
{}

1

11

10281

10265

10378

10267

10379

10380

10381

10083

10280

10287

10288

10243

10264

10355

10057

10292

10293

10056

10058

10294

10055

10295

10444

10445

10446

10447

10297

10385

10386

10291

10054

10296

10427

10428

11007

9933

9934

9935

9

54

32

38

93

10058

10294

10055

10295

10297

10385

10386

10291

10054

10296

10444

10445

10446

10447

10057

10355

10292

10293

10056

9933

9934

9935

10287

10288

10243

10264

58

59

10058

10294

10055

10295

10444

10445

10446

10447

9933

9934

9935

10297

10385

10386

10291

10054

10296

10287

10288

10243

10264

10057

10355

9412

10292

10293

10056

10291

10297

10385

10386

10054

10296

43

44

45

39

40

69

6

42

49

10281

10265

10378

10267

10379

10380

10381

10083

10279

10280

26

10427

10428

11007

9933

9934

9935

72

10057

10355

10292

10293

10056

10444

10445

10446

10447

10287

10288

10243

10264

5

70

103363100822102217103067

71

103363100822102217103067

Weighted Set Containment in Redundant
Data Sets
Master’s thesis in Computer Science: Algorithms, Languages & Logic

JOHAN WERMENSJÖ
JOHAN GRÖNVALL

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2017

Master’s thesis 2017

Weighted Set Containment in Redundant Data
Sets

JOHAN WERMENSJÖ
JOHAN GRÖNVALL

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2017

Weighted Set Containment in Redundant Data Sets
JOHAN WERMENSJÖ
JOHAN GRÖNVALL

© JOHAN WERMENSJÖ, 2017.
© JOHAN GRÖNVALL, 2017.

Supervisor: Peter Damschke, Computer Science and Engineering
Advisor: Oscar Bäckström, Volvo Group IT
Examiner: Devdatt Dubhashi, Computer Science and Engineering

Master’s Thesis 2017
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 10 00

Cover: A set-trie constructed by the greedy algorithm proposed in this thesis.

Typeset in LATEX
Gothenburg, Sweden 2017

iii

Weighted Set Containment in Redundant Data Sets
JOHAN WERMENSJÖ
JOHAN GRÖNVALL
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Given a set family F and a query set Q, weighted set containment is the problem of
finding the set C ∈ F with the largest sum of weights, such that C ⊆ Q, where every
element has a corresponding weight. This problem was investigated at the request
of Volvo Group IT, who rely heavily on weighted set containment queries in many
of their applications. In this thesis we show that weighted set containment can be
solved efficiently using trie based preprocessing when applied to redundant data sets.
We show that finding the most efficient trie which represents F is NP-complete and
we introduce a number of approximation algorithms. We show through empirical
testing that some of our algorithms outperform state-of-the-art methods for similar
problems when applied to Volvo’s particular data set.

Keywords: trie, set-trie, set containment, weighted set containment.

iv

Acknowledgements
We would like to thank Volvo Group IT for the opportunity to work with them
and our supervisor at Volvo Oscar Bäckström for giving us the freedom to take the
project in the direction we wanted. We would also like to thank our supervisor at
Chalmers, Professor Peter Damaschke for his advice and in particular his idea to
show NP-completeness of the set-trie problem by reduction from vertex cover.

Johan Wermensjö, Gothenburg, June 2017
Johan Grönvall, Gothenburg, June 2017

vi

Contents

List of Figures x

List of Tables xi

1 Introduction 1
1.1 Aim . 2
1.2 Scope . 2
1.3 Problem Definition . 3

2 Theory 4
2.1 Trie . 4

2.1.1 Set-trie . 5
2.2 Set Containment Join . 5
2.3 Simulated Annealing . 6
2.4 Evaluation . 7

2.4.1 Just-In-Time Compilation . 7
2.4.2 Memory Management . 7
2.4.3 Programming Pitfalls . 8
2.4.4 Java Microbenchmarking Harness 8

3 Linear Search 9
3.1 Baseline . 9
3.2 Hashed Linear . 9
3.3 Lazy Fetch . 10

4 Set-trie 11
4.1 Search . 12

4.1.1 Simple Traversal . 12
4.1.2 Score Bounded Search . 13

4.2 Optimal Set-trie Problem . 15
4.2.1 Proof of NP-completeness . 17
4.2.2 Related problems . 18

4.3 Greedy Approach . 18
4.3.1 Implementation . 19
4.3.2 Time Complexity . 19
4.3.3 Alternative Implementation 20
4.3.4 Optimality . 20

viii

Contents

4.4 Greedy Variations . 23
4.4.1 Group Based Approach . 23
4.4.2 Intersection Based Approach 24
4.4.3 Disqualification Probability Based Approach 24

4.5 Global Ordering . 25
4.6 Simulated Annealing . 26

4.6.1 All Possible Solutions . 26
4.6.2 All Solutions Based on Global Orderings 27

5 Results 28
5.1 Linear Search . 28

5.1.1 Search Time on Cached Data 28
5.1.2 Search Time on Non-cached Data 29

5.2 Set-trie . 29
5.2.1 Search Time . 29
5.2.2 Node Count . 32
5.2.3 Preprocessing time . 33

6 Conclusion 34

Bibliography 35

A Optimized Greedy Algorithm I

ix

List of Figures

2.1 Shows a trie containing the strings ”set”, ”setup”, ”sets”, and ”up”.
Nodes represent characters and end nodes are indicated by a thicker
outline. 4

4.1 On the left, a graph representation of a linear search with the set
family {1, 2, 3, 4, 5}, {1, 2, 3, 7, 10}, {1, 4, 5, 8, 14}, {1, 4, 6, 9, 12}. On
the right, a set-trie containing the same elements. Every node is an
element and every path from the root node to an end node represents
a candidate set. The end nodes are indicated by a thicker outline. . . 11

4.2 A score-bounded set-trie, containing the candidate sets {7, 2, 3, 4},
{7, 2, 5}, {7, 4, 5}, {7, 4, 6}. The maximum potential score is written
to the right of every element number. The weights are not visualized,
but are all set to one. 14

4.3 A simple example of how the greedy algorithm can create a subop-
timal set-trie. On the left, the set-trie constructed by the greedy
algorithm and on the right the minimum set-trie. 21

4.4 An example of how the greedy algorithm can create a suboptimal
set-trie. On the left, the set-trie constructed by the greedy algorithm
and on the right the minimum set-trie. 22

4.5 The relation between the objective functions Ui and Ud (see func-
tions 4.2 and 4.3). The data points are represents set-tries for ap-
proximately 30, 000 set families built by the greedy algorithm, using
a sample of 2000 query sets for the estimation of disqualification prob-
abilities. The color highlights the value of Ud from blue (low) to red
(high). 25

x

List of Tables

5.1 The search time for linear search algorithms with cached data. 29
5.2 The total search time for linear search algorithms with non-cached

data. 29
5.3 The search time of the different variations of the greedy algorithm

and how they compare to the search time of the original baseline
algorithm previously in place at Volvo. 30

5.4 The search time of the different variations of the greedy algorithm
using the score-bounded search strategy. 30

5.5 The search time of the global order strategy, and the best performing
approach presented for comparison. 31

5.6 The search time of the different variations of disqualification probabil-
ity. Greedy-DP refers to the approach of using the Greedy algorithm
but using the disqualification probability instead of frequency to se-
lect elements. GlobalOrder-DP, sorts the elements with descending
disqualification probability. The Greedy-DP-Tiebreaker algorithm is
the same as the Greedy algorithm but in the case of a tie, the element
with the highest disqualification probability is chosen. 31

5.7 The average number of nodes in the set-tries built by the different
algorithms. 32

5.8 The time required to preprocess the data using the different algo-
rithms with cached data. 33

xi

1
Introduction

Set containment is the problem of determining whether a set is a subset of another
set. It is a natural and ubiquitous problem found in many areas of Computer
Science. This thesis deals with what we call weighted set containment, which is
used in an algorithm at Volvo Group IT to find relevant information for a specific
vehicle. The primary purpose of this thesis is to optimize this algorithm and to
investigate how preprocessing can be utilized to improve the performance of weighted
set containment queries.

The algorithm is used in many different applications at Volvo, some of which are
limited by the performance of the current algorithm. In order to compensate, some
applications precompute the results for vast amounts of possible inputs to maintain
acceptable performance. If a significantly faster method can be developed, these
limitations can be lifted and precomputation can perhaps be avoided entirely. In
addition to the clear benefits for Volvo, since the problem is quite natural and can
be applied to many areas, theoretical research regarding the problem could prove
useful in many different domains.

The current algorithm at Volvo outputs the best fitting descriptions, given a de-
scription of a vehicle and a set of descriptions that map information to vehicles.
The descriptions are modeled as sets of attributes and the best fitting information
description(s) are the one(s) with the highest score. The score is calculated by giv-
ing a point for every attribute that exists both in the vehicle description and in the
information description. If an attribute is present in the information description
but not in the vehicle description, then the information description is disqualified
i.e. it is not considered a valid output. There are also certain attributes which can
disqualify but give no points.

In a more general sense, the problem can be seen as computing the highest scoring
set(s) among a family of candidate sets F = {C1, C2, ..., Cn}. A set is only valid if it
is a subset of the so called query set Q. Every element in either a candidate set or
the query set corresponds to an attribute. Since not all attributes award the same
score, each element xi is associated with a corresponding weight w(xi).

The problem is similar to set containment join, see section 2.2, which is a basic op-
erator in all modern data management systems and has a wide range of applications
[1]. Weighted set containment can be solved by first running a set containment join,
and then linearly computing the highest scoring set from the returned pairs. The
state of the art solution for solving set containment join involves adaptively creating

1

1. Introduction

a prefix tree and an inverted index from the input data during the runtime of the
algorithm [1]. This solution would be performing a lot of unnecessary computations,
even if it were to use the current state of the art algorithm for set containment join.
This is because set containment join solves a more general problem.

The similarities between the two problems suggest that weighted set containment
can be solved efficiently using similar data structures. Furthermore, having these
data structures already preprocessed as opposed to adaptively created, could prove
very efficient.

1.1 Aim

The primary goal of the project is to reduce the execution time of Volvo’s current
algorithm. Additionally, it aims to investigate whether preprocessing can be utilized
to improve the search strategy.

Although the problem is simpler than set containment join and can be solved by
a linear search strategy, there are still several potential areas of improvement, es-
pecially given the opportunity to preprocess the data. Firstly, the set containment
problem could be solved with trie structures [2]. Secondly, smarter search strategies
that realize earlier on that the highest scoring candidate has been found, could be
implemented. Finally, data points that do not change the outcome of the search
could be removed in the preprocessing step.

1.2 Scope

This thesis presents and compares methods based on the particular data set at Volvo
Group IT, other data sets could end up with very different results. Implementation
of the different strategies are done using Java and SQL, and no other languages or
tools are considered. This is because it is mainly the relative performance that is
relevant. The chosen languages are therefore, for simplicity, the same as the ones
used by Volvo. Furthermore the thesis does not consider the performance of different
database or storage technologies, but rather focuses on the algorithm itself.

The algorithms are primarily evaluated through empirical testing and the algorithm
currently in use at Volvo serves as a baseline for comparison. All tests are based on
a subset of the actual data set, due to the large amount of data.

2

1. Introduction

1.3 Problem Definition

Let F be a family of n candidate sets F = {C1, C2, ..., Cn}. Denote the cardinality
of each candidate set with mi such that ∀Ci ∈ F, mi = |Ci| and denote m =
max({|Ci| : Ci ∈ F}). Let U = ⋃

Ci∈F Ci and let each element xi ∈ U have
a corresponding weight w(xi) where w : U → R+. The sum of weights of any
candidate set Cj,

∑
xi∈Cj

w(xi) is referred to as its score. We define the weighted set
containment problem as finding the candidate sets Cj with the highest score such
that Cj ⊆ Q, where Q is the query set.

3

2
Theory

This chapter describes topics relevant to weighted set containment. Additionally,
the general optimization method simulated annealing is briefly described. Finally,
the problem areas that affect the practical evaluation of our proposed methods are
elaborated upon.

2.1 Trie

A trie is a search tree used for storing sets of sequence data or for representing an
associative array, where the key is usually a string [3]. The main advantages with
tries is their fast retrieval time, easy updating, convenience in handling arguments
of diverse lengths and their ability to take advantage of redundancies in the stored
data [4].

{}

s

e

t

u

p

s

u

p

Figure 2.1: Shows a trie containing the strings ”set”, ”setup”, ”sets”, and ”up”.
Nodes represent characters and end nodes are indicated by a thicker outline.

4

2. Theory

When used for strings, every node in a trie represents a character and every path
from the root node to an end node represents a stored word. Figure 2.1 shows a
trie, notice that the commonly occurring substring "set" is only stored once. This
makes tries an efficient data structure for storing redundant data. However, the
data structure is unable to take advantage of redundancies that occur later in the
string, if it is prefixed by a unique substring. For example, the substring ”up” in
figure 2.1 occurs twice in the set but is not compressed since it in the second case is
prefixed by ”set”.

2.1.1 Set-trie

The name ”set-trie” is used by Savnik [2] to describe a trie that stores sets rather
than sequence data. In contrast to traditional tries, the weighted set containment
problem demands no particular order of the elements and therefore every order is
a valid option. To build a trie from a family of sets, Savnik assigned an arbitrary
order to the elements and inserted every element in this sorted order. However,
the amount of data that is compressed depends strongly on the order in which the
elements are inserted into the trie, making this approach naive. Although Savnik
does not introduce any particularly efficient ways of constructing the tries, the name
set-trie is descriptive and well suited for our problem and is therefore used in the
thesis.

2.2 Set Containment Join

A problem closely related to weighted set containment which has been thoroughly
studied, is the set containment join problem. Set containment join R on⊆ S takes
as input two collections of sets R and S and returns all pairs (r, s) ∈ R × S where
r ⊆ s. For example, if R = {{2}, {1, 2}, {2, 3, 4}} and S = {{1, 2, 3}, {2, 3, 4, 5}},
then R on⊆ S would give ({1, 2}, {1, 2, 3}), ({2, 3, 4}, {2, 3, 4, 5}), ({2}, {1, 2, 3}),
({2}, {2, 3, 4, 5}).

An efficient algorithm for performing set containment join was developed by Jampani
et al. [5]. The algorithm uses an inverted index to efficiently find all the records that
contain a given set. In addition, prefix trees are used to efficiently mine frequent
itemsets, and to help avoid redundant work. Note that a prefix tree is essentially a
trie where only the prefix of any sequence is stored and therefore, just like a trie,
any set inserted into the tree must be assigned an order. Jampani et al. assigned a
descending global order to their elements based on how frequently they occurred in
a given relation in an attempt to get a good compression.

Bouros et al. later improved upon the algorithm using an adaptive cost-model al-
lowing them to only partly construct the prefix tree [1]. They also showed that
they could get better performance by ordering their elements in the ascending or-
der of frequency rather than descending, since such an ordering resulted in earlier
disqualifications.

5

2. Theory

Note that the problem addressed in this thesis, weighted set containment, can be
solved by first performing a set containment join , where R = F and S = {Q} and
then linearly selecting the highest scoring elements from the returned pairs. However
this would be inefficient since set containment join algorithms do not utilize the fact
that we only have a single query set, i.e. |S| = 1. Furthermore, finding the highest
scoring would be done after all the joins are performed, which could potentially be
done during the joins.

2.3 Simulated Annealing

Simulated annealing is a powerful stochastic search method, which has been applied
to a wide range of different areas, including mathematics, physics and mathematical
programming [6]. It is used in this paper in an attempt to address an NP-complete
combinatorial problem, which is another area where the method has been successful
in the past. [6]

When applied to a combinatorial optimization problem, simulated annealing can be
seen as a method for exploring a solution space S. The idea is simple, start at a
random solution to the problem and make a small random change to the solution, if
the new solution is better than the previous one, then replace it with the new one.
If it is worse, then replace it with some probability dependent on how much worse
it is and on how many iterations have passed.

In order to apply simulated annealing to a combinatorial problem, a utility function,
a neighbourhood function and a cooling schedule need to be specified. The utility
function assigns a real number to any given solution as a measure of how good the
solution is. The neighbourhood function describes the neighbourhood of a solution
and is used to generate new random solutions which are spatially close to the given
solution in S. Finally the cooling schedule describes how the probability of accepting
a worse solution is lowered over time.

In order to get good performance out simulated annealing, all of the above functions
need to be adapted to the problem. The cooling schedule in particular, needs to be
carefully adapted to the problem and occasionally even to particular instances of
the problem [6]. When used in practice, a self-adapting schedule is often employed
to help alleviate this problem.

6

2. Theory

2.4 Evaluation

In order to evaluate any of the proposed algorithms on actual data, a reliable way
of measuring the performance of Java programs was required. However, due to the
dynamic nature of program execution and compilation in Java and the Java-virtual-
machine (JVM), it is often far from easy [7]. Qualitative benchmarking requires
careful consideration of the sources of non-determinism, for instance adaptive com-
pilation and memory management [8]. The code segment to be measured (payload)
and the surrounding framework need to be properly designed to mitigate these prob-
lems.

2.4.1 Just-In-Time Compilation

In contrast with languages like C which is only compiled before runtime[8], Java
programs are compiled in stages, using the Just-in-time (JIT) compiler to further
optimize the program during execution [7]. Java provides several different options
for JIT optimization to either delay or force early optimization. To avoid further
compilation during a measurement, a warm up phase is often employed to allow
Java to complete all compilation stages.

2.4.2 Memory Management

The memory management system in Java uses automatic garbage collection (GC) to
manage its heap, i.e. the memory area that JVM uses to store data. During program
execution, the GC is invoked repeatedly to clean up unused memory, causing a small
performance loss each time. If the GC is heavily invoked during a measurement the
results may become less consistent. An important choice is therefore whether to in-
clude GC performance in the evaluation or not [7]. Not including GC performance
means that GC has to be forcibly invoked in between runs of the benchmarking
payload. Then since the heap is cleaned before each execution the intention is that
JVM will not invoke GC during any payload execution. However, after some initial
analysis it was decided to include GC in the benchmarks mainly based on two rea-
sons. Firstly, the analysis showed that even with thousands of payload executions
per second, none of the algorithms were particularly memory allocation intensive.
Thus the need for GC was low and did not affect the measured performance sig-
nificantly. Secondly, in a real environment, the high volume of executions could be
similar to the load of a dedicated server, where GC performance of course would be
relevant, even if only used sparingly.

7

2. Theory

2.4.3 Programming Pitfalls

One of the more common issues with the payload design is called dead code elimi-
nation (DCE) [9]. DCE is an optimization method in the Java compiler which tries
to identify and skip code that does not affect the output of a program. When a
payload is created it is often extracted from a larger segment where other parts
which depends on the output of the chosen payload are excluded. In extreme cases
this means that the Java compiler may decide to skip most of the payload since
its output is not used. The main way to prevent DCE is therefore to include some
code that consumes the payload output. To implement the consumption of payload
output, a benchmarking framework was used, see section 2.4.4.

Another potential pitfall is constant folding (CF), this too, a Java compiler opti-
mization technique [9]. The purpose of CF is to avoid unnecessary computations
that can be replaced by constants. Sometimes CF may be desired to reflect real-
word performance but if the payload only depends on constants, then CF may cause
the payload to be evaluated only once. However, undesirable CF was not an issue
for the evaluation since all payloads depended on external data.

2.4.4 Java Microbenchmarking Harness

The Java Microbenchmarking Harness (JMH) is a benchmarking tool developed by
Oracle, released in 2013. It aims to address the many issues with reliable benchmark-
ing in Java. For instance, JMH contains a very simple way of consuming payload
output to avoid DCE and implement warm up phases, reducing the need for addi-
tional error prone framework. Furthermore, JMH provides some statistical analysis
in the form of confidence intervals and standard deviation. We therefore used JMH
for all our performance benchmarks in order to ensure accurate and consistent re-
sults.

8

3
Linear Search

The obvious approach to solving the weighted set containment problem is to simply
do a linear search through all the candidate sets and verify whether each element
exists in the query set. We refer to the operation of verifying whether a given element
exists in the query set as a containment operation. The number of containment
operations performed is then, in the worst case where there are no disqualifications,∑n
i=1 mi.

If we have no prior information about the data, we cannot do better than O(nm)
containment operations. This is because every candidate could potentially be part
of the solution and any element in a candidate set could potentially disqualify it.
However, the speed of a containment operation significantly depends on the data
structure used for the query set.

3.1 Baseline

In Volvo’s current algorithm, which we refer to as Baseline, the elements are stored
in a list. As a result, containment operations on the query set are performed by
linearly comparing every element in the query set to the input element until an
identical element is found. This results in at most |Q| comparisons. The total
number of comparisons performed is therefore ∑n

i=1 mi|Q| in the worst case. Hence
Baseline has a time complexity of O(|Q|nm) comparisons.

3.2 Hashed Linear

We try an improved version of the linear algorithm which stores the query set in
a hash table. If the elements of the query set are stored in a hash table, then we
can perform a containment operation in O(1) time on average, assuming we can
perform the arithmetic operations required for hashing in O(1) time for arbitrarily
large numbers. Therefore when a linear search is done using a hash table, we achieve
an average time complexity of O(nm), which is as mentioned previously, the optimal
time complexity if no preprocessing has been done.

9

3. Linear Search

3.3 Lazy Fetch

In a situation where the data set is not yet cached, the time it takes to perform an
O(nm) search is almost negligible in comparison to the time it takes to fetch the
data. For this reason, we try an algorithm which aims to minimize the amount of
data fetched. The idea is to fetch only a few elements at a time and if a candidate
gets disqualified then the rest of its elements are not fetched.

10

4
Set-trie

In order to improve the running time of the algorithm, we explore the possibility of
preprocessing the data using a set-trie structure. A weighted set containment query
can be seen as a traversal through a tree of candidate sets, where every node is an
element and every path from the root node to an end node represents a candidate
set. Linear search can be seen as the traversal of an uncompressed set-trie. We can
use this to compare the two approaches, figure 4.1 shows an example of this.

By representing the data as a trie, redundancies can be exploited to compare ele-
ments that occur in several different candidate sets at the same time. This results in
fewer comparisons and allows many candidate sets to be disqualified simultaneously.
Therefore, if the data has a lot of redundancy, we should see a significant increase
in the performance of the algorithm. Figure 4.1 shows an example of a trie, notice
that several candidate sets share the same nodes. However, notice also that not all
redundancies are removed.

{}

1

2

3

4

5

2

3

1

7

10

4

5

1

8

14

1

6

4

9

12

{}

1

2

3

4

5

7

10

4

12

6

9

14

5

8

Figure 4.1: On the left, a graph representation of a linear search with the set
family {1, 2, 3, 4, 5}, {1, 2, 3, 7, 10}, {1, 4, 5, 8, 14}, {1, 4, 6, 9, 12}. On the right, a
set-trie containing the same elements. Every node is an element and every path
from the root node to an end node represents a candidate set. The end nodes are
indicated by a thicker outline.

11

4. Set-trie

Since a set-trie compresses the data, this approach should also result in the trie
taking up less space in memory compared to loading the entire family of candidate
sets. This is of particular interest for very large data sets where not everything can
be cached in RAM.

4.1 Search

We try two different search strategies. In both of them, the query set is stored in a
hash table. This section presents the two proposed traversal strategies in detail.

4.1.1 Simple Traversal

We can solve the weighted set containment problem by recursively exploring the
trie. For any explored node, if it does not exist in the query set, then disqualify
it and do not explore any of its children. If the node is an end node and it is
not disqualified, then the path between it and the root node represents a potential
solution and therefore we calculate its score. If the new score is higher than the
currently highest, then replace the so far best path with the new path. Continue
until there are no more nodes to explore.

Whether it is explored in breadth-first or depth-first order is irrelevant since the
same amount of nodes will still be compared. Algorithm 1 shows pseudo code
for exploring the trie recursively. Notice that all children of all elements that are
contained in the query set need to be traversed. In a regular trie retrieval, this is
not necessary, since we simply choose the child with the first character in the query
string. However, since the search is not for prefixes, but for subsets, all children
need to be checked.

This puts the simple traversal at a worst case running time complexity of O(|T |),
where |T | is the number of nodes in the set-trie T . This worst case scenario is when
all the candidate sets are subsets of the query set and we therefore need to explore
the entire trie.

12

4. Set-trie

Algorithm 1 Simple Traversal
1: function searchTrie(node, querySet)
2: if not querySet.contains(node) then
3: return {[], −infinity}
4: else if node.isLeaf then
5: return {[node], node.weight}
6: else
7: bestNodes←[]
8: bestScore← −infinity
9: if node.isEndNode then

10: bestNodes←[node]
11: bestScore←0
12: for all child in node.children do
13: {newNodes, newScore} ← searchTrie(child, querySet)
14: if newScore > bestScore then
15: bestNodes← newNodes
16: bestScore← newScore
17: else if newScore = bestScore then
18: bestNodes.addAll(newNodes)
19: return {bestNodes, bestScore + node.weight}

4.1.2 Score Bounded Search

To improve the search speed we propose a branch-and-bound search strategy. Branch-
and-bound is a search strategy used to explore a solution space, where solutions that
cannot be optimal are pruned away [10]. The idea is to avoid traversing branches
that cannot possibly contain any candidate set with a higher score than the best
one found so far. This optimization however, comes at the cost of memory.

Given a node x, let Smax(x) be the maximum potential score for any path from x
to some end node.

Smax(x) = w(x) + max({Smax(c) : c ∈ x.children}) (4.1)

Since Smax(x) is independent of Q, it can be precomputed. We take advantage of
this fact by letting every node x store the value of Smax(x). Additionally, each
node x stores its children c ∈ x.children in descending order from highest to lowest
value of Smax(c). An example of such a set-trie can be seen in figure 4.2. It would
suffice to save the maximum potential score of every branch, not every node, this is
overlooked here.

13

4. Set-trie

{}

7:4

2:3

3:2

4:1

5:1

4:2

5:1 6:1

Figure 4.2: A score-bounded set-trie, containing the candidate sets {7, 2, 3, 4},
{7, 2, 5}, {7, 4, 5}, {7, 4, 6}. The maximum potential score is written to the right of
every element number. The weights are not visualized, but are all set to one.

For any node x and child c ∈ x.children, let c′ be the next child of x according to the
defined order. Since the order is descending according to maximum potential score,
if we find a valid path from c to any end node with the score s and s > Smax(c′) there
is no need to explore c′ or any subsequent children of x. To utilize this, the search has
to run in depth-first order, so that a high scoring solution can be found early on. As
an example, a search through figure 4.2 could visit the path (7, 4), (2, 3), (3, 2), (4, 1)
and would not consider any other nodes since the nodes in the chosen path have
the highest maximum potential score. Pseudocode for this approach is presented in
algorithm 2.

14

4. Set-trie

Algorithm 2 Score Bounded Traversal
1: function searchSBTrie(node, querySet)
2: if not querySet.contains(node) then
3: return {[], −infinity}
4: else if node.isLeaf then
5: return {[node], node.weight}
6: else
7: bestNodes←[]
8: bestScore← −infinity
9: if node.isEndNode then

10: bestNodes←[node]
11: bestScore←0
12: for all child in node.children do
13: if child.Smax < bestScore then
14: break
15: {newNodes, newScore} ← searchSBTrie(child, querySet)
16: if newScore > bestScore then
17: bestNodes← newNodes
18: bestScore← newScore
19: else if newScore = bestScore then
20: bestNodes.addAll(newNodes)
21: return {bestNodes, bestScore + node.weight}

4.2 Optimal Set-trie Problem

The most important problem to solve for any set-trie based approach is how to
compute the optimal set-trie in terms of search time, from a family of candidate
sets. Too simplify the problem, we estimate the search time by the number of
traversed nodes in a search.

Since the number of traversed nodes largely depends on the query set Q used in
the search, we can at best compute the expected number of traversed nodes by
randomly sampling query sets from the data set. In order to do this, we define
a binary random variable Dxi

= {0, 1} for each unique element xi ∈ U , where 0
represents xi ∈ Q and 1 represents xi ∈ Q. The probability that an element x will
be disqualified given a randomly sampled query set is then P (Dx = 1), which we
refer to as the disqualification probability of x. While we do have access to a large
data set of query sets, these sets vary and new ones are created constantly, hence
the accuracy of these estimates is questionable.

In any search, at least the first node x = T.root is checked, there is then a P (Dx = 0)
probability that the search continues, in which case all of x’s children need be to
checked. Initially we consider the case where the random variables are independent.

15

4. Set-trie

Let Ui(x) be the expected number traversed nodes for a search starting at the node
x. We can define this function recursively:

Ui(x) = 1 + P (Dx = 0)
∑

c∈x.children
Ui(c) (4.2)

Thus, if the random variables are independent, then the optimal set-trie is the trie
that minimizes Ui(T.root). Note that higher disqualification probabilities closer
to the root of a set-trie will result in fewer expected number of traversed nodes.
However, if the random variables are not independent we can modify function 4.2
to handle conditional probabilities. Since traversing a node x means that all nodes
between x and the root node were not disqualified, we instead use the probability
of disqualifying x given the event that all nodes between the root node and x were
not disqualified. Let Ud(x, X) be the expected number traversed nodes for a search
starting at the node x, where X is a conditional event. We define Ud(x, X) similar
to function 4.2:

Ud(x, X) = 1 + P (Dx = 0 | X)
∑

c∈x.children
Ud(c, (Dx = 0) ∩X) (4.3)

Similar to function 4.2, the optimal set-trie is the trie that minimizes Ud(T.root, Ω),
where Ω is the sample space. We use Ω as the initial conditional event since we
cannot assume anything prior to the search.

However, it would be safer to assume that we know nothing about the query set.
Then we can not know which elements are more likely to lead to a disqualification,
hence we do not need to consider the order in which the elements are checked.
In this case, the optimal set-trie is the trie with the fewest nodes possible, we
call the problem of finding such a trie the minimum set-trie problem. We show
that this problem is NP-complete, see section 4.2.1. Furthermore, since minimizing
U(T.root) can be seen as a more general case of the same problem, consider the
case when ∀x ∈ T, P (Dx = 1) = 0, then the two problems are equivalent. Therefore
minimizing U(T.root) is at least as hard.

Additionally, the search space of all possible set tries is vast. All possible set-tries
that represent a given family of candidate sets can be seen as a combination of
internal candidate set permutations. By inserting all candidate sets into an empty
trie, according to their internal order, the corresponding trie is constructed. The
number of unique orderings of the candidate sets is ∏n

i=1 mi!. The worst case time
complexity of exhaustive search is therefore O(m!nnm), where building a single set-
trie according to some permutation is done in O(nm).

Since the problem is NP-complete and since the search space is large, we attempt to
approximate the optimal solution either by some type of greedy algorithm or with
a metaheuristic.

16

4. Set-trie

4.2.1 Proof of NP-completeness

Definition 4.2.1 (The minimum set-trie problem). Given a universe U = {x1, x2, ..., xµ},
a family of subsets F = {C1, C2, ..., Cn} where Ci ∈ F , Ci ⊆ U and an integer k, is
it possible to construct a set-trie T of size k?

Definition 4.2.2 (The vertex cover problem). Given a graph G = (V, E) and an
integer k, is it possible to construct a set S of size k such that ∀(u, v) ∈ E, u ∈
S ∨ v ∈ S?

Theorem 4.2.1. The minimum set-trie problem is NP-complete.

Proof. The problem is in NP since, for any instance F and solution T , a verifier can
check in polynomial time that T is of size k and that each Ci ∈ F is represented in
T .

We continue by showing that vertex cover ≤p minimum set-trie. Given an instance of
vertex cover, i.e. a graph G = (V, E) where m = |E| and an integer k, we construct
an instance of the minimum set-trie problem in polynomial time. Let U = V , for
every edge ei = (u, v) ∈ E we create a set Ci = u, v ⊆ U resulting in a subset family
F = {C1, C2, ..., Cm} of size m. Claim: there exists a vertex cover of size k if and
only if the constructed set-trie is of size k + m + 1. To show this, we prove the
equivalence in both directions.

vertex cover ⇒ minimum set-trie:
Given an vertex cover (G = (V, E)) with a solution S of size k, we have a corre-
sponding instance of set-trie with the subset family F . From the definition of vertex
cover we have that every set Ci ∈ F contains at least one element in the vertex
cover. Therefore, we can construct a set-trie such that the first layer consists only
of the vertices in the vertex cover, thus there are k nodes in the first layer. Since
all sets in F are unique, the second element will always create a new node in the
second layer, thus there are exactly m nodes in the second layer. Hence the total
number of nodes in the trie is k + m + 1 including the root node.

minimum set-trie ⇒ vertex cover:
Given a set-trie (F) with solution T of size k + m + 1, we have a corresponding
instance of vertex cover with G = (V, E). Since all sets in F are unique and the
set-trie represents all m of them, there must be exactly m nodes in the second layer.
Furthermore there is exactly one root node, therefore there is k+m+1−(m+1) = k
nodes in the first layer. Every set Ci ∈ F contains at least one node in the first
layer, therefore every edge ei ∈ E is connected to at least one node with an element
in the first layer. Thus, the nodes in G that contain the elements in the first layer
is a vertex cover of G. Hence G has a vertex cover of size k.

Since our earlier claim holds, the construction algorithm runs in polynomial time
and minimum set-trie is in NP, we conclude that the minimum set-trie problem is
NP-complete.

17

4. Set-trie

4.2.2 Related problems

Although we have not been able to find any research on the minimum set-trie prob-
lem, there are some related areas which deal with somewhat similar problems. One
such problem is finding the optimal decision tree, which is also an NP-hard prob-
lem for most criteria [11]. There are however numerous differences between these
two problems. One important difference being that decision trees are usually used
for classification and are typically not optimized for size of the tree. Viewing the
weighted set containment problem as a classification problem is problematic. There
are for example situations where multiple candidates should be returned, in which
case we would need to classify the query set as multiple candidates.

4.3 Greedy Approach

We attempt to find the minimum set-tries using a greedy algorithm. The algorithm
uses the heuristic of always inserting the most common element among the remaining
candidate sets. We first find the most common element e, we then insert e into the
trie and split F into two parts, the candidate sets which contain e and those that
do not. We then remove e from all candidate sets. If any candidate set has no
more elements left, we mark the inserted node e as an end node. This algorithm is
then recursively called on the two new sets families, see algorithm 3 for simplified
pseudocode which illustrates the principle. For the complete optimized version, see
algorithm 4 in appendix A.

Algorithm 3 Greedy Set-trie Build
1: procedure buildGreedySetTrie(parent, candidateSets)
2: chosenElement←most common element among candidateSets
3: newNode← parent.addChild(chosenElement)
4: chosenCandidateSets←[]
5: remainingCandidateSets←[]
6: for all set in candidateSets do
7: if set.contains(chosenElement) then
8: set.remove(chosenElement)
9: if set.isEmpty then

10: newNode.markAsEndNode
11: else
12: chosenCandidateSets.add(set)
13: else
14: remainingCandidateSets.add(set)
15: buildGreedySetTrie(newNode, chosenCandidateSets)
16: buildGreedySetTrie(parent, remainingCandidateSets)

The algorithm can be seen as repeatedly approximating the minimum hitting set for
every layer. The minimum hitting set in this context is the smallest set of elements

18

4. Set-trie

such that every candidate set contains at least one element in the set. The problem
of finding the minimum hitting set is NP-complete but can be approximated by a
factor of the harmonic number H(n) by repeatedly selecting the most frequently
occurring element until a hitting set is found [12]. Note that it is precisely this rule
that our greedy algorithm uses.
After computing a hitting set, the candidate are divided according to which element
in the hitting set they contain. Candidate sets that contain more than one element
in the hitting set, are chosen to be put in the branch with the most frequent element.
This decision is rather arbitrary and we propose a few alternatives, see section 4.4.

4.3.1 Implementation

The algorithm can be efficiently implemented using a hash table based data structure
for sets. By doing so we achieve O(1) time on average for the add, get, remove and
contain operations, assuming we can perform the arithmetic operations required for
hashing in O(1) time for arbitrarily large numbers. If the size of the hash tables
are kept small enough or if they are supplemented with a linked list, they can be
iterated through in linear time with respect to the number of elements which they
represent.
In the case where there exists a set S such that |S| > 1 and S is a subset of every
candidate set, it is unnecessary to recursively call the algorithm for each element in
S since we already know that all of these elements will be inserted in a sequence.
Therefore, the algorithm can be made more efficient if it checks for such sequences
and when they are found, it simply inserts the whole sequence in the trie. See
algorithm 4 in appendix A for this optimized version.

4.3.2 Time Complexity

To analyze the time complexity of the optimized version of the algorithm described
in section 4.3.1, let all candidate sets be of equal cardinality.
If there are elements that occur in every candidate set, then they are all inserted in
O(nm) time. Otherwise the most frequently occurring element is found and inserted,
which also takes O(nm) time. Therefore each recursive call takes O(nm) time.
Consider a path P where every node has exactly one child. We know that any such
path where |P | > 1 is inserted by a single recursive call. Then let T ′ be the trie
where any such a path is compressed into a single node. Since there are no paths P
in T ′ such that |P | > 1, every other node in any branch has at least two children
Since there are no paths P in T ′ such that |P | > 1, every other node in any branch
has at least two children. Therefore the number of nodes in layer j is at least twice
the number of nodes in layer j − 2. As a result, the total number of nodes in T ′

is at most 2 ∗ (n + n
2 + n

4 + n
8 + ... + 1) = 4n. Since each node in T ′ corresponds

to a single recursive call and every such call takes O(nm) time, the worst case time
complexity is O(|T ′|nm) = O(n2m).

19

4. Set-trie

4.3.3 Alternative Implementation

We can implement the algorithm in a theoretically more efficient way, assuming
m < n, although it comes at the cost of more overhead. In this implementation, we
maintain an index of the most frequently occurring elements, that way the index
does not need to be recomputed for every recursive call. Specifically, an inverted
index of the set family allows for finding the frequency of an element and what sets
contain it in O(1) time. In addition, an index mapping the number of occurrences
to their corresponding elements e.g map the number five to all elements that occur
in exactly five candidate sets, allows for finding the most frequent element in O(1)
time.

For any inserted element, we need to update the index for the rest of the layer and
create a new index for the subtree under the inserted element. Both of which take
linear time with respect to the number of elements represented by the subtree. Since
layer i needs to represent every candidate set and i elements have been removed from
each candidate set, n ∗ (m− i) elements are represented by its subtrees. It therefore
takes O(nm) time to insert all nodes in a layer. Since all candidate sets are of
length m, there are m layers in the trie. Thus inserting all the nodes in the trie
takes O(nm2) time, which is as stated earlier, preferable to O(n2m) time of the
original greedy if m < n.

4.3.4 Optimality

While the algorithm does sometimes generate an optimal solution, it is not guar-
anteed, which is easily shown by the following counterexample. Consider the set
family F consisting of four sets:

A1 = {1} A2 = A1 ∪ {2}
A3 = {3, 4} A4 = A1 ∪ A3

Using the greedy algorithm, the most common element 1 is selected first. The
only set that does not contain 1 is A3 which means that the set-trie will have two
branches, one representing A3 and one representing A1,A2 and A4. The total size of
the greedy solution is therefore |TG| = |A3| + |A4| + 1 = 6. However, if we instead
split the root into two branches, one for A1 and A2; and one for A3 and A4, then we
end up with the smaller size |TOPT∗| = |A4|+ |A2| = 5.

20

4. Set-trie

{}

1

2 3

4

3

4

{}

1

2

3

4

1

Figure 4.3: A simple example of how the greedy algorithm can create a suboptimal
set-trie. On the left, the set-trie constructed by the greedy algorithm and on the
right the minimum set-trie.

Not only is the greedy algorithm not optimal, in fact it does not approximate the
optimal solution by any constant factor.

Theorem 4.3.1. There cannot exist a constant factor c, such that the greedy algo-
rithm is a c-approximation.

Proof. We extend the previous example with an arbitrary number of sets. We begin
by defining the following sets given two positive integers k and t:

K∗ = {x ∈ N : x < k}
K = K∗ ∪ {k}
S = {x1, x2, ..., xt},where K ∩ S = ∅

Ai = {x ∈ N : x ≤ i} ∪ S

(4.4)

The set-trie instance then consists of the candidate sets F = {K∗, K} ∪ {Ai : 0 ≤
i < k}. Again, using the greedy algorithm we see that the only set which does not
contain the most common element 1, is A0. Therefore we split F into two branches,
one for A0 and one for {K∗, K}{Ai : 1 ≤ i < k}. We then recursively repeat the
process for every element i and set Ai where 1 ≤ i < k resulting in the total size
|TG| = kt + k = k(t + 1). For the better solution TOPT∗, we split the root into two
branches, one for {K∗, K} and one for {Ai : 0 ≤ i < k} resulting in the total size
|TOPT∗| = k + t + (k − 1) = 2k + t− 1.

21

4. Set-trie

Example

Consider an instance of the sets in equation 4.4 where S = {4, 5} and k = 3:

K∗ = {1, 2} K = {1, 2, 3}
A0 = {4, 5} A1 = {1, 4, 5}
A2 = {1, 2, 4, 5}

The resulting set-tries, shown in figure 4.4, highlight the non-optimal construction
pattern of the greedy algorithm which repeats the elements of S exactly k times.

{}

2

1

3 4

5

4

5

1

{}

1

2

3

4

5

1

2

Figure 4.4: An example of how the greedy algorithm can create a suboptimal set-
trie. On the left, the set-trie constructed by the greedy algorithm and on the right
the minimum set-trie.

Let TOPT be the actual optimal solution such that |TOPT | ≤ |TOPT∗|. Then, let t
approach infinity in the ratio between |TG| and |TOPT∗| which gives us:

lim
t→∞

|TG|
|TOPT∗|

= lim
t→∞

k(t + 1)
2k + t− 1 = k ⇒ lim

t→∞

|TG|
|TOPT |

≤ k

Since k can be chosen to be arbitrarily large, there cannot exist a constant factor c
such that the greedy algorithm is a c-approximation.

Although the greedy algorithm does not guarantee a constant factor approxima-
tion, we can at least be sure of an m-approximation or an n-approximation, see
theorem 4.3.2.

22

4. Set-trie

Theorem 4.3.2. Any valid set-trie for a set family where all candidate sets have
equal cardinality is an m-approximation and an n-approximation.

Proof. A valid set-trie cannot contain more than nm + 1 nodes, let TMAX denote
such a set-trie. The optimal set-tie denoted TOPT cannot have fewer than n + m
nodes, which gives us the approximation factor:

|TMAX |
|TOPT |

= nm + 1
n + m

Since n > 0 we have that n + m ≤ m + 1 and nm + 1 ≤ nm + n, thus:

|TMAX |
|TOPT |

= nm + 1
n + m

≤ nm + n

m + 1 = n

We can show that |TMAX |
|TOP T |

≤ m using the same argument.

4.4 Greedy Variations

To address the fact that the greedy algorithm can construct badly performing tries
under certain circumstances, a few variations designed to deal with these special
cases were tried. In particular, the counterexamples presented in section 4.3.4 seem
to indicate that bad approximations appear when long sequences are represented
in more than a single subtree. This happens because the greedy algorithm divides
the candidate sets up in a naive way. Specifically, all candidates that contain the
most frequently occurring element are all placed under the same subtree, even if a
candidate shares a lot more elements with some other subtree.

4.4.1 Group Based Approach

The first greedy variation, called group-greedy, is based on the observation that it is
frequently the case in the data set that certain elements occur exclusively in groups.
If we find these groups, we can prevent the greedy algorithm from splitting them
up and thus avoid long sequences being represented in several subtrees. In order
to incorporate this idea we replace the previous heuristic with a simple function
that allows us to compare the outcome of inserting groups of variable length. The
function describes the number of elements that are combined given a group X and
F ′, the set of candidate sets that contain X:

G(F ′, X) = |X|(|F ′| − 1)

Note that if |X| = 1 then the group variation is exactly the same as the original
greedy algorithm. The groups that are compared are all groups of elements that
exclusively occur together. All such groups can be found in O(nm) time, using an
inverted index and by combining identical values.

23

4. Set-trie

4.4.2 Intersection Based Approach

We also try an intersection based approach, which attempts to alleviate the greedy
algorithms shortcomings using an intersection based heuristic. Just like in the greedy
algorithm, we recursively select the most frequently occurring element until all the
candidate sets contain at least one of selected elements, we refer to this as computing
a hitting set. However, after a hitting set is computed, the candidate sets are
partitioned in a different way. Firstly, all candidate sets that contain exactly one of
the elements in the hitting set are placed under that element. Any candidate set that
contains more than one element in the hitting set is placed under the element whose
corresponding group of candidate sets score the highest according to an intersection
based heuristic.

We propose the following two heuristics Hmax(C, F ′) and Havg(C, F ′), where C is
the candidate set to be placed and F ′ is a potential group of candidate sets:

Hmax(C, F ′) = max({|C ∩ C ′| : C ′ ∈ F ′})

Havg(C, F ′) = 1
|F ′|

∑
C′∈F ′

|C ∩ C ′|

The functions are similar but Hmax computes maximum intersection size, while Havg

computes the average intersection size.

This variation of the greedy algorithm requires a lot of additional computations
but should help in situations where very long sequences are represented in more
than a single subtree. Although it should be noted, that this solution by no means
guarantees to always solve the problem optimally, it merely serves as a heuristic
guess.

4.4.3 Disqualification Probability Based Approach

We try three algorithms that are based on the probabilistic modelling introduced
in section 4.2. These methods are based on the assumption of independent events,
and hence are based on the objective function Ui (see function 4.2). There are a
number of reasons we make this assumption. Firstly, since we do not have access to
a large amount query sets we are unlikely to be able to approximate the complete
probabilistic model with any reasonable accuracy. Secondly, we measured a 0.98
correlation between Ui and Ud (see function 4.3) on tries generated by the greedy
algorithm and hence we have reason to believe that the assumption won’t affect the
result to any large degree, see figure 4.5.

24

4. Set-trie

0 5 10 15 20 25 30 35 40 45 500

5

10

15

20

25

30

35

40

45

50

Ui

Ud

Figure 4.5: The relation between the objective functions Ui and Ud (see func-
tions 4.2 and 4.3). The data points are represents set-tries for approximately 30, 000
set families built by the greedy algorithm, using a sample of 2000 query sets for
the estimation of disqualification probabilities. The color highlights the value of Ud

from blue (low) to red (high).

To minimize the objective function 4.2 introduced in section 4.2, we try two addi-
tional variations that both use disqualification probability to decide which element
to insert. One of the variations simply inserts the element with the highest dis-
qualification probability, with no consideration of frequency. The other only uses
disqualification probability as a tiebreaker, picking the element with the highest
probability if there are multiple elements with the same frequency.

4.5 Global Ordering

Contrary to the greedy algorithm we propose in this thesis, many authors of similar
trie based data structures, use some type of global ordering to build a trie from a
family of sets. The idea is that by ordering the candidate sets according to a global
order of all unique elements, prefixes of elements will be combined and the resulting
trie will have fewer nodes. While some simply assign an arbitrary order [2], other
authors [5] and [1], use a global order based on the frequency of elements for their
set containment algorithms.

25

4. Set-trie

We try a global order in both ascending and descending order of frequency, since
these were the approaches used by Jampani and Bouros in their state of the art set
containment join algorithms. We further expand on global ordering by introducing
an order based on disqualification probability.

An advantage of global ordering based approaches is that the tries can be constructed
relatively quickly. Specifically, a trie based on a global ordering can be constructed
in O(lg(m)nm) time by sorting every candidate set.

4.6 Simulated Annealing

Since we cannot find the optimal solution in any reasonable time frame and since
guaranteeing a reasonable approximation seems very difficult, we attempt a heuristic
approach using the optimization method simulated annealing, see section 2.3 for an
explanation of the concept.

In this thesis, simulated annealing is used for two different approaches, one which
explores the space of all solutions and one which explores the space of all global
orders of unique elements. The two approaches uses the same cooling schedule
and utility function but use slightly different representations and neighbourhood
functions.

The utility function is simply the negated number of nodes in the constructed trie,
which can be computed by constructing the trie. Furthermore both a linear and an
exponential cooling schedule were tried with experimentally determined parameters.

4.6.1 All Possible Solutions

In order to search the space of all possible tries, a solution can be described as a
combination of internal candidate set permutations. The corresponding trie can then
be constructed by inserting all the elements in every candidate set according to their
internal order. This definition means that we are exploring a solution space of size∏n
i=1 mi!. In order to explore this vast solution space, we generate a neighbouring

solution by randomly selecting two elements from a randomly selected candidate
set and then reverse the order of the elements between them. This reversal of the
path between any two elements is a commonly used neighbourhood function which
has been used successfully in other combinatorial NP-complete problems such as the
travelling salesman problem [13].

26

4. Set-trie

4.6.2 All Solutions Based on Global Orderings

If we assume that there are always at least some good solutions which are based on
a global ordering, it could then prove useful to explore all solutions which are global
orderings, due to the greatly reduced size in solution space.

To explore the set of all tries that can be constructed by a global ordering, a so-
lution is represented as a permutation of all unique elements. To construct the
corresponding trie, all candidate sets are sorted according to the permutation and
are then inserted according to their internal order. This representation corresponds
to a solution space of |U |!, which is significantly smaller than the other approach,
especially for redundant data sets where the number of unique elements is low. This
smaller solution space should make the optimization method converge much faster.

To generate a neighbouring solution, two random elements in the permutation of all
unique elements are chosen and the order of the elements between them is reversed.

To help the algorithm converge, a form of short term memory was used. This was
implemented by having the method revert back to the best solution found over the
last 100 iterations every 100th iteration.

27

5
Results

The following chapter presents the results and analysis of the proposed solutions to
the weighted set containment problem. During the initial evaluation of the baseline
algorithm it was discovered that in practice, the data fetch time, that is, the time
it took to retrieve the data necessary to perform a search was very large. In the
case of the test suite, the data fetch time was about 1000 times larger than the
search time for the baseline algorithm. A brief attempt was made to reduce this
difference by implementing variations of lazy data fetch in section 3.3. However,
since the amount of data needed to store all set families could be stored in memory,
the data fetch time was removed from the performance evaluation. The remaining
linear search approaches and all set-trie variations are therefore evaluated only on
the search time with cached data.

The targeted data set consists of about 100, 000 set families and several million
different query sets. While the size of the query sets is relatively consistent at about
300 − 900 elements, the size of the set families range from 1 candidate set to more
than 10, 000. The candidate sets consistently contain roughly 10− 20 elements. We
evaluated our methods with a representative subset sampled from this data set with
100 set families and 10 query sets.

5.1 Linear Search

In this section, the performance of the linear search based approaches are evaluated.
Firstly the search time of the two first approaches are evaluated, under the assump-
tion that the data is cached in advance. Then, the search time of all the linear
approaches are evaluated in the scenario where the data is not cached in advance.

5.1.1 Search Time on Cached Data

Table 5.1 shows the search time of our different linear search based approaches.
FastLinear refers to an improved version of the baseline algorithm, which was im-
plemented with more efficient data types.

All suggested methods, except Baseline, were based on an improved version of the
data set, where some data types had been exchanged for more efficient alternatives.

28

5. Results

FastLinear-Hash further builds upon the improvements introduced by FastLinear
and adds hash tables to efficiently store the query sets. The change from linear
lookup time in FastLinear to constant lookup time reduces the search time by a
factor of 10.

Algorithm Search Time Ratio to Baseline
Baseline 149 386 µs 1×
FastLinear 47 741 µs 3×
FastLinear-Hash 5742 µs 26×

Table 5.1: The search time for linear search algorithms with cached data.

5.1.2 Search Time on Non-cached Data

In an attempt to reduce the significance of the data fetch time, two additional linear
search algorithms were implemented, both employing a lazy data-retrieval strategy.
Table 5.2 shows that the lazy variation perform significantly better on non-cached
data compared to the standard linear algorithms.

Algorithm Search Time Ratio to Baseline
Baseline 64 521 ms 1×
FastLinear 64 357 ms 1×
FastLinear-Hash 64 302 ms 1×
LazyFetch 608 ms 106×

Table 5.2: The total search time for linear search algorithms with non-cached data.

5.2 Set-trie

The different set-trie approaches were evaluated and compared based on pre-cached
search time, the total node count of the created tries and finally the time time it
took to preprocessing the tries themselves.

5.2.1 Search Time

Using the simple traversal algorithm (see section 4.1.1), the search time for set-tries
created by the greedy algorithm performed much better than linear search, up to
1800 times faster than the baseline algorithm, see figure below. This is undoubtedly
in large part due to the redundancy in the data set. In fact, only 1.6% of all
elements in the test suite were unique in any set family, which certainly explains the
big increase in performance.

In addition to the set-trie compression, a few tricks that were specific to Volvo’s
particular data were used to to make the tries smaller. These tricks roughly halved

29

5. Results

the search time of the tries. For instance there were certain elements that were
present in every query set and had a weight of 0, which could be cut from the trie.
However, even without these tricks, the greedy algorithm was still more than a 900
times faster than the baseline algorithm.
In table 5.3, we see that the attempted variations of Greedy ended up performing
slightly better, except for the group based one. This indicates that the Group-Greedy
algorithm is not finding the longer sequences which are found by the intersect based
methods.

Algorithm Search Time Ratio to Baseline
Baseline 149 386 µs 1×
Group-Greedy 88 µs 1698×
Greedy 84 µs 1772×
Intersect-Avg-Greedy 81 µs 1837×
Intersect-Max-Greedy 80 µs 1863×

Table 5.3: The search time of the different variations of the greedy algorithm and
how they compare to the search time of the original baseline algorithm previously
in place at Volvo.

When the score-bounded search strategy was used (see section 4.1.2, the search time
improved but only slightly, see table 5.4. Compared to the regular search strategy,
we see an increase in performance of roughly 3−6% for all algorithms except Greedy,
which got slightly worse. The small size of this increase is not surprising, given that
in the test suite only 0.76% of the candidate sets ended up with a unique potential
score. Although uniqueness is not a perfect measure of how useful score-bounded
search is, the extremely low percentage nevertheless hints at fairly uniform scores
for different branches.
Something of note, is that the increase in performance for the Intersect-Max-Greedy
algorithm was greater than for Greedy. This could be a coincidence of the particular
data set, but it could also indicate that score-bounded search performs better with
tries created with the Intersect-Max-Greedy algorithm.
Considering the additional memory and complexity needed to perform score-bounded
search, it does not appear to be a practical approach, at least not for this data set.
Although a data set with highly variable weights or lengths of the candidate sets,
could benefit greatly.

Algorithm Search Time Ratio to Baseline
Baseline 149 386 µs 1×
Greedy - (score-bounded search) 85 µs 1751×
Group-Greedy - (score-bounded search) 79 µs 1902×
Intersect-Avg-Greedy - (score-bounded search) 76 µs 1955×
Intersect-Max-Greedy - (score-bounded search) 74 µs 2011×

Table 5.4: The search time of the different variations of the greedy algorithm using
the score-bounded search strategy.

30

5. Results

The approach of assigning a global order to the elements and then simply inserting
the elements in that order was studied for comparison. This method appears to
be the standard approach for creating prefix tries, it was employed by both Bouros
et al. and Jampani et al., see section 2.2. In these papers, the elements are sorted
according to their frequency in the set family, in ascending and descending frequency,
respectively. Table 5.5 shows the search time for these strategies and the best
performing method presented in this thesis for comparison.

The ascending frequency approach did not perform particularly well, probably mostly
because it created relatively large tries. On the other hand, descending frequency
performed well and is a simple algorithm with significantly shorter construction
time. However, the Greedy algorithm still outperformed this approach by roughly
50%. We can conclude that the Greedy approach is the preferable one for a data set
such as this one, at least when the preprocessing time of the trie is not critical.

Algorithm Search Time Ratio to Baseline
Baseline 149 386 µs 1×
GlobalOrder - (ascending frequency) 434 µs 344×
GlobalOrder - (descending frequency) 137 µs 1083×
Intersect-Max-Greedy - (score-bounded search) 74 µs 2011×

Table 5.5: The search time of the global order strategy, and the best performing
approach presented for comparison.

The search time of the disqualification probability approaches that were tried are
shown in table 5.6. The disqualification probabilities used here are overfit to this
particular data set and would not be representative if used in practice. Despite this
overfitting, the search time ends up significantly worse than when these probabilities
are ignored. Even when the Greedy algorithm is used and the probabilities are only
used as a tiebreaker, we see no improvement. This indicates that our approach of
trying to minimize the set-tries was the correct approach. Although it should be
noted that the Greedy-DP algorithm in table 5.6, did create larger set-tries than
usual and still managed to get a decent search time average.

Algorithm Search Time Ratio to Baseline
Baseline 149 386 µs 1×
Greedy-DP 160 µs 935×
GlobalOrder-DP 128 µs 1167×
Greedy-DP-Tiebreaker 83 µs 1803×

Table 5.6: The search time of the different variations of disqualification probability.
Greedy-DP refers to the approach of using the Greedy algorithm but using the
disqualification probability instead of frequency to select elements. GlobalOrder-
DP, sorts the elements with descending disqualification probability. The Greedy-
DP-Tiebreaker algorithm is the same as the Greedy algorithm but in the case of a
tie, the element with the highest disqualification probability is chosen.

31

5. Results

5.2.2 Node Count

Table 5.7 shows the performance of the different algorithms, in terms of how large
the tries became. The Uncompressed tree refers to a tree that does not utilize a
trie’s capability to compress redundant data, this tree serves as a reference point
since traversing through it is equivalent to performing a linear search. Notice that
the compression is significant, the best performing algorithm Intersect-Max-Greedy
in terms of compression, reduces the number of nodes in the trie by a factor of 9.

The approaches based on simulated annealing ended up performing substantially
worse than the Greedy approach, despite having a much slower preprocessing time.
We could not get the approach which explored all possible set-tries to work at
all, it never found any solution better than the initial order and only got worse over
time. The version which explored all global orders, SimulatedAnnealing-GlobalOrder,
worked much better and converged after roughly 20 000 iterations, although rarely
at the optimal global order. These methods likely performed poorly due to the large
search space of all possible set-tries. Furthermore, small changes in the represen-
tation could lead to much worse utility and small changes leading towards a better
solution were not detectable at all by the utility function.

The descending version of GlobalOrder performed well, but still worse than any
Greedy based approaches. The ascending version created very large trees and per-
formed badly in terms of search time, which indicates that rarity in the set family
did not correspond to a higher disqualification probability to any significant degree.
Further evidence for this is the large size of Greedy-DP, which is almost as large
as the ascending GlobalOrder algorithm, but still performs much better in terms of
search time. This also means that the Greedy-DP did create large tries but still
managed to get a decent search time. While Intersect-Max-Greedy performed the
best on average, all Greedy based approaches were close enough to have singular
instances where they performed the best.

Algorithm Average Node Count
Uncompressed tree 2527.0
GlobalOrder - (ascending frequency) 1004.1
Greedy-DP 725.5
GlobalOrder-DP 578.9
SimulatedAnnealing-GlobalOrder 465.6
GlobalOrder - (descending frequency) 328.8
Greedy 293.2
Group-Greedy 288.4
Intersect-Avg-Greedy 282.8
Intersect-Max-Greedy 278.9

Table 5.7: The average number of nodes in the set-tries built by the different
algorithms.

32

5. Results

5.2.3 Preprocessing time

The time required to construct the tries is shown in table 5.8. Given that n is gen-
erally much larger than m in the test suite, we expected our index based alternative
implementation of the Greedy algorithm to outperform the original implementation.
However, this turns out not to be the case and is likely due to increased overhead.
The intersection based variations on Greedy became much slower than the other
Greedy variations, this is undoubtedly due to the numerous set intersection oper-
ations performed. Given that Intersect-Max-Greedy only performed slightly better
than the other Greedy variations, regular Greedy or Group-Greedy are probably
preferable in most scenarios. This is especially the case for very large set families,
where the preprocessing time for Intersect variations might get too long to realisti-
cally compute.

The preprocessing time for simulated annealing is not reviewed in the table since the
number of iterations were specified by hand. However, it was clear from experiments
that it converged much slower than the preprocessing time for any other method.

An interesting observation is that in the time it takes to perform a single Base-
line search, a trie can be both built and searched, using any of the algorithms in
table 5.8, except for Greedy intersection variations and the alternative implementa-
tion of Greedy.

Algorithm Construction Time
GlobalOrder - (ascending/descending frequency) 34 ms
Greedy 102 ms
Greedy - (alt. implementation) 173 ms
Group-Greedy 128 ms
Intersect-Avg-Greedy 7856 ms
Intersect-Max-Greedy 7989 ms

Table 5.8: The time required to preprocess the data using the different algorithms
with cached data.

33

6
Conclusion

This thesis set out to optimize a weighted set containment algorithm and to inves-
tigate how preprocessing could be utilized to improve it. The study clearly shows
that there are significant improvements that can be made with and without prepro-
cessing.
The data suggests that a linear search strategy can be made significantly more
efficient if implemented with a hash table. Furthermore, in a situation where the
data set is not cached in RAM, there is much to gain from adopting a lazy fetch
strategy where only the necessary amount of data is fetched.
It is evident from the results that preprocessing using set-tries can greatly increase
the performance of the algorithm, at least in redundant data sets. Additionally, set-
tries reduce the amount of memory required to store the data, which could prove
important if there is not sufficient RAM to store all the data. An approach where
set-tries are computed in advance and stored in a database was not investigated,
but the reduced amount of memory required suggests that such an approach could
prove to be very efficient, especially if combined with a lazy fetch strategy.
This thesis demonstrated the complexities of the minimum set-trie problem and
proved it to be NP-complete. Additionally, a number of different algorithms for
approximating a minimum set-trie were suggested and evaluated. Some of these
algorithms performed notably better than the state of the art solution of using a
frequency based global order, although this came at the cost of increased preprocess-
ing time. None of the algorithms have been proven to guarantee an approximation
of the optimal solution by a constant factor, but they appear to perform well in
practice. It should be noted that we have made no claims as to whether such an
algorithm exists and looking for such an algorithm or disproving its existence could
serve as a future research path.
The results suggest that taking disqualification probabilities into account does not
make any significant difference in the total search time of the algorithm. However,
it is likely that a method using a disqualification probability based approach will
perform well on a different data set. Hence, further research into such methods
could prove lucrative.
Finally, there might be more relevant research done in the area of decision trees
which we have not had the time to go through. A more in-depth examination of
how decision trees are related to the optimal set-trie problem could potentially lead
to better solutions.

34

Bibliography

[1] P. Bouros, N. Mamoulis, S. Ge, and M. Terrovitis, “Set containment join revis-
ited,” Knowledge and Information Systems, vol. 49, no. 1, pp. 375–402, 2016.

[2] I. Savnik, Index Data Structure for Fast Subset and Superset Queries, pp. 134–
148. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.

[3] L. Liu and M. T. Zsu, Encyclopedia of Database Systems. Springer Publishing
Company, Incorporated, 1st ed., 2009.

[4] E. Fredkin, “Trie memory,” Commun. ACM, vol. 3, pp. 490–499, Sept. 1960.

[5] R. Jampani and V. Pudi, Using Prefix-Trees for Efficiently Computing Set
Joins, pp. 761–772. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005.

[6] V. V. Vidal, Applied Simulated Annealing. Springer-Verlag, 1st ed., 1993.

[7] V. Horký, P. Libič, A. Steinhauser, and P. Tůma, “Dos and don’ts of conduct-
ing performance measurements in java,” in Proceedings of the 6th ACM/SPEC
International Conference on Performance Engineering, ICPE ’15, (New York,
NY, USA), pp. 337–340, ACM, 2015.

[8] A. Georges, D. Buytaert, and L. Eeckhout, “Statistically rigorous java perfor-
mance evaluation,” SIGPLAN Not., vol. 42, pp. 57–76, Oct. 2007.

[9] M. Rodriguez-Cancio, B. Combemale, and B. Baudry, “Automatic microbench-
mark generation to prevent dead code elimination and constant folding,” in
Proceedings of the 31st IEEE/ACM International Conference on Automated
Software Engineering, ASE 2016, (New York, NY, USA), pp. 132–143, ACM,
2016.

[10] J. Clausen, “Branch and bound algorithms – principles and examples,” 1999.

[11] I. Chikalov, Average Time Complexity of Decision Trees, vol. 21. Springer-
Verlag Berlin Heidelberg, first ed., 2011.

[12] P. Slavík, “A tight analysis of the greedy algorithm for set cover,” in Proceedings
of the Twenty-eighth Annual ACM Symposium on Theory of Computing, STOC
’96, (New York, NY, USA), pp. 435–441, ACM, 1996.

[13] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated
annealing,” SCIENCE, vol. 220, no. 4598, pp. 671–680, 1983.

35

A
Optimized Greedy Algorithm

Algorithm 4 Optimized Greedy Set-trie Build
1: procedure buildGreedySetTrie(parent, candidateSets)
2: if not candidateSets.isEmpty then
3: return
4: chosenElement←most common element among candidateSets
5: globalElements←elements that exists in all candidateSets
6: if not globalElements.isEmpty then
7: newNode←null
8: for all element in globalElements do
9: newNode← parent.addChild(element)

10: parent← newNode

11: chosenCandidateSets←[]
12: for all set in candidateSets do
13: set.removeAll(globalElements)
14: if set.isEmpty then
15: newNode.markAsEndNode
16: else
17: chosenCandidateSets.add(set)
18: buildGreedySetTrie(newNode, chosenCandidateSets)
19: else
20: newNode← parent.addChild(chosenElement)
21: chosenCandidateSets←[]
22: remainingCandidateSets←[]
23: for all set in candidateSets do
24: if set.contains(chosenElement) then
25: set.remove(chosenElement)
26: if set.isEmpty then
27: newNode.markAsEndNode
28: else
29: chosenCandidateSets.add(set)
30: else
31: remainingCandidateSets.add(set)
32: buildGreedySetTrie(newNode, chosenCandidateSets)
33: buildGreedySetTrie(parent, remainingCandidateSets)

I

	List of Figures
	List of Tables
	Introduction
	Aim
	Scope
	Problem Definition

	Theory
	Trie
	Set-trie

	Set Containment Join
	Simulated Annealing
	Evaluation
	Just-In-Time Compilation
	Memory Management
	Programming Pitfalls
	Java Microbenchmarking Harness

	Linear Search
	Baseline
	Hashed Linear
	Lazy Fetch

	Set-trie
	Search
	Simple Traversal
	Score Bounded Search

	Optimal Set-trie Problem
	Proof of NP-completeness
	Related problems

	Greedy Approach
	Implementation
	Time Complexity
	Alternative Implementation
	Optimality

	Greedy Variations
	Group Based Approach
	Intersection Based Approach
	Disqualification Probability Based Approach

	Global Ordering
	Simulated Annealing
	All Possible Solutions
	All Solutions Based on Global Orderings

	Results
	Linear Search
	Search Time on Cached Data
	Search Time on Non-cached Data

	Set-trie
	Search Time
	Node Count
	Preprocessing time

	Conclusion
	Bibliography
	Optimized Greedy Algorithm

