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Abstract

In nature, proteins are often found to instantly fold into the configuration with the lowest
amount of free energy. Due to the complexity of this process, it is today still unknown
exactly how it occurs. Since proteins have crucial roles in essentially all biological processes,
this is an important problem within structural biology. Computational methods can be
used to simulate the problem and a large variety of algorithms have been introduced in
the field.
Using a widely studied abstraction of this problem, the two-dimensional HP model,
this thesis studies the following combinatorial, stochastic and deterministic algorithms:
Exhaustive Search, Random Walk, Monte Carlo, Ant Colony Optimization and Zipping
and Assembly by Dynamic Programming. The mechanisms, efficiency and results of these
algorithms are evaluated and discussed.
Even this simplified version of the problem proves to be challenging and gives interesting
insights into principles of the protein folding problem.
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Terms and Definitions

Amino acid - Chemical compound that serve as a building block for proteins. There are 20 different
amino acids, each with a specific side chain which could be classified as either polar or hydrophobic.

Benchmark sequences - A list of sequences that have been used in previous literature, see Table
1.

Conformation - The current formation of a sequence.

Conformational space - All the possible conformations of a sequence.

Construction - A self-avoiding walk phase used in Ant Colony Optimization, similar to a Monte Carlo
iteration.

Connected neighbors - Any two residues that are adjacent to each other in a sequence, i.e. posi-
tion i and i + 1.

Covalent interaction - Chemical interaction between two atoms which involves the sharing of elec-
trons. This type of intramolecular interaction is much stronger than intermolecular interactions, and is
completely fundamental to the formation and structure of molecules.

HH interaction - The interaction between two hydrophobic residues that are topological neighbors.

HP model - Shorthand for ”Hydrophobic-Polar protein folding model”, which is a highly simplified
model used for simulating protein folding, considering each amino acid as being either hydrophobic or
polar.

Lattice - A recurring arrangement of points in space.

Native state - The state that a protein naturally adopts by itself. Here considered as the state that
corresponds to the minimum energy score of a specific sequence.

H,P Residue - A hydrophobic or polar amino acid that has formed peptide interactions with other amino
acids, in order to constitute a sequence. In this thesis, used as the basic units of a sequence, since the
simplified HP model is applied.

Scoring function - Evaluation method determining the energy score of a folded sequence.

Self-avoiding walk - The placement of residues on a lattice, where a point can only be occupied
by one residue.

Sequence - Here used as a shorthand for ”amino acid sequence”, a sequence consisting of amino acid
residues.

Square lattice - A simplified 2D model of the conformational space in which a sequence can adopt
its final conformation.

Topological neighbors - Any two residues, that are not considered connected neighbors, that are positioned
next to each other on the lattice.
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1 Introduction

The protein folding problem has been rated by Science as one of 125 most important
unsolved puzzles in science today [1]. The three-dimensional structures of proteins are
determined by the sequence of amino acids – the building blocks of proteins. There are
20 different amino acids participating in the constitution of proteins, all with different
properties. After a protein is synthesized, it naturally folds and adopts a specific three-
dimensional conformation, called the native state.[2]

In nature, this process happens very fast, often in just a few milliseconds, and a question
that still is unanswered, is what principles that are used in nature when folding a protein
to its native state. Even though this is an intensely studied problem, a solution for how
this is done, is still not found.

To simulate all possible conformations that a sequence could form and then evaluate each
of their energies based on certain criteria, is not possible for other than small sequences be-
cause of the enormous search space involved. There is a proposition, called the Levinthal’s
paradox, which states that if you were to obtain the correct conformation of a protein
consisting of 100 amino acids, by sequentially examining all possible conformations, it
would require a time longer than the age of the universe [3].

It has also been proposed that a protein will always adopt the state of lowest free energy.
This proposal, together with the fact that the structure is wholly dependent on the order
of the amino acids in the sequence, is called Anfinsen’s dogma [4], and in this project we
will use this assumption when evaluating the folded conformations of amino acid sequences.

In this project, the mechanisms of protein folding are being experimented with using
major simplifications such as reducing the three-dimensional space to two dimensions and
abstracting the 20 different amino acids to only hydrophobic (H) or polar (P) residues. Five
different algorithms and an executable program are created using the Java framework. The
algorithms are being evaluated both through individual testing and through comparisons
to other algorithms.

1.1 Background

The biological function of the protein is dependent on its three-dimensional structure,
which determines how the protein will interact with other molecules. Since proteins
make up a major part of our cells and also have crucial roles in essentially all biological
processes, the closer we get to understanding the protein folding problem the closer we get
to understanding biological systems - including ourselves [5]. Therefore, apart from being
a problem of considerable intellectual interest, improvement in the precision of algorithms
used to find the native state of amino acid sequences could also lead to the discovery of
new medicines. Several neurodegenerative diseases are caused by the improper folding of
proteins, and in the case of Alzheimer’s Disease for example, protein folding simulations
have already helped the progress of the development of a viable drug [6].

1.1.1 Molecular Structure of Proteins

Proteins are the most structurally complex molecules known. Consisting of covalently
bonded amino acids, proteins can form large macromolecules arranged in sophisticated
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three-dimensional conformations. The different amino acids are composed of two parts,
one which is identical in all amino acids and constitute the so-called polypeptide backbone,
and one part commonly referred to as the side chain, that is unique for each amino acid,
and completely determines its properties.[2]

The different properties of the amino acid side chains allows non-covalent bonds to
form between parts of the protein molecule, making it possible for the protein to fold into
a more favorable energy state. Two important factors in determining which structure a
protein will adopt, are the polar and hydrophobic properties of different amino acids. Since
hydrophobic amino acids are not able to form hydrogen bonds, they tend to form clusters,
in order to minimize their contact with polar molecules. Globular protein molecules often
arrange themselves with these amino acids forming a hydrophobic core of the protein,
whereas in membrane proteins the hydrophobic amino acids can appear on the surface. In
this project, only globular proteins are considered, and the future use of the word protein
in this thesis will hence refer to globular proteins.[2]

When analyses of three-dimensional protein structures have been carried out, it has
been noticed that even though the structure as a whole, is unique, there are two distinct,
local patterns that are repeated regularly. The reason to their abundance in many proteins,
is that hydrogen bonds also can form between atoms in the polypeptide backbone, making
parts of the protein adopt these specific structures. The first one discovered was the
α-helix, where hydrogen bonds form between every fourth residue, making the protein
adopt a helical structure. The second one, discovered shortly thereafter is the β-sheet.
β-sheets actually exists in two different forms, and arises either when a backbone bends
itself back and forth, or arranges itself in parallel sheets allowing hydrogen bonds to form
between amino acids occurring with longer distances between them in the sequence.[2]

1.2 Reduction to the HP Model

The HP model is one of the most commonly used representations in the field of protein
folding. It is based on the fact that hydrophobic interactions are considered to constitute
the major force in the folding process [7]. It abstracts the given amino acid sequence
into a sequence of only hydrophobic and polar residues. The model can make use of an
imagined lattice for the placement of these residues, where each residue can be placed
only on the empty sites of the lattice. Possible HP chain alignments are thus built-up
through a self-avoiding walk on the lattice.

To evaluate the energy state of a conformation, a scoring function is introduced. Each
appearance of two adjacent, but non-consecutive, H residues (hydrophobic residues) in a
conformation leads to a decrement of the energy value by -1.0. A conformation with lower
score is considered to be better.

The HP model has, since it was first implemented [8], been widely used to study the
mechanisms of protein folding. Even though it is such a simplified model, similar structures
are found on lattices using the HP model as can be found in nature. One of the most
important similarities that is often seen is the forming of hydrophobic cores in order to
shield the H residues from the water and to obtain a low energy score. For the HP model,
if the sequence length is large enough, there is often just one state of lowest energy. We
will refer to this state as the native state and its score as the optimal score.

5



June 4, 2013 1 INTRODUCTION

The lattice model can be used either as a two- or three-dimensional representation of the
conformational space. In our project we have chosen the two-dimensional representation
in order to be able to focus more on the implementations of algorithms.

1.2.1 HP Model in Two Dimensions on a Square Lattice

A square lattice is designed to drastically simplify the protein folding problem. It does so
by enforcing two limitations. The first being the reduction to two dimensions. The second
is the discretization of this space to integer precision. Given these limitations it follows
that a cell in the lattice is either free or occupied by an amino acid, that any amino acid
can have at most four neighbors and that at most three of these are topological. See ex-
ample of a conformation in Figure 1. Red spheres represent H residues and blue spheres P
residues. The lighter color represent the first placed amino acid and the darker the last one.

Conceptually, an algorithm complying with the square lattice will submit to and try
to utilize the limitations to gain some advantage.

Figure 1: A residue sequence on a 2D lattice, red and blue spheres representing H and P
residues respectively.

1.2.2 Relative Movement Scheme

Algorithms residing in the square lattice commonly employ a relative movement scheme
since conformations are invariant with respect to rotations. The position of the two
starting residues can be fixed without loss of generality. A conformation can therefore be
represented by a sequence of relative movements ∈ {Left, Forward,Right}

1.2.3 Definition of the Simplified Protein Folding Problem

On a two-dimensional lattice, given a sequence consisting of hydrophobic and polar residues,
find the conformation c of the best score according to a scoring function f .

6



June 4, 2013 2 THEORY

2 Theory

This section starts by describing variants of the scoring function and then introduces
some algorithmic approaches to solving the simplified protein folding problem. Besides
giving an introduction to the algorithms and their differences, it explains why solving this
problem with brute force is not a viable option.

2.1 Scoring Function

In order to evaluate the conformations, we have implemented a scoring function which
gives a translation of the energy state for the conformation. As previously stated, a low
score is preferred since this represents a low energy state. In the simplified HP model,
the hydrophobic interactions are considered to be the driving force for the sequence to
fold to its native-like conformation [9]. Therefore, many scoring functions only check for
contacts between neighboring hydrophobic residues in the conformation to determine a
score. The scoring function is objective and only evaluates completed conformations. The
native conformation will often have a core of hydrophobic residues and a shell with polar
residues and as many hydrophobic interactions as possible.

2.1.1 Basic Scoring Function

As the hydrophobic interactions are considered to be the driving force of the folding
process in the HP model, a basic scoring function that only considers these interactions has
been implemented, rewarding connected neighbors with a score of -1.0. This is the energy
function we have used when designing the algorithms, to determine what interactions to
reward. However, there is use for an extended scoring function to make the generated
conformations more realistic. We make a suggestion of how such a function could be
designed although we only use it in Section 4.1.

2.1.2 Extended Scoring Function

The extended scoring function will evaluate the folded sequence and generate scores
regarding all interactions:

• As an interaction between two H residues is very favorable and critical to get the
sequence folded into the conformation we want, it will generate a score of -1.0.

• An interaction between two P residues is not as favorable as an interaction between
two H residues, but in our simplified assumption of them having positive and negative
groups, it is still favorable and will generate a score of -0.6.

• As we want the P residues to surround the H residues, an interaction between them
will generate an energy score of -0.6.

• As we also want the P residues to be in the shell of the sequence, an interaction
between a P residue and water or solvent is favorable. It will generate a score of
-0.5.

7
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• The sequence should not have a shell of H residues, since this is very unfavorable.
An interaction between water or solvent and a H residue will therefore generate an
energy score of +1.0.

In order to evaluate these interactions in the folded sequence the scoring function will first
make a representation of the two-dimensional lattice and place the residues at the correct
place. The algorithms uses relative moves to place the residues, which is the movement
from the previous placed residue to the most recent placed one. The representation of
the model uses absolute moves, which is the direction of the sequence relative to the
coordinate system. The scoring function then translates the movement of the sequence
from relative moves into absolute moves to be able to check which connected neighbors
each residue has, to generate the different energy scores.

2.2 Exhaustive Search

An Exhaustive Search algorithm deterministically explores all possible solutions to some
problem statement. Subject to the square lattice, this means finding all possible self-
avoiding walks for some protein. This section discusses the principles of ES on the square
lattice.

ES works by recursively placing one residue from the protein at the time. If all residues
have been placed, this classifies as a solution to the self-avoiding walk and coincidentally
as a valid conformation in the HP lattice. The solution is enumerated and can be stored
in memory. Otherwise, ES attempts to recursively place the head residue to the left,
right and in front of the previous residue. If it is impossible for ES to place the head
residue (in case all surrounding space is already occupied) ES will backtrack and try
another direction for the previous residues until a solution is found. These properties
ensures ES is complete and optimal, but runs in exponential time. For all but the two
starting residues in an input sequence of length n, there are three possible directions to
move, hence there are O(3n−2) possible solutions to the simplified protein folding problem.
There are a few possibilities for pruning, including the introduction of space constraints to
find compact conformations only, but ES is still infeasible for anything but short sequences.

In reality there are far fewer self-avoiding walks, which is described in Section 3.2, but
this combinatorial problem still classifies as NP -hard[7] and alternative algorithms are
required.

2.3 Random Walk

In contrast to the Exhaustive Search, Random Walk is simply one solution, any solution
that classifies as a self-avoiding walk. RW is a process in which the choice of direction is
stochastic.
In its basic form the probabilities are equally distributed and not influenced by any
heuristic. RW is guaranteed to find some valid solution, and while it makes no claim
about the quality, it runs in O(n). The use of RW is based on repetition. Say there are
M = |C∗| optimal solutions to a problem of a total of N possible solutions: Also suppose
that these optimal solutions occurs uniformly in the solution space. Then RW will find a
c ∈ C∗ with probability P = M

N . Naturally P could be very small, but this is countered
by RW being fast.

8
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Because of the sparseness of optimal solutions in the simplified protein folding problem,
RW cannot be expected to deliver any good results on its own. However, in combination
with a satisfying heuristic a Random Walk produces much better results. One such
heuristic is used in the Monte Carlo algorithm.

2.4 Monte Carlo Algorithm

The Monte Carlo method is a common name for computational methods that rely on
random sampling, often combined with some constraint. In this project a chain growth
algorithm, based on anticipated importance sampling, is applied.

The implementation of the Monte Carlo algorithm is based on Random Walk, but also
has the addition of heuristics favoring hydrophobic connections which stems from the
definition of the scoring function. As in both RW and ES, this algorithm recursively places
each residue one at a time. Before placing the residue, three positions relative to the most
recently placed residue are considered; left, forward and right. Depending on the number
of adjacent hydrophobic residues, a probability for each of these positions are calculated.
This probability in combination with a pseudo-random number is used to determine the
choice of site. If all adjacent sites would be occupied in some step, the algorithm will
backtrack and choose the site with highest probability of those left, and continue doing so
until one solution is obtained.

While this heuristic is quite intuitive, it is not always correct as the native state may
require several non-favorable choices to be reached. Figure 2 shows an instance when the
heuristic fails to find the optimal solution, partly because it turns left when leaving the
upper area.

Figure 2: Failure caused by the greedy heuristics of Monte Carlo, in sequence number
three from Table 1. See Figure 3 for the optimal solution.

9
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2.5 Local Search

A Local Search algorithm will start with a solution state c, a conformation, and mutate it in
search of a new state c′ that is better. In general this mutation is any valid and reasonable
operation that results in a new solution state c′. These two states are neighboring states
and therefore called local.

A widely used analogy that also happens to be the name of an algorithm used to ex-
plain principles of Local Search is hill climbing. As any devoted alpinist – or perhaps
protein folder hobbyist – knows, one must move in some direction in order to reach the top.

In order to climb a hill the simple heuristic is to move upwards, one step at a time.
If the alpinist was blind and had no sense of direction however, he would need help to
reach the top. If we equip the alpinist with a device which can relay the current height
above the sea, then he or she might find the highest peak with its help. Intuitively,
climbing this hill under these circumstances is what a local search algorithm does. It is
also subject to issues of climbing the wrong hill, starting out at a flat surface or when
walking one step at a time simply is not feasible.
In terms of HP conformations there are several mutating operations that can be performed.
These range from micro-scale, safe operations which only modify a small part of the
conformation while guaranteeing the validity of c′ to larger types of moves that makes no
such guarantees[10].

2.6 Ant Colony Optimization Algorithm

Like the name suggests, the idea behind ACO is to simulate ant-like behavior by letting
agents explore an area and emit artificial pheromones for other agents to follow. The
process of leaving traces in the environment which affect the behavior of other agents is
called stigmergy and occurs naturally. Stigmergy does not require intelligent agents, but
rather relies on principles of self-organisation by reinforcement of successful behavior. In
ACO, the strength of the trail is proportional to the quality of the solution. The idea
is that given enough time and explored area, it is probable the colony will find the best
solution.

The ACO algorithm [11] [12] is a stochastic search method which combines four smaller
algorithms: an Exhaustive Search (ES) a Random Walk (RW), a HH heuristic that will
also serve in a Monte Carlo (MC) algorithm and a Local Search. In addition ACO provides
means of indirect communication of information between these techniques by the use of a
pheromone matrix. The following paragraphs describe these mechanisms that constitutes
the ACO algorithm.

ACO loops through three major phases in which agents (ants) of different roles per-
form their colony tasks such as searching for food, finding a better routes and emitting
pheromones.

In the construction phase, the ants are performing random walks, where probability of
turning in a certain direction is determined by the HH interaction heuristic as well as
pheromone trails left by other ants. The ants are not allowed to emit pheromone trails in
this phase. When a walk is completed, it is given a score based on the HH interactions

10
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and stored in memory. In the local search phase, some fraction of the ants are attempting
to further improve the best trails found so far. Finally, in the update phase, the most
successful ants are asked to leave trails for future reference.

During construction, ants obey the rules of the self avoiding random walk while be-
ing influenced by earlier pheromone trails in addition to the HH interaction heuristic. The
HH heuristic is identical to the one described in Section 2.4. The exact equation and its
parameters is detailed in Section 3.5.1. The ACO random walk algorithm uses a slightly
different backtracking procedure in which the ant instead of exhaustively trying every
possible way out of a dead end simply retreat half way and try again.

The local search phase attempts to counter two different situations. One in which a
strong trail dominates, but leads to a suboptimal solution in the area. The other in
which a trail may lead to a good solution, but is perhaps not the best way to get there.
Literature [11, 12] indicates the implementation is crucial to ACO, particularly to the
quality of solutions.

Reference implementation [11] make use of a long range move in the local search phase
which randomly selects a position and modifies the direction of the amino acid at that
position. This operation is unsafe and in order to complete it some post-processing is re-
quired. For each of the following residues, it attempts to place it using the old direction. If
this is not possible, it is placed using the HH heuristic, not taking pheromones into account.

In the later article [12] the importance of the local search phase is emphasized and
a slight modification of the long range move is applied within an iterative first improve-
ment procedure. This modified procedure is simpler and more effective, and is described
in detail in Section 3.5.

During the update phase the environment is simulated by modifications to the pheromone
matrix. The pheromone matrix can be read during all phases and facilitates the communi-
cation between ants at different times. During the update earlier trails evaporate by an
inverse persistence factor and successful ants are allowed to write to the matrix.

2.7 Zipping and Assembly Mechanism by Dynamic Programming

As the name implies, ZAMDP is a Dynamic Programming approach to the protein folding
problem that was proposed by Dill et al. [13, 14]. It is based on the Cocke-Kasami-Younger
(CKY) algorithm for parsing sentences in a context free language.

There is substantial evidence that suggest that real physical proteins are folded in a
hierarchical manner where small local structures such as α-helices and β-sheets are formed
before the main structure [14]. If this is indeed the case, this provides a strong argu-
ment for why Dynamic Programming would be a suitable way to model the folding process.

The CKY algorithm works by splitting a given sentence into its constituent words and
classifying them according the unit production rules of the context free grammar that
defines the language. Words are then combined into longer and longer strings according
to the rules of the grammar. For example, the words ”eat” and ”sushi” will in the initial
phase of the algorithm be classified as a verb and a noun respectively. Both words can then
be combined into a verb phrase, ”eat sushi”, since the grammar contains a rule stating

11
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that a verb phrase can be constructed from a verb and a noun. In this way the algorithm
creates one or more binary parse trees which all represent different interpretations of the
sentence. If at least one such tree exists where the root is a rule which in the grammar is
defined as a ”start symbol” the entire sentence is valid.

The ZAMDP algorithm uses the same Dynamic Programming approach of ”local first,
global later” as CKY but instead of combining strings into longer strings according to rules
defined in a grammar, it folds short substrings of the sequence first and then assembles
the best solutions found until the entire sequence is folded.

The first step in the algorithm is to split the sequence into short subsequences, each
of which only contains one hydrophobic residue. These subsequences correspond to the
words in the CKY algorithm. An exhaustive search is used to enumerate all possible
conformations for these subsequences which typically are not that many since the sequences
are short.

These folded sequences are then assembled like pieces of a jigsaw puzzle to form larger
conformations. For every combination of two small conformations only those with the
best score are stored and used in the next assembly level. When the whole sequence has
been folded, the best solutions are returned.

In both CKY and ZAMDP this is accomplished by using a so called parse chart which is
simply a matrix that in each cell stores the best solutions for its corresponding subsequence.
If the original sequence is split into n parts the chart will be of the size n× n where each
cell chart[i][j] will contain the best conformations found for the subsequence from i to
j. The chart is initialized by filling the diagonal cells (chart[i][i] for i = 1..n) with the
exhaustively enumerated solution for each initial subsequence i. The algorithm will then
work its way up through each subsequent diagonal, chart[i][i+ 1], chart[i][i+ 2] and so
on until it reaches the top right cell chart[1][n] which will contain the best conformations
for the entire sequence. Each cell in the chart except for the initial diagonal is filled by
assembling all possible combinations of conformations from the cells chart[i][i+ k] and
chart[i+ k + 1][j] for k = 0..j − i− 1.

When the algorithm is finished the optimal conformations found for the given sequence
will be the ones stored in the top right cell chart[1][n].

2.8 Testing

The sequences from Table 1 have been used previously in literature [15]. They provide a
variety in both sequence length and composition, and more importantly, they all have a
known global minimum which make comparisons against our obtained optimal solutions
possible. To acquire a more extensive testing, the algorithms will also be run with all
possible sequences from a length of seven up to ten amino acids. For short sequences like
this, Exhaustive Search is used to obtain the global minimum for all sequences. In this
way the correctness of the algorithms can be critically evaluated for short sequences. For
time efficiency testing, sequences from the length of 11 amino acids up to 20, are randomly
sampled.
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Sequence Length Global Min
1 H3P2HPHPHP2HPHPHP2H 20 -10
2 HPHP2H2PHP2HPH2P2HPH 20 -9
3 H2P2HP2HP2HP2HP2HP2HP2H2 24 -9
4 P2HP2H2P4H2P4H2P4H2 25 -8
5 P3H2P2H2P5H7P2H2P4H2P2HP2 36 -14
6 P2HP2H2P2H2P5H10P6H2P2H2P2HP2H5 48 -22
7 P2H3PH8P3H10PHP3H12P4H6PH2PHP 60 -34
8 H12PHPHP2H2P2H2P2HP2H2P2H2P2HP2H2P2H2

P2HPHPH12

64 -42

Table 1: Benchmark sequences.

Figure 3: Sequence 3, H2P2HP2HP2HP2HP2HP2HP2H2, an optimal solution.
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3 Implementation

The project has revolved around the Java framework, with code being produced and tested
on six different computers. In order to facilitate the compilation of our written code, we
decided to use the source code management system Git [16]. Separating the framework
into smaller modules enabled us to work separately on different algorithms and on other
parts of the program – a way of working that has allowed us to always have a runnable and
functional version of the program ever since the first working release. The program itself
has gradually evolved from a state where only running one algorithm, ES, was possible to
the final state, where the user is able to choose between different algorithms to execute
and to select parameters unique for every algorithm. There is also a score along with each
conformation.

The implementation of the scoring function, algorithms, testing methods and GUI are
described in the following sections.

3.1 Scoring Function

When the algorithms have folded the residue sequence, the program will store all the data
from the conformation in an immutable object called a ”Fold”. This is the object the
scoring function will work with to generate a score for the conformation, it is not a tool to
use in heuristics of the algorithms. Therefore, it will not evaluate subsequences within the
conformations during the folding process.

First, the scoring function will create a representation of the lattice and place the con-
formation on it. Then, the scoring function starts with the first residue of the sequence
and checks the neighboring places on the lattice with a constraint to 90 degrees for
interactions with other residues, ignoring the topological neighbors. The scoring func-
tion will therefore always check on two neighboring places in the lattice except for the
first and last amino acids in the sequence, which will be checked at three neighboring places.

Figure 4: Illustration of checked neighbors and example of assigned score.

This will then be used to generate a certain score for each residue, and then summarized
to the total score of the folded residue sequence. The scoring function is configured to
store all different connected neighbors in different arrays, so the user of the program can
choose what type of score should be presented (i.e. the user can choose to only present
the scores for the HH connected neighbors).
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3.2 Exhaustive Search

In order to generate all possible conformations for a given sequence, we implemented a
recursive solution. The ES algorithm goes through all residues in the sequence from the
starting point to the final point. On each recursive level, it will at first attempt to make a
leftward step. If this would lead to a collision with a previously placed residue, an attempt
is made at an upward movement and if this also fails, it will attempt to make a rightward
step.
Once the base case is reached, meaning that the very last residue in the sequence has been
placed, the produced conformation is stored and we move back recursively to obtain the
next possible conformation.

A rectangular box constraint was implemented for the ES algorithm. Maximum width and
height values can be given as arguments to the algorithm, leading to that the generated
conformations will all lie within a box of the specified dimension. Since we can often
assume that the optimal solution lies within a limited rectangular box when using the basic
(HH) scoring function (and always when using the extended scoring function, see Section
2.1), wherein the conformation is forced to be maximally compact, using this method can
shorten the execution time needed to find optimal solutions for a given sequence.

The minimum surface (the perimeter) the molecule can have, Pmin, is defined as [8]:

Pmin = 2 (n+ 1− tmax) (1)

where tmax = the largest number of topological neighbors and n = sequence length.

If P = Pmin, or in other words that the box is minimal so that only maximally compact
conformations are generated, the number of conformations that must be explored is
reduced by a factor of ∼ e−n [8].

3.3 Random Walk

Similar to ES, Random Walk is implemented using recursion. Traverse the sequence and
place residues one by one to gradually define the conformation. In every step taken, the
three relative movements (left, right and forward) are randomized for the residue. If the
first attempted relative movement succeeds – meaning that it preserves the self-avoiding
walk – we move to the next residue recursively. Otherwise, the other movements are tried
in the same manner. Once the base case is reached, or in other words when a movement
has been set for the last residue, the conformation is returned.

3.4 Monte Carlo Algorithm

This algorithm is basically a self-avoiding random walk, but as mentioned earlier, with
the addition of heuristics favoring hydrophobic connections.

In our implementation the first two residues in the sequence receive a given direction and
are then placed at a fixed position on the lattice. The algorithm uses the direction of
the previous residue to determine which of the adjacent sites on the lattice would be of
interest when placing the next. Each residue has four adjacent sites in the 2D-lattice
representation, and since the site where the last residue was just placed is not considered,
there are three sites of interest. A clarification of this process can be seen in Figure 5.
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Figure 5: The next H residue should have a large probability of being placed in site 1, a
small probability of being placed in site 0 and zero probability of being placed in site 2.

In order to determine the different probabilities of the next H residue being placed at the
three adjacent sites, we calculate the number of topological hydrophobic neighbors at each
site. Since these are just probabilities, and we use a pseudo-random number generator
to make the actual decision, we added a weight, w, for the user to be able to adjust how
favorable the HH interactions should be considered. The following, normalized, equation
was derived to calculate the probability of the next amino acid being placed in site i:

P (i) =
hi(nrHi(w + 1) + 1)

nrS +
∑2
j=0 nrHj(w + 1)

(2)

where i = 0, 1, 2 represents the site in the relative direction (left, forward or right) of the
last placed residue, and hi is 1 if site i is not occupied by a residue, and 0 if site i is
occupied. nrS represents the number of adjacent sites that are available. Larger values of
w will increase the impact potential HH interactions will have on the the probability. If all
of the adjacent sites are occupied this calculation will not be performed. The algorithm
will then retreat to the prior step, and move the last residue placed, to the site next in
line of actual placements. This procedure of stepping backwards in the placement process
will be performed until all residues in the sequence can be placed.

In the case of placing a P residue, no consideration is taken to the surroundings, and the
probability is calculated as follows:

P (i) =
hi
nrS

(3)

In order to determine the actual placements, we use a pseudo-random number
(0 ≤ rnd ≤ 1). Since the probabilities from (2) sum to one we then make the following
choices:

Left Forward Right
rnd≤P(0) P(0)<rnd≤P(0)+P(1) P(0)+P(1)<rnd≤P(0)+P(1)+P(2)

Table 2: Rules for using the calculated probabilities, when determining actual placements.
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3.5 Ant Colony Optimization

The ACO algorithm was written in Java and like the other algorithms uses the relative
moving scheme. The implementation mimics the general idea of any ACO algorithm
with separate Construction, Local Search and Pheromone Update phases. Internally the
algorithm uses the original scoring function based on HH interactions and returns the
globally best solution found during the execution.

3.5.1 Construction phase

The Construction phase is performed using a backtracking RW algorithm very similar to
the MC algorithm. The folding direction and relative starting point has been shown [11]
to be important to the effectiveness of ACO, however this implementation folds exclusively
from one end to the other and does not allow arbitrary starting positions.

In addition to the landscape, ants are also influenced by the pheromone trails in their
choice of direction during the random walk. Initially, any direction is as probable as
another as there are no pheromone trails and no HH interactions. With time, ants will
start influencing each other via the pheromone trails per the following equation:
Let step i, direction d, heuristic probability h and pheromone influence w. Then we have
that probability p of choosing direction d in step i is

pi,d =
wαi,d · h

β
i,d∑

k∈{L,S,R} w
α
i,k · h

β
i,k

(4)

The balance between heuristics and pheromones can be adjusted using the α and β
parameters.

The backtracking mechanism will not exhaustively try all possibilities to create a confor-
mation, like the exhaustive search, rather it will retreat halfway of the distance folded so
far before simply trying again. This behavior is important primarily in longer sequences,
where self-avoidance is more difficult [12]. This implementation does not remove the option
to select a previously failed direction. It is not clear if choice has any real implications.

3.5.2 Local Search Phase

The Local Search phase is an important part of the ACO and aims to improve existing
conformations by modifying them according to a mutation scheme. If the resulting confor-
mation c′ is better, it will normally replace the original conformation c. The rationale
[12] is that it is easier to improve an already good conformation than to construct a new one.

ACO implements the modification operation from [12] in which an arbitrary residue an is
selected and its direction is mutated uniformly at random. The remaining sequence will
then adapt to the new situation in the following way:
Conditioned that it is still feasible, an+1 will use its previous relative direction with prob-
ability P = 0.5. If not, it will select a different direction with probabilities proportional to
the HH heuristic hid.

The iterative first improvement procedure implemented here is greedy in the sense that it
will be satisfied with the first improvement found. In contrast to the original variant [11],
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but in line with [12] it only accepts improvements.

In this implementation the top 5% of the current iterations conformations are selected
as candidates for improvement. Furthermore it makes as many attempts to improve the
conformation as there are residues in the sequence.

3.5.3 Pheromone Phase

The pheromones, which importance increases with the length of the sequence [11], are
stored in a matrix T of sequence length i and directions d width to hold the pheromone
strength Tid.

During each phase, before any ants are allowed to leave trails, the existing pheromones
will evaporate from the environment by an inverse persistence factor (0 < p ≤ 1).

Similar to the local search phase only the top 5% conformations will leave a trail of
pheromones for the next swarm of agents to follow. In this phase the table is updated
according to Ti,d ← Ti,d · p+ δTi,d.

In [11] the weight factor δ is called the relative solution quality and is calculated as
E(c)/E∗ ”where E∗ is the known minimum energy or an approximation based on the
number of H residues in the sequence”. Since no such approximation is to be found, and
would require solving the problem in part this implementation will determine a trivial
upper bound if no score is provided as argument.

As with all situations including probabilities there is a risk for underflow or infinitesimal
values to appear. A measure to prevent this situation and search stagnation [12], is
threshold renormalization. This measure is currently not implemented.

Figure 6 shows the pheromone matrix development over several iterations where yellow/red
colors indicate strong scent.

Figure 6: Pheromone matrix of length 20 (vertical, i), developing over 10 iterations
(horizontal). Each cell represent the pheromone strength, Tid, for the three directions d.
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3.6 Zipping and Assembly Mechanism by Dynamic Programming

The ZAMDP algorithm was written in Python. This implementation was initially intended
as a prototype to be translated to Java and incorporated into our main framework at later
stage. One reason for this was that the early phase of the implementation could benefit
from a simple graphical interface in which the algorithm could be executed step by step
interactively which is a feature that is not available and never intended to be available
in the main Java application. Due, in part, to time constraints as well as additional
requirements from the ZAMDP algorithm that the framework simply did not provide, the
Python implementation was never translated to Java directly, however we still incorporated
it in the main application by calling the Python executable from within a Java module
conforming the frameworks interfaces.

One of these additional requirements was that ZAMDP in its initialization phase uses
exhaustive search to enumerate all possible conformations of small subsequences which
it then assembles into the complete conformation. This use of the exhaustive search
algorithm within the main algorithm proved to be difficult to achieve in the framework we
had started to create.

As for the implementation itself, the main principle of the algorithm, which is described ear-
lier, in many ways closely mimics that of the CKY algorithm. A parse chart is constructed
and traversed in the same way, however the assembly procedure is where ZAMDP differs
significantly from CKY. At any given cell in the parse chart except for the initial cells, i.e.
the diagonal, the conformations to be stored in that cell are created by assembling every
possible pair of smaller conformations that are folded from two adjacent subsequences
that together form the larger subsequence that the current cell represents.

This assembly phase constitutes one of the main parts of the algorithm. Two HP-
sequence conformations need to be assembled into one larger conformation. This can in
some ways be thought of as assembling two pieces of a jigsaw puzzle but with slightly
relaxed restrictions. Depending on how the smaller conformations are shaped they can
at most be assembled in nine different ways. This number comes from the fact that an
end point on one of the conformations to be assembled has at most three unoccupied
neighbor cells which can be used as the connection point for the second conformation.
For any one of these three starting points, the second protein can at most be rotated
in three different directions, the fourth being blocked by the end point of the first con-
formation. The number is of course often less than nine since some or even all of the
three possible connection points can be blocked by other parts of the first conforma-
tion. Additionally the conformations may be folded in such a way that collisions occur in
other parts of the sequence for some or all possible rotations in any of the connection points.

When all pairs are assembled for one cell in the parse chart, the best solutions are
saved and later assembled with other conformations. Eventually the top level is reached,
which only contains one cell, representing the entire sequence. The assembly phase is
performed as usual on all possible combinations of two folded subsequences that together
form the complete sequence. The best solutions found in this cell are the ones that are
returned by the algorithm.
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3.7 Testing Methods

To test the different algorithms, the user needs to run the main program in headless mode
(without GUI) and specify the test case to execute along with what algorithm to use
in the test and specify arguments for the given algorithm (unless default values are desired).

We have defined two different main tests, which are the following:

• Small test For this test, the user is required to specify the sequence length in
addition to other parameters. If it is the first time that the user runs this test, a
test data file will be generated by running all possible amino acid sequences with
the given sequence length, using Exhaustive Search to find the optimal solution for
each sequence (hence, the sequence length has to be shorter than 11 amino acids).
Otherwise, an already existing test data file will be loaded.

• Medium test This test executes the benchmark sequences as shown in Table 1.

Once the test is finished, the results are written to a test result file, which will contain the
results of each sequence in the test run as well as a summary of all test sequences

3.8 GUI

We developed a GUI in the modular-based and platform-independent Swing framework,
together with JOGL [17], to allow for fold visualizations (see Figure 7 for its appearance).
The user can easily input any desired sequence of H and P residues and then select
the algorithm that should generate a conformation or a list of conformations based on
this sequence. After algorithm execution, the result is displayed on a GL canvas as
a two-dimensional chain (see Figure 1), that may be rotated and translated in three
dimensions.

Figure 7: GUI.
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3.8.1 Swing

Operations based on user input are defined through the use of action listeners. We have
used the observer pattern thoroughly to allow for communication between the GUI and
the rest of the framework. For instance, when the user chooses to execute the selected
algorithm with given parameters, this execution is launched as a subprocess to prevent
the event dispatching thread from halting. As the GUI view class is added as an observer
of the model class (responsible for starting an algorithm execution), the GUI receives the
generated conformations once the execution is completed and the GUI view class thus
observes a change.

3.8.2 JOGL

JOGL, which integrates with the Swing widget sets, provided us with Java bindings for
the OpenGL API [17]. We used drawing routines provided by the OpenGL Utility Library
(GLU), with material and lighting properties set, to render the spheres used to resemble
hydrophobic and polar residues.

The rendering function builds up the conformation by walking a relative path through
the resulting list of residue orientations. If the next residue in the conformation takes
a leftward or rightward step, the OpenGL matrix is rotated -90 degrees and 90 degrees
respectively relative to previous residues.

Unprojection is used to enable centering of the conformation on the GL canvas. The GL
canvas minimum and maximum coordinate bounds are converted to OpenGL coordinate
values, where after the width and height of the given conformation is calculated. The
size and placement of the rendered conformation is adjusted to the values gained in this
process, effectively centering it on the screen.

The possibility exists to save what is currently displayed in the GL canvas and store it in
.tga (TARGA) format. This is achieved by reading a block of pixels from the frame buffer
after scene flushing and then storing it into a new file with a defined TARGA header
structure.

21



June 4, 2013 4 RESULTS AND DISCUSSION

4 Results and Discussion

This chapter presents and provides discussions of the results from performed tests and
evaluation methods.

An evaluation of the two scoring functions to investigate which one favors conformations
with a hydrophobic core, is performed as well as an evaluation of the execution time of
ACO and ZAMDP for sequences of increasing length. We also provide a detailed discussion
of the data obtained from these algorithms. The three stochastic algorithms – RW, MC
and ACO – are compared using the benchmark sequences. We also study the effects
that different native conformations have on the folding rate and running time of ZAMDP.
Finally, we discuss what else could have been done in the project, if there had been more
time.

4.1 Comparison Between Basic and Extended Scoring Functions

To compare the different scoring functions, a test using Exhaustive Search on the sequence
HPH3PH2P6 was performed, where two given optimal solutions for each scoring function
are shown in Figure 8 and in Figure 9. This comparison shows how the extended scoring
function also take into account that the hydrophobic amino acids should avoid water.
However, for this particular sequence, it does not generate as many HH interactions as
the basic scoring function.

Figure 8: An optimal solution obtained using the basic scoring function, with a HH score
of -3.0.
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Figure 9: An optimal solution obtained using the extended scoring function, with a total
score of -7.0 (and a HH score of -2.0).
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4.2 Time Comparison between ACO and ZAMDP

Figure 10: Average execution time for the ACO and ZAMDP algorithms, the execution
time scale is logarithmic.

As seen in Figure 10 the execution time of the ACO algorithm grows linearly as the
length of the sequences grow, whereas the execution time of ZAMDP algorithm grows
exponentially. This makes ZAMDP very time-consuming for longer sequences. For the
shorter sequences of length 7 to 10 (referred to as the small test) both ACO and ZAMDP
found all the native-like solutions. On these sequences ZAMDP was the faster of the two
algorithms, which makes ZAMDP an excellent algorithm for these sequences, even though
proteins in nature are never close to being this short.

Due to the deterministic logic of ZAMDP, the execution time for each sequence can
vary a lot. The ZAMDP divide the sequence at every hydrophobic residue into subse-
quences. Therefore, if the sequence has a conformation with many subsequent hydrophobic
residues, the ZAMDP algorithm has to test many more different possibilities to match the
subsequences. The result of this is a longer execution time.

The stochastic logic of ACO has the benefit of not over-elaborating any sequences. The
downside of this logic is an increase in the risk of not finding the optimal solution for a
sequence. ACO has the possibilty to take in parameters, in contrast to ZAMDP, which
affects the execution time as well as the probability to find the optimal solution. The
test result seen in Figure 10 is executed with default parameters. As one may assume,
ACO is a much faster algorithm than ZAMDP. On the other hand the correctness is
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traded for the speed in ACO, and where ZAMDP only takes one run to find its opti-
mal solution, ACO sometimes have to be run numerous times to obtain its optimal solution.

4.3 Random Walk and Monte Carlo

We performed the benchmark sequence test on both the Random Walk and Monte Carlo
algorithms between 102 and 106 times each. The lowest score along with how many times
it was found was stored for each sequence and can be seen in Tables 3 and 4. For the MC
algorithm the variable w was set to the value 10 which, for example, would yield a 0.85
probability for a H residue to move in the direction of another H residue, if the adjacent
sites of the other two directions are empty. See equation (2) for calculations.

Random Walk

Seq Length Global
Min

RW
Min
102

RW
Min
103

RW
Min
104

RW
Min
105

RW
Min 106

1 20 -10 -4 (2) -6 (1) -7 (1) -8 (3) -8 (18)
2 20 -9 -5 (1) -6 (3) -7 (1) -8 (1) -9 (1)
3 24 -9 -4 (2) -6 (2) -7 (1) -7 (2) -8 (2)
4 25 -8 -3 (4) -4 (2) -6 (1) -5 (30) -6 (12)
5 36 -14 -6 (3) -7 (2) -9 (2) -9 (7) -11 (1)
6 48 -22 -8 (4) -11 (2) -13 (1) -14 (2) -16 (1)
7 60 -34 -21 (1) -21 (2) -23 (2) -26 (3) -27 (2)
8 64 -42 -18 (1) -24 (1) -23 (1) -26(1) -26 (4)

Table 3: Best energy score found for different number of iterations for the benchmark
sequences. Number in parentheses indicates conformations found.

Monte Carlo

Seq Length Global
Min

MC
Min
102

MC
Min
103

MC
Min
104

MC
Min
105

MC
Min 106

1 20 -10 -8 (1) -9 (1) -10 (1) -10 (12) -10 (51)
2 20 -9 -6 (1) -8 (2) -8 (10) -9 (7) -9 (101)
3 24 -9 -5 (7) -7 (6) -8 (3) -9 (1) -9 (10)
4 25 -8 -4 (1) -5 (2) -6 (2) -7 (4) -7 (17)
5 36 -14 -9 (1) -10 (2) -11 (1) -12 (1) -14 (1)
6 48 -22 -13 (1) -15 (2) -17 (1) -17 (9) -19 (1)
7 60 -34 -26 (2) -30 (1) -32 (1) -32 (3) -33 (7)
8 64 -42 -26 (2) -30 (1) -30 (2) -32 (2) -34 (1)

Table 4: Best energy score found for different number of iterations for the benchmark
sequences. Number in parentheses indicates conformations found.
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The MC algorithm provides a lower score than the RW algorithm in all but two cases.
These cases (sequence two and four and iterations 106 and 104 respectively) have the
same score. We can conclude that the probability of finding a low energy conformation
increases with the number of iterations, and that these conformations are harder to find
with increasing sequence length.

An unexpected result was that the MC algorithm did not find the global minimum
for sequence number four, the sequence that holds the highest global minimum of all
benchmark sequences. It is also only slightly longer than the the first three sequences,
which the MC algorithm did find the global minimum for. This indicates that there are
sequences of moves involved that are improbable for the MC algorithm to make.

We can however find the global minimum with the ACO algorithm which lets us take a
closer look at the conformation, which can be seen in Figure 11.

Figure 11: Benchmark sequence 4 global minimum found with ACO algorithm.

The first residue placed is the light blue sphere in lower left corner. We clearly see a
hydrophobic core and observe that whenever a H residue can be placed to make an inter-
action with another H residue, it is. This contradicts with the assumption of improbable
moves for the MC algorithm. If we instead look at the H and P composition of the
sequence we see that there are three different subsequences containing four subsequent P
residues. These subsequences will not have any heuristic and to have them placed in the
exact manner as in Figure 11 would correspond to a very small probability.

If we also investigate sequence one, two and three from Table 1 we see that there are no
more than two P residues in a row in any of those sequences. This might explain why
the MC algorithm and its greedy heuristic folds the three first sequences optimally fairly
often for one million iterations. Another result in support of this statement, is that only
one occurrence of the optimal solution in sequence five is found - a sequence with two
subsequences of P residues, each of length five.
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4.4 Zipping and Assembly Mechanism by Dynamic Programming,
Results and Discussion

One interesting quirk of the way ZAMDP works is that the rate at which a sequence is
folded, and thus the running time of the algorithm, is greatly affected by properties of the
solution such as the optimal score, the number of conformations that obtain that score
and the way those conformations are folded, i.e. their secondary structure. This comes
from the fact that the folding rate is directly affected by the number of partially folded
subsequences that need to be combined in order to find the final conformation. Since only
the best conformations in every cell are stored and assembled with other conformations in
later steps, the running time will be reduced if conformations with a low energy are found
early in the algorithm, thus removing conformations with higher energy form the search
space.

One effect of this is that if a certain sequence has an optimal score close to zero it
tends to have many conformations with this score and very large search space to traverse
during the execution of the algorithm. This of course leads to a very long running time.

As mentioned earlier, the folding rate is also affected by the final conformation’s secondary
structure. To explain this we need to establish the term ”local interaction” which we will
define as a HH interaction consisting of two hydrophobic residues that are close to each
other on the sequence. How close they need to be to be ”local” will depend on the length
of the sequence but the details are not very important. The point is that since ZAMDP
works by folding and assembling small subsequences first according to the ”local first,
global later” principle of dynamic programming, local interactions will be found early in
the execution of the algorithm and thus reduce the search space rather than let it grow
exponentially as is the case otherwise.

A trivial example of this occurs when folding all of the 60 sequences of length 11 that
have a unique optimal conformation. The running times of these 60 executions of our
ZAMDP implementation ranges from approximately 0.1 seconds to 3.7 seconds. The
optimal conformations from the executions with the shortest and the longest running time
are shown in Figures 12a and 12b, respectively.

(a) (b)

Figure 12: Two conformations with different fold rate.
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Both of these conformations have a score of -4, however their interactions are different.
For these short sequences we will define local interactions to be only those interactions
consisting of two H residues with at most two other residues between them on the chain,
which is the closest that two residues in interaction can be to each other. Using this
definition we see that for the ”fast” conformations, three out of its four interactions are
local whereas the ”slow” conformation only has one local interaction. How this affects
the running time is further evidenced by the fact that the parse tree created during the
fast execution has at most 14 folded subsequences in any given cell while as many as 192
conformations are stored in one single cell during the slow execution.

These results are very interesting since they closely mimic the way folding rates for
real physical proteins depend on their native structures. Proteins with high occurrence of
α-helical structures tend to fold faster than structures dominated by β-sheets[13] and one
can easily see the resemblance between α-helices and high occurrence of local interactions.
This further strengthens the theory that physical proteins do indeed fold in a hierarchical
manner similar to that in which ZAMDP works[14].

Sequence Length Global Min ZAMDP solution Execution Time (s)
1 20 -10 -10 32
2 20 -9 -9 20
3 24 -9 -9 23
4 25 -8 -8 236
5 36 -14 -14 12337
6 48 -22 – –
7 60 -34 – –
8 64 -42 – –

Table 5: ZAMDP test results for the benchmark sequences.

Since the ZAMDP algorithm is a deterministic algorithm that relies on a few basic princi-
ples there is not a whole lot that can be tweaked or modified to get better results without
changing those fundamental principles. There are however two points where decisions are
made that could have been made differently. The first of these points is in how to split the
given sequence in the initial subsequences that are to be folded using exhaustive search.
The proposed method is to split it in a way such that every subsequence only contains one
hydrophobic unit [14]. The reasoning behind this is not explained in the article but our
assumption is that by limiting the number of hydrophobic units to one, you prevent the
exhaustively enumerated initial conformations from forming any interactions and getting
a score other than zero. This in turn, prevents the algorithm from filtering out any of
the initial conformations which, although not providing any interactions to the solution,
would have been more advantageous building blocks for the later stages of the algorithm.

The second point of decision is exactly that of filtering. As mentioned earlier, only
the best conformations in every cell are stored and used in subsequent steps. One could
just as well have saved all of them. Only saving the best solutions would seem to put us
at risk of losing other of the above mentioned advantageous building block. However, this
was the proposed method [14] and as of yet we have not completed any run of ZAMDP
for which it did not find the optimal solution. It is worth mentioning that the original
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developers of the ZAMDP algorithm successfully folded 96.6% of all 24,900 HP sequences
of length 20 into their single optimal conformation [13]. We have unfortunately not been
able to perform such rigorous tests.

At one point we discussed whether it would be possible to enhance the performance
of ZAMDP by storing previously found optimal conformations for small substrings and
simply using them in the assembly phase rather than finding them again. However by the
same reasoning as the one behind restricting the initial subsequences to only contain one
hydrophobic unit in order to not lose any of the inital building blocks that would come to
better use unfolded, we decided against it.

Since at least the initial phases of the algorithm are inherently parallel, there could
quite possibly be some performance to be gained from distributing at least parts of the
executing on multiple processors although we never had the opportunity to test this.

4.5 Monte Carlo and Ant Colony

Given they execute a comparable number of random walks, we expected the ACO algo-
rithm to perform better than a straightforward Monte Carlo algorithm. However as the
benchmark results (Table 6) show we have to analyze the situation a bit further.

Sequence Length Global Min ACO best solution MC best solution
1 20 -10 -10 -10
2 20 -9 -9 -9
3 24 -9 -9 -9
4 25 -8 -8 -7
5 36 -14 -13 -14
6 48 -22 -18 -19
7 60 -34 -31 -33
8 64 -42 -32 -34

Table 6: Test results for the ACO algorithm executed with 1000 ants and 1000 iterations
and the MC algorithm executed 106 times for each benchmark sequence.

For consistent performance in ACO it is important that the sequence is folded from a
random starting position[11]. Doing so requires a mechanism to fold in two directions and
means to decide which direction to choose at any given point in time. The referenced
implementations use a probabilistic method to decide which direction to extend. The
probability of a certain direction is the number of residues remaining at the respective
end divided by the total remaining residues in the sequence.
Our implementation hence suffers a great disadvantage since it is currently only capable of
folding in one direction. Yet another measure to counter search stagnation[12] (threshold
renormalization) remains unimplemented. We have not specifically studied the effects
of these features, but they are both vital components for a competent ACO implementation.

We wish to show the effects of the Local Search phase and Pheromone matrix by devising
another comparable situation. In order to do so, we need to limit the effectiveness of
the Ant Colony construction phase, so that it relies more on the other mechanisms. We

29



June 4, 2013 4 RESULTS AND DISCUSSION

devised a special sequence targeting the HH heuristic of the algorithms thereby weaken-
ing both the MC algorithm and Ant Colony construction phase. The special sequence
Sspec = P3H3P8H3P6H3P8H3P3 has long parts of subsequent P residues between small
groups of H residues and an optimal HH score of -8. We then compared Ant Colony and
Monte Carlo using 5 ·102 ants and at most 102 iterations versus 5 ·104 runs in Monte Carlo.

Score ACO ratio MC ratio
-8.0 34% 8%
-7.0 48% 46%
-6.0 18% 46%

Table 7: Test results for ACO versus MC algorithms on sequence Sspec.

As can be seen from Table 7, ACO performed better despite the disruption of the HH
heuristic, which forced ACO to rely on Local Search and Pheromones to discover the
solutions. We cannot tell if the final solution was found during the Construction or
Local Search phase, however we observe that an optimal solution (there are several) was
found more frequently in ACO then than in MC. Examples of resulting conformation are
displayed in Figure 13 and 14.

Figure 13: ACO finding an optimal solution in ≤ 5 · 104 constructions.
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Figure 14: As this picure nicely illustrates, as an effect of being unguided by lengths of
P residues, HH heuristic alone often fails to identify a globally optimal solution. Monte
Carlo, ≤ 5 · 104 iterations sequence Sspec.

4.6 Ant Colony Optimization Development

The colony size is possibly the primary parameter of ACO and determines the number
of random walks performed in the construction phase. It is important that the colony
explores a large area of the search space, so that many different candidates are found.
Failure to do so will prevent an effective Local Search phase. The search space area grows
exponentially with the length of the sequence and long sequences require more ants in
order to achieve sufficient coverage.

It would be interesting to try this principle and shift focus over time by decreasing the
number of exploring ants and increasing the number of improving ants. Thereby assuming
that some conformation that is close to the optimal solution has been found and that it is
more important to spend time improving it, than to expand the area.

When following this line of thought we also considered to have two different improvement
phases, the first performs the large kind of mutation described in this report and the
second polish the resulting conformation by performing micro operations on top of it, if
such an operation improves the result.

While on the topic of mutations there is another intuitive and safe mutation operation
we would want to try. The pullmove[10] principle is simple: Select a residue which can
be moved to a neighboring location. Place this residue at this location and pull all the
previous residues along with it to fill the empty space. We have prepared code for a pull
move, but unfortunately we did not have the time to evaluate it.
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All sequences have different properties and like the optimal score, there is an optimal
number of conformations, e for which improvements should be attempted [11]. This
number is important for optimizing the cost and to benefit the ratio of the algorithm.
This depends on the colony size as well as the sequence composition and length. The
literature[11] is not clear on whether to use a fixed number of ants or a proportion of the
colony size. In our implementation e is 5% of the colony size. It would be interesting to
use only fixed number of ants regardless of the colony size to see if there is a lower bound
to this number.

Since the local search process is stochastic, another factor of interest is the number of at-
tempts made to improve a certain conformation. Naturally it is infeasible to construct and
evaluate all neighboring states, and constructing too few weakens the process. A function
of the sequence length is a natural candidate and is also used in other implementations.[11]

In an attempt to improve the general performance of our ACO it would be interesting to
use a different internal scoring function such as the extended scoring function presented in
this report. This would however change the rules of the game.

4.7 Future Directions

We initially intended to expand from the HP model that we are currently using by including
a third dimension. However we made the decision to stay in two dimensions and instead
focus on further development of the algorithms. One reason for this is that some parts of
the algorithms would have been hard to translate to a more complex model.

There are many ways in which this project could have been expanded, given more
time. These mainly include improving the model and making it more realistic but there
are also other algorithms that would have been interesting to study. Some examples of
further directions that we would have liked to pursue are listed below.

4.7.1 Three-dimensional Lattice

The HP model on a cube lattice is not much different from the square lattice. The
extra degree of freedom would yield a larger conformational space. This has a maximum
size approximately 5n−1 where n is the chain length [7]. A larger conformational space
would require more computer power for performing the ES, for example. There could be
constraints on the ES on the cube lattice as well - instead of implementing a rectangle
we could implement a box that lessens the search space. All of our algorithms, except
ZAMDP, could be implemented on a cube lattice using straightforward methods. This is
because the conformational space for each subsequence that ZAMDP manages becomes
larger and thus the increase in total CPU time becomes too large.

4.7.2 Protein Folding Off-lattice

To move closer to the real protein folding problem, we would eventually have to move
off-lattice. This has been done previously [18] by gathering known three-dimensional
structures of real proteins. These structures are then used as templates for other sequences
of residues. By aligning the proposed sequence to the templates and estimate the energy
states of each of these structures, an assignment is made. Then the stability of the new
structure is tested by using a lattice model and dynamic Monte Carlo simulations.
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While we see no direct comparison to the model we have implemented we observe the
occurrence of what could resemble α-helices and β-sheets in our two-dimensional HP
Model. These are so-called secondary structures of a real protein and the forms adopt
naturally during the folding process. Translated to the two-dimensional HP Model they
will look like the structures of Figure 15 and Figure 16. These type of structures can be
found in many of our larger conformations.

Figure 15: α-helix structure in 2D HP Model.
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Figure 16: β-sheet structure in 2D HP Model.
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4.7.3 Temperature

To make protein folding simulations more like the actual process that occur in nature we
could choose to implement a measure of temperature in some of our algorithms. The idea
behind introducing temperature is to imitate increasing molecular activity with increasing
temperature. We could implement it in the MC algorithm to make the probability less
likely to move in direction of other H residues when having a high temperature. This
would correspond to make a move requiring a high energy which is more likely for high
temperatures. In [19] for example, there is a temperature parameter implemented that
makes the particular algorithm described greedy for low temperatures.

4.7.4 Improving Algorithm Execution Time by the use of Threading, Dis-
tributed Computing and GPU Programming

To lower the execution time of our algorithms (and thus be able to generate solutions for
longer sequences within reasonable time), we could have chosen to use threading in the
algorithms where this would be possible, making use of the additional cores in multi-core
processors. Several worker processes could execute in parallel to solve subproblems in
an algorithm and contribute their result to the final result once completed. Likewise,
distributed computing could be used (albeit likely more time-consuming to implement),
to let large and time-consuming problems be distributed onto many computers, similar to
the way Folding@Home works [6].
A third possibility to decrease execution time could be to make use of the computer’s
GPU(s) in addition to the CPU(s). This would likely involve usage of the OpenCL frame-
work [20] or NVIDIA:s proprietary CUDA platform [21] which both gives an application
access to a GPU for non-graphical computing.

4.7.5 Genetic Algorithm

It has been found that a genetic algorithm (GA) can improve the search effectiveness
dramatically, when using the HP model [22]. Of this reason, we had in mind to implement
a GA together with an auxiliary MC algorithm, similar to the solution described in the
article mentioned above. However, our limited time did not allow us to implement a fully
working GA.

The basic idea behind GA:s is to mimic the principle of natural genetic evolution, in
order to solve computational problems. In a GA, a population of candidate solutions is
maintained, which in application to the protein folding problem would be constituted of
conformations. Execution of the GA is carried out through several generations, in which
three important genetics-inspired operations are carried out. These are the following [23]:

• Crossover (or recombination) The exchange of data between two parents, in
order to produce new offspring. Selection of data for crossover could occur at a
random or set point in the data sequence.

• Selection The creation of a new generation according to certain fitness values.
Fitness can be either how successful a candidate solution has been in terms of
produced offspring or the probability that it will continue its existence, to later on
reproduce.

• Mutation The replacement of the value at a randomly chosen point with a randomly
chosen new value.
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Unger and Moult explains in their article Genetic Algorithms for Protein Folding Simula-
tions [22] how a simple GA together with the Metropolis Monte Carlo procedure can be
used with the HP model on a two-dimensional lattice to find the functional conformations
of proteins.

In this approach to the protein folding problem, a population of evolving conforma-
tions of size N is maintained.
First in the GA, as explained in the article, each conformation in the population is subject
to a set number of MC steps, which gradually alters its structure. This state corresponds
to the mutation stage. A mutation is accepted if it meets the MC acceptance criteria
(preventing formations that are not self-avoiding).
After this, crossover is performed. Selected conformations get their data switched to
generate new conformations, which are accepted, again, if the MC criteria are met. In order
to find a valid solution, all three possible rotations when connecting the first structure to
the second are checked (0◦, 90◦ and 270◦).
The chance, p(Si), of a structure i being selected for crossover, or in other words the MC
acceptance criteria, is equal to its energy value divided by the total sum of energy values
in the population [22].

Accepted conformations from the crossover phase continues into the next generation
if Ek ≤ Eij , where Ek is its energy value and Eij equals the averaged energy value of its
parents.
The crossover operation is used to get N−1 new hybrid structures into the next generation.
The N:th added element is the conformation with lowest energy, which always gets copied
directly to the next generation.

After a certain number of generations has passed, the solution is finally obtained by
returning the conformation(s) with the lowest energy value from the last generation.
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5 Conclusions

We set out to gain an understanding of the protein folding problem by implementing
and studying various models and algorithms that are used in research of this area. Even
though we mainly used the highly simplified 2D HP model rather than something more
realistic we feel that we got a great sense of the extreme complexity of the actual problem.
By studying algorithms based on such fundamentally different approaches as Monte Carlo,
Ant Colony Optimization and Dynamic Programming we really forced ourselves to think
about the many aspects that make protein folding such a hard and interesting problem.

The interdisciplinary nature of protein folding and bioinformatics in general is something
that really appealed to us as a group with different backgrounds in both cell biology and
physics as well as computer science. This was further expanded upon, through the studying
of Ant Colony Optimization which uses one biological phenomenon to model another and
ZAMDP which is based on something so seemingly unrelated as computational linguistics.
We feel that we in most cases accomplished our goals with this project and we have still
barely scratched the surface of the fascinating world of computational biology.
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