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The Optimization of Healthcare Sta� Scheduling in the Emergency Department
CHATTARIN WANGWITTAYA
Department of Electrical Engineering
Chalmers University of Technology

Abstract
Healthcare sta� scheduling has been renowned for its correlation with service quality,
care outcome, and sta� turnover rate. Nevertheless, the complexity of the process
usually impedes the hospital from achieving those goals. Particularly at the emer-
gency department of Siriraj Hospital, the complications in scheduling are expedited
by the high number of registered nurses (RNs) and the policy for ensuring adequate
care service. To enhance the e�cacy of human resource management, this thesis in-
vestigates the optimization model’s capability in the on-duty scheduling of RNs. The
scheduling requirements were collected from the interviews with four stakeholders
from the management team and the governed sta�. The service blueprint was cre-
ated to visualize the scheduling process, and the mathematical model was formulated
following the collected requirements. There are two optimization models developed
in this study, i.e., the mixed integer linear programming (MILP) model and the
genetic algorithm (GA) model. Two sets of scheduling data for testing the models
were obtained from the past RNs schedules in May-June and July-August 2021. The
performance comparison between the MILP and GA model demonstrated the inef-
ficiency of GA in optimizing the highly constrained problem, as it can provide only
3.95% of evaluation metrics with better outcomes than MILP. In comparing man-
ual and MILP-optimized schedules, both approaches provide more than half of the
evaluation metrics with unchanged outcomes, thus having comparable performance
in optimizing most of the schedule’s features. However, MILP can significantly opti-
mize 24% to 25% of the metrics while having only 6.58% to 9.21% of the metrics with
deteriorated outcomes compared to the manual approach. As a result, the MILP
optimization model possesses more superior performance than the GA model and
manual approach in optimizing the scheduling of RNs at the emergency department
of Siriraj Hospital. The MILP optimization in reducing work stress, promoting sta�
satisfaction, providing fairness, conforming to the policy, and cutting scheduling
time can lead to excellence in service quality and care outcome while lowering the
turnover rate. Consequently, the optimization of healthcare sta� scheduling with
the MILP model exerts the capability of human resource management to its greater
extent.

Keywords: optimization, sta� scheduling, mixed integer programming, genetic al-
gorithm, healthcare, human resource management, emergency department, nurses.
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1
Introduction

1.1 Background
A healthcare sta� scheduling is about the shift assignments of care providers under
a particular period to ensure adequate sta� in each shift [1, 2, 3, 4]. In addition
to scheduling, sta�ng quantifies the number of working personnel required in each
shift following the expected service demands or patients [2, 5]. Altogether, these
two modules establish the balance between sta�ng requisitions and workloads, thus
enhancing care quality and patient safety [5, 6, 7]. Nevertheless, scheduling is more
challenging to achieve since it considers a variety of sta� attributes.

The significance of scheduling is also contributed by the potent correlation between
scheduling results and sta� satisfaction [4]. Several factors, such as work stress, fair-
ness, and the sta�-to-patient ratio, can a�ect the service quality and care process
outcome [8]. Therefore, one of the keys to exceptional service is to provide sta� with
satisfaction on their working schedule while obeying the sta�ng criteria [4, 6, 8, 9].

Still, the complexity impedes the hospital from attaining the scheduling intents.
Those complication aspects include sta� (e.g., seniority and individual preference),
working policy, and limited human resource [5]. As a result, the hospital cannot
utilize its resource through e�cient scheduling. This scenario causes the decline
in sta� satisfaction, the possible degradation of service quality, and the failure of
workforce retention [5, 8, 9].

World Health Organization (WHO) has addressed nurse shortage in all countries as
a solemn issue to resolve within 2030, and one of the proposed solutions is to reduce
the nurse’s exit rate [10]. In Thailand, the high turnover rate of registered nurses
(RNs) has always been a critical issue for the Ministry of Public Health to tackle
[11, 12]. The report shows that the annual resignation of Thai nurses is about 4%,
and it is anticipated to rise to 15% in 2020 [12]. The past research also discovers
that the main factor promoting the exit rate of Thai nurses is job dissatisfaction
[11, 12]. More than 40% of Thai nurses experience pressure from working more than
12 hours daily, particularly newly graduated nurses [13]. Furthermore, the excessive
number of afternoon and night shifts urges work stress while lowering care qual-
ity [11, 12]. Consequently, the managers should satisfy RNs with individual-based
working preferences, well-being, and optimal workload [12].

1



1. Introduction

According to all of the problems in healthcare workforce management, optimizing
sta� scheduling is the key activity to diminish these issues. As mentioned earlier,
scheduling is a di�cult task, and manually performing it does not exert the opti-
mization to its fullest extent [14]. With this primary need for assistive technology,
operation research and computer science have brought modelling solutions to opti-
mize sta� scheduling [5]. Their use cases throughout this time have proved that they
are e�cacious tools for the scheduling task [6]. Additionally, most of the existing
solutions contain either a generalized basis of scheduling or a tailor-made model.
The first type is applicable for the majority of the hospital’s scheduling systems.
However, numerous hospitals adopt di�erent characteristics of scheduling that the
generalized basis does not include. Therefore, the development of user-centric solu-
tions or tailor-made models is unavoidable in some cases.

Siriraj Hospital has been renowned as the country’s oldest and largest medical school
in Thailand. In the emergency department (ED), the number of patient visits in
2018 was as high as 97745 cases [15]. Consequently, the 24-hours care service must
be procured through sta� scheduling. However, the task is complicated and time-
consuming for a shift manager to manually execute due to the considerations of
legacy policies, several request types, and a vast number of RNs. Besides, the
di�culty and human errors usually cause request disapprovals, unmeet sta�ng re-
quirements, and policy violation in some shifts. As a result, the optimization model
should be developed and tailored to fit the context of sta� scheduling in the ED
of Siriraj Hospital to improve the work-life quality and satisfaction of RNs, while
maximizing care services and policy alignments.

1.2 Purpose

To promote the e�cacy in human resource management at the ED of Siriraj Hospital
by optimizing the healthcare sta� schedule.

1.3 Objectives

This thesis focuses on the optimization of the healthcare sta� schedule in the ED of
Siriraj Hospital by:

1. Collect the requirements for healthcare sta� schedules in the emergency de-
partment and investigate insights regarding as-is and to-be of the scheduling
system.

2. Develop the models for optimizing the healthcare sta� schedule in the emer-
gency department and compare the e�ciency between di�erent optimization
techniques and the manual approach.

2



1. Introduction

1.4 Scope and limitations
This thesis concentrates on the scheduling of healthcare sta� in the emergency de-
partment of Siriraj Hospital. The sta� in this context solely imply registered nurses
and does not involve practitioner nurses, ordinary workers, and physicians. More-
over, the project scope does not enclose an OT plan and a tasking table. On-duty
scheduling is the only type that this thesis concerns.These exclusions are decided
based on the limited time of research. Therefore, only one schedule type with the
most complicated scheduling system and one specialization of sta� that exists in a
large portion are selected in the scope.

The optimization techniques consist of deterministic optimization and stochastic
optimization. The development focuses only on a mixed integer linear programming
(MILP) for the deterministic type and a genetic algorithm (GA) for the stochastic
model. The selections of solution approaches correlate to the limited research time.
Additionally, due to future production and cost-saving, MILP only utilizes an open-
source solver named CBC (Coin-or branch and cut).

The scheduling data for model inputs and performance comparison are the pairs of
past scheduling requests and their corresponding manual schedules. These pairs are
retrieved from two periods, i.e., May-June and July-August 2021.

1.5 Outline
This thesis contains six chapters. Following Chapter 1 for introduction section,
Chapter 2 describes the past works and project-related theory, including the litera-
ture review on optimization models in sta� scheduling applications and the principles
of MILP and GA. Chapter 3 explains the method used in the requirements gathering,
qualitative analysis, mathematics model formulation, acquisition of scheduling data,
MILP development, GA development, performance comparison, statistical analysis,
and development platform. Chapter 4 exhibits the study results of service blueprint
mapping, in-depth insights extraction, GA’s parameters tuning, and performance
comparison. Then, the discussion on those results is conducted in Chapter 5, which
encloses result interpretations and future developments. Finally, the conclusion of
this thesis is presented in Chapter 6.

3
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2
Theory

2.1 Optimization models in sta� scheduling ap-
plications

Optimization models have been renowned for their application in scheduling tasks,
especially in the area of operation research and computer science [5]. By considering
the degree of randomness in a search direction, the model can be classified into two
types, i.e., deterministic and stochastic optimization [16, 17].

The deterministic model solves the optimization problems by utilizing mathemati-
cal principles. With the e�ective implementation of gradient descent or the Hessian
matrix, the deterministic algorithm explores the search space with a converging di-
rection toward the optimum [16, 17]. As a result, the deterministic type has been
applied to optimize di�erent sorts of constrained problems, including integer pro-
gramming and mixed integer programming (MIP); both types present with a linear
and non-linear basis [17].

M. A. Centeno et al. [18] demonstrated the e�ectiveness of the integration between
simulation model for sta�ng estimation and the integer linear programming to opti-
mize the working schedule for sta� in the ED. M. Isken [19] applied the concept of the
MIP to create a flexible and optimal calendar for healthcare sta�. His work was also
implemented in a tertiary-care hospital as a decision support system for workforce
management. S. Topaloglu [20] addressed the scheduling optimization of medical
residents through the multi-objective MIP programming model that can provide a
much higher schedule quality than the manual approach. J. Brunner and G. Eden-
harter [21] optimized the MIP with flexible shift lengths for physicians scheduling
problems. N. Zinouri [22] demonstrated the powerful combination of patient de-
mand prediction and the MIP for the optimization of healthcare sta� scheduling
in the surgical ward . T. Chawasemerwa et al. [23] used the MIP along with the
non-violation of constraints and the minimization of penalty to generate optimal
and fair schedules for doctors. Marchesi et al. [1] addressed the improvement in
the care operation process of two hospitals by optimizing scheduling and sta�ng.
In addition to the association in demand uncertainty and sta�ng, they also trans-
lated the scheduling problem into the MIP and used GUROBI solver to identify the
optimal working plan. A. Dumrongsiri and P. Chongphaisal [13] applied the MIP
optimization to generate the optimal schedule for RNs from one of the hospitals in
Thailand. Even though the targeted sites of their research and this thesis are both
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in Thailand, each hospital adopted inconsistent policies and yearned for di�erent
scheduling goals.

The primary perk of using deterministic optimization is the speed of the model’s
convergence. The deterministic algorithm usually takes less time to approach the
problem’s optimum when comparing to the stochastic type [17]. Still, the deter-
ministic approach can be slower when solving complicated optimization problems
[16]. Additionally, the model often gets stuck at one stationary point and derives
the local optimum as the solution instead of the global one [17].

Stochastic optimization is the finding of the optimal solution with randomness as the
core of its search direction [17, 24]. The majority of its algorithms are population-
based, in which the population is evolving toward the optimum. Besides, the evolu-
tion process is where the randomness enters the optimization system [17]. Several
stochastic techniques in the optimization problems include particle swarm optimiza-
tion, simulated annealing, and GA [17, 24].

L. Rosocha et al. [25] applied the stochastic technique of simulated annealing to
optimize healthcare sta� scheduling, which improved worker’s well-being, sta� pref-
erence, and quality of work. N. Mohd Rasip et al. [26] utilized particle swarm
optimization to tackle the nurse scheduling task in one of the Malaysian public hos-
pitals. Their stochastic model also incorporated sta� satisfaction, work balance,
and service demand matching as the optimization goals. W. Abo-Hamad and A.
Arisha [27] developed the combination of the GA and the clonal selection algorithm
to optimize ED sta� scheduling in one of the Irish public hospitals. Their case study
showed enhancements in the shift balance among workers and the continuity of care
services. M. Mutingi [28] demonstrated the application of fuzzy GA for optimiz-
ing healthcare sta� scheduling. Instead of returning a single output, his model can
generate a set of scheduling solutions for the shift manager to decide. K. Leksakul
and S. Phetsawat [29] optimized nurse scheduling problems using the GA to achieve
the following purposes: adequate service provision, minimizing labour costs, and the
balance of OT assignments. A. Amindoust et al. [30] demonstrated the e�ectiveness
of GA to optimize nurse scheduling by minimizing work fatigues. Their use case in
one of the Iran hospitals contributed more optimal results compared to the manual
scheduling.

The pros and cons of using stochastic optimization arise from the randomness in its
algorithm. Adding randomness to the search process makes the algorithm less prone
to halt in one local optimum, thus having more possibility to approach the global
optimum [17, 24]. As a result, this method is more suitable for solving highly com-
plicated problems, such as high dimensional, non-linear, and no stationary points,
that deterministic optimization may fail to achieve [24]. Nevertheless, its random-
ness can provoke the predicament between having robustness to explore search space
and having fast convergence to the optimum. Therefore, the stochastic type usually
takes much time to converge when compared to the deterministic one [17].
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2.2 Mixed Integer Linear Programming Optimiza-
tion

MILP is the mathematical model developed for the optimization problem where
at least one of its decision variables must be an integer [17, 31]. The subsequent
explanations of MILP are based on the publications of various authors [17, 31, 32,
33]. The following equations (Eq.2.1 to 2.4) express the MILP formulation and its
principle, including two main elements, i.e., optimization objective and constraints.
Optimization objective:

Minimize(z = c̄T x̄) (2.1)

Subject to:
Ax̄ Æ b̄ (2.2)

l̄ Æ x̄ Æ ū (2.3)

xi œ Z, ’i œ I (2.4)

The ultimate goal of MILP is to achieve the optimization objective, which usually
presents in minimization purpose as shown in Eq.2.1. The examples of objective
include the reduction of working hours and the decrease in cost or material. From
Eq.2.1, the objective function (z) consists of c̄T and x̄. c̄T is the n-vector of ob-
jective coe�cients, and x̄ is the n-vector of decision variables needed to be solved.
The remaining elements are problem’s constraints, which can be classified into linear
constraints, bound constraint, and integer requirements or integrality restrictions.

Eq.2.2 represents the linear constraints of the problem. A is the m ◊ n matrix
for formulating a linear system in the matrix form, and b̄ is the m-vector of linear
constraints coe�cients. The bound constraints in Eq.2.3 define the permissible
range of decision variables values. l and u are the n-vector of lower and upper
bound, respectively. For the integrality restrictions, Eq.2.4 implies that at least one
of the decision variables must be an integer, which is also the criteria of being MILP.
From Eq.2.4, xi is the ith-variable from x̄, Z is the set of integer, and I is the set of
indices for integer variables.

2.2.1 Branch-and-Bound Algorithm
A branch-and-bound is the fundamental method in solving and optimizing the ma-
jority of the MILP problems [17, 34, 35]. Its concept involves solving linear program-
ming relaxation of the original MILP whose integrality restrictions are discarded. In
other words, the MILP becomes linear programming during this relaxation [17, 34].

The following descriptions of the branch-and-bound algorithm are based on the aca-
demic publications [17, 31, 35]. To find the bounded, feasible, and optimal solutions,
the formation of tree search usually occurs after receiving the non-practical solution
that is not aligned with the integrality constraints. The tree search requires branch-
ing into nodes to partition the feasible region into sub-area. Then, the algorithm
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will assay the MILP problem that emerged from the sub-domain of each node. The
branching of the particular node will stop under three instances. The first one is
when the problem returns a bounded solution, i.e., all variable values align with the
integrality constraints. The second case is when the problem becomes infeasible.
The last one is when the yielded value of the objective function is inferior to the
current best.

The search tree in Fig.2.1 demonstrates the branch-and-bound algorithm on the
MILP example, which is based on the principles described by the published jour-
nals [17, 31, 35]. This MILP example comprises two variables (i.e., x1 and x2), the
objective function (Eq.2.5), linear constraints (Eq.2.6 and 2.7), bound constraints
(Eq.2.8 and 2.9), and integrality restrictions (Eq.2.10). The algorithm begins by
dropping all integrality restrictions in the original MILP and then solving that re-
laxed problem with the remaining constraints.

Optimization objective:

Minimize(z = 5x1 + 3x2 ≠ 2.5) (2.5)

Subject to:
4x1 + 3x2 Ø 3 (2.6)

x1 + 2x2 Ø 3 (2.7)

0 Æ x1 (2.8)

0 Æ x2 (2.9)

xi œ Z, ’i œ [1, 2] (2.10)

Figure 2.1: Example of search tree in branch-and-bound algorithm.

This linear programming relaxation establishes the root of the search tree as rep-
resented by node 0 in Fig.2.1. The optimal solution of node 0 indicates that its
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minimum objective function (z) is 6.77. As the goal is to minimize the objective
function, 6.77 becomes the absolute lower bound of the original MILP’s objective
function (zú). Adding more constraints into the system will only cause the objective
function to be greater or equal to this lower bound. As a result, the branch-and-
bound method aims to find the feasible solution that returns the optimal answer
near or at this lower bound.

Since x1 and x2 in this node are not yet integers as the original MILP requires, the
branching will force either one of these variables to become integers. In other words,
it is the partition of the feasible region. In this scenario, two choices of partition
exist between subdividing x1 and x2. Assuming x1 is selected, then x1 must hold
the integer value, not the continuous value like 1.36 in node 0. Thus, the x1 domain
must be divided into its proximity integer area, i.e. x1 Æ 1 or x1 Ø 2, and the
branching will emerge into two nodes (i.e., node 2 and 3).

Supposing the algorithm picks node 2 for evaluation, the bound constraints of x1 Ø 2
will merge with all constraints from its previous node. After merging, the process is
similar to node 0, which involves solving the current node’s problem and performs
branching if needed. Even x1 is an integer in the optimal solution, x2 with the value
of 0.5 is not. So, the branch-and-bound process performs branching on x2 by diving
the feasible region into its closet integer range, i.e., x2 Æ 0 or x2 Ø 1. Consequently,
the branching creates node 3 and node 4.

Additionally, the objective function’s value of 9.00 in node 2 implies that its chil-
dren branches with the added bound constraints will never overcome this optimum.
Hence, if the algorithm keeps digging down node 2’s family, it is aware that the op-
timal solution would yield no lower than 9.00 of the objective function, even when
it finds the feasible one.

At this point, the process is continuously occurring from node to node until it falls
into one of the three previously-mentioned stopping criteria. For instance, if the
algorithm selected node 1 and solving node 1 returns an infeasible solution, the pro-
cess will stop branching and start looking for other nodes (if any) instead.

In this case, the feasible solutions exist on node 3 and node 4, which align with inte-
grality restrictions. As a result, the branching is ended. Since other nodes are also
terminated, and the upper bound contributed from node 4 (i.e., 6.7 Æ zú Æ 10.5) is
the closest one to the absolute lower bound, the solution from node 4 is concluded
to be the most optimum for the original MILP problem.

Nevertheless, not all nodes are required to reach the termination of the branch-
ing. In some scenarios, if the acceptable gap between the upper and the absolute
lower bound is achieved at a particular node, and its solution is compiled with all
constraints, the algorithm will end and return that solution as the most optimal
one.
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2.2.2 Branch-and-Cut algorithm
The partition of the feasible region and the selection of nodes are diverse, thus
forming several branch-and-bound-based algorithms [31]. Their principal aims are
to reduce the size of tree search while improving speed to minimize the duality gap
(i.e., the di�erence between the upper and lower bound of the MILP) [17]. Since
combining the branch-and-bound approach with the cutting plane method proves
its e�cacy in finding the optimal solution, a branch-and-cut algorithm has been
claimed as the state-of-the-art method for solving MILP. Its approach includes the
generation of cutting planes when solving the relaxation problem defined in the par-
ticular node [35, 34, 36, 37]. The cutting planes introduce a set of constraints to
that node’s problem, not just a single bound constraint like the case of the branch-
and-bound algorithm [34]. These cuttings considerably reduce each node’s duality
gap and likewise lowering the number of its children nodes. As a result, the tree size
is smaller, and the optimum is obtained via fewer nodes comparing to the original
branch-and-bound algorithm [34, 37]. Nonetheless, performing numerous cuts in
each node leads to the more complicated formulation and significantly delays the
solving process [34, 36, 37].

Besides the cutting method, the branch-and-cut also involves several search strate-
gies, e.g., the decision on node choices and the partition of variables domain. As a
result, most solvers enhance and apply di�erent techniques to these elements in the
branch-and-cut algorithm [36]. The branch-and-cut-based solvers cover the com-
mercial type, such as CPLEX and Gurobi, and the open-source solver like CBC
[38, 33, 39]. Additionally, the benchmark tests of di�erent solvers were conducted
by some study groups with the following results [40, 39]. It is found that even though
the computation time depends on the problem characteristics (size and complexity),
commercial solvers like CPLEX and Gurobi usually compute MILP faster than any
open-source solvers. Nevertheless, because of the required licensing for commercial
solvers, the open-source CBC is the alternative candidate. Moreover, CBC habitu-
ally outperforms other open-source solvers like GLPK, LP_solve and SYMPHONY.

2.3 Genetic Algorithm
The genetic algorithm (GA) is the stochastic optimization approach. It replicates the
evolving nature of the population combined with the biological process of genetics
[17, 41]. M. Wahde [41] defined four crucial GA entities: population, chromosome,
gene, and generation (as illustrated in Fig.2.2). The population is the set of chro-
mosomes, where the chromosome is the string of encoded genes. Each numerical
bit established in the chromosome represents the gene. Moreover, GA requires the
iterative evolution of its population in the form of generation.

From Fig.2.3, M. Wahde [41] explains the algorithm flowchart containing six elemen-
tal activities: population initialization, decoding, tournament selection, crossover,
mutation, and elitism. The cyclic process occurs between the decoding and elitism
node, and it will end once the termination criteria have been reached. The termina-
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Figure 2.2: Genetic algorithm entities.

tion criteria include the acquisition of an anticipated fitness value and the completion
of pre-defined generations.

Figure 2.3: Genetic algorithm flowchart.

2.3.1 Population initialization
The following details of population initialization are primarily referred to M. Wahde’s
work [41]. Before iterating the GA process, an initial population must be consti-
tuted as the raw material for the algorithm. So, the population initialization must
create chromosomes of the first generation based on the encoding system. The most
commonly used system is binary encoding, in which each bit or gene in the chromo-
some string can only be zero or one. However, other encoding systems are available
depending on the context of the problem, such as real number encoding and permu-
tation encoding.

By applying binary encoding, the chromosomes in the first generation are com-
posed of binary random genes. In addition, the number of genes in each chro-
mosome must align with the design of the variables encoding scheme. For exam-
ple, if there are two variables in the problem, i.e., x1 and x2, and each variable
is binary encoded by three bits as illustrated in Fig.2.2, the chromosomal length
(CHROMOSOME_LENGTH) corresponding to these two variables would be
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six genes. Hence, the first three genes are encoding for x1, and the remaining genes
are encoding for x2. Once all the chromosomes in the first generation are successfully
produced per the defined population size, the initialization process is completed.

Besides, the works by H. Maaranen et al. [42] and S. Poles et al. [43] show that
the initial population does not have to always be in the form of random numbers.
Their studies experimented with other types of the initial population and found a
correlation between the initial population and the convergence of GA.

2.3.2 Decoding
According to M. Wahde’s publication [41], the details on the decoding process are
given as follows. Decoding is the first step of the GA cyclic process. It is the step
where each chromosome in the population will be evaluated for its fitness (i.e., the
objective function of the problem) using the variables decoded from the chromosome.
To decode the variables from a chromosome, one must follow the design of the
variables encoding scheme. There are many types of the encoding scheme, such
as many-bits-per-variable (as in Fig.2.2) and one-bit-per-variable. By assuming
binary encoding, the decoding of the many-bits-per-variable system is obtained using
Eq.2.11. In Eq.2.11, x is the variable to be decoded, rlower and rupper are the lower
and upper bound of x, respectively. gi is the value of the ith bit encoding x, and
k is the total number of encoding bits of x. In the one-bit-per-variable system,
the value of x is decoded from Eq.2.12. Eq.2.12’s elements are similar to Eq.2.11;
the single di�erence is that only one gene is responsible for encoding each variable.
These two schemes contribute di�erent consequences in the stochastic evolution.
In the many-bits-per-variable system, the random change in one bit may lead to a
slighter modification of the decoded variable than the one-bit-per-variable scheme.
This step will be completed once all chromosomes have been decoded and evaluated.
Therefore, the final products of this process are the fitness values of chromosomes.

x = ≠rlower + 2rupper

1 ≠ 2≠k

kÿ

i=1
2≠igi (2.11)

x = ≠rlower + 2rupperg (2.12)

2.3.3 Selection
The details on the decoding process in this section are wholly based on the publi-
cation from M. Wahde [41]. After obtaining the fitness values of the current popu-
lation, the selection process is executed to indicate the pair of chromosomes for the
crossover. There are two commonly-used selections: a roulette-wheel selection and
a tournament selection.

The roulette-wheel selection imitates the scenario of spinning a roulette wheel. As
demonstrated in Fig.2.4, slots in the wheel represent each chromosome’s normalized
fitness value stacking cumulatively. In total, all fitness values will add up to 1, corre-
sponding to the wheel’s complete circle. To start the selection process, one generates
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a random number (r) whose value is ranging from 0 to 1. If that random number
falls into which section of the wheel, the owner of that section will be selected. For
instance, if r is randomly generated as 0.2 as shown in Fig.2.4, this value will fall
into the section of chromosome 1. Consequently, chromosome 1 is selected by the
roulette wheel.

Figure 2.4: Roulette-wheel selection process.

The tournament selection starts with building the tournament batch by equally
picking a chromosome set from the current generation. The sampling size from the
population is called the tournament size (Ntnm). Another parameter in this process
is the tournament probability (PROBtnm) which is the probability to select a supe-
rior individual during the tournament.

As shown in Fig.2.5, the tournament occurs in consecutive rounds, and each round
will have one random number generated (whose value ranges from 0 to 1). The
random number of round ith or ri plays a crucial role in determining the tourna-
ment’s winner. If ri is less than PROBtnm, the current fittest chromosome from
the tournament batch will be selected. In contrast, if ri is greater than or equal to
PROBtnm, the current fittest chromosome will be removed from the batch, and the
next round of the tournament will begin. The tournament repeats until a chromo-
some is selected or only one chromosome remains in the batch. In the latter case,
that one remaining chromosome will be selected.

To completely identify the pair of chromosomes, each pair requires two selection
processes. Additionally, both roulette-wheel and tournament selection do not mean
that one chromosome can be selected only once. In fact, all selected chromosome
returns to the initial population and will participate in the following selections.
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Figure 2.5: Tournament selection process.

The main issue in the selection process is premature convergence. It is a phe-
nomenon that the population converge to a local optimum rather than a global one.
Since the roulette-wheel selection prefers the fittest chromosome even in the primary
generation, there is a high chance that the algorithm will favour this primarily-fit
individual, thus raising the chance of premature convergence. As a result, this issue
is much more prominent in the roulette-wheel selection. In addition, the roulette-
wheel approach is not applicable with the negative fitness value, while the tourna-
ment selection is. Therefore, the problem that contains negative penalty terms in
the objective function usually uses the tournament selection.

2.3.4 Crossover
Once the tournament selection defined all parents, crossover processes are initiated
to introduce o�spring as the next-generation population [41]. By classifying based
on the crossover points, there are three major crossover types, i.e., single-point,
multi-point, and uniform crossover [41, 44, 45]. The following explanation regarding
the crossover process are also based on M. Wahde’s work [41]. Regardless of the
types, all methods require the value of the crossover probability. There are two
possible outcomes in each crossover process: the pair proceeding to the crossover
or no crossover at all, as illustrated in Fig.2.6 to 2.9. This critical decision will be
made by the crossover probability and the random number generated priorly in each
crossover. The crossover will initiate if the random number (whose value ranges from
0 to 1) is lower than the crossover probability. On the other hand, if the random
number is at least the crossover probability, there will be no crossover.

According to M. Wahde [41] and K. Sastry and D. E. Goldberg [45], the single-point
crossover (Fig.2.6) is when only one random crossover point is simultaneously ap-
plied to the pair of chromosomes. In this case, each chromosome will be separated
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at the crossover point into two parts. Then this pair will exchange their part with
one another, i.e., the head part of the reference chromosome will be attached to the
tail part of its pair, and vice versa.

Figure 2.6: Single-point crossover process.

The multi-point crossover is when the number of crossover points is larger than one
[41, 44, 45]. It consists of two di�erent approaches, as displayed in Fig.2.7 and 2.8.
The main di�erence between these two approaches is the adoption of switching prob-
ability. The first approach is called multi-point crossover with consistent switching.
The pair will exchange their parts alternatingly after partitioning each chromosome
into sections based on the crossover points, as depicted in Fig.2.7 [44, 45]. In the
second approach as described by M. Wahde [41] (Fig.2.8), this multi-point crossover
utilizes the switching probability to decide whether each of the reference chromo-
some’s portions will be switched with its pair or not. These choices are decided by
comparing the switching probability (usually set to 0.5) with the random number
generated in each section (whose value ranges from 0 to 1). If the random number
is smaller than the switching probability, the part of the reference chromosome will
switch with its pair. On the contrary, if the random number is greater than or equal
to the switching probability, there will be no exchange between two chromosomes
on that part.

Another type of crossover is the uniform crossover, whose details are described by M.
Wahde [41] and K. Sastry and D. E. Goldberg [45]. The uniform crossover is when
each gene in the chromosome has a chance to be switched with its pair. According
to Fig.2.9, it applies the same principle as the multi-point crossover with switching
probability in deciding whether the exchange will be conducted or not.

The crossover is completed once all selected pairs have been processed through the
crossover decisions (either proceeding to crossover or no crossover). The results from
the crossover decisions constitute a base of the next-generation population [41].
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Figure 2.7: Multi-point crossover process with consistent switching.

Figure 2.8: Multi-point crossover process with switching probability.

2.3.5 Mutation
The mutation process described in this section is also based on M. Wahde’s publica-
tion [41]. After obtaining next-generation o�spring from the crossover, the mutation
introduces new material to the population through slight random changes on the
chromosome. This process includes one important parameter, i.e., the mutation
constant (CONSTmutate). The mutation constant is responsible for computing the
mutation probability (PROBmutate) together with the chromosomal length as ex-
pressed in Eq.2.13.

Every gene is subjected to the decision of whether the mutation would occur or not.
This decision is judged by comparing the mutation probability with the random
number generated in each section (whose value ranges from 0 to 1). If the random
number is less than the mutation probability, that particular gene will mutate. In
binary encoding, the mutation inversely changes the value of each gene, i.e., from
zero to one or one to zero. However, other mutation types also exist, such as
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Figure 2.9: Uniform crossover process.

creep mutation for the real number encoding gene. This process is ended when all
chromosomes of the next-generation batch process through the mutation decisions.

PROBmutate = CONSTmutate

CHROMOSOME_LENGTH
(2.13)

2.3.6 Elitism
The explanation of elitism is referenced from M. Wahde’s book [41] as follows.
Elitism is performed as the last process of each generation. Its function is to assure
that the highest fitness of the next generation will not decrease from the current
one. This process keeps copies of the best chromosome from the pre-crossover pop-
ulation and places them in the post-mutation population (i.e., the batch of the
next-generation population).
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Methods

3.1 Requirements gathering
In order to obtain primary insights for further analysis, a requirements gathering
step was conducted. This process enclosed one-on-one interviews with representa-
tive users (i.e., RNs) from the ED of Siriraj Hospital.

Regarding the selection of subjects, the inclusion of all stakeholders’ perspectives
was considered in an attempt to develop a user-centric solution. Therefore, the ED
head nurse selected four representatives from both shift managers and governed sta�
for the interviews. The shift managers’ side consisted of one ED head nurse and one
on-duty-roster scheduler. On the governed sta� side, there were one senior RN and
one junior RN.

The one-on-one user interviews through a 30-minutes phone call each were conducted
once the selection of subjects had been completed. The users were asked to describe
as-is states and to-be aspects of the scheduling process, including process steps,
considered elements, pains, satisfaction, and preferences. To get users’ insights
without any bias contributed from the questions, the interviews were performed
with open-ended questions (e.g., what, why, and how-type of questions).

3.2 Qualitative analysis
A qualitative analysis was conducted on the gathered requirements to understand a
scheduling process and earn additional in-depth comprehension. The analysis step
included a service blueprint mapping and an in-depth insights extraction.

The first step of the qualitative analysis was to visualize the as-is scheduling pro-
cess using a service blueprint tool. The blueprint was developed by converting the
collected process insights into the diagrams of five service components, i.e., cus-
tomer/user actions, onstage actions, backstage actions, support processes, evidence,
and time metric. Following the development, the blueprint was validated by the ED
head nurse to establish that a mutual understanding of the process was yielded.

In addition to utilising process details in the service blueprint mapping, the remain-
ing requirements were subjected to an in-depth insights extraction process. The
collected information was classified into four categories, i.e., considered elements,
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pains, satisfaction, and to-be preferences. These extracted insights were further
used to define the development direction in terms of the model parameters, con-
straints, and objective functions.

3.3 Mathematical model formulation

A mathematical model was formulated in accordance with the extracted require-
ments. All of the considered elements, policy, and goals in the scheduling process
were translates into the system of indices, parameters, and variables in mathemat-
ical model. This step provided the model with the essential building blocks and
environment for the optimization of the scheduling problem.

3.3.1 Model indices

Indices were applied to aid the explication of parameters and variables in the model.
They were defined to serve all the domains in the scheduling settings and the op-
timization process. Table 3.1 shows the employed indices and their corresponding
details. Additionally, the definitions of index s, l, and o were presented in Table 3.2,
3.3, and 3.4, respectively

Table 3.1: Model sets, indices, and domains.

Set Index Domain Description
W w {1, . . . , Wmax} Weeks in a schedule
D d {1, . . . , Dmax} Days in a schedule
PD pd {1, . . . , PDmax} Last days in a previous schedule
S s {1, . . . , Smax} Shifts in a day
N n {1, . . . , Nmax} Nurses in a roster
L l {1, . . . , Lmax} Levels of nurses
O o {1, . . . , Omax} Optimization objectives in a model

Table 3.2: Definition of index s.

Index s Representation
1 Morning shift
2 Afternoon shift
3 Night shift
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Table 3.3: Definition of index l.

Index l Representation
6 Senior 1
5 Senior 2
4 Senior 3
3 Middle
2 Junior 1
1 Junior 2

Table 3.4: Definition of index o.

Index o Representation
1 To minimize the maximum number of working shifts among all nurses
2 To maximize the balance of total working shifts among all nurses
3 To minimize the maximum number of double-shifts days among all nurses
4 To maximize the minimum number of weekends o� among all nurses
5 To minimize the maximum number of disapprovals for vacation requests

among all nurses
6 To minimize the maximum number of disapprovals for o� requests among

all nurses
7 To minimize the maximum number of disapprovals for not-to-be-assigned

shift requests among all nurses
8 To minimize the maximum number of disapprovals for shift requests among

all nurses

3.3.2 The model’s primary parameters

The primary parameters were obtained directly from user’s requests or initially de-
fined as scheduling settings and constraints. In other words, they served their pur-
pose as the primary inputs of the model. The formulated parameters were displayed
in Table 3.5.

21



3. Methods

Table 3.5: The model’s primary parameters.

Parameter Description Example value
Wmax Maximum number of weeks in a schedule 5
Dmax Maximum number of days in a schedule 35
PDmax Maximum number of last days in a previous

schedule
2

Smax Maximum number of shifts in a day 3
Nmax Maximum number of nurses in a roster Month dependent
ONDUTY _DAY S Number of on-duty days Month dependent
OFF_CALENDARd State of being a weekend or a holiday on day d {0, 1}
Lmax The highest level of nurses NURSE_LEV ELSmax

NURSE_LEV ELSn Level of nurse n l œ L
EXTRA_NURSESd,s Number of extra nurse(s) provided from other

departments on day d in shift s
[0, 4]

PREV _SCHEDULEn,pd,s State of having a shift in a previous schedule
for nurse n on day pd in shift s

{0, 1}

WEEK_OFF_REQUESTn,d State of having a request for a weekly-o� quota
usage from nurse n on day d

{0, 1}

BANK_OFF_REQUESTn,d State of having a request for an o�-bank quota
usage from nurse n on day d

{0, 1}

OFF_REQUEST_V IPn,d State of having a VIP request for a day o� by
nurse n on day d

{0, 1}

OUT_REQUEST_V IPn,d State of having a VIP request for an out-of-unit
position by nurse n on day d

{0, 1}

V AC_REQUESTn,d State of having a request for a vacation from
nurse n on day d

{0, 1}

SHIFT_REQUESTn,d,s State of having a request for a shift by nurse n
on day d in shift s

{0, 1}

NO_SHIFT_REQUESTn,d,s State of having a request for a not-to-be-
assigned shift by nurse n on day d in shift s

{0, 1}

SHIFT_REQUEST_V IPn,d,s State of having a VIP request for a shift by
nurse n on day d in shift s

{0, 1}

NO_SHIFT_REQUEST_V IPn,d,s State of having a VIP request for a not-to-be-
assigned shift by nurse n on day d in shift s

{0, 1}

WEEKDAY _STAFFING_MINl,d,s Minimum number of nurses level l required on
weekday d in shift s

Table A.1

WEEKEND_STAFFING_MINl,d,s Minimum number of nurses level l required on
weekend or holiday d in shift s

Table A.2

TOTAL_SHIFTSmax Maximum number of total shifts per one nurse 30
TOTAL_SHIFTSmin Minimum number of total shifts per one nurse ONDUTY _DAY S
TOTAL_A_SHIFTSmax Maximum number of total afternoon shifts per

one nurse
33% of ONDUTY _DAY S

TOTAL_N_SHIFTSmax Maximum number of total night shifts per one
nurse

33% of ONDUTY _DAY S

WEEK_WORKDAY Smax Maximum number of weekly working days per
one nurse

5

WEEK_SHIFTSmax Maximum number of weekly shifts per one
nurse

6

WEEK_N_SHIFTSmax Maximum number of weekly night shifts per
one nurse

3

CONSEC_WORKDAY Smax Maximum number of consecutive working days
per one nurse

6

CONSEC_A_SHIFTSmax Maximum number of consecutive afternoon
shifts per one nurse

2

CONSEC_N_SHIFTS_SENIORmax Maximum number of consecutive night shifts
per one senior nurse

2

CONSEC_N_SHIFTS_NONSENIORmax Maximum number of consecutive night shifts
per one non-senior nurse

3

TOTAL_DOUBLE_SHIFTS_DAY Smax Maximum number of total double-shifts days
per one nurse

15

TOTAL_WEEKENDS_OFFmax Maximum number of total weekends o� per one
nurse

2

TOTAL_WEEKENDS_OFFmin Minimum number of total weekends o� per one
nurse

1

O_max Maximum number of objectives in a model 8
WEIGHT_OBJo Weight of objective o Ø 0
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3.3.3 The model’s secondary parameters

The secondary parameters were set to facilitate the formulation of constraints and
objective functions. As shown in Appendix A.1, they were solely computed from
the primary parameters. Table 3.6 shows the secondary parameters utilized in the
model.

Table 3.6: The model’s secondary parameters.

Parameter Description Referred equation
WORKDAY _REQUESTn,d State of having a request for a working day from

nurse n on day d
A.1,A.2,

WEEKEND_WORK_REQUESTn,w State of having a request for working on weekend
from nurse n in week w

A.3,

TOTAL_WEEKEND_WORK_REQUESTn Number of total weekend-working requests from
nurse n

A.4,

DOUBLE_SHIFTS_DAY _REQUESTn,d State of having a request for a double-shifts-day
from nurse n on day d

A.5,A.6

TOTAL_DOUBLE_SHIFTS_DAY _REQUESTn Number of total double-shifts-day requests from
nurse n

A.7

TOTAL_OUT_REQUEST_V IPn Number of total VIP requests for out-of-unit po-
sitions from nurse n

A.8

WEEK_OUT_REQUEST_V IPn,w Number of weekly VIP requests for out-of-unit
positions from nurse n in week w

A.9

TOTAL_OFF_REQUEST_V IPn Number of total VIP requests for days o� from
nurse n

A.10

ALL_OFF_REQUESTn,d State of having a request for a day o� (including
o�-bank quota and weekly-o� quota) from nurse
n on day d

A.11

TOTAL_ALL_OFF_REQUESTn Number of total requests for days o� from nurse
n

A.12

TOTAL_ALL_OFF_REQUESTmax Maximum number of total non-VIP requests for
days o�

A.13

TOTAL_BANK_OFF_REQUESTn Number of total requests for o�-bank quota us-
ages from nurse n

A.14

TOTAL_ACTUAL_BANK_OFF_USESn Number of total and actual o�-bank quota us-
ages from nurse n

A.15,A.16,A.17

TOTAL_V AC_REQUESTn Number of total requests for vacations from
nurse n

A.18

TOTAL_V AC_REQUESTmax Maximum number of total requests for vacations A.19
TOTAL_SHIFT_REQUESTn Number of total requests for shifts from nurse n A.20
TOTAL_SHIFT_REQUESTmax Maximum number of total requests for shifts A.21
TOTAL_NO_SHIFT_REQUESTn Number of total requests for not-to-be-assigned

shifts from nurse n
A.22

TOTAL_NO_SHIFT_REQUESTmax Maximum number of total requests for not-to-
be-assigned shifts

A.23

ACTIV E_OBJo State of having objective o being active in
model’s objective function

A.24,A.25

TOTAL_ACTIV E_OBJ Number of total active objectives in a model A.26

3.3.4 The model’s decision variables

The following decision variables, as represented in Table 3.7, were utilized. They
were composed as the key elements that the model should solve to yield the optimized
solution and to align with the defined constraints.
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Table 3.7: Model’s decision variables.

Variable Description Domain
wsn,d,s State of having a working shift for nurse n on day d in

shift s
{0, 1}

wdn,d State of having a working day for nurse n on day d {0, 1}
adn,d State of being absent for nurse n on day d {0, 1}
wsmax Maximum number of working shifts among all nurses [TOTAL_SHIFTSmin, TOTAL_SHIFTSmax]
wsmin Minimum number of working shifts among all nurses [TOTAL_SHIFTSmin, TOTAL_SHIFTSmax]
dsdn,d State of having double-shifts day for nurse n on day d {0, 1}
dsdmax Maximum number of double-shifts days among all nurses [0, TOTAL_DOUBLE_SHIFTS_DAY Smax]
wkon,w State of having a weekend o� for nurse n in week w {0, 1}
wkomin Minimum number of weekends o� among all nurses [TOTAL_WEEKENDS_OFFmin,

TOTAL_WEEKENDS_OFFmax]
oan,d State of having an o� request approved for nurse n on

day d
{0, 1}

van,d State of having a vacation request approved for nurse n
on day d

{0, 1}

san,d,s State of having a shift request approved for nurse n on
day d in shift s

{0, 1}

nsan,d,s State of having a not-to-be-assigned shift request ap-
proved for nurse n on day d in shift s

{0, 1}

dormax Maximum number of disapprovals for o� requests among
all nurses

[0, TOTAL_ALL_OFF_REQUESTmax]

dvrmax Maximum number of disapprovals for vacation requests
among all nurses

[0, TOTAL_V AC_REQUESTmax]

dsrmax Maximum number of disapprovals for shift requests
among all nurses

[0, TOTAL_SHIFT_REQUESTmax]

dnsrmax Maximum number of disapprovals for not-to-be-assigned
shift requests among all nurses

[0, TOTAL_NO_SHIFT_REQUESTmax]

3.3.5 The model’s objectives
According to the collected requirement from users, eight objectives were developed
and enclosed in a model’s objective function. The definition of each objective was
described in Table 3.4. Moreover, each objective was subjected to the min-max
normalization approach to make them being comparable to one another and not
contributing any bias toward the objective function. The variables representing
these normalized objectives were shown in Table 3.8 and in Eq.3.1 to 3.8.

Table 3.8: Model’s objective-related variable.

Variable Description Domain
noo Normalized objective o [0, 1]
z Model’s objective function Ø 0

no1 = wsmax ≠ TOTAL_SHIFTSmin

TOTAL_SHIFTSmax ≠ TOTAL_SHIFTSmin
(3.1)

no2 = (wsmax ≠ wsmin) ≠ 0
(TOTAL_SHIFTSmax ≠ TOTAL_SHIFTSmin) ≠ 0 (3.2)

no3 = dsdmax ≠ 0
TOTAL_DOUBLE_SHIFTS_DAY Smax ≠ 0 (3.3)

no4 = TOTAL_WEEKENDS_OFFmax ≠ wkomin

TOTAL_WEEKENDS_OFFmax ≠ TOTAL_WEEKEND_OFFmin
(3.4)
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no5 = dvrmax ≠ 0
TOTAL_V AC_REQUESTmax ≠ 0 (3.5)

no6 = dormax ≠ 0
TOTAL_ALL_OFF_REQUESTmax ≠ 0 (3.6)

no7 = dnsrmax ≠ 0
TOTAL_NO_SHIFT_REQUESTmax ≠ 0 (3.7)

no8 = dsrmax ≠ 0
TOTAL_SHIFT_REQUESTmax ≠ 0 (3.8)

All eight normalized objectives were aggregated into the objective function using
Eq.3.9. Each active objective was assumed to have an equal weight of 1 by default.
Therefore, the objective function was further normalized by the number of total
active objectives to yield its primitive value in the range of [0, 1]. Nevertheless, the
value of z can be greater than the initial range depending on the weights.

z =
Omaxÿ

o=1

WEIGHT_OBJo ◊ noo

TOTAL_ACTIV E_OBJ
(3.9)

3.4 Acquisition of scheduling data
The RNs from the emergency department of Siriraj Hospital have used Google Sheets
as a platform for RNs to request their schedules, as well as to let the shift manager
perform the scheduling task. Therefore, the pairs of input parameters and their
corresponding manual schedule in the past were retrieved from the repository of
those Google Sheets. There were two pairs of input and output enclosed in the de-
velopment of this project, i.e., the May-June schedule and the July-August schedule
of 2021. The acquisition of scheduling data served its purpose as model’s inputs
and performance-comparing reference. The characteristics of scheduling inputs in
May-June period and July-August period were not homologous as described in Table
3.9.

Table 3.9: Characteristics of scheduling inputs in May-June period and July-
August period.

May - June July - August
Number of nurses 71 69
Schedule duration (days) 35 35
Number of on-duty days 22 23
Number of VIP requests for out-of-unit positions 117 99
Number of VIP requests for days o� 49 35
Number of normal requests for days o� 390 372
Number of normal requests for vacations 23 58
Number of VIP requests for shifts 26 25
Number of normal requests for shifts 126 141
Number of VIP requests for not-to-be-assigned shifts 59 56
Number of normal requests for not-to-be-assigned shifts 252 260
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3.5 Mixed integer linear programming develop-
ment

A multi-objective MILP development enclosed two main steps, i.e., the design of
mathematical model and a computer implementation. Altogether, these steps al-
lowed the model to receive the deterministic optimization on the scheduling problem.

3.5.1 Mathematical model
A mathematical model was constructed by utilizing the elements in the previously-
defined mathematical model to form a system of constraints and an optimization
objective. The constraints were appointed in relation to scheduling aims and policy
collected from users. The mathematical model used in this MILP was formulated
as shown below.

Optimization objective:
Minimize(z) (3.10)

Subject to:

Working shift and day relation

wdn,d Æ
Smaxÿ

s=1
wsn,d,s, ’n œ N, ’d œ D (3.11)

wdn,d Ø wsn,d,s, ’n œ N, ’d œ D, ’s œ S (3.12)

adn,d = 1 ≠ wdn,d, ’n œ N, ’d œ D (3.13)

Weekly working shifts and days policy

7wÿ

d=7(w≠1)+1

Smaxÿ

s=1
wsn,d,s Æ WEEK_SHIFTSmax, ’n œ N, ’w œ W (3.14)

7wÿ

d=7(w≠1)+1
wdn,d + WORV n, wa Æ WWDMX, ’n œ N, ’w œ W (3.15)

7wÿ

d=7(w≠1)+1
wdn,d Æ CONSEC_WORKDAY Smax, ’n œ N, ’w œ W i (3.16)

Afternoon shift policy

d+CONSEC_A_SHIF T Smaxÿ

d

wsn,d,2 Æ CONSEC_A_SHIFTSmax, ’n œ N, ’d œ Di (3.17)

aWORV: WEEK_OUT_REQUEST_V IP
bWWDMX: WEEK_WORKDAY Smax

26



3. Methods

Night shift policy

7wÿ

d=7(w≠1)+1
wsn,d,3 Æ WEEK_N_SHIFTSmax, ’n œ N, ’w œ W i (3.18)

If NURSE_LEV ELSn Ø 3 then Eq.3.19

d+CNSSMXc≠1ÿ

d

wsn,d,3 ≠ (CNSSMXc ≠ 1) Æ 2adn,d+CNSSMXc , ’n œ N, ’d œ Di,ii (3.19)

If NURSE_LEV ELSn < 3 then Eq.3.20

d+CNSNSMXd≠1ÿ

d

wsn,d,3 ≠ (CNSNSMXd ≠ 1) Æ 2ad
n,d+CNSNSMXd , ’n œ N, ’d œ Di,ii

(3.20)

Consecutive shifts policy

wsn,d,2 + wsn,d,3 Æ 1, ’n œ N, ’d œ D (3.21)

wsn,d,3 + wsn,d+1,1 Æ 1, ’n œ N, ’d œ D (3.22)

wsn,d,2 + wsn,d+1,1 Æ 1, ’n œ N, ’d œ Di (3.23)

wsn,d,3 + wsn,d+1,2 Æ 1, ’n œ N, ’d œ Di (3.24)

Total shifts policy

Dmaxÿ

d=1

Smaxÿ

s=1
wsn,d,s +

Dmaxÿ

d=1
van,d + TOURVn

e + TABOFUn
f Æ wsmax, ’n œ N i (3.25)

Dmaxÿ

d=1

Smaxÿ

s=1
wsn,d,s +

Dmaxÿ

d=1
van,d + TOURVn

e + TABOFUn
f + TOFRVn

g Ø wsmin, ’n œ N

(3.26)

Sta�ng policy

If NURSE_LEV ELSn Ø l and OFF_CALENDARd ”= 0 then Eq.3.27 and 3.28

Nmaxÿ

n=1
wsn,d,s Ø

Lmax≠1ÿ

l

WDSMIl,d,s
h, ’l œ {2, . . . , Lmax ≠ 1}, ’d œ D, ’s œ S (3.27)

Nmaxÿ

n=1
wsn,d,s Ø

Lmax≠1ÿ

l

WESMIl,d,s
i, ’l œ {2, . . . , Lmax ≠ 1}, ’d œ D, ’s œ S (3.28)

cCNSSMX: CONSEC_N_SHIFTS_SENIORmax
dCNSNSMX: CONSEC_N_SHIFTS_NONSENIORmax
eTOURV : TOTAL_OUT_REQUEST_V IP
fTABOFU : TOTAL_ACTUAL_BANK_OFF_USES
gTOFRV : TOTAL_OFF_REQUEST_V IP
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If NURSE_LEV ELSn Ø 1 and OFF_CALENDARd ”= 0 then Eq.3.29 and 3.30

Nmaxÿ

n=1
wsn,d,s Ø

Lmax≠1ÿ

l=1
WDSMIl,d,s

h ≠ EXTRA_NURSESd,s, ’d œ D, ’s œ S (3.29)

Nmaxÿ

n=1
wsn,d,s Ø

Lmax≠1ÿ

l=1
WESMIl,d,s

i ≠ EXTRA_NURSESd,s, ’d œ D, ’s œ S (3.30)

Double-shifts day relation

dsdn,d Ø
Smaxÿ

s=1
wsn,d,s ≠ 1, ’n œ N, ’d œ D (3.31)

2dsdn,d Æ
Smaxÿ

s=1
wsn,d,s, ’n œ N, ’d œ D (3.32)

If DOUBLE_SHIFTS_DAY _REQUESTn,d ”= 0 then Eq.3.33

dsdmax Ø
Dmaxÿ

d=1
dsdn,d, ’n œ N (3.33)

Weekend o� relation

wkon,w Ø adn,d=7w≠1 + adn,d=7w ≠ 1, ’n œ N, ’w œ W (3.34)

wkon,w Æ adn,d=7w≠1, ’n œ N, ’w œ W (3.35)

wkon,w Æ adn,d=7w, ’n œ N, ’w œ W (3.36)

If TWWRn
j Æ Wmax ≠ TWOMXk then Eq.3.37

wkomin Æ
Wmaxÿ

w=1
wkon,w, ’n œ N (3.37)

Working preference-related policy

If NURSE_LEV ELSn = 6 then Eq.3.38

wsn,d,2 + wsn,d,3 Æ 0, ’n œ N, ’d œ Di (3.38)

If NURSE_LEV ELSn = 5 then Eq.3.39

wsn,d,3 Æ 0, ’n œ N, ’d œ Di (3.39)

O� approval relation

oan,d Ø ALL_OFF_REQUESTn,d + adn,d ≠ 1, ’n œ N, ’d œ D (3.40)

oan,d Æ ALL_OFF_REQUESTn,d, ’n œ N, ’d œ D (3.41)
hWDSMI: WEEKDAY _STAFFING_MIN
iWESMI: WEEKEND_STAFFING_MIN
jTWWR: TOTAL_WEEKEND_WORK_REQUEST
kTWOMX: TOTAL_WEEKENDS_OFFmax
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oan,d Æ adn,d, ’n œ N, ’d œ D (3.42)

dormax Ø TOTAL_ALL_OFF_REQUESTn ≠
Dmaxÿ

d=1
oan,d, ’n œ N (3.43)

Vacation approval relation

van,d Ø V AC_REQUESTn,d + adn,d ≠ 1, ’n œ N, ’d œ D (3.44)

van,d Æ V AC_REQUESTn,d, ’n œ N, ’d œ D (3.45)

van,d Æ adn,d, ’n œ N, ’d œ D (3.46)

dvrmax Ø TOTAL_V AC_REQUESTn ≠
Dmaxÿ

d=1
van,d, ’n œ N (3.47)

Shift approval relation

san,d,s Ø SHIFT_REQUESTn,d,s + wsn,d,s ≠ 1, ’n œ N, ’d œ D, ’s œ S (3.48)

san,d,s Æ SHIFT_REQUESTn,d,s, ’n œ N, ’d œ D, ’s œ S (3.49)

san,d,s Æ wsn,d,s, ’n œ N, ’d œ D, ’s œ S (3.50)

dsrmax Ø TOTAL_SHIFT_REQUESTn ≠
Dmaxÿ

d=1

Smaxÿ

s=1
san,d,s, ’n œ N (3.51)

Not-to-be assigned shift approval relation

nsan,d,s Ø NO_SHIFT_REQUESTn,d,s + (1 ≠ wsn,d,s) ≠ 1, ’n œ N, ’d œ D, ’s œ S (3.52)

nsan,d,s Æ NO_SHIFT_REQUESTn,d,s, ’n œ N, ’d œ D, ’s œ S (3.53)

nsan,d,s Æ 1 ≠ wsn,d,s, ’n œ N, ’d œ D, ’s œ S (3.54)

dnsrmax Ø TOTAL_NO_SHIFT_REQUESTn ≠
Dmaxÿ

d=1

Smaxÿ

s=1
nsan,d,s, ’n œ N (3.55)

Out-of-unit policy

If OUT_REQUEST_V IPn,d = 1 then Eq.3.56

adn,d + OUT_REQUEST_V IPn,d = 2, ’n œ N, ’d œ D (3.56)

VIP o� request policy

If OFF_REQUEST_V IPn,d = 1 then Eq.3.57

adn,d + OFF_REQUEST_V IPn,d = 2, ’n œ N, ’d œ D (3.57)

VIP shift request policy

If SHIFT_REQUEST_V IPn,d = 1 then Eq.3.58

wsn,d,s + SHIFT_REQUEST_V IPn,d,s = 2, ’n œ N, ’d œ D (3.58)
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VIP not-to-be-assigned shift request policy

If NO_SHIFT_REQUEST_V IPn,d = 1 then Eq.3.59

wsn,d,s + NO_SHIFT_REQUEST_V IPn,d,s Æ 1, ’n œ N, ’d œ D (3.59)

Shifts’ limitation policy

Dmaxÿ

d=1
wsn,d,2 Æ TOTAL_A_SHIFTSmax, ’n œ N, ’d œ Di (3.60)

Dmaxÿ

d=1
wsn,d,3 Æ TOTAL_N_SHIFTSmax, ’n œ N, ’d œ Di (3.61)

Remarks:
i This constraint will be halted, if a nurse willingly requested for a case that violate the constraint.
ii This constraint is also applied to the period between a previous schedule and a current one.

3.5.2 Computer implementation
The mathematical model was implemented using Python and the open-source library PulP
to facilitate the optimization process. The open-source solver used in this MILP was the
CBC. The termination criteria of the optimization process included the configuration of
the relative gap tolerance and time limit. The relative gap tolerance of the objective lower
and upper bound was set to 0.175. The time limit for the solver to stop optimizing was
fixed to 4000 seconds.

3.6 Genetic algorithm programming development
In addition to the deterministic optimization as in the MILP programming, a GA pro-
gramming was also developed as an alternative model utilizing stochastic optimization.
The elements and the flowchart of GA implemented in this study are in accordance with
Fig.2.3. The termination criterion was the number of generations (Ngeneration) which was
set to be 300. Apart from the designs of these algorithm activities, the tuning process for
some parameters was investigated.

3.6.1 Population initialization
In this study, binary encoding was used for the population initialization, where each bit
represents the state of having a working shift. Three types of the initial population were
evaluated in this thesis. The first type was the set of binary random schedules with equal
probability to introduce the random alternatives of solutions. The second type was the
copies of the non-optimized feasible schedule obtained from the MILP model (with start-
ing fitness value of approximately 0.928) to aid the initial convergent phase of GA. The
last type was the mixture of the previously defined types to provide the algorithm with
the appropriate balance of pros and cons between both types. The additional detail of the
experimental apparatus is described in Section 3.6.7. In this study, the population size
(Npopulation) was fixed to 100 individuals in each generation. The default ratio between
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the non-optimized MILP solution and the binary random schedule was set to 0.75:0.25.

After constructing the first population’s schedules, the translation step was performed to
convert the initial population’s format into the algorithm’s eligible form, i.e., the chromo-
somal strings. The format of an individual in the initial population is an array; each row
represents one sta�’s schedule, and each column represents each shift. For instance, in the
May-June schedule of 2021, there were 71 sta� in a 35-days schedule, each day with three
possible shifts. Hence, the array of this schedule has the size of 71◊105. To serve the GA’s
requirement, this array-like individual was reshaped into a strand of a chromosome where
the head of the following nurse’s schedule was attached to the tail of the prior nurse’s
schedule, as illustrated in Fig.3.1. Recalling the previous example, the chromosome size
(CHROMOSOME_LENGTH) becomes 7455 ◊ 1. This process was repeated until all
schedules were transformed into chromosomes.

Figure 3.1: Translation process.

3.6.2 Decoding
A decoding process started with the transformation of each chromosome strand into a per-
ceivable array. Since the binary encoding scheme was adopted with the one-bit-per-variable
scheme, the decoding step on each bit yielded the binary state of a shift assignment. Fol-
lowing the initial decoding, each schedule array in the current generation was subjected to
an evaluation process. The evaluation assayed the violation of constraints, as well as iden-
tified the value of all variables required to compute an objective function (z from Eq.3.9)
based on the decoded state of a working shift. The evaluation algorithm is described in
Section A.3, where each violation of constraint results in the addition of penalty (p) by
100. After finishing the evaluation, the value of the GA’s objective function (zGA) was
assigned to each schedule as its fitness score using Eq.3.62. Unlike MILP in Eq.3.10, the
GA’s objective function was modified to be the maximization problem. This process was
terminated once the fitness values had been assigned to all chromosomes in the generation.

Optimization objective:
Maximize(zGA) = 1

z
+ p (3.62)

3.6.3 Tournament selection
Since the fitness score may experience some penalty, thus existing as a negative value, the
tournament selection that suits this characteristic was chosen. There are two parameters

31



3. Methods

involved in this process, i.e., a tournament size (Ntnm) and a tournament probability
(PROBtnm). The tournament size was fixed to 3. The tournament probability was set
to 0.75. This selection process was conducted in pair until 50 pairs of chromosome were
selected as parents for the next-generation population.

3.6.4 Crossover
The crossover process involves four parameters: the number of random crossover points
(Nxover), a crossover probability (PROBxover), a momentum-adjusted crossover probabil-
ity (PROB_ADJxover) and a switching probability (PROBswitch). The random crossover
points and the switching probability were defined as 100 points and 0.2, respectively.
Other parameters were varied during the tuning process as explained in Section 3.6.7.
The crossover decisions were processed on all pairs of the selected parents until the pro-
cess o�spring (including non-crossed parents and crossed o�spring) established the next-
generation population of 100 individuals.

This study utilized the multi-point crossover with switching probability to increase the
enhancement opportunity. Because the chromosomal length is extensive in this study, the
switching probability of less than 0.5 is applied to reduce the stochastic degree. Addition-
ally, the momentum-adjusted crossover probability was investigated as the extra approach
to reduce the stochastic. The momentum faded the original crossover probability once the
algorithm had approached half of the entire generations.

3.6.5 Mutation
The conventional mutation for binary encoding was adopted in this study. This process
encloses two parameters, i.e., the mutation constant (CONSTmutate) and the momentum-
adjusted mutation constant (CONST_ADJmutate). The mutation constant was fixed to
3, and it was required to compute the mutation probability (PROBmutate) as expressed in
Eq.2.13. Additionally, once the algorithm had approached half of the whole generations,
the momentum reduced the mutation constant, thus lowering the degree of stochastic.
The presence of the momentum was a part of the parameter tuning process described in
Section 3.6.7.

3.6.6 Elitism
The number of the fittest chromosome from the pre-crossover population (Nelitism) was
selected as 15 copies. These copies replaced the first 15 individuals in the next-generation
population. As a result, the highest fitness of the next generation remains greater than or
equal to the previous generation.

3.6.7 Parameter tuning
As mentioned in the previous sections, some parameters were primarily fixed and did not
participated in a tuning process. Those fixed parameters included Ngeneration, Npopulation,
Ntnm, PROBswitch, CONSTmutate, and Nelitism. Therefore, the remaining parameters
were subjected for the tuning process where the test parameters were compared with the
default setting using only the May-June scheduling data. The judgement was based on
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the fitness values or zGA that the test parameters contributed.

The tuning process classified into four tests, namely Test 1, Test 2, Test 3, and Test 4 as
listed in Table 3.10. The tuning process ran consecutively starting from Test 1 and ending
with Test 4, where each tuned parameters were repeated for five measurements. If the
results in each test shows insignificant di�erent with the default value, that default one
will be selected as the winner.

Table 3.10: Parameter tuning scheme

Parameters Default Test 1 Test 2 Test 3 Test 4
Ngeneration 300 300 300 300 300
Npopulation 100 100 100 100 100
MILP solution : binary random 0.75 : 0.25 1.00 : 0.25,

0.75 : 0.25,
0.50 : 0.50,
0.25 : 0.75,
0.00 : 1.00

Test 1’s winner Test 1’s winner Test 1’s winner

Ntnm 3 3 3 3 3
PROBtnm 0.75 0.75 0.75 0.75 0.75
Nxover 100 100 100 100 100
PROBxover 0.7 0.7 0.1,0.3,0.5,0.7,0.9 Test 2’s winner Test 2’s winner
PROB_ADJxover - - - Test 2’s winner, half

of Test 2’s winner
Test 3’s winner

PROBswitch 0.2 0.2 0.2 0.2 0.2
CONSTmutate 3 3 3 3 3
CONST_ADJmutate - - - - 3, 0.01
Nelitism 15 15 15 15 15

Test 1 was responsible for the identification of the proper ratio between the non-optimized
MILP solution and the binary random schedule, i.e., 1.00 : 0.25, 0.75 : 0.25, 0.50 : 0.50,
0.25 : 0.75, and 0.00 : 1.00. Other parameters apart from the tuned ratio remained as
in the default setting. As shown in Table 3.11 and 3.12, Test 1 implied that the initial
population with completely binary random genes yielded the minimum mean of zGA with
significance. However, the other mixing ratios between the non-optimized MILP solu-
tion and the binary random schedule did not show significant di�erence in their means
(i.e., around 1). Therefore, the selected candidate from Test 1 was the default ratio of
0.75 : 0.25. In terms of the average running times, each sub-test took approximately 4800-
5400 seconds to finish the algorithm.

Test 2 involved the tuning of crossover probability which were 0.1, 0.3, 0.5, 0.7, and 0.9.
Other parameters remained the same as the default one, except the initial solution ratio
whose value was set in accordance with the winner from Test 1. Test 2’s results from Table
3.13 and 3.14 demonstrated that there was no significant di�erence in the means of zGA

(i.e., approximately 1) among all tested crossover probabilities. So, the default crossover
probability of 0.7 was selected as the Test 2’s winner. Additionally, their average running
times were ranging from 4700-5300 seconds.

Test 3 was performed to identify the benefit of having momentum-adjusted crossover prob-
ability. In Test 3 setting, the first sub-test was the case without impeding momentum, and
the second sub-test had the momentum adjustment exerted on the crossover probability
to reduce it by halve. Other parameters had their values as specified in the default setting,
except those winner parameters from Test 1 and Test 2. Table 3.15 and 3.16 showed the
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finding of Test 3 that the means of each sub-tests were not significantly di�erent, and
their means remained about 1 as the previous tests. Thus, the momentum adjustment
on the crossover probability did not cause significant changes to the algorithm. The de-
fault setting of non-momentum adjustment on the crossover probability was proceeded as
the candidate from Test 3. Besides, their average running times were comparable to Test 2.

Test 4 investigated the presence of the momentum-adjusted mutation constant. Its first
sub-task inspected the case where mutation constant remain unchanged, while its second
sub-tasks observed the setting where mutation constant was decreased by the momentum
to 0.001. Similar to the prior tests, the remaining parameters except those winners from
the previous tests remained as the default setting. From Table 3.17 and 3.18, Test 4 ex-
hibited that the momentum-adjusted mutation constant significantly decreased the mean
of zGA. As a result, the default setting of non-momentum adjustment on the mutation
constant was the winner of this test. Moreover, their average running times were approx-
imately 4700 - 4800 seconds.

According to the results of all tuning tests, the final setting of parameters remained as the
default one in Table 3.10.

Table 3.11: Statistical analysis of Test 1.

MILP solution : binary random Mean of zGA Variance of zGA Mean of running time (s)
1.00:0.00 -248978.573873 98261345.85578860 4845.953424
0.75:0.25 1.010324 0.00035905 4872.280604
0.50:0.50 1.014476 0.00005637 4881.628854
0.25:0.75 1.022586 0.00016319 5267.536469
0.00:1.00 1.021572 0.00006046 5414.115283

Table 3.12: F-tests and t-tests between Test 1’s parameters and the default setting.

MILP solution : binary random F-test t-test
F-test statistic p-value null hypothesis

rejection
t-test statistic p-value null hypothesis

rejection
1.00:0.25 602145332955.68400 0.00000 Yes -56.16392 0.00000 Yes
0.75:0.25 2.20023 0.23190 No -1.19982 0.26453 No
0.50:0.50 2.89497 0.16390 No -1.22391 0.25581 No
0.25:0.75 1.00000 0.50000 No 0.00000 1.00000 No
0.00:1.00 2.69928 0.17972 No -0.15158 0.88327 No

Table 3.13: Statistical analysis of Test 2.

PROBxover Mean of zGA Variance of zGA Mean of running time (s)
0.10 1.019348 0.00038595 5168.007981
0.30 1.019806 0.00026072 5231.832413
0.50 1.012388 0.00004371 5324.421193
0.70 1.012678 0.00055328 4719.319653
0.90 1.011577 0.00032537 4715.692095
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Table 3.14: F-tests and t-tests between Test 2’s parameters and the default setting.

PROBxover
F-test t-test

F-test statistic p-value null hypothesis rejection t-test statistic p-value null hypothesis rejection
0.10 1.43355 0.36780 No 0.48663 0.63957 No
0.30 2.12216 0.24204 No 0.55863 0.59170 No
0.50 12.65934 0.01529 Yes -0.02655 0.97992 No
0.70 1.00000 0.50000 No 0.00000 1.00000 No
0.90 1.70045 0.30983 No -0.08302 0.93587 No

Table 3.15: Statistical analysis of Test 3.

PROB_ADJxover Mean of zGA Variance of zGA Mean of running time (s)
0.70 1.012678 0.00055328 4719.319653
0.35 1.022229 0.00002602 5268.469406

Table 3.16: F-tests and t-tests between Test 3’s parameters and the default setting.

PROB_ADJxover
F-test t-test

F-test statistic p-value null hypothesis rejection t-test statistic p-value null hypothesis rejection
0.70 1.00000 0.50000 No 0.00000 1.00000 No
0.35 21.26519 0.00587 Yes 0.88735 0.42099 No

Table 3.17: Statistical analysis of Test 4.

CONST_ADJmutate Mean of zGA Variance of zGA Mean of running time (s)
3.00 1.012678 0.00055328 4719.319653
0.01 0.952196 0.00117582 4806.018731

Table 3.18: F-tests and t-tests between Test 4’s parameters and the default setting.

CONST_ADJmutate
F-test t-test

F-test statistic p-value null hypothesis rejec-
tion

t-test statistic p-value null hypothesis rejec-
tion

3.00 1.00000 0.50000 No 0.00000 1.00000 No
0.01 2.12518 0.24164 No -3.25235 0.01166 Yes

3.7 Performance comparison
Performance comparisons were evaluated on the pairs of models using three metric classes:
statistical features, model performance, and request satisfaction. All three classes contain
multiple metrics with corresponding outcome characteristics, as tabulated in Table 3.19.
The outcome characteristics of each metric yield one of the three possible consequences,
i.e., deteriorated outcome, unchanged outcome, and optimized outcome, when comparing
a particular model to its pair. For instance, if MILP provides a greater number of the
minimum weekends o� than GA, MILP will have an optimized outcome for this metric
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following the condition in Table 3.19. Moreover, the statistical features also evaluated each
metric in the dimension of nurse’s levels, i.e., Senior 1, Senior 2, Senior 3, Middle, Junior
1, Junior 2, and all levels. As a result, the statistical features contain 63 metrics (7 levels,
each with 9 metrics). In total, each comparison has 76 metrics: 63 metrics from statistical
features, 9 metrics from model performance, and 4 metrics from request satisfaction.

In this thesis, two comparisons were conducted to indicate the superior solution in the
scheduling task. The first comparison was performed on two developed models (i.e., MILP
and GA). The data set used in this assessment was from the May-June scheduling input.
The second comparison was between the manual approach and the candidate model from
the first comparison (i.e., the model that owns less deteriorated outcomes in the first com-
parison). This evaluation employed two data sets: the May-June scheduling input and the
July-August scheduling input.

Additionally, the setting of objective weights in each scheduling data set is varied due to
the di�erent input characters (e.g., number of requests and number of sta�). In May-
June input, eight objectives’ weights were set as 1, 0, 2, 1, 1, 3, 1 and 1, respectively.
While in July-August data, the weights were established as 1, 0, 1.5, 1, 1.5, 1.5, 1 and 1,
sequentially.

Table 3.19: Evaluation standard for performance comparison

Outcome characteristics
Metric classes Metrics Deteriorated Unchanged Optimized
Statistical features Average total shifts Significantly greater Insignificantly di�erent Significantly lesser

Average total working days Significantly greater Insignificantly di�erent Significantly lesser
Average total morning shifts Significantly lesser Insignificantly di�erent Significantly greater
Average total afternoon shifts Significantly greater Insignificantly di�erent Significantly lesser
Average total night shifts Significantly greater Insignificantly di�erent Significantly lesser
Average total double-shifts days Significantly greater Insignificantly di�erent Significantly lesser
Average total weekends o� Significantly lesser Insignificantly di�erent Significantly greater
Average total o�-bank quota
transactions

Significantly greater Insignificantly di�erent Significantly lesser

Average total days o� after night
shifts

Significantly greater Insignificantly di�erent Significantly lesser

Model performance Maximum number of working
shifts

Greater Equivalent Lesser

Maximum number of double-
shifts days

Greater Equivalent Lesser

Minimum number of weekend
o�s

Lesser Equivalent Greater

Maximum disapprovals for o�
requests

Greater Equivalent Lesser

Maximum disapprovals for vaca-
tion requests

Greater Equivalent Lesser

Maximum disapprovals for shift
requests

Greater Equivalent Lesser

Maximum disapprovals for not-
to-be-assigned shift requests

Greater Equivalent Lesser

Fitness score or zGA Lesser Equivalent Greater
Scheduling time Greater Equivalent Lesser

Request satisfaction Approval percentage of total o�
requests

Lesser Equivalent Greater

Approval percentage of total va-
cation requests

Lesser Equivalent Greater

Approval percentage of total
shift requests

Lesser Equivalent Greater

Approval percentage of total
not-to-be-assigned shift requests

Lesser Equivalent Greater
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3.8 Statistical analysis
Apart from an absolute value and a percentage, the statistical measures included a mean,
a variance, the maximum, the minimum, an F-test statistic, and a t-test statistic. The
F-tests were used to verify the null hypothesis that the two population variances are
equivalent, and the t-tests were responsible for testing the null hypothesis that the means
of two populations are equal [46]. There were two types of t-tests adopted in this study,
i.e., the student’s t-tests and the Welch’s t-test. The student’s t-test was applied when
F-test had implied an insignificant di�erence in variances [46]. The Welch’s t-test was
utilized when the F-test had indicated a significant di�erence [47]. All statistical tests
used the p-value threshold of 0.05 to identify significance.

3.9 Development platform
The models and statistical analysis were developed on a virtual machine with CPU as
processing unit. The virtual machine size was 2 cores, 7GB RAM, and 14 GB disk. All
codes were written in Python using Jupyter Notebooks.
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Results

4.1 Service blueprint mapping
Service blueprint mapping (Fig.4.1) was composed to provide the visual perception of the
RN’s scheduling process. The blueprint demonstrates the activities that each governed
RN performed along the process. Apart from the RNs, five additional people were in-
volved, i.e., on-duty-roster scheduler, ED head nurse, admin, OT-roster scheduler, and
task-assigning scheduler.

The first action began with the RNs sending requests within one week for their desired
on-duty schedules, such as shift requests, days o� requests, and many more. They saved
and updated their appeals via Google Sheet that the on-duty-roster scheduler had pre-
pared. Typically, the requests open around one month before starting.

While waiting for the publication of the monthly on-duty schedule, the primary onstage
task was the scheduling, which took around 3-5 days to complete. The on-duty-roster
scheduler constituted the schedule by considering requests and multiple constraints. The
scheduler also relied on the mathematics functions in Google Sheets (like the summation
and conditional statements) to facilitate the scheduling. Additionally, the backstage ac-
tion required the scheduler to manage the o�-bank quota. Like the vacation quota, the
o�-bank quota informed the additional days o� each RN could have (more detail on these
terms were enclosed in Section 4.2). Once the scheduler finished scheduling, the ER head
nurse would inspect the result and manage the vacation quota. The instances of vacation
management included the scenarios when some nurses forgot to use their quota whose
expiration was approaching. Furthermore, the admin assisted this step by notifying the
current vacation quota to the ER head nurse. Both managements for day-of bank and
vacation utilized the records, which were manually documented in Google Sheets. Before
publishing the schedule, the scheduler had to assign sta� for the in-charge nurse and shift-
transferring roles.

After RNs received the monthly on-duty schedule, another format (i.e., weekly table) was
supplied to the RNs. This format contained more readability than the monthly one. In
onstage actions, the admin was responsible for composing the weekly on-duty schedule.

When the on-duty schedules in all formats were issued, RNs had the right to exchange
shifts. Before submitting any exchange request to the drop-o� box, the RN had to find
another qualified sta� that they would trade. Additional detail on shift exchange rule
was explained in Section 4.2. The admin would gather all requests and perform daily
adjustments on all published schedules. Depending on the availability and agreement, the
exchange process could take more than one day to finish. Also, this exchange process did
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not require any approval since the parties were assumed to have credits and responsibility
to perform the eligible exchange.

Following the on-duty shifts, RNs could sign up for the OT slots as well. The onstage
action in this step allowed RNs to submit OT requests via Google Sheets that the OT
scheduler had provided. The request period opened approximately five days. Therefore,
OT was optional, and each nurse was not forced to do it unwillingly. Following the end of
the request period, RNs would receive the OT schedule within 1-2 days. These durations
covered the onstage action of the OT scheduler, whose task was to schedule OT by con-
sidering the balance of approvals. In other words, requestors would receive comparable
numbers of OT.

If RNs did not want some OT slots, they can either exchange or give them away to their
agreed parties. This action was possible since OT shifts were not just exchangeable but
passable too. The process was similar to the on-duty shift exchange. Only one di�erence
was that OT could be exchanged with anyone regardless of sta�’s levels.

In addition to the schedules for on-duty and OT, RNs acquired the tasking table at least
one day before starting each weekly schedule. Therefore, the task-assigning scheduler was
needed to allocate tasks during that previous week. After the weekly tasking table had
been published, sta� would only have to work according to their schedule. Additionally,
RNs still could exchange on-duty shifts as long as that shift was not commencing yet.

As stated in this project’s scope, on-duty scheduling was solely the optimization model’s
target. Hence, only the first three customer actions (in Fig.4.1) were involved in the
in-depth insights extraction and the model formulation.
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Figure 4.1: Service blueprint of RN’s scheduling process.
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4.2 In-depth insights extraction
The results of in-depth insights extraction were organised into four dimensions: considered
elements, pains, satisfaction, and to-be preferences. These findings served their purpose
as the development foundation for the user-centred solution.

4.2.1 Considered elements
The considered elements explained the background of the scheduling system. They were
listed into two following viewpoints: a context of scheduling and a scheduling policy.

4.2.1.1 Context of scheduling

The setting for the RN’s schedule covered five weeks or 35 days. Each day was composed
of three non-overlapping shifts: morning (7:00 to 15:00), afternoon (15:00 to 23:00), and
night (23:00-7:00). RN’s levels were sorted into the following hierarchy: Senior 1, Senior
2, Middle, Junior 1, and Junior 2. Senior 1 was the highest rank who can work in any
position, while Junior 2 had the fewest experience. Each shift may not contain only ED
employees, for some slots received the extra sta� from other departments.

There were three classes of absent days in the scheduling system, i.e., a regular o�, a VIP
o�, and a vacation. The conventional one contained two sub-types, which are a weekly-o�
allowance and o�-bank quota.

The total number of weekly days o� emerged from the summation of weekends and hol-
idays in that schedule. In other words, the number represented the base of absent days
that each nurse equally obtained in each table.

The o�-bank quota was established with a similar concept as OT. Instead of earning extra
wages in return, each shift greater than the on-duty threshold yielded one additional day
in the so-called o�-bank quota. For instance, if a nurse had worked 25 shifts, and the
entire on-duty days was 22 shifts in that schedule, then the nurse received three days o�
to the bank.

The VIP absence was designated for some sta� with the following criteria: an employee
who was about to resign but still had not used all o� quotas, a nurse who temporarily left
for studying, and a mother who recently gave birth. These eligible people could not work
on some days or some periods. Thus, they needed a VIP status to guarantee that their
requests would be approved.

The vacation was the annual leaves that each nurse could use. Each year, everyone re-
ceived 15 days of vacations, and these quotas were reset yearly. Thus, nurses must use
all of their allowances before expiring. This requirement explained the di�erent priorities
among absence classes, especially the expirable type.

There were eight kinds of requests allowed in the scheduling systems, where four of them
were normal, and the remaining fours were VIP. The normal category covered a request
for a day away (the combination of the weekly day o� and the o�-bank quota), a vacation,
a shift, and a not-to-be-assigned shift. Furthermore, the VIP category enclosed a must-
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approve demand for a day o�, a working shift, and a not-to-be-assigned shift. Like the
VIP o� request, some nurses could earn VIP status for asking shift and not-to-be-assigned
shift due to specific reasons, such as the health problem and the accommodation distance.

4.2.1.2 Scheduling policy

RN’s scheduling regulation consisted of ten policies. The first one was the weekly working
shifts and days policy. A nurse must not work either at the ED and other units beyond
six shifts or five working days each week. A nurse should not unwillingly and continuously
operate within the department greater than six days in a row.

Likewise, the afternoon shift policy stated that each nurse should have consecutive after-
noon shifts at a maximum of two unless inquired.

The night shift rule allowed a nurse to work a maximum of three-night shifts each week. A
senior nurse and a non-senior nurse must not have connected night shifts greater than two
and three, respectively. This requirement also applied to the period between a previous
schedule (i.e., last weekend) and a current one. Additionally, the night shift policy could
be lifted if a nurse had voluntarily requested against the restriction.

The consecutive shifts restraint did not authorise the following pattern at all cost, i.e.,
afternoon-and-night shifts and night-and-next-morning shifts. However, afternoon-and-
next-morning shifts and night-and-next-afternoon shifts were possible if the nurse had
explicitly asked for them. If not, the scheduler would not assign sta� with those patterns.

Apart from the ED’s operation shifts, the total shifts policy included the out-of-unit po-
sitions, the vacations, and the usage of the o�-bank quota as working hours.

As addressed in Table A.1 and A.2, the sta�ng rule adopted two criteria based on day
types, i.e., working day and weekend or holiday. The regulation allowed the higher-level
nurses to work in a lower hierarchy, but not the other way around. Moreover, the sta�ng
rule was also related to the RN’s shift exchange practice. The level of the requestee should
be applicable to work in the requestor’s position. For example, if the requestor had been
assigned to the class of Senior 3, then the requestee must only be either Senior 3 or higher.
Additionally, the other department would provide extra sta� to help the ED in Junior 2’s
positions.

The weekend o� policy declared that each nurse in all levels must earn at least one week-
end o� (both Saturday and Sunday) in the schedule.

According to the working preference-related standard, Senior 1 would work morning shifts
only, while Senior 2 would not be assigned to any night shift. This standard could be
paused if the nurses had asked to work in those prohibited slots.

The out-of-unit policy applied to the nurses that had been scheduled to work in other
units. The policy forced all out-of-unit requests to be admitted.

The VIP request regulation provided extra privileges to some sta�. With that status en-
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titled, their requests (i.e., working shifts, not-to-be-assigned shifts, and days o�) must be
approved.

The shifts’ limitation rule restrained the number of shift types to all nurses. A nurse shall
not have excessive afternoon and night shifts; each must be within 33% of on-duty days
in that schedule.

4.2.2 As-is pains
Request satisfaction was alleged by the shift managers as the primary source of di�culty
in scheduling. When the number of applications was high, the scheduler would take longer
to process while satisfying those demands. When not all requests could be granted simul-
taneously, the calls from junior nurses got denied first. Nevertheless, this scenario did not
happen very often. If it did, the a�ected requestor usually do shift exchange, which was
time-consuming and burdensome to find the eligible requestee. Indeed, this shift exchange
happened because the requestor could not work in that slot, which was why the appeal was
submitted in the first place. The governed sta� further commented that they performed
ad-hoc shift exchange approximately five times per schedule. Therefore, they did not want
to do an extra trade process, if not necessary.

The scheduler’s goal of balancing shifts was achievable, yet it was complicated to manage.
Junior nurses frequently ended up having more night shifts than other levels. Further-
more, the management stakeholders stated that it was hard to limit the number of nurse’s
working shifts within the on-duty limits. So, each nurse would gain quotas to the days-o�
bank. This continuous addition of days-o� bank was likewise a problem in the managers’
aspect. Also, the scheduler could not allocate two weekends o� to all, particularly junior
nurses who received only one weekend o�.

In the sta�ng aspect, the managers encountered inadequate sta� on some days. It was
because some nurses had been assigned for out-of-unit positions, and some were o� or on
vacation. Then the available nurses on that day would have to work double shifts. Hence,
It was rare for the managers to reach the aim of zero double-shifts days, and usually
ended up with 1-2 double shifts per schedule instead. Alternatively, the scheduler might
assign less sta� than the criteria to prevent double-shifts assignments. Either way, the
consequence corrupted sta�’s e�cacy by introducing exhaustion.

4.2.3 As-is satisfaction
Both managers and governed sta� were satisfied with the balance result of shifts arrange-
ment within the same generation. Each nurse under the same level would receive an
equivalent number of shifts, including total shifts, morning shifts, afternoon shifts, and
night shifts. All stakeholders were pleased with the approval percentage of sta�’s requests.
Particularly the requests for days o� or vacations, all of them were usually granted. Be-
sides, the nurses did not mind working beyond the on-duty threshold since they were
compensated with additional days in the o�-bank quota.
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4.2.4 To-be preference
Request satisfaction was the topmost priority in scheduling. All stakeholders wished that
sta�’s requests should be approved as much as possible regardless of seniority. The shift
managers highlighted that each request type needed di�erent precedence, especially the
vacations request whose usable period is annual. Thus, this expirable quota would have a
higher priority than the regular days o� credit.

In terms of the arrangement of the shifts, all parties agreed that nurses should work rel-
atively close to the number of on-duty days presented in each month schedule. The shift
managers strongly agreed with this goal to resolve the excessive formation of days-o�
bank. Moreover, the management stakeholders yearned the balance within each shift type
(i.e., morning, afternoon, and night) and the total number of shifts. Significantly, each
nurse should minimally receive a comparable number of afternoon shifts and night shifts.
Additionally, the aim to reduce the unwilling double-shifts days was likewise vital, espe-
cially in junior nurses. Sometimes, the double-shifts days were unavoidable because of
the inadequate sta�. However, these extra burdens should be allotted to each nurse in an
equal manner.

The days o� allocation could add time values to sta�. Because the nurse’s working time is
dynamic and may not align well with other people (e.g., friends and family), the managers
desired to provide all nurses with two weekends o� in each schedule.

Sta�ng fulfilment should be reached in every shift. The governed nurses emphasised that
this criterion would decrease the workload and prevent the probability of having demand-
supply unmatched.

4.3 Performance comparison
The metrics comparisons were first conducted on the pair of MILP and GA to identify the
superior candidate. Then, the schedule optimized by the superior model (i.e., MILP) and
the manual outcome were collated to find the pros and cons of each approach.

4.3.1 The collation of MILP-optimized and GA-optimized
schedule

The statistical features of the MILP-optimized schedule and the GA-optimized schedule
in the May-June period were tabulated in Table 4.3 and 4.1, respectively. The F-tests and
the t-tests were conducted to imply the significance of statistical findings. Their results
were attached in Section A.4. Fig. 4.2 shows the significant changes of the statistical
features in the MILP-optimized schedule in relation to the GA-optimized results. Ac-
cording to Fig. 4.2, 45 features were insignificantly di�erent among the two optimization
approaches. However, there were three deteriorated features that MILP could not over-
come GA, i.e., the increase in average working days (by 20% in Senior 1 and 11% in all
levels) and the 580% surplus of the Middle’s o�-bank quota transaction. Nevertheless, 15
MILP’s features were found to be significantly optimized when comparing to GA’s results.
The mean morning shifts of Senior 1 was raised by 20%. The average double-shifts days
in all levels and individual levels (from Senior 2 to Junior 2) were significantly reduced by
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54%-84%. The expected weekends o� in all levels and the particular levels starting from
Senior 2 to Junior 1 were extended by 40%-83%. The average o�-bank quota transaction
of Junior 1 was lower by100%. Additionally, the average days o� after night shifts were
significantly decreased by 32% and 24% in Middle and all levels, orderly.

Table 4.4 a�rmed that all nine MILP’s metrics were much more optimized than GA in
terms of the model’s performance. The GA’s fitness score, which correlates to the overall
performance, was also 4.6 times lower than MILP. Besides, the GA’s computation time
was about three times slower.

Fig. 4.5 demonstrated that GA’s capability was inferior to MILP in all four metrics con-
cerning request satisfaction. GA yielded the highest approval percentage of approximately
60%, while most request types received less than 40% approvals. In contrast, the minimum
approval rates of MILP was almost as much as 96%.

According to the evaluation of 76 metrics, MILP showed 59.21% with unchanged outcomes,
36.84% with optimized consequences, and only 3.95% with deteriorated results compared
with GA. Therefore, MILP was claimed to be more superior model to GA.

Table 4.1: Statistical features of the GA-optimized schedule of May-June period.

Senior 1 Senior 2 Senior 3 Middle Junior 1 Junior 2 All levels
Average shifts ± SD 20.167 ± 4.298 22.111 ± 5.858 20.333 ± 4.061 19.526 ± 4.5 23.214 ± 4.491 21.75 ± 8.452 21.056 ± 5.363
Average working days ± SD 18.833 ± 1.951 19.0 ± 4.472 18.0 ± 3.54 16.737 ± 3.416 18.929 ± 3.453 16.25 ± 6.398 17.845 ± 4.086
Average morning shifts ± SD 18.833 ± 1.951 13.889 ± 4.932 5.6 ± 2.245 5.947 ± 2.038 9.286 ± 2.185 10.125 ± 4.567 9.099 ± 5.016
Average afternoon shifts ± SD 1.333 ± 2.981 8.222 ± 1.227 6.867 ± 2.247 6.737 ± 2.048 7.214 ± 1.612 6.0 ± 2.828 6.507 ± 2.711
Average night shifts ± SD 0.0 ± 0.0 0.0 ± 0.0 7.867 ± 2.363 6.842 ± 1.954 6.714 ± 2.519 5.625 ± 2.955 5.451 ± 3.575
Average double-shifts days ± SD 1.333 ± 2.981 3.111 ± 1.728 2.333 ± 0.869 2.789 ± 1.734 4.286 ± 1.708 5.5 ± 2.55 3.211 ± 2.175
Average weekends o� ± SD 1.333 ± 0.943 1.333 ± 0.471 1.2 ± 0.542 1.368 ± 0.581 1.429 ± 0.623 1.875 ± 1.364 1.394 ± 0.76
Average o�-bank quota transactions ± SD -1.667 ± 4.23 2.556 ± 2.266 0.4 ± 1.925 0.263 ± 2.825 2.571 ± 3.375 -0.25 ± 8.452 0.817 ± 4.14
Average days o� after night shifts ± SD 0.0 ± 0.0 0.0 ± 0.0 6.0 ± 2.033 5.158 ± 1.565 4.786 ± 1.859 4.375 ± 2.342 4.085 ± 2.746

Figure 4.2: Heat map representing the significant changes (in percentage) of the
MILP-optimized schedule in relation to the GA-optimized schedule.

4.3.2 The collation of manual and MILP-optimized schedule
4.3.2.1 May-June schedules

Table 4.3 and 4.3 contain the statistical features of May-June schedules created by the
manual approach and MILP, respectively. The significance tests (F-tests and t-tests)
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were applied with results presented in Section A.4. The heatmap in Fig.4.3 illustrates
the significant changes in the features of the MILP-optimized schedule when compared
with the manual one. There were 51 insignificantly di�erent metrics between the two
methods. Nevertheless, four features possessed significantly deteriorated characteristics.
The MILP’s average working days in all levels were lifted by 8.3% relative to the manual
approach. The average night shifts and the average days o� after night shifts of Senior
3 were 47% and 66% higher in MILP. Furthermore, the MILP’s average o�-bank quota
transactions in Senior 1 were 250% greater than the manual schedule. Regardless of the
downsides, MILP provided eight features with significantly optimized outcomes. The av-
erage afternoon shifts of Senior 3 and the average night shifts of Junior 1 were subsided by
30% and 22% in MILP, sequentially. The MILP’s average double-shifts days were declined
by 54-71% in all levels and individual levels (from Senior 3 to Junior 2). Moreover, the
average weekend o�s in Junior 1 were raised by 65% in MILP.

For the model’s performance (Table 4.4), there were eight metrics that MILP superiorly
optimized the outcomes. Especially the fitness score, the manual approach possessed a
negative value, which implies constraint violations. The further inspection indicated that
the manual approach conducted 139 violations. Fig. 4.4 visualized the proportion of
violation types that existed in the manual schedule. The 85% of the infringement were
dominated by these top four entities, i.e., the violations in the consecutive shifts policy
(40%), the sta�ng policy (19%), the shifts’ limitation policy (14%), and the afternoon
shift policy (12%). By disregarding the penalty in the manual approach’s fitness score
(where one penalty resulted in the penalty of -100), it would yield 2.266. This violation-
excluded score was still approximately two times lesser than the MILP. Additionally, MILP
performed the scheduling task about 12.5 times faster than the manual scheduling. Apart
from the MILP’s superior outcomes, the manual approach and MILP equally granted all
vacation requests.

Both MILP and the manual approach catered 100% approvals on vacations in terms of
request satisfaction. However, MILP earned lower approval rates compared to the manual
schedule in not-to-be-assigned shift requests. Nonetheless, MILP provided perfect ap-
proval percentages of 100% for shift requests and o� requests, while the manual approach
strove 95.395% and 99.544% consecutively.

Out of 76 evaluated indicators, both approaches owned 53% with unchanged consequences.
Although MILP had 6.58% with deteriorated outcomes, it gave 23.68% with optimized
results collated with manual scheduling.
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Table 4.2: Statistical features of the manual schedule of May-June period.

Senior 1 Senior 2 Senior 3 Middle Junior 1 Junior 2 All levels
Average shifts ± SD 22.333 ± 0.943 20.0 ± 5.437 20.267 ± 3.511 20.684 ± 4.305 21.429 ± 3.793 21.125 ± 8.085 20.845 ± 4.692
Average working days ± SD 20.833 ± 2.672 18.444 ± 4.901 17.933 ± 3.275 18.0 ± 3.907 18.143 ± 3.583 18.125 ± 7.008 18.324 ± 4.321
Average morning shifts ± SD 20.5 ± 3.403 12.778 ± 4.825 5.933 ± 1.948 5.947 ± 2.114 8.571 ± 3.678 9.875 ± 3.822 9.0 ± 5.276
Average afternoon shifts ± SD 1.833 ± 4.099 6.778 ± 3.966 9.133 ± 2.156 6.579 ± 2.255 4.5 ± 1.722 7.375 ± 2.87 6.423 ± 3.385
Average night shifts ± SD 0.0 ± 0.0 0.444 ± 1.257 5.2 ± 1.796 8.158 ± 1.598 8.357 ± 2.635 3.875 ± 1.536 5.423 ± 3.579
Average double-shifts days ± SD 1.5 ± 3.354 1.556 ± 1.257 2.333 ± 1.35 2.684 ± 0.862 3.286 ± 1.097 3.0 ± 1.225 2.521 ± 1.582
Average weekends o� ± SD 2.667 ± 1.795 2.222 ± 1.03 2.133 ± 0.806 2.0 ± 0.725 1.214 ± 0.558 1.5 ± 1.323 1.901 ± 1.064
Average o�-bank quota transactions ± SD 0.667 ± 0.745 0.444 ± 1.343 0.467 ± 2.093 1.895 ± 1.552 1.0 ± 1.964 -0.875 ± 8.085 0.817 ± 3.264
Average days o� after night shifts ± SD 0.0 ± 0.0 0.222 ± 0.629 2.933 ± 1.181 4.316 ± 1.416 4.571 ± 1.591 2.5 ± 1.225 2.986 ± 2.066

Table 4.3: Statistical features of the MILP-optimized schedule of May-June period.

Senior 1 Senior 2 Senior 3 Middle Junior 1 Junior 2 All levels
Average shifts ± SD 24.0 ± 1.414 21.111 ± 5.28 20.6 ± 3.684 20.579 ± 4.546 20.357 ± 3.734 21.25 ± 8.058 20.972 ± 4.806
Average working days ± SD 22.667 ± 2.867 19.889 ± 5.238 19.533 ± 3.685 19.421 ± 4.476 19.214 ± 3.707 20.375 ± 7.729 19.845 ± 4.764
Average morning shifts ± SD 22.667 ± 2.867 12.444 ± 4.4 6.533 ± 2.446 6.579 ± 2.908 7.857 ± 3.248 8.0 ± 3.428 9.085 ± 5.53
Average afternoon shifts ± SD 1.333 ± 2.981 8.667 ± 0.943 6.4 ± 2.154 7.211 ± 2.462 6.0 ± 2.236 7.0 ± 2.784 6.465 ± 2.896
Average night shifts ± SD 0.0 ± 0.0 0.0 ± 0.0 7.667 ± 2.44 6.789 ± 2.546 6.5 ± 1.88 6.25 ± 2.681 5.423 ± 3.547
Average double-shifts days ± SD 1.333 ± 2.981 1.222 ± 0.629 1.067 ± 0.249 1.158 ± 0.67 1.143 ± 0.515 0.875 ± 0.331 1.127 ± 1.006
Average weekends o� ± SD 2.167 ± 1.462 2.0 ± 0.0 2.2 ± 0.748 2.211 ± 0.408 2.0 ± 0.378 2.375 ± 0.992 2.155 ± 0.705
Average o�-bank quota transactions ± SD 2.333 ± 1.106 1.556 ± 1.771 0.8 ± 1.973 1.789 ± 1.196 -0.071 ± 2.219 -0.75 ± 8.058 0.944 ± 3.306
Average days o� after night shifts ± SD 0.0 ± 0.0 0.0 ± 0.0 4.867 ± 1.784 3.526 ± 0.939 3.5 ± 1.296 3.75 ± 1.714 3.085 ± 2.095

Figure 4.3: Heat map representing the significant changes (in percentage) of the
MILP-optimized schedule in relation to the manual schedule of May-June period.

Table 4.4: The values of decision variables computed from the manual schedule,
MILP optimization, and GA optimization in May-June schedule.

Manual MILP GA
Maximum number of working shifts 28 25 29
Maximum number of double-shifts days 4 1 8
Minimum number of weekend o�s 1 2 1
Maximum disapprovals for o� requests 2 0 10
Maximum disapprovals for vacation requests 0 0 4
Maximum disapprovals for shift requests 4 0 13
Maximum disapprovals for not-to-be-assigned shift requests 5 1 16
Fitness score or zGA -13897.734 4.547 0.992
Scheduling time (minutes) 240 - 360 24 76
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Figure 4.4: Policy violations of manual schedule in May-June period.

Figure 4.5: Request approvals percentage among all types of schedule in May-June
period.

4.3.2.2 July-August schedules

The statistical characteristics of the July-August schedule prepared by the manual method
and MILP were listed in Table 4.5 and 4.6, respectively. The test results for statistical
significance were presented in Section A.4. Fig. 4.6 exhibited the significant changes of
each MILP’s features in collation to the manual approach. Forty-eight traits were tested
to be in-significantly di�erent in both solutions. Nevertheless, there were 5 MILP’s fea-
tures with deteriorated results. The MILP’s average working days were 14%, 7.7%, and
9.1% greater in Senior 3, Junior 2, and all levels. The average night shifts and the average
days o� after night shifts of Senior 3 were 73% and 79% higher in MILP. Apart from these
adverse changes, MILP owned ten features with significantly optimized updates. In MILP,
the average total shifts, the average night shifts, the average o�-bank quota transactions,
and the average days o� after night shifts were declined by 4.4%, 25%, 36%, and 27%,
respectively in Junior 2. The MILP’s average double-shifts days in each level (starting
from Senior 3 to Junior 2) and all levels were attenuated by 55-74%. Also, the average
weekends o� in Junior 2 was raised by 100% in MILP.

Table 4.7 described the model’s performance between the manual scheduling and MILP.
In MILP, 7 out of 9 metrics held more optimized results than the manual method. Similar
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to the May-June period, the fitness score was negative in the manual case. Additional
diagnostic indicated that it violated 78 constraints. Fig. 4.7 illustrated that 85% of the
infraction were caused by the top-4 violations of consecutive shifts policy (41%), sta�ng
policy (25%), afternoon shift policy (10%), and weekly working shifts and days policy(9%).
By neglecting the penalty values, its score would be 2.253, which was still two times slower
than MILP’s score. Also, the computation duration of MILP was around 8.5 times faster
than the manual scheduling. Nevertheless, the manual scheduling overcame MILP only in
the zero disapproval of o� requests. Besides, both methods equally gave zero rejection of
vacations.

As shown in Fig. 4.8, MILP delivered more excellent approval rates than the manual one,
with 92.771% in shift requests and 100% in not-to-be-assigned shifts requests. Both meth-
ods granted 100% approvals for vacation. Nonetheless, the manual scheduling superiorly
gave 100% satisfaction to o� requests, while MILP provided 87.224%.

In the total of 76 evaluations, all methods provided 65.79% of unchanged results. Although
9.21% of MILP’s metrics o�ered the deteriorated outcomes, MILP contributed 25% of more
optimized consequences than the manual scheduling.

Table 4.5: Statistical features of the manual schedule of July-August period.

Senior 1 Senior 2 Senior 3 Middle Junior 1 Junior 2 All levels
Average shifts ± SD 19.833 ± 3.484 22.444 ± 2.006 20.867 ± 3.423 20.684 ± 6.358 21.154 ± 6.926 26.143 ± 0.35 21.522 ± 5.21
Average working days ± SD 18.333 ± 3.3 21.111 ± 1.663 18.333 ± 3.155 17.526 ± 5.716 17.692 ± 6.043 22.286 ± 0.452 18.754 ± 4.695
Average morning shifts ± SD 18.167 ± 3.484 14.667 ± 4.397 8.467 ± 2.418 6.684 ± 4.702 6.308 ± 2.462 9.286 ± 1.03 9.304 ± 5.148
Average afternoon shifts ± SD 1.667 ± 3.727 7.444 ± 4.349 7.667 ± 1.491 6.632 ± 2.738 6.846 ± 2.537 7.143 ± 0.99 6.623 ± 3.167
Average night shifts ± SD 0.0 ± 0.0 0.333 ± 0.943 4.733 ± 1.879 7.368 ± 2.96 8.0 ± 2.66 9.714 ± 0.452 5.594 ± 3.85
Average double-shifts days ± SD 1.5 ± 3.354 1.333 ± 0.816 2.533 ± 1.147 3.158 ± 1.348 3.462 ± 1.216 3.857 ± 0.35 2.768 ± 1.678
Average weekends o� ± SD 2.667 ± 1.795 1.556 ± 0.685 2.333 ± 0.869 2.0 ± 1.124 1.615 ± 1.077 1.0 ± 0.0 1.899 ± 1.131
Average o�-bank quota transactions ± SD -1.5 ± 2.814 0.0 ± 1.944 -0.4 ± 2.215 1.737 ± 2.022 1.154 ± 7.102 3.143 ± 0.35 0.797 ± 3.817
Average days o� after night shifts ± SD 0.0 ± 0.0 0.0 ± 0.0 2.867 ± 1.204 4.0 ± 1.556 4.462 ± 1.599 5.714 ± 0.452 3.145 ± 2.202

Table 4.6: Statistical features of the MILP-optimized schedule of July-August
period.

Senior 1 Senior 2 Senior 3 Middle Junior 1 Junior 2 All levels
Average shifts ± SD 21.167 ± 2.911 23.444 ± 1.892 22.067 ± 2.954 20.211 ± 6.031 19.846 ± 6.96 25.0 ± 0.0 21.536 ± 5.003
Average working days ± SD 19.667 ± 3.35 22.444 ± 1.892 20.933 ± 3.172 19.263 ± 6.12 18.769 ± 6.784 24.0 ± 0.0 20.464 ± 5.044
Average morning shifts ± SD 19.667 ± 3.35 14.556 ± 2.362 7.067 ± 1.806 7.105 ± 4.876 6.769 ± 3.285 9.143 ± 2.587 9.304 ± 5.314
Average afternoon shifts ± SD 1.5 ± 3.354 8.889 ± 1.197 6.8 ± 2.315 6.632 ± 4.771 6.154 ± 2.656 8.571 ± 1.678 6.623 ± 3.687
Average night shifts ± SD 0.0 ± 0.0 0.0 ± 0.0 8.2 ± 2.535 6.474 ± 3.662 6.923 ± 2.868 7.286 ± 2.119 5.609 ± 4.026
Average double-shifts days ± SD 1.5 ± 3.354 1.0 ± 0.0 1.133 ± 0.34 0.947 ± 0.394 1.077 ± 0.615 1.0 ± 0.0 1.072 ± 1.068
Average weekends o� ± SD 2.0 ± 1.155 2.0 ± 0.0 2.067 ± 0.249 2.105 ± 0.718 2.154 ± 0.863 2.0 ± 0.0 2.072 ± 0.644
Average o�-bank quota transactions ± SD -0.167 ± 2.115 1.0 ± 1.491 0.8 ± 1.939 1.263 ± 1.207 -0.154 ± 6.62 2.0 ± 0.0 0.812 ± 3.258
Average days o� after night shifts ± SD 0.0 ± 0.0 0.0 ± 0.0 5.133 ± 1.628 3.789 ± 2.041 3.538 ± 1.646 4.143 ± 1.457 3.246 ± 2.386
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Figure 4.6: Heat map representing the significant changes (in percentage) of the
MILP-optimized schedule in relation to the manual schedule of July-August period.

Table 4.7: The values of decision variables computed from the manual schedule,
MILP optimization, and GA optimization in July-August schedule.

Manual MILP
Maximum number of working shifts 29 25
Maximum number of double-shifts days 5 1
Minimum number of weekend o�s 0 2
Maximum disapprovals for o� requests 0 1
Maximum disapprovals for vacation requests 0 0
Maximum disapprovals for shift requests 12 1
Maximum disapprovals for not-to-be-assigned shift requests 12 0
Fitness score or zGA -7797.747 4.659
Scheduling time (minutes) 240 - 360 35

Figure 4.7: Policy violations of manual schedule in July-August period.

51



4. Results

Figure 4.8: Request approvals percentage among all types of schedule in July-
August period.
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5.1 Service blueprint mapping
According to the service blueprint, the bottleneck activity of the whole scheduling sys-
tem is found to be on-duty scheduling, where nurses are waiting for the publication of
the working schedule. With only one activity, at least three management people (i.e.,
on-duty-roster scheduler, ED head nurse, and admin) are involved in both onstage and
backstage actions. Moreover, the process can take at least three days to complete. In
other words, it is the process that consumes the vastest resource of the management party
in terms of time and the number of participating sta�.

Because the scheduler must consider the working policy and more than 1000 requests from
approximately 70 nurses (according to the scheduling inputs from Section 3.4), the com-
plexity in scheduling is the leading cause of time consumption.

Additionally, the assistive tool (i.e., mathematics functions in Google Sheets ) for schedul-
ing is not e�ective enough to ease the complexity of the process. Even though it can facil-
itate sta�ng fulfilment in each shift, the scheduler still executes most shift arrangements.
Moreover, the tool is usually incapable of notifying the violation of working constraints,
thus raising the chance of having a schedule with policy infringement. This finding high-
lights the need for a more e�ective scheduling tool.

5.2 In-depth insights extraction
For undertaking user’s requirements, pains, and preferences and, maintaining current sat-
isfactions, most of the issues are incorporated into the models, either in parameters, con-
straints or the objective function. The optimization objectives subsidize work stress while
promoting request approvals and fairness among all nurses. Additionally, from the inspec-
tion of scheduling policy, one prominent policy plays a vital role in enhancing the shift
balance. That policy is the shifts’ limitation rule. With this policy incorporated in the
model’s constraints, the shift balance features can be easily acquired without significantly
expanding the model’s size.

In terms of the scheduling elements, the model is designed to intake three request types
for the absent days (i.e., a regular o�, a VIP o�, and a vacation), rather than merging
into one single type. The main reason is that each type has a di�erent priority. For
example, the VIP o� request is a must-approve type; the vacation is the class preferred
to be approved more than the regular one due to its expirable usage. Likewise, di�erent
priorities reasoning applies for VIP and a regular class of other requests, i.e., working shift
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and not-to-be-assigned shift requests. Therefore, it is an unavoidable trade-o� between
satisfying user requirements and limiting the size of the model.

Nevertheless, the complete solution for resolving all user’s requirements needs the coop-
eration between technology and the hospital, especially in the sta�ng and the o�-bank
quota. According to the definition of the o�-bank quota, it is shown to be an alternative
solution that the hospital applies to compensate for extra working shifts. There are two
possible implications regarding the increment of the o�-bank quota. One is that the sched-
uler does not limit the number of unavailable sta� in each shift. As a result, nurses may
simultaneously ask for many days o� in that schedule, causing less available sta� to be
scheduled. So, some remaining nurses may have to work extra to cover for the insu�cient
sta�. The second implication is that ED currently has insu�cient sta� that do not align
with the sta�ng criteria. Therefore, when the schedule is created following the sta�ng
requirements, some nurses usually have extra shifts. As a result, the o�-bank quota prob-
lem correlates to unmatched sta�ng. These issues can be e�ectively resolved through the
hospital’s management, such as the procurement of extra sta� and the additional policy
determining quota for sta� requests in each shift. The sta� procurement may include hir-
ing part-time or additional full-time sta� and requesting more supportive personnel from
other departments.

The future development involves the integration of the optimization model into sta�
scheduling software. The software should allow nurses to submit and edit their requests
and allow the scheduler to prioritize the optimization goals. Furthermore, the software
should include a shift exchange system that syncs with the optimized schedule, so the
burden of manually updating the schedule will be dissipated. The additional feature like
demand forecasting is also feasible since the hospital has recorded patient numbers in each
shift. The demand forecasting will define the optimal sta�ng requirement to align with
the anticipated patient, thus promoting demand-supply matching. Moreover, the develop-
ment should expand to other types of the working plan, such as OT schedule and tasking
table.

Moreover, even though the developed prototype is tailored to fit the ED of Siriraj Hospi-
tal, the basic model is obtained by disabling some constraints or specific context from the
models. Therefore, another beneficial output in this study is the fundamental components
of the healthcare sta� scheduling model that can be applied to other hospitals.

5.3 GA’s parameter tuning
In Test 1, the case with entirely binary random genes gave a negative fitness value, thus fail-
ing to converge within the limited generation. The primary cause is the highly constrained
problem in the scheduling task. With many restrictions incorporated in the model, the
stochastic optimization usually fails to align due to the randomness of its search direction.
Additionally, this model employed binary encoding with the one-bit-per variable scheme.
So, the slight variation of a gene can lead to a significant change in the decoded vari-
able.Then, it is common for GA to introduce random changes to the chromosomes, and
more changes imply higher chances of violating the constraints. However, it does not mean
that the binary random population will never overcome other population types. Once the
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binary random population converges to the feasible solution and starts optimizing, a more
optimal solution is probable. Because of its origin with colossal stochastic, it is less prone
to stuck in some local optimum.

The remaining sub-tests on using other mixing ratios show insignificant results. Regardless
of the small or large portion of the MILP’s solution, the initial population always contains
two groups of chromosomes: the superior one (i.e., the feasible solution from MILP) and
the poor one (i.e., the binary random individuals). The algorithm may biasedly favour
the superior group since the early generations, causing the model to experience premature
convergence.Nonetheless, the initial population mixing both types yields the best outcome
under the termination criteria of limited generations.

In Test 2 and 3, the crossover probability and the momentum adjustment do not correlate
to the fitness values. In other words, any change introduced from the multi-point crossover
(either small or large change) usually causes the penalty in a highly constrained problem.
Especially when the multi-point crossover involves random changes of multiple genes, the
nature of binary encoding with the one-bit-per-variable scheme expeditely highlight the
chance of violations. Since the algorithm always has the best chromosomes with positive
fitness from its mixing initial population and elitism, those individuals with a penalty
added from the crossover will be eased out by the algorithm. Therefore, the crossover in
this context may not be the source of o�spring enhancement but rather constraint viola-
tions.

In Test 4, the result exhibits that the momentum adjustment on mutation constant re-
duces the population’s fitness. The possible rationality is that the mutation is the primary
drive toward optimization in this context. Unlike the crossover that introduces a massive
change to the chromosome, the mutation only occurs to few genes. Consequently, if the
mutation happens on the superior chromosome (i.e., the non-optimized feasible solution
from MILP), there is a chance that a small change may not cause a penalty but lead to
the optimization of some aspects. In other words, the superior chromosome will receive
less probability of optimization if the mutation is decreased.

According to the analysis of all tuning tests, the termination criterion of the limited
number of generations may not be practical. In the highly constrained problem, it is not
easy for the GA to converge a binary random population into the optimal one. Then, the
remaining solution is to rely on the non-optimized feasible solution from MILP, which can
cause premature convergence. Therefore, future work should concentrate on the fitness
threshold as the termination criterion and focus on binary random population parameter
tunings. Alternatively, it is also interesting to apply a set of MILP’s non-optimized feasible
solutions into the initial population of GA, which may introduce more variety to the
batch, thus reducing premature convergence. Moreover, this study included only some
parameters in the tuning process. So, there may be a chance that the tuning of the
remaining parameters, e.g., the crossover points and the tournament size, can enhance the
algorithm performance.
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5.4 The collation of MILP-optimized and GA-optimized
schedule

From the collation of MILP-optimized and GA-optimized schedules, 59.21% of the eval-
uation metrics have unchanged outcomes. These homogenous results are probably con-
tributed from the GA’s premature convergence, as discussed in Section 5.3. This premature
convergence makes the characteristic of GA’s solution similar to the MILP’s non-optimized
feasible solution. Furthermore, some evaluation metrics can be satisfied via the hard con-
straints, such as the number of afternoon and night shifts and the number of days o� after
night shifts. Then, those constraint-based metrics are homogenously satisfied by both
models, as both GA and MILP provided penalty-free schedules.

Nonetheless, MILP has 3.95% of the metric with deteriorated outcomes. These deterio-
rations include the number of working days and the o�-bank quota transaction in some
nurse’s levels. The number of working days in MILP is higher than in GA because MILP
reduces 54-84% of the double-shifts days. As a result, MILP’s schedule contains more
working days but with fewer double-shifts days. For the o�-bank quota transaction, the
increment leap of the o�-bank quota in MILP may be constituted from the request satis-
faction. MILP proves its e�cacy in satisfying all request types at almost 100%. Therefore,
nurses may simultaneously ask for many days o� in that schedule, causing less available
sta� to be scheduled. Then, some remaining nurses may have to work extra to cover the
insu�cient sta�, thus earning an extra o�-bank quota.

There are 36.84% of metrics that MILP can superiorly optimize. The vast di�erence in
optimization capability is caused by the principle of solution search in MILP and GA.
In MILP, the CBC solver with the branch-and-bound foundation applies the search tree
to explore the search space with deterministic and logical direction toward the optimum.
However, the core principle of GA is the randomness in its search direction. Hence, the
basic GA cannot perceive which features on the chromosome are favoured; it only knows
whether that chromosome is fit or weak as a whole. Particularly in the highly constrained
problem, the random search direction regularly brings constraint violations to the popu-
lation.

Additionally, the GA solution in this study is anticipated to have premature convergence
to the non-optimization feasible solution. The stochastic evolution is not expected to raise
much fitness, especially in the problem with many constraints. The small increment of 7%
in the last generation’s fitness value from the initial population’s fitness value supports
this assumption. To be comparable with MILP, GA has plenty of room to be improved.
The future development of GA should start with parameter tuning, as explained in Section
5.3.

5.5 The collation of manual and MILP-optimized
schedule

Comparing the manual and MILP-optimized schedules in May-June and July-August, all
approaches yield more than half of the evaluation metrics with unchanged outcomes. The
results from both periods imply that MILP has comparable performance with human re-
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sources in optimizing most of the schedule features.

Still, MILP provides 6.58% and 9.21% of evaluation metrics with deteriorated outcomes
in the May-June and July-August, respectively. These inferior features of MILP in com-
parison with the manual one are discussed as follows. The MILP’s schedules from both
periods raise the number of working days. However, the scenarios happen under insignifi-
cant changes in the number of the shift while significantly lowering the double-shifts days.
So, the increase in working days is beneficial in MILP, as it reduces work stress.

The MILP’s schedules from both periods also possess the lift of the night shifts and the
days o� after the night shifts in Senior 3. One reason accounted for this result is the
eligibility of Senior 3 to work in any position in the night shift. In order to fulfil the
sta�ng requirement of the night shift, Senior 3 nurses are usually the primary candidates
for the MILP algorithm to utilize. On the contrary, manual scheduling tends to overuse
Junior nurses to cover the sta�ng requirements. MILP also shows that night shifts in
Junior nurses significantly decrease in both periods, thus confirming the overuse of Junior
in manual scheduling.

Compared to manual scheduling, MILP fails to provide superior approvals in some request
types, i.e., not-to-be-assigned shifts requests in May-June and days o� requests in July-
August. The inference for this issue is the tradeo� between granting all absent requests
and having enough sta� in the shift. In the manual case, the scheduler tends to approve
all requests as much as possible, thus leaving some days or shifts with inadequate sta�.
Therefore, sta� in the manual schedule usually work more than one shift a day to cover
the inadequacies or work in a shift with mismatched sta�ng. In contrast, MILP perceives
sta�ng criteria as hard constraints, so it may have to sacrifice some approvals on absent re-
quests to align with the sta�ng. Since the number of requests for not-to-be-assigned shifts
and days o� takes a significant portion in absent requests, these groups priorly get denials.

In the May-June schedule, MILP gives the surge in o�-bank quota transactions in Senior
1, while the manual schedule supplies almost zero transactions in the o�-bank quota. The
same assumption for the Senior 3’s increasing night shifts can be applied here. Because
Senior 1 nurses typically work in the morning shifts, their highest rank makes them eligible
to serve any role. So, if there are lacking sta� in the morning shift, Senior 1 nurses are the
primary candidates to be selected, thus raising the number of their working shifts. The
insignificantly higher number of Senior 1’s shift in MILP shows that this figure exceeds the
on-duty threshold. At the same time, the manual schedule has its number approximately
at the threshold. Then, some quotas are added to the o� bank in MILP due to its extra
working shifts.

Despite the few deteriorated results, MILP significantly optimizes nearly 24% to 25% of
the evaluation metrics compared to the manual approach in both periods. By implement-
ing mathematical logic for the complicated scheduling task, MILP is more capable than
manpower in optimizing schedules. The optimization exerted by MILP includes the decline
of work stress, sta� satisfaction, and fairness. Especially with the drop of double-shifts
days, the work stress is likewise lifted. Apart from request approvals, MILP can satisfy
each nurse with at least two weekends o� per schedule. Moreover, almost every value of
the decision variables is superior in MILP than in manual scheduling, and their values
imply either maximum or minimum limit. So, MILP can provide more fairness to sta�.
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For example, the manual scheduling in May-June can approve not-to-be-assigned shift
requests approximately 2% greater than MILP. Nevertheless, its maximum disapprovals
are five applications. This characteristic may imply unfairness in request approvals, e.g.,
some nurses who submit only one request may receive a denial, or few unfortunate nurses
may receive at most five denials while most of the sta� earn approvals. In contrast, MILP
assures that no one will receive disapproval greater than 1, regardless of the number of
requests each sta� submitted.

Another critical downside of manual scheduling is human error. It is found that the manual
approach violates the scheduling policy by 139 and 78 times in May-June and July-August,
respectively. Most of the infringements are related to work stress and sta�ng criteria. The
consequence may adversely a�ect work-life quality, sta� satisfaction, care quality, and pa-
tient safety. In addition, the complexity of the task makes manual scheduling consume
enormous time to execute. So, even though manual scheduling can produce few metrics
with better outcomes than the MILP; the price it has to pay is the processing time and
potential policy violations.

In terms of the future development of MILP, there are vast opportunities to be explored
which includes the adaptive objective weights, the shift balance improvement, and the
computation time. Currently, the objective weights of each schedule have to be manually
tuned until desirable results are acquired. There is no one-size-fits-all set of weights that
can be applied to any scheduling problem because the weights majorly depend on the
characteristics of inputs that varied among schedules. Moreover, not all objectives are
required to be active. For instance, the objective for balancing total shifts is suitable only
when nurses have numbers of shifts within the on-duty threshold to prevent them from
working extra. This condition is the reason why the second object is disabled in this study.
Consequently, it is interesting to develop adaptive objective weights that automatically
give suitable weights of each scheduling problem by learning from the input characteristics
and user needs.

The current method tackles the shift balance aspect by applying the shifts’ limitation pol-
icy as hard constraints. Still, this approach only limits each shift type’s upper range, but
not the lower bound. Then, the concept of soft constraints for shift balance is plausible
for optimizing the balance in both upper and lower bound. However, this implementation
means an increase in the model’s size. Thus additional investigation is needed to acquire
the balance without adding much computation time.

For the computation time, MILP took 24 to 35 minutes to optimize schedules from both
periods. These time durations are rather extensive for computer capability. Additionally,
the relative gap tolerance of the objective’s lower and upper bound was set to 0.175. This
setting means that there might be other optimal solutions whose duality gaps are less
than 17.5%. Nevertheless, the CBC solver may not be e�cient enough to provide superior
solutions under short computation time. The possible reason for this ine�ectiveness is
its search strategies technique, leading to extensive tree node cuts. Compared to other
commercial solvers like CPLEX and Gurobi, these solvers adopt more exceptional tech-
niques of search strategies to the branch-and-cut algorithm, thus making them approach
the optimum in a faster time. As a result, the choice of buying a licence of the commercial
solver may be beneficial to the hospital in obtaining a more optimal solution under a short
computation time.
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To enhance the e�cacy of human resource management, this thesis investigates the op-
timization model’s capability in on-duty sta� scheduling at the ED of Siriraj Hospital.
Many publications prove the correlation between scheduling outcomes and sta� satisfac-
tion, which further a�ect the turnover rate, service quality, and care outcome. The litera-
ture reviews also establish the potentials of both deterministic and stochastic optimization
models in healthcare sta� scheduling applications. Thus, the preliminary research in this
thesis suggests the strong feasibility of applying an optimization model to improve health-
care sta� resource management through e�ective scheduling.

Following the first objective, the requirements for sta� scheduling are collected from the
interviews with both the shift managers and governed sta�. The service blueprint is con-
structed to provide the perception of the scheduling process. The elements in the blueprint
illuminate scheduling-related activities starting from requesting a schedule until working
in a shift. The process analysis implies that on-duty scheduling is the bottleneck activity
that consumes most hospital resources, including people and time. The leading causes
of this bottleneck are the complexity of scheduling and the ine�ectiveness of the assistive
tool. Following the development of the service blueprint, the in-depth insights extraction
is performed to define the direction of model development. Those insights are translated
into the model parameters, constraints, and objective functions. Nevertheless, the op-
timization model alone cannot satisfy some requirements simultaneously. Cooperation
between the optimization model and the hospital’s management is essential.

In the second objective, two models, each from di�erent optimization types, are devel-
oped, i.e., MILP from deterministic optimization and GA from stochastic optimization.
The objective function applied in both optimization methods is the summation of multi-
ple objectives through weighting and normalization. The optimization goals include three
principal aspects: reducing works stress, promoting request approvals, and providing fair-
ness and balance.

From GA’s parameter tuning results, the initial population with any proportion of MILP’s
non-optimized solution can converge to a feasible solution within the limited generations,
yet exist with solid evidence of premature convergence. In a highly constrained problem,
the stochastic of the multi-point crossover is always too exessive, regardless of the crossover
probability and the momentum implementation. However, the mutation is found to be
the source of optimization in this context.

The performance comparison between MILP and GA proves the superior capability of
MILP in scheduling optimization. The collation shows that both methods yield 59.21% of
the evaluation metrics with unchanged outcomes, but MILP can supply 36.84% of opti-
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mized outcomes. Only 3.95% of MILP metrics fail to defeat GA because of the trade-o�
between succeeding in the major goals and missing the trivial features. These trade-o�
pairs include reducing double-shift days while gaining working days and approving many
absent requests while raising day-o� bank transactions. The inferiority of GA is con-
tributed by its random search for the solution that usually introduces penalties to its
population, especially in the highly constrained problem. In contrast, the deterministic
search in MILP applies branch-and-bound logic to converge its solution to the optimum.

In comparing manual and MILP-optimized schedules, both approaches provide more than
half of the evaluation metrics with unchanged outcomes, thus proving the comparable per-
formance in optimizing most of the schedule’s features. Moreover, MILP overcomes man-
ual scheduling by significantly optimizing 24% to 25% of the metrics. The improvements
urged by MILP include reducing work stress, sta� satisfaction, fairness, zero violation of
policy, and cutting scheduling time. Only 6.58% to 9.21% of MILP’s metrics are inferior
to the manual approach. Similar to the case of GA-MILP comparison, the plausible reason
for this inferiority is the trade-o� between thriving the significant purposes and dropping
the minor traits. The exchange pairs include decreasing double-shift days while increasing
working days, as well as satisfying sta�ng requirements while gaining extra shifts or deny-
ing absent requests. Additionally, the manual approach violates the scheduling restrictions
more than 78 times, mainly in the policy related to work stress and sta�ng criteria.

According to the findings in this thesis, the MILP optimization model shows more supe-
rior performance than the GA model and manual approach in optimizing the scheduling
of healthcare sta� at the ED of Siriraj Hospital. The MILP-optimization outcomes in
diminishing work stress, enhancing sta� satisfaction, providing fairness, aligning with pol-
icy, and shortening the processing time can lead to excellence in service quality and care
outcome while lowering the turnover rate. As a result, the optimization of healthcare sta�
scheduling with the MILP model exerts the capability of human resource management to
its greater extent.
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A
Appendix

A.1 Acquisition of model’s secondary parameters
If

qSmax
s=1 SHIFT_REQUESTn,d,s + SHIFT_REQUEST_V IPn,d,s > 0,

WORKDAY _REQUESTn,d = 1, ’n œ N, ’d œ D (A.1)

If
qSmax

s=1 SHIFT_REQUESTn,d,s + SHIFT_REQUEST_V IPn,d,s = 0,

WORKDAY _REQUESTn,d = 0, ’n œ N, ’d œ D (A.2)

If
q7w

d=7w≠1 WORKDAY _REQUESTn,d > 0,

WEEKEND_WORK_REQUESTn,w = 1, ’n œ N, ’w œ W (A.3)

TOTAL_WEEKEND_WORK_REQUESTn =
Wmaxÿ

w=1
WEEKEND_WORK_REQUESTn,w,

’n œ N
(A.4)

If
qSmax

s=1 (SHIFT_REQUESTn,d,s + SHIFT_REQUEST_V IPn,d,s) > 1,

DOUBLE_SHIFTS_DAY _REQUESTn,d = 1, ’n œ N, ’d œ D (A.5)

If
qSmax

s=1 (SHIFT_REQUESTn,d,s + SHIFT_REQUEST_V IPn,d,s) Æ 1,

DOUBLE_SHIFTS_DAY _REQUESTn,d = 0, ’n œ N, ’d œ D (A.6)

TOTAL_DOUBLE_SHIFTS_DAY _REQUESTn =
Dmaxÿ

d=1
DOUBLE_SHIFTS_DAY _REQUESTn,d, ’n œ N

(A.7)

TOTAL_OUT_REQUEST_V IPn =
Dmaxÿ

d=1
OUT_REQUEST_V IPn,d, ’n œ N (A.8)

WEEK_OUT_REQUEST_V IPn,w =
7wÿ

d=7(w≠1)+1
OUT_REQUEST_V IPn,d, ’n œ N, ’w œ W

(A.9)

TOTAL_OFF_REQUEST_V IPn =
Dmaxÿ

d=1
OFF_REQUEST_V IPn,d, ’n œ N (A.10)
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ALL_OFF_REQUESTn,d =WEEK_OFF_REQUESTn,d+
BANK_OFF_REQUESTn,d, ’n œ N, ’d œ D

(A.11)

TOTAL_ALL_OFF_REQUESTn =
Dmaxÿ

d=1
ALL_OFF_REQUESTn,d, ’n œ N (A.12)

TOTAL_ALL_OFF_REQUESTmax = max
nœN

(TOTAL_ALL_OFF_REQUESTn), ’n œ N

(A.13)

TOTAL_BANK_OFF_REQUESTn =
Dmaxÿ

d=1
BANK_OFF_REQUESTn,d, ’n œ N (A.14)

If
qDmax

d=1 WEEK_OFF_REQUESTn,d > (Dmax ≠ ONDUTY _DAY ) and
TOTAL_ALL_OFF_REQUESTn ≠ (Dmax ≠ ONDUTY _DAY ) Ø
TOTAL_DOUBLE_SHIFTS_DAY _REQUESTn,

TOTAL_ACTUAL_BANK_OFF_USESn =
TOTAL_ALL_OFF_REQUESTn≠

(Dmax ≠ ONDUTY _DAY )≠
TOTAL_DOUBLE_SHIFTS_DAY _REQUESTn,

’n œ N

(A.15)

If
qDmax

d=1 WEEK_OFF_REQUESTn,d Æ (Dmax ≠ ONDUTY _DAY ) and
TOTAL_BANK_OFF_REQUESTn Ø
TOTAL_DOUBLE_SHIFTS_DAY _REQUESTn,

TOTAL_ACTUAL_BANK_OFF_USESn = TOTAL_BANK_OFF_REQUESTn≠
TOTAL_DOUBLE_SHIFTS_DAY _REQUESTn,

’n œ N
(A.16)

If previous conditions of Equation A.15 and A.16 do not hold,

TOTAL_ACTUAL_BANK_OFF_USESn = 0, ’n œ N (A.17)

TOTAL_V AC_REQUESTn =
Dmaxÿ

d=1
V AC_REQUESTn,d, ’n œ N (A.18)

TOTAL_V AC_REQUESTmax = max
nœN

(TOTAL_V AC_REQUESTn) (A.19)

TOTAL_SHIFT_REQUESTn =
Dmaxÿ

d=1

Smaxÿ

s=1
SHIFT_REQUESTn,d,s, ’n œ N (A.20)

TOTAL_SHIFT_REQUESTmax = max
nœN

(TOTAL_SHIFT_REQUESTn) (A.21)

TOTAL_NO_SHIFT_REQUESTn =
Dmaxÿ

d=1

Smaxÿ

s=1
NO_SHIFT_REQUESTn,d,s, ’n œ N

(A.22)
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TOTAL_NO_SHIFT_REQUESTmax = max
nœN

(TOTAL_NO_SHIFT_REQUESTn)
(A.23)

If WEIGHT_OBJo > 0,

ACTIV EOBJo = 1, ’o œ O (A.24)

If WEIGHT_OBJo = 0,

ACTIV E_OBJo = 0, ’o œ O (A.25)

TOTAL_ACTIV E_OBJ =
Omaxÿ

o=1
ACTIV E_OBJo (A.26)

A.2 Sta�ng criteria

Table A.1: Sta�ng criteria for weekday

Morning shift Afternoon shift Night shift
Senior 1 and 2 4 2 0
Senior 3 3 2 3
Middle 3 3 2
Junior 1 0 0 4
Junior 2 10 10 4

Table A.2: Sta�ng criteria for weekend or holiday

Morning shift Afternoon shift Night shift
Senior 1 and 2 4 2 0
Senior 3 3 2 3
Middle 3 3 2
Junior 1 0 0 4
Junior 2 6 10 4
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A.3 Evaluation algorithm

Data: Table 3.5 and 3.6
Result: p, wsmax, wsmin, dsdmax, wkomin, dormax, dvrmax, dsrmax, dnsrmax

Initialization: p = 0, wsmax = 0, wsmin = TOTAL_SHIFTSmax, dsdmax = 0, wkomin =
Wmax, dormax = 0, dvrmax = 0, dsrmax = 0, dnsrmax = 0;

for n in Nmax do

for w in Wmax do

if Nurse n works > WEEK_SHIFTSmax shifts in week w then

Add penalty to p;
end

if Nurse n works > WEEK_WORKDAY Smax days in week w then

Add penalty to p;
end

if Nurse n works night shifts > WEEK_N_SHIFTSmax in week wi
then

Add penalty to p;
end

end

for d in Dmax do

if Nurse n works consecutively > CONSEC_WORKDAY Smax days starting from
day di

then

Add penalty to p;
end

if Nurse n works afternoon shifts consecutively > CONSEC_A_SHIFTSmax days
starting from day di

then

Add penalty to p;
end

if Nurse n is a senior nurse who works night shifts consecutively for
CONSEC_N_SHIFTS_SENIORmax days starting from day d, but does not
have a day o� afterwardsi

then

Add penalty to p;
end

if Nurse n is not a senior nurse who works night shifts consecutively for
CONSEC_N_SHIFTS_NONSENIORmax days starting from day d, but does
not have a day o� afterwards i

then

Add penalty to p;
end

if Nurse n works in afternoon-and-night shifts on day d, or either
afternoon-and-morningi shifts, night-and-morning shifts, or night-and-afternoon
shiftsi on both day d and one day afterward then

Add penalty to p;
end

if Nurse n has a level of Senior 1 and works either in an afternoon shift or a night
shift on day di

then

Add penalty to p;
end

if Nurse n has a level of Senior 2 and works in a night shift on day di
then

Add penalty to p;
end

if Nurse n has a VIP request for a day o� or an out-of-unit position on day d, but
the request is not granted then

Add penalty to p;
end

end

end
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Continue from the previous page
for n in Nmax do

for d in Dmax do

for s in Smax do

if Nurse n has a VIP request for a shift or a not-to-be-assigned shift on day d in
shift s, but the request is not granted then

Add penalty to p;
end

end

end

Count the total on-duty shifts of nurse n, which include working shifts, out-of-unit
position, vacation, and o�-bank quota usage;

if Nurse n has the total on-duty shifts > wsi
max then

Update wsmax

end

if Nurse n has the total on-duty shifts < wsi
min then

Update wsmin

end

Count the total afternoon shifts of nurse n;
if Nurse n has the total afternoon shifts > TOTAL_A_SHIFTSi

max then

Add penalty to p;
end

Count the total night shifts of nurse n;
if Nurse n has the total night shifts > TOTAL_N_SHIFTSi

max then

Add penalty to p;
end

Count the total double-shifts days of nurse n;
if Nurse n has the total double-shifts days > dsdi

max then

Update dsdmax;
end

Count total weekends o� of nurse n;
if Nurse n has weekends o� < TOTAL_WEEKENDS_OFF i

min then

Add penalty to p;
end

if Nurse n has weekends o� < wkomin then

Update wkomin

end

Count the total disapprovals for o� requests of n;
if Nurse n receives the total disapprovals for o� requests > dormax then

Update dormax;
end

Count the total disapprovals for vacation requests of n; if Nurse n receives the total
disapprovals for vacation requests > dvrmax then

Update dvrmax;
end

Count the total disapprovals for shift requests of n; if Nurse n receives the total
disapprovals for shift requests > dsrmax then

Update dsrmax;
end

Count the total disapprovals for not-to-be-assigned shift requests of n; if Nurse n receives
the total disapprovals for not-to-be-assigned shifts requests > dnsrmax then

Update dnsrmax;
end

end
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Continue from the previous page
for d in Dmax do

for s in Smax do

for l in lmax do

if The number of nurses level l in shift s is
< WEEKDAY _STAFFING_MINl,d,s on weekday d or
WEEKEND_STAFFING_MINl,d,s on weekend or holiday d then

Add penalty to p;
end

end

end

end

Remarks:
i This constraint will be halted, if a nurse willingly requested for a case that violate the constraint.

A.4 Results of statistical tests

Table A.3: F-tests and t-tests of the average shifts between MILP-optimized and
GA-optimized schedules (May-June).

Level F-test t-test
F-test statistic p-value null hypothesis rejection t-test statistic p-value null hypothesis rejection

Senior 1 9.23611 0.01454 Yes 1.89443 0.10643 No
Senior 2 1.23118 0.38788 No -0.35864 0.72455 No
Senior 3 1.21480 0.36043 No 0.18198 0.85691 No
Middle 1.02052 0.48305 No 0.69819 0.48954 No
Junior 1 1.44640 0.25756 No -1.76380 0.08952 No
Junior 2 1.10010 0.45154 No -0.11328 0.91142 No
All levels 1.24503 0.18072 No -0.09819 0.92193 No

Table A.4: F-tests and t-tests of the average working days between MILP-
optimized and GA-optimized schedule (May-June).

Level F-test t-test
F-test statistic p-value null hypothesis rejection t-test statistic p-value null hypothesis rejection

Senior 1 2.16058 0.20889 No 2.47155 0.03302 Yes
Senior 2 1.37160 0.33277 No 0.36505 0.71985 No
Senior 3 1.08369 0.44130 No 1.12267 0.27111 No
Middle 1.71700 0.13045 No 2.02263 0.05059 No
Junior 1 1.15233 0.40104 No 0.20335 0.84044 No
Junior 2 1.45916 0.31525 No 1.08772 0.29509 No
All levels 1.35940 0.10073 No 2.66621 0.00857 Yes
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Table A.5: F-tests and t-tests of the average morning shifts between MILP-
optimized and GA-optimized schedule (May-June).

Level F-test t-test
F-test statistic p-value null hypothesis rejection t-test statistic p-value null hypothesis rejection

Senior 1 2.16058 0.20889 No 2.47155 0.03302 Yes
Senior 2 1.25638 0.37732 No -0.61817 0.54516 No
Senior 3 1.18695 0.37647 No 1.05188 0.30185 No
Middle 2.03467 0.07063 No 0.75460 0.45540 No
Junior 1 2.20940 0.08310 No -1.31568 0.19976 No
Junior 2 1.77527 0.23332 No -0.98455 0.34156 No
All levels 1.21563 0.20803 No -0.01578 0.98743 No

Table A.6: F-tests and t-tests of the average afternoon shifts between MILP-
optimized and GA-optimized schedule (May-June).

Level F-test t-test
F-test statistic p-value null hypothesis rejection t-test statistic p-value null hypothesis rejection

Senior 1 1.00000 0.50000 No 0.00000 1.00000 No
Senior 2 1.69444 0.23610 No 0.81228 0.42855 No
Senior 3 1.08812 0.43834 No -0.56096 0.57929 No
Middle 1.44518 0.22117 No 0.62757 0.53425 No
Junior 1 1.92534 0.12536 No -1.58845 0.12427 No
Junior 2 1.03226 0.48384 No 0.66667 0.51582 No
All levels 1.14167 0.29045 No -0.08911 0.92912 No

Table A.7: F-tests and t-tests of the average night shifts between MILP-optimized
and GA-optimized schedule (May-June).

Level F-test t-test
F-test statistic p-value null hypothesis rejection t-test statistic p-value null hypothesis rejection

Senior 1 N/A N/A N/A N/A N/A N/A
Senior 2 N/A N/A N/A N/A N/A N/A
Senior 3 1.06688 0.45265 No -0.22031 0.82723 No
Middle 1.69811 0.13534 No -0.06958 0.94491 No
Junior 1 1.79509 0.15208 No -0.24577 0.80779 No
Junior 2 1.21522 0.40181 No 0.41441 0.68485 No
All levels 1.01596 0.47370 No -0.04680 0.96274 No

Table A.8: F-tests and t-tests of the average double-shift days between MILP-
optimized and GA-optimized schedule (May-June).

Level F-test t-test
F-test statistic p-value null hypothesis rejection t-test statistic p-value null hypothesis rejection

Senior 1 1.00000 0.50000 No 0.00000 1.00000 No
Senior 2 7.56250 0.00486 Yes -2.90482 0.01558 Yes
Senior 3 12.14286 0.00002 Yes -5.24093 0.00008 Yes
Middle 6.70370 0.00009 Yes -3.72298 0.00110 Yes
Junior 1 11.00000 0.00006 Yes -6.35085 0.00001 Yes
Junior 2 59.42857 0.00001 Yes -4.75971 0.00188 Yes
All levels 4.67346 0.00000 Yes -7.27807 0.00000 Yes
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Table A.9: F-tests and t-tests of the average weekends o� between MILP-optimized
and GA-optimized schedule (May-June).

Level F-test t-test
F-test statistic p-value null hypothesis rejection t-test statistic p-value null hypothesis rejection

Senior 1 2.40625 0.17865 No 1.07088 0.30939 No
Senior 2 inf 0.00000 Yes 4.00000 0.00395 Yes
Senior 3 1.90909 0.11932 No 4.05046 0.00037 Yes
Middle 2.03333 0.07081 No 5.03177 0.00001 Yes
Junior 1 2.71429 0.04165 Yes 2.82843 0.00994 Yes
Junior 2 1.88889 0.21027 No 0.78446 0.44584 No
All levels 1.16042 0.26767 No 6.14022 0.00000 Yes

Table A.10: F-tests and t-tests of the average o�-bank quota transactions between
MILP-optimized and GA-optimized schedule (May-June).

Level F-test t-test
F-test statistic p-value null hypothesis rejection t-test statistic p-value null hypothesis rejection

Senior 1 14.63636 0.00524 Yes 2.04598 0.08937 No
Senior 2 1.63780 0.25047 No -0.98345 0.34003 No
Senior 3 1.05036 0.46403 No 0.54290 0.59150 No
Middle 5.58527 0.00032 Yes 2.11068 0.04530 Yes
Junior 1 2.31295 0.07181 No -2.35940 0.02609 Yes
Junior 2 1.10010 0.45154 No -0.11328 0.91142 No
All levels 1.56826 0.03089 Yes 0.20020 0.84163 No

Table A.11: F-tests and t-tests of the average days o� after night shifts between
MILP-optimized and GA-optimized schedule (May-June).

Level F-test t-test
F-test statistic p-value null hypothesis rejection t-test statistic p-value null hypothesis rejection

Senior 1 N/A N/A N/A N/A N/A N/A
Senior 2 N/A N/A N/A N/A N/A N/A
Senior 3 1.29888 0.31565 0.00000 -1.56783 0.12815 0.00000
Middle 2.77987 0.01806 1.00000 -3.79355 0.00069 1.00000
Junior 1 2.05775 0.10330 0.00000 -2.04619 0.05098 0.00000
Junior 2 1.86702 0.21449 0.00000 -0.56980 0.57784 0.00000
All levels 1.71912 0.01239 1.00000 -2.42237 0.01679 1.00000

Table A.12: F-tests and t-tests of the average shifts between manual and MILP-
optimized schedule (May-June).

Level F-test t-test
F-test statistic p-value null hypothesis rejection t-test statistic p-value null hypothesis rejection

Senior 1 2.25000 0.19713 No 2.19265 0.05310 No
Senior 2 1.06023 0.46805 No 0.41469 0.68387 No
Senior 3 1.10094 0.42988 No 0.24506 0.80820 No
Middle 1.11510 0.40988 No -0.07133 0.94353 No
Junior 1 1.03183 0.47790 No -0.72577 0.47446 No
Junior 2 1.00650 0.49670 No 0.02897 0.97730 No
All levels 1.04903 0.42093 No 0.15789 0.87477 No
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Table A.13: F-tests and t-tests of the average working days between manual and
MILP-optimized schedule (May-June).

Level F-test t-test
F-test statistic p-value null hypothesis rejection t-test statistic p-value null hypothesis rejection

Senior 1 1.15175 0.44029 No 1.04596 0.32020 No
Senior 2 1.14183 0.42789 No 0.56954 0.57690 No
Senior 3 1.26595 0.33255 No 1.21418 0.23482 No
Middle 1.31252 0.28499 No 1.01480 0.31697 No
Junior 1 1.07035 0.45215 No 0.74935 0.46037 No
Junior 2 1.21635 0.40135 No 0.57060 0.57732 No
All levels 1.21557 0.20809 No 1.97881 0.04980 Yes

Table A.14: F-tests and t-tests of the average morning shifts between manual and
MILP-optimized schedule (May-June).

Level F-test t-test
F-test statistic p-value null hypothesis rejection t-test statistic p-value null hypothesis rejection

Senior 1 1.40878 0.35801 No 1.08864 0.30185 No
Senior 2 1.20281 0.40015 No -0.14438 0.88700 No
Senior 3 1.57611 0.20253 No 0.71795 0.47874 No
Middle 1.89095 0.09309 No 0.74532 0.46091 No
Junior 1 1.28240 0.33021 No -0.52481 0.60416 No
Junior 2 1.24335 0.39058 No -0.96623 0.35032 No
All levels 1.09893 0.34710 No 0.09251 0.92643 No

Table A.15: F-tests and t-tests of the average afternoon shifts between manual
and MILP-optimized schedule (May-June).

Level F-test t-test
F-test statistic p-value null hypothesis rejection t-test statistic p-value null hypothesis rejection

Senior 1 1.89063 0.25070 No -0.22056 0.82987 No
Senior 2 17.69444 0.00025 Yes 1.31060 0.22280 No
Senior 3 1.00192 0.49860 No -3.35564 0.00229 Yes
Middle 1.19172 0.35692 No 0.80258 0.42748 No
Junior 1 1.68675 0.17892 No 1.91641 0.06637 No
Junior 2 1.06250 0.46916 No -0.24816 0.80761 No
All levels 1.36541 0.09754 No 0.07936 0.93686 No

Table A.16: F-tests and t-tests of the average night shifts between manual and
MILP-optimized schedule (May-June).

Level F-test t-test
F-test statistic p-value null hypothesis rejection t-test statistic p-value null hypothesis rejection

Senior 1 N/A N/A N/A N/A N/A N/A
Senior 2 inf 0.00000 Yes -1.00000 0.34659 No
Senior 3 1.84573 0.13182 No 3.04579 0.00501 Yes
Middle 2.53796 0.02772 Yes -1.93138 0.06284 No
Junior 1 1.96392 0.11845 No -2.06845 0.04868 Yes
Junior 2 3.04636 0.08242 No 2.03368 0.06139 No
All levels 1.01791 0.47051 No 0.00000 1.00000 No
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Table A.17: F-tests and t-tests of the average double-shifts days between manual
and MILP-optimized schedule (May-June).

Level F-test t-test
F-test statistic p-value null hypothesis rejection t-test statistic p-value null hypothesis rejection

Senior 1 1.26563 0.40116 No -0.08305 0.93545 No
Senior 2 4.00000 0.03334 Yes -0.67082 0.51529 No
Senior 3 29.28571 0.00000 Yes -3.45251 0.00357 Yes
Middle 1.65432 0.14738 No -5.93335 0.00000 Yes
Junior 1 4.53846 0.00518 Yes -6.37377 0.00000 Yes
Junior 2 13.71429 0.00133 Yes -4.43179 0.00218 Yes
All levels 2.47315 0.00010 Yes -6.22232 0.00000 Yes

Table A.18: F-tests and t-tests of the average weekends o� between manual and
MILP-optimized schedule (May-June).

Level F-test t-test
F-test statistic p-value null hypothesis rejection t-test statistic p-value null hypothesis rejection

Senior 1 1.50649 0.33196 No -0.48287 0.63959 No
Senior 2 inf 0.00000 Yes -0.60999 0.55879 No
Senior 3 1.15873 0.39334 No 0.22687 0.82217 No
Middle 3.16667 0.00938 Yes 1.07331 0.29219 No
Junior 1 2.17857 0.08683 No 4.20406 0.00027 Yes
Junior 2 1.77778 0.23278 No 1.40000 0.18328 No
All levels 2.27534 0.00036 Yes 1.66227 0.09903 No

Table A.19: F-tests and t-tests of the average o�-bank quota transactions between
manual and MILP-optimized schedule (May-June).

Level F-test t-test
F-test statistic p-value null hypothesis rejection t-test statistic p-value null hypothesis rejection

Senior 1 2.20000 0.20359 No 2.79508 0.01895 Yes
Senior 2 1.73973 0.22529 No 1.41421 0.17646 No
Senior 3 1.12557 0.41398 No 0.43355 0.66793 No
Middle 1.68605 0.13855 No -0.22792 0.82100 No
Junior 1 1.27646 0.33318 No -1.30368 0.20377 No
Junior 2 1.00650 0.49670 No 0.02897 0.97730 No
All levels 1.02532 0.45850 No 0.22828 0.81976 No

Table A.20: F-tests and t-tests of the average days o� after night shifts between
manual and MILP-optimized schedule (May-June).

Level F-test t-test
F-test statistic p-value null hypothesis rejection t-test statistic p-value null hypothesis rejection

Senior 1 N/A N/A N/A N/A N/A N/A
Senior 2 inf 0.00000 Yes -1.00000 0.34659 No
Senior 3 2.28025 0.06752 No 3.38099 0.00215 Yes
Middle 2.27673 0.04474 Yes -1.97149 0.05758 No
Junior 1 1.50760 0.23468 No -1.88294 0.07094 No
Junior 2 1.95833 0.19754 No 1.56996 0.13874 No
All levels 1.02808 0.45406 No 0.28039 0.77959 No
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Table A.21: F-tests and t-tests of the average shifts between manual and MILP-
optimized schedule (July-August).

Level F-test t-test
F-test statistic p-value null hypothesis rejection t-test statistic p-value null hypothesis rejection

Senior 1 1.43279 0.35137 No 0.65671 0.52619 No
Senior 2 1.12414 0.43630 No 1.02565 0.32032 No
Senior 3 1.34216 0.29465 No 0.99302 0.32921 No
Middle 1.11133 0.41263 No -0.22932 0.81992 No
Junior 1 1.00962 0.49352 No -0.46134 0.64871 No
Junior 2 inf 0.00000 Yes -8.00000 0.00020 Yes
All levels 1.08457 0.36940 No 0.01654 0.98682 No

Table A.22: F-tests and t-tests of the average working days between manual and
MILP-optimized schedule (July-August).

Level F-test t-test
F-test statistic p-value null hypothesis rejection t-test statistic p-value null hypothesis rejection

Senior 1 1.03061 0.48721 No 0.63404 0.54028 No
Senior 2 1.29464 0.36185 No 1.49708 0.15384 No
Senior 3 1.01071 0.49219 No 2.17435 0.03829 Yes
Middle 1.14652 0.38746 No 0.87994 0.38473 No
Junior 1 1.26021 0.34756 No 0.41061 0.68500 No
Junior 2 inf 0.00000 Yes 9.29516 0.00009 Yes
All levels 1.15409 0.27810 No 2.04664 0.04262 Yes

Table A.23: F-tests and t-tests of the average morning shifts between manual and
MILP-optimized schedule (July-August).

Level F-test t-test
F-test statistic p-value null hypothesis rejection t-test statistic p-value null hypothesis rejection

Senior 1 1.08168 0.46672 No 0.69395 0.50351 No
Senior 2 3.46460 0.04901 Yes -0.06296 0.95081 No
Senior 3 1.79292 0.14330 No -1.73543 0.09366 No
Middle 1.07542 0.43955 No 0.26370 0.79351 No
Junior 1 1.78125 0.16532 No 0.38947 0.70036 No
Junior 2 6.30769 0.02065 Yes -0.12566 0.90316 No
All levels 1.06562 0.39701 No 0.00000 1.00000 No

Table A.24: F-tests and t-tests of the average afternoon shifts between manual
and MILP-optimized schedule (July-August).

Level F-test t-test
F-test statistic p-value null hypothesis rejection t-test statistic p-value null hypothesis rejection

Senior 1 1.23457 0.41139 No -0.07433 0.94221 No
Senior 2 13.20690 0.00072 Yes 0.90575 0.38816 No
Senior 3 2.41200 0.05553 No -1.17765 0.24885 No
Middle 3.03622 0.01165 Yes 0.00000 1.00000 No
Junior 1 1.09559 0.43847 No -0.65293 0.52001 No
Junior 2 2.87500 0.11220 No 1.79605 0.09769 No
All levels 1.35539 0.10624 No 0.00000 1.00000 No
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Table A.25: F-tests and t-tests of the average night shifts between manual and
MILP-optimized schedule (July-August).

Level F-test t-test
F-test statistic p-value null hypothesis rejection t-test statistic p-value null hypothesis rejection

Senior 1 N/A N/A N/A N/A N/A N/A
Senior 2 inf 0.00000 Yes -1.00000 0.34659 No
Senior 3 1.82116 0.13703 No 4.11096 0.00031 Yes
Middle 1.53068 0.18745 No -0.80628 0.42538 No
Junior 1 1.16221 0.39941 No -0.95368 0.34975 No
Junior 2 22.00000 0.00077 Yes -2.74575 0.03066 Yes
All levels 1.09368 0.35652 No 0.02145 0.98291 No

Table A.26: F-tests and t-tests of the average double-shifts days between manual
and MILP-optimized schedule (July-August).

Level F-test t-test
F-test statistic p-value null hypothesis rejection t-test statistic p-value null hypothesis rejection

Senior 1 1.00000 0.50000 No 0.00000 1.00000 No
Senior 2 inf 0.00000 Yes -1.15470 0.28154 No
Senior 3 11.38462 0.00002 Yes -4.37880 0.00044 Yes
Middle 11.71429 0.00000 Yes -6.67799 0.00000 Yes
Junior 1 3.90625 0.01281 Yes -6.06021 0.00001 Yes
Junior 2 inf 0.00000 Yes -20.00000 0.00000 Yes
All levels 2.47070 0.00013 Yes -7.03060 0.00000 Yes

Table A.27: F-tests and t-tests of the average weekends o� between manual and
MILP-optimized schedule (July-August).

Level F-test t-test
F-test statistic p-value null hypothesis rejection t-test statistic p-value null hypothesis rejection

Senior 1 2.41667 0.17750 No -0.69843 0.50083 No
Senior 2 inf 0.00000 Yes 1.83533 0.10379 No
Senior 3 12.14286 0.00002 Yes -1.10335 0.28591 No
Middle 2.45161 0.03242 Yes 0.33489 0.74000 No
Junior 1 1.55556 0.22766 No 1.35133 0.18919 No
Junior 2 N/A N/A No inf 0.00000 Yes
All levels 3.08300 0.00000 Yes 1.10167 0.27305 No

Table A.28: F-tests and t-tests of the average o�-bank quota transactions between
manual and MILP-optimized schedule (July-August).

Level F-test t-test
F-test statistic p-value null hypothesis rejection t-test statistic p-value null hypothesis rejection

Senior 1 1.77019 0.27302 No 0.84705 0.41678 No
Senior 2 1.70000 0.23474 No 1.15470 0.26517 No
Senior 3 1.30496 0.31261 No 1.52517 0.13843 No
Middle 2.80608 0.01726 Yes -0.85339 0.40035 No
Junior 1 1.15096 0.40578 No -0.46659 0.64500 No
Junior 2 inf 0.00000 Yes -8.00000 0.00020 Yes
All levels 1.37214 0.09732 No 0.02381 0.98104 No
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Table A.29: F-tests and t-tests of the average days o� after night shifts between
manual and MILP-optimized schedule (July-August).

Level F-test t-test
F-test statistic p-value null hypothesis rejection t-test statistic p-value null hypothesis rejection

Senior 1 N/A N/A N/A N/A N/A N/A
Senior 2 N/A N/A N/A N/A N/A N/A
Senior 3 1.82822 0.13551 No 4.18965 0.00025 Yes
Middle 1.72082 0.12949 No -0.34801 0.72986 No
Junior 1 1.06019 0.46052 No -1.39340 0.17627 No
Junior 2 10.40000 0.00589 Yes -2.52357 0.03896 Yes
All levels 1.17415 0.25490 No 0.25766 0.79706 No
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