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Abstract

The purpose of the project was to create a system for the coordination of two vehi-
cles in an intersection. The system should prevent a collision between the vehicles
as they pass the intersection with the help of a controller. It was decided that 50
intersections without collision would prove the correctness of the algorithms. The
controller should use filtered position data in order to calculate its commands. The
control commands should be optimized in order to increase the e�ciency and com-
fort.

To develop and test the finished product, two Pioneer P-3DX robots together with
five PulsOn 400 ’Ultra-wideband’ sensors were used. Three computers with ’Robot
Operating System’ installed were used where two of them were connected to the
robots. On the third computer, the central-computer, the programs used to control
the robots were ran. The communication of information between the robots and
between the positioning system and the central-computer was done through Wi-Fi.

A robust and flexible system was developed that made the robots travel through a
self-intersecting path and that satisfied the goal of 50 intersections without collision
using optimized control commands.

Keywords: Robots, intersection, autonomous, collision avoidance
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Sammandrag

Syftet med projektet var att skapa ett system för koordinering av två fordon i en ko-
rsning. Systemet skulle förhindra kollision av fordonen med hjälp av en beräknare
medan de passerade korsningen. Det bestämdes att 50 korsningar utan kollision
skulle påvisa att algoritmerna var korrekt. Beräknaren skulle använda filtrerad po-
sitionsdata för att beräkna passande kommandon. Utöver detta skulle styrsignalerna
optimeras för att öka e�ektivitet och komfort.

För att utveckla och testa den färdiga produkten användes två Pioneer P-3DX rob-
otar tillsammans med fem PulsOn 400 ’Ultra-wideband’ sensorer. Tre datorer med
’Robot Operating System’ installerade användes där två av datorerna kopplades
till robotarna. På den tredje datorn, den centrala datorn, kördes programmen som
kontrollerade robotarna. Kommunikationen mellan robotarna och mellan positioner-
ingssystemet och den centrala datorn skedde genom Wi-Fi.

Ett robust och flexibelt system utvecklades som körde robotarna genom en självkor-
sande bana och som uppfyllde målet av 50 korsningar utan kollision med optimerade
styrsignaler.

Nyckelord: Robotar, korsning, autonom, kollisionsundvikning
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1
Introduction

In a world with continuously increasing automation, many tasks that could only
be done by humans can now be accomplished by machines. A clear area of this
advancement is in transportation systems, and most relevantly, the autonomous
vehicle. This can be seen even today with the widespread adoption of active safety
systems and driver aids in vehicles, making not only travel safer but easier and more
e�cient. As these automated systems become more commonplace in vehicles and
have a greater responsibility for aspects of driving, the time may come when these
vehicles take over tra�c coordination from their human occupants. This will make it
possible for vehicles to either partially or entirely drive themselves on the roads of the
future. Before that can happen however, there are a variety of challenges that must
be addressed and solved. One of them is how to handle intersections of vehicles. As
human drivers are removed from the intersection problem, the possibility for more
optimal solutions to this problem appears.

There are di�erent ways to handle intersections today. Some are purely human-
based and were created to optimize safety, like the ‘priority to the right’ system
where, when two vehicles meet at an intersection, the one on the right has priority.
Tra�c lights are another such rule based solution which try to optimize throughput
by maintaining tra�c flow through the intersection. Other intersection techniques
are more structural and priority based, like the roundabout, created to try to give
better throughput while maintaining high safety.

Unfortunately, these solutions may be far from optimal in regards to energy con-
sumption, passenger comfort, time and foremost safety. In many situations, vehi-
cles may have to wait for other vehicles by slowing down or coming to a complete
stop, while waiting for the intersection to clear or a tra�c light to turn green. In
combination with human responsiveness, reflexes and movement capabilities, these
factors lay the basis for many forms of tra�c congestion and potential collisions.
Autonomous vehicles can minimize or even eliminate these shortcomings by having
vastly superior response time and the ability to communicate to each other wire-
lessly [1]. These abilities could solve the coordination problem that intersections
pose in a faster and far more e�cient way.

The idea of optimal tra�c flow is not only specific for intersections but is one of the
main arguments for autonomous transportation. Enhanced safety, e�ciency, pollu-
tion, and comfort are among the clear advantages of automating the transportation

1



1. Introduction

process [2]. These advantages allow the vehicles in use to enhance the driving expe-
rience in a way that is di�cult to implement in the human controlled vehicles used
today.

1.1 Purpose

The goal of this project is to have a completely implemented solution for controlling
autonomous vehicles crossing an intersection, emulating a real world scenario. The
solution is able to prevent a collision between two vehicles that are passing through
the intersection. In addition to this, it performs optimization through minimizing
control commands, i.e. acceleration/deceleration, and also moves as smoothly as
possible.

The algorithm was developed with the goal of solving the intersection coordination
problem robustly enough for the given scenario yet flexibly enough to be imple-
mentable on di�erent intersection problems involving two vehicles. It is therefore
structured in a way that its modules are as interchangeable as possible and allow
for changes to be made without the need to make larger alterations to the program
itself. These changes can include, but are not limited to, di�erent sensors, vehicles,
processing units and so on.

1.2 Problem statement

The main problem is to develop and implement a functioning solution for au-
tonomous robots to travel from one side of the intersection to the other without
colliding with another vehicle. As this problem is broad and complicated, it is
divided into smaller tasks.

• Program the vehicles to move in a shape containing an intersection. It is
important to be able to vary the speed of the vehicles along the path, so that
the actual controller can later optimize the movements in a later stage.

• Measure and estimate the states of the vehicles around the intersection with
the aid of sensors and accuracy-enhancing technology such as data filters.
This sets a basis for sensing the positions of the vehicles as well as accurately
controlling them in the intersection area. Robustness of the intersection coor-
dination algorithm partially depends on the accuracy of the location of each
vehicle.

• To have a central-computer that calculates as well as adjusts the course and
speed of the vehicles near the intersection to avoid collision. This is done using
the states such as location and speed measured in the previous task.

• Establish a communication link between the central-computer and the vehicles
so that they can communicate to each other.

2



1. Introduction

• Evaluate di�erent types of algorithms being used by the controller and deter-
mine their characteristics.

• The final solution should be able to compute and perform 50 successful cross-
ings with di�erent starting parameters.

The final problem is to combine the solutions to all these smaller solutions into
one system. The vehicle paths and positions will be pinpointed by the controller
using the accurate location data. The controller will then be able to coordinate the
movement of the vehicles in an optimal way and that avoids collisions. Once the
risk of collision is over, the optimization demand is removed in order to expedite
the run-time of the experiments. The controller should communicate these control
commands to the vehicles over the communication link. Finally the robots should
be able to implement these commands accurately and then give feedback from their
new state to the controller to start the process over again.

1.3 Scope & Limitations

In the project, the focus is on two robots in a one lane intersection. The robots will
have predefined paths that they should follow. The only requirement is that the
path contains an intersection and that it is continuous. Therefore scalability will
not be tested in this project.

UWB sensors will be used to get location data and accordingly the trajectory of
each robot. There will however be measurement errors. Because of this a filter will
be used to increase the accuracy. Other ways of locating the robot will not be used
in order to simplify potential solutions and emulate a more realistic scenario.

The controller will optimize control commands sent to the robots to make the pass-
ing of the intersection smooth. As there exists uncertainties and randomness in
the scenario, an optimization problem guaranteeing collision avoidance with an ac-
ceptable probability will be implemented. The acceptable probability is set 1% for
50 intersections, using solvable starting parameters. Several ma constraints are also
placed on the robot to mimic comfort requirements, these being a maximum velocity
of 1 m/s and a maximum acceleration of 1 m/s2.

1.4 Similar projects and their relevance

The project that was done here is a part of larger area of study both for the institu-
tion but also the wider world. Not only are there other bachelor projects that have
developed other areas of automating the robots but there are a variety of papers
that theoretically describe potential solutions for intersection control. These are
quite advanced but provided significant inspiration for the types of controllers that
were implemented and emulated in this project.
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For instance, the two ideas presented in the report on how to build up the control
algorithms were influenced by two papers [3] [1] which describes potential optimiza-
tion of similar setups and the implementation of model predictive control in concert
with these types of algorithms respectively. Additionally, setting constraints on the
control action sets that are carried out by the robots and further along, the con-
cept of guard distances in the controller algorithms was spawned by another paper
on intersection control using a convex optimization, something well outside of the
bounds of this report [4]. The way this paper di�ers from many papers of this type
that from the onset have solved the problem of intersection control and in a much
more e�cient way is that these are highly theoretical whereas the paper at hand is
dealing with an emulation of the system and all the challenges that can provide.

It is important to mention that a similar type of project has been attempted in the
previous year at the electrical engineering institution that handled these robots and
gave a solid base upon which this report builds upon, particularly in regards to the
UWB sensor system and the ROS utilization [5].
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2
Theory

The theoretical basis for the project is undoubtedly broad and covers di�erent ar-
eas of kinematics, positioning, filtering and optimization. Ignoring the depth of
these fields and the possibility of delving into all the minute details, the necessary
knowledge for understanding the project is presented in this section.

2.1 Trilateration

Trilateration is a concept that is used in a variety of localization applications such as
the global positioning system[6]. In the scenario presented in the project, the world
that is being mapped is in two dimensions. To describe the concept of trilateration,
a theoretical structure of how the method works is presented.

Figure 2.1: This figure describes how the distance of the point of interest from
each anchor all cross to form a fixed location.

Suppose a scenario where there are at least three fixed anchors with known positions
placed in the area where another object is also placed but whose position is unknown
[6]. Assume that the object has the ability to accurately measure the distance
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2. Theory

between itself and any known and fixed anchor in this area. This allows that object,
using these measurements, to accurately determine where it is in relation to the
anchors, whose position is known. This is shown in figure 2.1. In the figure 2.2a,
the distance of the object is known but not the location as it can exist on infinitely
many locations along the distance circle from the first anchor. In the next figure
2.2b, however, this uncertainty has been reduced to only two position where the two
distance circles intersect. This is unless the two distance circles only intersect at
one point. This, however, is considered unlikely enough to be a negligible concern.
The location of the object is then made certain due to the intersection of all three
distance circles resulting in only one possible location as shown in figure 2.2c. This
technique in combination with gradient descent is what will be used to provide
measurement data for the robot as it moves through the scenario.

(a) Single anchor active, infinite
points possible

(b) Two anchors active and two
potential points found.

(c) All three anchors active and
point found

Figure 2.2: This figure depicts the stages in finding a location using trilateration
starting with one anchor and moving up to three.
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2.2 Gradient Descent

Due to potentially inaccurate data that fails to produce an exact result, it is nec-
essary to have an algorithm that is able to find a best fit solution. The gradient
descent algorithm can be used for this purpose.

Start by considering a problem P which describes a function that ideally needs to
be minimized [7].

P : min(f
x

), (2.1)

where x œ Ÿn. It is assumed that this function is continuously di�erentiable in Ÿn

and therefore the gradient can be found for all points. Starting at a point x

k

the
gradient of the function at this point can be described as Òf(x

k

). The gradient
descent is then described as follows:

f(x
k+1

) = x

k

+ ⁄ · Òf(x
k

). (2.2)

This iterative process will then approach a local minimum of function f

x

as long
as ⁄ < 0 and Òf(x

k

) ”= 0. The minimum of the equation 2.1 is found due to the
negative descent of the function. This means that when Òf(x

0

) approaches zero, the
problem moves closer to its minimum x

k

as long as the descent ⁄ ·Òf(x
k

) maintains
a negative value.

It is important to note that using this method and depending on the value of ⁄ will
make the function approach its minimum more rapidly at first. It will then become
slower the more iterations are done, making the function e�cient if the precision of
the solution is not of the highest priority[8].

2.3 Extended Kalman filter

The Extended Kalman filter (EKF) is an extension of the Kalman filter that can be
applied on non-linear state models[9]. After linearizing the state-space model, the
EKF will act like a regular Kalman filter. Both the linearization and Kalman filter
will be described later in this section.

When using a Kalman filter it is important to note that while using a model of a
system to calculate its states, errors will occur due to external factors. It is therefore
not possible to model a system with absolute certainty and it is this uncertainly that
is called process noise. The purpose of the filter is to reduce the process noise that
comes from predicting new states each iteration from the model of the system [10].
This can be done by using an observation about known states such as a position
and the covariance, considered to be the error, of the observations together with the
prediction.

This is graphically described by the figure 2.3 where it is possible to see that error
is reduced due to the fact that it has been overlayed with the possible position and
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noise of the observation. This gives the final position a significantly lower value for
its noise than either the model prediction or the observation would have had on
their own.

Figure 2.3: The blue dot and its accompanying error ellipsiod is the measured
position and its associated noise. The red dot and haze represents the predicted
position and its associated noise respectively. The green dot represents the estimated
position after filtering this data, while the yellow dot represents the actual position.

In order to apply the equations corresponding to the Kalman filter, a linear model
needs to be obtained. To linearize the model, the Jacobian matrix of the non-
linear functions is derived at a linearization point. With the non-linear state-space
di�erential equations on the form

x

1

= F

1

(x
1

, ..., x

n

, u

1

, ..., u

m

),
...

x

n

= F

n

(x
1

, ..., x

n

, u

1

, ..., u

m

),
(2.3)

where x

1

, ..., x

n

are the states of the system and u

1

, ..., u

m

are the inputs, the lin-
earized model can be written as

x
k|k≠1

= Ax
k≠1|k≠1

+ Bu (2.4)

where

A =

S

WWU

ˆF1
ˆx1

|
xs,us · · · ˆF1

ˆxn
|
xs,us

... . . . ...
ˆFn
ˆx1

|
xs,us · · · ˆFn

ˆxn
|
xs,us

T

XXV , (2.5)

B =

S

WWU

ˆF1
ˆu1

|
xs,us · · · ˆF1

ˆum
|
xs,us

... . . . ...
ˆFn
ˆu1

|
xs,us · · · ˆFn

ˆum
|
xs,us

T

XXV (2.6)

[11].

The filter first creates a prediction of the new state x
k|k≠1

using the old state vector
x

k≠1|k≠1

and the linearized model of the system, the A and B matrices, as well as
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the input signals, u. The error covariance matrix P
k|k≠1

is also predicted using the
same model, the previous error covariance matrix P

k≠1|k≠1

and the process noise
covariance matrix Q. This is done according to the following equations

x
k|k≠1

= Ax
k≠1|k≠1

+ Bu, (2.7)
P

k|k≠1

= AP
k≠1|k≠1

AT + Q. (2.8)

After the state vector and error covariance matrix have been predicted, the Kalman
gain will be used to correct the errors in the predicted state by adding the scaled
di�erence between the observed states (z

k

) and the predicted states according to
the equation

x
k|k = x

k|k≠1

+ K
k

(z
k

≠ Ax
k|k≠1

). (2.9)
The error covariance matrix is also updated by taking the previously predicted error
covariance and subtracting with itself scaled with the Kalman gain and the model
matrix A, resulting in

P
k|k = P

k|k≠1

≠ K
k

AP
k|k≠1

. (2.10)
.

The Kalman gain is calculated as follows:

K
k

= P
k|k≠1

AT (AP
k|k≠1

AT + R
k

)≠1 (2.11)

where R
k

is the observed measurement’s error covariance matrix which describes
the inaccuracies in the observed states.

After the state has been updated according to the above calculations, it should
output a more accurate state (x

k|k) and its error covariance matrix (P
k|k) than from

the prediction or the observed state by themselves.

2.4 Optimal Coordination Problem

There are a variety of di�erent control schemes that can be used to prevent vehicles
from colliding when approaching an intersection. Each of these schemes have their
advantages and disadvantages with the major factors being the robustness of the
system, the e�ciency of the system, and the comfort of potential passengers in a
vehicle. [1]

2.4.1 Definition of robustness

The main purpose of the controller is to avoid collision. This goal falls under the
concept of how robust the system is. While it might seem ideal to create a system
that prevents collisions at all possible times, realistically this is not feasible due to
constraints on both the maximum control actions, acceleration and deceleration,
that can be taken by the cars.
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2. Theory

For the purpose of this report, robustness is defined as the probability of a crash.
Simply put the average number of intersection without a collision.

2.4.2 Definition of e�ciency

E�ciency in the terms of intersection control have several aspects. Firstly, e�ciency
can refer to the control actions, which require power, taken by each vehicle and
ideally minimize the total control actions taken. Additionally the e�ciency can
refer to the entire system’s e�ciency in regards to how rapidly the intersection is
cleared.

For the purpose of this report, e�ciency is only considered during optimized solu-
tions and is defined as minimizing control actions.

2.4.3 Ruled based solutions

Many solutions use a clear set of rules to define how vehicles are able to move
through the intersection [1]. These focus mainly on guaranteeing a clear and safe
path for all vehicles through the intersections and can therefore sometimes neglect
e�ciency.

2.4.3.1 Reservation solution

The reservation solution is built upon the idea that both intersecting robots reserve
time slots in which they are present at the intersection. By choosing non-overlapping
time slots, the robots are able to be in the intersection at di�erent times hence
avoiding a collision. A controller is used to tailor the control actions of each vehicle
in order to both enter and exit the intersection during each vehicle’s reserved time
slot. This system has the advantage of simplicity as both vehicles can have individual
paths and control action set to make clearing the intersection as safe as possible.
Another advantage of the system is that it can be easily and e�ectively scaled as
each vehicle needs only to know its assigned time slot and how to get there.

2.4.3.2 Priority solution

The priority solution is where two vehicles approach an intersection and one is given
priority over the other. For example, car A and car B approach the intersection.
Car A enters first and has a certain acceleration and speed. Due to the lack of any
other cars that could possibly create a collision, the controller takes no action. Car
B then enters the intersection and queries the controller on whether or not the car
can cross collision free. The controller then looks at this situation and determines
whether or not a collision would occur. If so, car B will then brake or accelerate
depending on constraints such as passenger comfort, limits on control actions, and
e�ciency. If collision is unavoidable with control actions on car B, the controller
could then attempt a solution for Car A.
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2.4.4 Optimization solution

These are solutions that find the most e�cient control action set for all vehicles
passing through the intersection. They have no rules but are able to calculate the
solution to the problem resulting in the most e�cient solution for sending both
vehicles through the intersection without collision [1].

These solutions tend to be incredibly di�cult to solve particularly with increasing
amounts of vehicles in the problem requiring more processing power and longer
computation times. This is not ideal in the small window for computation that is
a�orded in an intersection control problem [4].

2.4.5 Hybrid solutions

There are solutions that use rules to build a solution for the vehicles to follow
but then optimizes how each vehicle completes its assigned solution. This has the
advantage of possibly being more e�cient than a strictly rule based system but is
not as di�cult to calculate as a purely optimization based approach. This is the
approach we follow in this project.
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3
Equipment

In this chapter the equipment used is presented and described. Overall this equip-
ment is modern and relevant with the possibility of other more advanced or complex
systems replacing them if the experiment were to be scaled up. The equipment is
classified into two major categories, hardware and software, in which it is the soft-
ware where the majority of the work in the project is conducted.

3.1 Hardware

In this section the hardware used for the project is presented. This includes hard-
ware for positioning, the robots themselves as well as standard equipment such as
computers and routers.

3.1.1 Ultra-wideband range sensor

The UWB ranging sensoring is a system used for measuring the distance between two
points using a wide radio frequency band. This sensors are designated the PulsON
400 Ranging and Communications Module and are made by the United States based
company TimeDomain [12]. They feature a built-in specialized high frequency chip-
set, ethernet NIC port, and ultra-wideband transceiver antenna. This allows for
localization, limited radar and communications for a wide variety of applications.
For this project, the localization aspect of the unit will be used which accomplishes
this via a Two-Way Time-Of-Flight method [13]. The base will start by transmitting
a range request to one anchor, which is a fixed sensor in the room. This request
will be a wave-form pulse that propagates out from the antenna in all directions[14].
The base then starts an internal timer on time T

1

. The anchor, after listening for
such a pulse, will then reply with a wave-form back to the base which will arrive
at time T

2

. The total time between send and receive will be T

r

as shown in the
equation

T

r

= T

2

≠ T

1

. (3.1)
Assuming the medium the wave travels through is air, the speed of the wave is
extremely close to the speed of light in vacuum c

0

. The distance d traveled can then
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be calculated by
d = c

0

· Tr

2 (3.2)

where you divide by 2 because the wave has traveled both to the anchor and back.

Using these times, the base can calculate the distance traveled by the wave, leading
to a measurement accuracy of 3.5cm with line of sight, e�ectively. It is important
to note that for this project, the measurement units used were in varying stages of
performance due to their age and could have a�ected the accuracy of the location
data, but this is disregarded. Newer versions of these antennas have an increased
accuracy of up to 2 cm with line of sight [15].

3.1.2 Wireless Communication link

The fact that the project utilizes multiple robots necessitates the need for a data
link between these robots and the controller. To cover this, a Wi-Fi router is used.
Wi-Fi is well within the requirements of this project giving low latency and high data
rate with acceptable stability [16]. It is this network that allows the Robot Operat-
ing System (ROS) to function across several di�erent computers and consequently
di�erent robots simultaneously.

3.1.3 Pioneer 3-DX

The robots used for this project are Pioneer 3-DX mobile robots [17]. These are
compact, robust, wheel mounted robots that are suitable for emulating vehicles in
the constrained testing environments used for this project. They have two drive
wheels giving two degrees of freedom with a third wheel to give stabilization that
has a free floating axis. It additionally has a front and side facing sonar system but
these are not used in this project.

3.1.4 Computers

In order to connect all the various pieces of equipment and control them, several
laptops (Dell Latitude E5450) where used running Ubuntu Linux version 14.04 or
16.04 Trusty Thar [18]. Each robot has an on board laptop on board coordinating
various measurements and control commands. There is another laptop that serves
as the remote controller, which runs all of the coordination software.

3.2 Software

The software package used is called ROS and a variety of programs coupled with
this operating system.
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3.2.1 ROS and ROSARIA

ROS is an operating system that allows the smooth operation of each robot and
communication between them and the main controller [19]. This is a highly flexible
system allowing the smooth flow of information between many decoupled entities,
subsequently called nodes. It is licensed under the Creative Commons Attribute 3.0
[20]. Communication between the Pioneer robots and ROS is handled using a library
called ROSARIA. It merges the robot’s manufacturer’s Advanced Robot Interface for
Applications software development kit, which allows the direct control of the robot’s
systems with the ROS. This allows for high level commands to be performed by the
robot such as velocity and angle changes. ROS has multiple packages allowing for
the operating system to run di�erent programming languages such as C++, Lisp,
and the language which this project is programmed in, Python. In order to run
the latest stable version of ROS, Kinetic Kame Linux is required and can be run
through either an Debian or Ubuntu operating system, the later of which is used as
specified earlier. ROS can be found on ROS.org and the ROSARIA library can be
found and installed from here [21]. Without ROSARIA, running the robot would
be significantly more di�cult and would require directly controlling all of the robots
systems, for example its wheel motors.

To give the reader a basic understanding of the implementation of ROS and sub-
sequently the software behind the controller, a brief overview of key concepts are
contained below. This have been primarily sourced from the ROS Wiki which con-
tains all the documentation used in this project and has been the primary guide for
the utilization of ROS. The sections below and further on in the paper refer to this
Wiki.

3.2.1.1 Nodes

ROS divides up its active functions into packages called nodes. These nodes are
what can be considered the “face” of a certain set of programs in the larger ROS
network. For instance a node may be programmed to accomplish a certain goal, such
as driving a robot, and as such will handle all the code devoted to fulfilling that
function. It will also communicate with other nodes for information on such things
as positioning data, desired control actions, or status updates that the other nodes
either give or require for their continued function. In this way the code structure
of ROS becomes highly distributed allowing nodes to be added and removed as
necessary for the project. All of these nodes are held together by the roscore. This is
the master program that orchestrates the running of all the other nodes to prevent
conflicts between them. It is this flexibility that makes ROS useful as a coding
structure, especially for a project such as this with multiple computers running
di�erent equipment.
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3.2.1.2 Topics and Services

Topics and Services are predefined methods used by ROS nodes to communicate via
the ROS master, roscore, or with each other. The services and topics, which are
both used in the project, operate in slightly di�erent ways.

The Service is a function that is set up and connected to the node that initializes
it. As long as the service is not called, the function will not be executed. If another
node needs to use this service and is located on the same master, it can call on it
to execute. Usually some variable or other data is used in combination with calling
on a service. The service will then execute the function and optionally return some
data depending on the function. To specify what data needs to be transferred with
each service call, a service file (.srv) will define the variables that are sent with each
call as well as the variables that will be returned.

Topics are similarly used by two or more nodes where one of the nodes is a publisher.
The publisher will send data onto this virtual data bus that can be accessed by all
other nodes on the same ROS master. Other nodes can then subscribe to the
relevant topics. When data then is published, the subscriber node will use the data
in combination with a callback to execute a defined function. The data published
on these topics are called messages and are defined with the message files (.msg).
Topics are unidirectional, meaning that a node does not usually publish to the same
node it subscribes to.

3.2.1.3 RosAria/cmd_vel

In ROSARIA, a predefined topic is created with each RosAria node, called /cmd_vel.
The topic is subscribed to by the robots, and allows other nodes to send messages
of the type Twist, containing control commands in the form of linear speeds (x, y, z)
and rotational speeds (x, y, z) to the RosAria nodes. The message used additionally
contains the possibility to send covariances of the processes that are being performed
to give a greater detail of the accuracy of the robot’s actions. The RosAria node
translates all published messages on the topic into low-level movement-commands
that can be understood by the robot.

3.2.1.4 Odometry

Similar to setting up the topic /cmd_vel, the RosAria node will also create an
Odometry (RosAria/odom) topic where it will publish information about the cur-
rent states of the robots in the form of Odometry messages. These messages include
data about the robot’s position, directional angle, speed and angular speed etc. The
Odometry message type sent on this topic is a combination of Pose and Twist mes-
sages. Twist, as described earlier, contains data about the robots control actions.
The Pose messages are calculations of the robots state made from the wheel rota-
tions. When first set-up, the position (x- and y-coordinate) as well as the angle of
the robot is 0, meaning the robot starts in the origin facing the x-axis.
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3.2.1.5 MobileSim

To be able to accurately simulate and test the systems and algorithms used in
this report, MobileSim was used. MobileSim is a simulation application that works
together with RosAria and allows RosAria to be run in the same way as outside the
simulation [22]. If a MobileSim process is running when a RosAria node is started
all commands will be sent to the simulation instead. It is also possible to run several
robots in the same simulation, using separate RosAria nodes.

3.2.2 Python and Rospy

Python is a free and open source programming language. Together with the Rospy
packet, Python can be used to create programs that control the ROS nodes or read
information published on the various topics. This can be for instance reading the
Odom messages, or writing twist messages, etc.

Other additional packages are available for Python that can be used to solve matrix
equations for the extended Kalman filter and also to solve trigonometric equations
and optimization problems and other similar mathematical problems.
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At the start of the project, the core problem was broken down into smaller tasks.
An iterative mindset was then used throughout the project to tackle these issues one
by one until they were solved and combined to form a solution to the final problem.

The first step was to form the most basic solution to the problem and see what
was necessary to solve it. This was determined to be two robots simply crossing
each other without collision, i.e. no demands on acceleration. In order to make
the robots cross, it was decided that two things were required: knowledge of their
positions and being able to give them general commands. After retrieving knowledge
of their positions through the UWB sensors, and sending commands through ROS
and RosAria, it was decided that a filter was needed to improve the positioning data.
At the same time, more sophisticated algorithms were developed to not only send
general commands, but to implement the control algorithms presented in section 2.
In this section, these implementations will be presented in greater detail as well as
the methods used to test the entire system.

4.1 Initial Setup

The wireless communication system is used to connect the controller with the robots.
Over this connection, ROS is able to operate and send information including location
and state data about the robots to the controller as well as control commands from
the controller to the robots.

In order for the controller and ROS to communicate with each node, a simple router
(Thomson TG784) was used as a base station. This router requires Internet con-
nection and is used to enable the devices to communicate with the master over the
WLAN, and vice versa1. To allow the nodes to communicate with the base sta-
tion and the roscore of the controller, they need to be told the IP assigned to the
controller as well as the host name of the ROS master.

1
A mobile hotspot was used in place of the router because it lacked internet access.
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4.2 Determining the state of the robots

This section describes the steps taken to find the state, primarily position and
velocity, of the robots at any given moment during execution.

4.2.1 Robot state

The state of the robot in any given moment in time is made up of its two-dimensional
position (x- and y-coordinates), the angle of the robot in relation to its original
orientation ◊ as well as both its linear velocity v and angular velocity Ê. These
states are visualized in figure 4.1

Figure 4.1: The figure shows the coordinate system and angle of the robot, which
are used to create a model of movement. It also shows the iterative states of the
system from X

k

to X
k≠2

.

The equations that describe the dynamics of the system from any moment k ≠ 1 to
k, are

x

k

= x

k≠1

+ v · cos(◊
k≠1

) · dt (4.1)
y

k

= y

k≠1

+ v · sin(◊
k≠1

) · dt (4.2)
◊

k

= ◊

k≠1

+ Ê · dt (4.3)

where dt is the time step between each iteration of the filter. This state connects
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the robots linear and rotational velocity to the robots x and y position as well as
orientation, making sure that all measurable attributes are accounted for.

4.2.2 Setup of components for determining the state

The robot’s position will be determined by using a sensor grid that is comprised of
three anchors, each with a UWB radio transceiver that will be pinged by a similar
device on each robot, allowing the robot to gather a time of flight reading from each
anchor. With these time of flight readings the sensor on each robot will determine the
distance to each anchor in the grid. These measurements will be used to determine
the position of the robot, which will be discussed in the section below. However
these measurements are not perfect and therefore require estimation algorithms and
a filter to be of a usable quality for the robot and the controller.

A Kalman filter is used in order to make the measurements of use to the controller.
As described in section 2.3, it predicts the robot’s next possible state using a model
and then fixes this model using measurement data for use in predicting the next
state. This allows for much more accurate location data that can be sent to the
controller for use in solving the intersection problem.

4.2.3 Implementation of trilateration

In order for the position of the robots to be used, the data needs to be in a reference
system which in the case of this project is an x- and y-coordinate system. This
is possible to accomplish using a minimum of two anchors, however the system
implemented here uses three, one as the origin of the system, and the other two
measuring out the x- and the y-axis respectively. This is due to the fact that for
the robot to use trilateration to determine its position in this coordinate system, it
must have three points of reference to refer to.

An issue with the trilateration as it is described in the theory is that it requires all
three distance circles to overlap perfectly in one point in order to gain a location.
When the robot pings an anchor and gets back a measurement, this measurement
has an inherent amount of noise. This can result in the possibility of overlapping
circles creating a triangle of uncertainty or worse still, the circles do not overlap at
all. This is described by the figure 4.2.
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Figure 4.2: The leftmost subfigure describes the possibility of overlap causing
a residual error. The middle one describes the opposite with zero overlap. The
rightmost is the ideal case with perfect overlap

It is therefore important to reduce this residual that is left between the distance
circles from each anchor. This is done using an iterative process that takes the
previously measured point and moves this reference point such that it is reasonably
close to a center point between the distance circles. The equation of this iterative
process is

f(x̨) =
Nÿ

i=0

(ą
i

≠ r̨

i

)2 (4.4)

where the ą vector describes the distance between the anchor and its measured point
and the r̨ vector describes the vector between the anchor and the reference point
that is being moved in each iteration to decrease the value of the function. This is
described in the figure 4.3.
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Figure 4.3: This figure describes the following procedure for one of the sections of
the sum for the total residual. The red vector is the equivalent of ą. The light blue
vector is the r̨ vector and the green vector describes the vector whose magnitude is
f(x̨) or the residual of the system.

Unfortunately the value that is given by the UWB radio antennas is only a magni-
tude, not a vector so the vector ą must be rewritten to use its magnitude instead.
This is done by the following equation that puts ą in terms of r̨

ą = r̨

|r̨| |̨a|. (4.5)

Following this, the principle of gradient descent is used to minimize the value of the
residual. However in order to optimize the runtime of the program, the derivation of
the gradient at each time step was abandoned and the gradient was determined to
be a function of the length of the residual vector divided by 2. The program starts
by taking the previous point of measurement and then using that as the reference
point. Then by using the methods described above, this point is drawn toward the
place that minimizes the residual of the function.

This function would then continue to run until the residual would satisfy

f(x̨) < A, (4.6)

with A being a chosen tolerance. To prevent a problem where the residual never
met A due to exceptionally bad spacing between the distance measurements, the
program would also see if

f

k≠1

(x̨) ≠ f

k

(x̨)) < R (4.7)
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was satisfied, where R was another chosen tolerance and both f(x̨) were the residuals
between the previous step and the current one. This allowed the system to determine
an accurate location regardless of how uncertain the measurements were. The figure
4.4 visually represents this system and how it works through each iteration of the
descent function.

Figure 4.4: This figure describes how the criteria are met for the tolerances of the
residual in the descent function. In the case above the chosen tolerance A was met
before the secondary criteria R was met.

4.2.4 Implementation of the extended Kalman filter

Despite the optimization process for the trilateration to find the robot’s position,
the measurement data is still noisy and of little use for the controller in accurately
modeling the intersection. This noise modeled in a covariance matrix in section 5.1.
To mitigate this noise and make the location data usable, a Kalman filter has been
implemented. How this filter is generally built is described in section 2.3.

In order to apply the filter, the equations describing the robots movement (section
4.2.1) need to be linearized in order to obtain the A matrix that describes the model
of the system. The calculated matrix is

A =

S

WWU

ˆxk
ˆxk≠1

|
xs,us

ˆxk
ˆyk≠1

|
xs,us

ˆxk
ˆ◊k

|
xs,us

ˆyk
ˆxk≠1

|
xs,us

ˆyk
ˆyk≠1

|
xs,us

ˆyk
ˆ◊k≠1

|
xs,us

ˆ◊k
ˆxk≠1

|
xs,us

ˆ◊k
ˆyk≠1

|
xs,us

ˆ◊k
ˆ◊k≠1

|
xs,us

T

XXV =

S

WU
1 0 ≠v · sin(◊

k≠1

) · dt

0 1 v · cos(◊
k≠1

) · dt

0 0 1

T

XV . (4.8)

The prediction of the new states can be calculated using the non-linear equations in
4.1. In addition the B matrix is not an input in any further steps in the filter and
is therefore not needed to run the Kalman filter.

22



4. Methods

In this implementation, the filter uses the previous state of the robot, control actions
sent from the controller (the linear and rotational velocity), current measurement
data (x- and y-position) along with noise values for all of these inputs to estimate
the current state of the robot in the emulation. The process noise w

k

can be assumed
to be zero mean Gaussian noise where w

k

≥ N (0, Q) and the covariance matrix

Q =

S

WU
0.052 0 0

0 0.0252 0
0 0 0

T

XV . (4.9)

Similarly, the observed state also contains zero mean Gaussian noise v
k

≥ N (0, R)
where

R =

S

WU
Var(x) Cov(x, y) 0

Cov(y, x) Var(y) 0
0 0 0

T

XV . (4.10)

The covariance values are based on a number of n readings where the covariance ma-
trix is calculated from the sample measurements, see section 5. Lastly, the observed
state vector z

k

and the observation matrix H are

z
k

= Hx
k

+ v, (4.11)

H =

S

WU
1 0 0
0 1 0
0 0 0

T

XV (4.12)

where x
k

is a vector containing the observed x and y coordinates from the UWB
sensor grid. Using all these equations together as explained in section 2.3 the states
that are calculated in the filter should be more accurate due to a decrease in total
uncertainty and help the robots determine a more exact position.

However there is no observation made on the angle of the robot, so the resulting
state will therefore be purely based on the prediction made in equation 4.1. The
robots angular velocity will continuously and non-linearly increase/decrease between
the given values, necessitating that the resulting angle be calculated according to
a Riemann sum, see figure 4.5, with width dt, decided from the iteration time of
the filter. This will therefore deviate from the actual angle, which is the area under
the angular velocity curve. To minimize these errors, only three specific angular
velocities are used (depending on the angle o�set) to turn the robot rather than a
regulator. The resulting method, visualized in figure 4.6 contains less errors due to
these more discrete angular velocities and will lead to a more accurate prediction.
Despite the discrete angular velocity inputs, the system is not instantaneous and
has some lag resulting in the error seen in the visual representation below in figure
4.6
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Figure 4.5: Riemann sum when using continuous angular velocity changes (ac-
cording to a regulator). The area under the curve represents the actual angle of the
robot, while the rectangles represent the predicted angle.

Figure 4.6: Riemann sum when using three specific angular velocities. The green
curve represents the actual angle of the robot where the rectangles are predictions
of the angle.
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The filter was tested by moving one robot in a known path. The observed position,
as well as the predicted position and filtered positions are plotted out, and the data
is observed to see if the filter manages to correct the location as the robot moves
along the path. The results are presented in section 5

4.2.5 Generating noise for Pose-data

For various reasons, including testing changes in the algorithm, the problem is sim-
ulated in MobileSim as described in section 3.2.1.5. In order to more accurately
simulate the real world scenario, where the positioning system has noisy measure-
ments, an option for adding noise to the Pose-data used to simulate the robots was
created. The noise is Gaussian in nature with the user specifying the standard de-
viation. Since the UWB sensors have an estimated error of around 2 centimeters,
a similar value was chosen for the standard deviation for the setup used to most
accurately emulate the real scenario.

4.2.6 Calculating an intersection point

Figure 4.7: The figure shows an example of the robots, their position and angle
data, and their resulting intersection point. x

1

, y

1

, ◊

1

describes the data from the
first robot, x

2

, y

2

, ◊

2

is for the second robot and IP
x

and IP
y

is the intersection point.

In an ideal scenario the intersection point of the robots will be in the origin of the
coordinate system. Given that there is always errors for the robots as they travel and
try to aim themselves, a more general approach was taken. This approach was to
calculate the intersection points of both the robots using their positions and angles.
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Figure 4.7 shows the general situation and the parameters that the calculation uses,
those being the first and second robot’s position and angle, x

1

, y

1

, ◊

1

and x

2

, y

2

, ◊

2

.

Using this information the lines describing the trajectory of the robots can be found.
Considering the first robot, its slope will be tan(◊

1

). The equation describing the
line is then y = tan(◊

1

) ·x+m. The constant m is found by using the robots position
data, resulting in m = y

1

≠ tan(◊
1

) · x

1

. This gives the equation for the line in the
form of

y = tan(◊
1

) · x + (y
1

≠ tan(◊
1

) · x

1

). (4.13)

Using the same method, the equation describing the line for the second robot is

y = tan(fi ≠ ◊

2

) · x + (y
2

≠ tan(fi ≠ ◊

2

) · x

2

). (4.14)

Setting these two equations equal to each other and solving for the x values, will
give the intersecting point IP

x

. The result is

IP
x

= y

2

≠ y

1

≠ tan(fi ≠ ◊

2

) · x

2

+ tan(◊
1

) · x

1

tan(◊
1

) ≠ tan(fi ≠ ◊

2

) . (4.15)

Putting this x value in one of the equations describing the trajectories of the robots
will give the corresponding value IP

y

. This becomes

IP
y

= tan(◊
1

) ·
3

y

2

≠ y

1

≠ tan(fi ≠ ◊

2

) · x

2

+ tan(◊
1

) · x

1

tan(◊
1

) ≠ tan(fi ≠ ◊

2

)

4
+ y

1

≠ tan(◊
1

) · x

1

,

(4.16)

and together with IP
x

gives the intersection point.

4.3 ROS structure and data handling

The ROS structure for this project is divided into several di�erent packages that run
on di�erent computers on di�erent robots. Roughly speaking, ROS runs in three
physical locations, the master computer running the main controller that organizes
the intersection, and two slave computers, each running separate versions of the
program that handles location data, and the program controlling the robots control
actions (RosAria). Each of these computers run a node or combination of nodes that
accomplish various tasks. Together these nodes work together to send information
from robot to controller and allow the emulation of the intersection control. This
code structure is explained in greater detail in the figure 4.8.
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Figure 4.8: A figure modeling the basic structure of the code in the program that
runs the robots, location system, and intersection control algorithms. The blue
boxes represent ROS nodes, the circles inside these represent topics inside each of
these nodes while the solid lines represent publisher and subscriber relationships
between these di�erent topics. The dashed lines represent services and the hexagon
shape represents a service proxy that creates and handles these services.

The simplest way to describe the flow of the code is to start from the controller and
go through the system step by step. The figure above will be referred to give a better
idea of how everything connects. The controller sends commands to the rest of the
program via services that are handled via the Service Proxy. These allow directions
to be easily communicated to each robot since publishing to a topic is unnecessary
for these command type messages. These service messages are then taken by the
robot node which then interprets these commands and publishes in a topic what
both the filter node and RosAria node need to know to fulfill their objectives. The
interpretation that the robot node does is detailed in the following section.

Once the interpreted commands are sent to RosAria, the robot needs to update the
controller with information on where it is or in other words, the robots state at that
current time. To accomplish this the filter function, which includes the Kalman
filter, builds up a topic for the state. It requires data however to compute the state
of the robot and this is taken from the sensor node. This node takes two di�erent
types of information, location data from the UWB radios and linear and angular
velocity from the telemetry module on board the robot. This telemetry data comes
from the RosAria node.
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Once all this data has come together, been filtered and sent from the robot to the
controller, the controller can then use this new location data to create new control
actions for the robot to follow. It is this loop that allows the robots to accurately
navigate both the scripted paths but also the intersection crossing with help of
algorithms detailed in section 4.5.

4.4 Communicating instructions to the Robot nodes

Table 4.1: Table defining the di�erent missions the robot is able to execute.

Basic Angular Complex
Stop Aim at Point Go to Point

Set velocity Follow Path
Set angular velocity Steer towards point

Set acceleration

Each robot is able to move around using the RosAria code but this requires an input
of both a linear and angular velocity. The controllers however work using more high
level concepts such as a Go to Point-function. The Service proxy and Robot node
are the programs that are used to translate these high level commands to the inputs
that RosAria needs to move the robots.

The handler states all the di�erent types of commands that can be outputted by the
controller and translated for RosAria. These commands are called in this project,
missions and there are six in the program that fulfill roughly all the necessary mo-
tions for the controllers to accurately and safely get the robots to navigate an inter-
section.

The possible missions are described in Table 4.1. A full API can be found in Ap-
pendix A.3.1 of this report. The following sections (4.4.1, 4.4.2 and 4.4.3) will give
a short overview of all the missions and short description of how to use them.

The simplest and most universal of the missions is the Stop mission. This mission
will end any currently active mission and make the robots movement come to a stop.

4.4.1 Basic movement missions

The first three missions define the most basic instructions you can send to the robot.
They let you freely maneuver the robot using any of the defined methods for the
robot. Each of the missions are called with a float-variable as the argument, denoting
either the speed or acceleration that the motion should be executed with.

Setting either acceleration or speed is exclusive of the other. If an acceleration is set
the robot will move with that acceleration, regardless of whether a speed was set
previously. The same does not apply to the angular velocity. Angular movement
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can be combined with any of the other basic missions and the robot will execute a
combination of the movements asked.

4.4.2 Angular control mission

Currently there is only one mission solely controlling the angle of the robot. This
mission takes a point as an argument and rotates the robot so as to face the point.

As described in figure 4.5 and 4.6 and at the end of section 4.2.4, the predictions
of the angle gets better if discrete steps for the angular velocity is used. As such
the aim at point mission used three di�erent velocities depending on how large the
di�erence in angle is between the robot and the point to be aimed at.

4.4.3 More complex movement missions

These missions build upon the previous ones and let the controller ask for more
complex actions of the robot.

The Go to Point mission is the simplest version of asking the robot to move to a
point.

Next the Follow Path mission is an abstraction over several Go to Point call. Given
a Path (a list of points) it will iteratively call Go to Point for each point one after
another.

The last complex mission, Steer towards point is used to be able to abstract away
angular movement on a path between two points, as such allowing the travel to be
handled as one-dimensional. After calling this with a point, the robot will continu-
ously and automatically orient itself toward as to follow the path between it’s current
position and the point. After this the user is free to call the previously described
missions Set velocity and Set acceleration to move the robot over the path.

4.4.4 Polling robot for state

Besides the previously defined missions there are two other services provided by the
Robot node. One lets you ask whether the robot is executing a mission currently and
the other lets you ask for the current positional and dynamic state of the system.
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4.5 Description and function of controller algo-
rithms

In this section the di�erent implementations of controller algorithms are presented.
The one used to gather the final results is the hybrid version encompassing the
priority and optimization solutions.

4.5.1 Implementation of reservation solution

Figure 4.9: The figure depicts the two intersecting robots at di�erent positions
and times throughout the intersection, matching the time slots chosen by the user.
In this case, both the robots are able to accelerate and decelerate and in general act
more independently.

Table 4.2: The table shows the values specified by the user for the reservation
based system. These values are in the form of time slots, intersection values and the
total length of the travelled path.

User input for reservation solution
Time slots t

1

t

2

t

3

t

4

Intersection values x

A1

y

A1

x

A2

y

A2

x

B1

y

B1

x

B2

y

B2

Total length L

x

L

y

30



4. Methods

As explained in section 2.4.3.1, the reservation solution makes sure the robots are
in the intersection at certain times. The chosen implementation of this system
requires the user to specify three forms of parameters: the di�erent time slots for
the robots, the general intersection parameters i.e. when it starts and ends, and also
the total length. The distance from the starting point to the intersection and from
the intersection to the ending point also needs to be specified. Figure 4.9 and table
4.2 shows the required values, with the table showing the time slots, intersection
values and total size that the user inputs. The t, x or y denotes whether the
parameter is for time or position with corresponding coordinate axis. A or B is
given depending on the robot and 1 or 2 represents the start and the end of the
intersection respectively. The time slots t

1

and t

2

belong to robot A while t

3

and
t

4

are for robot 2. The intersection itself is represented by the dashed lines in the
figure. The total length of the path is L

x

for the x-axis and L

y

for the y-axis. The
values x

A0

, y

A0

, x

B0

and y

B0

do not need to be specified by the user.

The algorithm contains two instances of the same code that run simultaneously; one
for each robot. The algorithm first calculates the necessary velocity for a robot to
reach the start of the intersection at the specified start of the reserved time interval.
For example if we regard robot A, the yellow robot in figure 4.9 traveling in the x

direction, the velocity sent to the robot would be

v

A

=

Ò
(y

A1

≠ y

A0

)2 + (x
A1

≠ x

A0

)2

t

1

. (4.17)

This velocity needs to be smaller than 1.0 but greater than 0, because of the fact that
the robots cannot travel faster than 1 meter per second due to comfort restraints
placed on the vehicle and since we do not want negative velocity. If a velocity is
calculated that does not meet those requirements, the user needs to input new time
slots or intersection values.

At the same time that the velocity is sent to the robot, a timer is initiated. After
t

1

seconds has passed, the robot has arrived at the start of the intersection. An
acceleration is calculated by

a

A

=
2

3Ò
(y

A2

≠ y

A1

)2 + (x
A2

≠ x

A1

)2 ≠ v

A

· t

2

4

t

2

2

. (4.18)

In theory, this acceleration value will then ensure that robot A has reached the end
of the intersection at the end of the time interval. However, because of the fact that
a possible acceleration that places the robot at the correct position at the correct
time is one that moves the robot forward past the point and then backwards, it needs
to be guaranteed that the velocity does not become negative. The final velocity v

fA

is for that purpose calculated by

v

fA

= v

A

+ a

A

· t

2

. (4.19)

If v

fA

is negative, then x

A2

will be increased by 0.05 and a

A

recalculated with the
new distance. If v

fA

is still negative, x

A2

will incrementally increase. If one such

31



4. Methods

solution is found, but v

fA

is greater than the robots maximum velocity 1.0, then the
robot will brake. If there is no distance that fulfills the requirement, robot A will
also brake in order to avoid collision.

One can impose restrictions on how much displacement is allowed, depending on
what is considered an appropriate definition for the intersection. Such a value can
be found through experimental procedures and tests.

The same calculations described above are replicated for robot B with appropriate
variables changed to their respective names in accordance with table 4.2.

4.5.2 Implementation of priority solution

Figure 4.10: The figure depicts the two intersecting robots at di�erent positions
and times in the intersection. The yellow robot is the stable robot while the red one
is the variable robot. The figure also shows the concept behind the guard distance
and how the robots are at di�erent positions when the uncontrollable robot is in the
middle of the intersection.
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Table 4.3: The table shows the values required from the user in the implementation
of the priority solution. These are categorized into a velocity interval, a guard
distance and the total size of the system.

User input for priority solution
Velocity interval v

minA

v

maxA

v

minB

v

maxB

Guard distance g

d1

g

d2

Total size L

x

L

y

As described in section 2.4.3.2, this problem assumes one robot can be controlled
and the other cannot. The initial state of the problem is shown by figure 4.10, where
the parameters given by the user is shown in table 4.3.

The implementation first randomizes the initial velocities of the robots based on
an interval ranging from v

minA

to v

maxA

for robot A and v

minB

to v

maxB

for robot
B. The randomized initial velocity becomes v

A

and v

B

respectively in figure 4.10.
The intersection point of the robots is calculated, in accordance to the description in
section 4.2.6. After the robots have reached the given velocities, the time T required
for the stable robot to reach the intersection is calculated. This becomes

T =

Ò
(IP

x

≠ x

A

)2 + (IP
y

≠ y

A

)2

v

A

. (4.20)

When the intersection time has been determined, the acceleration required to reach
the distance IP

y

≠g

d1

at time T is calculated and given to the variable robot. This is
done by the standard formula correlating acceleration, velocity, distance and time,
and results in

a =
2

1Ò
x

2

B

+ (IP
y

≠ g

d1

≠ y

B

)2 ≠ v

B

· T

2

T

2

, (4.21)

using the notations from figure 4.10. g

d1

used here is called the guard distance
and must be su�ciently large for the robots to not inhabit the intersection at the
same time. This does not preclude the further increase of the guard distance over
the minimum necessary to prevent collision and this concept will be used later to
adjust the robots control actions, ensuring a successful crossing. The usage of g

d2

is
explained in the next paragraph, but the same principles applies to it as well.

This implementation should avoid collision between the two robots since they will
be at di�erent positions at di�erent times. Nevertheless there are limitations that
must be imposed on the algorithm in order to accurately represent the real world
scenario and the demands placed on it. For instance, the calculated acceleration that
is given to the variable robot could be an acceleration that achieves the requirement
of being at distance IP

y

≠g

d1

at time T by driving past the point with a deceleration
and thereby later incurring a negative velocity in order to reach the point at the
desired time. Another limitation is the fact that the robots cannot drive faster than
1.0 meters per second due to comfort constraints. Additionally, they cannot handle
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acceleration values smaller than 0.006 m/s2 due to physical limitations of the robot.
In order to deal with the aforementioned limitations, an adjusted algorithm has
been developed. It takes di�erent steps based on two di�erent scenarios; if the final
velocity is negative and the acceleration is smaller than 0.006 m/s2 or if the final
velocity is greater than 1.0. The final velocity is calculated through

v

f

= v

B

+ a · T. (4.22)

Since T and v

B

are constant when the problem initiates, it becomes obvious that
the acceleration needs to be altered in order to change the value of the final velocity.
The acceleration itself is dependent on the same constant variables, except it also
depends on the guard distance, which can be seen in equation (4.21). By altering
the value of the g

d1

, either with a positive or negative factor, the acceleration will
have decreased or increased.

If it is the case that the final velocity is greater than 1 m/s2, it needs to be lowered.
That in turn means that the acceleration needs to be decreased, which is achieved
by increasing g

d1

with 0.05 m. After g

d1

has been altered, the acceleration is recalcu-
lated. If the new final velocity value is still too large, g

d1

will once again be increased
by 0.05. This process will repeat itself until the final velocity is lesser than 1. There
is a potential issue where increasing the guard distance too much, placing the point
behind the position of the robot, results in negative velocity. If this happens, there
is no proper value for the acceleration and the robot brakes to zero velocity almost
immediately in order to avoid collision.

If it is the opposite case where the final velocity is negative, the acceleration needs
to be increased and in order to achieve this, the relevant guard distance needs to
be increased. However since the guard distance g

d1

is at what is deemed a safe
distance from the intersection, increasing it will bypass that safety and place the
variable robot too close to the intersection. To combat this the algorithm will use
the flipped guard distance g

d2

instead of g

d1

when the final velocity is negative,
shown in figure 4.10. The guard distance g

d2

will increase with 0.05 m and the
acceleration will be recalculated, and if the final velocity still is negative, it will
continue to increase with the same amount. Since g

d2

is on the other side of the
intersection, its value can be increased without limitation since the robot will stop
once it reaches the total length L

y

defined by the user at the start of the problem.
If the acceleration is smaller than 0.006 m/s2, the same process will be performed,
since its value needs to be increased.

The mentioned solutions to the dangers of the problem introduce another problem in
themselves. The problem is that an acceleration that for example initially satisfies
the first scenario but not the second, might not satisfy that scenario when it is
recalculated to fit the second. This only in principle though, since both methods
apply calculations that work against each other. However since there is a possibility
of a solution that satisfies both conditions, the calculations are placed in a loop
where the algorithm tries to find a solution in 50 calculations where both scenarios
are satisfied. This value is arbitrarily chosen, but should be su�cient to guarantee

34



4. Methods

a solution if there exists one. If it is unsuccessful, the variable robot will brake to
ensure collision avoidance.

4.5.3 Implementation of hybrid solution

Figure 4.11: The figure shows the concept behind the hybrid algorithm between
the priority and the optimization solutions. The arrows show the velocities of the
robots, and as in the priority solution the yellow one is the stable robot while the red
one is the variable robot. Important to note is that a

k

is the smallest acceleration
solution that the variable robot can find.

It is possible to optimize the algorithms for the priority solution as presented in the
previous section in regards to the control actions chosen. The resulting algorithm
is a hybrid between an optimization and a rule based solution, and is the one that
the real world experiment was conducted with.

The idea that is implemented here is that the problem reevaluates continuously as
time passes, with updated parameters from the various inputs to the system such
as location data, creating a closed-loop control. There is a possibility that the
acceleration found at the previous time step was not the smallest absolute solution
for the system. This because of the fact that the algorithm does not incrementally
increase in infinitesimal steps as well as the fact that it performs a limited number
of calculations before being stopped. On top of this there is also the fact that
the positioning is a�ected by noise. This means that the trajectory of the robot
can change slightly, and by extension also changing the intersection point and thus
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the distance to it, resulting in a new acceleration. The absolute value of the new
calculated acceleration is compared to the previous one, and the smaller one of
the two is given to the system. This is done for each time step, resulting in an
optimization in regards to minimizing the acceleration.

The figure 4.11 demonstrates the concept behind the hybrid algorithm. Here the
stable robot maintains a constant acceleration a

0

= 0 and arrives at the middle of
the intersection at T . Simultaneously the variable robot calculates an acceleration.
Initially at t

0

it finds the acceleration a

k≠n

that satisfies the demands in accordance
to the priority solution. However later at time t

k≠2

it finds a smaller absolute
acceleration a

k≠1

and therefore changes its acceleration value. At time T it will
have avoided collision using the smallest absolute acceleration solution it could find.
Note that it does not need to stop at g

d

since the guard distance can be altered
in order to find new acceleration solutions, as described in the previous section.
The figure also shows one case, there is also the other case where it drives past the
intersection before the stable robot. The important part to note is simply that.

a

k≠n

> . . . > a

k≠1

> a

k

. (4.23)

Besides the fact that the acceleration becomes optimized, this approach also o�ers
improvements in the sense that if a solution is not found, and the robot does not
need to emergency brake, it can use the previous acceleration value and try again
at a later time with di�erent initial values. One needs to be careful in this situation
since the previous acceleration value can be one that is results in a negative final
velocity. The algorithm therefore disregards old acceleration values if the robot has
passed the guard distance and the old acceleration value was aiming behind the
intersection.

In general this results in a greater possibility of finding solutions that satisfy all
conditions and results in a successful intersection. It can however also present a
danger if it takes too many tries to find a solution and the robot comes dangerously
close to the intersection point. There is also a risk that there is too much noise and
an erroneous acceleration is calculated that results in a collision. The emergency
brake therefore becomes crucial in this implementation to decrease the probabilities
of collisions. It is also of utmost importance to choose an appropriate guard distance
to further reduce the risks if there is substantial noise in the positioning.

4.6 The setup of the experiment

The setup of the experiment is critical as this is how the intersection controller is
tested in the way that fulfills the goals of the project. By testing the controller in
this way, the system is exposed to the true noise of both the robots and how they
execute control actions but also the noise/error of the location system which di�ers
from the simulation software.
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Figure 4.12: This figure represents the setup of the experiment to scale. The
anchors are represented by antenna symbols and are placed in three locations around
the intersection. Each robot has its path also mapped out using the dashed lines
in the figure showing the complete. The figure does not depict the controller or the
Wi-Fi network as their positions are not important to the experiment.

In figure 4.12 the full setup and paths that the robots are programmed to follow
can be seen. The three antenna symbols match where the anchors are placed for
the location system with each corresponding location. The paths of each robot are
depicted by the dotted lines that go through the intersection and then back to a
start point. This setup allows the robots to run the emulation over and over again,
measuring the real world robustness of the controller in preventing collision. In
the setup, the calculations are done on a centralized computer which communicates
its instructions to the individual robots through the Wi-Fi network. At each start
point the robots are given a random velocity between 0 and 0.3 m/s to replicate
an intersection and the randomness of the vehicles entering the intersection. The
top robot is programmed to hold its velocity as per the hybrid priority algorithm
described in 4.5.3. The bottom robot is then controlled to avoid collision with the
top robot as it travels through the intersection. Following the intersection crossing,
the robots then travel to start positions, switching places and continuing with a new
intersection crossing.
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The results of the di�erent scenarios previously discussed are put forward. These
scenarios aim to determine the quality of the algorithms, hardware, software and
general functionality of the entire system. As aforementioned, the controller al-
gorithm being tested is the hybrid priority optimization algorithm presented and
described in section 4.5.3.

The following figures show the results of 10000 position measurements done by the
UWB system around a single static point, which was placed as near to the center
of the intersection of the following tests as possible. This test was meant to give a
reasonable measurement of the accuracy of the positioning system around the area
of greatest importance to the experiment, the intersection.

Figure 5.1: The figure shows the resulting x- and y-coordinates following 10000
location measurements from the UWB sensors.

Additionally, the covariance matrix that was derived from this test is the same used
to represent the level of uncertainty for the observations used by the EKF. The
covariance of the observed data was determined from the reading of UWB sensor at
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the stationary point. The resulting covariance matrix is:

R =

S

WU
0.00031 ≠0.0000149 0

≠0.0000149 0.0000689 0
0 0 0

T

XV . (5.1)

The standard error that results from this ideal sample is 1.76 cm of the x-coordinate
and 0.83 cm for the y-coordinate. The measurement data is also visualized in fig-
ure 5.2 to 5.3 where it is possible to see that the data fits well within a normal
distribution curve.

Figure 5.2: The distribution of these 10000 location measurements in the x-axis
and a best fit normal distribution curve overlayed.

Figure 5.3: The distribution of these 10000 location measurements in the y-axis
and a best fit normal distribution curve overlayed.
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Figure 5.4: Measurements of the position from the predicted state, sensors and
filter as the robot moves with constant angular and linear velocity. Note that the
axis are shifted which deforms the otherwise circular motion.

To test the filter, one robot was first given a constant angular and linear velocity.
This made the robot move in a circle. The position from the predicted states x

k|k≠1

(predicted from a previously filtered state x
k≠1|k≠1

), the position from the filtered
state x

k|k and the observed position z
k

are plotted out in figure 5.4.

Figure 5.5: Measurements of the predicted state, sensors and filter as the robot
moves in a square. When it reached a point, it stood still for a second before moving
on, resulting in some point clusters around the points of the square.
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A similar measurement was made when the robot moves in a rectangular shape
where it is programmed to move to each corner in the rectangle. This result is
shown in figure 5.5.

5.1 Results of the experiment

Figure 5.6: The figure shows the distances travelled for each robot, calculated
from their respective starting points. In this case Robot 1 accelerates in order to
avoid collision whilst Robot 0 maintains constant velocity.

Figure 5.7: The figure shows the distances travelled for each robot, calculated
from their respective starting points. In this case Robot 1 decelerates in order to
avoid collision whilst Robot 0 maintains constant velocity.
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To show that the robots accelerate and decelerate in the real world setup, graphs
were produced showing distance they travelled from their starting points. Figures 5.6
and 5.7 show the results of running the hybrid algorithm with 2 meter guard distance.
Figure 5.6 shows the variable robot accelerating whilst 5.7 shows it decelerating.

Figure 5.8: The figure plots the velocities of the robots against time. The green
data represents the stable robot whilst the blue data is the variable robot. The initial
velocities are randomized and both travel to the ends of the intersection. After the
possibility of a collision disappears, the optimization of acceleration is disregarded.

Figure 5.8 shows the di�erent velocities of the two robots as they travel through the
intersection. It is important to remember that as soon as the risk of collision is zero,
the variable robot will disregard the demand of minimizing its acceleration and will
instead travel with a high acceleration to the end of the path. For the measurements
from the opposite situation where the variable robot reaches the intersection first,
and therefore does not need to accelerate with a high constant value, see figure A.3
in appendix A.4.
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Figure 5.9: The figure shows data gathered from three di�erent measurements.
The data itself is the length between the robots plotted against time. The blue and
green data were collected when the variable robot decelerated whilst the red data
was from when it accelerated.

In order to verify that the robots do not collide with each other, data was gathered
that shows the distance between the robots. Several measurements were taken and
three of these are presented in figure 5.9. As shown the distance never gets smaller
than 1 meter. The blue and green colors represent data gathered from when the
variable robot decelerates, whilst the red data is from when it accelerates.
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5.1.1 Controller results from a single measurement

(a) The graph shows the total travelled distance of the robots
as a function of time.

(b) The graph shows the di�erent speeds of the robots as a
function of time.
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(c) The graph shows the length between the robots as they
traverse the path.

Figure 5.10: The figures 5.10a, 5.10b and 5.10c show di�erent data collected from
the same measurement. Figure 5.10a plots the distance covered, 5.10b is velocity of
the robots and 5.10c is the distance between them. The blue lines represent Robot
1 which is the one that is controlled, while the green lines represent Robot 0 which
is the stable robot and travels with constant velocity. In this case the variable robot
mostly accelerated.

The figures and results presented in the previous section are all important and
relevant in their own regard, however showing those interpretations from the same
measurement becomes an interesting option as well. This is presented in figure 5.10
and 5.10a, 5.10b and 5.10c. This measurement covers the case where the variable
robot crosses the intersection first. For measurements regarding the other case where
the stable robot crosses first, see figure A.2 in appendix A.4.

5.2 System robustness for di�erent scenarios

Multiple tests were conducted in order to test the robustness of the system in the real
world. First and foremost, the initial goal of 50 intersections without collisions was
achieved. This with randomized initial velocities from 0.1 to 0.3 m/s and positive
and negative guard distance of 2 meters. The test was repeated several times, and
although 50 intersections were not observed each time because of time limitations,
the observed intersections did not result in collisions.

Furthermore, the initial velocity interval was changed to 0.1 to 0.5 m/s with the same
guard distance of 2 meters, in order to test the robustness. Although a collision was
not recorded over several continuous tests, it was still resolved that a larger guard
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distance was required to have more comfortable margins.

5.3 Simulation results

Using MobileSim, as presented in section 3.2.1.5, more results were able to be gath-
ered covering some areas that were not tested with the real robots. This includes
testing the robustness of the algorithms without having to consider real world limi-
tations such as space, equipment and setup time. The optimization of the controller
algorithm was tested, as well as di�erent noise levels and initial parameters. In the
real experiment, the goal was to achieve at least 50 intersections without collision,
but in the simulation it was downsized to 20 in order to gather more results.
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5.3.1 Controller in simulation

(a) Optimized acceleration

(b) Optimized deceleration

Figure 5.11: Simulation results of hybrid algorithm using 4 meters distance to
center, 1 meter negative guard distance and 2 meter positive. Randomized starting
velocities in interval 0.1 to 0.5. Figure 5.11a shows the case in the simulation were the
variable robot crosses the intersection first while optimizing its acceleration. Figure
5.11b shows the same thing but with deceleration and the stable robot crossing first.

Figure 5.11 shows two primary scenarios; one where the variable robot passes the
intersection first, and one where the stable robot passes first. This is shown in
figures 5.11a and 5.11b respectively. The robots are shown at several di�erent time
steps in the simulation, and together with the specific time step their velocity and
acceleration at that time is also shown. Through this information, the optimization
of their accelerations becomes clear. The data was collected using the parameters of
4 meters distance to center, 1 meter negative guard distance and 2 meter positive.
Randomized starting velocities in interval 0.1 to 0.5 were given to the robots.
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5.3.2 Controller in simulation with di�erent noise levels

(a) Noise 0.04 and no col-
lision

(b) Noise 0.1 and no colli-
sion

(c) Noise 0.15 and colli-
sion

Figure 5.12: Simulation results of hybrid algorithm using 4 meters distance to
center, 1 meter negative guard distance and 2 meter positive. Randomized starting
velocities in interval 0.1 to 0.5 and di�erent noise levels.

Simulating di�erent noise levels becomes an important feature of the simulator as
replicating a similar situation in the real world is di�cult. Figure 5.12 was generated
with the motivation of testing the robustness of the system in a di�erent way. It
shows how the di�erent values for the standard deviation of the noise a�ect the
intersection crossing drastically. Figure 5.12a shows a typical path of the robot
when the standard deviation is at 0.04, while 5.12b shows the same thing with
standard deviation at 0.1. Figure 5.12c with 0.15 standard deviation follows the
pattern but unlike the others, shows a way for a collision to manifest itself.
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(a) Noise 0 and 10 inter-
sections

(b) Noise 0.04 and 10 in-
tersections

(c) Noise 0.1 and 10 inter-
sections

(d) Noise 0.15 and 5 inter-
sections

Figure 5.13: The figure shows the hybrid algorithm traversing through the in-
tersection 20 times with di�erent noise levels. The guard distance was 1.0 in the
negative direction and 1.5 in the positive, whilst the velocity interval was from 0.1
to 0.5. In the case with standard deviation of noise 0.15, shown in figure 5.13d, only
5 intersections were recorded since collision could not be avoided with the selected
guard distance.

Figure 5.13 shows what was recorded after 20 intersections of the controller for
di�erent noise levels and using the hybrid algorithm. In the case with 0.15 standard
deviation, shown in 5.13d, only 5 intersections were recorded since collision avoidance
could not be guaranteed for more crossings.
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5.3.3 Controller in simulation with di�erent velocity inter-
vals

Figure 5.14: The figure depicts the path travelled by the two robots when the
starting velocity interval goes from 0.1 to 0.8 m/s. The pathing is a result of 10
intersections.

Another aspect of interest is testing di�erent velocity intervals. This because of the
fact that travelling faster can result in a small angular error not correcting itself
quickly enough, resulting in a higher probability of collision. On top of that it can
also lead to overshooting which can lead to aggregated errors in the calculated angle.
Figure 5.14 shows the results of a simulation with an initial velocity interval ranging
from 0.1 to 0.8 m/s. The plotted path is a result of 10 intersections.

5.3.4 Controller in simulation with decreased starting dis-
tances

Figure 5.15: The figure shows the pathing of the two robots as their distances to
the intersection point are set to 2 meters. The starting velocity interval is from 0.1
to 0.5 and the figure shows the results from 10 intersections.
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It is also worthwhile to try to test the controller with decreased distance to the
intersection point. Increasing the distance would only improve the controller since
it would have more time to correct itself from the filters point of view, and it
would also be more likely to find better acceleration solutions. On the other hand
decreasing the distance could prove to be troublesome since it could not have enough
time to find a solution, or if its initial angle is inaccurate, it could take too long to
correct it. The room for error also decreases given that the robots are always close
to each other. The results of a simulation with decreased distance of 2 meters to
the intersection point, is shown in figure 5.15. The velocity interval was from 0.1 to
0.5 and it shows the result of 10 intersections.
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This chapter contains an analysis of the gathered results. Di�erent reasons and
causes for the successes and failures of the system are discussed and potential error
sources are presented.

6.1 General analysis of the system

The system and the implementations used proved to be as e�cient, flexible and
robust as desired. Several limitations arose as consequences of the equipment and
software, regardless these were solved by specific algorithms.

Several interesting conclusions can be reached from reviewing the gathered results.
Looking for the guard distance in the results is a way of evaluating the quality of the
algorithm as its magnitude should never be less than the chosen value of 2 meters.
Figures 5.6 and 5.7 show that, in the case with deceleration, the guard distance is
found exactly at 25 seconds. The reason why it is not visible in the same way when
it accelerates is that the robot stops when it reaches it destination on the other side
of the intersection, which in this case was placed before the guard distance. It is also
worth remembering that because of the possibility of iterative decrease or increase
of guard distance, that it is not certain that the robot will always land on the initial
guard distance, in spite of where the final destination is. Regardless, the fact that
the di�erences between the robots are not smaller than the magnitude of the guard
distance shows that the acceleration values chosen by the algorithm are desirable.

To clearly show that the robots do not collide with each other as they travel through
the intersection, graphs showing the length between them were produced and pre-
sented in the results. Looking at figure 5.9, that shows this from three measure-
ments, it is clear that running multiple measurements still presents reliable and
similar results, also regardless if the variable robot accelerates or decelerates. The
lines showing data from the case of the stable robot passing the intersection first
are relatively straightforward. The distance between the robots decrease and then
plain out when the stable robot reaches the intersection point, until they both reach
their end points and lead to the increase in distance between them. Looking at the
red line representing the case where the variable robot accelerates, one notices a soft
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spike at 28 seconds before the distance is again decreased followed by an increase,
like in the other measurements. The valley most likely represents the case that the
controllable robot passes the intersection point, leading to the robots being as close
as possible before distancing themselves again until the controllable robot reaches
its final point. This would be the spike at 28 seconds, and afterwards the uncontrol-
lable robot will have moved through the intersection, again decreasing the distance,
until it passes it and reaches its final point leading to the increase of length between
them.

Also notable is the fact that the smallest distance between the robots is less than
the guard distance of 2 meters. This is however due to the fact that the guard
distance does not result in the smallest distance between the robots. Depending
on the di�erence in speed between the robots after one has crossed the intersection
point, the distance between them might get smaller.

Having analyzed the graph mentioned in the previous paragraphs, it becomes clear
that having other information of the intersection could be helpful in figuring out what
transpired at certain times. This was the reason figure 5.10 was created and shown.
Having the same times present in all of the graphs makes it tremendously easier
to link them together. The measurement covers the case where the variable robot
passes the intersection first, and immediately it is possible to verify the explanation
given for the spike in the red line from figure 5.9. Here it is clear that at 20 seconds,
the controllable robot has reached its end point since 5.10a shows that it does not
cover more distance after that time, and 5.10b shows that it has 0 velocity after
that time as well. Now looking at figure 5.10c it can be seen that the graph shows
a soft spike at 20 seconds, precisely the same as with the red line in 5.9.

6.1.1 The performance of the UWB sensor grid

As is shown in the results and particularly figure 5.1, the precision of the sensor
grid is lacking especially when considering the distances that are being measured.
Having such an error for the x- and y-coordinates over a distance of only few meters
can be seen as disappointing when considering the needs of the project. There are
two factors that make this system poor.

The first factor is the issue of error in the x- and y-coordinates. These in the ideal
scenario measured were around ±1.5 cm as seen in figure 5.1. It is possible that this
can become worse as presented in the diagrams 5.2 and 5.3. This error can be an
issue when compared to the size of each robot, which is 38 cm, resulting in this error
being 8%. When compared to the guard distance however this is well covered by
the 2 meter boundary.

A second factor that e�ects the robots is the inability of the location system to
determine an accurate orientation of the robots. This is referred to and discussed
in section 6.1.2.
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It is interesting to note the di�erence between the uncertainty on the x-axis and
y-axis. The spread of the points in the negative x- and positive y-direction happens
to be the same direction where an anchor was not placed. This is likely explained by
the positioning of the anchor antennas in a triangle resulting in a greater precision
in certain directions due to the unequal orientation of the anchors and the robot’s
antenna.

Despite these limitations, the UWB system still has advantages. When looking
outside of this emulation, into larger and more practical aspects of implementing
a system such as intersection control, the most common areas of usage are tra�c
flow on public roads and other forms of transport and logistics systems. Due to
the larger scale that these could be implemented with, the positioning systems also
needs to scale with said systems. These ranging from similar radio based positioning
systems all the way to the GPS system. Additionally, these systems need to have a
robust way of handling positioning data in anticipation of unexpected changes such
as environmental obstacles. In this way, the tools that are used in this project are
highly applicable to a real world scenario.

Many of these systems build upon the same concepts and functions, e.g. trilat-
eration, using similar algorithms, such as gradient descent, to solve these location
problems. To look at GPS more closely, the standard measurement error can be
upwards of 3 meters [23]. As a matter of scale this makes it comparable to the sys-
tem implemented in this emulation. Since these comparisons can be made, solutions
found in this report could be more generally applicable as well.

6.1.2 Positioning and angle calculation during filtering

The results gathered in section 5 compare the sensor data with the predicted state
and the filtered state that is used to more accurately obtain the location of the
robots. In figure 5.4 and figure 5.5 it is clearly seen that the all of the states
(x, y) plotted follow the actual path that is travelled by the robot. The points
representing the filtered states also appear to be a mean of the predicted and the
observed position, both which often di�er from each other.

The purpose of the observation is to restrict the noise from the predictions to ag-
gregate to unrealistic values. While the predicted state seems to deviate from the
actual path at times, the observed state corrects this error. Likewise, the prediction
will prevent the observed state from recording an incorrect action such as a sudden
sideways movement. This is seen in figure 6.1, where the observed measurement
shows a sideways movement, most likely due to a noisy measurement.
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Figure 6.1: The figure highlights an area of where the predicted state prevents the
observed state from recording an incorrect action.

The angle of the robot, which is the third state that needs to be calculated, does not
have any correction in the filter, but instead is an estimation based on the previous
angle, a time step and the robot’s angular velocity. Therefore this state allows for
errors to aggregate, where eventually the angle deviates too much for the system
to work properly, ex. find it’s target point. To correct this, a way to observe the
robots actual angle would be ideal, such as an electronic compass. This could then
be sent to the filter and prevent the aggregated errors from occurring. An alternative
method for correcting the angle is by using the positioning data. If introducing a
calibration mission, the actual angle of the robot can be derived by comparing the
current position with the previous position using trigonometry. This has the e�ect
of zeroing the system’s accumulated orientation error as shown in the figure 6.2.

Figure 6.2: This is an example of a calibration mission that the robot can run
after the intersection in order to fix faulty orientation data in the robot. The red
dotted vector shows the angle of orientation that the robot believes it has when
starting on its trajectory as shown by the black vector. Over time this vector is
show to be fixed as the robot accumulates more accurate position data to compare
its orientation with.
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The solution implemented and described in section 4.2.4 e�ectively minimized the
errors that came from using only the predicted angle of the robot in the system,
however this requires the robot to be started in a known angle at the start of any
run. Also, the more the robot changes between the fixed angular velocities, the more
errors will aggregate in the system.

6.1.3 Evaluation of hybrid algorithm

The hybrid algorithm used to gather the results and that is the primary algorithm
used throughout the project can be evaluated in many ways. The first and most
basic evaluation is whether or not it results in collision avoidance, which was an-
swered in section 6.1. Another more subtle aspect is whether or not there is a
visible optimization, and if that optimization is desired and leads to an improved
system. Looking at figure 5.8, which shows the speed of the robot, one can see the
optimization algorithm minimizing the absolute acceleration value. At the start of
the measurement the variable robot has a relatively high acceleration which leads
to a rapid increase of velocity. However a couple of seconds later it finds a smaller
acceleration value which it then applies until the risk of collision is gone, which leads
to an end to the optimization and it simply assumes a constant high acceleration.
Comparing the slope of the graph from 10 to 12 seconds to the slope from 12 to 27
seconds, makes it clear that the new acceleration value is smaller than the initial
one. A similar occurrence can be noted in figure 5.10b. Here the variable robot
switches acceleration values at about 10 seconds and once again a smaller absolute
acceleration value was found, leading to the change in velocity.

A tangible advantage of using the hybrid algorithm as opposed to solely the priority
protocol, is apparent when considering the advantage of reevaluating the acceleration
continuously. Before heading to the intersections, the robots aim themselves to the
points after the intersection. Due to noise and miscalculations, they can believe that
they are aimed correctly and start moving, resulting in paths shown with the higher
noise levels in figure 5.13. The algorithm will attempt to correct their movement,
but if the acceleration is not recalculated, the distance travelled will not match
what the robot calculated at the start of the problem, e�ectively meaning that the
calculated acceleration value that would avoid collision does not necessarily do so.
With the hybrid algorithm, the acceleration is recalculated as the robot travels to
its end point, meaning that it considers new distances all the time. There can still
be errors with this method, but the risk is reduced.

After having optimized the algorithm for the priority based protocol, one possibility
worth considering is whether or not the same thinking could be applied to the
reservation based system. Initially this might seem feasible and even preferable, but
considerable di�culties arise when taking into account that acceleration commands
are only given and calculated once the robot is in fact inside of the intersection. This
means that it cannot choose to stop earlier in order to decrease the final velocity. If
the final velocity is greater than 1.0 then you cannot decrease it and if you use the
emergency brake, you will stop in the middle of the intersection, causing a collision.
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Doing an initial calculation at the start of the intersection is possible since if you
stop immediately there then a collision is impossible, however in order to optimize
the control action you need to continuously evaluate the acceleration, which leads
to the previously mentioned problem. This was a considerable factor when choosing
the hybrid of the optimization and priority solutions as opposed to the reservation
solution, for the algorithm used in this project.

6.2 Simulation analysis

The simulation results presented in section 5.3 can give more information regarding
the algorithms that the gathered results from the real-world experiments cannot.
Glancing at 5.11a, the optimization becomes even more evident. Remembering
that a predefined lower limit of the acceleration is 0.006 m/s2, it becomes rather
impressive of the system to first find a solution 0.006007 that close to the minimal
value, but then to minimize that to 0.006003 truly shows the optimization working
as intended. The optimization is also seen in 5.11b where it continuously decreases
at all three time steps.

The simulations with the di�erent noise levels is where the simulation completely
separates itself from the real world experiment in regards to what is easily possible
to test or not. Looking at the results gathered and shown with figure 5.12 and figure
5.13, the limits of the controller become apparent. For instance, trying to prevent
an intersection with noise standard deviation at 0.15 becomes near impossible when
the trajectory is as uneven and unpredictable as shown in figure 5.13d. Noise levels
ranging from 0.04 to 0.1 seem however to be acceptable, and seeing as the UWB
produces errors at about 2 centimeters, it should not present any impossible scenar-
ios for the controller. This is also what was seen in the real world experiments since
no collision was recorded and no path like that from figure 5.13d. If for instance
such a path was present, it would definitely show in the measurement from 5.9 as
they would not be similar at all. Notice however that the results gathered here are
from 20 intersections, excluding the one from 5.13d, and that the pathing would de-
teriorate with more runs. Nevertheless, the general pattern shown in the simulation
results should persist and definitely represent a generous estimate of what would be
expected at 50 intersections as well.

Besides noise disrupting the system, there is another source of error that leads to
erroneous pathing. That is overshooting and is shown quite accurately in figure
5.14, where an increased starting velocity interval leads to higher velocities and
acceleration values on top of those lead to overshooting. Overshooting in turn
leads to miscalculated angles which leads to more overshooting and in general a less
robust system. A comparison between the two scenarios where the system becomes
less robust, that is between this figure and figure 5.13d, shows several similarities.
Foremost, neither of them avoid collision for 20 intersections, even if the one with an
interval containing higher velocities is still more robust than the noisy model. This
can be seen from looking at the figures and comparing their paths or from a more
theoretical point of view; in the case with the interval containing higher velocities it
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only overshoots if certain conditions are met whilst the noisy model is always noisy.

A very important factor that cannot be neglected when discussing these scenarios,
is the guard distance. The guard distance’s primary use is to adjust the system for
how much deviation the robot has from its ideal path when it travels through the
intersection. These simulations were all ran with the same primary settings, meaning
that they had a guard distance adjusted for relatively low noise and a lower velocity
interval. Changing the constants used for the angular velocity when the robots are
aiming too far away from the point they are going to, could also reduce the risk of
collision at high velocities. Those constants being too low could result in the robot
not having enough time to correct its direction while its traveling to and through
the intersection. Adjusting the guard distance for the problem parameters would
definitely increase the robustness of the system. However regarding the case with
the high noise, the model is very unpredictable which lessens the e�ect of the guard
distance.

A similar mindset should be taken when decreasing the distance from the starting
points of the robots to the intersection. The results from doing this is shown in
figure 5.15, where the distance was reduced from the standard 4 meters to 2 meters.
This lead to an increased probability of collision, mainly due to the same problem
as with the high velocities, that the robot does not have enough time to adjust its
direction when its travelling to its end point. An adjusted guard distance would
also lead to much greater robustness in this case.

6.3 System robustness analysis

From both the simulations and the real world experiments, it was clear that the
parameters we give the algorithm are co-dependant. For instance if the system is
to have an interval with higher velocities, it is necessary that the guard distance
is increased. In general the system will become more robust the greater the guard
distance chosen, since the possibility of collision will decrease due to greater distances
between the robots. However if this was the sole purpose of the controller, it is
easiest to instantaneously give the variable robot zero acceleration and always avoid
collision. This obviously is not a desired algorithm and we can add flexibility to the
demands of our algorithm. The smaller the guard distance, the more e�cient the
system and algorithm will appear. Therefore one wants to choose the smallest value
for the guard distance that does not result in a collision. It is also in our interests
to have the largest possible starting velocity interval since that shows the flexibility
of the system in the way that it can handle a greater array of scenarios. In this
equation one also needs to consider the fact that the higher the velocities of the
robot at the start, the greater the possibility of a collision. Hence it is up to the
user to decide its desirable to have a large starting velocity interval and then also
large guard distances and less fluidity, or if the opposite of having smaller guard
distances and a more fluid system and sacrifice flexibility.
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6.4 Further development on the intersection con-
troller

The algorithms and methods deployed can be improved upon in the future given
more resources and time. Several of these possible improvements are presented
below.

6.4.1 Improved robustness

The system, although meeting the desired robustness, could still be improved upon.
The algorithm theoretically guarantees that there will be no collisions in the inter-
section at the set velocities used in the tests. The robustness, however, was reduced
over time due to the poor calculation and correction of the states, specifically the
robot’s angle. If further tests and optimization were to be made on system, this
problem needs to be able to be corrected. This will allow tests to see if the the-
oretical zero-collision robustness actually is achievable, meaning more consecutive
intersections than previously obtained is possible. A larger variety of algorithms
could also be tested on the system to compare robustness or various optimization
methods. Gathering data from the implementation of the reservation and priority
solutions and comparing that to the hybrid algorithms could also further support
the superiority of the hybrid algorithm.

To create a more real-world applicable scenario, the system can be equipped with
more sensors that are of a higher accuracy. This includes cameras, radars, lasers and
other equipment that are currently being used in the development of autonomous
vehicles. With this extra data, the system would be able to determine its state with
greater certainty. This would allow for opportunities such as emergency brakes,
obstacle avoidance, lane detection and other functions that will help navigate the
vehicles through an intersection, as well as further prevent any accidents from occur-
ring. Additionally, this increased robustness could allow for greater liberties being
taken in regards to optimization and thus e�ciency.

6.4.2 Further solution possibilities

In a real scenario, an intersection will have to handle more than two vehicles trying
to cross at the same time. An intersection will most likely also contain additional
lanes and more intersecting roads. It would therefore be reasonable to improve the
system to be able to handle this. The current algorithm used would not be directly
applicable for such scenarios, since it assumes that there are two vehicles going into
the two way intersection and only one robot needs to adjust its speed to the robot
with priority.

Previous studies have been made on more appropriate approaches for handling these
various scenarios. One approach is creating a grid of sectors in the intersection that
will be reserved by vehicles according to their lane or route, if they need to turn for
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6. Discussion

example [3].

The final solution used in this report is as described a hybrid of a optimized and
rule based solution. Pure optimization solutions are however possible [1]. These
solutions would not only optimize the control actions of one vehicle but for the
whole system, finding the most e�cient solution possible. The complexity of these
solutions compared to the ones in this report are significantly increased however.
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7
Conclusion

In conclusion, the purpose of the project was to look at ways that fully automated
vehicles can deal with the problems of road intersections. The demands were a
robust system that prevents collision and also optimizes the movement of the vehicle
through the intersection. The limitation of the problem is that it only applies to a
two-vehicle intersection with only one lane on each road.

The system developed consists of the vehicles, where two programmable robots were
used, as well as a location system and computers running the ROS code. The robots
were then programmed to travel in a self intersecting continuous path. An algorithm
was developed which provides priority to one of the robots that travels into the
intersection, where the other robot’s velocity would be optimized to minimize the
control actions and to avoid collision.

The resulting system allowed for the robots to achieve at least 50 consecutive in-
tersections in each trial. Furthermore, proof of the optimization of the movement
could be recorded to prove that the algorithm worked as expected.
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A
Appendix

A.1 Start-up code and instructions

In this section, the necessary steps needed to run the intersection problem are de-
scribed.

First three computers are needed with ROS and ROSARIA installed, which means
they need to run or emulate Ubuntu. In order to install these, look at the re-
spective wikis. On these computers, open the terminal and change directory to
catkin_ws/src/. Next use the command git clone https://github.com/Olodus/
SSYX02Group2.git and then go to the catkin_ws directory and use catkin_make.

In the real world place the anchors on appropriate positions and add the measure-
ments to the Measure.py file in the directory controller/last_year_code/. Connect
two computers to the robots that are going to cross the intersections. Place a UWB
on each robot and connect them to the computers. Connect all the computers to
the same Wi-Fi network and make sure that they all have the correct bash-files
in regards to the IP-numbers. Then connect the computers that are linked to the
robots to the central computer by changing the bash-file and writing

export ROS_MASTER_URI=http://#IP of central Computer#:11311

Start a roscore on the centralized computer and then start the servers and RosAria
nodes on the computers linked to the robots. Start the RosAria node through

rosrun rosaria RosAria __name:=RosAriaN

and to start the server, write

rosrun controller get_coord_server.py __name:=get_coord_serverN
get_coord:=get_coordN _ip_of_uwb:=#IP of UWB#

The N should be set to 1 for the robot starting in the center of the coordinate

I

https://github.com/Olodus/SSYX02Group2.git
https://github.com/Olodus/SSYX02Group2.git


A. Appendix

problem and 2 for the one starting displaced.

Now the bash-files can be ran on the central computer to initiate the algorithms and
programs. To get the priority problem running, simply use the command

bash robot_run.bash -priority
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A.2 Images of robot setup and UWB

(a) Image of the robot setup (b) Image of a UWB sensor

Figure A.1: The figure shows two images, one of the robot setup and one of the
UWB.
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A.3 API and Code documentation

In these sections there will be instructions for how the implemented code is used
and what it does.

A.3.1 RobotHandler

The RobotHandler is an abstraction adding additional and more complex commands
over the ones already o�ered by RosAria.

RobotHandler provides a couple of Services representing the di�erent missions.

A.3.1.1 Subscribed topics

Filter/measurements

Topic outputting nav_msgs/Odometry messages describing the state of the
system. Uses this data for maneuvering.

A.3.1.2 Provided services

/get_state

Returns the current state of the robot as a Odometry message.

/is_ready

Returns whether the robot is currently executing a command or not. Is used to
poll if a new mission can be sent.

/stop

Ends the mission currently executed by the robot and makes the robot stop
any movement.

/set_speed

Sets the linear speed of the robot. Provides free movement paired together
with /set_ang_vel and /set_acc.

Input arguments:

std_msgs/Float
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Returns:

Returns an error message if the robot is already executing a mission (except
/set_ang_vel and /set_acc). Can be called while executing the
/steer_towards mission A.3.1.2 to control movement along given path.

/set_acc

Sets the acceleration/deceleration of the robot. Provides free movement paired
together with /set_ang_vel and /set_speed.

Input arguments:

std_msgs/Float

Returns:

Returns an error message if the robot is already executing a mission (except
/set_ang_vel and /set_speed). Can be called while executing the
/steer_towards mission A.3.1.2 to control movement along given path.

/set_ang_vel

Sets the angular speed of the robot. Provides free movement paired together
with /set_speed and /set_acc.

Input arguments:

std_msgs/Float

Returns: Returns an error message if the robot is already executing a mission
(except /set_speed and /set_acc).

/aim_at_point

Aims the robot towards a given point.

Input arguments:

geometry_msgs/Point

Returns:

Returns an error message if the robot is already executing a mission.
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/go_to_point

Moves the robot towards to a given point.

Input arguments: geometry_msgs/Point

Returns:

Returns an error message if the robot is already executing a mission.

/follow_path

Moves the robot following to a given path.

Input arguments:

nav_msgs/Path

Returns:

Returns an error message if the robot is already executing a mission.

/steer_towards

Puts the robot into "steer"-mode. During this mode, the robot will
continuously aim itself as to follow the path formed between the location of the
robot when the mission was initiated and the point given as argument. User
can call set_speed and set_acc to freely control the speed of the robot along
the path.

Input arguments:

geometry_msgs/Point

Returns:

Returns an error message if the robot is already executing a mission.
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A.4 Additional measurements

(a) The graph shows the total travelled distance of the robots
as a function of time. The blue line represents Robot 1 which
is the one that is controlled.

(b) The graph shows the di�erent speeds of the robots as a
function of time.
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(c) The graph shows the length between the robots as they
traverse the path.

Figure A.2: The figures A.2a, A.2b and A.2c show di�erent data collected from
the same measurement. Figure A.2a plots the distance covered, A.2b is velocity of
the robots and A.2c is the distance between them. In this data set, the controllable
robot decelerates and reaches the end of the path after the uncontrollable robot.

Figure A.3: The figure shows the speeds of the robots as they travel to and through
the intersection.
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