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Optimization of stiffness and damping properties of below knee prosthesis 
 
GIL SERRANCOLÍ MASFERRER 
Department of Applied Mechanics 
Division of Dynamics 
Chalmers University of Technology 

 

ABSTRACT 

Nowadays, prosthetic manufacturers have developed new designs of below-knee 
prosthesis which are anthropomorphic and safe. But more research should be done.  
This project tries to find out optimized parameters of below-knee prosthesis to walk 
with as low energy as possible.   

A biomechanical optimal problem is formulated to find out suitable stiffness and 
damping properties of below-knee prosthesis. These properties mean the relation 
between the torque on the ankle joint of the prosthetic leg with ankle angle and its 
velocity. The criterion used has been minimizing energy of both on the healthy part of 
the body as well as external energy with which the prosthesis battery is supplied. 

In order to state the optimal problem, firstly an anthropomorphic human gait has been 
looked for by using computer simulations. It has been chosen a mechanical human 
model that consist of two legs (with thigh and shank), the trunk and with joints: at 
ankle, knee and hip. Foot has been modeled as footprint. The system has 7 degrees of 
freedom. The motion has been parameterized by using polynomial and Fourier series 
and their parameters have been chosen so that the motion was anthropomorphic. 
Control torques at joints and ground reaction forces have been determined by using 
Lagrange equations. 

After that, the optimization problem has been considered using energy of the healthy 
part of the body as cost function, while energy consumed by the prosthesis has been 
calculated in each variance. Algorithm of solution of optimization problem has been 
implemented in MATLAB so that optimized kinematic parameters of the gait as well 
as stiffness and damping parameters of the below-knee prosthesis are determined 
automatically. fmincon function is used to solve the optimal problem and ode45 
function to solve the differential equation to find out kinematics of the trunk. 

The analyses of the obtained optimized values of stiffness and damping parameters of 
a below-knee prosthesis as well as kinematics of the optimized gait are presented. 
Future work within the project topic is outlined. 

 

Key words: below-knee prosthesis, human gait, Lagrange equations, optimization, 
cost function, ankle, knee, hip. 
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Notations 

Terms: 

iα   angle from vertical position to thigh 

iβ   angle from vertical position to shank 

ψ   angle from vertical position to trunk 

iA   ankle joint 

ai  length of the thigh i 
bi  length of the shank i 
Cp  damping of the below-knee prosthesis on the ankle joint 
Eh  Energy of the healthy part of the body 
Ep  Energy consumed by the below-knee prosthesis 
G  centre of mass of the trunk  
Jai  moment of inertia of the thigh i relative to the Z axis at point O 
Jbi  moment of inertia of the shank i relative to the Z axis at point Ki  
Ki  knee joint 
Kp  stiffness of the below-knee prosthesis on the ankle joint 
L  length of the single step 
M  total mass of the body 
mai  mass of the thigh i 
mbi  mass of the shank i 
mfi  mass of the foot i 
O   hip joint 
pi  torque on the ankle joint i 
qi  torque on the hip joint i 
r distance from the suspension point O of the legs to the centre of mass 

of the trunk 
rai  distance from O to the centre of mass of the thigh i 
rbi  distance from Ki to the centre of mass of the shank i 
R1x  horizontal component of the ground reaction 
R1y  vertical component of the ground reaction 
T  duration of the single step 
ui  torque on the knee joint i 
X   horizontal axis 
x   horizontal position of the hip 
x1  horizontal position of the prosthetic foot 
xR1  horizontal position of the application point of the ground reaction force 

2x   horizontal position of the healthy foot 
Y   vertical axis 
y   vertical position of the hip 

y1  vertical position of the prosthetic foot 
yR1  vertical position of the application point of the ground reaction force 

2y   vertical position of the healthy foot 
Z   Z axis, perpendicular to the plane of motion 
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1 Introduction 

A below-knee prosthesis is a prosthetic leg with shank, ankle joint and prosthetic foot. 
Knee joint is usually healthy, i.e. knee belongs to patient. Somebody who has lost his 
shank by accident or by illness can wear below-knee prosthesis in order to be able to 
walk and to do his life more comfortable.  

There are some main requirements that lower limb prosthesis should fulfil. It should 
have a cheap price, a long life, safety and naturally motions. This thesis focuses on 
more specific and technical backgrounds: energy optimization, such as energy 
consumption of the healthy part of the body and external energy consumed by battery. 

It would be uncomfortable to wear a prosthesis if the patient had to do more effort 
than normal. It would be non-viable if the patient had to walk in a non-
anthropomorphic way. It would be a useless prosthesis if it stops running during its 
gait, i.e. the battery has to be able to keep enough energy in order to supply the device 
properly. To sum up, a prosthesis which runs anthropomorphically with as little 
energy as possible should be achieved. 

There are some models which minimize the energy used by a healthy patient in a 
walking distance within a given time. But it is not common to look for the minimum 
energy consumption of the prosthesis and the minimum energy consumption of the 
healthy part of the patient body at the same time. The main target of the master thesis 
is to find out stiffness and damping properties of a below-knee prosthesis, which 
avoid wasting energy: external power and healthy power. This means looking for the 
suitable relation between dynamics (torque) and kinematics (angular position and 
velocity) on the prosthesis ankle that could be useful to design a new below-knee 
prosthesis. 

Keeping this purpose in mind, several points need to be handled. First of all, a 
mathematical model of human body motion in a stance phase on a leg with below-
knee prosthesis has to be found. Anthropomorphic kinematics and dynamics for initial 
parameters also need to be found. Every result has to be compared with the literature 
and to check if these results are anthropomorphic or not. Once an anthropomorphic 
motion is obtained, energy consumption of human body in a stance phase has to be 
evaluated. It could also be tested for different stiffness and damping properties and 
different leg kinematics. Finally, to accomplish our goal, our cost function will be 
minimized, energy of the body, with suitable restrictions and optimized values of 
stiffness and damping properties will be obtained. 

MATLAB will be used as software supporter. It will help to solve complex relations, 
differential equations and the optimal problem. It will also help to see different plots 
to understand the motion. 

All this work would be aimed to design a new and more efficient type of lower limb 
prosthesis. A future work would be the mechanical design of the prosthesis with 
stiffness and damping properties found in this project.  
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This report consists of three main parts: an explanation of the mechanical and 
mathematical models, a description of the initial model found and a development of 
the optimal solution. It ends up discussing the results obtained. 
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2 Mechanical and mathematical models 

A model as simple as possible but that represents the human gait as real and 
anthropomorphic as possible should be chosen.  

As human gait could be considered periodic, the double step could be studied, stance 
phase and swing phase of each leg. But since the goal is to look for suitable stiffness 
and damping properties of the ankle prosthesis, it is enough to take only one step, with 
a stance phase on the leg with below knee-prosthesis. In our model, it is considered 
that during swing phase, the ankle torque is null. 

It has been chosen a mechanical model with a footprint. The foot is represented as a 
point, Figure 2.1. 

  

Figure 2.1 Mechanical model 

The system contains a trunk (GO) and two legs. Each leg consists of two elements 
(OKi and KiAi). Our model has several similarities with one used by Berbyuk (2002) 
[1]. It shows enough points to represent all the data needed to compute in our 
equations. Prosthesis leg will be represented as leg 1 which is on stance phase. The 
system would have 7 degrees of freedom, but ankle joint of the prosthesis leg is fixed 
(A1), so the system has 5 degrees of freedom. 

In addition to the weights of the trunk, thighs and shanks the ground reaction forces 
and the control moments at the joints of the legs act in the system. 

The system moves through the X axis over a horizontal surface (the X-Z plane). To 
describe the set of generalized coordinates, following notations will be used: x, y, Ψ, 
αi, βi i=1, 2 (are represented in the Figure 2.1); m is the mass of the trunk; r is the 
distance from the suspension point O of the legs to the centre of mass of the trunk; J is 
the inertia’s moment of the trunk relative to the Z axis at point O; mai, rai, ai, Jai are the 
mass, the distance from O to the centre of mass, the length and the moment of inertia 
of the thigh relative to the Z axis at point O, respectively; mbi, rbi, bi, Jbi are the mass, 
the distance from Ki to the centre of mass, the length and the moment of inertia of the 
shank relative to the Z axis at point Ki, respectively; mfi is the mass of the foot. 
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Lagrange equations of the second kind are used to find out the equations of motion of 
the system: 

qQ
q

V

q

T

q

T

dt

d
=

∂

∂
+

∂

∂
−








∂

∂

�
                 (2.1) 

Where q is a generalized coordinate with corresponding generalized force Qq. T is 
kinetic energy and V is potential energy. The equations of motion are written as 
follows [1]: 

By x axis: 

( ) ( )[ ] ( ) xxri iibiiiai RRKKKxM 21

''2

1

'''' coscoscos +=⋅−⋅+⋅+⋅ ∑ =
ψψββαα��            (2.2) 

By y axis: 

( ) ( ) ( )[ ] ( ) yyri iibiiiai RRKKKgyM 21

''2

1

'''' sinsinsin +=⋅−⋅+⋅++ ∑ =
ψψββαα��   (2.3) 

By Ψ angle: 

( ) 21sinsincos qqKgyxKJ rr −−=⋅⋅−⋅+⋅− ψψψψ ������                                     (2.4) 

By α angle: 

( ) ( ) ( )( ) =⋅⋅+−⋅+−⋅⋅+⋅+⋅+ iaiiiiiiibiiiiaiii KgKayxKJ αβαββαβααα sinsincossincos 2���������  

( )
iiyiixiii RRauq αα sincos ⋅+⋅⋅+−=                                     (2.5) 

By β angle: 

( ) ( ) ( )( ) =⋅⋅+−⋅−−⋅⋅+⋅+⋅+⋅ ibiiiiiiibiiiibiici KgKayxKJ ββααβααβββ sinsincossincos 2
�������

 ( )
iiyiixiii RRbpu ββ sincos ⋅+⋅+−=                                     (2.6) 

qi, ui and pi are the torques on hip, knee and ankle respectively. 

Where: 

2211 baba mmmmmM ++++=                                        (2.7) 

rmK r ⋅=                                          (2.8) 

( )
fibiiaiaiai mmarmK ++⋅=                  (2.9) 

fiibibibi mbrmK ⋅+⋅=                 (2.10) 

( )
fibiiaii mmaJJ ++= 2                (2.11) 

fiibici mbJJ ⋅+= 2                 (2.12) 

with i = 1, 2 
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2.1 Review of biomechanical cost functions 

Some authors have written about cost functions used in biomechanical optimizations. 
The aim here is to find the best suitable function to achieve our objective. To 
represent the suitable gait pattern, different energy cost functions have been studied. 

Then, some cost functions to evaluate optimal energy are presented: 

• Fatigue cost function. 

M. Ackermann, A. J. van den Bogert, 2009 [2] proposed a family of cost 
functions that represented different gait patterns, it consist of weighted muscle 
activations: 

( )∫∑
∑ =

=
T

p

i

m

i

i

i

dtta
T

J
01

11
ω

ω
               (2.13) 

where m is the number of muscle groups, a is the muscle activation, and p and 
ωi are the exponent of a and weighting factors, respectively. Depending on the 
muscle action, 8 different cost functions can be differentiated, since it could be 
p=1, 2, 3 or 10, and there are two sets of weighting factors ωi. 

• Metabolic energy cost function. 

Frank C. Anderson and Marcus G. Pandy [3] hypothesized that the suitable 
motor pattern should be found minimizing the metabolic energy expenditure 
per unit distance moved. The cost function is as follow: 

)0()()0()(
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t M
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d
XtX

dtWSMAB
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−





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










++++

=
−

=
∫ ∑∫

=          (2.14) 

where Xcm(0) and Xcm(tf) denote the position of the centre of mass of the 

model at the beginning and at the end of the simulated gait cycle. 
.

B is the 

basal metabolic heat rate of the whole body, mA
.

, mM
.

, mS
.

, mW
.

 are the 
activation, maintenance, shortening and mechanical heat rates of each muscle. 

Similar to the previous one, hypothesis of H. Hatze and J. D. Buys [4] consist 
of minimizing the metabolic energy, expressed as: 

rwshgE ����� ++++=
.

               (2.15) 

where g�  is the activation heat rate,  h�  is the maintenance heat rate, s�  is the 
shortening heat rate, w�  is the work rate and r�  is the rate of heat dissipated in 
the parallel structures. 
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A. E. Minetti and R. McN Alexander [5] considered that the metabolic cost 
function of muscle activity (metabolic power) was as follow: 







Φ⋅⋅⋅=

max
max0 ω

ωωα TP               (2.16) 

where α represents a fraction of the muscle’s fibres activated, T is the torque 
on the muscle joint, ω is the angular velocity and they defined a function Φ 
(ω/ωmax) from experimental results: 
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• Muscular force cost function 

A. Pedotti, V. V. Krishman and L. Stark  [6] hypothesized that they had to 
minimize the total muscular force to find out the suitable human locomotion 
pattern. Their cost functions were as follows: 
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                (2.18) 

where J1 is a performance criterion related to the initial force required to 
produce the set of torques. J2 also minimizes total muscular force but penalizes 
large individual muscle force severely. 

J3 is similar to J1 but employs the muscles more efficiently by demanding large 
force production from the large muscles; indeed, it takes into account the 
instantaneous state of each muscle, since Fmaxi depends upon the instantaneous 
length of muscle as well as its velocity. J4 is a performance criterion which 
uses muscles more efficiently while keeping their level of activation as low as 
possible. 

• Mechanical energy cost function. 

Viktor Berbyuk, Anders Boström, Bogdan Lytwuyn, and Bo Peterson [1] 
hypothesized that the mechanical energy cost function depended on the 
torques of the articulations joints: hip, knee, ankle and metatarsal joints and 
their angular velocities: 
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( ) ( ) ( ) ( )[ ] dtttwttpttuttq
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−+−+−+−=
=0
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where qi, ui, pi and wi are the torques that act in the hip, the knee, the ankle and 
the metatarsal joints respectively. ψ� (t) is the angular velocity between the 

trunk and the hip, iα� (t) is the angular velocity between hip joint and each 

thigh, )(tiβ�  is the angular velocity between knee joint and each shank, )(tiγ�  is 

the angular velocity between ankle joint and each foot and )(tiε  is the angular 

velocity between metatarsal joint and each set of toes. L is the length of the 
step. 

Viktor Berbyuk, Bogdan Lytwyn and Myroslav Demydyuk [7] took into 
account very similar mechanical energy cost function, but they hypothesized 
that mechanical energy only depends on torques on the hip and knee joints 
(since they considered the control inputs were torques actuators acting only at 
hip and knee joints), on the velocities of these joints and on the length of the 
step. This is as follow: 

( ) ( )[ ] dtttuttq
L

E
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i

iiiii∫ ∑
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






−+−=
=0
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2

1
βαψα ����           (2.20) 

 

2.2 Cost functions selected 

The focus will be on the problem of identifying the gait pattern by minimizing a 
couple of cost functions. These functions will be the energy cost function of the 
healthy part of the body (Eh), cost function of the energy consumed by the prosthesis 
(Ep). These functions are defined as follows: 

( ) ( )[ ] ( ){ }dttp
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dtttuttq
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( ){ }dttp
L

E

T

ppp ∫=
0

)(
1

β�                (2.22) 

               

2.3 Statement of the problem 

Our system could have two phases on one leg: stance phase [ 0 , T ), when prosthesis 
leg is on the floor and healthy leg is not; and swing phase [ T , 2T ), when the 
prosthesis leg has no contact with the floor. But as mentioned, only the first phase will 
be represented. 

Since human motion is periodic, following boundary conditions could be considered: 
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( )ψ,)()0()()0( yfTffTff === ��                      (2.23) 
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Txx

LTxx

��
                (2.25) 

where T is the duration of a single step. αi and βi are periodic and their period is 2T. 

As prosthesis leg is on the floor and healthy leg is in swing phase, following boundary 
conditions can be defined: 

),0[0)()( 1
0
11 Tttyxtx aaa ∈≡≡                                     (2.26) 

),0[0)(2 Ttty a ∈≥                 (2.27) 

xai and yai are the coordinates of the point A (Figure 2.1).  

Without any restriction of the generality the following additional conditions for t=0 
and t=T are given by: 

00
1

0
1 == aa yLx                 (2.28) 

0)()( 11 == TyLTx aa                (2.29) 

 00 0
2

0
2 == aa yx                 (2.30) 

0)(2)( 22 == TyLTx aa                (2.31) 

In order our model to be anthropomorphic some angular displacements constraints 
could be used. These will be taken from experimental results from literature.  

)()( 000
tt iii Θ≤≤ µθ                 (2.32) 

)()( tt
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i

k

i Θ≤≤ µθ                       (2.33) 

)()( tt
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a

i

a

i Θ≤≤ µθ                 (2.34) 

Where: 

)()()(0
ttt ii ψαµ −=                           (2.35) 

)()()( ttt ii

k

i βαµ −=                 (2.36) 

2
)()(

π
βµ +−= tt i

a

i                 (2.37) 
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with i = 1, 2 

In addition, there are two logical restrictions so that the human gait is 
anthropomorphic: 

[ ] )2,1(,,0),()( =∈∀≥ iTttt ii βα              (2.38) 

[ ]Ttty ,0,0)(2 ∈≥                 (2.39) 

There are also dynamic restrictions, reaction force has to be always positive and the 
ankle prosthesis torque has to be defined as a function of β  and β� . 

[ ]TttR y ,0,0)(1 ∈∀≥                 (2.40) 

[ ]TtKtCtKtp ppp ,0
2

)()()( 111 ∈∀⋅−⋅−⋅−=
π

ββ �                     (2.41) 

After defining our mechanical model, a cost function needs to be chosen. Then the 
optimized motion will be found. In the following section it will be discussed which is 
the best cost function for us. 

Let { }2,1,,,,,,,,,,,,,,)( 2222 == iyyxxyyxxtZ ββααψψ �������  be a vector of the phase state 

and { }2,1,,,)( 1 == ipuqptU iii  be a vector of the controlling stimuli of the system.  

Once these vectors are defined, the following problem can be stated. 

Problem A. Assume that the step length L is given, and the duration of the single 
support phase T. It is required to determine the control process [ ])(),( ** tUtZ , for 

[ ]Tt ,0∈ , which minimize the cost function selected, Eh and Ep (2.21) – (2.22), 
subject to differential constraints (2.2) – (2.6), boundary conditions (2.23) – (2.34), 
anthropomorphic constraints (2.38)  - (2.39) and dynamic restrictions (2.40) – (2.41). 

In the next section, first some functions will be parameterized and then will follow an 
attempt to find out an initial motion which is anthropomorphic. This motion will be 
used later as an initial guess in the optimal problem. 
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3 Initial Model 

Before optimizing the model, an initial model that is anthropomorphic must be found. 
Maths and logic can be used to search for a suitable initial model. Looking for a 
suitable leg kinematics and dynamics that looks anthropomorphic comes first. 

3.1 Leg kinematics 

Our mechanical model has to satisfy our equations and constrains. But the motion has 
to be also anthropomorphic. A shape for our main variables needs to be chosen and it 
will lead to the other variables as a function of them. Fourier series will be used to 
define our main variables, these will be x(t), y(t), x2(t), y2(t). So, these functions will 
be set as follows: 
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






⋅⋅+

yN

n

nyny t
T

n
bt

T

n
a

1
**

2
sin

2
cos

ππ                     (3.2) 

+⋅+⋅+⋅+⋅+⋅+= 5
25

4
24

3
23

2
2221202 )( tCtCtCtCtCCtx xxxxxx   

 ∑
=

















⋅⋅+








⋅⋅+

2

1
*2*2

2
sin

2
cos

xN

n

nxnx t
T

n
bt

T

n
a

ππ                   (3.3) 

+⋅+⋅+⋅+⋅+⋅+= 5
25

4
24

3
23

2
2221202 )( tCtCtCtCtCCty yyyyyy    

 ∑
=

















⋅⋅+








⋅⋅+

2

1
*2*2

2
sin

2
cos

yN

n

nyny t
T

n
bt

T

n
a

ππ                     (3.4) 

There are some of these parameters which could be defined a priori because of the 
boundary conditions. 

If taken into account that our motion is periodic, x(t) should satisfy following 
conditions: 





=

−=

)()0(

)()0(

Txx

LTxx

��
                      (3.5) 

Therefore, C1x and C2x will be defined as: 

( )4
5

3
4

2
321 TCTCTCTC

T

L
C xxxxx ⋅+⋅+⋅+⋅−=                           (3.6) 

( )3
5

2
432 543

2

1
TCTCTCC xxxx ⋅⋅+⋅⋅+⋅⋅−=                                    (3.7) 
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Similar boundary conditions are defined for y(t): 





=

=

)()0(

)()0(

Tyy

Tyy

��
                                 (3.8) 

And we could get C1y and C2y as: 

( )4
5

3
4

2
321 TCTCTCTCC yyyyy ⋅+⋅+⋅+⋅−=                               (3.9) 

( )3
5

2
432 543

2

1
TCTCTCC yyyy ⋅⋅+⋅⋅+⋅⋅−=                        (3.10) 

Boundary conditions for x2(t) are as follows: 









=

−=

=

)()0(

2)()0(

0)0(

22

22

2

Txx

LTxx

x

��

                                                            (3.11) 

So C0x2 , C1x2 and C2x2 are defined as: 

∑
=

−=
2

1
220

xN

n

nxx aC                               (3.12) 

( )4
25

3
24

2
232221

2
TCTCTCTC

T

L
C xxxxx ⋅+⋅+⋅+⋅−=                       (3.13) 

( )3
25

2
242322 543

2

1
TCTCTCC xxxx ⋅⋅+⋅⋅+⋅⋅−=                                (3.14) 

 There are similar boundary conditions for y2(t): 









=

=

=

)()0(

)()0(

0)0(

22

22

2

Tyy

Tyy

y

��

                                                     (3.15) 

So C0y2, C1y2 and C2y2 are defined as: 

∑
=

−=
2

1
220

yN

n

nyy aC                                                               (3.16) 

( )4
25

3
24

2
232221 TCTCTCTCC yyyyy ⋅+⋅+⋅+⋅−=                                (3.17) 

( )3
25

2
242322 543

2

1
TCTCTCC yyyy ⋅⋅+⋅⋅+⋅⋅−=                                (3.18) 
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In order to deal with all other parameters that could change the following vector will 
be defined: 

[ ]T

y

T

x

T

y

T

x CCCCC 22=                                               (3.19) 

where: 

[ ]222524232 ,,,, nxnxxxx

T

x baCCCC =  where n = (1...Nx2)                   (3.20) 

[ ]222524232 ,,,, nynyyyy

T

y baCCCC =  where n = (1...Ny2)                               (3.21) 

[ ]nxnxxxxx

T

x baCCCCC ,,,,, 5430=  where n = (1...Nx)                    (3.22) 

[ ]nynyyyyy

T

y baCCCCC ,,,,, 5430=  where n = (1...Ny)                    (3.23) 

First of all, all fixed parameters that take part in the motion equations (2.2 to 2.12) 
must be defined. These are taken from [1]. See Table 3.1. 

Table 3.1 Fixed data 

T 0.57 s r 0.39 m J 7.096 Nm
2
 L 0.76 m m 46.7 kg 

a1 0.47 m ra1 0.258 m Ja1 0.57 Nm
2
 ma1 8.49 kg mf1 1.24 kg 

a2 0.47 m ra2 0.258 m Ja2 0.57 Nm
2
 ma2 8.49 kg mf2 1.24 kg 

b1 0.53 m rb1 0.214 m Jb1 0.16 Nm
2
 mb1 3.51 kg  

b2 0.53 m rb2 0.214 m Jb2 0.16 Nm
2
 mb2 3.51 kg 

 

3.1.1 Effects on the variation of the parameters 

How each variable parameter affects in coordinates defined by polynomial parameters 
and Fourier Series (x2, y2, x and y) is studied. 

It is important knowing how the motion x2 changes if Fourier parameters are 
modified. 





smintx

mintx

/)(

)(

2

2

�
                                                    (3.24) 

 Evaluating above functions, the conclusion is the following: 

- Initial velocity is defined by:  

4
25

3
24

2
232 2

3

2

12
)0( TCTCTC

T

L
x xxx ⋅⋅+⋅+⋅⋅+=�                  (3.25) 
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- and the initial acceleration by the expression: 

3
25

2
24232 543)0( TCTCTCx xxx ⋅⋅−⋅⋅−⋅⋅−=��              (3.26) 

So varying our parameters, different function shapes are obtained: 

For example, varying 23xC . See Table 3.2. 

Table 3.2. )(2 tx , )(2 tx�  and )(2 tx��  trials for different C3x2, and for 02524 == xx CC . 

1023 −=xC  023 =xC  1023 =xC  

)(2 tx  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 
)(2 tx�  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
1

1.5

2

2.5

3

3.5

 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

1.5

2

2.5

3

3.5

4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
1.5

2

2.5

3

3.5

4

4.5

 
)(2 tx��  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
-20

-15

-10

-5

0

5

10

15

20

 

Zero acceleration 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
-20

-15

-10

-5

0

5

10

15

20

 

Note that only polynomial parameters are varied, not sinus and cosines parameters. 
For x2, it will be enough using polynomial parameters. 

As sign of parameters Cix2 are equal, all parameters will affect in a similar way. 

It could be also noted that if T>1, 25xC  will have a strong effect since its exponent is 

higher than others (in absolute value): 4

2

3
T⋅  on velocity and 35 T⋅ on acceleration; 
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while if T<1, 23xC  may have a strong effect since its exponent is lower than others (as 

much as T is close to 0): 2

2

1
T⋅  on velocity and T⋅3  on acceleration expression. 

It could be set that )(2 tx�  has to be always positive: smtx 0)(2 >�  and it could be 

defined a maximum possible velocity smtx 3)(2 <� . See Table 3.3. 

Table 3.3. Expressions that satisfies the restriction 

1 0)(2 >tx�  
( )

ttCtCtC

tTCTCTCTCTCTC
T

L

xxx

xxxxxx

∀>⋅⋅+⋅⋅+⋅⋅+

+⋅⋅⋅+⋅⋅+⋅⋅−⋅⋅+⋅+⋅⋅+

0543

543
2

3

2

12

4
25

3
24

2
23

3
25

2
2423

4
25

3
24

2
23   

2 3)(2 <tx�  
( )

ttCtCtC

tTCTCTCTCTCTC
T

L

xxx

xxxxxx

∀<⋅⋅+⋅⋅+⋅⋅+

+⋅⋅⋅+⋅⋅+⋅⋅−⋅⋅+⋅+⋅⋅+

3543

543
2

3

2

12

4
25

3
24

2
23

3
25

2
2423

4
25

3
24

2
23  

 For an initial optimization 123 =xC , 024 =xC  and 125 −=xC  are chosen.  





sminty

minty

/)(

)(

2

2

�
                                                     (3.27) 

This coordinate has a special constraint, because it has to be positive, it will be 
anthropomorphically wrong if the foot would introduce under the ground. 

As a first approximation, the function y2 (t) has been set as a parabola. Therefore 
maximum height is in the middle of the step. In addition, the initial velocity with 
positive value and final velocity with negative have also been set. A maximum height 
( )mty 05.0)(2 <  and a maximum velocity ( )smty /3)(2 <�  can be defined. See Table 
3.4. 

 

Table 3.4. Expressions that satisfies the restrictions 

1 0)
2

(2 =
T

y�  (singular point at the middle) 0
16

11

2

1

4

1 2
252423 =⋅⋅−⋅⋅−⋅− TCTCC yyy

 

2 0)
2

(2 <
T

y��  (singular point has to be a maximum) TCC yy ⋅⋅−> 2524 2

5
 

3 0)0(2 ≥y�  and 0)(2 ≤Ty�  0
2

3

2
2

2524
23

=⋅⋅+⋅+ TCTC
C

yy

y  

4 
t

mty

∀

< 05.0)(2  
( )

ttCtCtC

tTCTCTCtTCTCTC

yyy

yyyyyy

∀<⋅+⋅+⋅+

+⋅⋅⋅+⋅⋅+⋅⋅⋅−⋅







⋅⋅+⋅+⋅⋅

05,0

543
2

1

2

3

2

1

5
25

4
24

3
23

23
25

2
2423

4
25

3
24

2
23

          

5 smy /32 <�  
( )

ttCtCtC

tTCTCTCTCTCTC

yyy

yyyyyy

∀<⋅⋅+⋅⋅+⋅⋅

+⋅⋅⋅+⋅⋅+⋅⋅−⋅⋅+⋅+⋅⋅

3543

543
2

3

2

1

5
25

3
24

2
23

3
25

2
2423

4
25

3
24

2
23  

For an initial optimization 12.923 −=yC , 824 =yC  and 025 =yC  is chosen. 
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



smintx

mintx

/)(

)(

�
                         (3.29) 

Regarding )(tx , it is similar than )(2 tx , but an initial value has to be chosen. This 

initial value is given by 00 =xC , it represents the situation of the hip at t=0. 

So, 

mCm x 76.00 0 <<                          (3.30) 

Arbitrary but logically, 4.00 =xC  is chosen. Similar restrictions like )(2 tx�  are set 

now. See Table 3.5.  

Table 3.5. Expressions that satisfies the restrictions 

1 0>x�  

 

( )

ttCtCtC

tTCTCTCTCTCTC
T

L

xxx

xxxxxx

∀>⋅⋅+⋅⋅+⋅⋅+

+⋅⋅⋅+⋅⋅+⋅⋅−⋅⋅+⋅+⋅⋅+

0543

543
2

3

2

1

4
5

3
4

2
3

3
5

2
43

4
5

3
4

2
3  

2 3<x�  
( )

ttCtCtC

tTCTCTCTCTCTC
T

L

xxx

xxxxxx

∀<⋅⋅+⋅⋅+⋅⋅+

+⋅⋅⋅+⋅⋅+⋅⋅−⋅⋅+⋅+⋅⋅+

3543

543
2

3

2

1

4
5

3
4

2
3

3
5

2
43

4
5

3
4

2
3  

For an initial optimization 0543 === xxx CCC  will be chosen. So, velocity will be 

constant 







= sm

T

L
/33.1 and acceleration will be zero. 





sminty

minty

/)(

)(

�
                      (3.31) 

Hip should be between a height of mtym 1)(75.0 << . So, 

mCm y 175.0 0 <<                 (3.32) 

91.00 =yC  is chosen. 

Sinus and cosines parameters are used, instead of polynomial parameters, because 
otherwise, the acceleration of hip would not be anthropomorphic. To start just a 
couple of parameters are taken, so Ny = 1. T* will be TT 2* = , because it is a parabola 
between t=0 and t=T. 

)(ty� should be slower than )(2 ty� , therefore it is set mty 5.0)( <� . See Table 3.6. 

Table 3.6. Expressions that satisfies the restrictions 

1 tmtym ∀<< 1)(75.0  m
T

b
T

aCm yyy 1sincos75.0 110 <







⋅+








⋅+<

ππ
 

2 smty /5.0)( <�  smt
TT

bt
TT

a yy /5.0cossin 11 <







⋅⋅⋅+








⋅⋅⋅−

ππππ
  

For an initial optimization 91.00 =yC , 01 =ya , 08.01 =yb  will be chosen. 
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In order to define angular motions of the links, our model needs to be taken into 
account (Figure 2.1) and following features of the motion (see Figure 3.1). Only one 
step is studied. Leg 1 is supposed to wear the below knee prosthesis. Foot 2 moves 
one step while foot 1 is supported on the floor. Next step would be almost the same. 
Now, angles from healthy leg would be the same like prosthesis leg in the last step 
and vice versa. 

 

Figure 3.1. Definition of the studied motion. 

So, to find out angular motions, the following system of equations has to be solved: 





⋅+⋅+=

⋅−⋅−=

iiiii

iiiii

abtyty

abtxtx

αβ

αβ

coscos)()(

sinsin)()(
              (3.33)

             

Angles will be as follows: 

( )







⋅−−= iii

i

i btxtx
a

t βα sin)()(
1

arcsin)(              (3.34) 

( ) ( )( )

( ) ( ) 








−

−
−



















−+−

+−−+−

=
xx

yy

yyxx

bayyxx
b

i

i

ii

iiii

i
i arctan

2

1

arcsin
22

2222

β           (3.35) 

Velocity and acceleration of these angles will be their time derivation. 

As mentioned on (2.28) in order to be an anthropomorphic model, angle ii αβ < . 

In section 3.1.2, all leg kinematics parameters are shown. See Figure 3.2.  

A2 

K2 

O 

K1 

A1 

K1 K2 

A2 

O 

x 

y 

L 2L 0 

t=0 
t=T 
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3.1.2 Leg kinematic plots  

Figure 3.2. Initial legs kinematical solution, with Nx= Nx2=Ny2=0. Ny=1. 
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3.2 Trunk kinematics 

Before looking for trunk motion defined by ψ angle, a p1 torque value must be 
assigned, since it will be needed to find out ψ. 

p1 is the ankle joint torque of the prosthesis leg and it is wanted that depends on β  

angle and its angular velocity, β� , related with stiffness and damping properties. So, 
following assumption is done: 

2
)()()( 111

π
ββ ⋅−⋅−⋅−= ppp KtCtKtp �              (3.36) 

Once defined )(1 tβ  and )(1 tβ�  suitable values for Kp and Cp have to be chosen. As in 
[1], p1 reaches up to -2·M [Nm], and starts at p1 = 0 Nm, where M is the mass of the 
whole body in kg. In our model, M = 73,18 kg, so if chosen Cp = 158,13 Nms/rad and 
Kp= 162,41  Nm/rad, a suitable solution similar than the one found out in [1] will be 
obtained. Our p1 starts at 0 Nm and reaches -130 Nm, see Figure 3.5. 

Once defined p1,  ψ could be looked for. Combining equations 2.1 to 2.5 a differential 
equation whose unknowns are only ψ , ψ�  and ψ�� could be achieved. In the following 
section the trunk kinematics plots can be seen. See Figure 3.3. As initial guess  

rad1.00 −=ψ and srad /5.00 −=ψ� have been chosen. 

3.2.1 Trunk kinematics plots 

Figure 3.3. ψ , ψ�  and ψ��  plots. 
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Our kinematics results can be summarized in a plot where it can be seen whole single 
step. It seems anthropomorphic but one also assumes that it is improvable in order to 
be more natural, since the trunk motion is strange. It looks like uncomfortable and 
unstable. Maybe, this problem will be able to be fixed when the optimal problem is 
solved. 
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Figure 3.4. Draft of single step of this initial model. 

 

3.3 Leg dynamics 

In section 3.2 it has already been seen how to find p1. Now, all other dynamics 
variables (p2, u1, u2, q1, q2, R1x, R1y, R2x and R2y)can be obtained. 

First of all, some of these variables are 0 between t=0 and t=T, since one foot is in 
swing phase and it does not touch the floor. These variables are p2=0 since the ankle 
has been represented as a footprint and it does not touch the floor, so its torque is null. 
For the same reason, reaction force on the floor of healthy leg (leg 2) is null too, so 
R2x=R2y=0. 

Reaction force has two coordinates: x and y, because it does not work in a fixed point 
but it moves along the implicit foot. xR1 and yR1 are coordinates that define the 
position of the application point. It has been supposed yR1=0. See Figure 3.5. 
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Figure 3.5. Implicit foot (in our model x1=L, y1=yR1=0). 

 

Substituting known variables in equation (2.2), R1x is obtained. And the same with R1y 
in equation (2.3). Combining equations (2.5) and (2.6) hip torques can be found out: 
q1 and q2; and knee torques u1 and u2. In the following section dynamic plots can be 
seen. See Figure 3.6. 
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3.3.1 Dynamic plots 

Figure 3.6. Dynamic plots 
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4 Optimization problem 

In order to achieve our main goal, which is finding out stiffness and damping 
properties of the below-knee prosthesis, our optimal problem has to be designed 
accurately.  

As mentioned in 2.1 and 2.3, two cost functions need to be minimized at the same 
time (Problem A). This would lead to discuss which the best solution is. 

There are 18 or more varying parameters to optimize our cost functions. 14 or more of 
these parameters belongs to leg kinematic parameters, 2 of them belongs to trunk 
kinematic parameters and 2 of them to control parameters. These are: 

- Vector [ ]T

y

T

x

T

y

T

x CCCCC 22= , as it has been defined in (3.20)-(3.23). These are 

14 or more leg kinematic parameters, it depends on whether sinus and cosines 
parameters are taken into account or not. 

- 0ψ and 0ψ� , which are initial conditions of the differential equation to find out 

ψ motion (trunk kinematic parameters). 

- Kp and Cp, stiffness and damping properties of the below-knee prosthesis. 
Finding them out is the main goal of our work. 

It is required to proceed step by step. Firstly just few parameters will be varied 
optimizing just one cost function: energy of the healthy part of the body. Once 
optimized, these will be used as initial values. Then the cost function will be again 
optimized with these values and few more parameters. All parameters need to be 
optimized. Step by step and if it is necessary new restrictions are introduced. 

Next diagram represents our followed steps. 

 

Min Eh ���� Variables ≡  {Kp, Cp} 

Restrictions: 

rad35,0<ψ  

0>,CpKp  

Min Eh ���� Variables ≡ {Kp, Cp, C3y2, C4y2, C5y2} 

 
Restrictions: 

rad35,0<ψ  

0>,CpKp  

m0,1<y<0 2m  

0)2/(2 =Ty�  

CpKp,,, 00 ψψ � as initial parameters 

1 

2 

CpKp,,, 00 ψψ � , C3y2, C4y2, C5y2 as initial parameters 
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Figure 4.1. Organization chart of our optimal problem. 
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Variances 2, 3 and 4 could vary slightly if sinus and cosines parameters are used 
instead of polynomial parameters. 

In each variance several aspects need to be taken into account. First of all the 
solutions given must be anthropomorphic; if these are not, it is not worth continuing 
with that. In each variance the energy consumed by the prosthesis needs to be 
checked. Both cost functions have to be minimized at the same time. The solutions 
should have low value of energy of the healthy part of the body and at the same time a 
low value of the energy consumed by the prosthesis. Also which is our kinematics and 
dynamics in each variance should be taken into consideration compared with previous 
variances.  

Finally, the final motions found, should be anthropomorphic. Therefore, these should 
be compared with experimental motions from literature.  

 

4.1 Matlab Program 

Matlab code has been written to solve the optimal problem (Problem A) which has 
been set in previous section. 

It had to be feasible but also easy to use as well as manageable. 

Our Matlab program can be splitted in several parts. On the first one, our fixed (length 
of body parts, time step...) and variable parameters are set. Here changing the value of 
every variable parameter is easy. On the next one, initial leg and trunk kinematics are 
found. Then, dynamics of the healthy part of the body as well as torque on the ankle 
of the prosthesis leg are obtained. 

Next part is the main section; it is where the optimal problem is going to be solved. 
We call fmincon function and Matlab should optimize our parameters to minimize the 
cost function. So, our cost function as well as restrictions, constraints and boundary 
conditions need to be introduced. A single cost function (instead of two cost functions 
–Pareto front) is optimized in order to know how the value of the consumed energy 
changes while some parameters are varied.  

Once optimized parameters are obtained, these results must be evaluated. New 
kinematics and dynamics of the system will be found. Then the plots that are needed 
should be seen. 

In figure 4.2 all parts of the program are present. 
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Figure 4.2. Organization chart of the Matlab program. 

bkpdyn.m: it finds out all dynamics variables. 

btskin.m: this program finds out all kinematics variables. 

btsmain.m: it is the main program which calls each subprogram. 

confun.m: there are restrictions, equalities and inequalities for parameters which have 
to be optimized. With quadenergyh.m, both are input data for fmincon function. 

btsmain.m 

btskin.m 

plotskin.m 

fixedparameters.m 

variableparameters.m 

solutionpsi.m  

legskin.m  
legskin.m 

bkpdyn.m plotdyn.m 

SETTING 
PARAMETERS 

INITIAL 
KINEMATICS 

ode45  

OPTIMIZATION fmincon  

quadenergyh.m quad  energyh.m 

fixedparameters.m 

btskin.m 

bkpdyn.m confun.m 

fixedparameters.m 

btskin.m 

bkpdyn.m 

legskin.m 

quad  fenergy.m 

fixedparameters.m 

legskin.m 
EVALUATION 

legskin.m 

ode45  solutionpsi.m  

legskin.m bkpdyn.m 

plots  

repmovie.m 

plotskin.m 

plotdyn.m 
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data.m: ask if user wants to see plots of kinematics, dynamics or others. 

energyh.m: it is the definition of the power consumed by the healthy part of the body. 

expdata.m: it is where the experimental data has to be introduced 

fenergyp.m: it is the power consumed by the below-knee prosthesis. If the integral is 
applied, the energy consumed by the prosthesis during one single step will be 
obtained. 

fixedparameters.m: all fixed parameters are defined: T, a1, a2, b1, b2, L, m, ma1, mb1, 
mf1, ma2, mb2, mf2, r, ra1, ra2, rb1, rb2, Ja1, Ja2, Jb1, Jb2 and J. 

legskin.m: this program finds out all leg kinematics, in btskin.m this subprogram is 
used to obtain these variables as vectors, with the same time steps like the solution of 
the differential equation. 

plotdyn.m: it makes dynamics-time plots. 

plotskin.m: it makes leg kinematics-time plots. 

plotothers.m: it makes different kinds of plots. Kp versus Cp, N (number of variance) 
versus Ep, ψ  versus ψ� , N (number of variance) versus Eh. 

quadenergyh.m: it is the cost function of the healthy part of the body. It is an 
implementation of the integral of the power consumed by the healthy part of the body 
during the time of a single step.  

repmovie.m: it makes a little movie with the gait motion with the aid of getframe 

command and then, a movie file with movie2avi command can be obtained. 

solutionpsi.m: this program has ψ  differential equation. Every variable has to be 
defined as a scalar in order to solve the differential equation, so legskin.m finds out x, 
y, x2, y2, α, β and their velocities and accelerations as scalars. 

variableparameters.m: parameters which could be changed in optimization phase are 
defined in this file. These are stiffness and damping values (Kp and Cp), vector 

[ ]T

y

T

x

T

y

T

x CCCCC 22=  and initial values of ψ : 0ψ  and 0ψ� . 

variableparameters1.m ... variableparameters7.m: variable parameters that have been 
optimized during optimal problem in each variance. 
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5 Results 

Once one has worked with MATLAB, results can be looked for. The main goal can’t 
be forgotten: looking for the optimal stiffness and damping properties of a below-knee 
prosthesis, with which patient use as less energy as possible, as well as the prosthesis 
use the minimum energy as possible. 

However, our model has to be anthropomorphic and consistent. So, kinematic and 
dynamic results of our model need to be compared with literature models. All external 
data that it has been used in this section comes from [8] (David A. Winter, 1991). This 
experimental data was tested from healthy people. It consists of 53 trials carried out in 
a laboratory. They did trials walking in three different velocities, between 80 to 130 
steps/min: natural walkers with an average cadence of 105,3 steps/min with a stride 
length of 1,51 m; fast walkers with an average of cadence of 123,1 steps/min and a 
stride length of 1,64 m; slow walkers with an average cadence of 86,8 steps/min and a 
reduced stride length of 1,38 m. 

These data consist of ankle, knee and hip angles, so α, β and ψ angles from our model 
have been able to obtain; ankle, knee and hip torques as well as ground reaction 
(horizontal and vertical). 

To solve the optimal problem variances mentioned at Section 4 have been followed. 
Solutions already had a low value of our cost function (energy of the healthy part of 
the body). 

In next table, these variances can be seen with some of main results, optimized values 
of stiffness and damping properties (Kp and Cp), minimum values of the healthy part 
of the body (Eh) and energy consumed by the below-knee prosthesis with that 
configuration. 

 Variance 1 Variance  2 Variance 3 Variance 4 Variance 5 Variance 6 

Kp (Nm/rad) 65,58 89,19 77,60 24,22 46,64 40,01 

Cp (Nms/rad) 34,48 66,52 65,28 0,0031 16,22 23,21 

Eh (J/m) 66,44 16,74 47,20 13,43 14,07 2,62 

Ep (J/m) 43,96 36,62 24,40 31,35 40,19 22,46 

Table 5.1. Optimal stiffness and damping values (Kp and Cp), and energy values (Eh 

and Ep) for each optimal configuration. 

Then, looking into our results one can check if they are anthropomorphic enough. 
Kinematics results are shown in next section. 
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5.1 Kinematic results 

Coordinates x and y (motion of the hip) seems to be anthropomorphic enough, as one 
can see in Figure 5.1.  
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Figure 5.1.  Motion of the hip. yandyxx ��,, . 

Horizontal motion of the hip has a constant velocity, it starts at x=0,4 m and finishes 
when it has gone through a length equal to one step (L). Vertical position, coordinate 
y, decreases along optimal steps. It could be guessed that if y path is shorter, it spends 
less global energy. 

Following, plots of the healthy ankle foot path can be seen, during its swing phase. 
See figure 5.2 (a) and (b). 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

t (s)

x
2
 (

m
)

 

 

Variances 1 to 5

Variance 6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
1.5

2

2.5

3

3.5

4

t (s)

v
x
2
 (

m
/s

)

 

 

Variance 1 to 5

Variance 6

 

Figure 5.2.(a) 
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Figure 5.2 (b). Motion of the healthy ankle in its swing phase. 2222 ,, yandyxx �� . 

Its horizontal coordinate haven’t been optimized until variance 6, where can be seen 
that there is a change in its velocity. Its height increase during optimal process, 
therefore vertical velocity increase too. 

Experimental data for angles from literature [8] is available, so these will be 
compared with our results. Note that experimental results that are available belongs to 
double step, but our results are from only one step; when the prosthesis leg is on its 
stance phase and the healthy leg is on its swing phase. With the aid of [1], one can 
conclude that our single step took place between 10% and 50% of the double step 
(support phase on both heel and metatarsal joint) for prosthesis leg and from 60% to 
100% (swing phase of the foot over the surface) for healthy leg. 

Before proceeding to compare our results with literature results, one assumption has 
to be explained which is supposed in order to get data. In [8], the mechanical model 
used is like in Figure 5.3. As it can be seen, it is different than our model (Figure 2.1), 
since angle of the foot θft angle between horizontal and a line along the bottom of the 
foot measured from the distal end (5th metatarsal phalangeal joint) have not been 
considered. In order to get β angle, foot angle has to be approximate. 

 
Figure 5.3. Mechanical model of [8]. θa is the ankle angle. 
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To approximate this angle, the time plot of the double step (Figure 5.4) has been taken 
into account. Looking the position of the heel and metatarsal during the step (see 
Figure 5.5), some angles during the double step have been decided, see Table 5.2. 
Then, interval times between these values have been approximated lineally.  

 

Figure 5.4. Time plot of the double step on one leg, Data from [8]. 

 

Figure 5.5. Time plots of displacements of heel and metatarsal. 

Time (%) 0 26 50 64 80 100 

Angle (°) 185 180 120 145 180 185 

Table 5.2. Approximated values of foot angle. Standard Deviation of these data null 

has been assumed. 
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According Figure 5.3, the following relations have been assumed: 

°−−= 180aft θθβ                   (5.1) 

°−+−= 180kaft θθθα                  (5.2) 

°−−+−= 180hkaft θθθθψ                  (5.3) 

So, once α, β and ψ experimental data are found, one can compare our results with 
them. β angle on the leg which has the prosthesis is compared, see Figure 5.5. 
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Figure 5.5. β angle on the prosthetic leg with pipe of the experimental results. 

In the plot, “bound” means the value of magnitude calculated plus or minus one 
standard deviation. Almost all of our results are inside the pipe of the experimental 
results. 

In Figure 5.6, results of β�  can be seen. There are no special comments in this results, 
just note that step 6 changes a little the shape of the plot; it starts with a lower value 
than the other variances and it finishes with higher value. Experimental results from 
this data are not available, so they can be compared. 
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Figure 5.6. Plot of β�  on the prosthetic leg. 
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Now, α angle on the leg which has the prosthesis is going to be compared, see Figure 
5.7. 
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Figure 5.7. α angle on the prosthetic leg with pipe of the experimental results. 

Our results are close to the pipe that determines the mean of experimental results plus 
and minus one standard deviation ( devst.±α ). One can conclude that at the end of 
the single step thigh of the prosthetic leg is not as flexed as in experimental results. It 
can be also seen that in first variance the flexion of the thigh was higher than latest 
variances.  

In Figure 5.8. One can see the plot of  velocity of alpha angle,α� . 
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Figure 5.8. Velocity of the α� on the prosthetic leg. 
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Like in β�  (Figure 5.6) on the same leg, there are no special comments in this results, 
just note that step 6 changes a little the shape of the plot. 

Regarding swing phase on the healthy leg, most of our results are under the pipe of 
the experimental results. See β  angle on this leg, Figure 5.9. On variance 6, flexion 
of the healthy shank is larger.  
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Figure 5.9. β  angle on the healthy leg. 

Experimental results from this data are not available, so our results can’t be compared 
with them. However one can see in order that shank of the healthy leg gets more 
flexion, its velocity is also higher. See Figure 5.10. 
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Figure 5.10. Plot of β� on the healthy leg. 
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If α angle results are compared with literature, one also can see that at the beginning 
of the swing phase it starts at almost the same angle, but then, experimental results 
increase more than our results. See Figure 5.11. 
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Figure 5.11. Plot of α angle on the healthy leg. 

Regarding α�  angular velocity on the healthy leg, like angular velocities on the 
prosthetic leg, no special comments can be stated, because no experimental data is 
available as a reference. However one can see that variance 6 differs from other 
results. 
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Figure 5.12. Plot of α� on the healthy leg. 

Last angle that is left to be analyzed is ψ. In Figure 5.13., our results can be seen with 
experimental data. One can state that our results at the beginning of the single step are 
close to be anthropomorphic. Experimental results flex the trunk more than ours.   
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As it is known, if the trunk is in a vertical position, the gait will be more safe and 
stable. In [8], one also can learn that in human gait as a first approximation the trunk 
could be considered almost vertical (actually it is biased slightly forward of vertical). 
In our results, trunk is close to be vertical, especially variances 2, 3 and 4. But 
experimental results show that in anthropomorphic gait there is a movement more 
forward and backward. It should be also taken into account that foot angle has been 
approximated; probably real anthropomorphic pipe has a smoother shape. 
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Figure 5.13. Trunk angle (ψ ) plot, with pipe of the experimental results. 

Regarding ψ� , from the first until fifth variance, results start nearly at the same 
velocity. Variance 6 starts with a lower velocity (in absolute value), but then, during 
the step, it increases its velocity more than other variances. See figure 5.14. 
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Figure 5.14. Velocity of the trunk angle, ψ� . 
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In figure 5.15 an interesting plot can be seen, it consist of the relation between ψ  and 
ψ� . From the 3rd variance a new restriction is introduced:  radT 01,0)()0( <−ψψ  so 

that, trunk angle at the beginning and at the end of our step were almost the same. One 
can bear out this fact in this plot. Also, as mentioned few lines above, trunk angle 
would be better as much vertical is (or slightly forward of vertical). So, one can 
consider variances 3, 4 or 5 more anthropomorphic, in addition, they have almost the 
same ψ  and ψ�  on the bounds. 
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Figure 5.15. Relation ψ  versus ψ� . 

Kinematics results can be seen in one plot where the single step is represented. Plots 
from variances 3, 4 and 5 are available, which are the most anthropomorphic. Figure 
5.16. 
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Figure 5.16. Variance 3 (above left), Variance 4 (above right) and Variance 5 (down 

at the middle). 

One can see that variances 3 and 4 are almost the same, like it has been seen in Figure 
5.15. In variance 5 the trunk is slightly forward to vertical. As a first approximation it 
seems more anthropomorphic and natural than variances 3 and 4.  

To finish comparing and discussing kinematics plots, xR1 coordinate is studied, 
horizontal position of the point where ground reaction acts. In Figure 5.17 its temporal 
progress can be seen. In Figure 3.5 “the implicit foot” have been defined and how to 
calculate this coordinate xR1 is known, yR1 = 0 m have also been defined, therefore it is 
easy to find out xR1. Looking this plot and Figure 3.5 one can guess that p1, the torque 
of the prosthesis leg, will be negative, since ground reaction force is applied in front 
of the ankle (xR1>0.76 m). These results are anthropomorphic, as this point of 
application would be on a real foot, since the maximum value of xR1 is in variance 3 
(xR1=0.8814) and it would be at a reasonable distance from ankle joint:             
0,8814-0,76=0,1214 m. Distance between ankle joint and toes is higher than 0,1214m, 
so our results could be considered anthropomorphic. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

t (s)

x
R

1
 (

m
)

 

 

Variance 1

Variance 2

Variance 3

Variance 4

Variance 5

Variance 6

 

Figure 5.17. Horizontal position of the point application of the ground reaction. 
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5.2 Dynamic results 

To start with dynamics, results of the torque on the ankle of the prosthetic leg are 
compared with the ankle torque of a healthy body from experimental results. It is 
assumed that it won’t be the same, but they should be similar in order that the patient 
can walk in an anthropomorphic way. In Figure 5.18 one can see that the shape of p1 
is completely different from experimental results, however, values from the beginning 
of the step are inside of “the experimental pipe”. One also can state that depending on 
variances, the shape of our p1 differs a little.  
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Figure 5.18. Torque on the ankle joint of the prosthetic leg, p1. 

As foot has been considered as a footprint, torque ankle of the healthy leg during its 
swing phase will be null. 

As regards hip torque on the prosthetic leg (q1), in Figure 5.19 one can see that the 
most results are inside or close to the pipe of the experimental results. Variance 6 has 
a significant difference, because at the end of the step, its hip torque goes up fast. This 
fact can’t be anthropomorphic. It is a result of the optimal problem; maybe if new 
restrictions are added in this variance, the problem will be able to be solved. 
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Figure 5.19. Hip torque on the prosthetic leg, q1. 

Knee torque on the leg that has the prosthesis (u1) has some parts that can be 
considered anthropomorphic, but at the end of the step, they get out of the 
anthropomorphic pipe. Like in hip torque on the same leg, variance 6 goes up at the 
end of the step unreasonably. See Figure 5.20. 
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Figure 5.20. Knee torque on the prosthetic leg, u1. 

Results about hip torque on the healthy leg (q2) don’t have strong comments to be 
stated. Just like q1 and u1, variance 6 differs from other variances. See Figure 5.21. 
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Figure 5.21. Hip torque on the healthy leg, q2. 

The same for the knee torque on the healthy leg. See Figure 5.22. 
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Figure 5.22. Knee torque on the healthy leg, u2. 

Ground reaction force is close to pipe of the experimental results. As mentioned, 
variance 6 is not anthropomorphic, more constraints should be put. Nevertheless, 
other results seem to be anthropomorphic. If one look on horizontal component (R1x) 
on Figure 5.23, one can see that firstly decelerate the bipedal system (when R1x<0) 
and then accelerate it (when R1x>0). Regarding vertical component (R1y), at the 
beginning and at the end of our studied period it has the highest values. See Figure 
5.24. 
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Figure 5.23. Horizontal component of the ground reaction force. R1x. 
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Figure 5.24. Vertical component of the ground reaction force. R1y. 

Once kinematics and dynamics of all variances have been discussed, it could be stated 
that, taking into account all comments that have been said said, as a first 
approximation all of them are anthropomorphic enough except variance 6.  
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5.3 Other results 

Now, focus on results that will help to try to solve Problem A. Hence, if one takes a 
look on Figure 5.25, one can see that energy of the healthy part of the body (Eh) 
decreases when more parameters to optimize are introduced. From variances 2 to 3 
no, because no parameters were introduced, just new restrictions. 
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Figure 5.25. Evolution of energy of the healthy part of the body (Eh) during variances 

in optimal problem. 

The evolution of Eh could have been guessed, but one doesn’t know anything about 
the evolution of Ep, the energy consumed by the below-knee prosthesis. It could be 
supposed that if one spends less healthy energy, energy consumed by the prosthesis 
would be higher. If Figures 5.25 and 5.26 are compared, from 2 to 5 variance one 
could state that it is true, but also depend on which is the configuration of all 
parameters to optimize, since variances 1-2 and 5-6 our statement it is not true. 
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Figure 5.26. Evolution of the energy consumed by the below-knee prosthesis (Ep) 

during variances in optimal problem. 
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In Figure 5.27 the relation Ep versus Eh can be seen and one can conclude that range 
of Eh is from 2,62 to 66,44 J/m and range of Ep is from 22,46 to 43,96 J/m. 
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Figure 5.27. Relation between Eh and Ep. 

Finally, the most important relation can be plotted, damping (Cp) versus stiffness (Kp)  
properties of results that have been obtained. Our results shows that for obtained 
optimized kinematics of the motion stiffness values are between 24,22 Nm/rad and 
89,19 Nm/rad and damping results are between 0,0031 Nms/rad and 43,96 Nms/rad. 
See Figure 5.28. 
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Figure 5.28. Relation between damping and stiffness properties (Cp versus Kp). 
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6 Conclusions 

This master thesis has objectives to contribute in designing a new type of actively 
controlled below-knee prosthesis which spends as low energy as possible. The 
knowledge about suitable stiffness and damping properties of the below-knee 
prosthesis is needed. 

In the report an optimization problem has been formulated which includes estimation 
of optimized stiffness and damping parameters of the below-knee prosthesis as well as 
determination of kinematics of human body motion minimizing energy consumption 
of the healthy part of the body (Eh). Numerical algorithm has been developed and 
MATLAB (fmincon function) has been used to solve the complex optimization 
problem.  

Apart from one variance in our optimization problem, satisfactory results have been 
achieved, since obtained results are almost anthropomorphic. At the same time low 
values of Eh have been obtained, while Ep value has been taken into account in order 
that it doesn’t increase too much. If one looks on Table 5.1, one could state that a 
suitable configuration would be among variances 3 to 5, because they have a low 
value of Eh while they keep a low value of Ep; especially 3 and 4 would be the 
motions more stable, with a vertical trunk position. 

Finally, it has been managed to find out a reasonable range of values for stiffness (Kp) 
and damping (Cp) properties. This fact means that possible relations between torque 
applied on the ankle joint of the below-knee prosthesis leg with its angle and angular 
velocity have been obtained. 

However, our model differ from experimental data [8] that have been used, since the 
angle of foot has been approximated in order to get experimental data that was 
needed. So, comparisons that it has been done aren’t extremely accurate, because real 
motion of the angle foot is not available. This is a typical problem when a mechanical 
system is simulated.  

6.1 Future work 

Our model is two-dimensional, that is the mechanical system motion is considered 
only in a sagittal plane. A possible next step of the work would be simulation of 
human motion and estimation of stiffness and damping properties of the below-knee 
prosthesis within the frame of 3D model.  

One also could spend more time refining MATLAB code, looking for different 
restrictions or changing initial conditions in order to find new anthropomorphic 
motion which consumes a lower energy value and thus finding out new combinations 
of Kp and Cp possible values.  

To end our work, it has to be said that this is a part of a contribution to design a new 
type of prosthesis. Our research could be continued designing the prosthesis with 
actively controlled ankle joint. To build this new types of prosthesis a suitable 
configuration of mechanical elements: spring, damper, shaft, bearings…. should be 
designed. 
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