ethical aspects
As with other research, it is important to analyze and reflect the direct and indirect
affects the work can have on different aspects of our society and environment.

1.3.1 Societal effects
As more technological advancements are made in the fields of machine learning and
AI in general, we move towards a time where the workforce for certain professions
can be reduced in favor of adding some AI. The affect of this on the society is

4

1. Introduction

comparable to the impact that machines have had on the manufacturing industry.
The automotive industry is one prime example. Some may see this as a positive
step forward as AI and ML are mostly used to do menial tasks, while others fear
the prospects of losing their jobs. This is an ongoing debate [16, 17, 18, 19] whose
discussion is beyond the scope of this thesis.
In regard to log analysis, it is not very likely that the current methods will com-
pletely be replaced by ML models. Instead, the ML models will complement current
methods and make it easier for the engineers to find bugs and errors.
Since log analysis is used to find bugs and other errors, creating and using faulty
tools can lead to bugs being missed. This, in turn, can cause the final product
to ship with bugs. Today we rely heavily on telecommunications for everything
from entertainment to emergency services. In the case of emergency services, faulty
software can potentially cause loss of life. But as previously mentioned, it is highly
unlikely that a faulty ML analysis could cause such drastic effects on the society.
Unless, of course, if the current methods were to be completely replaced by a faulty
ML implementation. If this were the case, then there is a good chance that buggy
code could pass through undetected and therefore be used in applications where the
bugs could prove harmful to the society.
There are also many other positive applications of anomaly detection, like for in-
stance in fraud prevention and intrusion detection in security systems.

1.3.2 Ethical Aspects

The information in the logs are from automated test on software and hardware. This
data contains no personal or identifiable personal information. Therefore, there are
no privacy concerns regarding the handling of data from/about humans.

1.3.3 Ecological Aspects

As the possible applications of computers increase, so does the energy consumption.
Whether it is for mining bitcoins, running complex protein folding simulations, or
training machine learning algorithms, the public power grid is getting more taxed.
In recent years, more companies have started to utilize AI and ML. The increase
in power consumption shows that more renewable energy production is needed to
avoid the possible climate-related consequences. Due to the scope of this thesis
being relatively small scale, the negative effects are negligible.

1.3.4 Economical Aspects

The effect of anomaly detection systems on organizations is positive. As mentioned
before, they can increase the business value that can be gained from large amounts
of data. This in turn results in a monetary gain. Other applications of anomaly
detection systems, like fraud detection, can prevent monetary loss.

5

1. Introduction

1.4 Contribution
The logs that are used in this project change over time, as mentioned in section 1.2.3.
This project’s contribution is a new method of applying a Long Short-Term Memory,
LSTM, to avoid the negative effect of the different logs sequences that can appear.
By using a sliding window approach and only considering the occurrences of each
log message in a log, we are able to completely ignore the issue of different sequences
caused by both concurrency and a change in the test. The dataset created based on
this approach consists of each window’s observations and the LSTM is applied on
this dataset as a time series predictor where a window of log message occurrences
is predicted based on the previous 3 windows. This approach allows us to improve
the predictive ability of the LSTM in regard to anomaly detection on logs whose
log messages can appear with different order over time. The experiments compare
the performance of this methodology with a ’traditional’ LSTM approach, where
each prediction is based on x previous observed datapoints, as well as, the usage of
a random forest classifier and a transition matrix classifier. Two important metrics
in these comparisons will be the true positive rate and the true negative rate as the
number of correct classifications that the model does has great importance.
The proposed method proves to work better than the other models that were com-
pared with it and requires less time than the ’traditional’ LSTM to train. In in-
stances where new log sequences are present, the proposed method’s predictive abil-
ity stayed unaffected while the other models had several false positive predictions.

1.5 Thesis structure
The rest of the thesis adheres to the following structure. Chapter 2 introduces
relevant theory and concepts that are required to understand the work done in
this project. Chapter 3 provides a description of the methods used to answer the
questions mentioned in section 1.1.2. Chapter 4 presents the results gathered from
testing and evaluating the models and methods described in chapter 3. Chapter 5
contains a discussion and conclusion based on the results gathered while also offering
some ideas for future work that can be done.

6

2
Theory

In this section, theory relevant to this project is presented to give readers an un-
derstanding of the logic used behind the choices made. We first introduce the state
of the logs used in this project, methods for parsing them and how they can be
used by a ML algorithm. After that, the definition of anomalies used in this project
are presented. Next comes a brief description of how neural networks, NNs, handle
sequential data and why the Long Short-Term Memory model is superior in this use
case. Two classifiers are then presented and their performance will be tested as well.
In addition to the algorithms and classifiers, some metrics used for comparing their
performance is presented. Finally, a method of improving the readability of the logs
is presented.

2.1 Logs
Logs refer to files that contain the records of one or multiple events. These events can
be that of an operating system, software, hardware, or whatever the implementer
chooses. There are standards for these types of message logging and one of these
standards is syslog. By using a standard like syslog, each message is labeled with
a facility code that indicates what software type generated the message. Some
examples of this are "0" for kernel messages, 1 for user-level messages, and 14 for log
alerts. By doing this, it is possible to add separation of the system storing the logs
and the software generating them.

2.1.1 Logs used in the project
The logs that have been used for this project are the test logs from tests run on
Ericsson’s MINI-LINK™. The logs from these tests come in the shape of a console
log which, in many ways, is similar to the aforementioned syslog as the previously
described separation is present. These console logs contain the following information:
timestamp - Level/severity - Component - Level2 - Content. But these console logs
contain not only the logs from the test cases but also from the system setting up
and initializing the hardware. The console log as shown in Figure 2.1 is structured
and stored as plain text.

Figure 2.1: Example log

7

2. Theory

There is certain run-time information such as a port number or Internet Protocol
address (IP address) that can differ from run to run. This means that the same log
message from the same test case can differ between runs. These variations will cause
an increased complexity in the anomaly detection and are not a part of this project.
These run-time variables are redundant as they do not relate to the sequence of the
logs, and they can be omitted from the log messages when creating the dataset.

2.1.2 Parsing
Performing data analysis on these logs, as is, would greatly complicate the task as
every row is a string containing different feature sets. By parsing the free-text log
entries into a structured representation, with each feature separated, a sequential
model over the structured data can be learned. The parsing can also be used to
extract the redundant run-time information and result in a file containing simpler
log messages.

2.1.2.1 Drain

LogPai’s Logparser is the toolkit that was used to parse the logs. LogPai’s Logparser
can learn event templates from unstructured logs and convert raw log messages into
a sequence of structured events. This is sometimes referred to as message template
extraction, log key extraction, or log message clustering.
Drain is one of the logparsers available in the aforementioned toolkit, and it is
one of the most accurate and efficient open-source online logparsers [20, 21]. It is
also possible to fine-tune the parsing by formulating several regular expressions to
aid in the parameterization of run-time variables. With carefully created regular
expressions that fit the data well, many if not all of the run-time variables that are
seen redundant can be omitted resulting in a better dataset. With every variable
found in the log messages extracted and the remaining content sorted according
to predefined columns, a dataset can be created. The difference this makes to the
dataset is best explained with a simple example: given two log messages "Connecting
to IP: 1.1.1" and "Connecting to IP: 1.1.2", by extracting the variable part, the
IP address, both messages will look like this "Connecting to IP: <*>". Given a
similarity threshold to fit our needs, these messages will be considered the same.
When training a model on the dataset, less training will be needed as there will be
less messages to train on and the reduction in unique log messages makes it possible
to use a less complex model.

2.1.2.2 One hot encoding

In order to produce discrete outputs from this discrete classification problem, one hot
encoding needs to be applied. One hot encoding is a process by which all categorical
features with n distinct values are transformed into equally many binary features.
This is because ML algorithms require all input and output variables to be numeric.
In this strategy, each category value is converted into a new column and assigned a
1 or 0 (notation for true/false) value to the column. an example of this is shown in
figure 2.2.

8

2. Theory

Figure 2.2: Example of one hot encoding. [22]

In this example there are three nominal groups, red, yellow, and green, and the
columns follow the same order. If a datapoint is ’red’ then the first column is
populated with a one and the other ones are populated with zeros.
Using the same principle, each unique log message can be considered its own category
and with K unique log messages there will be K classes, and columns.
The benefits of the parsing is now even more obvious as the total amount of classes
can be reduced with the help of the parameterization described before.
Another way one might encode the categories is with label encoding. Label encoding
would encode the above categories as:

• ’Red’: 1
• ’Yellow’: 2
• ’Green’: 3

But due to the ordered relationship of integer values, the predictions of the ML
algorithms will be affected as this can be learned through training. The integer
values have a natural ordered relationship between each other and machine learning
algorithms might be able to understand and harness this relationship. The training
can also result in a higher categorical value being interpreted as better or that there
will be predictions between categories, for instance, a prediction of 1.5 which would
be between the categories ’1’ and ’2’.
The data used here does not have any ordinal relationship and the predictions should
not be in between categories. The label encoding is therefore not a suitable method
of encoding and one hot encoding is preferred.

2.2 Types of anomalies
Anomalies in the test logs are considered to be patterns or characteristics which do
not follow the normal behavior of a successful test. Any part of a log file that is
deviating from the norm set by previous passing executions is considered an outlying
observation. These deviations can be in the form of what we will call a sequential
anomaly or a parameter anomaly.

2.2.1 Sequential anomalies
Sequential anomalies are log entries which do not conform to the standard sequence
a log is expected to have based on logs of previous passing executions. An example of

9

2. Theory

this is that for instance: after a connection attempt is made, a successful execution
would log the message "Connection successful".
This sequence would have the following flow:

1. "Attempt to connect"
2. "Connecting to IP: 1.1.1"
3. "Connection successful"

An anomaly in this example could be that the connection fails and the third message
in the sequence is different, changing the flow to:

1. "Attempt to connect"
2. "Connecting to IP: 1.1.1"
3. "Connection failed"

This is an example of what is called an insertion anomaly as the anomalous message
is inserted into the flow. Other than the insertion anomaly, the sequential anomalies
can come in the shape of a deletion anomaly.
Insertion anomalies: If an error has occurred, then this would be documented in
the logs. An error would cause one or more new lines to be added to the log which
would not be present in a log of a successful execution. This sort of message, that
has been inserted into the regular sequence, is classified as an insertion anomaly.
The example given above will be referred to as an insertion anomaly.
Deletion anomalies: On the other hand, if an error has caused certain steps to be
missed, or if part of a test has not been run due to an error, this will cause lines to
be missing from the log. Compared to a log of a successful execution, this one will
have one or more lines missing causing what we will refer to as a deletion anomaly.
Both of these anomalies would evidently cause the same issue, a new and unknown
sequence of logs that do not match with what has previously been observed.

2.2.2 Parameter anomalies
If the characteristics of a log message are wrong, such as wrong values in the message
of the log, then this will be considered a parameter anomaly. If the same IP address
is always used, then, by using the example above, the message "Connecting to IP:
1.0.1" would be considered a parameter anomaly. This type of anomaly is out of the
scope of the project.
In order to detect the anomalies mentioned above, two LSTM implementations and
two classifiers will be tested. In the following section, an explanation is given to
why the LSTM was chosen in comparison to a regular neural network and even a
recurrent neural network.

2.3 Neural Networks
Inspired by the neurons of a brain, a neural network (NN), is a ML model comprised
of similar neurons (or nodes) that adhere to a mathematical formula in order to give
an output. This formula contains variables that can be learned and with this the
model is able to learn a behavior depending on previous inputs it has seen [23].
A feed-forward network consists of several of these neurons in three layers. The
layers are called the input, hidden, and output layer. In this sort of network, the

10

2. Theory

neurons are fully connected, meaning that each neuron in a layer has its output
connected to all neurons in the next layer. The flow of information is from the input
layer, through each hidden layer, and finally to the output layer which produces the
output of the NN.
This type of network can be used for supervised learning tasks, which are tasks where
the network is trained to predict target outcomes that are known beforehand [24].
During the training of a supervised learning model, each input that is given is
assigned a label. The prediction made based on the input is compared to the actual
label and a loss function, that measures how far off the prediction was, is used to
facilitate the learning process.
As the data used in this thesis is sequential, the following subsections will cover the
downsides of how NNs handle this data and two possible ’alternatives’.

2.3.1 NN and Sequential Data
A given for NNs is that the data samples are independent. This is fine for many
applications, but when dealing with time dependant data, this does not hold true.
For many time dependant things like time series, videos, or languages, the individual
samples hold some dependency to time. By using a regular NN, which will treat the
samples as independent, to predict future data point will lose the value of analyzing
the sequential information. Also, in several of these fields, the input sequences can
vary in length which is something that a regular NN cannot handle [25].

2.3.2 Recurrent Neural Networks
Recurrent Neural Networks, or RNNs, are NNs that are capable of extracting the
sequential information of data points [25]. It can do this by using a state vector in
the hidden layers and with this keep a memory of all previous elements. A simple
example of this can be seen in figure 2.3.

Figure 2.3: A RNN [26]

RNNs are able to keep the hidden neurons connected across time. At a specific time
t, the model takes the current input xt and the previous hidden state st−1 for its
calculations. The next hidden state st is calculated along with the output ht and the
hidden state is passed on to the next time step. Equations 2.1 and 2.2 summarize
these calculations [27, 28].

st = σ(Uxt +Wst−1 + bs) (2.1)

ht = softmax(V st + bh) (2.2)

11

2. Theory

This way, RNNs can selectively retain relevant information and capture dependencies
across several time steps. RNNs can also handle variable length sequences, meaning
that they are better than regular NNs when using time dependant data.
The caveat with RNNs and time series is that they suffer from short-term mem-
ory, meaning that if a sequence is long enough, they will have a hard time carrying
information from earlier time steps to later ones. From a long sequence of data,
a RNN might leave out important information from the beginning of the data se-
quence. This is because the training is done through back propagation through
time, BPTT [29, 30], which is the version of backpropagation [31] that is used for
RNNs. As seen in figure 2.3, a RNN unfolds into a deep feed forward network that
has many layers [26]. As a gradient is multiplied backwards through all of these
layers, or time steps, it will tend to increase or decrease. The two extremes of this
will cause the problems known as the vanishing gradient problem and the exploding
gradient problem.
Vanishing Gradient Problem: There is a certain phenomenon that can occur
during a RNNs back propagation [32] called the vanishing gradient problem. Gradi-
ents are values used to update a neural networks weights and this problem refers to
it exponentially shrinking to 0 as it back propagates through time. If the gradient
value becomes extremely small, it will not contribute to the models learning. This
then leads to a model unable to learn correlation between temporally distant data
points. Not all gradients might vanish, the ones local in time will still be present,
but the gradient will not contain long term information [33].
Exploding Gradiant Problem: As shown by Benigo et. al. [34], it is possible
for error gradients to accumulate which can result in very large gradients. The
consequence of these large gradients is that, eventually, they will cause the network
to become unstable as a result of the network weights getting large updates. Instead
of exponentially shrinking to 0, like in the vanishing gradient problem, the gradients
exponentially grow as the gradients repeatedly get multiplied through the network.
Also unlike the vanishing gradient problem, here all gradients will explode. This is
because now, instead of some gradient g + 0 which will equals to g, we have some
gradient g +∞ =∞.

2.3.3 Long Short-Term Memory
A LSTM model is a type of RNN. With it’s introduction and inclusion of Constant
Error Carousel (CEC) units by S. Hochreiter and J. Schmidhuber [35], and in combi-
nation with the forget gate introduced by F. Gers et. al. [36], the vanishing gradient
problem could be solved. These aspects of the LSTM are what makes it so useful for
these kinds of applications. The way LSTM overcomes this problem is by having no
repeated weight application between internal state t and t− 1. A regular RNN, the
derivative of an activation function during back propagation will be less than one.
So over time, repeated multiplications of this value will lead to a vanishing gradient.
In LSTM, the forget gate acts both as the weights and the activation function for
the cell state and it is possible for the information of the previous cell state to pass
through unchanged. An equation for this will be shown a bit further in this text to
help explain this.

12

2. Theory

Figure 2.4: The internals of a LSTM [37]

Above, in figure 2.4, a visualisation of the LSTM can be seen. The top most hori-
zontal line is the cell state, and at the start of it is a so called gate. The gate consists
of a sigmoid layer and a point wise multiplication operation and there are several
more in the LSTM. The sigmoid layer outputs numbers between zero and one. If
the value is a zero, then nothing will be let through the gate while a one would
mean that the whole component is let through. This very gate at the start of the
cell state input is the forget gate and it was introduced by F. Gers et. al. [36]. The
forget gate is used to decide what information is going to thrown away from the cell
state which allows the model to reset its own state [38]. Equation 2.3 is the forget
gates formula.

ft = σg(Wfxt + Ufht−1 + bf) (2.3)

After deciding what is to be kept from the cell state, the LSTM decides what new
information is going to be stored in it. Looking from left to right in figure 2.4, the
second sigmoid layer is called the input gate layer and it is used to decide what
values will be updated according to the equation 2.4. New candidate values are
created in the tanh layer, see equation 2.5 and then these two are combined and the
cell state is updated according to equation 2.6 [35].

it = σg(Wixt + Uiht−1 + bi) (2.4)

c̃t = tanh(Wcxt + Ucht−1 + bc) (2.5)

ct = ft ◦ ct−1 + it ◦ c̃t (2.6)

Lastly, the output is calculated by first selecting what parts of the cell state will be
in the output with another sigmoid function, equation 2.7. After that a tanh is used

13

2. Theory

to push the values of the cell state between -1 and 1 and this is combined with the
output of the sigmoid. The result is also the next hidden state, equation 2.8

ot = σg(Woxt + Uoht−1 + bo) (2.7)

ht = ot ◦ σh(ct) (2.8)
Almost all state of the art results based on recurrent neural networks are achieved
with LSTMs. LSTMs can be found in speech recognition, speech synthesis, and text
generation. They can even be used to generate captions for videos.

2.4 Classifiers
In addition to the ML algorithm, two classifiers will be tested as anomaly detectors
as well. These two are the random forest classifier, and the Markov chain classifier.

2.4.1 Random Forest
A random forest classifier (RFC) [39], is known as an ensemble learning method. An
ensemble learning method makes use of numerous learning algorithms in order to
gain an improved predictive performance as opposed to that which could be obtained
from any of the individual algorithms by themselves [40, 41]. In the case of the RFC,
it is the multiple decision trees used that makes it an ensemble learning method.
An example of a decision tree can be seen in figure 2.5, and it is a very intuitive
decision support tool to understand.

Figure 2.5: A decision tree for the concept "Go Outside" [42]

A decision tree is a tree-like graph with nodes representing the place where an
attribute is picked and a question is asked. Edges represent the answers to the
question, and the leaves represent the actual output or class label. They are used in
non-linear decision making with simple linear decision surface. By adding together
several of these tree-like graphs, we can create a "forest" of them where they operate

14

2. Theory

as an ensemble. Each individual tree in the random forest outputs a class prediction
and the class with the most votes becomes the model’s prediction. An example of
this can be seen in figure 2.6.

Figure 2.6: Visualisation of predictions using Random Forest [43]

An issue with the RFC is that it has no awareness of time as each observation is
assumed to be independent and identically distributed, which is not similar to the
serial dependence seen in time series data. Decision trees are not able to extrapolate
and understand the trends in data. They use if-then rules based on the given inputs
during training and due to this attribute of the RFC, they can not make predictions
for values that fall outside the range of the values in the training data.
Even though this is the case, there are methods of pre- and post-processing of data
in order to make the RFC work better for time series.
Some examples are:

• Statistical transformations (Box-Cox transform, log transform, etc.)
• Detrending (differencing, STL (Seasonal and Trend decomposition using Loess),

SEATS (Seasonal Extraction in ARIMA Time Series), etc.)
• Time Delay Embedding

There are some works having good results in time series predictions using random
forest classification and regression. [8, 44, 7, 45]

2.4.2 Markov Chains
Markov chain models are based on learning a transition matrix from training data [46].
If a log is considered as a Markov chain and with any sequence of 2 adjacent log
messages considered a sequence, then each log message is considered a state and the
probability of going from one state to the other is dependant only on the previous
state. A stochastic matrix, or transition matrix, can be created with the probability

15

2. Theory

of each transition. The basis of the probabilities can be from what is observed in the
dataset. Here, the individual transitions Pij = P (Xk+1 = j|Xk = i) are estimated
by summing all transitions and dividing each sum by the total amount of times that
log has been observed.

1. Let ni be the number of times message i is observed in the sequence {X1, ..., Xn−1}
(exclude the last message).

2. Let nij be the number of times we see message i go to message j. For the last
message, there is no transition so that value is not incremented.

3. Then Pij = nij

ni

In this way, a transition matrix is created where each element Pi,j is the maximum
likelihood estimate for the probability that log message j directly follows log message
i. [47, 48, 49]
A very basic example of a Markov chain and its corresponding transition matrix can
be seen in figure 2.7

Figure 2.7: Example of a Markov chain and transition matrix [50]

New log messages in transitions that we have not observed yet will have a Pi,j of 0,
resulting in a possible anomaly detection.
Using the example in section 2.2.1 the following flow is considered okay:

1. "Attempt to connect"
2. "Connecting to IP: 1.1.1"
3. "Connection successful"

Adding the possibility that the connection can be retried after a connection attempt
without getting the "Connection failed" message, the following flow is also considered
correct as it does not lead to a test execution failing:

1. "Attempt to connect"
2. "Connecting to IP: 1.1.1"
3. "Connection timed-out"
4. "Attempting to re-connect"
5. "Connecting to IP: 1.1.1"
6. "Connection successful"

If the "Attempting to re-connect" message was observed 5 times and the "Connec-
tion successful" message was observed 95 times, then the transitional probability
from message "Connecting to IP: 1.1.1" to "Attempting to re-connect" is 5% and
from "Connecting to IP: 1.1.1" to "Connection successful" is 95%. The probability
of transitioning from message "Connecting to IP: 1.1.1" to "Connection failed" is

16

2. Theory

therefore 0 and if this transition is observed in a log then according to the transition
matrix, it is an anomaly.

2.5 Evaluation techniques
In order to properly evaluate different approaches to detect anomalies in the logs
and make an informed decision on which one to further develop, different evaluation
techniques will be used. For this purpose, confusion matrices [51] and the F1-
scores [52] of the models predictions will be used.

2.5.1 Confusion Matrix
A confusion matrix has two dimensions, "actual" and "predicted", and is used to
visualize if the system is confusing two classes by mislabeling one for the other.
From the confusion matrix, several interesting rates can be calculated, two that are
of interest are the precision and recall. Precision refers to how often the system is
correct, or what proportion of positive identifications was actually correct. Recall,
on the other hand, is the true positive rate or what proportion of actual positives
was identified correctly.

Figure 2.8: A confusion matrix and its equations [53]

2.5.2 F1-Score
The F1-score [54] is the harmonic mean of the precision and recall, where a score of
1 represents perfect precision and recall and 0 is the worst case scenario.
The F1-score if calculated using equation 2.9 [55].

f1 = 2× precision× recall
precision+ recall

(2.9)

One issue with the F1 score is that it gives equal importance to precision and recall.
These two metrics do not always have the same importance as the price of mis-
classification can differ depending on the application. In this application the True
Negative rate has a big importance as it indicates how many of the anomalies in a
log were found and as the F1-score ignores the True Negatives, it will be considered
a less important metric.

17

2. Theory

2.6 Comparing logs using flow analysis
As logs can be difficult to read for humans, displaying the found anomalies in a
very readable manner is of interest. By doing this, the engineer responsible to fix
whatever error the anomaly has caused will have an easier time to understand the
cause of the anomaly. The ease of understanding the logs can be furthered by
displaying the expected behavior in addition to the location of the anomaly. One
way of achieving this is by displaying the flow(s) that the anomaly occurred in.
Each log message is the result of a printout from the code but a process can cause
several of these. As several processes can be ran at the same time, this concurrency
can cause the log messages of the different processes to be intertwined leading to an
increase in the time needed to analyse a log.
By analyzing each log and trying to find the processes that are causing the log
messages, it is possible to find each process’ print sequence, or sub-flow, in the full
flow of log messages. By displaying only the flows that contain any found anomaly,
the whole log analysis process could be simplified.
Continuing on the example in section 2.4.2, given a failed connection attempt the
expected flow would be "Attempt to connect" -> "Connecting to IP: 1.1.1" -> "Con-
nection successful" while the gotten flow would have been "Attempt to connect" ->
"Connecting to IP: 1.1.1" -> "Connection failed". Given a situation where this con-
nection attempt was done at the same time as another test step, these messages
would have been mixed with the other test step meaning that it would have been
more difficult to not only find this flow, but see the cause of the error. The benefit
of this would be even more clear with a more complex flow.

18

3
Methods

In this section, the methodology used to find answers to the questions in section 1.1.2
will be presented. We first introduce the log processing, then describe the details
of two proposed LSTM approaches, a random forest approach, and a Markov-chain
approach. After that, the method of finding the flows in the logs is presented.
Finally, we describe our proposed method for evaluating the models.

3.1 Log Processing
In order to create the dataset, one of the test cases in a given test suit was selected.
After that, a multitude of logs were collected. The collected logs were the results
of many runs of the selected test case and these runs ranged over a time span of
several weeks. The dataset consisted of log from both passing and failing executions
and none of the logs from failed executions were used for training.
Succeeding the completion of the log collection, as mentioned above, each log in the
dataset was put through the log parser Drain as it has shown to be a very good tool
for this purpose [21]. The output from the parsing of the logs was analyzed and
the results were perceived as sub-par due to the parser overlooking several variables
that needed to be extracted.
This oversight is problematic as it will lead to multiple log messages which are
similar in nature, to be considered unique even though this is not the case. In order
to further improve the parsing, a manual review of the parsing results was done, and
based on these findings regular expressions were created to most of the variables that
were printed by the system. These regular expressions were then added as an input
to Drain. Adding these regular expressions was also done with the goal of further
simplifying the dataset. An example will make this simplification clear:
Given the strings "Test step (1) start TestStep1" and "Test step (2) start Test-
Step2", they would initially be classified as unique by Drain. Putting aside the
variable, showing which test step it is, and the name of the test step, these mes-
sages can be seen as one type of message: the message indicating the start of a test
step. By formulating regular expressions to match the number in the parenthesis
and the name of the test step, Drain would no longer overlook these parts of the
string and therefore extract them during the parsing. A template would then be
created by drain to match any variation of this message that would look like this:
"Test step(<*>) start <*>". This analysis of the parsing and addition of regular
expressions was done for many of the variables that Drain initially overlooked and
the result of this was a heavy reduction of "unique" messages in the logs.

19

3. Methods

Using the given example above, all test log messages that indicated the start of a
test step would be parsed as 1 message/template instead of 1 for every test step.
The same is true for "Test step (1) end TestCase1". In a log consisting of 7 test steps,
the sum of the starting and ending messages for these test steps was 14. Indeed,
this is just two types of log messages, one for the start of a test step, and one for the
end of the test step. With this abstraction of variables, the number was reduced to
the correct amount of two.
Here follows some examples of certain regular expressions that were used to help
Drain parse the logs:
r'blk_(|-)[0-9]+' , # block id
r'(/|)([0-9]+\.){3}[0-9]+(:[0-9]+|)(:|)', # IP
r'([0-9]\.)+([0-9])', # Port
r'([0-9]+[^\S\t\n\r])+([0-9]+)', # MAC addresses
r'(?<=[^A-Za-z0-9])(\-?\+?\d+)(?=[^A-Za-z0-9])|[0-9]+$', # Numbers
r'<null>', # null values
r'false', # false
r'"([a-zA-Z]+)([^\S\t\n\r]|)([a-zA-Z]+)"', # Quoted w&w/o spaces

After a log had been parsed, Drain created two files of comma separated values,
CSV. One of these files had the suffix structured while the other one had the suffix
templates. The structured file contained all rows of the log with the parameters
abstracted as asterisks and an example of this is shown in figure 3.1. In addition
to this, every line had been given an event id and the abstracted parameters were
stored in their own column.

Figure 3.1: Structured file.

Though similar to the actual log file, the structured file differs as it contains the
columns titled ’EventId’, ’EventTemplate’, ’ParameterList’, and additionally, the
content of the structured file is sorted in columns. This is useful when extraction of
any data is needed.
The content of the template file is also sorted in columns, but unlike the structured
file, it is much shorter than the actual log file. This is because it only contains
each unique log message once, and the log message stored in this file is the template
of said message. Other than the singular instance of each unique log message, it
also contains an event id and the number of occurrences of each log message. An
example of the templates file can be seen in figure 3.2

20

3. Methods

Figure 3.2: Templates file.

The identifier "EventId", which can be found in both the structured and the tem-
plates files, is unique to every template/log message. In the templates file, only
one of each identifier can be found due to the nature of the templates file. For the
structured file, each identifier can occur several times as the system can output the
same type of log several times and this is reflected in the structured file.
A simple integer compared to the unique identifier, which consists of a combination
of numbers and letters, can serve the same purpose equally well in this application,
but the "EventId" is quite complex in comparison with that. With this in mind,
the unique identifier was changed from a combination of numbers and letters, to
a simple unique integer. The contents of the structured and templates files were
loaded as pandas dataframes. A new column was added to the templates content
for the new identifier. The two dataframes could then be merged based on their
’EventIds’ in order to map the new identifier to each line in the log.
By dropping all columns except for the LineId and TemplateId, a new simplified
dataframe could be obtained which can be seen in figure 3.3.

Figure 3.3: Dataframe for 1 file

By considering the content seen in figure 3.3 as the data for each log, a new dataset
was created that was much simpler with the possibility of normalizing the data if
needed as it is easier to map positive integers to values between zero and one than
a combination of integers and characters.
Using this new dataframe, each log file can be visualized through a plot where
the x-axis corresponds to what line the log message is in the log and the y-axis

21

3. Methods

corresponding to the log message type (TemplateId). An example of such a plot
can be seen in figure 3.4. Naturally, as the new identifier is assigned incrementally,
the value on the Y-axis will generally increase the deeper we go in the log and more
new log messages we see resulting in a generally deterministic, but still, stochastic
trend.
With time, and as more logs are being added to the dataset, new logs would contain
new log messages that were not present in the logs of previous executions. This was
due to the fact that new log messages are created as the tests are developed, and
these new log messages need to be assigned a new unique identifier as well. This
was solved by simply mapping each new log message to a integer that is bigger than
the previous largest identifier for every new message. Given the latest identifier x,
the identifier of the new log message would then be x+1. The new log messages are
not restricted to only show up at the end of the logs and could therefore be on any
line of the log. As these log messages could occur anywhere in the log, the plot of
the dataframe of a log would contain spikes in the places where the identifier would
be much bigger than the identifiers of the messages surrounding the new one. This
further increased the stochastic nature of the logs although it had no effect on the
performance of the models, but did reduce the linearity of the plots.

Figure 3.4: Plot of LineId and TemplateId

This process of parsing, changing identifier, and merging tables was then repeated
for every file that would be in the dataset.
After the parsing each log file was completed, the data had to be pre-processed.
The pre-processing was done by dividing the dataframe of each log into input and
output signals. The input signals would be given to the model and the model was
expected to give the output signal. By doing so, this task becomes a supervised
learning task.
The way that the data was divided depends on what model is used. Further details
for division of data can be seen in the respective method of each model.

22

3. Methods

3.2 Algorithms

3.2.1 First LSTM model
The process of creating the dataset for the first LSTM model used a sliding window
approach with a stepsize of one. The sliding window was used to iterate over the
logs and for each iteration, the number of occurrences of each message type in the
window was stored. This process is visualized with two examples in figure 3.5.

(a) Example 1 of list of TemplateIds (b) Window 1 observation

(c) Example 2 of list of TemplateIds (d) Window 2 observation

Figure 3.5: Example of what the sliding window sees.

Figure 3.5 shows an example of the aforementioned window iteration where fig-
ures 3.5a and 3.5c represent the log file only showing each lines TemplateIds. Each
box in these figures represent one line in the log, the content of this line is represented
by the TemplateId. The blue box seen represents the sliding window. Figures 3.5b
and 3.5d are the lists of occurrences of each TemplateId that the sliding window
observes in the log and these lists will be referred to as the occurrence lists.
By using a window of size three, as shown in figure 3.5a, three log messages will be
’seen’ by the window for each iteration. In the case where the observed messages
are 1,2, and 3, then the occurrence list will be populated with a value of one in
the positions representing message 1,2, and 3, as can be seen in figure 3.5b, due to
each message only occurring once in the window. The occurrence list now represents
what messages and how many times they have occurred in the window.
If the messages observed by the window are 5,6, and 5, as seen in figure 3.5c, then the
positions representing message 5 in the anomaly list would be populated with a two
as message 5 was observed two times in the window and the position representing
message 6 would be populated with a one as message 6 was only observed once in
the window. This is shown in figure 3.5d.
This process is repeated for every iteration and a new occurrence list is created for
each iteration. For j iteration, j anomaly lists will be created. A list of length i is
filled with the j number of occurrence lists resulting in a matrix of size i× j. This
matrix is the basis of the LSTM approach, hence, it will be called LSTM Matrix.
The data in this matrix is then split up into two sets, one to be used as the input
values and one to be used as the expected output values. This division of data is done

23

3. Methods

by iterating through the matrix and for every matrixi: matrixi,0 until matrixi,j−1
are the inputs and matrixi,j is the expected output of the model. The model is
then trained to predict matrixi,j based on matrixi,0−(j−1). In this way, the model
is trained on the matrix in order to learn how many times each message type will
occur based on the previous x windows.
Anomaly detection: For the anomaly detection using this model, a list with
a length equivalent to the length of the log is used. This list is initialized with
zeros and will be referred to as the anomaly list. The model is first used to make
predictions resulting in a list of predicted windows. These windows contain the
predicted occurrences of each log message per window and should correspond to
what would be observed if the method for creating the dataset described above was
applied to the log being analyzed.
The sliding window approach is used here again, but for a different purpose. The
sliding window is applied to the dataframe representing the log, as described in
3.1, and each predicted window is compared to the actual windows observed from
the log. This comparison is continued throughout the whole log/dataframe. For
each predicted window containing one or more faulty predictions, the whole area
that the window is looking at is incremented with a one in the anomaly list. For
instance, if the window is looking at lines 3, 4, and 5, in the log and the prediction
of the occurrences in this window is wrong, then the positions in the anomaly list
representing lines 3, 4, and 5, are incremented by one. An example of this is shown
in figure 3.6.

Figure 3.6: Example of how the anomaly list is incremented depending on a
faulty prediction.

In the example shown in figure 3.6, the sliding window has a window size of three
and a step size of one. An anomaly exists on line five in the log. In a log from a
successful execution with no anomalies, the messages on the first 9 lines of the log
might be 1, 2, 3, 4, 5, 6, 7, 8, 9. The anomaly could have a TemplateId of 100
meaning that the messages on the first 10 lines of the log with the anomaly would
be 1, 2, 3, 4, 100, 6, 7, 8, 9. As the model would expect this sequence of logs to
not contain a 100, the prediction on line 5 would not match the sequence seen in
the log with the anomaly. As the sliding window is iterating over the log, three of
the sliding windows will ’see’ the faulty prediction and anomaly. In figure 3.6, these
three windows are represented by the blue, green, and orange lines.

24

3. Methods

The positions in the anomaly list representing these lines would be incremented
three times, once by each window that observed the anomaly. The result of the
increments in the anomaly list is a gradually increase, peak, then gradual decrease
in values. This gradual increase and decrease results in peaks where the prediction
is most certain. After all the iterations of the sliding window, the anomaly list can
be plotted to visualize the predictions. An example of this can be seen in figure 3.7.

Figure 3.7: Plot of anomaly list.

The peaks in the plot are then considered anomalies and their corresponding x value,
on the x-axis, indicate the line in the log where an anomaly exists.
If the window size were to be changed, then the highest possible value of the peak
would also change. These two values are equal as the window size dictates the
number of windows that will observe each point. The number of windows that
observe each point will increase, and decrease, if the window size does. With a
quick analysis of this methodology a problem becomes clear. Using this approach,
anomalies at the ends of the log will not be detected as the peaks at those points
will not be overfed by the same number of windows. But luckily, the solution to this
problem is very simple.
For example, using a window size of 20 and a step size of 1, the expected peak value of
a prediction on a anomalous log message is 20. But as the sliding window approaches
the end of the list, this value would decrease as less windows would observe each log
message. Given a list of length 1000, then at position 981, 19 windows have seen that
point. At position 982, 18 windows have seen that point, and so on until we reach
the final value in the list, in which only one window would have seen that point.
Therefore, this attribute of the approach is taken into consideration when analyzing
the peaks in order to avoid mistakenly interpreting a prediction of an anomaly as
a prediction stating the absence of an anomaly. By making sure that the peaks at
the end of the list can be of a lower value, this oversight can be avoided. The same
logic applies at the start of the list. After this, the x values corresponding to the
peaks are considered anomalies, and they were stored in a list to be used later.

25

3. Methods

3.2.2 Second LSTM model
The dataset for this model was created in a similar manner to the method mentioned
in section 3.2.1, though differing slightly as it was done in a more traditional manner.
Again, a sliding window approach used with a step size of one. The sliding window
had a window size of x and the datapoints from 0 to x were considered as the
input signals. The datapoint in position x + 1 was considered the expected output
signal. The window size, or x, was obtained based on results from testing many
values ranging from four to 100. Using this approach, each prediction is based on x
previous observations.
Following the completion of the sliding window, each output signal and its corre-
sponding input signals were divided in to separate lists to be used with the model
during training.
Similarly to the previous method, mentioned in section 3.2.1, there is only one
feature used in the dataset, the unique message identifier called ’TemplateId’. As
all datapoints are of this type, the prediction will similarly be of this type, therefore
the model is predicting what type of log message should occur after x observed
messages. The model could now be used as a time series predictor.
In order to learn the characteristics of a log from a passing execution, only such logs
were used in the training set. The logs of several successful executions were used
when creating the training set and the model was then trained on this dataset. After
that, the model was used as a predictor on new logs in order to find anomalous lines.
Due to the training, the model will make predictions that align with the expected
behavior of a log from a passing execution, therefore, if a prediction is faulty, i.e., the
log being analyzed does not adhere to what the model is expecting, it can be assumed
that the log contains some kind of anomaly. Each prediction made was compared
to the actual log message in the log being analyzed and all faulty predictions were
considered as an anomaly.
Same as the previously described model, the lines corresponding to the anomalies
were stored in a list of anomalies.

3.2.3 Random forest model
Initially, the dataset used for the random forest classifier was the same as the one
described in section 3.2.2, meaning that x number of TemplateId datapoints were
used to predict the x + 1th datapoint. Similarly, the training set only consisted of
logs from passing executions. The random forest was then trained on the training set
and thereafter it was used for predictions on the test set. The anomaly detection was
done using the same principle as the methods described in sections 3.2.1 and 3.2.2:
As the model is trained on only logs from passing execution, the predictions will be
biased towards those sequences and a acceptable sequence will be expected. If the
prediction is wrong, it is assumed that the log does not follow a standard sequence
and the faulty prediction is caused by an anomaly. These anomalies were stored in
a list as well.
However, as mentioned in section 2.4.1, the random forest classifier is inherently
bad for time series predictions. In an attempt to improve the performance of the
classifier, the dataset was altered in a manner that would improve the accuracy of

26

3. Methods

the predictions. To do this, more content from the logs were added as features in
order to enhance the classifiers understanding of the logs and therefore help it make
better predictions. Some examples of the added features are the level of the log
message and the component causing the printout.
As with all models, manual hyperparameter tuning was done in order to improve the
models performance. In addition to this, and the increase of features added to the
random forest classifier, an exhaustive grid search was carried out. The exhaustive
grid search was done on a wide range of variables which required a long execu-
tion time, but helped verify and improve the results of the manual hyperparameter
tuning.

3.2.4 Markov-Chain model
Other than the steps mentioned in section 3.1, no other pre-processing or steps
were done. Instead, the results from the steps in section 3.1 were the basis for this
method. Granted, naturally, the logs where divided into a training set consisting
of only logs from passing executions and a test set. A square matrix, that would
be used as the transition matrix, was created with a length equal to the number of
unique log messages. Each log that was in the training set was analyzed and each
transition between two log messages was logged in the matrix. After all the logs in
the training set had been analyzed, the average probability of each transition was
calculated. With these probabilities, the matrix had become a transition matrix.
When a prediction needs to be done on a new log, every transition of said log would
be compared to those of the transition matrix. As only acceptable transitions would
be stored in the transition matrix, if any transition found in the log could not be
found in the transition matrix, it would be considered as an anomaly. Specifically,
the log message at the end of the transition would be considered the anomalous line.
In the case when an anomaly was found, two transitions would be seen as new, the
first one being the transition from the log message before the anomalous message,
and the second being the transition from the anomalous message to the log message
succeeding it. Due to this, the latter transition has to be ignored as this will cause
false positive predictions since only the first transition is considered anomalous, by
the definition given above, and the second one is a by-product of the anomaly. If
more than one anomaly was present, one after the other, then the final transition
would be the one considered faulty and therefore ignored.
The lines in the log, where these anomalies occurred were stored in a list, same as
what is done for the other models.

3.2.5 Aggregation of predictions
Initially, we planned to examine the performance of a few models and continue the
study using one of the models that displayed better performance in comparison to
the others. Thereafter, the best performing model was to be further improved with
better hyperparameter tuning. When it was observed that all models had many
false positive predictions, we reassessed the plan. By considering the strengths and
weaknesses of the models a new plan was devised. In an attempt to reap the benefits

27

3. Methods

of each models strengths, the predictions of all models was to be aggregated in a
manner similar to how the random forest classifier operates. With this ensemble like
methodology, the predictions that would be acted on were the ones which most, if
not all, of the models agreed on. An example of this is if by combining three models
in which one model considers lines two, three, and four, of the log to be anomalies,
but the other models considers only line two and three as anomalies, then line four
would not be considered as an anomaly.
Taking this into account, as each model make predictions, they will be stored in
a list specific to that model. Then, these lists will be analyzed and a final list of
aggregated predictions will be created in which only the predictions that all models
agreed on will be stored.

3.3 Flow analysis
Before a flow analysis can be done, the flows need to first be found. Considering
one log, the flows of this log should be similar to the previous execution. Therefore,
the log that needs to be analyzed will be compared to the flows found in the log
of the previous execution. The flows are generated from an analysis done on the
TemplateIds of the log.
Using a sliding window approach, we are able to iterate over a log and analyze the
contents of each window iteration. First, a window size has to be chosen and in
this example the window size will be three. Considering a sequence observed by the
window being "5->6->7", then the rest of the log would be searched to find this
sequence. If this sequence was to appear multiple times in the log, the values after
each occurrence of the sequence would be compared. If all of these values were the
same, then the window would be moved one step ahead. Continuing the example,
if all values after each occurrence of the sequence "5->6->7" are "8", then the next
sequence to be analyzed is "6->7->8".
If this is not the case, and some of the values after one or more of the windows
are different, then there is a possibility that the sequence is a shared segment from
different tasks. In order for this to be confirmed, the window is extended one step
back, and now of length four. The window will change from "5->6->7" to "4->5->6-
>7", if "4" is the values before the window. Following the increase of window size, the
same forward check is done as described above, only now using a bigger window. In
the case where the values in front of each occurrence of the, now extended, window
are the same, then the window was reduced to its original size and moved one step
forward. In this example, the value after would be "8" and the window would be
changed from "4->5->6->7" to "6->7->8". In the case where the values after the
sequence are not the same, then the last point of the window is a so called divergence
point. In this example, "7" would be a divergence point.
This process was then repeated for the entire log.
As a divergence point can be cause by either concurrency or a new task, this has to be
evaluated for each divergence point that is found. Continuing with the same example
as above, if for the sequence "4->5->6->7" the next possible values are "8, 26", then
sequences "4->5->6->7->8" and "4->5->6->7->26" have to be evaluated. If the
value after each window was the other possible next value, i.e. "4->5->6->7->8-

28

3. Methods

>26" and "4->5->6->7->26->8", then this was most likely caused by concurrency.
On the other hand, if the divergence point was caused by a new task, then the
possible next values, "8" and "26", would not appear after each other.
After all of the divergence points, as well as their cause, was found, the sequences
between these divergence points were considered sub-flows. The sub-flows were
then converted to a list of lists for ease of use. When a prediction is done and an
anomaly is found, the line of the log where this anomaly occurred could then be
used to extract each sub-flow containing that line. These sub-flows are the expected
behavior of the log and can then be compared to the actual behavior of the log
containing the anomaly. Showing these two sub-parts of the logs results in an easier
comparison.

3.4 Testing
The testing that was conduced was done in two parts where each part served to
evaluate the performance of the models in different use cases. The first test was
done using all the collected logs in one big dataset, while the second test was done
in order to simulate a more realistic situation in regard to the amount of available
data. These two tests are described in following subsections.

3.4.1 Test 1
Many ML tests are done on big datasets as it better shows the general performance
of the model in question. With the aim of gathering such a result, test 1 was done in
the same fashion using a larger training set consisting of most of the gathered logs.
All logs from failed executions, and therefore containing anomalies, were added to
the test set. For every log in the dataset containing an anomaly, a log without an
anomaly, close in time-of-execution, was added to the test set as well. The remaining
logs were then added to the training set. The training set was then used to train all
the models and the time required to train each model was logged. After the training
was concluded, the models ability to detect anomalies was then tested on the test
set. The total number of anomalies, detection rate, as well as the total number of
false positives were then compared.

3.4.2 Test 2
The purpose of test two was to simulate a more realistic situation in regard to the
amount of available data. In addition to this, the more realistic scenario was set
up in order to simulate how the models would perform in production. First, the
logs were divided based on when the test that created them was executed. The
division resulted in groups where each group consisted of logs from test executions
done during the time span of one week. All passing logs from week x were then used
to train the models and, after the training, the models would be used for anomaly
detection on the logs from week x+ 1. The results from the predictions done on the
logs from week x+1 was compared in the same manner as mentioned in section 3.4.1.
Following that test, the trained models were further trained on logs from week x+1,

29

3. Methods

meaning that the models were now trained on logs from week x and week x + 1.
The models were then used for anomaly detection on week x + 2. Each time the
models were used as anomaly detectors, the amount of false positives and number
of anomalies that they detected were compared, i.e., the same sort of comparison
done for test 1 described in section 3.4.1.

3.5 Evaluation
After each test was done on a test set, the evaluation was performed. The method
of evaluating the results was identical for test 1 and test 2. After the anomaly
detection was complete, the total false positives, false negatives, true positives, and
true negatives were gathered for each model and used in a confusion matrix as
described in section2.5.1. This was done for each model. These values were then
used to calculate the precision and recall, using the formulas seen in figure 2.8. With
these values calculated, the F1-score of each model was computed and all the results
were plotted in bar charts to make the comparison easier.
For test 2, this procedure was repeated for each sub-test.

3.6 Re-evaluation of ’good’ logs
The testing of the models performance was done more than once. After the analysis
of the the first round of tests was completed, it became clear that some of the logs
though to not contain any anomalies, as the test executions that generated the logs
had been marked as passed, in actuality had anomalous log messages in them. In
order to expedite the detection and collection of these logs, a new plot was created.
The plots were created for each log that a model had a faulty prediction in and
displayed each models faulty predictions. This was done in order to differentiate the
logs containing false positives, and the logs containing anomalies. An example of
this can be seen in figure 3.8. The x-axis in the figure represents the lines of the log
and the y-axis is omitted as it is only used to give a uniform spacing of the different
models.

Figure 3.8: Anomaly spotted from predicting on a ’good’ log.

With a quick glance of these plots, it was more obvious for some logs than others
that they contained anomalies. The most suspicious logs could be gathered and since
every prediction of a possible anomaly had a corresponding line id value with it, the
actual suspicious logs could be extracted. If the suspicious log was an anomalous
log message, an automatic search was programmed to go through all logs and see

30

3. Methods

which ones contained the anomaly, but had been marked as passing the test. These
logs could then be removed from the training set and added to the test set.

31

3. Methods

32

4
Results and discussion

In this section, the results from the parsing and the tests are presented with a
corresponding evaluation of each individual model’s performance. In addition to
this, every possible permutations of the models predictions are also evaluated. The
evaluation is done by examining how adequate each model is at finding anomalies
in the logs. Furthermore, the time needed to train each model is compared and
included in the evaluation. Finally, the results are discussed and conclusions are
made based on the discussion.

4.1 Parsing and Preparation of Dataset

The number of unique log messages would not stay consistent between test execu-
tions. With time, the logs would contain an increasing amount of new unique log
messages. With the addition of each new unique log message, a similarly new and
unique identifier had to be assigned. As the change of identifiers discussed in sec-
tion 3.1 resulted in a mapping of each unique log message to an integer, each new
unique log message could be assigned an identifier simply by following this mapping.
Each new unique log message would be mapped to an integer of higher value than
the most recent identifier assigned. These new log messages could occur at any
point in the log. If the new log message was located anywhere other than at the
very end of the log, it would result in a plot of said log to have a spike in the x-value
corresponding to the line the new log message appeared in. This was due to the fact
that the new identifier would have a much higher value than the identifiers of the
log messages surrounding it. An example of this behavior is visualised in figure 4.1a.
The same behavior was observed in logs that contained anomalies. As the logs were
being parsed, the anomalous log message would be assigned an identifier with a
higher value than the rest of the log as this log message was considered new and
unique. The anomalous log message could also appear anywhere in the log, leading
to these spikes. In figure 4.1b, this behavior is shown.
If the new non-anomalous log messages, which was causing these spikes, are rare
enough, they could result in false positive predictions with certain models. The
presence of a new log message that is not adhering to the expected characteristics of a
log from a successful test execution, is considered an anomaly. A rare non-anomalous
log message can therefore also follow this definition and cause it to be, wrongly,
detected as an anomaly. This is possible because a model can be insufficiently trained
to distinguish the non-anomalous log message from an anomalous log message.

33

4. Results and discussion

(a) Plot of several good logs. (b) Plot of bad log on top of good log

Figure 4.1: (a) Example of spikes caused by new non anomalous messages (b)
Example of spikes caused by anomalies

4.2 Individual Model Performance
In the following subsections, the results of a test run with each model will be pre-
sented.

4.2.1 LSTM matrix
The performance of the LSTM matrix, LM, was evaluated and then reevaluated
after training with fewer epochs with the purpose of lowering the time needed to
train while maintaining desirable performance. When training for 200 epochs using
a GTX1080, the training took around 34 minutes. The training loss of this training
can be seen in figure 4.2a where the label shows the id of each log file. Coincidentally,
the validation loss followed the exact same curve and resulted in the exact same plot.
From the aforementioned plot, it is clear that less training can be done while still
maintaining similar, if not the same, performance. Figure 4.2b shows the loss when
training with 25 epochs. From this plot it is clear that further reducing the epochs
to a value in the range of 5-25 epochs will have little to no negative impact on the
accuracy of the model when using this dataset.

(a) (b)

Figure 4.2: Training loss when training with (a) 200 and (b) 25 epochs.

34

4. Results and discussion

After the training, the model’s performance was evaluated using two different test
sets. One test set contained logs without anomalies, while the other test set con-
tained logs with anomalies. Figure 4.3 shows the results from these tests where
figure 4.3a shows predictions done on the test set where no logs contained any
anomalies and figure 4.3b shows the predictions on the test set which had logs with
one or more anomalies.
The plots in figure 4.3 contain two y-axis. The first y-axis, on the left of each plot,
represents the ’TemplateId’ and is the similar in nature to the plots shown before in
figure 4.1. The second y-axis, on the right side of each plot, represents how certain
the model is that there is an anomaly on any given line (x-axis) in the log on a range
from zero to 100%.
Different curves in the figures show which log is being plotted, indicated by the logs
identifier number, and the resulting predictions done on that plot.

(a) (b)

Figure 4.3: Prediction on test set (a) no anomalies, (b) with anomalies.

As can be seen in figure 4.3a, the spikes described in section 3.1 and shown in
section 4.1 are present in the logs that are devoid of anomalies and still the model
is able to classify those logs, causing the spikes, as non-anomalies. This means that
they do not have any impact on the predictions. The logs shown in figure 4.3b have
spikes that are caused by both anomalies and non-anomalous log messages. Yet the
model is able to correctly classify these datapoints.

4.2.2 LSTM2
Similar to the evaluation of the LSTM matrix model’s performance, the more tra-
ditional LSTM model was also evaluated, and then re-evaluated after training with
fewer epochs with the same purpose of lowering the time required to train while
maintaining desirable performance. When training for 100 epochs using a GTX1080,
the training took 44 minutes and 40 seconds though it was immediately observed
that the number of epochs could be greatly reduced, for this model as well, with no
negative effect to the categorical accuracy. The number of epochs was lowered to 25
and the training was repeated.
Figure 4.4 contains two plots, one showing the categorical accuracy during the train-
ing, and the other one showing the training loss. As can be seen from the two plots,

35

4. Results and discussion

the number of epochs could be further reduced, while still maintaining a good cat-
egorical accuracy. Reducing the number of epochs to 25 changes the time required
for training the model to 11 minutes and 49 seconds.

(a) (b)

Figure 4.4: Plot of (a) categorical accuracy and (b) training loss.

Reducing the training to 10 epochs further reduced the training time to 5 minutes
and 43 seconds. Figure 4.5 shows the categorical accuracy and training loss when
training for 10 epochs. Here, we see that similar results can be achieved, as when
training for more epochs, while saving time on the training of the model. However,
further reductions in number of epochs lead to a decrease in model accuracy and
training for 25 epochs proved to be a point with good trade-off between training
time and accuracy.

(a) Plot of the categorical accuracy during
training.

(b) Plot of training loss.

Figure 4.5: (a) Categorical accuracy. (b) Training loss.

After the training was complete, the model was tested on a test set. Figure 4.6 shows
the results from using the model as an anomaly detector on the test set depicting
the predictions as points on a plot of a log. The dots representing each prediction
can be either green or red where green indicated that the prediction was correct and
red indicated that the prediction was faulty.
Figure 4.6a shows predictions done on a test set containing no logs with anomalous
log messages. Figure 4.6b, on the other hand, shows the predictions done on a test
set which had logs with one or more anomalies. The number of wrong predictions

36

4. Results and discussion

shown in figure 4.6b does not correspond to the number of anomalies in that log
meaning that there are false positive predictions around each anomalous point.

(a) (b)

Figure 4.6: Plots of predictions done on a test set (a) with no anomalies and (b)
with anomalies.

As described in section 3.2.2, the model requires x datapoints in order to make a
prediction for datapoint x + 1. In the above figure, it is clear that no predictions
are made on the first few log messages due to this. This is the caveat with this
approach as no predictions can be done in the first window of x log messages. In the
above figure, the size of the sliding window was 67, leading to no predictions on the
first 67 log messages. The first log message that could be evaluated for anomalous
content would be the log message on line 68 in the log. As anomalies can occur at
the start of a log file, this will lead to any anomaly in the first 67 lines on the log to
be undetected.

4.2.3 Random Forest
The random forest classifier is much quicker to train than the LSTM models. Using
the same amount of logs for the training set the random forest classifier required
only 5.26 second to train. In comparison to the performance of the LSTM models
showed in sections 4.2.1 and 4.2.2, the random forest classifier performed poorly.
It had many more false positive predictions and generally did not seem to be able
to correctly predict non-anomalous lines. Due to this, the changes mentioned in
section 3.2.3 had to be implemented in order to make the random forest classifier
a viable option. Increasing the features to include the LineId, TemplateId, Com-
ponentId, LevelId, and Level2Id from the log messages, the performance could be
improved by a large margin.
Figure 4.7 shows the results from using the random forest classifier as an anomaly de-
tector on the same test set before and after the improvement was implemented. Each
prediction is shown as a dot on top of a plot of the log file. The dots representing
each prediction can be either green or red where green indicates that the prediction
was correct and red indicates that the prediction was faulty. Figure 4.7a shows
the predictions before the improvement was implemented and figure 4.7b shows the
predictions after the improvement was implemented and the random forest classifier
was retrained.

37

4. Results and discussion

(a) Before increasing features. (b) After increasing features.

Figure 4.7: Change in RFC’s predictions as a results of the increase in features
and improved hyperparametes.

In addition to the increase in features, manual hyperparameter tuning was done.
This further increased the performance of the random forest classifier. But as a
final step, an exhaustive grid search was performed. The exhaustive grid search
included a wide range of values and therefore required a log execution time. After
completion, the hyper parameters found resulted in a slight improvement to the
results gathered after the manual hyperparameter tuning.
The results shown above, in figure 4.7, were the results of training and testing on
log files, whose tests that created them, were executed immediately after each other.
This means that if the logs in the training set were from tests executed on during one
week, then the logs in the test set were from test executions the week immediately
after. This fact proved essential when determining how well the random forest
classifier actually performed as an anomaly detector. From figure 4.7, it is clear
that the applied changes greatly improved the ability of the random forest classifier
to correctly predict non-anomalous log messages.
Following the test mentioned above, the random forest classifier was further tested
on more logs where some of them were from failed test execution, meaning that
they contained anomalies. The results of this test can be seen in figure 4.8 where
figure 4.8a shows the results of using the random forest classifier as an anomaly
detector on a log without anomalous log messages and figure 4.8b shows the results
when the log contained anomalies.

(a) Plot of predictions on logs without
anomalies.

(b) Plot of predictions on logs with
anomaly.

Figure 4.8: Results from using the RFC as predictor.

38

4. Results and discussion

From the results depicted in the above figures, the random forest classifier seems
to perform well as there are minimal false positives and all anomalies are detected.
Although the results seem promising, they do not accurately depict the random
forest classifiers performance in this use case. As mentioned earlier, if the logs
in the test set and training set are from test executions close to each other, the
random forest classifier will perform well, but when there is more time between the
test executions generating the logs in the training set and test set, the classifier’s
performance will be greatly impacted. As more development is done and the tests
change, so will the logs. Therefore, there will be more differences between the logs
in the training set in comparison to the ones in the test set. This difference proved
detrimental to the performance of the random forest classifier. Figure 4.9 shows the
results of the same test as above but where the collection of training set logs and
test set logs were spaced out a bit more.

(a) Plot of predictions on logs without
anomalies.

(b) Plot of predictions on logs with
anomaly.

Figure 4.9: Results of RFC predictions when training set and testing set are
further between in time on execution.

Comparing the results shown in figure 4.9 to the results shown in figure 4.8 the
impact of the change in the logs has on the random forest classifier’s performance is
clear. There is a large increase of false positives in the predictions and it is especially
noticeable when analyzing a log from a failed test execution. Trying to analyse the
log of a failed execution where a third of the log messages are marked as anomalous
will not increase the efficiency of the process. Even though the anomaly might be
classified correctly, the amount this will help with making it obvious to a person
analyzing the log is vastly diminished by the shear amount of false positives.

4.2.4 Markov Chain
The time required to ’train’ the transition matrix classifier is by far the fastest in
comparison to the time needed to train the other models tested. For this model,
all that needs to be done is list iteration, addition, and division. Using 200 logs, it
takes approximately 600ms to create the transition matrix needed. But if we look
at the time complexity of these operations, we see that the time required to create
the transition matrix will increase exponentially and there will therefore be a limit
to the number of logs that can be used to create the transition matrix while the
approach is still considered useful.

39

4. Results and discussion

Using this transition matrix classifier as an anomaly detector proved to work quite
well. The results from testing the classifiers performance can be seen in figure 4.10.
The results of the predictions are again shown by dots where the green dots indicates
that the prediction was correct and the red dots indicates that the prediction was
faulty.

(a) Plot of predictions on logs without
anomalies.

(b) Plot of predictions on logs with
anomaly.

Figure 4.10: (a) Prediction on test set with no anomalies. (b) Prediction on test
set with anomalies.

As long as the transition matrix is kept up to date, the accuracy of this approach is
close to 100% with nearly no false positive predictions and all anomalies detected.
The only problem that occurs is when there is a new log message introduced, then
this will always be classified as an anomaly. Another problem, not shown in the
figure, is when there is a change in the flow due to concurrency. Then, the new
sequence of logs, while not anomalous, will be classified as an anomaly by the tran-
sition matrix classifier as it will contain transitions that are not in the transition
matrix.

4.3 Aggregated predictions

The aggregation was done with the predictions of two, three, and all four models.
All different permutations of two and three models predictions was also tested. This
means that if two or more models agreed on the classification of a datapoint, then
that classification was considered. This aggregation was only done for log messages
classified as anomalous and if, for instance, the predictions of two models were
aggregated, then both needed to agree on a prediction for it to be considered an
anomaly. This method made it possible to reduce the total number of false positive
predictions.
Figure 4.11 shows the results of aggregating the predictions of four models and the
different models are color-coded for ease of comparison. The x-axis corresponds to
what line in the log the prediction was made on and the y-axis corresponds to the
number of models which classified that line as anomalous.

40

4. Results and discussion

Figure 4.11: Aggregation of all predictions

As can be seen in figure 4.11, the number of points on the x-axis where 4 models
agree is far less than the number of points where one, two or even three models
agree.
Through testing, it was later observed that many of the false positives were caused
by wrongly labeled logs. This meant that the models were trained on logs with
anomalies which lowered the performance of all models and caused an increase in
false positives and a reduction in true negatives.
From the figure, it becomes clear that the number of false positives will predomi-
nantly be affected by the model with the fewest false positives. The best performing
model in the combination will largely dictate how many false positives the combi-
nation will have. By also considering the time and computations needed to train
multiple models compared to only the best performing one, the usefulness of this
aggregation diminishes, at the very least for this application and with these models.
How this aggregation affects the number of true negative predictions is analyzed in
the following section.

4.4 Test results

4.4.1 Test 1
The first test aimed to compare the general performance of the models, as well as the
different combinations of their predictions, by using a big dataset. For this test, the
models were trained on a large amount of logs followed by testing them on a smaller
test set. The test set consisted of fewer logs than the training set and some of the
logs were from failed test executions which meant that they contained anomalies.
Supplementary to the performance evaluations of each model, it was also important
to compare the time needed to train each model. Table 4.1 shows these times when
the models where trained on the bigger dataset.

Platform LSTM
Matrix

LSTM
Sequential

Random
Forest

Markov
chain

GTX1080 30min 17s 42min 20s 00min 38s 00min 01s

Table 4.1: Training time for test 1

As can be seen in the table, it is clear that the creation of the transition matrix
is far faster than the training of any of the other tested approaches. Following the

41

4. Results and discussion

time of the transition matrix classifier is the random forest classifier, requiring less
than a minute to train. Lastly are the two LSTM models, but noticeably the LSTM
matrix approach is ≈ 28.5% faster to train than the ’traditional’ LSTM approach.
Though this time difference will matter very little if the performance of the faster
models is worse.
Figure 4.12 contains two plots, figure 4.12a shows the true positive rate of each
model, and all combinations of the models predictions, while figure 4.12b shows
the true negative rate for the same models. The labels indicate what model, or
combination of models, each bar is for. The names of the models have been shortened
where Lm is for LSTM Matrix, Ls is for LSTM Sequential, Rf is for the random
forest classifier, and Mv is for the Markov chain inspired transition matrix classifier.
For any combination of these models the label is simply the concatenation of the
shortened names.

(a) (b)

Figure 4.12: Test 1’s (a) true positive rate and (b) true negative rate

As can be observed in figure 4.12b, the true negative rate is dependant on every
model in a combination to be able to detect all anomalies. If one model is unable
to detect all anomalies, then any combination of predictions done with this model
will likewise not be able to detect all anomalies. Any combination of predictions is
only as strong as the weakest part of the combination. As the ’traditional’ LSTM
model was unable to detect ≈ 35% of the anomalies, any combination done with
this model did not find those anomalies either. The reason for the ’traditional’
LSTM model not detecting some anomalies is, as mentioned in section 3.2.2 and
shown in section 4.2.2, due to there being no predictions done in the first window
and this test containing logs whose anomalies where within the first 67 lines of the
log. This meant that even if another model did detect those anomalies, this model
would not agree on those predictions leading to the predictions being dismissed when
aggregating predictions.
The actual benefit of the aggregation of predictions can be seen in figure 4.12a for
any combination containing the random forest classifier. The true positive rate for
the random forest classifier is much lower than any combination containing it and
another model. This indicates that the false positive predictions of the random forest
classifier are, mostly, not for the same log messages as the false positive predictions
of the models whose results are being aggregated with the results of the random
forest classifier.

42

4. Results and discussion

Metric LSTM
Matrix

LSTM
Sequential

Random
Forest

Markov
chain

FP % 0 100% 100% 0

Table 4.2: Number of logs without anomalies that had false positive predictions.

Another observation made was that the false predictions done by the models were
spread out differently. The LSTM matrix model and the transition matrix classi-
fier made no false positive predictions in logs that contained no anomalies. All of
the false positive predictions made by these models, albeit few, were in logs that
contained anomalous log messages. In addition to this, all of the false positive pre-
dictions where close to the line where the anomalous log message was present. To
give an example, if the anomalous log message was on line 55 of the log, then the
false positive prediction were usually on lines 54 and 56.
The ’traditional’ LSTM and the random forest classifier, on the other hand, had
false positive predictions in all the logs in the test set. Although the amount of false
positive predictions were relatively low, they occurred in every single log tested.
The results in figure 4.12 makes it seem as if a combination of the random forest
classifier and any other model is a good idea, but the fact that the classifier is very
inaccurate means that the benefit of the combination is one-directed. For example,
if the random forest classifier is combined with the LSTM matrix model, then the
LSTM will improve the results compared to only using the random forest classifier.
If we compare the results of the LSTM with the results of combining the LSTM
with the random forest classifier, then we see no improvement. Figure 4.13 shows
the aforementioned inaccuracy of the random forest classifier. In this figure, each
line that the models classify as an anomaly is represented by a color coded dot. A
gray vertical bar is drawn where, and only if, an anomaly is present. The y-axis can
be disregarded as it is only used to give a uniform spacing of the models predictions.
in figure 4.13a, we see the predictions of each model on a log that contains an
anomaly. It is obvious that the predictions of the random forest classifier do not
help the overall accuracy of any model if their predictions were to be combined
with those of the random forest classifier. From this, we can conclude that the
combination of predictions can seem to help, although in reality it is just the better
performing model that is dictating what is classified as an anomalies.
What has been stated above likewise holds true for predictions done on logs with-
out anomalies. Figure 4.13b shows an example where the ’traditional’ LSTM’s
predictions contained more false positives than the predictions of the random forest
classifier. Here, the total number of false positive predictions can be reduced by only
considering the log messages that are classified as anomalous by both the random
forest classifier and the ’traditional’ LSTM.
In the case where two models perform similarly in regard to the number of false
positive predictions and the predictions rarely occur on the same lines, then the
aggregation is very beneficial. From these tests, any combination usually consists of
two, or more, models where one model greatly outperforms the other ones. There-
fore, it is more beneficial to simply use the better performing model rather than
deal with the increased complexity of training more models and aggregating their

43

4. Results and discussion

results. An as seen in figure 4.12 the benefit of the combination is at most 1.1%
(disregarding the random forest classifier).

(a) More random forest false positives. (b) Less random forest false positives.

Figure 4.13: (a) Example where random forest predictions do not help reduce
false positives. (b) Example where random forest predictions help reduce false

positives.

From the results of test 1, some conclusions can be made, mainly that the LSTM
matrix model and the transition matrix classifier have the best performance both in
regard of true positives and true negatives. They are the best options when trying
to detect anomalies in any new log which has not been present in previous passing
tests. The transition matrix classifier gets the edge here as it is the fastest to train
and therefore has a higher gain vs. cost value. If the amount of data was to be
increased, then the transition matrix classifier would simply not be an option as it
would require much more time to train.
Moreover, from the test we can conclude that there is no benefit to combining the
models predictions and a better option is to chose either the LSTM matrix or the
transition matrix classifier based on the amount and size of the logs as these models
had the best precision and recall.
The caveat with this testing methodology is that the effects of concurrency that
can occur in the logs cannot be properly tested. In addition to this, the effect that
the continuous development of test has on the logs cannot be tested either. For this
reason, test 2 is needed to show how the models perform during those circumstances.

4.4.2 Test 2
Test 2 is supposed to simulate a possible application of the anomaly detection and
aid in the evaluation of the models performance in such a situation. In this test, less
data will be used to train the models and with time, this amount will be increased
and the models will be further trained. As the amount of data increases, so does the
amount of new log files and other differences between the logs. The use case which is
being simulated is that the models are being trained, and used, on the automatically
run tests. Logs from these test executions will be collected during one week, and
then the models will be trained and the models will be used for anomaly detection
the next week. Thereafter, the models will be further trained on the second week’s
logs and used as an anomaly detector on the logs of test executions executed during
week three.
The big dataset used in test 1 is split up into groups depending on when the logs
were created in which each group represents one week of test executions. Each week
of test executions consists of seven days worth of logs where each day contains 24

44

4. Results and discussion

logs. With this, the testing can be done to analyze the performance on a week by
week basis.
Due to the ratio of logs without anomalies to logs with anomalies being very high,
the faulty predictions caused by the presence of an anomaly can be obscured by the
amount of non-anomalous log messages. In order to not diminish the false positive
predictions on this dataset, the tests were run twice. First the models were used
as anomaly detectors on the full test set, then the models were tested again, but
on a subset of the test set that contained equal amount of logs with and without
anomalous log messages.

4.4.2.1 Train on week 1, test on week 2

In this test, the models were trained on logs from the tests executed during week 1.
After that they were used as anomaly detectors on logs from tests executed during
week 2.
The time needed to train each model is shown in table 4.3.

Platform LSTM
Matrix

LSTM
Sequential

Random
Forest

Markov
chain

GTX1080 08min 02s 10min 59s 00min 09s 00min 0.5s

Table 4.3: Training time for test 2-1

Here we see a reduction of 74% for the time needed to train each model, while the
dataset decreased by 73% showing a linearity between the size of the dataset and
the time needed to train.
The results of the test can be seen in the two plots of figure 4.14. Figure 4.14a
shows the true positive rate when testing the full test set of logs from tests executed
during week 2 while figure 4.14b shows the same metric but when the subset of the
test set was used.

(a) Prediction on full week 2 test set. (b) Prediction on subset of week 2 test set.

Figure 4.14: (a) Prediction on full week 2 test set. (b) Prediction on subset of
week 2 test set.

In this test, all models correctly classified all anomalies. No anomalies were present
in the first 67 lines of the log, meaning that the issue with using the ’traditional’
LSTM was not present. A stark difference can be seen in the true positive rate of
the random forest classifier between the two test sets. This is due to the fact that
the random forest classifiers predictions on any log with an anomaly follows the

45

4. Results and discussion

behavior seen in figure 4.13a. This becomes more obvious when the ratio of logs
with and without anomalous log messages is closer to one.

Metric LSTM
Matrix

LSTM
Sequential

Random
Forest

Markov
chain

subset FP % 0% 100% 100% 0%
full FP % 6% 100% 100% 3.6%

Table 4.4: Test 2-1: Number of logs that had FP and no anomalies

Similar behavior, as seen in test 1, in the spread of false positive predictions is seen
here, although we see a slight increase for the LSTMmatrix and the transition matrix
classifier. Some of the false positive predictions made by the LSTM matrix were
caused by completely new log messages that it could not predict. The remaining
false positive predictions of this model were caused by faulty predictions at the end
of the log. This happened because the predictions made by the model are weaker
at the end of the log, as described in section 3.2.1.
The false positive predictions made by the transition matrix classifier were caused
partly by completely new log messages, and partly because of new log sequences.

4.4.2.2 Train on week 1&2, test on week 3

In this test, the first two weeks had passed meaning that the models could now be
trained on the logs from the tests executed during week two. With this two-folded
increase in training data, the models were used as anomaly detectors on the logs
from tests executed during week 3.
In table 4.5 we see the time needed to train the models. With the two-folded increase
of logs in the training set, we see a similar increase in time required to train the
models showing the same linearity between the amount of logs used to train the
models and the time required to train them as seen in the reduction of logs in the
dataset between test 1 and the first part of test 2. The transition matrix classifier
is the one that is least adhering to this linearity.

Platform LSTM
Matrix

LSTM
Sequential

Random
Forest

Markov
chain

GTX1080 15min 52s 21min 45s 00min 18s 00min 0.8s

Table 4.5: Training time for test 2-2

After the training, the models were yet again used as anomaly predictors, but now
on the logs from week 3. This test, much like the one above, was repeated using a
sub section of the test set with equal amounts of logs with and without anomalies.
Figure 4.15a shows the true positive rates of the models when using the full test set,
and figure 4.15b shows the true positive rates when using the smaller test set.

46

4. Results and discussion

(a) Prediction on full week 3 test set. (b) Prediction on subset of week 3 test set.

Figure 4.15: (a) Prediction on full week 3 test set. (b) Prediction on subset of
week 3 test set.

These results show a repetition of the performance difference seen in previous tests.
The LSTM matrix model and the transition matrix classifier outperforms the ’tra-
ditional’ LSTM and the random forest classifier when comparing the true positive
rates.
Where the results from this test differs from the one above is in the true negative
rate, i.e., the number of anomalies detected. In the logs from the tests executed
during week 3, some anomalous log messages appeared in the first few lines of the
logs. As mentioned before, these anomalies cannot be detected by the ’traditional’
LSTM. Figure 4.16 shows the true negative rate of each model.

Figure 4.16: Plot of true negative rate per model and combination of predictions.

The true negative rates seen in the above figure correspond to the results seen in
section 4.4.1, except that the number of anomalous log messages in the first 67
lines of the log is greater in this test set. The results of combining the logs reflect
the results seen, and commented on, in section 4.4.1. Due to the large number of
datapoints and slight rounding, it is evident that the transition matrix classifier had
a true positive rate of 100% even though it did make false positive predictions. A
point of interest in regard to those false positives is what caused them. Most of
the false positives where the results of new sequences of log messages caused by
concurrency. From this, we can see that the transition matrix classifier might not
be an ideal option when used on logs that can change over time.
Figure 4.17 shows an example of faulty predictions done by the transition matrix
classifier, random forest classifier, and the ’traditional’ LSTM, but not by the LSTM
matrix.

47

4. Results and discussion

Given that the transition matrix is updated very regularly, most of the false positives
can be avoided, but not in all cases. Since concurrency can cause logs without
anomalies to have new transitions between non anomalous log massages, more false
positive predictions will occur. Given the two non anomalous sequences "1-2-3-4-5-6"
and "1-2-5-6-3-4", if every transition in the first sequence is known by the transition
matrix, but not the other sequence, then the transition matrix classifier will classify
the second sequence as anomalous. Furthermore, for the transition matrix to be
updated with a new transition, the new transition has to occur, meaning that a
false positive prediction will be made before it can be avoided.
This is where the LSTM matrix performs well. Given a big enough window, in this
example 6 is fine, then the window will see that all the same messages are present in
the window, just in a different order. As the predictions are made on the occurrences
of each message in a window, they will be exactly the same for the two sequences
as both sequences contain the same number of each log message. If a window only
sees part of the sequence, then that window will assume the presence of an anomaly,
but due to other windows not agreeing, this will not be wrongly classified as an
anomalous sequence.

Figure 4.17: Example of markov FP due to concurrency

The few false positive predictions caused by the LSTM matrix and transition matrix
classifier where spread out a bit more across the logs without anomalies compared
to previous tests while the random forest classifier and the ’traditional’ LSTM still
had false positive predictions in all the logs of the test set. These numbers are shown
in table 4.6

Metric LSTM
Matrix

LSTM
Sequential

Random
Forest

Markov
chain

subset FP % 0% 100% 100% 0%
full FP % 11.8% 100% 100% 10.5%

Table 4.6: Test 2-2: Number of logs that had FP and no anomalies

4.5 Flow analysis
When an anomalous log message was detected, the first step of the flow analysis was
to find the sub-flows. This was done as described in section 3.3. Thereafter, the list
of sub-flows could be used to display what flow was expected compared to the flow

48

4. Results and discussion

gotten in the log being analyzed. The manner of how the differences in the flows
was displayed can be seen in table 4.7.

Expected Got
1-Test starting 1-Test starting
2-step 1 2-step 1
3-step 2 3-step 2
4-step 3 4-step 3
5-step 4 107-Total traffic loss.
6-step 5 6-step 5
7-step 6 7-step 6
8-step 7 8-step 7

Table 4.7: Results of flow analysis.

In the example given above, only one sub-flow is relevant to the anomaly found. The
sub-flow is shown in comparison to the log messages, of the log with the anomaly,
that appeared on the same lines. This means that if the relevant sub-flow appears
on lines 1-8, then lines 1-8 of the log with the anomaly are shown in comparison,
even though they might contain log messages from different sub flows.
If there would be more relevant sub-flows, then these would be displayed on the left
side in a ’or chain’. For example, if there were three possible sub-flows then these
would be displayed as "sub-flow1 or sub-flow2 or sub-flow3".

4.6 Discussion
As discussed earlier in this chapter, combining the prediction of different models has
little to no observable positive effect on the overall accuracy, performance, or true
positive rate of the models. Whether two, three or even four models are combined,
the same result was always observed. The reason of this is that the combination of
the models can only perform as well as the worst performing model when considering
the number of detected anomalies. If two models are combined and only one of them
cannot detect all anomalies, then, since the models need to agree on the predictions,
the anomalies that one of the models was unable to detect will also be overlooked by
the combination. Although, it was observed that in some instances, the combination
led to a reduction in total number of false positives. Still, this method was further
discredited as a viable option due to the increase in time required to train several
models, for the purpose of aggregating the results over just training one. In some
applications, reducing the number of false positives has great value, but in the
application described in this thesis, the value of a small decrease in number of false
positives diminishes as the time required to train increases.
This is further proved by the fact that the largest decrease in the number of false
positives happened when a good model is combined with a bad one. As this can
cause anomalies to be overlooked, no real value is seen in reducing false positives at
the cost of reducing true negatives. It is much simpler, and of less cost, to train the

49

4. Results and discussion

better model and use only that one without the need of adding the extra steps in
order to aggregate predictions of several models.
The results showed that the LSTM Matrix implementation was not affected by the
shifting order of logs caused by concurrency. In addition, the implementation showed
a reduction in total false positives in comparison to the ’traditional’ LSTM approach.
Another aspect where the LSTM Matrix implementation performed better than its
’traditional’ counterpart was when an anomaly was present in the beginning of a
log. Due to the window size of the ’traditional’ LSTM, any anomaly appearing
within the first window will be overlooked by the model as these data points are
needed to make a prediction. Reducing the window size was shown to worsen its
performance, and therefore, it is not a viable solution to avoid this issue. Not only
did the ’traditional’ LSTM approach perform worse, but also, it required more time
to train compared to the LSTM Matrix.
The random forest classifier, RFC, was very quick to train, but showed to be useful
only when the logs that were analyzed were similar to the training data, i.e., the
test set was similar to the training set. This means that the RFC can be used if
it is retrained often, but the logs would still have to remain similar in nature. As
development is constantly done and the logs change with time, every time such a
change occurs, the RFC would not perform well and would have to wait for enough
executions to be done in order to create a new dataset.
The use of a transition matrix classifier, TMC, outperformed the RFC and it even
needed less time to train. Therefore, it made the RFC obsolete when comparing
these two approaches. Compared to the RFC, the TMC still performed well when it
was used as an anomaly detector on logs from executions which were not that close
to the ones in its training set.

50

5
Conclusion

In this section, we start by focusing on the context and importance of the topic
covered in this thesis followed by addressing the main parts of the thesis in a sum-
marized way. This is then followed by a review of the key points in this thesis and
motivation and the methods that are used to tackle the challenges. After that, we
revisit the main results that were achieved in this work and provide a final take-home
message. Finally, we comment on some possible future works that can be done.

5.1 Motivation and Importance of the Work
There are many applications of machine learning models. As their usage is increased,
we allow more humans to move away from tedious work in areas where these models
thrive. Additionally, as more of the work can be done by machines in a more efficient
manner, we increase the value we gain from this work. In a world swimming in big
data, it is unfeasible both from an economical and a social aspect to have humans
manually go through heaps of information, but we should instead focus on the
development of machine learning tools for this purpose.
Complex systems in the telecommunication world that generate vast amounts of
data are continuously being updated and further developed. This means that with
time, not only will the amount of data they generate increase, but the complexity
of this data will increase as well. This is therefore a key area where we can apply
machine learning models to increase the business value we can extract from this
data. Humans would need constant training and a lot of experience to be efficient in
analyzing the logs that these systems would generate which will burden companies
with large cost and require many human resources. This is therefore a perfect
application for machine learning models whose cost of training is the hardware,
electricity to run the hardware, and the comparatively few people to create and
maintain the models.
Many have seen the potential and spent time and resources in researching this
topic. The work done in this thesis has specifically researched a method to tackle
the negative impact that concurrency in logs have on the performance of the LSTM.
Key aspects to design this method include maintaining a high detection rate and
keeping a low false positive rate, while limiting the amount of logs (which are used
for training) in order to reduce the time needed to train and make it possible to use
the model in a quickly changing production environment.

51

5. Conclusion

The main questions answered by this work have been:
• Is it possible to use ML to learn what is expected from a log of a successful

test and highlight the differences in a failed test log?
• Can ML be used to detect abnormalities in logs?
• Will the usage of ML reduce the complexity or required time to analyse the

logs?
• How can this be used in other contexts? (e.g. customer logs, built-in software

logs)
• How does concurrency in logs affect the ML models and how can we avoid it?

These questions have been answered while focusing on the logs from regularly run
test cases which change over time as development is done on the tests producing the
logs. As there are different types of anomalies, this work has been done on sequential
anomalies, meaning anomalies that are caused by either missing lines (as a result
of an incomplete message sequence in the logs) or new lines (caused by errors) that
differ from what is expected based on logs from a successful execution of a test case.
There are many systems that generate logs of which we would like to analyze. As
many of these logs are written in real-time, there is a possibility that they will be
affected by concurrency. If we wish to use machine learning to analyze the logs,
this concurrency will greatly reduce the usefulness of the machine learning analysis.
By using the method proposed in this thesis we can avoid the issues caused by
concurrency in the logs and with that gain more value from the logs. Additionally,
we can relieve the tedious work from humans and let machines do this work. Many
man hours can be saved while also increasing the efficiency of which the logs are
analyzed.
With all of this said, it is clear that concurrency in logs when using machine learning
to learn expected ’good’ sequences has a negative impact on the predictive ability of
a LSTM. But as we can work around this negative impact with the method proposed
by this work, this obstacle is easier to overcome and both will and should not prevent
us from increasing the efficiency of which we analyze logs.

5.2 Key Steps and Intuition
One of the first steps in this thesis was to research how to parse and handle the data
in order to properly prepare it for the models that we tested. The log messages that
we were interested in, first had to be extracted and then parsed into a structured
format. The log parser Drain from LogPai’s Logparser toolkit was used as it is one
of the most accurate and efficient open-source online log parsers. Secondly, it was
important to compare some models to see which one would fit our application the
best. The LSTM was one of the main models used as it has very good performance
when dealing with sequential data. The performance of the LSTM was compared to
the random forest classifier and transition matrix classifier as they are lightweight in
comparison and therefore have a shorter training time. The new method of parsing
the data and use a LSTM was researched as a solution to the problem perceived
when dealing with concurrency in the logs. Finally, the flow analysis was done to
research a method of visualizing the discrepancies found in logs to a user in order
to ease the log analysis process.

52

5. Conclusion

5.3 Main Results
One key takeaway message from the results is the difference in how many false pos-
itive predictions each model made in the logs that contained no anomalies. Both of
the traditional LSTM and random forest implementations had false positive predic-
tions in 100% of the logs with no anomalies while the LSTM matrix and transition
matrix classifier had false positive predictions in a range from 0-12%, depending on
which circumstance was tested, if we round up. Additionally, the traditional LSTM
failed to find anomalies in the first 67 lines of the logs as these datapoints are re-
quired for the model’s first prediction. The LSTM matrix, mostly, circumvents this
problem as well as only the first three datapoints would have no predictions.
From the results it is clear that it is possible to use ML to learn what is expected from
a log of a successful test execution by only using the logs of successful executions as
the training data. Then, the predictions on other logs could be used to highlight how
a log from a failed execution differs from the logs of successful executions. The ML
algorithms showed good performance in detecting abnormalities in logs, and even
in logs that were thought to not have anomalies. This means that ML can be used
to reduce the complexity or time required to analyse the logs since the predictions
can be used to highlight the anomalies in a log. With the addition of showing what
sub-flow is expected, it will be even clearer what behavior the test was supposed to
have, and this can be compared to the actual behavior it shows. This would reduce
the total number of log messages needed to be read by a person to analyze it, and
therefore, decrease the total amount of time needed for the analysis of the log.
In order to apply this process of anomaly detection to other logs, only some under-
standing of the logs is required, so that the pre-processing can be done properly.
Then, the same methodology, and most of the same code, can be used to find
anomalies in the new logs.
This thesis has shown that it is of no use to try and use multiple models and that
effort should be put to finding one model that works best for the given situation and
then work with improving that one. In addition to this, this thesis’ contribution
is a new method of applying a LSTM to avoid the negative effect of the different
logs sequences that can appear. By using this method, we are able to completely
ignore the issue of different sequences caused by both concurrency and a change
in the test case. In addition, it allows us to improve the predictive ability of the
LSTM in regard to anomaly detection on logs whose log messages can appear with
different order over time. Additionally, the proposed method proved to work better
than the other models that were compared with it, and required less time to train
than the ’traditional’ LSTM. In instances where new log sequences were present,
the proposed method’s predictive ability stayed unaffected while the other models
had several false positive predictions.

5.4 Future work
The collected logs, that were used for this project, were the results of automated
test runs that were executed hourly. These logs were only stored in the system for a

53

5. Conclusion

limited time before they were automatically deleted. Due to the automatic deletion,
it was not possible to collect logs from a long period of time. In addition to this,
these tests have a very high success rate, close to 100%, meaning that it was also
difficult to collect logs that contained anomalies. Therefore, a point of interest is to
collect logs for a longer period of time and use them to redo the testing done in this
project. By doing this, a larger dataset can be gathered with the additional benefit
of having a larger variety of anomalies. From this larger dataset, more trends in
how the development affects the accuracy of the models can be observed since there
will be bigger changes from the first to last log. The results gathered from the tests
would also be more accurate due to the larger collection of data. As more anomalies
would also be present, it would be possible to see if all the types of anomalies can
be detected, and if the results gathered here were due to a small sample size.
Due to time limitation, a part of the development of the flow analysis was left
out. The current implementation only uses one log file to create flows which limits
the usage of the sub-flow comparison as many more sub-flows can be found when
analyzing several logs. By increasing the amount of log files used in the creation of
sub-flows, more general and accurate sub-flows can be created which would greatly
increase the usefulness of the flow analysis.
Another point of interest is to further develop the pre-processing in order for the
LSTM implementation to not only be used for anomaly detection in the sequence of
the logs, but also for the content in the log messages that they analyze. With this
addition, one more type of anomaly can be found which is parameter anomalies.
While on the topic of anomalies, it would be interesting to study the possibility of
generating anomalies and how this would affect the test results. If the generation
of anomalies shows similar results to tests run with real anomalies, then, this would
offset the need to wait for real world anomalies, and real test executions, which
would make it easier to evaluate the performance of each model.
The random forest performance could be improved more with a deeper analysis of
the methods recommended when using random forest for time series data. It would
be interesting to see how well random forest could perform with a dataset which is
more pre-processed in a manner which would make it more suitable to use with a
random forest classifier.

54

References

[1] Min Chen, Shiwen Mao, and Yunhao Liu. Big data: A survey. Mobile networks
and applications, 19(2):171–209, 2014.

[2] Ericsson. Microwave. https://www.ericsson.com/en/portfolio/networks/
ericsson-radio-system/mobile-transport/microwave. Accessed: 2020-02-
03.

[3] Anukool Lakhina, Mark Crovella, and Christophe Diot. Diagnosing network-
wide traffic anomalies. ACM SIGCOMM computer communication review,
34(4):219–230, 2004.

[4] Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael Jordan.
Online system problem detection by mining patterns of console logs. In 2009
Ninth IEEE International Conference on Data Mining, pages 588–597. IEEE,
2009.

[5] Jian-Guang Lou, Qiang Fu, Shengqi Yang, Ye Xu, and Jiang Li. Mining in-
variants from console logs for system problem detection. In USENIX Annual
Technical Conference, pages 1–14, 2010.

[6] Shilin He, Jieming Zhu, Pinjia He, and Michael R Lyu. Experience report:
System log analysis for anomaly detection. In 2016 IEEE 27th International
Symposium on Software Reliability Engineering (ISSRE), pages 207–218. IEEE,
2016.

[7] Jie Mei, Dawei He, Ronald Harley, Thomas Habetler, and Guannan Qu. A
random forest method for real-time price forecasting in new york electricity
market. In 2014 IEEE PES General Meeting| Conference & Exposition, pages
1–5. IEEE, 2014.

[8] Michael J Kane, Natalie Price, Matthew Scotch, and Peter Rabinowitz. Com-
parison of arima and random forest time series models for prediction of avian
influenza h5n1 outbreaks. BMC bioinformatics, 15(1):276, 2014.

[9] Kenichi Tatsumi, Yosuke Yamashiki, Miguel Angel Canales Torres, and Cayo
Leonidas Ramos Taipe. Crop classification of upland fields using random forest
of time-series landsat 7 etm+ data. Computers and Electronics in Agriculture,
115:171–179, 2015.

[10] Ke Zhang, Jianwu Xu, Martin Renqiang Min, Guofei Jiang, Konstantinos
Pelechrinis, and Hui Zhang. Automated it system failure prediction: A deep
learning approach. In 2016 IEEE International Conference on Big Data (Big
Data), pages 1291–1300. IEEE, 2016.

[11] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. Deeplog: Anomaly
detection and diagnosis from system logs through deep learning. In Proceed-

55

https://www.ericsson.com/en/portfolio/networks/ericsson-radio-system/mobile-transport/microwave
https://www.ericsson.com/en/portfolio/networks/ericsson-radio-system/mobile-transport/microwave

References

ings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, pages 1285–1298, 2017.

[12] Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael Jordan.
Largescale system problem detection by mining console logs. Proceedings of
SOSP’09, 2009.

[13] Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael I Jordan.
Detecting large-scale system problems by mining console logs. In Proceedings
of the ACM SIGOPS 22nd symposium on Operating systems principles, pages
117–132, 2009.

[14] Dhruba Borthakur. The hadoop distributed file system: Architecture and de-
sign. Hadoop Project Website, 11(2007):21, 2007.

[15] Marc Claesen and Bart De Moor. Hyperparameter search in machine learning.
arXiv preprint arXiv:1502.02127, 2015.

[16] Carl Benedikt Frey and Michael A Osborne. The future of employment: How
susceptible are jobs to computerisation? Technological forecasting and social
change, 114:254–280, 2017.

[17] James Manyika, Susan Lund, Michael Chui, Jacques Bughin, Jonathan Woet-
zel, Parul Batra, Ryan Ko, and Saurabh Sanghvi. Jobs lost, jobs gained: Work-
force transitions in a time of automation. McKinsey Global Institute, 150, 2017.

[18] Michael Koch, Ilya Manuylov, and Marcel Smolka. Robots and firms. 2019.
[19] James E Bessen, Maarten Goos, Anna Salomons, and Wiljan Van den Berge.

Automatic reaction-what happens to workers at firms that automate? Boston
Univ. School of Law, Law and Economics Research Paper, 2019.

[20] Jieming Zhu, Shilin He, Jinyang Liu, Pinjia He, Qi Xie, Zibin Zheng, and
Michael R Lyu. Tools and benchmarks for automated log parsing. In 2019
IEEE/ACM 41st International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP), pages 121–130. IEEE, 2019.

[21] Pinjia He, Jieming Zhu, Zibin Zheng, and Michael R Lyu. Drain: An online log
parsing approach with fixed depth tree. In 2017 IEEE International Conference
on Web Services (ICWS), pages 33–40. IEEE, 2017.

[22] Dansbecker. Using categorical data with one hot encoding, Jan 2018.
[23] Frank Rosenblatt. The perceptron: a probabilistic model for information stor-

age and organization in the brain. Psychological review, 65(6):386, 1958.
[24] Stuart Russell and Peter Norvig. Artificial intelligence: a modern approach.

2002.
[25] Michael I Jordan. Serial order: A parallel distributed processing approach. In

Advances in psychology, volume 121, pages 471–495. Elsevier, 1997.
[26] Weijiang Feng, Naiyang Guan, Yuan Li, Xiang Zhang, and Zhigang Luo. Audio

visual speech recognition with multimodal recurrent neural networks. In 2017
International Joint Conference on Neural Networks (IJCNN), pages 681–688.
IEEE, 2017.

[27] Alex Sherstinsky. Fundamentals of recurrent neural network (rnn) and
long short-term memory (lstm) network. Physica D: Nonlinear Phenomena,
404:132306, 2020.

56

References

[28] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 6.2. 2.3 softmax units
for multinoulli output distributions. In Deep Learning., pages 180–184. MIT
Press, 2016.

[29] Paul J Werbos. Generalization of backpropagation with application to a recur-
rent gas market model. Neural networks, 1(4):339–356, 1988.

[30] Michael C Mozer. A focused back-propagation algorithm for temporal pattern
recognition. Complex systems, 3(4):349–381, 1989.

[31] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning
representations by back-propagating errors. nature, 323(6088):533–536, 1986.

[32] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning
internal representations by error propagation. Technical report, California Univ
San Diego La Jolla Inst for Cognitive Science, 1985.

[33] Sepp Hochreiter. The vanishing gradient problem during learning recurrent neu-
ral nets and problem solutions. International Journal of Uncertainty, Fuzziness
and Knowledge-Based Systems, 6(02):107–116, 1998.

[34] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term depen-
dencies with gradient descent is difficult. IEEE transactions on neural networks,
5(2):157–166, 1994.

[35] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[36] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to forget:
Continual prediction with lstm. 1999.

[37] Xuan-Hien Le, Hung Viet Ho, Giha Lee, and Sungho Jung. Application of
long short-term memory (lstm) neural network for flood forecasting. Water,
11(7):1387, 2019.

[38] Klaus Greff, Rupesh K Srivastava, Jan Koutník, Bas R Steunebrink, and Jürgen
Schmidhuber. Lstm: A search space odyssey. IEEE transactions on neural
networks and learning systems, 28(10):2222–2232, 2016.

[39] Tin Kam Ho. Random decision forests. In Proceedings of 3rd international
conference on document analysis and recognition, volume 1, pages 278–282.
IEEE, 1995.

[40] Robi Polikar. Ensemble based systems in decision making. IEEE Circuits and
systems magazine, 6(3):21–45, 2006.

[41] David Opitz and Richard Maclin. Popular ensemble methods: An empirical
study. Journal of artificial intelligence research, 11:169–198, 1999.

[42] Random forest template for tibco spotfire®.
[43] Tony Yiu. Understanding random forest, Aug 2019.
[44] PJ Moore, TJ Lyons, John Gallacher, and Alzheimer’s Disease Neuroimag-

ing Initiative. Random forest prediction of alzheimer’s disease using pairwise
selection from time series data. PloS one, 14(2):e0211558, 2019.

[45] Grzegorz Dudek. Short-term load forecasting using random forests. In Intelli-
gent Systems’ 2014, pages 821–828. Springer, 2015.

[46] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press,
2012.

[47] Paul A Gagniuc. Markov chains: from theory to implementation and experi-
mentation. John Wiley & Sons, 2017.

57

References

[48] Peter H Peskun. Optimum monte-carlo sampling using markov chains.
Biometrika, 60(3):607–612, 1973.

[49] Mr Matthew T Jones. Estimating Markov transition matrices using proportions
data: an application to credit risk. Number 5-219. International Monetary Fund,
2005.

[50] Herman Scheepers. Markov chain analysis and simulation using python, Nov
2019.

[51] Stephen V Stehman. Selecting and interpreting measures of thematic classifi-
cation accuracy. Remote sensing of Environment, 62(1):77–89, 1997.

[52] Yutaka Sasaki et al. The truth of the f-measure. Teach Tutor mater, 1(5):1–5,
2007.

[53] Abhigyan. Calculating accuracy of an ml model., Jul 2020.
[54] C.J. van Rijsbergen. Information retrieval, 1979.
[55] Marina Sokolova and Guy Lapalme. A systematic analysis of performance mea-

sures for classification tasks. Information processing & management, 45(4):427–
437, 2009.

58

	List of Figures
	List of Tables
	Introduction
	Problem Description
	Related work
	Research questions

	Limitations and challenges
	Ever-changing logs
	Anomalies
	Other Challenges

	Sustainability and ethical aspects
	Societal effects
	Ethical Aspects
	Ecological Aspects
	Economical Aspects

	Contribution
	Thesis structure

	Theory
	Logs
	Logs used in the project
	Parsing
	Drain
	One hot encoding

	Types of anomalies
	Sequential anomalies
	Parameter anomalies

	Neural Networks
	NN and Sequential Data
	Recurrent Neural Networks
	Long Short-Term Memory

	Classifiers
	Random Forest
	Markov Chains

	Evaluation techniques
	Confusion Matrix
	F1-Score

	Comparing logs using flow analysis

	Methods
	Log Processing
	Algorithms
	First LSTM model
	Second LSTM model
	Random forest model
	Markov-Chain model
	Aggregation of predictions

	Flow analysis
	Testing
	Test 1
	Test 2

	Evaluation
	Re-evaluation of 'good' logs

	Results and discussion
	Parsing and Preparation of Dataset
	Individual Model Performance
	LSTM matrix
	LSTM2
	Random Forest
	Markov Chain

	Aggregated predictions
	Test results
	Test 1
	Test 2
	Train on week 1, test on week 2
	Train on week 1&2, test on week 3

	Flow analysis
	Discussion

	Conclusion
	Motivation and Importance of the Work
	Key Steps and Intuition
	Main Results
	Future work

