Automated guided vehicle navigation in
unmapped semi-structured environments

Master’s thesis in Systems, Control and Mechatronics

Sverre Bergdahl
Daniel Palmqvist

Department of Electrical Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2019

MASTER’S THESIS 2019

Automated guided vehicle navigation in
unmapped semi-structured environments

SVERRE BERGDAHL
DANIEL PALMQVIST

CHALMERS

UNIVERSITY OF TECHNOLOGY

Department of Electrical Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2019

Automated guided vehicle navigation in unmapped semi-structured environments

SVERRE BERGDAHL
DANIEL PALMQVIST

© SVERRE BERGDAHL, 2019.
© DANIEL PALMQVIST, 2019.

Supervisor: Mikael Bjorn, Kollmorgen Automation AB
Examiner: Knut Akesson, Electrical Engineering

Master’s Thesis 2019

Department of Electrical Engineering
Chalmers University of Technology
SE-412 96 Gothenburg

Telephone +46 31 772 1000

Typeset in BTEX
Gothenburg, Sweden 2019

v

Automated guided vehicle navigation in unmapped semi-structured environments
SVERRE BERGDAHL

DANIEL PALMQVIST

Department of Electrical Engineering

Chalmers University of Technology

Abstract

Since the invention of the automated guided vehicle (AGV), a portable robot employ-
ing different types of navigation, in 1953, the technology has seen big improvements.
From using bumpers and emergency arrest handles as sensors to detect collisions to
today’s technology with a wider arrangement of available sensors. At Kollmorgen
Automation AB, the AGVs use a LIDAR scanner to localize itself in an area by
matching seen reflectors against known reflector positions, which is called Reflector
localization. The AGV can also locate itself by matching seen objects to a map of
known objects, which is called Natural localization. For some areas such as ware-
houses and pallet racks where the environment can change from day to day, Natural
localization run into the problem that the map might be different than the area.
A solution to this, used today, is putting up reflectors or using dead reckoning to
traverse these areas. However, adding reflectors to an area demand an environment
that allows for their installation and that they are in the view of the AGV at most
times. Dead reckoning, however, work well for shorter distances but quickly accu-
mulates error over distance travelled. An interesting solution to these problems is
using Simultaneous Localization and Mapping (SLAM), a method used by a robot
to create a map while simultaneously localizing itself in said map, to aid in dead
reckoning in while traversing unmapped areas.

This master thesis project which was conducted in cooperation with Kollmorgen
aims to evaluate the accuracy of single plane LIDAR SLAM generated trajectories
in industrial environments. The SLAM algorithms evaluated were chosen to be
GMapping and HectorSLAM. Tests were conducted in cooperation with Kollmorgen
at their facilities using a setup that tried to replicate industrial environments. Test
one and two had the AGV drive in a U-shape along a wall with the difference being
that test two had boxes placed along the outside of the trajectory. Test three had the
AGYV drive in a line with boxes evenly placed along the trajectory to replicate pillars.
The fourth test had the AGV drive in zig-zag between rows of boxes to replicate
rows of pallet racks in a warehouse. In these tests it was found that for moderate
speeds and in object rich environments SLAM generated trajectories proved to be
both highly accurate and repeatable.

Keywords: AGV, Automated Guided Vehicles, Navigation, ROS, Robot Operating
System, SLAM, Simultaneous Localization and Mapping, Dead-reckoning, Dead
Reckoning.

Acknowledgements

This masters thesis has been carried out under the Department of Electrical En-
gineering at Chalmers University of Technology. We want to thank Kollmorgen
Automation for the research topic, workplace and AGVs for testing. We would also
like to extend our thanks to our co-workers at Kollmorgen Automation for their wel-
coming and helping attitude during our project, and especially thank our supervisor
Mikael Bjorn for his knowledge and help during the project.

Sverre Bergdahl and Daniel Palmqvist, Gothenburg, February 2019

vii

Contents

List of Figures
List of Tables
Glossary
1 Introduction
1.1 Background
1.2 Problem description.
1.3 Related work
1.4 Research questiono
1.5 Our contribution
1.6 Delimitations
1.7 Outline.
2 Theory
2.1 Dead Reckoningo
2.1.1 Dead Reckoning With gyroscope
2.1.2 Dead reckoning error sources
2.2 Scan Matching
2.3 Simultaneous Localization and Mapping
2.3.1 GMapping
2.3.2 HectorSLAM
24 Summary
3 Platform
3.1 Test equipment
3.1.1 Charmvagn
3.1.2 Kollmorgen system background
3.1.3 Robot Operating System
3.1.4 ROSpackages
3.1.41 T oo
3.14.2 Rosbag
3.1.43 GMapping
3.1.44 HectorSLAM
3.2 Experiment setup

3.3 Summary

xi

xiii

XV

10
11
11
13
16
18

19
19
20
21
21
22
23
23
23
23
23
24

ix

Contents

4 Methods
4.1 Testcases
4.1.1 Wall visibleononeside.
4.1.2 Wall on one side with pillars on the other
4.1.3 Corridor with pillars on both sides
4.1.4 Zig-zag through corridors
4.2 Evaluation methods o0
4.3 Summary
5 Results
5.1 Test 1 - Wall visible on one side
5.2 Test 2 - Wall visible on one side with objects
5.3 Test 3 - Corridor with pillars on both sides
0.4 Test 4 -7Zig-zago
5.5 Summary . o.o.o. ..o

6 Discussion

6.1 Results.
6.1.1 Test 1
6.1.2 Test 2 s
6.1.3 Test3o
6.1.4 Test4d oo
6.1.5 Overallresults.

6.2 Choice of method

6.3 Future research and development

6.4 Summary

7 Conclusion
7.1 Research questions

Bibliography

25
25
26
27
28
29
30
30

31
32
34
36
38
40

41
41
41
42
43
44
45
45
46
47

49
49

51

1.1

2.1

2.2

2.3

24
2.5

3.1
3.2

3.3

4.1

4.2

List of Figures

One of the first AGVs built by Barrett-Cravens in 1954. (Source
Barrett-Cravens/Savant Automation (1958) according to [1])..

A differential drive robot and the Robot (xg,yr) and Global (z¢, ya)
coordinate frames. Along with the wheel of the robot with radius r
and angle ¢ L

[Mlustration of scan matching, blue is the current scan while the red
dotted rectangle is the last scan.

[lustration of the basic SLAM problem. This figure will be refer-
enced when explaining the different SLAM algorithms used below. It
also display a common problem in SLAM, namely that the map will
become skewed in a “banana” shape.

Flowchart of the basic SLAM algorithm.

[Mlustration of how the laser is used by GMapping to reinforce the
odometry, from left to right: a) Without any meaningful input from
the laser pure odometry is used. b) With a wall visible on each side
the laser can be be used to narrow down the location along the axis
of movement. c¢) With a wall visible in three directions the position
can be known with little uncertainty.

Figure describing the setup used for data logging

The AGV used in the project. It is equipped with a LIDAR scanner,
gyroscope and wheel encoders on both wheels.

Basic flow of the ROS navigation stack while running GMapping using
data from a bagfile, with some components omitted.

Map of the environment (made with GMapping) for the first test case
(left) and trajectory layout of the test case. The AGV start at the
point in the top right and travel toward the top left. The green arrows
are the positioning of reflectors.
Map of the environment (made with GMapping) for the second test
case (left) and trajectory layout of the test case. The AGV start at
the point in the top right and travel toward the top left. The green
arrows are the positioning of reflectors.

21

27

X1

List of Figures

xii

4.3 Map of the environment (made with GMapping) for the third test
case (left) and trajectory layout of the test case. The AGV starts at
the top and moves downward. The green arrows are the positioning
of reflectors.

4.4 Map of the environment (made with HectorSLAM) for the fourth test
case (left) and trajectory layout of the test case. The AGV starts at
the top right and moves toward the bottom right. The green arrows
are the positioning of reflectors.

5.1 Figures showing trajectories from the fast speed run of the wall with-
out pillars course. All five runs are shown in the figures.
5.2 Figures showing trajectories from the medium speed run of the wall
without pillars course. All five runs are shown in the figures.
5.3 Figures showing trajectories from the slow speed run of the wall with-
out pillars course. All five runs are shown in the figures.
5.4 Figures showing trajectories from the fast speed run of the wall with
pillars course. All five runs are shown in the figures.
5.5 Figures showing trajectories from the medium speed run of the wall
with pillars course. All five runs are shown in the figures.
5.6 Figures showing trajectories from the slow speed run of the wall with
pillars course. All five runs are shown in the figures.
5.7 Figures showing trajectories from the fast speed run of the corridor
course. All five runs are shown in the figures.
5.8 Figures showing trajectories from the medium speed run of the cor-
ridor course. All five runs are shown in the figures.
5.9 Figures showing trajectories from the slow speed run of the corridor
course. All five runs are shown in the figures.
5.10 Figures showing trajectories from the fast speed run of the zig-zag
course. All five runs are shown in the figures.
5.11 Figures showing trajectories from the medium speed run of the zig-zag
course. All five runs are shown in the figures.
5.12 Figures showing trajectories from the slow speed run of the zig-zag
course. All five runs are shown in the figures.

6.1 Figures showing the estimated end coordinates for both HectorSLAM
and Gmapping incase 1 L
6.2 Figures showing the estimated end coordinates for both HectorSLAM
and Gmapping incase 2
6.3 Figures showing the estimated end coordinates for both HectorSLAM
and Gmapping incase 3o
6.4 Figures showing the estimated end coordinates for both HectorSLAM
and Gmapping incase 4

32

5.1

5.2

5.3

5.4

9.9

2.6

2.7

0.8

List of Tables

Measured deviation in meters from reflector navigation at the end of
the test runs in case one.
Measured angular deviation in radians from reflector navigation at
the end of the test runs in caseone.
Measured deviation in meters from reflector navigation at the end of
the test runs in case two.
Measured angular deviation in radians from reflector navigation at
the end of the test runs in case two.
Measured deviation in meters from reflector navigation at the end of
the test runs in case three.
Measured angular deviation in radians from reflector navigation at
the end of the test runs in case three.
Measured deviation in meters from reflector navigation at the end of
the test runs in case four. 0oL
Measured angular deviation in radians from reflector navigation at
the end of the test runs in case four.

xiii

List of Tables

Xiv

Glossary

ROS Robot Operating System.
SLAM Simultaneous Localization and Mapping.
LIDAR Light Detection And Ranging, Also known as LADAR or LiDAR.
AGV Autonomous Guided Vehicle.
EKF Extended Kalman Filter.
Kollmorgen | Kollmorgen Automation AB, the company at which
this masters thesis project is conducted.
NDCS8 Vehicle system used and developed by Kollmorgen Automation AB.

TF ROS module used to calculate transforms between coordinate frames.
ICP Iterative Closest Point
ICL Iterative Closest Line

XV

List of Tables

Xvi

1

Introduction

1.1 Background

Since thier invention in 1953, Automated Guided Vehicles (AGVs) have been getting
more and more common in factories and warehouses. Technologically, the first AGVs
employed simple track-guided systems with primitive “sensors” such as bumpers and
emergency arrest handles utilizing mechanical switches. The idea behind this was
to replace the drivers of tractor trailers using automation and was implemented by
Barrett-Cravens located in Northbrook, Illinois. While Barrett-Cravens was the first
to implement an automated vehicle, the first installation was at the Motor Freight
Company in Columbia, South Carolina in 1954 and was an automated tractor-trailer
used for long-distance consignment shipping [1].

Figure 1.1: One of the first AGVs built by Barrett-Cravens in 1954. (Source
Barrett-Cravens/Savant Automation (1958) according to [1]).

While the earliest AGVs travelled with the help of tracks, development was done
to allow for following electrically conductive strips mounted to the floor, a principle
now known as “inductive track guidance”. This allowed the vehicle to orient itself
along the induced magnetic field while driving [1].

As the development of modern electronics began to speed up, so too did the devel-
opment of AGVs. With the availability of on-board computers and higher market
demand, the modern AGVs [1] began to take form. For these modern AGVs there
are a number of different methods of navigation used. Common methods include
magnetic; which uses magnetic lines or markers in the floor, LIDAR in combination

1

1. Introduction

with reflectors; which utilizes a laser scanner to detect and triangulate position with
regards to a set of reflectors. More modern systems can use LIDAR scans to match
the AGV position against a known map of the environment which has the benefit
of not needing reflectors or other artificial markers to function. It is also possi-
ble for an AGV to use multiple of these navigation methods in combination. The
primary navigation method used by the AGVs at Kollmorgen utilizes single plane
LIDAR scanners to navigate with and without reflectors, which is called Reflector
and Natural navigation respectively. A mix between these two can also be used.

1.2 Problem description

While the development of AGVs has come far, there are still some areas that are
problematic to navigate through with only Reflector or Natural navigation. These
problematic environments contain areas that are hard to make good maps of as
they produce either noisy readings or change frequently. Typical examples of these
types of environments are pallet racks which will change in appearance as pallets
are moved from day to day. While these environments are static in relation to the
moving AGV, the environment will change as pallet racks are emptied /refilled and
boxes moved around. A consequence of this is that it is substantially harder to
make a good environmental map without needing to re-calibrate the maps when
significant changes in the environment has occured. While there are multiple ways
to solve this problem, such as using artificial landmarks (reflectors) or using dead
reckoning, these come with their own problems. Using artificial landmarks demand
an environment which allows for their installation and that they are in the AGV’s
view at most times. Dead reckoning, on the other hand, work well for shorter
distances but accumulates error over distance travelled.

The purpose of this project is to evaluate whether or not dead reckoning can be can
be reinforced with SLAM-assistance in order to navigate parts of an environment
where no maps are available. As vehicles in industrial environments have high
demands in regard to positioning and accurately following specified routes in a
repeatable manner. The specific question is how well a SLAM based approach can
keep track of its own position with regard both to deviation in distance and angle,
while traversing along a predefined trajectory in an industrial environment. The
results of the SLAM tests will be compared with positioning done by odometry
based dead reckoning with and without gyroscope for each test case as well as a
ground truth which is the reflector navigation.

1.3 Related work

Work on and evaluation of SLAM algorithms is a common research topic. However,
the usual topic of interest in these research papers is whether or not the maps made
by these algorithms are good enough to be used in regards to metrics such as accu-
racy, robustness or how taxing the algorithm is on the CPU [2].

1. Introduction

In [3] the authors use a few test scenarios to evaluate the mapping capabilities of
SLAM (GMapping) and dead reckoning algorithms. Although a majority of the test
cases were irrelevant for this project, the final two scenarios compared the trajec-
tory of SLAM and dead reckoning with a ground truth, which is useful in this thesis.

In [4], the authors utilize SLAM algorithms to map a warehouse with the intention
of using that map for navigation. This paper use mounted reflector tags to aid in
mapping and navigation, whereas the work being done in this thesis use reflector
navigation as a ground truth when evaluating SLAM-based trajectories. There is
much research concerning the quality of SLAM algorithms [5, 6, 7]. However these
focus on the quality of the produced map and not on the robot trajectories.

In [8], the authors investigate the use of LIDAR odometry to aid in using visual
odometry, which is a method using cameras to calculate distance travelled by com-
paring images. The use of cameras to calculate motion between pictures is considered
a type of dead reckoning. As this thesis attempt to improve dead reckoning using
SLAM, this article is interesting even though the authors use LIDAR scan-matching
and not SLAM.

In [9], the authors implement an improved version of EKF-SLAM which is based
on a differential model of vehicle motion and compare it to dead reckoning. Even
though a different SLAM algorithm is used compared to this thesis, the results are
still relevant for understanding SLAM in general and the methods used to evaluate
different algorithms.

In [10] the authors implement a SLAM algorithm to help AGVs navigate in ware-
house environments where landmarks might not be available. This method has
fewer downsides compared to wired (high installation cost and difficulty in changing
paths) and wireless (lower safety and requiring landmarks to be installed) naviga-
tion methods. As this paper discusses the usage of SLAM algorithms to navigate
an AGV in environments where landmarks are unavailable, the results of this paper
are of some interest.

In [11], the authors apply a method for automatic navigation in partially structured
warehouse environments where changes in the floor plans are relatively frequent.
This method makes the AGV more autonomous by removing the need for paths
between waypoints. This paper is interesting as the semi-structured environments
studied are relevant to this thesis.

When reviewing the literature it is obvious that while there has been much research
into the topic of SLAM over the years, however the metric evaluated in most cases
is either the quality of the produced map or CPU usage. The authors of this thesis
were unable to find any good literature where the trajectory while navigating using
SLAM was being investigated. There is thus a lack of data on how well robots
navigating using SLAM are able to track their trajectory in real time.

1. Introduction

1.4 Research question

This thesis investigates how well an AGV using single plane LIDAR SLAM is able
to track its own trajectory in an industrial or warehouse environment. The metric
investigated specifically is the deviation from a predetermined path. The exact
question is defined as follows
o How accurate and repeatable are trajectories produced by SLAM using a single
plane LIDAR. This is measured with respect to deviation in both meters and
radians and the variance of these values over several test runs.
This question will be answered by using reflector navigation used by Kollmorgen
Automation as a ground truth while recording the scan and odometry data from
a test run. This data will later be used to do simulations of the run using the
SLAM algorithms GMapping and HectorSLAM to calculate AGV position. The
deviation from ground truth at the end position from SLAM will later be compared
to deviation at the end position by odometry with and without gyroscope.

1.5 Owur contribution

The results of this thesis aim to present an evaluation between dead reckoning and
ROS-based SLAM algorithms with regard to accuracy of the generated trajectories,
with the reflector navigation used by Kollmorgen as ground truth. This project was
done in collaboration with Kollmorgen, which is a world leading provider of AGV
systems. Kollmorgen provided the test vehicle, the vehicle controller software and a
location for testing.

The relevant areas of use is, for example, corridors in factories where pallets move
around from day to day. Due to the semi-static nature of these kinds of environments
they are hard to map as landmarks can easily get blocked with the end result being
the AGV getting lost. Switching from a reflector-based navigation to SLAM-assisted
dead reckoning in these kinds of areas and later switching back to the AGVs normal
mode of navigation when it enters a known area is an interesting solution to this
problem.

The trajectory accuracy of the SLAM-algorithms HectorSLAM and GMapping will
be tested and compared against traditional dead reckoning (with and without gyro-
scope), with reflector navigation used by Kollmorgen as ground truth. The metric
evaluated will be the deviation from the ground truth both in distance and angle.
Four different test scenarios are set up to replicate different scenarios an AGV can
encounter in an industrial environment, such as driving between pallet racks or
having a wall visible on only one side of the trajectory. Three different speeds
(0.5m/s, 0.25m/s and 0.125m/s) were used for each scenario to replicate different
scan rates of the LIDAR for each of the scenarios. Each SLAM simulation was then
run five times for each test scenario in order to get some measure of how noisy each
algorithm is.

Testing was conducted at the Kollmorgen facilities in Molndal, Sweden using one of
their prototype AGVs, called Charmvagn, equipped with a LIDAR scanner, wheel
encoders and gyroscope. The tests were designed to replicate areas that are hard to

4

1. Introduction

navigate for standard navigation systems such as warehouses where reflectors might
get blocked or the environment changes due to pallets moving around from day to
day, making navigation based on an existing map locally impossible.

1.6 Delimitations

This thesis presents an evaluation of ROS-based SLAM algorithms as a tool for
reinforcing dead reckoning navigation in areas where traditional navigation methods
cannot be used. The project will be limited to using the existing SLAM algorithms
GMapping and HectorSLAM and no further development on these methods will be
done. As the focus on the project is to evaluate whether or not SLAM-reinforced
dead reckoning can be used to aid navigation, the intended trajectory of the AGV
is assumed to be unobstructed and the environment static in relation to the AGV.
The mapping quality of the different methods will not be evaluated, no development
of path planning will be done and the long corridor problem associated with SLAM
will not be explored. The long corridor problem refers to the fact that if a robot
is moving straight down a corridor with smooth walls the laser scanner will not be
able to detect any movement, see fig. 2.5 for an example of this. Vehicle dynamics
will not be thoroughly investigated for other vehicles than the specific model used
in this project.

1.7 Outline

The thesis has chapters dedicated to theory, platform setup, methods, results, dis-
cussion and conclusions. Theory contains information about dead reckoning, scan
matching, the SLAM problem and solutions to this problem used in this thesis
(GMapping and HectorSLAM). Platform contains the system architecture from the
AGYV down to the ROS modules used. Methods describe the different test scenarios
used when testing the algorithms, the experiment setups and evaluation methods
used to get results. The results chapter describe the results from the different test
scenarios. Discussion will consist of discussion and evaluation of the results, choice
of method as well as thoughts of future development. The final chapter will present
the conclusions that has been made in regard to the results from the tests. This
chapter also aims to answer the research questions stated in section 1.4.

1. Introduction

2

Theory

This chapter presents the theory behind the dead reckoning used by the AGV as
well as the theory behind SLAM and the different solutions to this used in the
thesis. Dead reckoning is the term used to describe positioning done by estimating
movment, in this case based on odometry and/or gyroscope. SLAM is short for
Simultaneous localization and mappnig and is the process when a mobile robot does
localization on a map while at the same time creating the map at runtime. Both
dead reckoning and the SLAM methods used in this thesis are described in detail in
this chapter.

2. Theory

2.1 Dead Reckoning

Dead reckoning is the term that is used to describe positioning of a robot based
on estimating its velocity and integrating this over time. It is a method that has
both good short-term accuracy, is computationally inexpensive and can run at high
sampling rates [12]. However it is based on integrating estimated movement and
will thus build up large accumulated error over distance traveled and depending on
how the gyroscope is handled also over time. It is used to some degree in almost all
mobile robots since it can be fused with other navigation methods that provide long
term accuracy. Dead reckoning can be done with a variety of sensors, for wheeled
robots the most common one is wheel encoders that are often used in conjunction
with a gyroscope.

> Xe

Figure 2.1: A differential drive robot and the Robot (zg,yr) and Global (z¢, yq)
coordinate frames. Along with the wheel of the robot with radius r and angle ¢

The vehicle used in this project is of differential drive type and is equipped with
wheel encoders and a gyroscope, the dead reckoning formulation used is explained in
this section. The vehicle controller simultaneuously calculates two dead reckoning
trajectories, one using only wheel encoders and one using both wheel encoders and
gyroscope data. They are calculated according using eq. (2.9) and (2.10). Which
are derived according to [13]:

First the forward kinematic model eq. (2.1) of the robot is defined as,

T
SR: y :f(la"“?Q?gblaq‘SQ)' (21)
0

Where [is the distance between the wheel and the center of rotation, r is the radius
of the wheels, 6 is the angle to the robot relative to the global coordinate frame and

8

2. Theory

¢1,2 is the angular velocity of the right and left wheels respectively. Movement in x
for each wheel is calculated using eq. (2.2) and (2.3),

: I
Ir = §T¢1, (22)

j?g = ;T(bg. (23)

Since this is a differential robot eq. (2.2) and (2.3) can simply be added to get the
movement speed in xg direction resulting in eq. (2.4)

ij:ij1+ftR2. (24)
Which is the 4 component of the robot state g as for the § component since it
is a differential robot neither wheel can contribute to movement in y direction and
thus this will always be zero. The subscripts g and ¢ refer to the robot and global
coordinates.
With a differential type robot the rotation can be calculated as an arc with the
radius 21, with w; o defined as rotational velocity for the right as left wheel,
w1 = @

21

For the left wheel the same equation is used with the modification that since it
affects the angle of the robot in opposite direction when it spins the negative angle
is used instead,

(2.5)

Wy = _;@. (2.6)

Together equations eq. (2.4), (2.5) and (2.6) for the kinematic model for the robot:

ré1 | ré
[
e=| 0 . (2.7)
o)
ot
Together with the rotational matrix eq. (2.8) and eq. 2.7 form the model for the
estimated relative position of the robot,

§a=R(O)" - Er. (2.8)
Where R(6)~! is the transform £r to éa

cos(f) —sin(f) 0
R(0) = |sin(d) cos(d) O0Of. (2.9)
0 0 1

2.1.1 Dead Reckoning With gyroscope

The above formula in eq. (2.8) is what is used for the dead reckoning only using
wheel encoders, for the version with gyroscope the angular velocity of the robot ¢
is measured by the gyroscope instead of being calculated using data from the wheel
encoders. The equation used for gyroscope dead reckoning is thus:
: —1
Eq = R(0) 0 . (2.10)
br

2. Theory

2.1.2 Dead reckoning error sources

Dead reckoning is short term accurate but accumulates error over time, the reasons
for this are outlined below. The first source of error is form the characteristics of the
vehicle itself, in the equations above both the wheel radius and the distance from
the wheel to the center of rotation is used. Thus any change to these will alter the
result of the dead reckoning. Wheel radius can be affected by a number of factors,
wear to the wheels will reduce their radius and so will heavy loads, especially on
vehicles that do not have solid wheels. A big contact patch causes more slippage
against the floor when a wheel is rotating around its own axis. Poor grip against the
floor will also cause error to build up from wheel slipping. For the gyroscope there
are two sources of error [12]. First there is drift which is that the gyroscope will
slowly drift away from its initial zero, this is an inherent fault of all gyroscopes and
the only real way of correcting it is to zero the gyro which means that measurements
are stopped and the value from the gyro is reset. Then there is the fact that since
the gyroscope measures angular velocity, one integration is needed to get the angle,
thus both random noise in the measurement and the drift will be integrated and
thus error will build up, illustrated by eq. 2.11 where E represents a white noise,

6:/(¢R+E). (2.11)

In order to use gyroscopes there is thus a need to reset the values from it at regular
intervals. On the vehicle used in this project this is done whenever the vehicle is
stopped. Finally there is the human factor, many of the error sources described
above can be reduced by careful tuning of the vehicle. This however is labour
intensive and thus keeping it to a minimum is desired. As described above there
can also be complicating factors like wear involved, which would require periodical
re-tuning for the odometry to stay accurate. The vehicle used in this project is a
best case scenario for dead reckoning, it is light, has narrow wheels and good grip
factors that are important for good odometry data. In addition it has been used to
test the limits of dead reckoning accuracy and thus the vehicle is very nicely tuned.

10

2. Theory

2.2 Scan Matching

Scan matching is the process of calculating the movement between a pair or sequence
of laser scans based on the scans themselves. This is one of the key methods used in
laser based localization. The basic idea behind it is looking at two consecutive scans
and then finding the rigid transformation between them, thus finding the translation
and rotation that has occurred between the scans, the most common approach to
this is using ICP (iterative closest point) methods[14] or the related ICL (iterative
closest line) [15] methods.

Figure 2.2: Illustration of scan matching, blue is the current scan while the red
dotted rectangle is the last scan.

In figure 2.2 scan matching is illustrated, in this case the corners are identified as
features. The goal of the algorithm is then to find the transformation between the
last and the current scan. One thing that is important to note is that in the example
above a 90 degree rotation while the robot is standing in the center of the rectangle
would result in a scan that looks identical regardless of which direction the robot
is rotated. Thus the result is multi-modal, this is a well known problem and ways
to combat this include, higher scan frequency, more detailed scans, different choice
of features and finally using more sensors in order to exclude possible modes. For
details on how scan matching works and how it is used in the SLAM context refer
to sections 2.3.1 and 2.3.2.

2.3 Simultaneous Localization and Mapping

Simultaneous Navigation and Mapping (SLAM) is the concept of having a robot
navigate an unknown environment and both create a consistent map of it while also
determining its own location on this map. This is a hard problem due to its chicken
and egg nature and was for a long time regarded as the holy grail of problems in
robotics [16]. Even though many parts of the problem can be considered to be solved
in theory, SLAM is still one of the most important topics in the field of autonomous

11

2. Theory

robots and there are still many unsolved problems related to it [17], such as being
self-tuning, fail-safe and allowing for long term autonomy. The only data available
to the robot is the sensor readings while all information about the environment is
calculated at runtime.

The basic SLAM problem [16] can be described as follows and is illustrated in figure
2.3.

X1 X

l,-\ Uk {\\ Uk+1

.. e
Zk—l, i ‘ T

Robot Landmark '
Estimated |> '

True |> {:}

Figure 2.3: Illustration of the basic SLAM problem. This figure will be referenced
when explaining the different SLAM algorithms used below. It also display a com-
mon problem in SLAM, namely that the map will become skewed in a “banana”
shape.

In figure 2.3, the following parameters are
o X,: The state vector describing the location and orientation of the robot.
e ug: The control vector between times k£ — 1 and k.

e my;: A vector containing the location of the ith landmark, these are assumed
to be time-invariant.

e zj: Observation of the ith landmark at time k.

And sets containing the full history of all these variables are also defined as X, U and
M and Z respectively. The goal is to use the laser readings of the landmarks in order
to establish the position of the robot on a map while simultaneously creating the
map. Both map representation and what type of landmarks vary between different
SLAM algorithms. This is achieved by comparing scans over time and by looking
at the difference between them a trajectory through the world can be constructed
with scan matching. This can be done through only scan matching or by combining
other data sources such as odometry or GPS by means of sensor fusion. In sections
2.3.1 and 2.3.2 the SLAM algorithms used in this project are explained in greater
detail. The basic SLAM algorithm [18] is shown in fig 2.4 and is explained in more
detail below.

12

2. Theory

Repeat <

]

Read Observe
Apply control .
. environment landmarks Zci,i
input u, and :
with and store and correct
update robot
ctate X new the map m
k
landmarks Z and pose X«

Figure 2.4: Flowchart of the basic SLAM algorithm.

1. Apply a control input u to move the robot, and update the robot state Xj.

2. Read the environment with the sensors and store new landmarks z in the map
m.

3. Observe landmarks z;_;,; that have already been observed and use this ob-
servation to correct both the map m and the estimated pose of the robot
X

4. Repeat 1 through 3.

The steps above is a gross simplification of each step but the basic algorithm remains
the same for all types of SLAM. One important thing to note is that in each step
there is a certain uncertainty added to the system and finding ways to minimize the
buildup of uncertainty in both the robot state and the map is where much of the
work is being done. It also needs to be noted that 2.3 is an example of graph SLAM
however the basic concept is the same for all others types of SLAM.

2.3.1 GMapping

GMapping [19] is an open source SLAM implementation based on the use of Rao-
Blackwellized particle filters [20], it is based on the fastSLAM2.0 algorithm [21, 22]
that has been improved and modified to allow for grid maps. FastSLAM is a so
called graph SLAM algorithm and defines the maps as a series of landmarks and
poses and the relationship between them, see 2.3 for an illustration of graph SLAM.
This type of map representation generally contains much less information than a
grid map and is less computationally taxing. As such, modifications are needed to
make it work with grid maps.

13

2. Theory

o See®

Figure 2.5: Illustration of how the laser is used by GMapping to reinforce the
odometry, from left to right: a) Without any meaningful input from the laser pure
odometry is used. b) With a wall visible on each side the laser can be be used to
narrow down the location along the axis of movement. c¢) With a wall visible in
three directions the position can be known with little uncertainty.

The concept behind mapping with a Rao-Blackwellised particle filter is the esti-
mation of the joint posterior, with the map m, the trajectory xi; = x1,..., x4, the
observation data z1.; = 21, ..., z; and the odometry information wy.;_1 = uq, ..., us_1.

P(T14]21,, Ut 1) (2.12)

The filter makes use of the factorization

p(xl;t|21“ Ul;t) = p(m|$1“ Zl:t) 'p(xlzt‘zlta Ul;tﬂ) (2~13)

With this factorization the trajectory can be estimated and then used to compute
a map given the trajectory. This is what is known as Rao-Blackwellization and eq.
(2.13) can usually be calculated efficiently [23].

To estimate the posterior over all the potential trajectories a particle filter is used,
each particle presents a potential vehicle trajectory that has it’s own map associated
to it which is built from the observations and the trajectory. Of these particles the
ones that have a low likelihood of being true are then eliminated and the ones with
high likelihood are kept.

A common approach in localization is to use smoothed likelihood functions, however
the laser especially does not have a smooth likelihood function instead it is peaked
around one or more possible modes. To solve this the last observation made by
the sensor is integrated into the proposal which allows for sampling only of the
meaningful regions. Eq. (2.15) is the optimal proposal distribution with respect to

14

2. Theory

the particle weights [24] while the weights w’ for each particsle then can be expressed
as (2.16)

pzdlmy, 2t 2t) = (2.14)
(i) (i)
p(zt|mt717xt)p(w”xt*l?ut_l) (2 15)
P<Zt’m£2—)1a ﬂfgl—)b Up-—1)
wf? = wf®y - [plala)p(@lel u)de (2.16)
In order to efficiently draw the next generation a Gaussian approximation
N(Mgi)a th‘))' (2.17)

is computed based on the locally estimated posterior (2.14) around the maximum

likelihood function created by the scan matching. For each particle ¢ both parame-

ters ,u,gi) and zﬁ“ are calculated individually,

1 X Z. i
2wy plalmiy @) - plalery uea), (2.18)
j=1

-
U

K - . - -
o e pladmi) - pla a2) - (@ -)y -) (219)
j=1

o =
where 7(4) is a normalization factor for the Gaussian parameters,

K . .
N =3 p(zemi?y,) - plag|aty, ue). (2.20)
j=1

Thus a closed form approximation of the optimal proposal is obtained and using this
proposal distribution the weights can be computed as eq. (2.21) instead of (2.16),

w!? = w®, . (2.21)

The value N,y is a factor [25] that is used to estimate how well the particles rep-
resent the posterior. When this factor drops below N/2 where N is the number of
particles resampling is performed,

1
S ()
The authors of the GMapping algorithm [19] describe it as follows. Whenever a new
set of measurements (u;_1, 2¢) is available the proposal is individually calculated for
each particle resulting in the following algorithm:

1. A initial guess of the robot pose x;(i) = x@l @ u;—q for each particle ¢ is
obtained from the previous pose xgl_)l of that particle and the odometry data
u;—1 collected since the last filter update. In this context & is the standard

pose compounding operator [26].

Nepr = (2.22)

15

2. Theory

2. A scan matching algorithm is executed on the map m§?1 starting from the

initials guess x;(i) the search of the scan marching is limited to a region around
x;(i). The scan matcher used by GMapping is “vasco” from the “Carnegie
Mellon Robot Navigation Toolkit”!. If the scan matching fails the pose is
computed using only odometry data and steps 3 and 4 are skipped. .

3. A set of sampling points is selected in an interval around the pose :zé” re-
ported by the scan matcher. Based on this the mean and covariance matrix of
the proposal are computed by pointwise evaluation of the target distribution
p(zt|m§1_1, xj)p(:l:j]xg_li), u;—1) in the sampled positions z;. During this stage
the weighting factor () is computed according to (2.20).

4. The new pose xl(i) of the particle i is drawn from the Gaussian approxima-
tion (2.17) of the improved proposal distribution. Fig (2.5) shows how this
distribution is found intuitively.

5. Update importance weights (2.21).
6. The map m® of particle i is updated according to the drawn pose x,gi) and the
observation z.
After computation of the next iteration of samples a resampling step is carried out

depending on the value of (2.22).

2.3.2 HectorSLAM

HectorSLAM (Heterogeneous Cooperating Team Of Robots) is part of a series of
ROS modules developed at TU Darmstadt for urban search and rescue operators
[27]. HectorSLAM only uses a laser scanner for the SLAMing part, however other
sensors such as gyroscope, accelerometer and GPS are used by other parts of the
Hector suite. This means that it is resistant to bad odometry but is instead re-
liant on high quality, high frequency laser scans and is especially sensitive to fast
rotations of the robot. It has the property that it is able to produce high quality
maps without loop closure, something that is of interest to this study. HectorSLAM
[28] works by matching the laser scan to the map-so-far and this is done by using a
Gauss-Newton approach inspired by computer vision. This saves computation time
since there is no need to associate the scan beams with each other or doing a pose
search. Aligning scans with the map-so-far also means that the scan is implicitly
aligned with all previous scans.

The map in HectorSLAM is defined as a grid map which by nature is discrete, this
limits the precision that can be achieved since it does not allow for computation of
interpolated values or derivatives. For this reason the following scheme is employed,
each continuous point on the map can be approximated using the four closest discrete
points. Where M is the map and P,, is a point,

M(P,) ~ L% (TPy + S M(Pm))
Y1 — Yo \T1 — Zo T — Xo (2‘23)
y A=Y (PTI0 pp(pg) + AT M(P00)>.
Y1 — Yo \T1 — Xo T — o

Thttp://carmen.sourceforge.net /intro.html

16

2. Theory

And the derivatives can be approximated as:

oM Y~ Y

——(Pn) = (M(P11) — M(Fo))

Or yyll__y; (2.24)
o yD(M(Plo — M(Poo)),

oM T — Xo

——(Pn) = (M(P1) — M(Pr))

dy il :;’fo (2.25)
xll_ o (M (For) — M(Foo))-

The 2D HectorSLAM algorithm [28] used in this project works as follows. Define
the parameters p, and p, for the pose in x and y respectively and the map M and
scan data S;(§), which contains the end point coordinates of each of the laser beams
si = (Siz, si,y)T. The goal of the scan matcher is to find the rigid transformation
& = (puypy,)" that minimizes

&= argzninzn:l[l — M(S;(€))]>. (2.26)

L.e. the best alignment of that laser scan with the map. S;(§) is the end point
coordinates in global coordinates and is found using the following expression:

s6) = (7248)) (3). -
© (8”1(%0) cos(¥)) \siy) \p (2.27)
Thus M (S;(€)) returns the coordinates of the beam end points in the same frame of

reference as the map. The goal is then given some starting estimate of £ to estimate
the A¢ that minimizes the error according to

n

> 1= M(S:(€)* — 0, (2.28)

i=1

through Taylor expansion and solving for A¢ the Gauss-Newton equation for the
minimization problem is acquired:

a¢ =1y [varesien | - arsien) (2.29)
with
95,(9)

asi(g)} . (2.30)

T

H=|VM(s, M(S;
VM) T | | vasi©)
The map gradient VM (S;(€)) is provided by 2.23 which together with 2.26 forms
0

Si€) (1 0 —sin(y)siy —cos(y)siy
o3 (0 1 cos(¢)s;y —sz’n(qp)si’y.) (2.31)

using the map gradient and 2.31 the Gauss-Newton equation 2.17 can then be eval-
uated. Since this works on non-smooth linear approximations of the map gradient

17

2. Theory

convergence towards a minimum is not guaranteed. In order to combat this an ap-
proach using several maps of progressively coarser resolution inspired by work in
computer vision is used, where the scan alignment is started at the coarsest level
first and then continued using the finer maps.

2.4 Summary

In this chapter the theory behind the methods used in this chapter have been pre-
sented. It is important to understand the relation between them. The odometry in
this thesis is at its core based on calculating the trajectory of a mobile robot based
on how much the electric motors move, this can then be extended by the use of a
gyroscope.

Scan matching is the process of calculating movement based on two or more con-
secutive scans, since modern laser scanners are both very accurate and have high
frequency this can be very effective. However if a robot is localizing itself on a map
with the use of laser scans it will have no way to differentiate between locations that
produce identical scans. For example if using scan matching in an office environment
containing identical cubicles localization based on scan matching can result in “tele-
portation” between these cubicles. A laser scanner also produces a large amount of
data, often requiring downsampling of either resolution or frequency in order to be
able to work in real time.

SLAM is at a basic level an optimization problem where the distance between the
map and the current view has to be minimized like eq. (2.28). The best way to
solve an optimization problem effectively is to provide it with a good initial guess.
This is done in different ways by the the GMapping and HectorSLAM algorithms.
GMapping uses the odometry in order to provide an initial guess and try to eliminate
multimodal scan results, HectorSLAM uses an approach based on keeping several
maps of different resolution in memory simultaneously and optimizing with respect
to each map in order starting with the lowest resolution map. The result of the
low resolution optimization is then used to provide the initial guess of the next
optimization problem. HectorSLAM uses the scanner at full frequency in order to
eliminate multimodal results.

In the next chapter the hardware and software setup used for the experiments con-
ducted for this thesis is laid out and explained in detail.

18

3

Platform

This chapter aims to describe the hardware and software setup used during the tests.
The first section describes the system architecture used in the test while the second
section describes the experiment setup.

3.1 Test equipment

This section aims to describe the AGV used in the tests and the software architecture
used by it. The first subsection aims to describe the hardware of the AGV while the
second shortly aims describe the system used by Kollmorgen. The third subsection
give an introduction to the ROS framework and the final subsection aims to describe
the different ROS packages used to perform and evaluate the tests. Figure 3.1
shows the setup that was used to log the data from the experiments, the AGV was
controlled using the Kollmorgen NDCS8 system from the Windows laptop where the
dead reckoning data was also logged, while data was being logged by ROS and sent
to the laptop running ROS.

19

3. Platform

é ———
tml Windows Laptop

Logé’/};g
[s

ROS-Laptop

Figure 3.1: Figure describing the setup used for data logging

3.1.1 Charmvagn

In the project, a differentially steered AGV called a Charmvagn is used. The Char-
mvagn is a small-scale AGV used for testing and demonstration but uses the same
controller and software used in real life applications. The sensors used in the tests
were a Light Detection and Ranging (LIDAR) sensor, wheel encoders and a gyro-
scope. A LIDAR sensor uses a laser to measure the distance to objects in different
directions. Wheel encoders report the angular velocity of the wheels and is used
for dead reckoning when calculating the distance travelled from a starting position
while the gyroscope measure the rotational acceleration per axis. The LIDAR used
is a Kollmorgen L.S2000!, which is the same type of scanner used by other AGVs
at Kollmorgen. This specific LIDAR has an angular resolution of 1 milliradian at
a rate of 20 scans per second and a maximum range of 25 meters with an accuracy
of £25mm and a maximum sweep of 360 degrees. The LS2000 provide a resolution
of 6300 values per scan, with an accuracy of £0.87mrad, which is higher than what
is used by many applications. In an earlier project [2], the total amount of data
was limited to 630 values per scan to minimize stress on the system as the data is
transferred over WLAN. However the whole scan sweep is unusable due to the rear
mounted forks so these scans are removed by applying a filter in ROS to the scan
data removing scans that are “too close” to the vehicle. While this approach can
cause other problems since it also means that the vehicle will not detect other ob-

http://npm-ht.co.jp/wordpress/wp-content/uploads/2018/06/1s2000.pdf

20

http://npm-ht.co.jp/wordpress/wp-content/uploads/2018/06/ls2000.pdf

3. Platform

jects that are very close it was deemed acceptable for testing purposes. The vehicle
used can be seen in figure 3.2.

Figure 3.2: The AGV used in the project. It is equipped with a LIDAR scanner,
gyroscope and wheel encoders on both wheels.

3.1.2 Kollmorgen system background

At Kollmorgen Automation the AGVs come equipped with a generic control sys-
tem called NDCS8 which include a vehicle controller, navigation sensors, displays,
vehicle software and system software used for diagnostics and configuration. The
data gathered from each run can be saved onto a computer and replayed at a later
occasion.

As the Kollmorgen AGVs generally do not use ROS as part of their software the
vehicle controller software has been extended to be compatible with ROS software
as part of an earlier project. This has been done by adding ROS functionality on
top of the existing software, allowing for the systems to be run in parallel.

3.1.3 Robot Operating System

Robot Operating System (ROS) is an open source framework for developing robot
software [29]. It is made with a modular structure that is designed to allow for easy
integration of different modules and running several of them at the same time.

The structure of ROS is that of a number of servers called nodes that are talking to
each other with messages in a peer-to-peer structure. The nodes can be run both

21

3. Platform

locally on a single machine or networked over several units using either LAN or
WLAN. This allows computationally heavy tasks to be run “offboard” the robot.
Nodes are the part of the system which perform the actual computation in ROS
and these communicate via topics. This is done by the node publishing data to a
topic which will pass it on to any node that is subscribing to it. Each node may have
several topics that it subscribes and publishes to and each topic may send/receive
data from several nodes. Generally neither publishers and subscribers are aware
of each others existence. Keeping track of these nodes is the Master whose role
is to enable the nodes to locate each other. In this project all tasks related to
mapping and navigation are run on a laptop while the AGV in essence only delivers
data. This structure is designed to allow for easy debugging as existing modules
can be combined with new code since there is minimal dependencies between the
nodes. The ROS modules used in this thesis is the GMapping and HectorSLAM
packages to perform SLAM, rosbag to record and play data and tf to calculate
transforms between the coordinate frames. The simulations were visualized using
RViz?, which is a package allowing for visualization of sensor data and trajectories
during simulation.

/robot_state_publisher

/scan_filtered

[laser_filter

/playbag

Figure 3.3: Basic flow of the ROS navigation stack while running GMapping using
data from a bagfile, with some components omitted.

3.1.4 ROS packages

This section aims to shortly describe the different ROS packages and their required
data used in this thesis. The main packages used that will be described here is the
tf, rosbag, GMapping and HectorSLAM packages.

2http://wiki.ros.org/rviz

22

http://wiki.ros.org/rviz

3. Platform

3.1.4.1 Tf

Tf? is one of the more important functions of ROS when using or simulating robots
with many parts. This system keeps track of all the coordinate frames in relation
to each other. This is an essential tool for keeping track of a robots many parts.
As the interesting metric to be evaluated is the location of the AGV in the map,
the relevant transform looked at is the transform between the map coordinate frame
and the base__link coordinate frame. This package is also where things such as the
location of wheels and scanners are kept track of.

3.1.4.2 Rosbag

In order to record scan and odometry data to use for the SLAM simulations, a ROS
package named rosbag* was used. This package is able to record data from published
topics and saving them in the .bag-format for later use. While recording, rosbag
subscribes to the desired topics to save the data to the computer. When replaying
the data, rosbag instead act as a publisher and publishes the data for other nodes
to use.

The data that was recorded was chosen to be the laser scan data from the LIDAR
and odometry data due to these being the most relevant when simulating GMapping
and HectorSLAM.

3.1.4.3 GMapping

The GMapping® package for ROS is focused on doing SLAM using the OpenSLAM
GMapping method for laser-scan based SLAM. The required data for this package is
the scans from the laser scanner attached to the robot and the odometry information.

3.1.4.4 HectorSLAM

The HectorSLAMS package for ROS is a package utilizing the HectorSLAM method
described in the theory chapter. This package only utilize laser scan data to function.

3.2 Experiment setup

To test the different algorithms the AGV was set to run four different scenarios
chosen to represent different types of environments. The different trajectories used
in these scenarios were created with Layout Designer, a tool made by Kollmorgen
to create paths for their AGVs. As the reflector navigation need to identify several
reflectors to not consider itself “lost”, reflector calibration was done using Reflector
Surveyor, designed by Kollmorgen to help creating reflector layouts, to ensure that
the trajectories could be travelled without losing navigation.

3http://wiki.ros.org/tf
‘http://wiki.ros.org/rosbag
Shttp://wiki.ros.org/gmapping
Shttp://wiki.ros.org/hector_slam

23

http://wiki.ros.org/tf
http://wiki.ros.org/rosbag
http://wiki.ros.org/gmapping
http://wiki.ros.org/hector_slam

3. Platform

Reflector navigation by Kollmorgen was set to be considered ground truth as it has
a very high accuracy, millimeter precision in good conditions. Good conditions in
this case is low distance to the reflectors, good vision and vehicle tuning. These
conditions are fullfilled in the tests done for this thesis. During simulation, the scan
range of the LIDAR was limited to a maximum of four meters in order to limit the
area seen by the AGV in the different test scenarios. Each test scenario was run at
three different speeds in order to emulate different scan rates, as the scan data is
streamed over WLAN and using the full data is not feasible for practical reasons.
The chosen speeds were set to 0.5m/s, 0.25m/s and 0.125m/s. With a scan data
frequency of 16Hz, this works out to 32, 68 and 128 scans per meter moved. In every
test run, the AGV was set to navigate using reflector navigation while the data was
logged on an external computer using rosbag for later use.

3.3 Summary

In the above chapter the hardware and software setup used to conduct the testing
is explained. The tests were conducted on a Charmvagn AGV which is a small scale
differentially steered AGV used by Kollmorgen as a test platform. It uses exactly the
same controller and sensor platform as a full scale AGV, in this case wheel encoders,
gyroscope and a single plane LIDAR.

In order to create the SLAM trajectories ROS (Robot Operating System) was used
and ran a publishing node on top of the regular vehicle control software. Thus both
the regular vehicle control software and ROS are able to run in parallel. Since ROS
is based on Linux while the Kollmorgen system is Windows based a pair of laptops,
one running Ubuntu and one running Windows was used in order to log the data
from both the dead reckoning and SLAM.

In the next chapter how this setup is used to evaluate the SLAM trajectories is
described in detail.

24

4

Methods

This chapter aims to describe the different test scenarios used in the experiments. In
this thesis, four test scenarios were constructed in order to test SLAM trajectories.
In the first test, the AGV was set to drive in a U-shape alongside a wall with no
objects along the trajectory. The second test case had the same trajectory, but with
boxes placed alongside the trajectory in order to replicate pillars. In the third test
case, the AGV was set to drive in a straight line with boxes placed alongside the
trajectory in order to replicate a corridor with pillars. In the final test case, the
AGYV drove zig-zag through several rows of boxes in order to replicate rows of pallet
racks. To evaluate the SLAM algorithms, data logged to a ROS-laptop and later
simulated five times for each test scenario and speed in order to ensure the same
test data was used for both algorithms.

4.1 Test cases

In order to properly evaluate how well the SLAM algorithms perform in regard
to localization, several scenarios were created. These were designed to replicate a
number of common industrial environments that are hard to properly map and/or
setup reflector navigation in, namely warehouse environments that change over time
due to goods being moved around. To replicate these areas, boxes were placed
around the trajectory in order to simulate evenly spaced pillars and pallet racks
commonly found in these kinds of industrial environments. All testing was done at
the Kollmorgen test facilities in Molndal, Sweden.

25

4. Methods

4.1.1 Wall visible on one side

In this test, the AGV was set to drive alongside a wall in a U-shape with no other
obstacles visible. This was done to replicate an industrial environment that is totally
empty of goods. The trajectory layout used for, and map created from, this test can
be seen in figure 4.1. The distance travelled is approximately 40 meters.

CTETT b '“‘“‘“_—'4:}.; v g [i T T
: -
3 3 ; &
8 “EEgaN o ¥

= "ﬂ &3 :’ P‘:'\-ﬂ:‘n
B
" ‘ L Bl
1 "

4
gk,
- -ﬂ!
E - f
=1
g E
W o
fiy o Tx n i
L G, T A

Figure 4.1: Map of the environment (made with GMapping) for the first test case
(left) and trajectory layout of the test case. The AGV start at the point in the
top right and travel toward the top left. The green arrows are the positioning of
reflectors.

26

4. Methods

4.1.2 Wall on one side with pillars on the other

This test travelled with the same trajectory as the test in 3.3.1 with the main
difference being that boxes were added to the inside of the trajectory to replicate
pillars. This test was designed to replicate an AGV moving through a warehouse
with the wall visible on one side and some objects visible on the other. The trajectory
layout used for, and map created from, this test can be seen in figure 4.2. The total
distance travelled is approximately 40 meters.

L JL JU

B *”““*--—»“_, . g‘} 1
o T . {
§ %, Sk b,
o P A
- 1 F
[.-.—‘1‘ - i Inj
7 il [
b | ko]

=8 it #]
, _.I,_ﬁ, & . e #
[e ! G r C%
) <
B I " . o 0 oo |3 ‘] e
Ll T » oo i) i
L E P 1, A 5

Figure 4.2: Map of the environment (made with GMapping) for the second test
case (left) and trajectory layout of the test case. The AGV start at the point in the
top right and travel toward the top left. The green arrows are the positioning of
reflectors.

27

4. Methods

4.1.3 Corridor with pillars on both sides

In this test the AGV drove in a straight line between two rows of boxes in order to
replicate an empty warehouse where no real walls are visible to the laser scanner.
The boxes were placed evenly spaced along both sides of the AGV trajectory to
replicate pillars. The trajectory used, and map created from, can be seen in figure
4.3. The distance travelled in this test is approximately 16 meters.

11 Jb JI
7 i |
S : <
ed B o
i B o il ; |
o f] @ 4%
{ il . = L
L « o e]
- F
! 4 & C é
I oL = i ¢ a
i b
o C L 1
ﬁ 5 il C b
14
e S 4 4
Ay e @
.i_»-"s' : } 3 r L
}_\- ; : 1
S ! = C%
~ i
!] N = : <]
"] - i
;
b
i !
: i !
ol . . ".}
b e w0 W gy gk A

Figure 4.3: Map of the environment (made with GMapping) for the third test case
(left) and trajectory layout of the test case. The AGV starts at the top and moves

downward. The green arrows are the positioning of reflectors.

28

4. Methods

4.1.4 Zig-zag through corridors

In this test the AGV was driven in zig-zag between a series of rows of boxes which
were placed in between the trajectories. The goal was to emulate a scenario where
an AGV is navigating through rows of pallet racks in a warehouse. The boxes were
placed parallel to the traversed trajectory and were placed so that the AGV still
had room to be able to drive freely into the next row without any collisions. The
map created and layout used can be seen in 4.4. The distance travelled in this test
is approximately 75 meters.

e mole F DR ? |
H T]sl Vem—— e
[s b

‘) A
: At PR S g (

3

% oA
1, ¥ 4 *
(i e e e Y S b S H
\,\ S iy P)
e | g
\ & Z

1 | .

_{. ol Lﬁ - - E8: E

B T T T e L e

L G e rhh, - 5]

Figure 4.4: Map of the environment (made with HectorSLAM) for the fourth
test case (left) and trajectory layout of the test case. The AGV starts at the top
right and moves toward the bottom right. The green arrows are the positioning of
reflectors.

29

4. Methods

4.2 Evaluation methods

After the physical tests were done the data from both ROS, using rosbag, and
Kollmorgen NDC8 system was saved. For each of the SLAM algorithms, the actual
localization was simulated five times for each test scenario and speed. This was done
to both save time in physical testing and to ensure that both the SLAM algorithms
were using the same scan data for a specific test run. While running the algorithms
on the different logged data, the transform from the map frame to the base_link
frame, representing the location of the AGV in the map in a specific point of time, for
the whole run were saved. This data was later used to calculate both the trajectories
travelled according to the SLAM algorithms and the deviation from ground truth
using Matlab. This data was then used to compare the SLAM algorithms with the
Kollmorgen NDCS8 built-in dead reckoning with and without the use of a gyroscope.
It should be noted that the AGV used has been tuned to have very good odometry.
As it has thin wheels, good grip against the floor and has a light weight. This to-
gether with the good floor conditions in the testing area create very good conditions
for dead reckoning. A consequence of this is that the evaluation of dead reckoning
should be regarded as a best case-scenario as a full-scale AGV will most likely not
have as well adjusted odometry or good floor conditions.

4.3 Summary

In this chapter the different test scenarios used in the thesis was presented. The
four different scenarios were designed to replicate common industrial environments.
This was done by placing boxes around the trajectories travelled by the AGV. In the
first two tests the AGV drove in a U-shape along a wall with the difference being
no other obstacles in the first test while boxes where placed along the trajectory in
the second.

The third test case had the AGV drive straight with a set of boxes on both sides
of the trajectory in order to simulate a corridor with evenly spaced pillars. In the
fourth test case, the AGV was set to drive in zig-zag through rows of boxes placed
in parallel to the trajectory in order to replicate rows of pallet racks in a warehouse.
To evaluate the results from the tests, data recorded from the test runs were sim-
ulated five times for each SLAM algorithm in order for both GMapping and Hec-
torSLAM to work with the same data sets. The simulated trajectories were later
compared to dead reckoning from the Kollmorgen NDCS8 system.

As the AGV used has very well tuned odometry due to its light weight, thin wheels
and good grip against the floor, the resulting dead reckoning data was considered to
be a best case scenario as a full-scale AGV would have less well adjusted odometry
and worse floor conditions.

In the next chapter, the results from the tests and simulations will be presented.

30

Results

This chapter aim to describe the different results from the different tests with dif-
ferent set speeds. For each test case there are a series of plots, these show the
calculated trajectory traveled by the AGV for the different test runs calculated by
the two SLAM methods. For each set of test data the SLAM algorithm was run five
times in order to even out the stochastic nature of these methods. The deviation
in meters and radians from ground truth at the end of the runs for all speeds and
algorithms are presented in tables for each scenario. The resulting mean and vari-
ance across the five simulations are also presented in these tables. In the figures,
the trajectories of all five runs of the simulations for the specific scenarios are shown
together with ground truth and trajectories from odometry both with and without
gyroscope.

31

5. Results

5.1

2r End

Y-position in meters

Path of AGV Hector

Ground Truth
————— Dead Reckoning
Dead Reckoning IMU
Hector

Figure 5.1: Figures showing trajectories from the fast speed run of the wall without

-8) -4
X-position in meters

Y-position in meters

Test 1 - Wall visible on one side

Path of AGV Gmapping

r E
o
[Ground Truth
I | |1 R bttt Dead Reckoning
Dead Reckoning IMU
Gmapping
L. I I I I I I
14 12 10 -8 -6 -4 0

pillars course. All five runs are shown in the figures.

Path of AGV Hector

ot
2F
2
S 4r Ground Truth
g ————— Dead Reckoning
< 6 Dead Reckoning IMU
c Hector
£ o
@
g
< -10
-12
4r)/
|
16
I I I I I I I I
14 12 10 8 6 -4 2 0

Figure 5.2: Figures showing trajectories from the medium speed run of the wall

X-position in meters

Y-position in meters

Position in meters

Path of AGV Gmapping

r Ground Truth
Dead Reckoning
L Dead Reckoning IMU
Gmapping
L I I I I I I
-14 -12 10 8 -6 4 0

X-position in meters

without pillars course. All five runs are shown in the figures.

End

Y-position in meters
[

Path of AGV Hector

Ground Truth
————— Dead Reckoning

Dead Reckoning IMU
Hector

Figure 5.3: Figures showing trajectories from the slow speed run of the wall without

-8 6 -4 2
X-position in meters

Y-position in meters

Path of AGV Gmapping

L End
[Ground Truth
L Wy | Dead Reckoning
Dead Reckoning IMU
L Gmapping
-14 -12 -10 8 -6 4 0

pillars course. All five runs are shown in the figures.

32

X-position in meters

5. Results

SLAM Simulation 1 2 3 4 5 Mean [m] | Variance [m]
GMapping 0.5m/s | 0.6059 | 0.2250 | 0.8305 | 0.6480 | 0.2030 | 0.5025 0.0765
GMapping 0.25m/s | 0.3742 | 1.5669 | 1.3889 | 0.5142 | 1.0858 | 0.9860 0.2767
GMapping 0.125m/s | 0.6092 | 0.3467 | 0.6524 | 1.1289 | 1.0715 | 0.7617 0.1096
Hector 0.5m/s 1.1902 | 1.5843 | 1.1888 | 1.1912 | 1.1889 1.2687 0.0311
Hector 0.25m/s 0.3680 | 0.4841 | 0.4754 | 0.4778 | 0.4535 | 0.4518 0.0023
Hector 0.125m/s 0.2443 | 5.3189 | 5.3191 | 5.3141 | 5.3191 4.3031 5.1482

Dead Reckoning

Odometry 0.5m/s 0.3706
Odometry 0.25m/s 0.3333
Odometry 0.125m/s 0.2994
Odom-gyro 0.5m/s 0.2523
Odom-gyro 0.25m/s 0.2505

Odom-gyro 0.125m/s 0.2510

Table 5.1: Measured deviation in meters from reflector navigation at the end of
the test runs in case one.

SLAM Simulation 1 2 3 4 5 Mean | Variance

GMapping 0.5m/s 0.1065 | 0.0555 | 0.0764 | 0.0814 | 0.0644 | 0.0769 | 0.0004

GMapping 0.25m/s | 0.0213 | 0.1364 | 0.1443 | 0.0703 | 0.1066 | 0.0958 | 0.0026

GMapping 0.125m/s | -0.0494 | -0.0454 | -0.0714 | -0.0634 | -0.1045 | -0.0668 | 0.0006

Hector 0.5m/s 0.0016 | 0.0028 | 0.0036 | 0.0026 | 0.0039 | 0.0029 | 0.0000

Hector 0.25m/s -0.0091 | -0.0142 | -0.0342 | -0.0363 | -0.0391 | -0.0266 | 0.0002

Hector 0.125m/s -0.0352 | -0.1799 | -0.1798 | -0.1989 | -0.1798 | -0.1547 | 0.0045

Dead Reckoning

Odometry 0.5m/s -0.0218
Odometry 0.25m/s -0.0212
Odometry 0.125m/s -0.0156
Odom-gyro 0.5m/s 0.0108
Odom-gyro 0.25m/s -0.0235

Odom-gyro 0.125m/s 0.0228

Table 5.2: Measured angular deviation in radians from reflector navigation at the
end of the test runs in case one.

For this test case the dead reckoning data shows some of the trends that were
expected, slight increase in odometry quality as speed decreases. Dead reckoning
with gyro seem to stay fairly constant in this case. Regarding SLAM, the fact
that a decrease of speed doesn’t yield improved results is somewhat unexpected,
especially HectorSLAM yields very poor results for four runs with the lowest speed.
The possible reasons for this is discussed in detail in the next chapter. GMapping
exhibit some “jumpy” behaviour in all three speeds and the reason for this will be
discussed in the next chapter.

33

5. Results

5.2 Test 2 - Wall visible on one side with objects

Path of AGV Hector

4t
ol v

o 2r
L
© 4t
£
2 6r Ground Truth
S gt W |7 Dead Reckoning
'§) Dead Reckoning IMU
-10F Hector
>

-12

14 "

-16

.

12 0 -8 6 -4 2

X-position in meters

Y-position in meters

Path of AGV Gmapping

Ground Truth
————— Dead Reckoning
Dead Reckoning IMU
Gmapping

12 10 -8 6 -4 2 0 2
X-position in meters

Figure 5.4: Figures showing trajectories from the fast speed run of the wall with
pillars course. All five runs are shown in the figures.

Path of AGV Hector

Ground Truth
————— Dead Reckoning
Dead Reckoning IMU
Hector

Y-position in meters

Start

X-position in meters

Y-position in meters

Path of AGV Gmapping

End

Ground Truth

Dead Reckoning
Dead Reckoning IMU
Gmapping

12 -10 -8 - -4 2 0 2
X-position in meters

Figure 5.5: Figures showing trajectories from the medium speed run of the wall
with pillars course. All five runs are shown in the figures.

Path of AGV Hector

Ground Truth
————— Dead Reckoning
Dead Reckoning IMU

Y-position in meters
(<]

8+ Hector

101

-121

A4f

-16 1,
-14 -12 -10 -8 -6 -4 2 0

X-position in meters

Y-position in meters

Path of AGV Gmapping

End

Ground Truth
————— Dead Reckoning
Dead Reckoning IMU
Gmapping

X-position in meters

Figure 5.6: Figures showing trajectories from the slow speed run of the wall with
pillars course. All five runs are shown in the figures.

34

5. Results

SLAM Simulation 1 2 3 4 5 Mean [m] | Variance [m]
GMapping 0.5m/s | 1.6942 | 1.0432 | 1.1076 | 0.5666 | 0.6240 1.0071 0.2061
GMapping 0.25m/s | 0.8200 | 0.7967 | 0.8201 | 0.6084 | 0.5475 | 0.7185 0.0170
GMapping 0.125m/s | 1.6016 | 0.5492 | 0.3921 | 0.6488 | 1.4967 | 0.9377 0.3213
Hector 0.5m/s 0.2560 | 0.2560 | 0.3242 | 0.3013 | 0.3268 | 0.2929 0.0012
Hector 0.25m/s 0.1547 | 0.2079 | 0.2079 | 0.2309 | 0.2414 | 0.2086 0.0011
Hector 0.125m/s 0.0957 | 0.1881 | 0.0727 | 0.1077 | 0.0601 0.1049 0.0025

Dead Reckoning

Odometry 0.5m/s 0.4480
Odometry 0.25m/s 0.2197
Odometry 0.125m/s 0.3719
Odom-gyro 0.5m/s 0.2197
Odom-gyro 0.25m/s 0.2505

Odom-gyro 0.125m/s 0.3963

Table 5.3: Measured deviation in meters from reflector navigation at the end of
the test runs in case two.

SLAM Simulation 1 2 3 4 5 Mean | Variance
GMapping 0.5m/s -0.129 | -0.0781 | -0.0929 | -0.0560 | -0.0699 | -0.0854 | 0.0008
GMapping 0.25m/s | -0.0780 | -0.0510 | -0.0771 | -0.0630 | -0.0520 | -0.0642 | 0.0002
GMapping 0.125m/s | -0.1197 | -0.0388 | -0.0178 | -0.0657 | -0.0788 | -0.0642 | 0.0015
Hector 0.5m/s 0.0131 | 0.0131 | 0.0049 | 0.0147 | 0.0053 | 0.0102 | 0.0000
Hector 0.25m/s 0.0038 | 0.0022 | 0.0022 | 0.0049 | 0.0047 | 0.0035 | 0.0000
Hector 0.125m/s 0.0087 | -0.0034 | 0.0099 | 0.0087 | 0.0047 | 0.0057 | 0.0000
Dead Reckoning
Odometry 0.5m/s -0.0302
Odometry 0.25m/s -0.0340
Odometry 0.125m/s -0.0220
Odom-gyro 0.5m/s 0.0107
Odom-gyro 0.25m/s 0.0427
Odom-gyro 0.125m/s 0.0154

Table 5.4: Measured angular deviation in radians from reflector navigation at the

end of the test runs in case two.

In this test, where boxes replicating pillars had been placed along the U-shaped
trajectory, GMapping showed the biggest deviation from ground truth across all
speeds while HectorSLAM showed the lowest. In table 5.3 the results of the test
case of wall following with pillars on the other side is displayed. Dead reckoning
shows the same trends as in the previous case in table5.1 as expected. The SLAM
algorithms have performed better than in the previous case however the biggest
difference is that the slowest case for HectorSLAM now produce a good result.

GMapping is still a bit “jumpy” however.

35

5. Results

5.3 Test 3 - Corridor with pillars on both sides

Path of AGV Hector

Path of AGV Gmapping

ok
2k
2
4+
12 12 4r
o s Ground Truth o)
2 6t e ; T 6
1S gead Reckcn!ng S 6 Ground Truth
c ead Reckoning IMU P D .
c 8 Hector S 8t ead Reckoning
S s Dead Reckoning IMU
.‘_% 1ol ‘;—; 0+ Gmapping
Q Q
S S
> 2t > 12F
4
A4F
6
-16
End -18 1 End
-18 n
-14 12 10 -8 -6 -4 2 0 12 -10 -8 -6 -4 -2 0

Figure 5.7: Figures showing trajectories from the fast speed run of the corridor
course. All five runs are shown in the figures.

X-position in meters

Path of AGV Hector

X-position in meters

Path of AGV Gmapping

oF
il
or
of
b 2F
o 4r ® -4
2 2
T gl © -6
E 2
£ 8l Ground Truth £ 8
s | == Dead Reckoning S Ground Truth
= 10k Dead Reckoning IMU = N bttt Dead Reckoning
@ -10 @ -10 .
S Hector g Dead Reckoning IMU
> 12+ > ol Gmapping
14+ 14t
gk End
. T
44 12 10 -8 6 -4 2 0 14 12 10 -8 6 -4 2 0

Figure 5.8: Figures showing trajectories from the medium speed run of the corridor
course. All five runs are shown in the figures.

X-position in meters

X-position in meters

Path of AGV Gmapping

Path of AGV Hector 2
or A
2f |
4 o
g 4r 2
£ s Ground Truth 2 61
-6r roun rul
s | | Dead Reckoning N (Srm;n; Tr::th.
s 8r Dead Reckoning IMU S ead Reckoning
= = Dead Reckoning IMU
£ 4o+ Hector B -10f Gl i
8 2 mapping
GIERPE 2
> > 42+]
A4t
A4t
16
18} End 161
.
18t End
-14 12 -10 8 6 -4 2 0 2 L L L L L L L
14 42 10 8 6 4 2 0

X-position in meters

X-position in meters

Figure 5.9: Figures showing trajectories from the slow speed run of the corridor
course. All five runs are shown in the figures.

36

5. Results

SLAM Simulation 1 2 3 4 5 Mean [m] | Variance [m]
GMapping 0.5m/s | 0.2837 | 0.2666 | 0.3484 | 0.2351 | 0.3945 | 0.3056 0.0042
GMapping 0.25m/s | 0.5983 | 0.6492 | 0.5584 | 0.3877 | 0.7132 | 0.5813 0.0151
GMapping 0.125m/s | 0.9354 | 1.1027 | 1.0480 | 1.0393 | 1.4911 1.1233 0.0459
Hector 0.5m/s 0.0389 | 0.0392 | 0.0358 | 0.0344 | 0.0392 | 0.0375 5.1506e-06
Hector 0.25m/s 0.9342 | 0.9342 | 0.9342 | 0.9342 | 0.9342 0.9342 1.3534e-09
Hector 0.125m/s 1.0294 | 1.0792 | 1.0792 | 1.0812 | 1.0792 1.0696 5.0661e-04
Dead Reckoning
Odometry 0.5m/s 0.2198
Odometry 0.25m/s 0.3129
Odometry 0.125m/s 0.2382
Odom-gyro 0.5m/s 0.1915
Odom-gyro 0.25m/s 0.2105
Odom-gyro 0.125m/s 0.1029

Table 5.5: Measured deviation in meters from reflector navigation at the end of
the test runs in case three.

SLAM Simulation 1 2 3 4 5 Mean [m] | Variance
GMapping 0.5m/s | -0.0169 | 0.0291 | 0.0271 | -0.0049 | 0.0421 | 0.0153 0.0006
GMapping 0.25m/s | -0.0041 | -0.0050 | -0.0010 | 0.0020 | -0.0120 | -0.0042 0.0000
GMapping 0.125m/s | 0.0029 | 0.0019 | -0.0061 | -0.0091 | 0.0269 0.0033 0.0002
Hector 0.5m/s 0.0031 | 0.0031 | 0.0031 | 0.0031 | 0.0031 0.0031 0.0000
Hector 0.25m/s 0.0150 | 0.0160 | 0.0160 | 0.0160 | 0.0160 0.0158 0.0000
Hector 0.125m/s 0.0139 | 0.0060 | 0.0059 | 0.0059 | 0.0059 0.0075 0.0000
Dead Reckoning
Odometry 0.5m/s -0.0097
Odometry 0.25m/s -0.0156
Odometry 0.125m/s -0.0132
Odom-gyro 0.5m/s -0.0028
Odom-gyro 0.25m/s 0.0004
Odom-gyro 0.125m/s 0.0074

Table 5.6: Measured angular deviation in radians from reflector navigation at the
end of the test runs in case three.

Tables 5.5-5.6 shows the results of test case 3 the dead reckoning performs very well
as expected while SLAM produces relatively poor results especially for low speeds.
It is however to be expected that SLAM performs subpar in this case since it is the
one with the least amount of information from the scan data. It is also the best case
for dead reckoning since there are no turns.

37

5. Results

5.4 Test 4 - Zig-zag

Path of AGV Hector

Path of AGV Gmapping

5F Ground Truth 5 Ground Truth
————— Dead Reckoning =====Dead Reckoning
Dead Reckoning IMU Dead Reckoning IMU
Hector Start Gmapping
or 0
o o
2 2
£ £
c 51 c -5 —
= =
S S ===
3 3
Q Q
-0 210
> >
i
-151 -15 H
End
I I I I I I I I I
-15 -10 -5 0 5 15 -10 -5 0

Figure 5.10: Figures showing trajectories from the fast speed run of the zig-zag
course. All five runs are shown in the figures.

X-position in meters

Path of AGV Hector

X-position in meters

Path of AGV Gmapping

5 Ground Truth 5 Ground Truth
————— Dead Reckoning —====Dead Reckoning

Dead Reckoning IMU Dead Reckoning IMU
Hector Gmapping

o 2

2 2

5] 9]

£ =

s 51 g 5

o =

2 k]

3 3

-101 e -10

> >

-15 -15
I I I I I I I I I

Figure 5.11: Figures showing trajectories from the medium speed run of the zig-zag
course. All five runs are shown in the figures.

-10 -5 0 5
X-position in meters

Path of AGV Hector

-10 -5
X-position in meters

Path of AGV Gmapping

5 Ground Truth 5 Ground Truth
————— Dead Reckoning =====Dead Reckoning
Dead Reckoning IMU Dead Reckoning IMU
Hector Gmapping
ofF (—— 0
(4 4
2 2
@ ©
g D, 2
c 5¢ s 5 —
< { <
S 2 ==
S | S | e
&-10f = Q.10
= >
—————
151 i -15 !
-End End
.
-15 -10 -5 0 5 -15 -10 -5 0

X-position in meters

X-position in meters

Figure 5.12: Figures showing trajectories from the slow speed run of the zig-zag
course. All five runs are shown in the figures.

38

5. Results

SLAM simulation 1 2 3 4 5 Mean [m] | Variance [m]
GMapping 0.5m/s | 1.2001 | 1.3057 | 1.0546 | 1.333 | 0.6573 1.1101 0.0760
GMapping 0.25m/s | 1.1868 | 1.2353 | 0.9022 | 1.1369 | 1.454 1.183 0.0393
GMapping 0.125m/s | 0.7599 | 1.1188 | 2.4455 | 1.1474 | 0.6773 1.2298 0.5058
Hector 0.5m/s 0.5397 | 0.7848 | 0.6694 | 0.5399 | 0.8774 | 0.6822 0.0223
Hector 0.25m/s 0.8545 | 0.2819 | 0.7324 | 0.5842 | 1.0366 | 0.6979 0.0816
Hector 0.125m/s 0.5468 | 0.4538 | 0.5828 | 1.1865 | 0.4635 | 0.6467 0.0941
Dead Reckoning
Odometry 0.5m/s 0.8101
Odometry 0.25m/s 0.6683
Odometry 0.125m/s 0.3037
Odom-gyro 0.5m/s 0.6324
Odom-gyro 0.25m/s 0.7242
Odom-gyro 0.125m/s 1.1469

Table 5.7: Measured deviation in meters from reflector navigation at the end of
the test runs in case four.

SLAM Simulation 1 2 3 4 5 Mean | Variance
GMapping 0.5m/s 0.0046 | 0.0466 | -0.0024 | 0.0346 | 0.0086 | 0.0184 | 0.0004
GMapping 0.25m/s | -0.0626 | -0.0736 | -0.1006 | -0.0206 | -0.1056 | -0.0726 | 0.0012
GMapping 0.125m/s | -0.0197 | -0.0216 | -0.1416 | 0.1263 | 0.0463 | -0.0021 | 0.0096
Hector 0.5m/s 0.0238 | 0.0554 | 0.0484 | 0.0234 | 0.0524 | 0.0406 | 0.0003
Hector 0.25m/s 0.0196 | 0.0138 | 0.0494 | 0.0204 | 0.0744 | 0.0355 | 0.0007
Hector 0.125m/s 0.0377 | 0.0415 | 0.0405 | 0.0985 | 0.0216 | 0.0479 | 0.0009

Dead Reckoning

Odometry 0.5m/s -0.0729
Odometry 0.25m/s -0.0586
Odometry 0.125m/s -0.0132
Odom-gyro 0.5m/s -0.0163
Odom-gyro 0.25m/s -0.0352

Odom-gyro 0.125m/s 0.1764

Table 5.8: Measured angular deviation in radians from reflector navigation at the

end of the test runs in case four.

Table 5.7 shows the results for the final test case.

This is the case where dead

reckoning was expected to perform the worst and this can be seen clearly, especially
the dead reckoning with gyroscope. Unlike the previous tests SLAM results do not
vary much between different speeds and are instead fairly constant. GMapping still

exhibit the “jumpy” behaviour as in the earlier test cases.

39

5. Results

5.5 Summary

In this chapter the test results have been presented, for the first and second test
case there is a difference in the quality of the resulting trajectories probably because
of the added objects in the second case. For the third case no clear conclusions can
be drawn at a glance. In the fourth case speed is shown to have a big impact on
the result of the trajectories. However some overall trends can be observed with the
most interesting one being that the lowest speed setting generally results in the worst
results. Apart from that the results were somewhat expected in that a target rich
environment generally results in a better result from the SLAM algorithm, while the
highest speed setting also usually results in degraded results. Results from odometry
were relatively constant for all speed settings.

In the next chapter these results and what they mean will be discussed in detail.

40

O

Discussion

In this chapter, discussion of the results from the different test cases will be pre-
sented. The aim of the thesis was to investigate the accuracy and repeatability of
SLAM generated trajectories in an industrial environment. The SLAM trajectories
were compared to ground truth and dead reckoning with and without gyroscope
data. Discussion about the results and how to interpret them for each of the four
test cases can be found below. Discussion about the choice of method and possible
weaknesses in it along with future development is also included in this chapter.

6.1 Results

This section will discuss the results from the four test cases in different subsections
and then summarize the trends observed across all the cases.

6.1.1 Test 1

s Hector case 1] Gmapping case 1
® Slow b ® Slow
4r ® Medium ® Medium (] L4
Fast 0.8 Fast
35 4 Ground Truth 4 Navigation
o 3 ® ° °
g g 06 .
[} [}
£ 251 £
= £ °
5 2 _5 0.4
3 2
S 15F S
E 2 o2
w1 w *
L]
0.5 °
e o 0 °
0
L °
05 0.2
-125 -12 115 -1 -10.5 -10 9.5 -9 -85 126 -124 -122 12 -11.8 -11.6 -11.4 -11.2 -11 -108 -10.6
End position in meters End position in meters

Figure 6.1: Figures showing the estimated end coordinates for both HectorSLAM
and Gmapping in case 1

As can be seen from the first test, HectorSLAM had the worst results for the fastest
and slowest speeds, while still having satisfactory results with medium speed. While
the error produced from the fastest speed seem to originate from the lower wall be-
ing flat and the relatively low scan frequency along with no odometry information
using HectorSLAM. The slower speed, however, show a jump at the bottom right

41

6. Discussion

of the trajectory for four out of five test simulations. Although the cause of this is
uncertain, the current guess of the authors is that the wall where the jump happens
is too flat and the AGV believes it is standing still. This would explain the sud-
den jump in location when the bottom wall “suddenly appears”. Thus low speeds
in combination with low information from the scans create a version of the “long
corridor” scenario where no movement can be calculated from the scans.
Regarding GMapping, the results show that it seemed to keep the correct trajec-
tory due to using odometry alongside laser scans, but it exhibited some “jumpy”
behaviour along the leftmost wall. The cause for this is a property of GMapping, as
the algorithm works by choosing which of the concurrent maps has the highest prob-
ability of being true, resulting in a “jump” in position every time the filter updates
which map is the most likely of being true. As the data logged from ROS is the map
frame to the base_link frame, every map update give an update in position, which
in turn give “jumpy” trajectories.

The odometry information from this test were as expected. As the speeds were
relatively low and the floor conditions were good, the resulting risk of skidding on
the surface was minimal. Due to this the results were expected to not be espe-
cially dependant on speed, which can be seen in the results. However, while the
dead reckoning with only odometry was expected to be lowered, the expectations
from odometry with a gyroscope was the reverse. As the accumulated error from
gyroscope drift should get higher the longer the runtime of the test, seeing that the
deviation is stable across all speeds was a surprise. However, the reason for this
might be an increased accuracy of odometry counteract the inaccuracy from the
gyroscope.

6.1.2 Test 2

Hector case 2 Gmapping case 2
02 0.9 ppIng
® Slow ® Slow
* ® Medium L ® Medium [)
015 Fast 0.8 Fast
4 Ground Truth 4 Ground Truth
0.7
o 01 M o °
2 L4 2
@ [© 0.6
£ ° €
£ 005 <
° °
S S 08
2 oo, 3
S S04 °
el ° L]
c c °
W 0.05F g w
0.3 °
°
L °
-0.1 02r
*
°
0.15 0.1
-123 -1225 -122 -1215 -121 -12.05 -12 -11.95 -11.9 -12.2 -12 -118 -116 -11.4 -112 -1 -10.8 -10.6 -10.4
End position in meters End position in meters

Figure 6.2: Figures showing the estimated end coordinates for both HectorSLAM
and Gmapping in case 2

For the second test HectorSLAM showed some improvements across all speeds com-
pared to the first test. For one, the horizontal trajectory is around the same length
as that for the odometry for the faster speed and the deviation from ground truth

42

6. Discussion

has been lowered significantly. The slowest speed show similar improvements. The
sudden jump in the lower right corner is gone and the accuracy is greatly improved.
As the only noticeable difference between this test and the first one is more informa-
tion in form of pillars around the perimeter of the travelled trajectory, the likeliest
cause of this improvement can be assumed to be the increased information from
scan data.

In the case of GMapping, the biggest difference was the rightmost side of the tra-
jectory as the amount of sudden jumps from test one has been decreased, and the
jumps occurring seem to have had their distances decreased. As with HectorSLAM,
it seems that the additional amount of information from scan data has been aiding
the algorithm with decreasing the “jumpy” behaviour. As for the resulting deviation
at the end of the run, the results seem fairly static, with the exception of the fastest
speed, when compared to the first test.

As for odometry deviation, as this test case use the same trajectory and layout as
the first test, no improvement from odometry data was expected and this seems to
be what we see in the results.

6.1.3 Test 3

Hector case 3 Gmapping case 3
-16.43[-16.35[
® Slow ® Slow
® Medium ° ® Medium °
-16.44 Fast 8 Fast
¢ Ground Truth 4 Ground Truth .
-16.45
o o
g & -164F ¢ o o
5] @ °
£ £
1646 <
5 5
= ° = °°
3 16471 8 °
o o
2 B 1645
W 46.48 1 [] w
-16.49 -
*
*
165) 165)
-0.2 0 0.2 0.4 0.6 0.8 1 -06 -04 -02 0 0.2 0.4 0.6 0.8 1 1.2 1.4
End position in meters End position in meters

Figure 6.3: Figures showing the estimated end coordinates for both HectorSLAM
and Gmapping in case 3

In this test, HectorSLAM seemed to perform exceptionally at the highest speed, but
the performance worsened as speed went down. The reason for this is unknown, but
it is believed that the cause can be attributed to the same problem HectorSLAM
exhibited in test one. As this test is sparse in information, the AGV might believe it
is standing still. This is especially true considering that HectorSLAM does not use
odometry information at all. However, while the deviations increase, the trajectories
seem to still be consistently wrong.

For GMapping, the same conclusions as from HectorSLAM can be done. The low
amount of information in the scans results in bad trajectories across all speeds.
While the fastest speeds seem to give decent results, this is most likely caused by

43

6. Discussion

the fact that higher speeds equate to lower scan rate, giving the AGV time to move
between scans and thus getting information that is different in relation to the scans.
As this was the shortest test in both time and distance, the odometry values were
expected to be very good. Especially as the track contains no turns as it is a straight
segment.

6.1.4 Test 4

Hector case 4 Gmapping case 4
1481 147
® Slow ® Slow
i ® ® Medium
149}t ® Medium
’ Fast Fast
45+ 4 Ground Truth -1451 4 Ground Truth o

® @ o °
o Q
21511 T
€ £ .15 [
£ -15.2 £
c c
2 ° ° 2
= 153 =
8 8 1551) ¢
Q L] Q
o 1541 ° °
< ° <4
uw ° w °

1551 P 16

° °
-15.6
°
P S R 65 ‘ ‘ ‘ ‘ ‘ ‘ ‘
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 22 24 -1.5 -1 -0.5 0 0.5 1 1.5 2
End position in meters End position in meters

Figure 6.4: Figures showing the estimated end coordinates for both HectorSLAM
and Gmapping in case 4

In this test, HectorSLAM performed consistently across all speeds. While it was
expected that HectorSLAM would perform well using lower speeds, the accuracy at
higher speeds came as little of a surprise as quick turns should cause HectorSLAM
to start drifting due to it not using odometry. As this did not occur in the tests
done, it seems that the turning speed might have been lower than expected. While
the deviations seem to be the same regardless of speed, the trajectories differ some.
In the fastest speed, the trajectories between the boxes seem to be shorter in at least
one of the runs. However, this seems to not be consistent as most of the trajectories
stop at around the same position.

GMapping, however, seems to have bigger problems on this test. The best result
came from the fastest speed, getting worse for the lower ones. This was not entirely
unexpected due to GMapping requiring larger loop closures than HectorSLAM to
get good maps and thus positioning. As the tests were setup to avoid loop closures,
the “jumpy” trajectories were somewhat expected as the map would be subpar.

As for odometry, this test was the longest in both time and distance. As such, the
relatively bad odometry results were expected. As can be seen from the results,
while odometry without a gyroscope got better with lower speed, the reverse is true
for odometry with a gyroscope. This is due to an inherent property of the gyroscope
that lets the drift reset when the AGV is stationary. As the test was setup to not let
this happen, an expected increase in deviation occurred as the error due to gyroscope
drift continued to accumulate.

44

6. Discussion

6.1.5 Overall results

The tests display both expected and unexpected results, first of all the odometry
generally shows similar results for all movement speeds, this is an expected result
since it should not be very dependent on movement speed due to minimal risk of
skidding on the surface due to good floor conditions and relatively low speeds. In the
zig-zag case however there is a clear trend of increased odometry accuracy without
a gyroscope but decreased accuracy with the gyroscope. This is most likely a result
of the fact that this is by far the longest test both in terms of distance and time, by
decreasing the speed the accuracy of the odometry is increased while the gyroscope
accumulates more errors due to drift the longer the test run is. As the test cases
where designed to not allow the gyroscope drift to reset in order to evaluate an
erroneous result against SLAM. However, this drift seem to have a negligible effect
on the accuracy of the odometry in every test case except the last one.

For the first two tests, the SLAM results are interesting as there is no clear trend
that lower movement speeds produce better results. For GMapping this can be
explained by the fact that it is configured to only update the filter every 0.5 meters
moved in order to reduce computational load. For HectorSLAM no clear conclusion
can be drawn, the current guess of the authors is that very low speeds combined
with low range of the scanner results in not enough data being available to make
good estimations. A possible scenario is that the wall where the AGV gets lost is
too flat resulting in the robot thinking it isn’t moving. For higher speeds this might
not cause any issues since it is only for a limited amount of time, for lower speeds
however the AGV gets disoriented. This is supported by the fact that this problem
did not occur when we increased the available information per scan by adding the
pillars in test two.

In the rest of the cases a clear pattern of that reduced movement speed results in a
better result from the SLAM algorithm since more data is produced. This effect is
especially clear for HectorSLAM since it only uses the scan data thus moving fast,
especially rotating can cause problems. The fact that HectorSLAM outperformed
GMapping even for higher velocities was an unexpected result. HectorSLAM was
expected to outperform GMapping for lower speeds since it is not reliant on large
loop closures in the same way that GMapping is, but the quick rotations for higher
speeds were expected to cause bigger problems.

6.2 Choice of method

One downside with the tests done in this thesis is that the odometry for the AGV
was tested once for each speed and scenario due to time constraints. A consequence
of this is that, unlike HectorSLAM and GMapping, no statistical analysis of the
odometry from the AGV was done. However, the values gotten from the tests done
were deemed sufficient due to the AGV used having a very well tuned odometry.

As can be seen from some of the trajectories, the position of the AGV for GMapping
exhibit “jumpy” behaviour. That is likely because the data logged from ROS was
the transform between the map frame and the base_ link frame, and every time
GMapping changes which of the concurrent maps has the highest probability of being

45

6. Discussion

true, the AGVs position in the map gets updated and thus skewing the trajectory by
quickly switching position. This is, however, a side-effect of the mapping algorithm
and is working in a way that is useful for mapping purposes but not when tracking
the AGV trajectory. As these behaviours were unavoidable for most of the tests,
it would imply that the performance of GMapping is subpar to HectorSLAM for
trajectory analysis in these types of environments.

An interesting scenario that wasn’t tested in this thesis would be if the AGV used
was modified to have worse odometry to evaluate the SLAM methods in a worst-
case scenario. That is, de-tuning the AGV odometry to be worse than that of a well
tuned AGV, which was used in the tests. This is especially interesting considering
that an ordinary AGV will most likely have worse tuned odometry than the small-
scale AGV used during testing. As the odometry in the test scenarios has been well
tuned, the odometry values gained should be seen as a best case-scenario and would
very likely be worse when done on a real AGV. This due to the fact that odometry
is based on, for example, wheel diameter which will change due to wear and tear or
when the AGV is loaded with a heavy load. However, because HectorSLAM only
use the scan data and not odometry, the resulting deviations from HectorSLAM can
be assumed to be unchanged when scaling up to a full-scale AGV.

As the performance of HectorSLAM at higher speeds was unexpected due to quick
turns being a known weakness of the algorithms, it is possible that the turning
speeds done in these tests were lower than was expected before performing them.
As such, it would be interesting to re-do the tests with higher turning speeds to get
results that is more based in reality as it is unlikely that a real AGV will have turning
speeds that HectorSLAM will be able to handle. Thus, it would be interesting to
do an analysis to find a breakpoint of how fast the vehicle can turn versus the scan
and update frequency needed by the algorithm would be important for practical
applications.

It would also have been interesting to have some data collection from a real-life
situation (a full-scale AGV driving in a semi-structured area) and do the same types
of evaluation methods as for the Charmvagn. This would be interesting considering
the Charmvagn has very well tuned odometry, whereas an AGV working in an
industrial environment would most likely be performing worse due to more wheel
slip and different wheel setup. An analysis between a best case in form of the well
tuned Charmvagn and a worst case in form of an industrial AGV would have been
interesting to do. However, this was not done due to both time constraints and no
access to relevant test equipment.

6.3 Future research and development

The overall impression of the authors is that there is much potential in SLAM
based on the results from this study. The results show that relatively accurate
trajectories are produced even though the algorithms tested in a way they are not
intended. However, as these tests only compared the SLAM algorithms against dead
reckoning calculated with very good odometry, the next step would be to try these
tests on a full-scale AGV where the odometry information is worse than that of
the one used in this thesis. As the tests done against good odometry showed some

46

6. Discussion

promise of being implemented in real systems, testing against dead reckoning with
bad odometry would give even better information regarding whether or not SLAM
is useful for reinforcing dead reckoning in AGV systems. If these new tests show
promising results, the next natural step would be integration of a SLAM algorithm
to be used in the vehicle controller instead of separately on a computer. Then
integrating the SLAM localization into the “standard” navigation system and make
the AGV switch between navigating a known area with reflector navigation, switch
to SLAM navigation when entering an unknown area and switch back to reflector
navigation when re-entering a known area. For practical purposes HectorSLAM
especially is of interest since it is designed to a be a more light weight solution
compared to GMapping and can thus be run on modest hardware.

Even though Google Cartographer was chosen not to be tested in this thesis due to
time constraints and problems with getting it to work properly, earlier work show
that the mapping capabilities of this algorithm outperform the other two [2] al-
though at a cost of higher CPU requirements. Thus it would be interesting to see if
the trajectories created would be closer to ground truth when compared to Hector
SLAM and GMapping.

One important step for further development of SLAM-inspired dead reckoning would
be to conduct further testing of where the limits of when it produces good results lie.
While it is the opinion of the authors that this technology holds much promise the
test results presented in this thesis could be expanded upon. As stated previously
the fact that HectorSLAM performed better than expected at the highest speed
tested was unexpected thus the first set of new tests to be conducted would be to
test the limits of how fast the vehicle can move while still producing good results.
Another question that the results of this paper poses is where the threshold for how
much content the environment visible to the laser must contain in order for the
SLAM algorithm to produce a good result. The obvious way to do this is to simply
conduct a test without any objects and then adding objects to the environment over
a series of tests. The next step would be to develop a metric for how object rich the
environment has to be in order for SLAM-inspired dead reckoning to work.

6.4 Summary

In this chapter the test results and how to interpret them in is discussed in detail.
The first two tests largely behave as expected with the added environment in test
case two resulting better trajectories overall. The jumpy behaviour seen in the tra-
jectories generated by GMapping are attributed to the particle filter nature of that
SLAM algorithm. The first test can be interpreted as not containing enough envi-
ronment to create good trajectories, especially for HectorSLAM which does not use
odometry. The third test produces relatively poor results for both of the algorithms,
this is most likely due to a lack of environment or possibly due to the fact that each
piece of the environment is an identical box meaning that the scan matcher has a
harder time localizing. Test four produced good results from both GMapping and
HectorSLAM at medium speed but overall HectorSLAM outperformed GMapping

47

6. Discussion

in this test.

The overall result are in short that HectorSLAM performed much better than ex-
pected especially at the faster speeds.

The methods used in testing are also evaluated the main deficiency of this thesis
is that due to time constraints the amount of test data was relatively small. The
limits of how well the SLAM algorithms work at a high movement speed is also not
evaluated properly since in initial testing HectorSLAM did not perform well at all
for higher speed but in reality performed much better than expected

Finally some further research and development is suggested, this is a big field and
there is a first of all comparing with odometry from a less well tuned vehicle is de-
sirable since the one used in this work is too good making any comparison unfair to
the SLAM algorithm. Investigation into seamless switching between SLAM based
navigation and other types of navigation would also need to be investigated for this
work to be of any real use.

In the next chapter conclusions about the results of this thesis are drawn.

48

/

Conclusion

In this thesis, we have explored whether SLAM algorithms can be used as a means
to reinforce dead reckoning in areas where traditional navigation methods cannot
be used. The two SLAM algorithms used for evaluation was chosen to be GMap-
ping and HectorSLAM, both of which are available as ROS packages. The tests
done show that SLAM algorithms have some potential as an assisting tool in dead
reckoning even though the algorithms were used in a way they aren’t designed to be
used. Even though the SLAM algorithms exhibit some problems for test cases where
information about the surrounding area is sparse, this is an inherent problem with
SLAM algorithms as less information lead to worse maps and localization. Although
HectorSLAM never exhibited the expected problems when doing quick turns and
thus might have behaved better in testing than in reality, the overall impression of
the test results is that HectorSLAM seems to outperform GMapping when building
trajectories, due to GMapping exhibiting “jumpy” behaviour when updating the
map. HectorSLAM also showed itself to be a powerful tool even though it is com-
putationally less demanding than GMapping. These properties make HectorSLAM
a good candidate for further testing and implementation into an AGV for real-life
use. However, it should be noted that the usefulness of such an implementation is
dependant on the areas where it is utilized as a lower amount of information will
lead to worse performance as HectorSLAM only use information from the scan data
to do SLAM, this could however be a good attribute since it would allow accurate
trajectories in circumstances where odometry cannot be trusted.

7.1 Research questions

The research questions aimed to be answered in this thesis was set to be the follow-
ing:

o How accurate and repeatable are trajectories produced by SLAM using a single

plane LIDAR both with respect to deviation in distance and angle.

The short answer to this questions is that the trajectories produced can both be
accurate and repeatable, however this will only be true under certain circumstances.
The tests show that for trajectories the results are very impressive for environments
that are object rich, and if the speeds are kept moderate. In this work the tested
SLAM algorithms have been benchmarked against dead reckoning since finding ways
to improve this is highly desirable, especially if it can be done with already existing
sensors. This thesis shows that for environments that are object rich HectorSLAM
will perform on par or better than well tuned dead reckoning. GMapping generally

49

7. Conclusion

perform worse but is still producing good results all things considered.

For the test cases that produce good SLAM trajectories the variance is generally
very low. For some of the test cases the variance of the HectorSLAM trajectory is
almost zero, this is in the context of AGVs a very important result since demands
for repeatability and being able to run without operator interaction for extended
periods of time is very important.

The importance of good environments is highlighted by the difference between test
case one and two, the only difference between the tests is that more objects are added
to the environment. However there is not enough data to do a proper analysis of
how much environment is needed, this problem is also exacerbated by the fact that
the LIDAR data is filtered to remove all scan data further away than four meters.

50

[10]

Bibliography

Ginter Ullrich. Automated Guided Vehicle Systems. [electronic resource] : A
Primer with Practical Applications. Berlin, Heidelberg : Springer Berlin Hei-
delberg : Imprint: Springer, 2015., 2015. 1SBN: 9783662448144. URL: http:
//proxy.1lib.chalmers.se/login?url=http://search.ebscohost.com.
proxy.lib.chalmers.se/login.aspx?direct=true&db=cat06296a&AN=
clc.b2051613&lang=sv&site=eds-1live&scope=site.

Albin Palsson and Markus Smedberg. “Investigating Simultaneous Localiza-
tion and Mapping for AGV systems”. 72. MA thesis. Goteborg: Institutio-
nen for data- och informationsteknik (Chalmers), Chalmers tekniska hogskola,
2017.

H. Davey N.S. Godil. “Simple but novel test method for quantitatively com-
paring robot mapping algorithms using SLAM and dead reckoning”. In: Proc.
SPIE 8741, Unmanned Systems Technology XV, 874112. 2013.

Christoph Reinke Patric Beinschob. “Graph SLAM based mapping for AGV
localization in large-scale warehouses”. In: 2015 IEEE International Confer-
ence on Intelligent Computer Communication and Processing (ICCP). 2015.
Anton Filatov et al. “2D SLAM quality evaluation methods”. In: Open Inno-
vations Association (FRUCT), 2017 21st Conference of. IEEE. 2017, pp. 120
126.

W. Burgard et al. “A comparison of SLAM algorithms based on a graph of
relations”. In: 2009 IEEE/RSJ International Conference on Intelligent Robots
and Systems. Oct. 2009, pp. 2089-2095. DOI: 10.1109/IR0S.2009.5354691.
Z. Kurt-Yavuz and S. Yavuz. “A comparison of EKF, UKF, FastSLAM?2.0,
and UKF-based FastSLAM algorithms”. In: 2012 IEEE 16th International
Conference on Intelligent Engineering Systems (INES). June 2012, pp. 37-43.
DOI: 10.1109/INES.2012.6249866.

Siavash Hosseinyalamdary Yashar Balazadegan Sarvrood and Yang Gao. “Visual-
LiDAR Odometry Aided by Reduced IMU”. In: International Journal of Geo-
Information 5.1 (2015), p. 24.

Daobin Wang et al. “LiDAR Scan matching EKF-SLAM using the differential
model of vehicle motion”. In: 2013 IEEE Intelligent Vehicles Symposium (IV).
IEEE. June 2013, pp. 908-912.

Sungshin Kim Hyunhak Cho Kyeong Kim. “Indoor SLAM application using
geometric and ICP matching methods based on line features”. In: Robotics
and Autonomous Systems 100.1 (2018). DOI: https://doi.org/10.1016/
j.robot.2017.11.011. URL: https://www.sciencedirect.com/science/
article/pii/S0921889017301367.

51

http://proxy.lib.chalmers.se/login?url=http://search.ebscohost.com.proxy.lib.chalmers.se/login.aspx?direct=true&db=cat06296a&AN=clc.b2051613&lang=sv&site=eds-live&scope=site
http://proxy.lib.chalmers.se/login?url=http://search.ebscohost.com.proxy.lib.chalmers.se/login.aspx?direct=true&db=cat06296a&AN=clc.b2051613&lang=sv&site=eds-live&scope=site
http://proxy.lib.chalmers.se/login?url=http://search.ebscohost.com.proxy.lib.chalmers.se/login.aspx?direct=true&db=cat06296a&AN=clc.b2051613&lang=sv&site=eds-live&scope=site
http://proxy.lib.chalmers.se/login?url=http://search.ebscohost.com.proxy.lib.chalmers.se/login.aspx?direct=true&db=cat06296a&AN=clc.b2051613&lang=sv&site=eds-live&scope=site
https://doi.org/10.1109/IROS.2009.5354691
https://doi.org/10.1109/INES.2012.6249866
https://doi.org/https://doi.org/10.1016/j.robot.2017.11.011
https://doi.org/https://doi.org/10.1016/j.robot.2017.11.011
https://www.sciencedirect.com/science/article/pii/S0921889017301367
https://www.sciencedirect.com/science/article/pii/S0921889017301367

Bibliography

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[20]

[21]

[22]

23]

[24]

52

D. Herrero-Pérez H. Martinez-Barberd. “Autonomous navigation of an auto-
mated guided vehicle in industrial environments”. In: Robotics and Computer-
Integrated Manufacturing 26.4 (2010). DOI: https://doi.org/10.1016/j.
rcim.2009.10.003. URL: https://www.sciencedirect . com/science/
article/pii/S0736584509000994.

Johann Borenstein, HR Everett, Ligiang Feng, et al. “Where am 7 Sensors
and methods for mobile robot positioning”. In: University of Michigan 119.120
(1996), p. 27.

Roland Siegwart, Illah R. Nourbakhsh, and Davide Scaramuzza. “Introduction
to Autonomous Mobile Robots, Second Edition”. In: Intelligent robotics and
autonomous agents. 2011.

J. -. Gutmann and C. Schlegel. “AMOS: comparison of scan matching ap-
proaches for self-localization in indoor environments”. In: Proceedings of the
First Buromicro Workshop on Advanced Mobile Robots (EUROBOT 96). Oct.
1996, pp. 61-67. DOI: 10.1109/EURBOT. 1996.551882.

Majd Alshawa. “1CL: Iterative closest line A novel point cloud registration
algorithm based on linear features”. In: Ekscentar 10 (2007), pp. 53-59.

H. Durrant-Whyte and T. Bailey. “Simultaneous localization and mapping;:
part 1”. In: IEEE Robotics Automation Magazine 13.2 (June 2006), pp. 99—
110. 18sN: 1070-9932. po1: 10.1109/MRA.2006.1638022.

C. Cadena et al. “Past, Present, and Future of Simultaneous Localization
and Mapping: Toward the Robust-Perception Age”. In: IFEE Transactions
on Robotics 32.6 (Dec. 2016), pp. 1309-1332. 1SSN: 1552-3098. pOI1: 10.1109/
TR0O.2016.2624754.

Joan Sola. Simulataneous localization and mapping with the extended kalman
filter. Jan. 30, 2019. URL: http://www . iri . upc . edu/ people/ jsola/
JoanSola/objectes/curs_SLAM/SLAM2D/SLAM/,20course.pdf.

Wolfram Burgard Giorgio Grisetti Cyrill Stachniss. “Improved Techniques for
Grid Mapping With Rao-Blackwellized Particle Filters”. In: IEEE Transac-
tions on Robotics 23.1 (2007). 18SN: 1552-3098. DOI: 10.1109/TRO . 2006 .
889486. URL: https://ieeexplore.ieee.org/document/4084563/.

Kevin P Murphy. “Bayesian map learning in dynamic environments”. In: Ad-
vances in Neural Information Processing Systems. 2000, pp. 1015-1021.
Michael Montemerlo et al. “FastSLAM: A Factored Solution to the Simulta-
neous Localization and Mapping Problem”. In: In Proceedings of the AAAI
National Conference on Artificial Intelligence. AAAI, 2002, pp. 593-598.
Montemerlo. Michael and Thrun. Sebastian. “FastSLAM 2.0”. In: FastSLAM:
A scalable method for the simultaneous localization and mapping problem in
robotics (2007), pp. 63-90.

Hans P Moravec. “Sensor fusion in certainty grids for mobile robots”. In: Al
magazine 9.2 (1988), p. 61.

Arnaud Doucet et al. “Rao-Blackwellised particle filtering for dynamic Bayesian
networks”. In: Proceedings of the Sizteenth conference on Uncertainty in arti-
ficial intelligence. Morgan Kaufmann Publishers Inc. 2000, pp. 176-183.

https://doi.org/https://doi.org/10.1016/j.rcim.2009.10.003
https://doi.org/https://doi.org/10.1016/j.rcim.2009.10.003
https://www.sciencedirect.com/science/article/pii/S0736584509000994
https://www.sciencedirect.com/science/article/pii/S0736584509000994
https://doi.org/10.1109/EURBOT.1996.551882
https://doi.org/10.1109/MRA.2006.1638022
https://doi.org/10.1109/TRO.2016.2624754
https://doi.org/10.1109/TRO.2016.2624754
http://www.iri.upc.edu/people/jsola/JoanSola/objectes/curs_SLAM/SLAM2D/SLAM%20course.pdf
http://www.iri.upc.edu/people/jsola/JoanSola/objectes/curs_SLAM/SLAM2D/SLAM%20course.pdf
https://doi.org/10.1109/TRO.2006.889486
https://doi.org/10.1109/TRO.2006.889486
https://ieeexplore.ieee.org/document/4084563/

Bibliography

Arnaud Doucet, Nando De Freitas, and Neil Gordon. “An introduction to se-
quential Monte Carlo methods”. In: Sequential Monte Carlo methods in prac-
tice. Springer, 2001, pp. 3-14.

Lu Feng and Milios Evangelos. “Globally consistent range scan alignment for
environment mapping”. In: Autonomous robots 4.4 (1997), pp. 333-349.
Stefan Kohlbrecher et al. “Hector open source modules for autonomous map-
ping and navigation with rescue robots”. In: Robot Soccer World Cup. Springer.
2013, pp. 624-631.

S. Kohlbrecher et al. “A Flexible and Scalable SLAM System with Full 3D Mo-
tion Estimation”. In: Proc. IEEE International Symposium on Safety, Security
and Rescue Robotics (SSRR). IEEE. Nov. 2011.

M Quigley et al. “ROS: An open-source Robot Operating System”. In: I[CRA
Workshop on Open Source Software 3 (Jan. 2009), pp. 1-6.

53

Bibliography

o4

	List of Figures
	List of Tables
	Glossary
	Introduction
	Background
	Problem description
	Related work
	Research question
	Our contribution
	Delimitations
	Outline

	Theory
	Dead Reckoning
	Dead Reckoning With gyroscope
	Dead reckoning error sources

	Scan Matching
	Simultaneous Localization and Mapping
	GMapping
	HectorSLAM

	Summary

	Platform
	Test equipment
	Charmvagn
	Kollmorgen system background
	Robot Operating System
	ROS packages
	Tf
	Rosbag
	GMapping
	HectorSLAM

	Experiment setup
	Summary

	Methods
	Test cases
	Wall visible on one side
	Wall on one side with pillars on the other
	Corridor with pillars on both sides
	Zig-zag through corridors

	Evaluation methods
	Summary

	Results
	Test 1 - Wall visible on one side
	Test 2 - Wall visible on one side with objects
	Test 3 - Corridor with pillars on both sides
	Test 4 - Zig-zag
	Summary

	Discussion
	Results
	Test 1
	Test 2
	Test 3
	Test 4
	Overall results

	Choice of method
	Future research and development
	Summary

	Conclusion
	Research questions

	Bibliography

