¥ CHALMERS |

UNIVERSITY OF TECHNOLOGY

UNIVERSITY OF GOTHENBURG

Virtualisation of Computer Nodes in
Radar-Systems

An Investigation into Performance and Power Overheads of
Virtual Layers

Master’s thesis in Computer science and engineering

SOFIA WERNER

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG

Gothenburg, Sweden 2019

MASTER’S THESIS 2019

Virtualisation of Computer Nodes
in Radar-Systems

An Investigation into Performance and Power Overheads of Virtual
Layers

SOFIA WERNER

UNIVERSITY OF
GOTHENBURG

CHALMERS

UNIVERSITY OF TECHNOLOGY

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2019

Virtualisation of Computer Nodes in Radar-Systems
An Investigation into Performance and Power Overheads of Virtual Layers
Sofia Werner

© SOFIA WERNER, 2019.

Supervisor: Miquel Pericas, Department of Computer Science and Engineering
Advisor: Fredrik Larsson and Jonas Berg, Saab Surveillance
Examiner: Ioannis Sourdis, Department of Computer Science and Engineering

Master’s Thesis 2019

Department of Computer Science and Engineering

Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg

Telephone +46 31 772 1000

Cover: A display of different versions of Saabs surface radar system Giraffe. Taken
2019-05-17 from: https://www.defencetalk.com/saab-receives-uk-orders-for-giraffe-
radar-systems-65120/

Typeset in BTEX
Gothenburg, Sweden 2019

iv

Virtualisation of Computer Nodes in Radar-Systems

An Investigation into Performance and Power Overheads of Virtual Layers
SOFIA WERNER

Department of Computer Science and Engineering

Chalmers University of Technology and University of Gothenburg

Abstract

This thesis work has investigated the impact and implications a virtual layer could
have in a transportable radar system in order to determine the feasibility of imple-
menting such a layer in Saab’s radar systems. Today, multiple computing boards
are used in the Data Processing unit of these radar systems, but in the future Saab
wishes to reduce this number. Before this can be done, it is important to know what
implications such a change might have. Investigating the potential performance loss
and the behaviour of different virtual layers can provide answers to if and what kind
of virtual layer could be used in Saab’s systems. This has been done by measuring
the performance differences between running an application on a physical machine
and running the same application in a virtual layer. Our experiments show that the
virtual layer itself does not have a significant impact as long as the virtual layer op-
erates under the same conditions as the physical machine, i.e. it has the same clock
frequency the same amount of RAM etc. In addition to measuring performance,
we have also made an attempt to investigate the impact the virtual layer has on
the energy consumption. Our main findings are that the performance in terms of
execution time is barely impacted when running CPU heavy applications in Docker
containers while Docker containers have a significant impact on I/O operations. A
potential drawback from using Docker containers is that our energy measurements
suggest that the container could possibly increase the energy consumption signif-
icantly. We also find that a Xen guest could possibly have performance close to
the physical machine if both machines are running on CPUs with the same clock
frequency. We come to the conclusion that Xen is a feasible tool to use in order
to facilitate transition from a structure consisting of multiple physical computing
boards to a structure only containing one physical computing board. Our observa-
tion is that a virtual layer does not have a significant impact on CPU performance,
but the performance of 1/O operations is noticeably negatively affected. Energy
consumption could only be measured on Docker containers and here we observe an
increase in energy consumption on a process level.

Keywords: Virtualisation, radar systems, Docker, Xen, performance.

Acknowledgements

I want to thank my advisors Fredrik Larsson and Jonas Berg at Saab for their help,
support and encouragement during this project. Also, I want to thank my supervisor
Miquel Pericas and examiner Ioannis Sourdis for their help and guidance. A special
thanks goes out to the people on Saab that have in all possible ways helped me
during this project. A special thanks goes to my fiance for his support. Finally, I
want to show my appreciation to Tobias Isenstierna and Stefan Popovic for their
valuable input and insights that have helped me progress.

Sofia Werner, Gothenburg, June 2019

vii

Contents

List of Figures
List of Tables

1 Introduction

1.1 Aim . .
1.2 Scope . . .o
1.3 Contribution
1.4 Structureo

2 Background

2.1 Virtualisation technologies
2.1.1 Hypervisor.
2.1.2 Container-based virtualisation
2.2 Virtualisation technologies used in this project
221 Docker
2.2.2 Linux Container
2.2.3 Xen Project Hypervisor
2.2.4 Kernel-based Virtual Machine
2.3 Related work
3 Methods
3.1 Current System Setup
3.2 Experimental setup
3.3 Criteria for first technology selection
3.4 Setup of virtual layers
341 Docker
3.4.2 Xen Project Hypervisor
343 LXC . ..
344 KVM. ...
3.5 Measuring performance and energy consumption
3.5.1 pTop o
3.6 Benchmark applications and tools
3.6.1 Phoronix test suiteo
3.6.2 STREAM
3.6.3 10zone benchmark,
3.6.4 John the Ripper.

xi

xiii

13
13
13
14
15
15
17
17
17
18
19
20
20
22
22
23

ix

Contents

25
25
25
26
26
28
28
31
31
33
35
36
37
38
38
39
40
42

47
47
48
49

51
ol
52
92

55
%)

57

3.6.5 Network performance
3.6.6 Data Processing applications
4 Results
4.1 Initial screening
4.1.1 Docker
4.1.2 LXC . .o
4.1.3 Xen
414 KVM. . .. e
4.2 Phoronix Test Suite
4.3 Performance benchmarking00
4.3.1 STREAM
4.3.2 I0zone benchmark test
4.3.3 JohntheRipper.
4.3.4 Networking
4.3.5 DP applications
4.4 Energy benchmarking o0
441 STREAM
442 I0zone
443 JohntheRipper. L.
4.5 Summary
Discussion
5.1 Energy measuring Lo
5.2 Benchmarking results L
5.3 Motivation of prioritisation choice
Transitioning to a virtual environment
6.1 Feasibility
6.2 Howtodoit.
6.3 Recommendations
Conclusion
7.1 Futurework
Bibliography
A Appendix 1
Al Dockerfiles
A.2 Xen configuration file L

2.1
2.2
2.3
3.1

4.1

4.2

4.3

4.4

4.5

4.6

4.7

List of Figures

This figure shows the Hypervisor type II architecture 6
This figure shows the container architecture 7
This figure shows how a hardware call is handled in a Xen system.

The arrows shows the path the call takes before reaching the hardware. 10

Graph showing a visual representation of the container configuration.
Each box represents a container and each container inherits the con-
tents from the one above it in the hierarchy. 16

The graph shows the combined average impact the virtual layers had
on CPU, memory and disk performance. The blue bars show the
average of all positive impacts across all three suites. The red bars
show the same thing but for negative impacts. The orange bars show
the overall impact the different virtual layers had on the PTS tests. . 29
This Figure shows the positive, negative and overall impact the four
different layers had on the PTS test suites. 30
This graph shows the combined average impact that was observed
when considering the results from the CPU and memory suites from

The two graphs show the changes in energy consumption for 10 con-
secutive STREAM processes split up into disk, memory and CPU en-
ergy consumption. Figure 4.6a shows the energy consumption when
the processes are run in a docker container and Figure 4.6b shows the
same but for a run on the physical machine. 39
This graph shows a comparison between the energy consumption of an
STREAM processes run both in the native OS and inside a Docker
container. The energy consumed by the Docker Daemon and the
Container Daemon is included in the Docker energy. 40
The two graphs show the changes in energy consumption for an 10-
zone process split up into disk, memory and CPU energy consump-
tion. Figure 4.6a shows the energy consumption when the process is
run i a docker container and Figure 4.6b shows the same but for a
run on the physical machine. L. 41
This graph shows a comparison between the energy consumption of
an [Ozone process run both on the physical machine and inside a
Docker container. The energy consumed by the Docker Daemon and
the Container Daemon is included in the Docker energy. 42

xi

List of Figures

xii

4.8

4.9

4.10

The two graphs show the changes in energy consumption for a John
the Ripper process split up into disk, memory and CPU energy con-
sumption. Figure 4.8b shows the energy consumption when the pro-
cess is run i a docker container and Figure 4.8a shows the same but
for a run on the physical machine.
This graph shows a comparison between the energy consumption of
an John the Ripper process run both in the native OS and inside a
Docker container. The energy consumed by the Docker Daemon and
the Container Daemon is included in the Docker energy.
This Figure shows the average execution time for STREAM, IOzone
and John the Ripper when they are run on the physical machine, in
a Docker container and on a Xen guest.

3.1

3.2

4.1

4.2
4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

List of Tables

This table shows the specifications of the Dell Precision M4800 laptop
that was used for scoring the virtualisation techniques. This is our
baseline system. Lo
This table shows a summary of the two test cases that was used to
measure disk energy consumption and disk performance. Test case
1 was used for the former and Test case 2 was used for the latter.
Test case 1 was run 1 time on the physical machine and in a Docker
container while Test case 2 was run 10 times on the physical machine,
in a Docker container and on a Xen guest.

This table shows the specifications of the virtual Docker machine as
it was reported by PTS.
This table shows the specifications of the virtual LXC machine.

This table shows the specifications of the virtual Xen machine as it
was reported by PTS.
This table shows the specifications of the virtual KVM machine as it
was reported by PTS.
This table shows the averages of the output from STREAM after it
was run 10 times in a Docker container, where the vector operations
are executed 50 times for each run.
This table shows the averages of the output from STREAM after it
was run 10 times on a Xen guest, where the vector operations are
executed 50 times for each run.o L
This table shows the averages of the output from GNU time after
running STREAM 10 times in a Docker container, where the vector
operations are executed 50 times for each run.
This table shows the averages of the output from GNU time after run-
ning STREAM 10 times on a Xen guest, where the vector operations
executed 50 times for each run. L
This table shows the average read and write speed 10zone reported
when running the 7 tests we had chosen inside a Docker container. . .
This table shows the average read and write speed 10zone reported
when running the 7 tests we had chosen on a Xen guest.
This table shows the average output from GNU time after 10 runs of
I0zone in a Docker container.

List of Tables

Xiv

4.12

4.13

4.14

4.15

4.16

4.17

4.18

This table shows the average output from GNU time after 10 runs of
[Ozoneon a Xen guest. 35
This table presents the average output of GNU time after running
John the Ripper on a password file 10 times in a docker container. The
last column presents the percentage difference between these averages. 36
This table presents the average output of GNU time after running
John the Ripper on a password file 10 times on a Xen guest. The last

column presents the percentage difference between these averages. . . 36
Round trip times for the five network routes reported by ping after
30 seconds. Numbers are in milliseconds. 37
This table shows the jitter and packet loss observed when having five
different constellations of iperf3 clients and servers. 37
This table shows the calculated average energy consumed by the three
measured applications. 41

This table shows the average number of context switches when run-
ning our three applications on the physical machine and in a Docker
container. 46

1

Introduction

Virtualisation was first used about fourty years ago. The purpose at that time was
to allow multiple users access to the same mainframe as a way of keeping hard-
ware costs down [28]. Today, virtualisation is widely used for other purposes such
as distributing workloads, increased system security, or implementing scaling mech-
anism in networks among other things. A common application for virtualisation
is Cloud Computing. In this application, the virtualisation is used for facilitating
scaling depending on the workload. This is achieved by letting the cloud consist of
virtual machines (VMs) and provisioning new VMs if the workload demands it [31].
Other common applications are load balancing through moving entire VMs between
platforms or run legacy software that is not supported by a new operating system
[28]. Saab is currently planing to make major changes to the hardware structure by
reducig the number of computing boards. Making this change will require that they
also make major changes to the software since the currently used software would oth-
erwise be rendered unusable. Virtualisation could here be used to create multiple
virtual computing boards on a single physical board and thus eliminate this problem.

This thesis work has been done in collaboration with Saab AB. Focused on investi-
gating if the software used in their mobile radar-system can be virtualised. Saab’s
software for data processing has been developed over a long period of time and is
customised for hardware that was considered good a decade ago. They now plan to
replace the OS and hardware in the data processing unit and thereby also change the
hardware structure. The software currently running on this unit has been custom-
made for this hardware structure which entails that any changes to this structure
would demand making changes to the software. In the best case scenario would the
software changes be limited to change some parameters in the installation scripts.
In the worst case would be the software needing a complete overhaul. By adding a
virtual layer between the hardware and the software, it would be possible to create
an environment that looks to the software like the old hardware structure on the
new hardware structure. This way, it would be possible to change and test the new
hardware structure ahead of making eventual software changes.

Before applying virtualisation in the radar-system, it is necessary to investigate
how the performance of software might be affected by this. The radar-system is
tracking targets in real time and the software needs therefore to be responsive and
not prone to lagging. Another important aspect is the energy consumption of the
system. Since the target of this project is a mobile radar-system with a limited
power supply, it is important that virtualising the software does not increase the

1. Introduction

energy consumption in a way that limits the operation time of the system to a point
where it is unacceptable. If the risk of lagging software is deemed too great or the
operation time is unacceptably limited due to increased energy consumption, it will
not be feasible to use a virtual layer in the proposed manner.

There are many techniques for creating a virtual layer. They are usually divided
into two groups, hypervisors and containers. These two groups present different
advantages and disadvantages, which entails that most systems would benefit dif-
ferently depending whether you choose to use a hypervisor or create containers. It
therefore becomes necessary to study different technologies in accordance with the
target system to find a solution that fits that particular system. For this project we
used proxy hardware, the choice for new hardware will be based on the outcome of
this project. We have therefore opted for running our experiments on a laptop and
focus on how the results change from running on a physical machine to running in a
VM or a container. Such a comparison between physical machine and virtual layer
will provide an estimation as to how the software will be affected by virtualisation
under the assumption that a certain virtual layer has the same effect on software
performance regardless of the underlying hardware.

We have researched the possibility of introducing a virtual layer into Saabs sur-
face radar system with the goal of replacing the multiple hardware nodes with only
one that can, as a first step, contain the old hardware nodes in virtual form and
later on run the software either natively or in a suitable virtual layer. The main
argument for using virtualisation is that it will be easier to keep the native OS up
to date without the risk of it loosing support for the radar software. Reducing the
number of computing cards to one will also save physical space inside the radar
shelter.

1.1 Aim

This project aims to investigate the feasibility of introducing a virtual layer into the
DP subsystem in Saabs radar systems. A virtual layer is likely to degrade perfor-
mance but this can be tolerated to a certain extent since Saab is planning to upgrade
the currently used hardware. The upgraded hardware is likely to have higher per-
formance than the one that is used in the system today. The loss, however, can
not be too great since hardware can only compensate to a certain limit. Knowledge
about the impact the virtual layer will have on the software will help to determine
the performance requirements of the new hardware.

In addition to investigating performance impact we also study the impact a vir-
tual layer can have on the energy consumption. If the virtual layer proves to have a
high impact on the energy consumption, this mean that using a virtual layer in the
transportable radar-systems is not feasible.

We also looked at what causes the overhead that is observed when running an
application in a virtual layer. Understanding the cause behind the overhead can po-

1. Introduction

tentially help finding ways to reduce or eliminate it depending on its characteristics.

1.2 Scope

For this project, we have only looked into using virtualisation to solve the possi-
ble incompatibility that might arise when making the proposed structural hardware
changes. It is possible that the incompatibility between currently used software and
the upgraded hardware can be solved without using virtualisation. However, virtu-
alisation can be beneficial in a longer perspective as well, which is why we want to
explore virtualisation as an alternative for facilitating the hardware upgrade.

We have also only focused on how performance and energy consumption could be
affected by running applications in a virtual layer instead of on a physical machine.
An other potential focus is to chose a certain virtalisation technique and investigate
how different configurations to that type of layer impacts the performance and en-
ergy consumption. We, however considered it more relevant for us to investigate
how different techniques impact the performance and energy consumption before
diving into how the virtual layer should be constructed in order to achieve the best
possible outcome.

Furthermore, we limit the work to only include measuring the performance when
running one VM at a time. When having determined how to best implement the
virtual layer, it becomes interesting to investigate how performance is affected when
running multiple instances of the same of different VMs.

1.3 Contribution

To the best of our knowledge, this is the first time the cause behind the overhead
incurred by virtual layers has been studied. Furthermore, the energy overhead has
never been studied. We therefore claim to make the following contributions with
this paper:

- We study the performance and energy overheads caused by two different vir-
tualisation technologies: Docker and Xen Project Hypervisor. This is done by
using a set of benchmark applications and other tools, such as GNU time.

- When analysing the performance overhead we show that neither Docker nor
Xen had any significant impact on the performance of CPU heavy applications.
I/O heavy applications on the other hand were significantly impacted by both
virtual layers.

- Based on the GNU time output we hypothesise that it is possible that the
Docker overhead involves an increase in context switching.

- The analysis we perform on the energy overhead suggests that Docker incurs
a significant overhead.

1. Introduction

1.4 Structure

The report is organised as follows:

Chapter 2 introduces topics that are important to our work. Here we introduce
the virtualisation techniques we have used as well as how our work relates to
work previously done in this area.

Chapter 3 describes how we used the virtualisation techniques described in
Chapter 2 in order to measure the performance and energy consumption. We
also describe how we evaluated the techniques.

Chapter 4 presents the results of our experiments. We also analyse the results
in this chapter.

Chapter 5 provides a discussion of how our results might have been impacted
by the chosen methods. We discuss how certain things could have been done
differently in order to achieve more reliable results.

Chapter 6 presents our recommendation on how to introduce a virtual layer
into the radar system.

Chapter 7 concludes the report and presents how our work could be continued.

2

Background

This chapter will provide an introduction to the most important topics that is ad-
dressed in this report. We will also use this chapter to highlight why virtualisation
is such a hot topic right now. The chapter starts with an overview of where the
virtualisation research is today and continues with describing the two largest fami-
lies of virtualisation technologies from which we have chosen the four virtualisation
technologies we investigated during this project. The chapter is concluded with an
introduction to the four virtualisation technologies we used.

2.1 Virtualisation technologies

Virtualisation technologies can be divided into two groups: containers and hypervi-
sors. Which technology one should use depends on the software that is intended to
be run inside the VM or the container.

2.1.1 Hypervisor

A hypervisor, or virtual machine manager (VMM) is a software layer that mimics
the underlying hardware by having the same instruction-set [5]. There are two types
of hypervisor, type I and type II. The type I hypervisor, e.g. Microsoft Hyper-V or
Project Xen hypervisor [13], is also known as bare metal hypervisor. This type of
hypervisor is loaded as part of the system kernel and boots before the OS. It there-
fore require the kernel to support such kernel modules. Some Linux distributions
are shipped with such a kernel, but not all. It is however possible to change kernel
in order to gain the required support. A type II hypervisor, e.g. VirtualBox or Java
Virtual Machine [2], is similar to a regular application in terms of it can be started
after the OS instead of always booting before the OS. Figure 2.1 shows a diagram
for a hypervisor II that manages concurrent 3 fully virtualised machines. Full virtu-
alisation means that the VMM runs on the host OS and enables the user to install
a complete guest OS inside a virtual machine. The guest OS will not know that it
is running on virtual hardware and will be able to interact with physical hardware
through the VMM in the same manner as it should if it were running directly on
hardware. Though this approach provides the most flexibility since it allows appli-
cations to be independent of the host OS, it comes with the disadvantage of a large
overhead which could in 2010 result in 30% performance loss [33].

Another approach to virtualisation is paravirtualisation, which is similar to full

5

2. Background

VM1 VM2 VM3
Apps Apps Apps

Bin/ Bin/ Bin/
Libs Libs Libs

Guest ||| Guest Guest
0S oS (O

Type II Hypervisor

Host Operating System

Physical Machine

Figure 2.1: This figure shows the Hypervisor type II architecture

virtualisation in terms of both using a hypervisor. The main difference between the
two is that a paravirtualised OS is aware of the hypervisor and coordinates oper-
ations with it to reduce the number of expensive privileged instructions which in
turn increases the performance of the paravirtualised machine above a similar fully
virtualised machine [38]. The hypervisor-awareness requires the OS to be modified
before running as paravirtualised guest OS. Some Linux distributions, such as De-
bian, has built-in tools that facilitates creating OS-images that can be used in a
paravirtualised machine [41].

2.1.2 Container-based virtualisation

This virtualisation technique is also called OS-layer virtualisation [33]. A container
does not contain a full OS image, but rather only an isolated filesystem of a certain
OS. Container-based virtualisation are more lightweight than the hypervisor due to
this and can thus in most cases provide higher performance than the hypervisor. It
is possible to reach performance levels almost on par with the host machine using the
container-based virtual-layer [20]. Containerising an application allows for limiting
the applications usage of certain resources, such as CPU, disk I/O and memory to
mention a few. The container includes all that the application needs to run, i.e.
system libraries, settings, code, runtime, system tools. This makes the container
able to run on different systems regardless of host OS [11].

Containerising an application can have a number of advantages. For instance, con-
tainerising facilitates moving an application from one machine to another. Only
requirement would be that the new machine is able to run containers. When con-
tainerising an application, the developer often divides it into smaller parts with
well-defined functions. These parts will then run together in so called microservices
and thus form the application [8].

A typical container life cycle consists of three phases: Image creation, testing and

6

2. Background

Container|Container|Container
App App App

Bin/ Bin/
Libs Libs

Container Engine

Host Operating System

Physical Machine

Figure 2.2: This figure shows the container architecture

accreditation; Image storage and retrieval; Container deployment and management.
During the first phase are application components created and packaged into im-
ages together with something that can prove the credibility of the image, most likely
some kind of certificate. The images are then tested in order to ensure correct func-
tionality. In the next phase are the images stored in a registry, either internal or
external depending on the purpose of the image. Images can also be pulled from
the registry by an orchestrator. In the last phase, the orchestrator deploys copies
of images into containers and thus start running instances of the application. The
orchestrator can also be used to manage the containers during runtime.

The orchestrator is a tool or multiple tools that a system administrator can use
for the above mentioned purposes. This tool adds an abstraction layer that al-
lows an administrator or an other automated tool to simply tell the orchestrator
how many containers and of what kind should be started, stopped or what ever is
needed to be done.

2.2 Virtualisation technologies used in this project

There exist a multitude of virtualisation techniques and testing all of them would
be a too big a task for this projects and we did therefore choose to work with four;
two hypervisors and two containers.

The following sections provides a overview of the four virtualisation techniques used
in this project. A discussion about why these were chosen instead of any other can
be found in Section 3.

2. Background

2.2.1 Docker

Docker is a container engine that comes in multiple flavours. For this thesis project,
the Docker Community Edition (Docker CE) 18.09 used due to it being free and
open source as well as been proven to provide relatively good performance while
being one of the most prominent container technologies [11, 18].

The container manager makes use of namespaces to isolate processes and create
containers [3]. When building an image, the Docker engine instructs the kernel to
create a new namespace and install necessary dependencies inside that namespace.
What these are is determined by what process will be running in the container.
Every process inside the container will be isolated from processes outside of the
container and thus be able to e.g. use other software versions than is installed on
the host. The containers does not have their own kernel but rather shares the native
kernel with each other and the native processes [15]. As default will containers be
blocked from directly interacting with anything listed under /dev/. If needed can
access to a specific resources be given at container startup by using the -device
flag and specifying which devices the container will visible to the container [1]. Fur-
thermore can the Docker Daemon be used to limit a containers usage of specific
resources, such as CPU time. cgroup, which is a tool for structuring process in
a group hierarchy in order to control access to such resources [7] is used for that
purpose.

Docker images are defined using Dockerfiles, and how they are built depend largely
on what filesystem is being used by the Docker engine [30]. In this project was Over-
layF'S used since that is the only file system supported by Docker CE. OverlayFS
combines filesystems or directory trees into an upper and a lower filesystem, where
the lower filesystem can be either another OverlayF'S filesystem or an arbitrary other
filesystem. If a file is present in both the upper and the lower filesystem will only
the version form the upper be visible. If a directory is present in both filesystem will
the directories be merged [29]. The Dockerfile describes how the filesystem in the
docker container should be built and each line in the file will represent one or more
layers to be added to the container image filesystem. The first line of the file either
specifies a image or filesystem to base your new image on or tells the engine that
you want to build an image from scratch [16]. The rest of the lines defines layers
that will be added on top of each other, starting on the base image [30]. Each layer
in turn will contain information about which one is its parent, its content and a
directory with the combined content of that layer and its parent layer. The building
of an image is performed lazily, meaning that the engine reuses layer from cache
when ever possible in order to speed up the build process.

2.2.2 Linux Container

Linux Container (LXC) is a Linux native container manager. The container man-
ager allocates a file system representing a given OS for the container and isolates it
from the rest of the host. A user can then log into the container as if it was any
other machine as well as install applications inside of it. As opposed to the Docker

8

2. Background

container is the LXC container built from only one layer and changes made to the
container during runtime is automatically saved between sessions. A LXC container
can be viewed as a lightweight VM due to it having the same file system as a full
OS but is not using any virtualised hardware [23].

The LXC container manager uses namespaces among other things to isolate the
container file system for the rest of the OS. LXC supports both privileged and
unprivileged containers. A privileged container will have almost the same capa-
bilities as the host while an unprivileged does not. As always is best practice to
give out the least possible privileges. An unprivileged container will not be able to
access or change anything outside the container. This is possible due to the use of
namespaces as well as user and grouplD. Processes running inside an unprivileged
container might from the containers perspective have 0 as UID and GID, while the
host actually have given them IDs above 10000 [22].

The function of a LXC container is like a mix between chroot and a VM. chroot
changes the root directory of a specified process while LXC creates a new root di-
rectory that will be the container and is isolated from the rest of the filesystem

[9]-

2.2.3 Xen Project Hypervisor

Xen Project Hypervisor (Xen) is a Type I Hypervisor, also called bare-metal hy-
pervisor. bare-metal means that the hypervisor is running directly on the hardware
instead of inside the OS. This hypervisor is developed by the Xen community as an
open source software. The Xen hypervisor provides flexiblity as to hardware con-
figuration by allowing the user to chose size of RAM, vCPUs among other things.
The CPU, memory and interrupt managment is handled by he hypervisor in a Xen
system.

Xen is installed as a part of the kernel and thus requires the kernel to have sup-
port for this, all Linux kernels does not. The hypervisor will boot at start up and
simultaniously start the first VM which is the control domain, typically referred to
as Dom0. This is the only VM that will have privileges to access hardware. From
Dom0 can other guests or domains be started. These will be unprivileged and are
typically referred to as DomUs. Each DomU will be running their own full OS and
will be independent from each other [39]. Quick Emulator (QEMU) is used for vir-
tualising hardware devices that is used by the DomUs. Each DomU will have their
own device drivers and a call to these drivers will incur a call to QEMU on Dom0
which in turn will make a call to the device drivers in the Dom0 kernel, see Figure
2.3.

When setting up the Xen system one needs to allocate and mount a volume that
can be used by Dom0 while leaving enough storage space for the other guests. Each
VM in the Xen system will have their own Logical Volume where their OS and
applications will be installed. The DomUs can be accessed from Dom0 either by
secure shell or by using a graphical desktop sharing system such as VNC.

2. Background

App

QEMU

Y

DomO0|Kernel

Device Drivers

Hardware

Device Drivers

Figure 2.3: This figure shows how a hardware call is handled in a Xen system.
The arrows shows the path the call takes before reaching the hardware.

2.2.4 Kernel-based Virtual Machine

Kernel-based Virtual Machine (KVM) is a Linux native virtual machine manager
which provides means for creating fully virtualised VMs. It is a type II hypervisor,
meaning that the hypervisor runs inside the OS. The kernel component has been
shipped with mainline Linux kernels since Linux kernel version 2.6.20 [19]. The
hypervisor QEMU to emulate hardware and the userspace component of KVM has
been shipped with QEMU since QEMU 1.3.

KVM can be installed and run on the host much like any other Linux applica-
tion. A guest OS can be installed inside a virtual machine in the same manner as
it would have been installed on a host machine.

2.3 Related work

As mentioned in Section 1 has most research on virtualisation been directed towards
uses in cloud computing and data centres. Tseng et al. proposes hypervisors and
containers can be used together in a fog platform [36]. The fog platform can be
viewed as an extension or a complement to a cloud platform [4]. The services in
a fog network is most often located at the edge of the network in order to provide
low latency. Typical applications in a fog network are streaming and other real-time
applications. The network function virtualisation infrastructure (NFVI) described
by Tseng et al. consists of a VM that runs Docker Engine. Functions such as load
balancing and orchestration are virtualised as virtual network functions (VNEFs).
Furthermore, they use orchestrator-agents that take over some of the tasks that the
orchestrator normally would have, thus reducing the loading the orchestrator. All
monitoring of the virtual private clouds in the fog network is done by the agents,
while the decision making is left to the orchestrator. This platform is used to test

10

2. Background

the authors fuzzy-based real-time autoscaling (FRAS) mechanism that is supposed
to help increase the availability of the services in the fog. The FRAS mechanism
uses the data collected by the orchestrator-agents during a time period to calculate
how much resources will be needed the next time period. The number of deployed
VNFs will be increased or decreased according to these calculations.

The performance of containers and VMs has been extensively investigated. Kozhir-
bayev and Sinnott studied the CPU, memory and I/O device performance when us-
ing Docker or Flockport LXC [18]. Flockport is a tool that is used distributing LXC
containers and facilitated the utilization of these conainers. Kozhirbayev and Sin-
nott present comparisons between running different benchmarks natively, in Docker
containers and Flockport containers. They conclude that which of these two virtu-
alisation technologies should be used in any one system depends on the software and
requirements in that system. Their experiments showed that there was just a small
or no overhead in using a container when running CPU or memory intensive appli-
cations, but interactions with OS or I/O operations had a more noticeable overhead.

Another performance study was performed by Li et al. [20]. This study focused
on comparing computation, memory and storage overhead in containers and VMs.
In their experiments they used Docker containers and VMware Workstation to cre-
ate a standalone virtual machine. They used different benchmark applications such
as Bonnie++ and STREAM to measure the different overheads. They concluded
that the overhead with regard to memory could be ignored for containers due to the
observed overhead was in their margin of observational error, while the overhead
for the VM was approximatly 4%. When regarding computational overhead, it de-
pended on what kind of resource, CPU or floating point unit (FPU), was being used
to perform the computation. They showed that the overhead was generally lower
when the CPU was used and higher when using the FPU. Also in this case had the
container in general a smaller overhead than the VM. They calculated the storage
overhead based on the number of disk tests that could be finished in 24 hours by the
physical machine, the container and the VM. These calculations also showed that
the container incurred a smaller overhead than the VM.

The study conducted by Tseng et al. looked into usage of virtualisation while Kozhir-
bayev and Sinnott and Li et al. studied the performance of different virtualisaiton
techniques, but neither of them have have looked into the reason for the overhead
incurred by the virtual layer. In our study, we will attempt to provide some insight
to the reason for the overhead. Furthermore, we have not found any research into
potential increases in energy consumption caused by the use of virtual layers, which
is an important aspect for Saabs mobile surface radar systems. We will therefore
extend the study to include this in addition to studying performance overheads.

11

2. Background

12

3

Methods

We choose to investigate two hypervisors and two container technologies in order
to have the possibility to compare both implementations of the same type and
compare implementations that are quite different. This chapter describes how the
experiments in this project was conducted and how the evaluation was done.

3.1 Current System Setup

The computer systems inside the radar systems can be divided into subsystems, of
which we will focus on the Data Processing subsystem (DP).

The DP subsystem consists of multiple connected so called data processing boards
(DP-boards), solid state drives (SSDs), network cards, a switch and cards for han-
dling I/0. One of the DP-cards serves as a master node at start up and each applica-
tion is allocated to a node at startup and will run on that node until shutdown. The
allocation is defined in a startup script. The system also includes some peripheral
hardware such as solid state drives (SSDs) for installing applications and operating
system, switches and cards handling I/0.

The system in use today consists of a number of computer boards running mul-
tiple applications in parallel. The system designers chose this design since there did
not exist any cost-efficient hardware that offered enough performance for running
all applications on the same card. The performance of CPU and memory has today
increased to such an extent that it is possible to run all applications concurrently
on the same hardware and thus reducing the hardware cost.

3.2 Experimental setup

We used a Dell Precision M4800 as a baseline system for our experiments. The
four chosen virtualisation techniques was implemented one by one on the laptop
and in between the laptop was reset in order to create as similar starting conditions
as possible for the different layers. Published literature was studied to select the
four technologies to use as a starting point for our study of virtualisation. These
four was screened by using three suites from Phoronix Test Suite (PTS) that aimed
to measure CPU, memory and disk performance. Out of these four was two, one
container and one hypervisor, subjected to further testing where we measured energy
consumption and tried to determine the cause for overheads. The second selection

13

3. Methods

was done after running benchmark applications from PTS both with and without
virtualisation. For the second run of benchmarking seven different tools were used:

- pTop. A tools for measuring energy consumption on process-level.

- GNU time. A tools for measuring resources used by a process.

- STREAM. Benchmarking application used for measuring memory data through-

put.

- 10zone. Benchmarking application used for measuring 1/0O speed.

- John the Ripper. A decryption tool.

- ping. A tool for measuring e.g. network latency.

- iperf3. A tool for measuring e.g. network bandwidth and jitter.
All of the above listed applications and tools was run both on the physical machine
and in virtual layers. The percentage difference between native and virtual were
then calculated. We assume here that the virtual layers have the same effect on
other platforms than the one used for our experiments in order to be able to draw
conclusions about how the Data Processing (DP) software would be affected by these
layers.

3.3 Ciriteria for first technology selection

Four virtualisation technologies were chosen after the following criteria:

o Availability for CentOS. Saab has decided to change OS in their radar-systems
and therefore need the virtualisation technology be available for this OS.

e Perceived popularity. Evaluation of this criteria will be subjectively based on
how often certain technologies are mentioned in the studied literature. Ease
of use will also be to some extent considered but is very likely to be influenced
by our own preferences.

e Licence costs. It be preferable to use open source technologies during this
project in order to avoid unnecessary license costs.

e Availability of commercial support. It would be preferable if there are com-
mercial support for the investigated technologies since one of the reasons for
this project is to investigate possibilities for long term use of virtualisation.

The four chosen virtualisation techniques were then subject to an initial screening
using synthetic applications that aims at stressing certain parts of the system. The
results of this screening form the basis for a second selection where we chose one con-
tainer and one hypervisor to priorities when we continued with study performance
in more detail.

Details about the benchmark evaluation process will be provided in this chapter
along with descriptions of how the different technologies were chosen and how they
are deployed.

Other virtualisation technologies then the four presented here, such as VMware
vSphere, were considered but discarded since they did not fulfil all four criteria.
In the case of vSphere was only a 60 day free trial available before one needed to
purchase the software [37].

14

3. Methods

3.4 Setup of virtual layers

Each virtual layer was installed separately on the lab laptop and the native operating
system was reinstalled between virtual layers in order to make the conditions for the
layers as equal as possible. CentOS 7 with 3.10.0-957.5.1.el17.x86_ 64 kernel was used
as host OS for all virtual layers, except Xen which required a different kernel since
the kernel that ships with CentOS 7 does not provide support for Xen.

3.4.1 Docker

Two different strategies was used when creating the images for the Docker containers
that we used. The first strategy was to write Dockerfiles describing the image. The
second strategy was to create a simple container that just contained a filesystem us-
ing a Dockerfile, then install the necessary applications in the running container and
then commiting the changes to a different image using docker container commit
[OPTIONS] CONTAINER [REPOSITORY[:TAG]] where CONTAINER is the running con-
tainer and TAG is an existing image you want to change or a new Docker image.

The first strategy was used when creating the images for running the PTS suites.
In total was six images used:

1. Base image: An image containing only the filesystem and its accompanying
libraries and binaries such as yum.

2. Library image: An image with libraries and binaries that we find useful no
matter what the container is supposed to be used for, e.g. vim. This image
uses the base image as a base.

3. PTS image: An image with PTS without and test suites installed. This image
has the library image as a base.

4. CPU test suite image: An image based in the PTS image where the CPU suite
has been installed.

5. CPU test suite image: An image based in the PTS image where the memory
suite has been installed.

6. Disk test suite image: An image based in the PTS image where the disk suite
has been installed.

An illustration of this image hierarchy can be found in Figure 3.1.

The first strategy can be a bit cumbersome to use if the container is used for some
kind of software development since changes done to content in the container will
be discarded when the container stops, unless the container is committed to an
image before shutdown. Committing a container to an image is also necessary in
order to be able to push the image to a docker image repository. Images can be
pushed and pulled to and from such repositories when more then one developer is
working together on the same container project. The Docker engine can automat-
ically search repositories if it is missing an image locally when building a new image.

We used the second strategy when running [Ozone, John the Ripper and STREAM

in Docker containers. For this we used the Library image as a base and installed
one of the benchmark applications in it before committing the modified container

15

3. Methods

BASE
CentOS 7 Linux
Basic libraries

Libraries
Shared libraries

PTS

Phoronix
Test Suite

CPU Test Memory Test Disk Test
PTS: CPU suite PTS: Memory suite PTS: Disk suite

Figure 3.1: Graph showing a visual representation of the container configuration.
Each box represents a container and each container inherits the contents from the
one above it in the hierarchy.

to a new image and stopping the Library container. This process was repeated for
each benchmark application we planned to use.

Container configuration

We used Docker CE 18.09 during our experiments. The container used for running
benchmark applications was constructed using a hierarchy of five containers, see
figure 3.1. These five containers could have been combined into only one container,
but we chose to split it up in order to decrease the complexity of each container
even though all five of them was relatively simple. The reason for dividing the test
environment into multiple containers was to learn more about structure and con-
figure a Docker container hierarchy. Dividing makes the environment modular and
minimises the risk of dependency conflicts.

Our hierarchy consists of one base image that holds a minimal installation of Cen-
tOS 7 Linux along with libraries that is installed together with the operating system.
Next image contains PTS and its dependencies. This image is based on the previous
one and will therefore inherit the OS installed in it. The next three images inherit
the content of the PTS-container and will therefore not have to install PTS. These
three containers contains the test suites we want to run, one suite in each container.

16

3. Methods

3.4.2 Xen Project Hypervisor

We had to do the installation process of Xen Project Hypervisor (Xen) a bit differ-
ently since we were running CentOS 7 Linux. To get support for running a Dom0
on CentOS was a 4.9.127-32.el7.x86 64 Linux kernel installed and used. This ker-
nel has been configured for this purpose and can be found in the Centos-Extras
repository [40]. We used Xen 4.8 during our experiments.

Installation

Can not create all volumes at OS installation. During installation you need to only
create 3 partitions / /boot and swap. Use fdisk to create a partition that contains
the rest of the physical disk space and then use lvresize to expand the volume
group to include this space.

Domain configuration

The default domain was not reconfigured even though it is possible to do so in order
to trim the machine to increase performance. We chose to leave it as it was to,
once again, keep the impact of other things than the virtual layer as low as possible.
Though this is a choice we have to keep in mind when analysing the result from
the benchmarking tests. The guest domain, DomU;, was configured to be as similar
to the Dell laptop as possible in order to reduce performance differences caused by
hardware resource differences.

3.4.3 LXC

The latest LXC manager can be installed directly from a CentOS repository using
the package manager yum. In our case was LXC 3.0.3 the latest version. The
package lxc-templates is also needed if one does not wish to define their own
container template.

Container configuration

We decided to use the CentOS template that was provided by this package since
we could not find any guide we could follow to write our own. Getting the LXC
container up and running was therefore a quick and easy job. As described earlier
could PTS be installed inside the container after connecting a console to it.

3.44 KVM

KVM 2.10.0 was installed on the laptop from a CentOS repository using yum. Unlike
when installing Xen did we not need to install a new kernel in order to gain support
for running KVM.

17

3. Methods

VM configuration

We used virt-manager to configure the guest to be as similar to the Xen guest as
possible. The tool virt-manager allows the user to through a GUI define how many
CPU cores the VM will have as well as the amount of RAM and disk storage. After
this was the procedure for running the benchmark suites identical to the procedure
for Xen.

3.5 Measuring performance and energy consump-
tion

We used six different benchmark applications or performance measuring tools to de-
termine what technologies might be suitable to implement in the radar systems. The
first one, Phoronix Testing Suite, was used to compare the four chosen technologies
against each other in order to determine which two to focus on in the next step. The
reports from PTS are not limited to the results of the different benchmarks included
in a suite, they also include a description of the syste on which the suite was run.
Table 3.1 shows the system report after running a suite on our physical machine.

Table 3.1: This table shows the specifications of the Dell Precision M4800 laptop
that was used for scoring the virtualisation techniques. This is our baseline system.

Processor | Intel Core i7-4700MQ @ 3.40GHz (4 Cores/8 Threads)
Motherboard | Dell 0FVDR2 (A16 BIOS)
Chipset | Intel XEON E3-1200 v3/4th
Memory | 4 x 4096 MB DDR3-1600MHz HMT451S6AFRSA-PB
Disk | 256GB LITEONIT LCS 256
Graphics | Intel Haswell Mobile 2048MB (1150MHz)
Audio | Intel XEON E3-1200 v3/4th
Network | Intel Connection 1217-LM + Intel Centrino Ultimate-N 6300
OS | CentOS Linux 7
Kernel | 3.10.0-862.14.4.e17.x86_ 64 (x86_64)
Desktop | GNOME Shell 3.25.4
Display Server | X Server 1.19.5
Display Driver | modesetting 1.19.5
OpenGL | 4.5 Mesa 17.2.3
Compiler | GCC 4.8.5 20150623
File System | xfs
Resolution | 1920x1080

The other to applications that we used after PTS were, John the Ripper (ripper),
STREAM, 10zone, iperf and ping. The first three of the previously mentioned ap-
plications (ripper, STREAM and IOzone) were run together with a tool called GNU
time.

We were also given access to the data processing applications (DP applications)

18

3. Methods

in order to perform the same measurements on those as we did on ripper, STREAM
and IOzone. This could only be done with the applications running in a testing lab.
The reports from these runs were compared to the reports of the other applications
to get an estimate of how the DP applications would behave in a virtual layer. The
time frame and some security hurdles made it impossible to run the DP applications
in a VM or container set up by us.

Ripper, STREAM and IOzone were chosen after talking to people from the teams
developing the DP applications about which parts of the system are most critical to
the performance of the DP applications. These three applications (ripper, STREAM
and IOzone) can be used to put stress on the CPU, the memory and the storage sys-
tems which according to the people we talked to are important for the performance.
Network latency was another important factor and ping is a good tool for measuring
this, while iperf was recommended to use for measuring network performance.

The GNU time application can be used to run another application and afterwards
provide a list of the resources used as output [35]. We used this application to
measure execution time, RSS, page faults, context switches, file system 1/O and
page size. The time application reports more statistics than is presented here in this
report [25], but we decided to omit some metrics from the output of time since they
were reported as 0.

When considering energy consumption, data centres (where most previous research
on virtualisation has been conducted) and radar systems do differ in some important
aspects. Access to power is one such aspect. It is important in both cases to keep
the power dissipation as low as possible to keep temperature down and in the radar
case will a low energy consumption prolong the operation time. The radar systems
are mobile and need therefore to carry fuel that power a generator that provides
the radar system with energy. It is important to study the impact a virtual layer
has on the power dissipation since a certain type of layer might not be usable if it
increases the energy consumption in such a way that it has a significant impact on
the operation time.

3.5.1 pTop

The energy consumed by the benchmark processes was measured using pTop, which
is marketed as a processes-level power profiling tool [14]. This application runs con-
currently with the processes whose energy consumption you want to investigate and
the output from it can be used to calculate the power consumed by that process.
pTop uses information found in /proc to calculate the energy consumed by a pro-
cess. The results are presented to the user in realtime divided into CPU, disk and
memory energy consumption.

A few additional kernel modules was necessary in order to use pTop, such as

cpufreq_stats and acpi_cpufreq. The service cpuspeed was used by the ker-
nel to collect the time the cpu cores spent in different frequency states. This service

19

3. Methods

was not part of any repository know to us and therefore needed to be downloaded
from a third-party website [10].

The output from the application is based on calculations done using parameters the
user needs to set in the source code beforehand. These parameters include, but are
not limited to, L2 cache latency, CPU energy consumption and cache line size. the
application calculates the energy consumption of a process by monitoring the time
the CPU spends in different frequency states, number of cache misses combined with
the time it takes to resolve a miss and the time spent on reading or writing from and
to storage [14]. The accuracy of the output is therefore heavily reliant on the user
entering the correct values for CPU power etc. We deemed this to not be a major
issue since we are most interested in the difference between the energy consumption
of the processes with and without a virtual layer. We assume that the results will be
reliable enough for our purposes as long as we use the same parameters for each test.

pTop calculates the energy consumption once every three seconds and stores the
results in a database. To extract the numbers we are interested in, we query the
database for the relevant entries using the process ID (pid) belonging to the appli-
cation in question. Since pTop operates on a process level, it is necessary to include
the energy consumed by the container orchestrator or the hypervisor when making
the comparison between native and virtual layer runs.

We made some small changes to the source-code, in addition to those that was
mentioned above. These changes consisted of instructing the program to store the
calculated energy in the table process_energy in the accompanied database. The
application developers had prepared functions that did this, but they were not used
by the actual program. We have not been able to find an explanation as to why
these functions was not used in the application that had been published. A guess
would be that an old version had been uploaded, maybe by mistake.

3.6 Benchmark applications and tools

This section presents the different tools and benchmark applications that we used
to perform the performance and energy measurements.

3.6.1 Phoronix test suite

The Phoronix Test Suite (PTS) is an open source set of benchmark suites. The suites
are stored in a remote repository and can be downloaded to the machine a user wish
to run it on. It is easy to use and compatible with multiple Linux distributions
including CentOS 7, which is why we chose to use PTS to gather benchmark scores
for our configurations. This section will describe in more detail what is needed to
run PTS.

Phoronix Test Suite is available from the EPEL repository as well as the devel-
opers website [32]. The benchmark applications used by PTS is available from

20

3. Methods

www.openbenchmark.org.

We chose to run three suites from PTS, one that measures CPU performance, one
that measures memory performance and one that measures disk performance. These
three suites were considered to be a good starting point for us when evaluating the
virtual layers. The results we got from the PTS runs formed the basis on which we
chose what techniques to study in more detail. PTS presents the system setup after
each run in addition to printing the results.

The suites are configured to run most of the tests 3 times and afterwards present
an average for these runs as a test result afterwards. We decided to only run each
suite once since the individual tests where automatically run multiple times when
using the suite. A couple of tests from the CPU suite did not run properly and was
therefore disregarded.

All three test suites was run both in a virtual environment and on our baseline
system which consisted of the Dell laptop, after which we calculated the percentage
difference between the baseline test results and the respective test results from each
virtual environment, which resulted in 4 percentage differences for each individual
test in the three suites. We then used these percentages to comprise an overall
impact average, positive impact average and negative impact average for each test
suite and virtualisation technology. We define positive impact as when a test run in
a virtual layer scores higher on a "higher is better”-test (HiB) or lower on a "lower is
better”-test (LiB) than when the same test is run on the physical baseline machine.
Negative impact is defined as the opposite of positive impact. The positive impact
average is the average calculated by using only the results of the tests where the
virtual layer had a positive impact and the negative impact average is the same but
using the results where the virtual layer had a negative impact. For the overall im-
pact average is all the test results included without considering if they are negative
or positive.

(VLSCO’I‘E)

Nativescore (3 1)
Nsuite

((PosetiveV Lgcore)
Nativescore
3.2
s%;e Nsuite ()

2

sutte

>

sutte

(NegativeV Lscore)

Nativescore (3 3)
Nsuite

We calculated these three averages for each virtualisation technique and used them to
compare the impact the four different virtualisation technologies had on the overall
system performance.

21

3. Methods

3.6.2 STREAM

The STREAM benchmarking application is used to measure the memory bandwidth
in a computer system by measuring the performance of four long vector calculations,
including copying of the vector, scaling the vector and adding a value to each element
in the vector [27]. This application is also included in two of the three PTS suites
we used. We chose to use this benchmark again since it despite being relatively old
(it was published in 1995) is still used today in its original form or in an augmented
form to measure memory bandwidth [26, 12].

We downloaded the source code for STREAM from the STREAM website and com-
piled it in 10 versions [34]. The different versions execute the four vector operations
10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 times before reporting the best memory
bandwidth, which is calculated using the shortest execution time, excluding the first
execution. We ran all different 10 version once consecutively for the energy mea-
surement, while we only used the 50 version and ran it 10 times for the performance
measurement.

The size of the vectors used in the operations are set at compile time. We con-
figured them to be 100 million elements long, where each element is 8 bytes in order
to conform to instructions for STREAM:

- The array size should be roughly 4 times the system cache size.

- The execution time should be at least 20 system clock ticks.
Our chosen array size satisfy these requirements while having some margin.

3.6.3 1I0zone benchmark

The radars are continuously generating a huge amount of data each second and even
though the data size will be, to some extent, reduced during the signal processing,
the amount of data will still be large when the radar signals reaches the data pro-
cessing stage. The data processing is not strictly done in real time, which means
that the data can be pushed to and fetched from disk when needed instead of being
stored in memory.

10zone benchmark applications allows the user to configure test cases for disk read-
ing and writing files to disk. The user can either specify the size of the file to be
written exactly or define an interval. The application will divide the file into records
and write the file to disk record by record. The record size can also be defined in
the same ways as the file size. I0zone also allow the user to specify what kinds of
tests he or she wants to run to measure read and write speed. These tests include,
but are not limited to:
o Measuring read speed by
— reading a file from disk
— reading random locations on disk
e Measuring write speed
— writing a file to disk
— writing to random locations on disk

22

3. Methods

We constructed two different test cases in 10zone, one with big files to get longer
read and writes when measuring energy consumption and one with a fixed files size
when measuring page faults, context switching, write speed and read speed. These
test cases is summarised in Table 3.2.

Table 3.2: This table shows a summary of the two test cases that was used to
measure disk energy consumption and disk performance. Test case 1 was used for
the former and Test case 2 was used for the latter. Test case 1 was run 1 time on
the physical machine and in a Docker container while Test case 2 was run 10 times
on the physical machine, in a Docker container and on a Xen guest.

Test case 1 Test case 2

write write

Tests | read, re-read, write, re-write, ran- | read, re-read, write, re-write, ran-
dom read, stride read, random | dom read, stride read, random

File size(s) | 1, 2, 4, 8 GB 25 MB

Record sizes in | 1024, 2048, 4096, 8192, 16384 kB | 1024, 2048, 4096, 8192, 16384 kB

All tests listed in both test cases were run with all possible combinations of file and
record size. [Ozone loops through all tests on one combination of file and record
size before changing the record size. After it has looped through all record sizes
with one file size is the file size increased. We used a flag telling IOzone to flush all
contents to disk when we ran our tests.

The data output from 10zone quickly grows into being almost overwhelming and
we chose due to the limited time frame of the project to somewhat limit the data
we analysed. When analysing the data collected by running Test case 2 we chose
to only look at the tests configurations that on average reported the highest speeds
when run on the physical machine. This way we would look at the configuration that
had the optimal record size for reading or writing a 25 MB file on our file system.

3.6.4 John the Ripper

John the Ripper is a decryption application and will therefore use the CPU heavily.
This test is included in the PTS CPU suite, but could not run properly in the suite.
We were able to obtain information about memory and CPU usage by running John
the Ripper from the GNU application time, that is, not the built-in function called
time.

As input to to the decryption program, we used an unshadowed copy of the pass-
word file present on the laptop. This file contained 2 password, one root password
and one user password. Both passwords were the same, six characters long and can
be found using a wordlist, meaning they are real human words. We used the default
wordlist and settings for John the Ripper.

The application was run both natively and in a virtual layer 10 times each from

23

3. Methods

which we calculated an average for each metric provided by time, the same un-
shadowed password file was used each time. The two sets of 10 John the Ripper
executions inside a virtual layer and natively was both run in sequence and concur-
rently/in parallel to investigate if having an active container that puts pressure on
the CPU will affect a native process. We were also interested in seeing if there was
any differences in number of page faults, CPU time and system time among other
things.

3.6.5 Network performance

Network latency, packet loss and jitter are three factors that are important in the
radar-system. We measured the latency by using ping and we used iper3 to measure
jitter and packet loss. These three characteristics were measured on five different
network routes:

e Physical machine to physical machine
Physical machine to Docker container
Docker container to Docker container
Physical machine to Xen guest
Xen guest to Xen guest
Both applications were run for 30 seconds. Iperf3 was configured to send UDP traffic
and measure jitter and packet loss once every second. The goal bandwidth was set
the same data rate that is used in the surface radar systems.

3.6.6 Data Processing applications

These are some of the applications that are used in some of Saabs surface radar
systems. We can not give any details about the behaviour of the data processing
applications due to confidentiality. We will use GNU time to gather the same data
as we do on ripper, STREAM and IOzone. This will allow us to estimate how the
DP applications will behave in a virtual environment.

We can only run the DP applications in a testing lab. This lab is not connected to
the internet and installation of third party software is restricted which results in it
being impossible for us to install Docker engine in the lab. Instead, we will use our
observations from the measurement’s on the three other applications to estimate the
behaviour of the DP applications in Docker containers and Xen guests.

24

e .

Results

This section will describe how all tests that were performed and why those tests
were chosen. Phoronix Test Suite (PTS) was used to create a benchmarking score
for each virtualisation technique. These scores were then used to decided which two
of the four would be our focus when running the rest of the benchmarks. We will
refer to this as the initial screening.

We have focused on the differences between running an application directly in the
OS and running the same application in a virtual layer since our experiment setup
was not the system that is used in the radar products. This chapter contains the
results from the benchmark tests (Sections 4.1, 4.2 and 4.3), an analysis of the en-
ergy consumption (Section 4.4) and lastly a summary of the most important results
and observations 4.5.

4.1 Initial screening

The initial screening had two purposes; we used this to learn how use the different
virtualisation techniques as well as doing a performance screening by running three
different benchmark suites from PTS in each one of them. Table 3.1 shows the
specifications of the laptop that was used. The subsections relating to the different
virtualisation technologies includes a table showing the system setup PTS reported
after running a test suite. We have included all information about the system re-
ported by PTS even if it might not be relevant. A clean reinstall of the OS was
performed when finishing testing one virtualisation technique.

The following four sections will show the system setup reported by PTS for each
virtual layer as well as give a brief overview of the results from running the PTS
suites. The analysis of the results will be provided in section 4.2.

4.1.1 Docker

This technology proved to be flexible and easy to use for modifying containers. One
drawback was the fact that persistent data need to be placed in a location that is
configured to hold persistent data. This can be inconvenient in cases where data
need to be saved between runs. On the other hand, not saving data between runs
will save disk space since Docker engine will not allocate any storing space for the
VMs if not explicitly told to do so. The system information reported by PTS from

25

4. Results

running the program inside docker containers can be seen in Table 4.1.

Table 4.1: This table shows the specifications of the virtual Docker machine as it
was reported by PTS.

Processor | Intel Core i7-4700MQ @ 3.40GHz (4 Cores/ 8 Threads)
Motherboard | Dell 0FVDR2 (A16 BIOS)
Memory | 16384 MB
Disk | 256GB LITEONIT LCS-256
Graphics | inteldrmfb (1150MHz)
OS | CentOS Linux 7
Kernel | 3.10.0-862.e17.x86_ 64 (x86_64)
Compiler | GCC 4.8.5 20150623
File System | overlayfs
Screen Resolution | 1920x1080
System Layer | Docker

The Docker container performed quite close to the native machine when running
the CPU and memory suites, which can be seen in Figure 4.2a. From what we
read in the literature was this to be expected. The impact on the disk performance
on the other hand was much higher when considering both negative and positive
impact.This was also in accordance with the studied literature since previous studies
have found that Docker containers can in some cases have a large impact on the disk
performance relative to CPU and memory performance [20].

4.1.2 LXC

In some ways was LXC easier to use than Docker since templates from contain-
ers based on several common Linux distributions are available through the package
lxc-templates. It is possible to create your own customised LXC images by creat-
ing a root file-system and writing a metadata-file [24]. We found this less intuitive
than writing a Dockerfile and more error prone when done by an inexperienced user,
which is why we chose to use the CentOS template from lxc-templates package
instead of writing our own LXC template. The system information reported by PTS
from running the program inside docker containers can be seen in Table 4.2.

Also LXC performed quite close to the native machine on the CPU and memory
tests. This was to be expected since LXC like Docker is a container technology.
When considering CPU and memory did Docker perform slightly better than LXC,
maybe due to us being able to make the Docker container customised for running
PTS while not doing the same for LXC. Larger differences observed in the disk suite
run when comparing LXC to the native machine. When comparing Docker and LXC
did the figures differ quite a lot.

4.1.3 Xen

We used a CentOS dom0 with one CentOS guest domain in our benchmarking con-
figuration. The guest was fully virtualised in order to eliminate result differences

26

4. Results

Table 4.2: This table shows the specifications of the virtual LXC machine.

Processor | Intel Core i7-4700MQ @ 3.40GHz (4 Cores/ 8 Threads)
Motherboard | Dell 0FVDR2 (A16 BIOS)
Memory | 16384 MB
Disk | 256GB LITEONIT LCS-256
Graphics | inteldrmfb (1150MHz)
OS | CentOS Linux 7
Kernel | 3.10.0-957.1.3.el7.x86_ 64 (x86_64)
Compiler | GCC 4.8.5 20150623
File System | xfs
Screen Resolution | 1920x1080
System Layer | Ixc

stemming from differences in operating systems. Running the guest fully virtualised
was necessary due to CentOS 7 does not support running as a paravirtualised guest
[17].

Installing the Xen Project Hypervisor required a complete reinstall of the OS as
well as installing a new kernel. The user was also required to prepare disk partitions
in such a way the it would be possible to have multiple logical volumes on the same
physical disk. Each logical volume holds one guest domain (domU) or the dom0.
A domU is configured in a configuration file where the user can specify number
of cores, RAM, videomemory etc. The system information reported by PTS from
running the program inside docker containers can be seen in Table 4.3.

Table 4.3: This table shows the specifications of the virtual Xen machine as it was
reported by PTS.

Processor | Intel Core i7-4700MQ @ 2.39GHz (8 Cores)
Motherboard | Xen HVM domU (4.8.4.43.ge52ec4b7 BIOS)
Chipset | Intel 440FX-82441FX PMC
Memory | 1 x 6144 MB
Disk | 17GB
System Layer | Xen HVM domU 4.8.4.43.ge52ecdb7
OS | CentOS Linux 7
Kernel | 3.10.0-862.14.4.e17.x86_ 64 (x86_64)
Compiler | GCC 4.8.5 20150623
File System | xfs

The Xen VM had overall worse performance than the baseline system. This was to
be expected since a hypervisor adds some overhead during runtime and the guests
had less memory than the baseline system.

27

4. Results

4.1.4 KVM

We used CentOS 7 on the KVM machine as well. Once the hypervisor is installed
and a guest is created, you can install any OS of your choice on that guest. We
could use the KVM guest in the exact same way as we could the Xen guest when it
was up and running.

Table 4.4: This table shows the specifications of the virtual KVM machine as it
was reported by PTS.

Processor | 8 x Westmere E56xx/L56xx/X56xx (Nehalem-C) (8 Cores)
Motherboard | Red Hat KVM (0.5.1 BIOS)
Chipset | Intel 440FX 82441FX PMC
Memory | 1 x 6144 MB
Disk | 17GB
Graphics | Cirrus Logic GD 5446
Network | Red Hat Virtio device
OS | CentOS Linux 7
Kernel | 3.10.0-957.1.3.el7.x86_ 64 (x86_64)
Compiler | GCC 4.8.5 20150623
File System | xfs
Screen Resolution | 1024x768
System Layer | KVM

The performance of the KVM machine was in some cases higher than the native
machine but in most cases was it lower than the native machine. The impact on the
performance varied most when running the suites in this virtual layer.

4.2 Phoronix Test Suite

The PTS was only used to make an initial assessment of the four virtualisation
techniques. We ran in total 44 unique tests, distributed over 3 test suites. These
suites were meant to measure the performance of the CPU and the memory- and
disk systems. The numbers by themselves are not really interesting, but the dif-
ference between scores form virtual layers and the native environment is. We used
the equations 3.1-3.3 to compare the results from the different suites on the differ-
ent system configurations. The results of these calculations can be seen in Figure 4.1.

Some of the results from the PTS test runs might have been skewed due to having
been run by different versions of PTS. The latest release of PTS was PTS 8.2 when
we started the benchmark tests, but before we had finished PTS 8.4 was released.
Test installation started to fail after the update and we were therefore forced to up-
date to the new version in order to continue. One example of where the two versions
differ from each other is in smallpt-test which is included in the CPU suite. The
developers added the -03 flag when compiling the source code for smallpt test in
the newer version of the test suite program. This might have influenced the results
as this flag determines the level of optimisation to use at compile time.

28

4. Results

20 —

10

%
)
]
|

|
ol

—10

Docker LXC Xen KVM

00 Positive
U0 Negative
00 Overall

Figure 4.1: The graph shows the combined average impact the virtual layers had
on CPU, memory and disk performance. The blue bars show the average of all
positive impacts across all three suites. The red bars show the same thing but for
negative impacts. The orange bars show the overall impact the different virtual
layers had on the PTS tests.

As Figure 4.1 shows, LXC has the highest overall impact on the performance while
it also have a larger negative impact than Docker, which is the layer with the second
highest overall impact.

The averages calculated for each virtualisation technique and suite using equations
3.1-3.3 are shown in Figures 4.2.

Figure 4.2 shows that out of the measured system parts, the disk system is most
affected by the virtual layer. We believe that the reason behind the disk impact
being more pronounce lies in how calls to hardware are handled. Neither one of the
four virtual layers can access the storage system directly. The VMs uses emulated
hardware and therefore are those calls routed through the hypervisor. The contain-
ers’ access to the storage system is controlled by cgroup and a theory is that this
masks the disk latency and ths giving an illusion that the disk operations are much
faster than they really is. We chose therefore to exclude the disk figures to avoid
having the results skewed by the disk figures being much different than the other.
The graphs in Figure 4.3 shows the average impact each of the layers had on the
CPU and memory performance.

We can see in Figure 4.3 that KVM is the layer that, when only considering CPU and
memory performance, provides highest positive impact at the same time as it has one
of the highest negative impact on the performance. Since performance improvement
is not a priority in this project was a high positive impact not what we were looking
for. A stable and relatively predictable is more important and we chose therefore to

29

4. Results

30 B 40 B
30 B
20
20
10
10
o T B =
DD U e T =N
-10
—10
CPU Memory Disk CPU Memory Disk
00 Positive 00 Positive
10 Negative 10 Negative
10 Overall 10 Overall
(a) Docker (b) LXC
10 10
ok - 2 ™
N [
—10
—10
—20
—20 —30
CPU Memory Disk CPU Memory Disk
00 Positive 00 Positive
10 Negative 11 Negative
10 Overall 10 Overall
(c) Xen (d) KVM

Figure 4.2: This Figure shows the positive, negative and overall impact the four
different layers had on the PTS test suites.

continue with Docker and Xen since they had the least difference between the overall
impact and the corresponding negative/positive impact. Xen was chosen over LXC

30

4. Results

Docker LXC Xen KVM

00 Positive
U0 Negative
00 Overall

Figure 4.3: This graph shows the combined average impact that was observed
when considering the results from the CPU and memory suites from PTS.

even though LXC had less difference between negative and positive impact, but we
had decided to continue with one container and one hypervisor which is why we
chose Xen.

4.3 Performance benchmarking

We used the same Dell laptop to run STREAM, 1Ozone, ripper and network tests
as we did during the initial screening. The GNU application time was used on
STREAM, I0zone and ripper to measure execution time, number of page faults and
context switches. GNU time defines a involuntary context switch as a context switch
caused by time slice expiration and voluntary contaxt switch as a switch caused by
the process waiting for something, e.g. an I/O operation. Performance benchmark-
ing was only done on Docker and Xen since they showed the most promise during
the initial screening.

We chose to regard the high increase in File system inputs on STREAM and ripper
as anomalies, since in both cases was this metric reported as 0 in 9 out of 10 runs.

4.3.1 STREAM

STREAM was used to measure the data throughput in memory. GNU time was used
to collect data on page faults, context switches etc. The average data throughput
for the baseline system and the virtual layers are presented in Tables 4.5 and 4.6
along with the percentage difference between them. Tables 4.7 and 4.8 are showing
the same thing, but with the output from GNU time.

31

4. Results

Table 4.5: This table shows the averages of the output from STREAM after it
was run 10 times in a Docker container, where the vector operations are executed
50 times for each run.

Kernel Native average | Docker | Difference
Copy 11397.45 11418.89 0.19%
Scale 11322.03 11359.39 0.33%
Add 12660.25 12744.95 0.67%
Triad 12554.83 12635.25 0.64%

Table 4.5 shows that there is a small increase in data throughput in the Docker
container compared to the baseline.

Table 4.6: This table shows the averages of the output from STREAM after it was
run 10 times on a Xen guest, where the vector operations are executed 50 times for
each run.

Kernel Native average Xen Difference
Copy 11397.45 11193.48 | -1.79%
Scale 11322.03 11228.59 | -0.83%
Add 12660.25 12535.29 | -0.99%
Triad 12554.83 12377.91 | -1.41%

The Xen guest proved to have a small decrease in data throughput compared to the
baseline. This decrease is so small that it is likely that it can be compensated by
replacing the current RAM if the same thing would be observed on other hardware.

Table 4.7: This table shows the averages of the output from GNU time after
running STREAM 10 times in a Docker container, where the vector operations are
executed 50 times for each run.

Metric Native average Docker Difference
User time (s) 34.08 33.84 -0.71%
System time (s) 0.17 0.18 5.29%
Percent of CPU this job got 1.00 0.99 -1.00%
Wall clock time (h:mm:ss) 00:34.25 00:34.04 -0.63%
Maximum resident set size (kB) 2344286.80 | 2344273.60 | 0.00%
Major page faults (require I/O) 0.00 0.00 0.00%
Minor page faults (reclaiming a frame) 2041.40 2031.50 -0.48%
Voluntary context switches 1.00 1.00 0.00%
Involuntary context switches 47.20 1741.50 3589.62%
File system inputs 0.00 0.00 0.00%
File system outputs 8.80 10.40 18.18%
Page size 4096 4096 0.00%

As can be seen in Table 4.7 did the measured resource use not differ much be-
tween the physical system and the Docker container, except for involuntary context

32

4. Results

switching.

Table 4.8: This table shows the averages of the output from GNU time after
running STREAM 10 times on a Xen guest, where the vector operations executed

50 times for each run.

Metric Native average Xen Difference
User time (s) 34.08 35.00 2.70%
System time (s) 0.17 0.19 14.12%
Percent of CPU this job got 1.00 0.99 -1.00%
Wall clock time (h:mm:ss) 00:34.25 00:35.21 2.78%
Maximum resident set size (kB) 2344286.80 | 2344287.20 | 0.00%
Major page faults (require 1/0) 0.00 0.00 0.00%
Minor page faults (reclaiming a frame) 2041.40 2036.50 -0.24%
Voluntary context switches 1.00 1.10 10.00%
Involuntary context switches 47.20 67.10 42.16%
File system inputs 0.00 3.20 0.00%
File system outputs 8.80 10.40 18.18%
Page size 4096 4096 0.00%

The performance of the Xen guest was lower than the physical machine and the
Docker container with regard to execution time. The Xen guest had less involuntary
context switches than the Docker container but 42% more than the physical machine,
which can account for the longer execution time since a context switch is likely to
be a little slower on a Xen machine than on a physical machine since the Xen guest
does not have direct access to the CPU. We can also see in Tables 3.1 and 4.3 that
the Xen machine had a lower clock frequency than the physical machine. We have
not been able to determine what caused the decrease in clock frequency.

4.3.2 10zone benchmark test

We used 10zone to get more detailed information about the disk performance. Test
case 2 which is shown in Table 3.2 was used for this purpose. Also here was the GNU
application time used to collect data on page faults, context switches etc. Tables
4.9 and 4.10 shows the average output from IOzone when running our Test case 2
ten times. Tables 4.11 and 4.12 shows calculated average number of page faults and
context switches after 10 runs as well as comparison between the respective virtual
layer and the physical machine.

Contrary to what PTS/disk showed did the tests with IOzone show that the read
and write speeds are negatively affected by virtualisation using Docker containers.
Maybe the tests included in PTS/disk suited the Docker container better than this
one did. We have only included one file size and one record length here, maybe would
the I/O speed be higher with another file or record size. We saw when we chose
record size for the virtual layers that the speeds of read and write was influenced by
the record size.

The results observed when running the I0zone test on the Xen guest were more in
line with the results from PTS/disk than the Docker results. Interesting to see is

33

4. Results

Table 4.9: This table shows the average read and write speed 10zone reported
when running the 7 tests we had chosen inside a Docker container.

Kernel Native average Docker Difference
write 874306.90 828226.20 -5.27%
re-write 2824374.10 1198563.90 | -57.56%
read 5690218.10 2970650.60 | -47.79%
re-read 5684179.00 2978402.00 | -47.60%
random read 5605807.60 3879288.60 | -30.80%
random write 3220989.70 2941447.50 | -8.68%
stride read 8121745.00 3229612.80 | -60.23%

Table 4.10: This table shows the average read and write speed I0zone reported
when running the 7 tests we had chosen on a Xen guest.

Test Native average Xen Difference
write 874306.90 158048.20 | -81.92%
re-write 2824374.10 176358.10 | -93.76%
read 5690218.10 2793418.20 | -50.91%
re-read 5684179.00 3767506.60 | -33.72%
random read 5605807.60 5314107.70 | -5.20%
random write 3220989.70 178023.20 | -94.47%
stride read 8121745.00 3501814.00 | -56.88%

that the write speeds reported are closer together for the Xen guest than for the
physical machine.

Table 4.11: This table shows the average output from GNU time after 10 runs of

IOzone in a Docker container.

Metric Native average | Docker | Difference
User time (s) 0.04 0.05 20.93%
System time (s) 0.09 0.14 46.81%
Percent of CPU this job got 0.44 0.49 12.59%
Wall clock time (h:mm:ss) 00:00.33 00:00.40 20.97%
Maximum resident set size (kB) 20960.00 20679.20 -1.34%
Major page faults (require I/O) 0.00 0.00 0.00%
Minor page faults (reclaiming a frame) 697.10 4994.90 | 616.53%
Voluntary context switches 289.30 247.60 -14.41%
Involuntary context switches 12.30 1.60 -86.99%
File system inputs 0.00 0.00 0.00%
File system outputs 147467.20 147483.20 0.01%
Page size 4096.00 4096.00 0.00%

From Tables 4.9 and 4.10 we can draw the conclusion that virtualisation has a rela-
tively high impact on the I/O performance. However, the two different virtualisation

34

4. Results

Table 4.12: This table shows the average output from GNU time after 10 runs of
10zone on a Xen guest.

Metric Native average Xen Difference
User time (s) 0.04 0.05 16.28%
System time (s) 0.09 0.17 78.72%
Percent of CPU this job got 0.44 0.40 -8.70%
Wall clock time (h:mm:ss) 00:00.33 00:00.56 70.82%
Maximum resident set size (kB) 20960.00 20522.20 | -2.09%
Major page faults (require I/0O) 0.00 0.00 0.00%
Minor page faults (reclaiming a frame) 697.10 585.40 -16.02%
Voluntary context switches 289.30 951.60 228.93%
Involuntary context switches 12.30 1.60 -86.99%
File system inputs 0.00 0.00 0.00%
File system outputs 147467.20 147467.20 | 0.00%
Page size 4096.00 4096.00 0.00%

techniques seem to impact the I/O differently. The Docker container showed an in-
crease in page faults while the Xen guest showed an increase in voluntary context
switches. Different approaches is needed in order to compensate for this in hard-
ware. A large number of voluntary context switches suggests that the system often
need to wait for an interrupt. It is likely in this case that this interrupt is caused
by a I/O operation which can be sped up by replacing the memory and/or storage
system. The impact from increased number of page faults can be compensated by
increasing cache size.

4.3.3 John the Ripper

John the Ripper is a password cracking application and will therefore only output
the result of the cracked passwords. We used therefore time again to collect statistics
on page faults and context switches. Table 4.13 and Table 4.14 presents the average
number of page faults, context switches etc. for 10 runs of the application in a Docker
container and on a Xen guest. These numbers are compared with the corresponding
values collected when doing the same run on the physical machine. Worth noting is
that many of the metrics collected using time did not differ much between physical
machine and Docker container, while three of them differs quite a lot.

Table 4.13 show that three things was affected more than the others when moving
the application from the native OS to a Docker container. The system time for the
application was increased by 20% when using Docker while the execution time did
only increase by 1%. The higher system time can most likely be explained by the
increase in context switches, but the execution time is not increasing as much since
the number of page faults has decreased.

The most notable difference between the Xen guest ant the physical machine is the
system time which is almost 95%. This increase can most likely be explained by
the increase in involuntary switching which will increase the system time while the
decrease in page faults will do the opposite. The native average presented in Tables

35

4. Results

Table 4.13: This table presents the average output of GNU time after running
John the Ripper on a password file 10 times in a docker container. The last column

presents the percentage difference between these averages.

Metric Native average | Docker average | Difference
User time (s) 2017.31 2051.75 1.18%
System time (s) 17.98 21.64 20.37%
Percent of CPU this job got 99% 99% 0.00%
Wall clock time (h:mm:ss) 00:49:15 00:49:35 0.65%
Maximum resident set size (kB) 88083.20 87198.22 -1.00%
Major page faults (require 1/0) 0.00 0.33 0.00%
Minor page faults (reclaiming a frame) 8621723.40 3832504.44 -55.55%
Voluntary context switches 56.70 67.89 19.73%
Involuntary context switches 2874.70 176584.11 6042.70%
File system inputs 0.80 1322.44 165205.56%
File system outputs 368.00 368.00 0.00%
Page size 4096.00 4096.00 0.00%

Table 4.14: This table presents the average output of GNU time after running

John the Ripper on a password file 10 times on a Xen guest.
presents the percentage difference between these averages.

The last column

Metric Native average Xen Difference
User time (s) 2917.31 4167.325 42.85%
System time (s) 17.98 35.037 94.87%
Percent of CPU this job got 99% 99% 0.00%
Wall clock time (h:mm:ss) 00:49:15 01:10:02 42.18%
Maximum resident set size (kB) 88083.20 88082.4 0.00%
Major page faults (require 1/0) 0.00 0 0.00%
Minor page faults (reclaiming a frame) 8621723.40 4790189 -44.44%
Voluntary context switches 56.70 96.3 69.84%
Involuntary context switches 2874.70 3277.2 14.00%
File system inputs 0.80 1131.2 | 141300.00%
File system outputs 368.00 416 13.04%
Page size 4096.00 4096 0.00%

4.13 and 4.14 refers to when running the application alone on our baseline system.

4.3.4 Networking

The network performance of a Xen guest and a Docker container were evaluated
with regard to increased round trip time (RTT), jitter and packet loss. The result
from ping is shown in Table 4.15. The network performance baseline was established
by pinging 127.0.0.1 as well as connecting an iperf3 client to an iperf3 server on the
physical machine. In Tables 4.15 and 4.16 is the physical machine called PM , the
Docker container is called DC and the Xen guest XG.

36

4. Results

Table 4.15: Round trip times for the five network routes reported by ping after 30
seconds. Numbers are in milliseconds.

Route min | avg | max | mdev | avg inc.
PM to PM | 0.038 | 0.058 | 0.092 | 0.018 0
PM to DC | 0.105 | 0.13 | 0.184 | 0.012 | 124.14%
DC to DC | 0.092 | 0.122 | 0.141 | 0.012 | 110.34%
PM to XG | 0.179 | 0.52 | 0.602 | 0.074 | 796.55%
XG to XG | 0.265 | 0.66 | 2.876 | 0.455 | 1037.93%

As can be seen in Table 4.15, the Docker container added the least time to the
RTT and ping between two Docker containers proved to be more efficient than
pinging a Docker container from the physical machine. This is likely because the
Docker containers are connected to a internal Docker bridge that can be accessed
by the physical machine via a Docker gateway. The Xen guests on the other hand
is connected to a generic virtual network bridge that is not specifically designed for
handling this kind of virtual guests as the Docker bridge is could be an explanation
to why the Xen guest increase the RTT by almost 800% and the Docker container
increases RTT by 125%. We also see that the communication between two Xen
guests is much slower than the communication between two Docker containers.

Table 4.16: This table shows the jitter and packet loss observed when having five
different constellations of iperf3 clients and servers.

Client to Server | Jitter | Loss | packets lost
PM to PM 0.018 | 0.00% 0/3416
PM to DC 0.001 | 0.00% 0/51631
DC to DC 0.001 | 0.00% 0/51638
PM to XG 0.026 | 3.40% | 1751/51635
XG to XG 0.029 | 5.10% | 2609/51633

We observed the same phenomenon with iperf3 as with ping, namely that connec-
tions between a Xen guest and another Xen guest or the physical machine is less
stable then between a Docker container and another Docker container or the physi-
cal machine. From Table 4.16, we can draw the conclusion that there is less traffic
and therefore less disturbances in the network dedicated to the Docker containers.

4.3.5 DP applications

We can not, because of confidentiality, disclose any details about the performance
of the DP applications. We calculated the number of context switches per second
in order to be able to do some comparisons between these applications and the
benchmark applications. The radar applications had a lot more context switches
per second than any of the benchmark applications, but as long as the virtual layer
has the same clock frequency as the physical machine should this not have any con-
siderable impact on the execution time.

37

4. Results

Another observation is that in all cases, the number of voluntary context switches
were higher than the number of involuntary. For our three benchmark applications
was this the case only once, IOzone was the only benchmark application that had
more voluntary context switches than involuntary. Furthermore was 10zone also
the only application that did not consume more energy in the virtual layer than on
the physical machine. This suggest that virtualising the DP applications will not
increase the energy consumption, or at least not as much as it was increased in the
case of STREAM. But this need to be confirmed with further experiments.

4.4 Energy benchmarking

We measured the energy on a process level in order to eliminate the risk of back-
ground processes unknown to us influencing the results on one run but not the others.
We used a tool called pTop to do the energy measurements. This tool depends on a
CPU module called cpufreq stats being loaded into the kernel. This kernel module
is not supported by Linux kernel 4.9 which is the kernel that Xen depends on. We
could therefore not do any energy measurements on the Xen layer. It was also not
possible to load this module or change kernel in the environment where we ran the
Data Processing applications. We could therefore not perform energy analysis on
this applications nor test them in a Xen environment. It would have been possible
to use an external meter, but that would not have provided process-level measure-
ments and we did not have access to such a device.

energy measurements were performed on three applications, John the Ripper, 10-
zone and STREAM to investigate if virtualising a process caused it to consume
more CPU, memory or disk energy. pTop was run on the host when performing the
measurments on the virtual layers in order to capture the energy consumed by the
Docker Daemon and other processes necessary for running a container. The first two
applications did not suggest that the virtual layer caused any significant increase in
energy consumption. Figure 4.6 shows how the energy consumption of the 10zone
process varied over time and how much energy the three subsystems CPU, memory
and disk consumes each.

4.4.1 STREAM

The memory benchmarking application STREAM was used to investigate if moving
a memory heavy process to a virtual layer has any impact on the energy consumed by
the process. Figure 4.4 shows how the energy consumption change during execution
time. We used 10 stream processes of different length when measuring the energy
consumption of this application in order to see if the execution time of the application
had any impact in the energy consumption. All did the same calculations with the
same array length, but different number of times. They where run consecutively
starting with the shortest and ending with the longest.

We expect to see CPU usage since we know that STREAM perform calculations
and we expect to see memory usage since the application is used for measuring data

38

energy (J)

1.5

0.5

4. Results

O W
20 40 60 80 100 120 20 40 60 80 100 120
time (s) time (s)
—o— Disk energy —o— Disk energy
—=— Memory energy —u— Memory energy
—e— CPU energy —e— CPU energy
(a) STREAM physical machine. (b) STREAM Docker.

Figure 4.4: The two graphs show the changes in energy consumption for 10 consec-
utive STREAM processes split up into disk, memory and CPU energy consumption.
Figure 4.6a shows the energy consumption when the processes are run in a docker
container and Figure 4.6b shows the same but for a run on the physical machine.

throughput in memory. The load on the memory seem to be relatively consistent
compared to the load on the CPU. The memory energy consumption looks to be
relatively equal between the physical machine and the Docker container compared

to the CPU energy consumption.

4.4.2 10zone

I0zone was used to investigate the impact Docker had on the energy consumption
of the storage system. Test case 1 presented in Table 3.2 was used for this.

39

4. Results

3 l
|
g I
=
b "
[}
=
D)
1
0
20 40 60 80 100 120
time (s)
—e— Native
—m— Docker

Figure 4.5: This graph shows a comparison between the energy consumption of an
STREAM processes run both in the native OS and inside a Docker container. The
energy consumed by the Docker Daemon and the Container Daemon is included in
the Docker energy.

One can see when comparing Figures 4.6b and 4.6a that the increase in energy
consumption when moving the I0zone process from the native environment to a
Docker container is at worst minimal based on measuring the energy consumption
for during only one run of the application. We got the same result when including
the energy consumed by the extra processes that is needed when running Docker
containers, such as Docker Daemon and Container Daemon. The result of this is
shown in Figure 4.7.

We can conclude from Figure 4.7 that the virtual layer has no impact on the energy
consumed by the IOzone application. The fact that the two graphs is a bit out of
synch between 100 and 200 seconds is most likely because the Dockerized version
was a bit slower than the native version and therefore had the Docker version not
reached the same stage in the process at 100 seconds as the native version had.

4.4.3 John the Ripper

The John the Ripper application was used to estimate the increase in CPU energy
consumption when moving from native to Docker environment. Figure 4.8 shows
the energy consumption of the application when it is run on the baseline system and
in a Docker container.

Figure 4.9 suggests that the virtual layer did not add to CPU energy consumption,
except for at 3 stages in time where the Docker consumes significantly more energy
than the physical machine. What causes this is difficult to determine without going
into detail of the application source code which is out of the scope of this project.
This is though an important point to consider when in the end choosing a technology
to implement. A rerun of this experiment might provide insight into this.

40

energy (J)

15

10

4. Results

w M“ 15 H‘h VT mw
V\M = 10
" Gl
j=Y0]
g
g
5
e bl N 0 Joakhy l o bbb b
100 200 300 400 100 200 300
time (s) time (s)
—e— Disk energy —e— Disk energy
—=— Memory energy —=— Memory energy
—o— CPU energy —o— CPU energy
(a) 10zone native. (b) I0zone Docker.

Figure 4.6: The two graphs show the changes in energy consumption for an 10zone
process split up into disk, memory and CPU energy consumption. Figure 4.6a shows
the energy consumption when the process is run i a docker container and Figure 4.6b
shows the same but for a run on the physical machine.

We calculated the average Watt consumed by these applications to allow for an
easier comparison between the baseline and the Dockerized version. The resulting
figures is shown in Table 4.17. These numbers suggest that an application that is
heavy on the CPU could consume 15% more energy when run in a Docker container
instead of in the native OS and an application the is heavy in the memory could
consume 46% more energy. It is possible that this phenomenon is cause by the
applications being packaged into an image representation of the container, we do
not know if this causes any differences between the binaries used by the physical
machine and the binaries being extracted from the container image. We know from
Figure 4.2 that these differences does not incur performance variations.

Table 4.17: This table shows the calculated average energy consumed by the three
measured applications.

Application Native | Docker | Difference
John the Ripper | 1.12 1.29 15.01%
[Ozone 8.89 8.84 -0.60%
STREAM 1.73 2.54 48.29%

41

400

4. Results

: w
m ill

energy (J)

J

100 200 300 400

time (s)
—o— Native
—=— Docker

Figure 4.7: This graph shows a comparison between the energy consumption of
an I0zone process run both on the physical machine and inside a Docker container.
The energy consumed by the Docker Daemon and the Container Daemon is included
in the Docker energy.

4.5 Summary

The benchmarking experiments consisted of three parts:
- Using PTS, decide which container and hypervisor to study in more detail
- Using other tools and bencharmks, measure performance of Docker and Xen.
- Using pTop, measure energy consumption on Docker.

PTS The first part of the benchmarking where we used PTS was used to de-
termine which of the four virtualisation techniques showed the most promise for
implementation in the radar system. As stated in Section 4.2, Docker and Xen had
the least difference between when running tests in the respective virtual layers and
running the tests on the physical machine. We therefore regarded them to have a
more predictable impact on the software performance than KVM or LXC.

For the remainder we decided to do more extensive tests with Xen and Docker
since we decided to prioritise a predictable impact. The continued testing confirmed
what PTS suggested, namely that Docker does not have any particular impact on
the overall performance of an application. When using Docker, the layer adds a few
percent to the execution time while context switches and page faults are increased
and decreased respectively. This is not the case when using Xen. Using Xen adds
about 42% to the total execution time compared to running Ripper on our baseline
system. The increase in execution time can be explained by the Xen guests having
virtual CPUs with a lower clock frequency than the physical machine.

42

energy (J)

4. Results

3 Pk o P
= 2
s
&0
g
£
1
200 400 600 800 1,0001,200 0 L ;
fime. (<) 200 400 600 800 1,0001,2001,400
—o— Disk energy time (<)
—s— Memory energy —o— Disk energy
—— CPU energy —=— Memory energy
—e— CPU energy
(a) John the Ripper physical ma-
chine. (b) John the Ripper Docker.

Figure 4.8: The two graphs show the changes in energy consumption for a John
the Ripper process split up into disk, memory and CPU energy consumption. Figure
4.8b shows the energy consumption when the process is run i a docker container and
Figure 4.8a shows the same but for a run on the physical machine.

Measuring performance The experiments described in 4.3 have shown that vir-
tual layers are best suited for applications that does not need to do a large amount
of system calls. 10zone is the application that most likely made the most system
calls since it makes alot of I/O operations, and this was the application were we
could observe the largest increase in execution time for both Docker and Xen. The
application areas for the two technologies differ a bit. Docker containers are suitable
for applications where generated data does not need to be saved between sessions
or where the data can be logged by a process that is not run in the container. Xen
is suitable if you need multiple VMs on your physical machine, e.g. in a server
environment.

The overhead incurred by Docker and Xen seem to come from different places de-
pending on what kind of operation is being performed. Context switching seem
to have less impact than page faults on the performance of software in a Docker
container in terms of execution time. It is harder to draw any conclusion about the
overhead of the Xen guest since the CPU frequency differed between the physical
machine and the Xen guest. This is likely to have masked increase or decrease in
execution time of the software on the Xen guest. However, we did see a decease in
page faults on the Xen guest which could suggest that the performance might be
higher on a Xen guest then on the physical machine if the CPU frequency is the

43

4. Results

energy (J)

AR LR

200 400 600 800 1,0001,2001,400

time (s)
—e— Native

—=— Docker

Figure 4.9: This graph shows a comparison between the energy consumption of an
John the Ripper process run both in the native OS and inside a Docker container.
The energy consumed by the Docker Daemon and the Container Daemon is included
in the Docker energy.

same. A possible explanation for the lower frequency can be found in the difference
in workload between the vCPU and the physical CPU on which the vCPU is sched-
uled [21]. In our case is only the Xen guest executing any significant work-load and
therefore will the workload of the vCPU be higher then the work-load of the physical
CPU. Throughout the experiments, the CPU governor was set to ondemand which
meant that a low workload would result in a lower frequency. When running Xen is
the vCPU time slice set to 30 ms with 10 ms as the minimum sampling interval for
frequency adjustment. This can result in the CPU frequency never being increased
to a level suitable for the actual work-load since the governor can not increase the
frequency more than one step at each sample interval. There are two ways to address
this problem:

- Change governor. If the CPU power governor is set to will the frequency of
the physical CPU always be set to highest available frequency, which would
mean that the vCPU also would receive this frequency.

- Increase the vCPU time slice. This would provide the opportunity for the Xen
power manager to increase the frequency of the vCPU to a more suitable level
before the end of the time slice.

The network experiments showed that the Xen guest added quite a lot to the net-
work latency and even caused packet loss when we ran iperf3. Docker containers
showed better performance than the Xen guests even though the RT'T more than
doubled when pinging between a Docker container and another Docker container or
the physical machine.

Figure 4.10 summarises the average execution times and energy consumptions for

44

4. Results

STREAM, I0zone and John the Ripper when they are executed on the physical
machine or in a virtual layer. The differences between the heights of the bars show
that Xen has the largest overhead in terms of execution time, but as previously
mentioned could this be due to the lower clock frequency. The measurements of
energy consumption suggests that applications that are heavy on the CPU will get
increased energy consumption when run in a virtual layer.

M u] 4,000]
30
— 3,000 — —
% 20 o
3 £ 2,000
10
1,000 |
0 0
Native Docker Xen Native Docker Xen
(a) Average execution time for (b) Average execution time for John the
STREAM Ripper
0.6
N | [T Native
l0Docker
— 0.4 — g 6
s | D 5
= £ 4
0.2 ~
2
Native Docker Xen STREAM I0zone ripper

(c) Average execution time for IOzone (d) Average energy consumption

Figure 4.10: This Figure shows the average execution time for STREAM, 10zone
and John the Ripper when they are run on the physical machine, in a Docker
container and on a Xen guest.

Measuring energy We could only measure the energy consumption of dockerized
processes, not processes run on a Xen guest due to compatibility issues. Running a
process inside a Docker container instead of directly on the physical machine seems

45

4. Results

to cause an increase in energy consumption in certain parts of the system. By
observing Figure 4.4b and Tables 4.7 and 4.17, we can assume that the increase in
energy consumption is caused by the increase in context switches. We calculated
the number of context switches per second in an attempt to see connection between
context switches and energy consumption using the following formula

Voluntary + Involuntary _context_switches

4.1
System + User__time (41)

Table 4.18: This table shows the average number of context switches when running
our three applications on the physical machine and in a Docker container.

Application | Native cs/s | Docker cs/s | Difference
STREAM 1.41 51.22 3539.80%
10zone 2201.46 1311.58 -40.42%

ripper 1.00 59.41 5848.97%

By comparing Tables 4.18 and 4.17 we can see that the two applications that had
a higher energy consumption also had a higher number of context switches in the
virtual layer. As established in Table 4.17 is STREAM the application that had the
largest energy consumption increase when changing from running on the physical
machine to running in a Docker container and since the most notable difference
between the two runs is the number of involuntary context switches is it likely that
those context switches are what causes the energy consumption increase. Since a
context switch will cause the content of the caches to change and cache latency as
well as cache line size are two of the parameters used by pTop to calculate energy
is the increase in context switches a likely explanation for the increase in energy
consumption.

46

D

Discussion

In this chapter we discuss the methods we used for measuring the energy consump-
tion and performance. We highlight what parts we could have done differently and
how our choices might have impacted the outcome of the project. We conclude the
chapter with a discussion on how we chose which technologies to focus on when
performing the performance and energy measurements.

5.1 Energy measuring

The tool that was used for measuring energy showed that there is a slight increase
in energy consumption when running applications in virtual layers. Since the user is
instructed to adjust some parameters before compiling the code and the accuracy of
the program relies on these parameters, it is likely that the raw data collected from
pTop does not conform precisely to reality. We made an attempt to tune it to our
system but are not sure of who successful the attempt was. This however, we do not
view as an issue since we are more interested in the relation between virtual layer
and baseline system energy consumption. As long as that stays the same no matter
the difference between reported energy consumption and real energy consumption
will this tool serve our purposes. We believe that the tool has the same accuracy for
both the process that is run in a Docker container as it has for the process running
directly on the physical machine. This belief is based on the fact that pTop could
identify the relevant processes that was run in the container even though pTop itself
was run on the physical machine. pTop uses process IDs to monitor how much a
certain process is using a certain resource. This means that as long as the process
ID for the process in question is visible to the host machine, the accuracy of the
measurements should not differ between virtual processes and processes running on
the physical machine. The developers of pTop claims that the tool has an error
median that is less than 2 Watts [14]. They do not clearly state in their paper if this
is per process or per system, but it should be per system since they used a Watts
Up power meter to measure the accuracy of pTop.

If our assumptions about the accuracy of pTop are wrong could this mean that
the power impact is much greater than indicated here. Higher energy consumption
in the same system generally entails more heat to dissipate. Depending on how ef-
ficient the cooling of the system is and how much heat the system generated before
the increase in energy consumption could this have severe implications. Considering
that we are investigating the possibility of using a virtual layer in a mobile radar

47

5. Discussion

system with a limited power supply, it is even more important that we can be sure
about how the virtual layer impacts the energy consumption. A too great energy
consumption would limit the operation time and too much heat could be a severe
issue because the radar-systems are used both in cold and very hot environments.
Heat also ages components which means that too much heat might possibly shorten
the lifetime of the radar system depending on the part that is currently constraining
it.

Our calculations regarding Watts consumed by the applications suggest that the
energy consumption could increase rather drastically if the applications are run in-
side containers rather then on the physical machine. Containerisation of the radar
applications might be unfeasible due to this. As we see from comparing Figures
4.4a and 4.4b originates this increase in energy consumption in the processor. An
increase of nearly 50% in CPU energy consumption could have a large impact on
the operation time depending on the number of such operations and how large por-
tion of the energy consumption the CPU operations are responsible for in the radar
applications.

pTop was not used together with virtual machines in the original paper and in
hindsight we believe that a power meter would have been a more suitable tool for
this kind of measurements. Our reason for choosing a software tool was that we
wanted to see how much e.g. Docker Daemon added to the energy consumption
alone. According to our measurements using pTop does the Docker Daemon not
cause any significant increase in energy consumption which decrease the necessity
of measuring energy consumption at a process-level.

5.2 Benchmarking results

Overall did the virtual layers have a negative impact on the performance. Figure 4.1
suggests that the virtual layers had a positive impact on some parts of the system,
but by comparing Figure 4.1 with the individual test results one can see that there
are a few results that alone increases the average. We have not included the indi-
vidual test results from the PTS suites since we did not find those numbers being
relevant because we are only interested in the differences between native and virtual
environment at this stage.

We chose to only use the results from the PTS suites as a screening tool since
we thought that we did not have enough insight into exactly what each test in the
suites measured and extracting the raw data was too time consuming. Despite this,
we thought it was suitable as a screening tool since it provided an efficient way of
running multiple benchmark applications that tested different aspects of the system.

As mentioned earlier, the platform that was used does not reassemble the currently
used system and might not reassemble the new system either. What we did though
was to try to make the virtual environment as similar to our baseline system (the
Dell laptop) as possible in order to limit the differences between them to the virtu-

48

5. Discussion

alisation. This way we hoped to be able to measure the impact the virtualisation
it self had on the software performance. This way it is possible to estimate by cal-
culations how the DP applications might be affected by virtualisation and thus use
that information to choose the replacing hardware.

We chose to only use the most basic configurations when creating the virtual ma-
chines, such as number of virtual CPU, RAM and video RAM. This resulted in the
Xen guest having a lower clock frequency than the physical machine. This has likely
influenced the results reported by GNU time. The Xen guest had a 30% lower clock
frequency than the physical machine and the other virtual layers and we can see that
when running John the Ripper which was the application that focused on using the
CPU is the execution time about 42% longer. The number of context switches could
not by themselves account for this increase in execution time, however the difference
in CPU frequency explains the increase in execution time since it would make the
execution time longer even if the number of context switches and page faults was
the same.

To further limit possible interference, we stopped processes such as browsers and
daemons that was not necessary for the functions of the process we were currently
performing measurements on. If unnecessary processes are would that result in the
execution time of the processes we were interested in being longer which would give
the impression that the performance was worse than it really is. There is a possi-
bility that we missed some unnecessary processes. Assuming that these processes
interfered with the measured processes equally should the interfering processes not
impact our results significantly since we are interested in the physical vs. virtual
environment differences. If this assumption is wrong and only the processes run on
the physical machine were affected by interference, it is possible that the physical
machine should exhibit a higher performance and the difference between physical
and virtual machine is greater than shown in this report.

5.3 Motivation of prioritisation choice

We decided at the start of the project that it is more important that the virtual
layer does not have a too large negative impact on the performance rather then it
can provide a positive performance impact. Due to this decision was the negative
impact numbers given a larger importance then continuing the work after the bench-
marking process.

We chose to continue with more in depth testing of Docker and Xen because they
had the smallest difference between overall impact and negative impact when only
taking the results from CPU and memory suites into account. The results from the
disk suite was not included when making the decision since the impact on the disk
performance was so much more pronounced that they were likely to mask the CPU
and memory impacts. Instead, we chose to use I0zone to measure disk operation
performance in virtual layers.

49

5. Discussion

20

O

Transitioning to a virtual
environment

Since this project should partially determine the feasibility of introducing a virtual
layer in the radar systems have we also studied how a transition from running tra-
ditional applications natively on the machines to running them in a virtual layer.
Using containers or a hypervisor will require different things when making the tran-
sition from running natively to running in a virtual layer.

6.1 Feasibility

From a performance perspective, we believe that even though a virtual layer have
some disadvantages would the advantages it presents outweigh them. A virtual layer
will almost certainly decrease the performance compared to when running an ap-
plication natively. The current hardware is, as stated in Section 1.1, going to be
replaced with newer that provides more performance. We believe that overall it is
likely that the new hardware can mitigate the performance degradation caused by
introducing a virtual layer.

Using a virtual environment presents multiple advantages. As an example, applica-
tions requiring conflicting libraries can be placed in separate VMs as a workaround
to this problem. Virtual environments also enables using any OS that support vir-
tual environments even though it might not support the application that need to
run in the system. This is possible since VMs on the same host do not need to run
the same OS as each other or the host.

The disadvantages of using virtual environments is mostly noticeable during sys-
tem setup. The setup will be different depending on what virtualisation technique
is being used. Hypervisors type II might be smoother than containers to use, but
they are also likely to have the highest performance degradation. A type I hyper-
visor might be a bit cumbersome install since it is not as straight forward as the
type II, but we found it to be quite smooth to use once installed. Xen also seemed
to have slightly more stable performance differences compared to Docker, but this
need to be further investigated in order to arrive at any definitive conclusion.

From an energy perspective is it possible that the virtual layer could have a negative
impact on the operation time of the surface radar system. Our process-level mea-

51

6. Transitioning to a virtual environment

surements in the physical system and the Docker container suggest that the could
increase drastically depending on which system parts are most heavily used.

Our results from the network experiments suggest that using a Xen guest in the
radar-systems might not be feasible. The increase in latency could cause the target
tracking to lag and the packet loss reduces the reliability of the system. In a live
scenario could this be devastating for the people relying on the radar for detecting
incoming threats. The Docker containers also increased the latency compared to our
baseline, but not as much as the Xen guest did. It might be possible to compensate
for the latency increase caused by the Docker container due to the fact that the jit-
ter and the standard deviation of the RTT was lower when using Docker containers
then when sending data internally on the physical machine.

6.2 How to do it

A hypervisor would allow the currently used applications to be moved from the na-
tive environment into the virtual machine. This would be useful in order to smoothly
move the old radar applications from the current computer configuration which uses
multiple computer cards to a new one with only one computer card. In the new
system could a hypervisor be used to create multiple VMs that could have the same
function as the physical cards have today. From the applications’ point of view would
it seam like they still are spread out over multiple physical cards even though there
are only one physical card. The drawback from this configuration is that this would
require a computer card that has at least X times the performance as one of the
cards that is used today, where X is the number of cards that is currently being used.

Containers have proven to be the technology that have the least impact on the
performance compared to running applications on the physical machine. To be able
to use containers at their full potential, the applications should be divided into
smaller components and each component should be placed in a container. The con-
tainers will then work together to form the app. The container configuration would
much like the hypervisor require a hardware performance increase at least equal to
the number of computer cards. Maybe not as high as the hypervisor since contain-
ers have less overhead. It would require more work to move the radar applications
into a container environment since they will need to be containerised. How the con-
tainerisation should be done is out of the scope for this project and should be left to
the software engineers. A guideline for containerisation is to divide the applications
into well-defined functions.

6.3 Recommendations
Our recommendation for the transitioning from multiple physical computer cards
to only one is to as a first step use a hypervisor to create the required amount of

VMs that can substitute for the physical cards. This configuration will allow any
legacy software to run as if the hardware has not been changed while the software

52

6. Transitioning to a virtual environment

engineers work with containerising the applications. However, it is important to
study how increased network latency can impact the performance of the system as
a whole before replacing physical boards with VMs.

We recommend to use containers in the long run. Containers add a small overhead
compared to a hypervisor while still isolating processes from each other. Container-
isation will also allow developers to push new features and fixes to the applications
much faster compared to when using traditional development. Security might also
be better due to organisations will be able to configure their orchistrators to always
pull the newest version of the app and thus be up-to-date with every security patch

[3]-

53

6. Transitioning to a virtual environment

o4

[

Conclusion

In this thesis we have made an attempt to address the problem of introducing a
virtual layer into transportable radar systems. This was done by investigating the
impact the layer would have on the software performance and the energy consump-
tion. In addition to this, we also looked at the cause behind the overhead of two
virtualisation techniques. The results from our experiments suggest that CPU op-
erations are not significantly affected when moved from a physical environment to a
virtual one. Operations that require system calls however are significantly affected.
We therefore conclude that computation heavy applications are better suited for vir-
tualisation than I/O heavy applications when only considering performance. Con-
cerning energy consumption, our experiments indicate that CPU heavy applications
will have a higher energy consumption in a virtual environment. This observation
indicates that virtualisaiton is not suitable for implementing in a system with a
limited power supply. However, this need to be confirmed with further research.

7.1 Future work

This work hope to act as a baseline for continued investigation of how virtual layers
can be used in surface radar-systems. The energy consumption of the individual
processes indicates that a virtual layer could limit the operation time of a system
with a limited power supply. However, we do not know how big the increase is on a
system level since we only measured the energy consumption on specific processes
at process-level.

Other possible areas for further research is to investigate how multiple running
containers or VMs might impact each other. We did some research into this, but
due to time limitations were we not able to arrive at any conclusions on this part.
This is highly interesting since we propose to run multiple VMs on the same com-
puting board after updating the hardware but before the software is fully prepared
for a virtual environment.

Since the hardware configuration differed between the physical machine and the
Xen guest would it be relevant to repeat the experiments done in this project us-
ing a Xen guest with the same hardware configuration. One could conclude from
this project that the increased execution time mainly stems from the lower CPU
frequency which suggests that if the two machines had the same frequency would
their performance in terms of execution time be closer than observed here.

55

7. Conclusion

We have focused on how virtualisation can be used to solve the potential incom-
patibility problem between currently used software and updated hardware. Future
projects might include investigating how the virtual layer should be implemented in
order to ensure the best possible outcome.

26

1]

[10]

Bibliography

add host device. Add host device to container (—device).
https://docs.docker.com/engine/reference/commandline/run/
#add-host-device-to-container---device. Accessed: 2019-06-06.

Samuel A Ajila and Omhenimhen Iyamu. Efficient live wide area vm
migration with ip address change using type ii hypervisor. In 2013 IEEFE 14th
International Conference on Information Reuse & Integration (IRI), pages
372-379. IEEE, 2013.

Charles Anderson. Docker [software engineering]. IEEE Software, 32(3):
102-¢3, 2015,

Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog
computing and its role in the internet of things. In Proceedings of the first
edition of the MCC workshop on Mobile cloud computing, pages 13-16. ACM,
2012.

Thomas C. Bressoud and Fred B. Schneider. Hypervisor-based fault tolerance.
ACM Trans. Comput. Syst., 14(1):80-107, February 1996. ISSN 0734-2071.
doi: 10.1145/225535.225538. URL
http://doi.acm.org/10.1145/225535.225538.

CentOS Docker build scripts. Centos docker build scripts. https:

//github.com/Cent0S/sig-cloud-instance-build/tree/master/docker.
Accessed: 2018-11-20.

cgroups. cgroups - linux control groups.
http://man7.org/linux/man-pages/man7/cgroups.7.html. Accessed:
2019-06-06.

Ramaswamy Chandramouli, Murugiah P Souppaya, and Karen Scarfone. Nist
guidance on application container security. Technical report, 2017.

chroot - change root directory. chroot - change root directory.
http://man7.org/linux/man-pages/man2/chroot.2.html. Accessed:
2019-06-06.

cpuspeed. cpuspeed download.
https://carlthompson.net/downloads/cpuspeed/cpuspeed-1.5.tar.bz2.
Accessed: 2019-03-20.

57

Bibliography

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

28

Vitor Goncalves da Silva, Marite Kirikova, and Gundars Alksnis. Containers
for Virtualization: An Overview. Applied Computer Systems, 23(1):21-27,
2018. ISSN 2255-8691. doi: 10.2478/acss-2018-0003. URL http:
//content.sciendo.com/view/journals/acss/23/1/article-p21.xml.

Tom Deakin, James Price, Matt Martineau, and Simon McIntosh-Smith.
Evaluating attainable memory bandwidth of parallel programming models via
babelstream. International Journal of Computational Science and
Engineering, 17(3):247-262, 2018.

Ankita Desai, Rachana Oza, Pratik Sharma, and Bhautik Patel. Hypervisor:
A survey on concepts and taxonomy. International Journal of Innovative
Technology and Ezxploring Engineering, 2(3):222-225, 2013.

Thanh Do, Suhib Rawshdeh, and Weisong Shi. ptop: A process-level power
profiling tool, 2009.

Docker get started. Get started, part 1: Orientation and setup.
https://docs.docker.com/get-started/. Accessed: 2019-06-06.

Docker Overview. Docker overview.
https://docs.docker.com/engine/docker-overview/. Accessed:
2018-12-13.

DomU Support for Xen. Domu support for xen.
https://wiki.xenproject.org/wiki/DomU_Support_for_Xen. Accessed:
2018-11-30.

Zhanibek Kozhirbayev and Richard O. Sinnott. A performance comparison of
container-based technologies for the cloud. Future Generation Computer
Systems, 68:175 — 182, 2017. ISSN 0167-739X. doi:
https://doi.org/10.1016/j.future.2016.08.025. URL http:
//www.sciencedirect.com/science/article/pii/S0167739X16303041.

KVM. Kernel virtual machine.
https://wuw.linux-kvm.org/page/Main_Page. Accessed: 2018-12-14.

Zheng Li, Maria Kihl, Qinghua Lu, and Jens A Andersson. Performance
overhead comparison between hypervisor and container based virtualization.
In Advanced Information Networking and Applications (AINA), 2017 IEEE
31st International Conference on, pages 955-962. IEEE, 2017.

Ming Liu, Chao Li, and Tao Li. Understanding the impact of vepu scheduling
on dvfs-based power management in virtualized cloud environment. In 201/
IEEFE 22nd International Symposium on Modelling, Analysis € Simulation of
Computer and Telecommunication Systems, pages 295-304. IEEE, 2014.

LXC manpage5. Ixc. https://linuxcontainers.org/lxc/manpages/man5/
lxc.container.conf.5.html. Accessed: 2019-01-15.

Bibliography

[23]

[24]

[25]

[26]

LXC vs Docker. Understanding the key differences between lxc and docker.
https://archives.flockport.com/lxc-vs-docker/. Accessed: 2019-06-02.

LXD 2.0: Image management. Lxd 2.0: ITmage management [5/12].
https://stgraber.org/2016/03/30/1xd-2-0-image-management-512/.
Accessed: 2019-01-07.

man time. time(1) - linux man page. https://linux.die.net/man/1/time.
Accessed: 2019-03-08.

I Masliah, A Abdelfattah, A Haidar, S Tomov, M Baboulin, J Falcou, and

J Dongarra. Algorithms and optimization techniques for high-performance
matrix-matrix multiplications of very small matrices. Parallel Computing, 81:
1-21, 2019.

John D McCalpin et al. Memory bandwidth and machine balance in current
high performance computers. IEEE computer society technical committee on
computer architecture (TCCA) newsletter, 1995:19-25, 1995.

Daniel A Menascé. Virtualization: Concepts, applications, and performance
modeling. In Int. CMG Conference, pages 407414, 2005.

overlayfs. Overlay filesystem. https:
//www.kernel.org/doc/Documentation/filesystems/overlayfs.txt.
Accessed: 2019-06-06.

OverlayFS. Use the overlayfs storage driver.
https://docs.docker.com/storage/storagedriver/overlayfs-driver/.
Accessed: 2018-12-13.

Alfonso Pérez, German Molté, Miguel Caballer, and Amanda Calatrava.
Serverless computing for container-based architectures. Future Generation
Computer Systems, 83:50-59, 2018.

Phoronix Test Suite Package. phoronix-test-suite-8.2.0-1.el7.noarch.rpm.
https://centos.pkgs.org/7/epel-x86_64/phoronix-test-suite-8.2.
0-1.el7.noarch.rpm.html. Accessed: 2018-11-20.

J. Sahoo, S. Mohapatra, and R. Lath. virtualization: A survey on concepts,
taxonomy and associated security issues. In 2010 Second International
Conference on Computer and Network Technology.

stream website. Stream: Sustainable memory bandwidth in high performance
computers. https://www.cs.virginia.edu/stream/. Accessed: 2019-03-22.

time. Gnu time. https://www.gnu.org/software/time/. Accessed:
2019-05-14.

Fan-Hsun Tseng, Ming-Shiun Tsai, Chia-Wei Tseng, Yao-Tsung Yang,
Chien-Chang Liu, and Li-Der Chou. A lightweight autoscaling mechanism for
fog computing in industrial applications. IEEE Transactions on Industrial
Informatics, 14(10):4529-4537, 2018.

59

Bibliography

[37]

60

vSphere. Product evaluation center for vimware vsphere 6.7.
https://my.vmware.com/en/web/vmware/evalcenter?p=vsphere-eval.
Accessed: 2019-06-06.

J. P. Walters, V. Chaudhary, M. Cha, S. G. Jr., and S. Gallo. A comparison
of virtualization technologies for hpc. In 22nd International Conference on
Advanced Information Networking and Applications (aina 2008), pages
861-868, March 2008. doi: 10.1109/AINA.2008.45.

Xen overview. Xen project software overview.
https://wiki.xenproject.org/wiki/Xen_Project_Software_Overview.
Accessed: 2019-06-06.

Xen4QuickStart. Xen4 centos quickstart.
https://wiki.centos.org/HowTos/Xen/Xen4QuickStart. Accessed:
2018-11-28.

Xenwiki. Xen project beginners guide.
https://wiki.xenproject.org/wiki/Xen_Project_Beginners_Guide.
Accessed: 2018-11-12.

A

Appendix 1

This appendix holds all code and configurations files used throughout the project.

A.1 Dockerfiles

Below is listings showing the Dockerfiles used to create the containers that was
used to run PTS during the benchmarking process. The code in Listing A.1 was
generated using a script and a kickstart file from the CentOS Project GitHub
repository [6].

Listing A.1: Base image for CentOS 7 Linux

#mycentos

FROM scratch
ADD centos—7—docker.tar.xz /

LABEL org.label—schema.schema—version="1.0" \
org.label —schema.name="CentOS Base Image" \
org.label —schema.vendor="CentOS" \
org.label—schema.license="GPLv2" \
org.label—schema.build —date="20181006"

CMD /bin/sh

Listing A.2: Creating an image with the shared libraries needed by PTS

#mylibs

FROM mycentos: latest AS build

WORKDIR /home

RUN yum update

RUN yum install —y wget

RUN wget http://dl.fedoraproject.org/pub/epel/
epel—release —latest —7.noarch .rpm

RUN rpm —ivh epel—release—latest —7.noarch.rpm

RUN yum install php—cli php—pdo php—xml —y

CMD /bin/sh

Listing A.3: Creating an image with PTS
#mypts

A. Appendix 1

FROM mylibs:latest
RUN yum install phoronix—test—suite —y
CMD /bin/sh

Listing A.4: Creating an image for a container that will run the CPU tests from
PTS

#mypts—cpu

FROM mypts:latest

VOLUME /var/lib /phoronix—test—suite

RUN phoronix—test—suite install pts/cpu
CMD /bin/sh

Listing A.5: Creating an image for a container that will run the memory tests
from PTS

#mypts—mem

FROM mypts: latest

VOLUME /var/lib /phoronix—test —suite
RUN phoronix—test—suite install pts/memory
CMD /bin/sh

A.2 Xen configuration file

Listing A.6: Configuration file for the Xen VM used during the benchmarking
process

#centos—test . cfg

builder = "hvm'

name = 'centos—test"'

memory = "8192"

vepus = 8

serial = 'pty'

vif = ['bridge=virbr0 ']

disk = ['phy:/dev/centos/centos—test ,xvda,rw',

"file:/opt/isos /CentOS—7—x86_ 64—Minimal —1804.iso ,xvdb:cdrom ,r ']
boot = "¢
sdl = 0
vne = 1
vncconsole = 1
vnclisten ="127.0.0.1"
vncpassword = "'
stdvga = 1
videoram = 2048

keymap = "sv

IT

