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A Case Study of Distributed Machine Learning with Erlang
ADRIAN NILSSON
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Abstract

An alternative environment for distributed machine learning has recently been pro-
posed in what is called Federated Learning. In Federated Learning, a global model
is learnt by aggregating models that have been optimised locally on the same dis-
tributed clients that generate training data. Contrary to centralised optimisation,
clients in the setting of Federated Learning can be very large in number and are
characterised by challenges of data and network heterogeneity. Examples of clients
include smartphones and connected vehicles, which highlights the practical relevance
of this approach to distributed machine learning.

We compare three algorithms for Federated Learning and benchmark their per-
formance against a centralised approach where data resides on the server. The
algorithms covered are Federated Averaging (FedAvg), Federated Stochastic Vari-
ance Reduced Gradient (FSVRG), and CO-OP. They are evaluated on the MNIST
dataset using both IID and non-IID partitionings of the data. Our results show that,
among the three federated algorithms, FedAvg trains the model with the highest ac-
curacy regardless of how data was partitioned. Our comparison between FedAvg
and centralised learning shows that they are practically equivalent when IID data
is used, but the centralised approach outperforms FedAvg with non-IID data. We
recommend FedAvg over FSVRG and see practical benefits for an asynchronous
algorithm, such as CO-OP.
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1
Introduction

In the automotive industry, analysis of user data from a fleet of vehicles may grant
insights into user needs as well as vehicle behaviour and driving environments. Cur-
rent approaches to data analysis on a vehicle fleet involve sending compressed sensor-
data from each vehicle to a central server that carries out data analysis tasks [1].
However, a modern car can produce hundreds of gigabytes of data each day [2],
which means that data transfer and central data storage are infeasible in practice.
Furthermore, user data is private by nature, which raises privacy concerns about
transferring and storing such data in a central server.

With a recent approach called Federated Learning [3], only a model, e.g. parameters
of an Artificial Neural Network (ANN), has to be communicated between the server
and client devices. This can reduce the amount of required data transfer while also
alleviating privacy concerns since all computations are performed locally on each
client, using their own data. Consequently, no user data are stored in a central
server.

In Federated Learning, a computation that was previously performed on a powerful
server has been distributed to many less powerful devices such as mobile phones or
on-board units in vehicles. This raises the question if Federated Learning can attain
performance comparable to a centralised approach. Addressing this question is the
main purpose of our work. Moreover, our performance evaluation includes several
Federated Learning algorithms to determine if any algorithm should be preferred
under different circumstances.

1.1 Motivating Federated Learning

The Federated Learning problem is different from other distributed problems (e.g.
data centre distribution) in several aspects. In theory, both approaches aim to opti-
mise their learning objective. In practice, however, Federated Learning algorithms
have to account for the fact that communication with edge devices takes place over
unreliable networks with very limited upload speeds. Federated Learning therefore
aims to minimise the communication cost and still produce good models. In the
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1. Introduction

distributed setting of a data centre, where one has access to fast LAN connections,
communication cost is less of an issue.

Another fundamental difference between existing distributed machine learning ap-
proaches and Federated Learning is that earlier approaches make underlying as-
sumptions about the training data that are too strong in the federated setting.
Distributed optimisation algorithms typically assume that [3, 4]:

• Data is evenly distributed across clients.

• Client-side data are Independently and Identically Distributed (IID) samples
from the overall distribution.

• The number of clients is much smaller than the average number of locally
available training examples per client.

In contrast, algorithms for Federated Learning cannot make these assumptions. To
see why, consider our motivating use case where clients are vehicles in a fleet. Since
vehicles may be used to varying degrees and therefore access different amounts
of local data, one cannot assume that data is evenly distributed. Also, individual
vehicles clearly do not contain identically distributed data — one only has to consider
that any vehicle’s behaviour is dependent on its driver to realise this. It is, however,
more difficult to reason about the ratio between the fleet size and the number of
training examples available on each vehicle. Although, if we assume a fleet size in
the order of thousands of vehicles, and that local training examples are inferred from
user interaction (e.g. braking), then it is a plausible scenario that there are many
more vehicles in the fleet than the average number of inferred training examples.

1.2 Goals

The overall goal of our thesis is to evaluate how well Federated Learning performs
on a particular classification problem. We further break down our overall goal into
three parts:

1. Assessing the practicality of Federated Learning, in terms of performance, by
comparing it with centralised learning.

2. Drawing conclusions about what federated optimisation algorithm should be
preferred under different circumstances by comparing different algorithms.

3. Building a framework for Federated Learning.

Note that Federated Learning only refers to the specific distributed setting — the
actual optimisation can be carried out in numerous ways. A proper performance
evaluation of Federated Learning should therefore consider multiple optimisation
algorithms. FedAvg, FSVRG, and CO-OP are three of the few general federated
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1. Introduction

optimisation algorithms in existence. These three algorithms are implemented and
compared in this thesis.

1.3 Approach

Our evaluation focuses on non-convex optimisation, specifically classification tasks
using ANNs, in the setting of Federated Learning. We refer to this simply as feder-
ated optimisation, although this is somewhat imprecise since Federated Learning is
not inherently constrained to optimising ANN models.

We benchmark on the MNIST dataset of handwritten digits [5]. Since communica-
tion in Federated Learning is much more expensive than computation, it is desirable
to have as little communication as possible. Therefore, we define performance in Fed-
erated Learning as the highest classification accuracy achieved after a given amount
of communication. The communication can either be in terms of communication
rounds between a server and its clients, or uploaded models from each client.

1.4 Affiliation

This thesis was carried out at the System and Data Analysis department of Fraunhofer-
Chalmers Research Centre for Industrial Mathematics (FCC) as a part of the on-
going research project On-board/Off-board Distributed Data Analytics (OODIDA).
The OODIDA project is funded in part by VINNOVA’s funding program Fordon-
sstrategisk Forskning och Innovation (FFI) (DNR 2016-04260). The communication
framework is based on a prototype from the OODIDA project.
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2
Background

This chapter covers the background needed to fully motivate Federated Learning
as well as practices for algorithm evaluation and comparison. We initially review
the optimisation problem at the heart of much of machine learning and the prob-
lems associated with solving that problem in a big data setting. After formulating
the distributed version of the optimisation problem, we continue by motivating and
describing Federated Learning. We conclude with a review of commonly used per-
formance measures and practices for algorithm evaluation and comparison.

2.1 The optimisation problem

The algorithms we consider are designed to optimise a finite-sum objective

min
w∈Rd

f(w) f(w) := 1
n

n∑
i=1

fi(w). (2.1)

Here, w contains d model parameters. In supervised learning, we treat the function
fi(w) as a loss function fi(w) = `(xi, yi;w), where an input-output pair (xi, yi) is one
of n given labelled examples, often referred to as training examples. The objective
function f(w) is defined by the high-dimensional vector w conditioned on our n
labelled examples. The problem can now be interpreted as finding the w which
minimises the average loss over all n training examples. We refer to the process of
finding an optimal w as training.

A way to model the optimisation problem stated in (2.1) is to let w be the weights of
an ANN. Using such an ANN model, a successful approach to solving the problem
is to apply Stochastic Gradient Decent (SGD) [6, 7] and compute loss gradients
∇fi(w) using backpropagation [8]. The only missing piece is the objective function,
which must be chosen appropriately by the practitioner.
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2. Background

2.2 Big data challenges

Rich sources of data are found in the mobile devices we use everyday, be it phones,
tablets, or automotive vehicles. These devices are equipped with a plethora of
different sensors capable of producing vast amounts of data each day. For example,
a moderately sized fleet of 1000 test vehicles is estimated to be able to produce data
in the order of terabytes each day [1], and Hitachi [2] claims that a modern internet-
connected vehicle produces data in excess of 25GB/hour. This data abundant setting
is often referred to as big data. Big data analytics hold promise for more accurate
validation and testing models, as well as improving consumer experience.

The SGD algorithm requires that all training examples are available on the machine
that trains the ANN. This centralised approach has limitations in a big data set-
ting, where data is generated in huge volume and with great velocity. Notably, if
data is generated on edge devices, then wireless data transfer over cellular networks
becomes the principal bottleneck. For instance, transferring 25GB/hour translates
to a constant upload throughput of ≈ 7MB/s = 56Mb/s. While the LTE and LTE-
Advanced standard of 4G specifies peak upload data rates of 50Mb/s and 500Mb/s
respectively [9], a recent case study on data rates in central South Korea [10] shows
that practical performance is far from ideal. The case study shows no improvements
from LTE to LTE-Advanced in terms of upload bandwidth, were the best average
upload bandwidth was approximately 13.5Mb/s. This suggests that transferring all
generated data is infeasible in practice, and even if it were, we would quickly exhaust
the consumers’ data plans in the case of phones. Also, besides the challenge of data
transfer, simply storing such vast amounts of data centrally will quickly become a
problem in itself.

Besides the technical challenges posed by big data, collecting and storing large
amounts of data centrally is problematic from a privacy perspective. The Gen-
eral Data Protection Regulation (GDPR) recently came into effect in the EU, which
has several implications for how personal data can be collected and processed. Data
regarding, for instance, driving patterns is indeed personal if it can be connected to
an individual in any way. GDPR has principles for purpose and storage limitation
as well as data minimisation [11]. Personal data can only be processed with explicit
consent for specific, known purposes (purpose limitation), and only the minimal
amount of data required to fulfil those purposes may be collected (data minimisa-
tion). Moreover, data should be removed once its purpose has been fulfilled (storage
limitation). A White House report from the Obama administration [12] gives as sim-
ilar proposal in what they term focused collection. Performing big data analytics on
consumer data while respecting data privacy laws is therefore not a straightforward
process.

6



2. Background

2.3 Distributed optimisation

When the number of training examples becomes too large to store on one computer,
which is the case in a big data context, we have to distribute the computation to
multiple computers. Distributing the data and computational burden to multiple
computers leads us to reformulate the objective function f(w) from (2.1) to (2.2).
Assume there are K clients to which data and computation are distributed. Each
client then holds a part Pk of all training examples, and computes Fk(w), which is
the average loss on client k. If the number of training examples held by client k is
denoted by nk = |Pk|, then we can rewrite the objective function as a weighted sum
over all Fk(w):

f(w) =
K∑

k=1

nk

n
Fk(w), where Fk(w) := 1

nk

∑
i∈Pk

fi(w). (2.2)

However, existing approaches focus mainly on the case of data centre optimisation
where computation rather than communication is the primary bottleneck. Dis-
tributed data centre optimisation typically requires control over the data distribu-
tion since these approaches rely on balanced, i.e. equal nk for all k, and IID data
assumptions. These assumptions are too strong when we want to perform learning
tasks on a heterogeneous ecosystem of edge devices.

2.4 Federated Learning

Federated Learning proposes an alternative approach where a set of clients performs
learning tasks locally and only communicate an updated model to a coordinating
server. More specifically, Federated Learning proposes to have a server learn a shared
global model by aggregating locally trained models from a possibly very large number
of clients whose data transfer capabilities are limited. A contrast is drawn to the
distributed setting in that the federated setting features a massive number of clients,
unbalanced and non-IID client data, and high communication costs. Note that the
learning algorithm is not made explicit by the federated setting. Although our focus
is on optimising an ANN model, Federated Learning can be applied to other models
as well, for instance a Support Vector Machine (SVM) or even a simple regression
model.

A synchronous Federated Learning algorithm typically performs one communication
round in four steps [13]. First, some, possibly all, clients are selected to participate,
all of which download the current global model. Second, participating clients use
their local data to compute a local model update. Third, participating clients upload
their local model update to the server. Finally, the server aggregates the model
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2. Background

updates received from all participating clients to produce a new global model. Once
the final step is completed, the received updates are discarded.

The federated approach has advantages over the centralised alternative when it
comes to data privacy. For instance, Federated Learning applies GDPR’s data min-
imisation principle [11] since only the learnt model, and no raw data, is processed
centrally. Communicated models are also temporary in the sense that they are imme-
diately discarded after being merged into the global model, which is an application
of the storage and purpose limitation principles of GDPR [11] .

2.5 Algorithm performance measures

Central to any evaluation is the question of how performance is defined. We have
already established that Federated Learning algorithms aim to optimise for com-
munication efficiency in the sense that we want to achieve high performance in
few communication rounds. Defining performance is, however, not self-evident as
there is an abundance of suggested classifier performance measures within the lit-
erature [14, 15, 16]. In the following subsections, we describe some commonly used
measures to understand how this choice affects how classifiers are evaluated.

2.5.1 Classification accuracy

Classification accuracy, or simply accuracy, refers to the percentage of correctly clas-
sified examples from the test set. Accuracy is arguably the historically dominating
performance measure within machine learning research. For instance, between the
years 1999 to 2003, about two thirds of the papers accepted at the International
Conference on Machine Learning that compared classifiers over multiple datasets
used accuracy as their only scoring metric [17, Tab. 1].

While accuracy has a clear and intuitive interpretation, its use as an evaluation
metric for comparing machine learning algorithms has been criticised as being inad-
equate for real-world tasks [18, 19]. Accuracy is unsuitable in domains where class
skewness is prevalent and where it is more important to correctly identify certain
classes. An example of such a domain is medicinal screening, for instance cancer
detection, which we will use as a running example in the remainder of this chapter.
To be clear, a positive prediction for cancer detection means that the patient is
predicted to have cancer. If we just measure accuracy on this task, then, due to
severe class skew, a naive classifier that always gives negative predictions is likely
to perform better than a classifier that actually manages to identify cancer in some
patients.
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2. Background

2.5.2 Precision and recall

It is easier to think about precision and recall in the case of binary classification,
where one class is considered to be positive and the other negative. Precision and
recall are then concisely defined by a confusion matrix. Fig. 2.1 shows a confusion
matrix for binary classification as well as some common metrics derived from it.
From Fig. 2.1, we see that precision is defined as the number of true positives (the
number of correct classifications to the positive class) divided by the total number of
positive predictions. The recall measure is sometimes referred to as the true positive
rate, which is the number of true positives divided by all positive examples in the
test set.

Prediction

P N

P   True
  Positive

  False
  Negative

N   False
  Positive

  True
  Negative

A
ct

ua
l C

la
ss

(a)

Measure Formula

Accuracy: TP+TN
TP+TN+FP+FN

Precision: TP
TP+FP

Recall: TP
TP+FN

FP-rate: FP
FP+TN

(b)

Figure 2.1: A so-called confusion matrix for binary classification is shown in 2.1a,
from which a number of common performance measures are derived in 2.1b.

In the case of cancer prediction, precision represents how often we correctly identify
cancer in all patients. Recall instead measures how often we correctly identify cancer
in all patients that actually have cancer. However, note that a naive classifier that
always gives positive predictions will have perfect recall. The recall measure is
therefore misleading to use on this naive classifier. On the other hand, if only
precision is used, then we have no information about how often we incorrectly say
that healthy patients have cancer, which is highly relevant. Therefore, precision and
recall are often used jointly. Also, it is common to combine precision and recall to
a single value called the F-score [15].

2.5.3 Receiver operating characteristic

To measure accuracy, precision, or recall, a classifier only needs to output a class
label. However, classifiers often have probabilistic outputs, for instance the output
of a softmax function in an ANN classifier, that give an estimated probability of
examples belonging to either class. This information is ignored in these measures
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2. Background

since we simply assign the class label with the highest probability estimate. Other
measures, such as Receiver Operating Characteristic curve (ROC), instead exploit
the extra information given by probability estimates.

An ROC curve visualises the relationship between true positive rate and false posi-
tive rate over all possible acceptance thresholds. The ROC curve has some attractive
properties: it visualises classifier performance while being insensitive to class distri-
bution (and hence class skewness) as well as costs of misclassification [20]. However,
comparing ROC curves often requires an analysis. Unless a classifier dominates, i.e.
lies above all other curves, in ROC space, it may not be clear what classifier, if any,
has better performance. Also, a fundamental limitation with ROC analysis is that
it only applies to binary classifiers.

2.5.4 Area under the ROC curve

A way to reduce the ROC curve to a single value is to calculate the Area Under the
Receiver Operating Characteristic curve (AUROC), often referred to as just AUC.
This measure has a known statistical interpretation: “[AUC] is equivalent to the
probability that a randomly chosen member of one class has a smaller estimated
probability of belonging to the other class than has a randomly chosen member of
the other class” [21, p.184].

It has been formally argued that AUC should replace accuracy when comparing
classifiers and their performance [22]. However, more recent findings by [23] show
that AUC is, for practical purposes, an incoherent measure of performance when
comparing classifiers, and they therefore discourage its use. A coherent alternative
to AUC is given in [24], but its use is not yet widespread.

2.5.5 Multi-class considerations

Because ROC and AUC only deal with binary classifiers, they are not directly appli-
cable when we consider multi-class classifiers. Nevertheless, some alternative mea-
sures have been proposed for multi-class classifiers, for instance the M-measure [25].
The M-measure is an alternative to AUC for multi-class classification that main-
tains AUC’s properties of being insensitive to class skewness and error costs [21].
However, since the M-measure is completely based on AUC, it also inherits the AUC
measure’s issue of incoherency.

10



2. Background

2.6 Algorithm evaluation

When a new algorithm is proposed, it is common to show that it improves on pre-
vious algorithms in some aspect. The natural question to ask is if algorithm A is
better than algorithm B, or how probable it is that algorithm A produces a better
classifier compared to algorithm B. For classification tasks, a better algorithm is
commonly interpreted as producing more accurate classifiers, though other perfor-
mance measures may be used.

Ultimately, we are concerned with how well classifiers generalise to new data; how
accurately our model can classify unseen examples. Because we cannot know what
future data a classifier will be exposed to in practice, we must estimate the general-
isation performance using the available data. Therefore, it is important to maintain
a test set of labelled examples that is never exposed to the training algorithm.
However, a small test set will introduce increased uncertainty in the estimate of
generalisation performance [26]. Unless the dataset has hundreds of thousands of
examples, procedures such as cross-validation can be applied to make better use of
the available data at the cost of additional computation [26].

In what is known as k-fold cross-validation [26, Sec. 5.3.1], the available data is
partitioned into k equally sized, or near-equally sized, subsets, so called folds. The
training procedure is then carried out in k separate runs. In each run, a fold is held
out and acts as the test fold, leaving the other k − 1 folds to be used for training.
After all k runs have finished, each fold will have acted as the test fold in exactly
one run. The average performance across all k runs is computed and given as the
final estimate of the generalisation performance.

Once an estimate of generalisation performance has been acquired for each of the
classifiers in question, we can look at their difference to determine which one has the
better performance. As a final step, it is not uncommon to statistically verify that
a given classifier indeed improves performance, that is, the results were not random.

2.6.1 Null hypothesis significance testing

The desire to statistically verify that the observed differences in classifier perfor-
mance are significant led to the adoption of null hypothesis significance tests. The
null hypothesis is that the compared algorithms are equivalent. Conversely, the
alternate hypothesis is that the algorithms are not equivalent. A correlated t-test
can be used to evaluate the performance of two classifiers on a single dataset. The
t-test produces a p-value that represents the probability of obtaining performance
differences equal to, or greater than, the observed differences assuming the null hy-
pothesis is true. If p ≤ 0.05, then it is common practice to state that the algorithms
gave significantly different classifiers on the tested dataset.
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2. Background

The objective of significance testing in supervised machine learning is to quantify the
probability that two classifiers give different performance. However, the t-test em-
ployed in frequentist null hypothesis significance tests tends to be misused to draw
incorrect conclusions [27]. Specifically, (1 − p) is sometimes incorrectly interpreted
as the probability of the alternate hypothesis, where in fact the p-value gives no
information about how probable the null and alternate hypotheses are. The p-value
actually represents the probability of the observed results assuming the null hypoth-
esis is true, which is not the probability of the hypothesis based on the observed
results that we want to know. This and several other issues with frequentist null
hypothesis significance testing lead the authors of [27] to discourage its continued
use for evaluating the performance of classifiers.

2.6.2 Bayesian approaches

The practice of null hypothesis significance testing is discouraged by [27] and they
recommend to use Bayesian approaches instead. For example, if we compare the
two classifiers that two different algorithms produced on the same dataset, then a
Bayesian correlated t-test [28] can be employed instead of the usual correlated t-test.
The output of such a test is a posterior probability distribution that represents the
mean difference in performance, e.g. accuracy, between the tested classifiers. This
posterior can be used to infer a probability that one classifier is better than the
other, which is what we wanted to, but could not, infer from a frequentist correlated
t-test.

While two classifiers can have very similar performance, they never show exactly
equivalent performance. Therefore, it is known beforehand that the frequentist null
hypothesis of equivalence is false. The Bayesian approach offers a way to reason
about near, or practical, equivalence that null hypothesis significance testing can-
not. For instance, if the difference in accuracies between two classifiers is less than
1%, then it might be sensible to view them as practically equivalent. We then define
a region of practical equivalence (rope) between [−0.01, 0.01]. The area under the
posterior function in this region then represents the probability that the mean dif-
ference in accuracy is within ±1%, which is more informative compared to rejecting
a null hypothesis that is known to be false.
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3
Overview of Algorithms

Our evaluation of Federated Learning algorithms includes the synchronous algo-
rithms Federated Averaging (FedAvg) and Federated Stochastic Variance Reduced
Gradient (FSVRG) as well as the asynchronous CO-OP algorithm. This chapter
presents the full algorithms as well as a more high-level description of each algo-
rithm. We further highlight important considerations for implementing these algo-
rithms. Because this chapter makes heavy use of notation, a table of notation is
included in Appendix A.1 for convenience.

3.1 Federated Averaging

Federated Averaging (FedAvg) is based on maintaining a shared global model which
is periodically updated by averaging models that have been trained locally on clients.
Training is orchestrated by a central server which hosts the shared global model wt.
However, the actual optimisation is done locally on clients using, for instance, SGD.

FedAvg has five hyperparameters: the fraction of clients C to select for training,
the local mini-batch size B, the number of local epochs E, a learning rate η, and
possibly a learning rate decay1 λ [3]. The parameters B, η, and λ are commonly used
when training with SGD. E is also commonly used with SGD, but here E stands
for the total number of iterations through the same data before the global model is
updated.

The algorithm starts by randomly initialising the global model wt. One communi-
cation round of FedAvg then consists of the following. The server selects a subset of
clients St, |St| = C ·K ≥ 1, and distributes the current global model wt to all clients
in St. After updating their local models wk

t to the shared model, wk
t ← wt, each

client partitions its local data into batches of size B and performs E epochs of SGD.
Finally, clients upload their trained local models wk

t+1 to the server, which then gen-
erates the new global model wt+1 by computing a weighted sum of all received local
models. The complete algorithm is given in Alg. 1.

1 We used Keras’ implementation of learning rate decay from: github.com/keras-team/keras.

13

https://github.com/keras-team/keras/blob/29a22a8d59b5e2c4282f1e7f664d82595049eb9d/keras/optimizers.py#L178


3. Overview of Algorithms

Algorithm 1: FederatedAveraging
1 initialise w0
2 for each round t = 0, 1, . . . do
3 m← max(bC ·Kc, 1)
4 St = random set of m clients
5 for each client k ∈ St in parallel do
6 wk

t+1 = ClientUpdate(k, wt)
7 wt+1 = ∑K

k=1
nk

n
wk

t+1 ; // Update global model

Note that the sum of model updates in the original FedAvg algorithm (Alg. 1, line 7)
goes over all K clients, even though only a subset St of all clients has computed an
updated model. This raises the question of what wk

t+1 is for the clients that were
not chosen to participate in a particular iteration. We have identified three possible
interpretations of how wk

t+1 is defined for non-participating clients, which leads to
three different ways of updating wt+1. These are presented in (3.1), (3.2), and (3.3)
in a form that highlights how they differ from each other. They are therefore not
necessarily given in their most compact form.

wt+1 =
∑
k∈St

nk

n
wk

t+1 + wt

∑
k /∈St

nk

n
(3.1)

The update in (3.1) uses the current global model as a substitute for client updates,
that is, wk

t+1 = wt for k /∈ St. This approach might be viable when w0 is initialised to
a pre-trained model or when using larger values of C. Otherwise, if w0 is initialised
randomly and C < 0.5, then this update would initially give more weight to the
random global model than the client updates.

wt+1 =
∑
k∈St

nk

µ
wk

t+1 (3.2)

The perhaps most straightforward update is given in (3.2). Here, only the updated
local models from the selected clients are considered. In other words, wk

t+1 = 0
for k /∈ St. For this update to make sense, µ should be the amount of data on all
selected clients, i.e. µ = ∑

k∈St
nk. Otherwise the weights will not sum to unity. A

simplified version of (3.2) that further assumes evenly distributed data (∀k, nk = G,
where G is some constant) is used in the implementation of FedAvg that CO-OP
compares itself to [29, p. 14].

wt+1 =
∑
k∈St

nk

n
wk

t+1 +
∑
k /∈St

nk

n
wk

t+1, wk
t+1 = wk

t for k /∈ St (3.3)

The third interpretation, given in (3.3), is somewhat more subtle. The intuition is
that the second term considers the most recent update from all clients who have
ever participated in any previous communication round. An underlying assumption
is that wk

t = 0 until the first time client k contributes an update. Again, this only
makes sense if all weights sum to unity, which in this case implies that n = ∑K

k=1 nk

should be used as the denominator.
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3.2 Federated Stochastic Variance Reduced Gra-
dient

Federated Stochastic Variance Reduced Gradient (FSVRG) [4] accounts for the chal-
lenges of Federated Learning by adopting a distributed approach to the centralised
SVRG algorithm. The idea behind FSVRG is to perform one expensive full gradi-
ent computation centrally, followed by many distributed stochastic updates on each
client. A stochastic update is performed by iterating through a random permutation
of the local data, performing one update per data point.

Standard FSVRG only has one hyperparameter: the stepsize h. However, this
stepsize is not used directly. Instead, client k has a local stepsize hk that is inversely
proportional to nk, hk = h/nk. The motivation behind hk is that clients should
make roughly the same amount of progress when nk varies greatly from client to
client [4, p.22].

Algorithm 2 gives a complete description of FSVRG, where one iteration is per-
formed as follows. First, to compute a full gradient, all clients download the current
model wt and compute loss gradients with respect to their local data. Clients then
upload their gradients, which the server aggregates to form the full gradient ∇f(wt).
Next, all clients initialise their local model wk

t and local step-size hk. After creating
a random permutation of their local data, clients will iteratively perform nk SVRG
updates, leveraging the full gradient previously computed, with a client specific step-
size hk. Finally, when all clients have computed and uploaded their final wk

t+1, the
server merges all wk

t+1 to form a new global model wt+1, similar to FedAvg.

Algorithm 2: Federated SVRG
1 initialise w0
2 h ← stepsize
3 {Pk}K

k=1 = data partition
4 for each round t = 0, 1, . . . do
5 Compute ∇f(wt) = 1

n

∑ n
i=1∇fi(wt)

6 for all K clients in parallel do
7 initialise: wk

t+1 ← wt, and hk = h
nk

8 let {is}nk
s=1 be a permutation of Pk

9 for s = 1, . . . , nk do
10 wk

t+1 ← wk
t+1 − hk

(
∇fis(wk

t+1)−∇fis(wt) +∇f(wt)
)

11 wt+1 = ∑K
k=1

nk

n
wk

t+1 ; // Update global model

FSVRG in its original form [4, Alg. 4] is primarily concerned with sparse data in
the sense that some features are seldom represented in the data set, or are only
present on few clients. This sparsity structure is exploited by multiplying gradients
and model parameters with diagonal matrices that contain information about how
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3. Overview of Algorithms

frequently features are represented. However, this scaling is only possible because
the dimension of the model w is the same as the dimension of the input x in the
Support Vector Machine (SVM) model they consider. But the number of weights
in a neural network model is generally much larger than the input dimension. Since
we cannot apply these scaling matrices, they are excluded from Algorithm 2.

3.3 CO-OP

Whereas FedAvg and FSVRG rely on synchronised model updates, CO-OP [29] pro-
poses an asynchronous approach. Contrary to FedAvg, CO-OP eagerly merges any
received client model with the global model. Rather than directly averaging mod-
els, the merging between a local and the global model is performed via a weighting
scheme based on a measure of the models age difference. This is motivated by the
fact that in an asynchronous framework, some clients will train on outdated models
whereas others will train on more up-to-date models.

Wang [29] uses n and nk to denote the age of the global model and the age of
client k’s local model respectively. To avoid notational confusion with the number
of training examples, we use a and ak instead. The age difference is then simply
a − ak. A local model will only be merged if bl ≤ a − ak ≤ bu, for some choice
of integers bl < bu. The intuition behind this acceptance rule is that we neither
want to merge outdated models (a − ak > bu) nor models from overactive clients
(a − ak < bl). The lower and upper bounds, bl and bu, can therefore be thought of
as an age filter.

The training procedure is as follows. Each client has its own training data, and
performs E rounds of an optimisation algorithm before requesting the current global
model age a from the server. The client now decides whether or not its age difference
meets the restrictions. Should the local model be outdated, then the client reconciles
with the global model and starts over. Should the local model be overactive, then
the client just continues training. Otherwise, the local model is uploaded to the
server for merging.

The pseudocode of CO-OP is presented in Algorithm 3. Note that CO-OP inherits
all hyperparameters from its underlying optimisation algorithm in line 5. Since we
use SGD, CO-OP also has a learning rate, a learning rate decay, as well as the
parameter B.

There is one major difference in how the training data is accessed in Algorithm 3
compared to the original description of CO-OP. We let a client have access to all its
data at all times, while Wang [29] aggregated data into a batch at certain randomised
time intervals. In Wang’s method, a client could then only access one batch at a
time. For us, this means that our implementation trained on more data and in the
same way as our implementations for the other algorithms.
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Algorithm 3: CO-OP
// Initialisation:

1 w = w1 = ... = wK ← w0
2 a← bl

3 a1 = ... = aK ← 0
/* Each client k performs the following independently: */

4 while true do
5 wk ← ClientUpdate(wk)
6 Request and receive the model age a from the server.
7 if a− ak > bu then

// Client is outdated
8 Fetch w, a from the server
9 wk ← w

10 ak ← a

11 else if a− ak < bl then
// Client is overactive

12 continue
13 else

// Normal update
14 Upload wk, ak to the server. The server then performs an update:

w ← (1− α) · w + α · wk, where α = 1√
a− ak + 1

a← a+ 1

and returns the global model w and age a to client k
15 wk ← w
16 ak ← a

3.3.1 Restrictions on the age filter

While CO-OP introduces two additional parameters, namely bl and bu, little guid-
ance is provided as to how one should choose these values. Only the generous
constraint bl < bu was given in the original paper [29]. However, choosing these
parameters arbitrarily with only this constraint in mind can cause deadlocks in
worst-case scenarios. The deadlock we consider is the situation where all clients are,
at some point, deemed overactive, rendering the algorithm unable to progress.

We identify two additional constraints that should be fulfilled to avoid deadlock:
bl < K and bu ≥ 2bl. If the first constraint, bl < K, is unfulfilled, then we are in fact
guaranteed to deadlock afterK updates. This follows from the intuition of bl; at least
bl normal updates must be performed by distinct clients before a client is allowed
another normal update. If bl was bigger or equal to the number of clients, then there
would not be enough clients to indirectly increment a, and a−ak < bl would always
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hold true beyond the initial state of ak. The second constraint, bu ≥ 2bl, says that
deadlock might occur if the difference between bl and bu is too small. A proof of the
second constraint is given in Appendix A.5.

An example can be helpful to give a better intuition of why leaving bu ≥ 2bl unful-
filled can cause a deadlock. Table 3.1 gives a CO-OP instance that deadlocks even
though both other constraints are fulfilled. To see why this instance deadlocks, we
inspect the state when client 2 updated the server, where we have the following
inequalities:

a− a1 < bl,

a− a2 < bl,

a− a3 = a > bu.

These inequalities are interpreted as clients 1 and 2 being overactive, whereas client
3 is outdated. The outdated client 3 then reconciles its age with the server and
thereby becomes overactive in the next state. Now, all three clients are overactive,
leaving the algorithm in a state of deadlock. Note that another interleaving exists
that does not cause the algorithm to deadlock: if client 3 reads a = 3 instead of
a = 4, then client 3 will be allowed to upload and deadlock would not occur since
a = 5 by the time of the final event.

Table 3.1: A state table for CO-OP with 3 clients, where bl = 2, and bu = 3. Note
that the algorithm deadlocks after the third event.

Event a a1 a2 a3
initial state 2 0 0 0
client 1 updated 3 3 0 0
client 2 updated 4 3 4 0
client 3 outdated 4 3 4 4
clients overactive 4 3 4 4
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4
Benchmark Design

There are many ways to benchmark machine learning algorithms. For instance, one
has to decide what metrics, hyperparameter values, and network architectures to
use in the given problem. These are all key decisions that will affect a benchmark’s
outcome. This chapter intends to make our benchmark design and methodology
explicit.

4.1 The MNIST benchmark dataset

Our performance evaluation is based on how well each classifier performs digit recog-
nition on images from the MNIST dataset [5]. MNIST consists of, in total, 70, 000
labelled images of handwritten digits. These are grayscale images, each with 28×28
pixels. The MNIST data are further divided into a test set comprising 10, 000 images
and a training set of 60,000 images. MNIST is commonly used for benchmarking
purposes, notably by both FedAvg [3] and CO-OP [29], which motivated us to also
use it in our work.

4.2 Performance measures

Given the variety of available performance measures, the question of what measure,
or possibly measures, we should use in our study naturally arises. This question is
important because we cannot compare measurements of, say, accuracy with measure-
ments of, for instance, precision or AUC. Because accuracy is the only consistently
used measure in machine learning research, we also need to use this measure to make
comparisons meaningful.

Although many studies use accuracy, it is good practice to consider if any other
performance measures are particularly suitable or relevant for our study. We should
expect different measures to rank the same classifiers differently [14], which makes
finding a good measure a difficult task. Using accuracy merely out of convenience
may therefore lead us to draw incorrect conclusions.
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4. Benchmark Design

A common argument against accuracy is that class skew in the dataset makes ac-
curacy biased toward the majority class. In such cases, the use of precision and
recall is motivated since recall is a class-wise accuracy and precision will tell us how
good our predictions are in each class. However, the dataset we consider is fairly
balanced. The per-class distribution of MNIST is shown in Fig. 4.1, which shows
a standard deviation of 5–6% relative to the mean. Therefore, class skew does not
motivate us to use another metric.
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Figure 4.1: MNIST class distribution in the training and test datasets. The line
shows the average count. The standard deviations are approximately 322 and 59 for
training and test datasets respectively.

A second argument against accuracy is that it assumes equal misclassification costs,
that is, equal real-world costs of misclassification. This assumption might be prob-
lematic since it is often the case in practice that some classes are more important
to correctly classify than others. The issue is sidestepped altogether if we can use a
performance measure that is insensitive to misclassification costs, such as AUC.

Recall that AUC is only applicable to binary classification tasks. Because there
is no machinery for multi-class ROC analysis [30], the available multi-class AUC
measures are generalisations based on the binary measure. In light of the finding
that AUC is incoherent with respect to different classifiers [25, 24], we are reluctant
to use the multi-class variants based on an incoherent AUC measure. Since we are
not aware of any multi-class variant of a coherent AUC, we will not consider any
ROC-based measure.

We adopt the accuracy measure to quantify classification performance. Because class
skew is not prevalent in MNIST and there is no suitable cost-insensitive multi-class
measure, we find accuracy to be a reasonable choice and see no additional benefit
from using precision and recall. We again note that the accuracy measure implicitly
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assumes equal misclassification costs — no class is more important to identify than
any other.

4.3 Evaluation approach

We follow the Bayesian approach recommended by [27] for our algorithm perfor-
mance comparison. The Bayesian correlated t-test is employed since we only consider
performance on a single dataset (MNIST). Tests are performed between all combi-
nations of pairs of algorithms, resulting in

(
4
2

)
= 6 tests including the centralised

approach. Each test results in a plot of a posterior distribution that describes the
mean difference in accuracy between the tested classifiers. Since the posterior is a
probability density function, we can use it to infer a probability of the hypothesis
(the mean difference in accuracy) given the observed data. An analysis of these
posteriors then constitutes our final performance evaluation.

As an example of how to interpret the results from a Bayesian correlated t-test,
consider the posterior shown in Fig. 4.2. The tested classifiers, A and B, were
evaluated using three runs of 5-fold cross-validation, after which classifier A had an
average accuracy of 93.5% and classifier B 92.9%. The area under this distribution
in the interval (−∞,−0.01) is 0.379, which represents the probability that classifier
A is practically better (gives higher accuracies) than classifier B. Similarly, the area
in the interval (0.01,∞) equals 0.055 and represents the probability that classifier
B is practically better than classifier A. The area between [−0.01, 0.01], the defined
region of practical equivalence, is 0.566, which we again interpret as a probability.
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A: 0.935
p=0.379

B: 0.929
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Figure 4.2: Posterior probability distribution of a correlated Bayesian t-test be-
tween classifiers A and B. The vertical lines defines a region of practical equivalence
where the mean difference in accuracy is no more than 1%.

One can argue that the two classifiers compared in Fig. 4.2 are practically equivalent
because a majority of the distribution’s mass lies within the rope. This is neverthe-
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less an uncertain conclusion since 43.4% of the mass still lies outside of the rope. If
the distribution instead had, say, 95% of its mass to the left of −0.01, then it may
make sense to state that A is practically better than B. However, we could reverse
the argument and say that A should be the preferred algorithm since the probability
that B is practically better than A is only 5.5%.

Note that the analysis in the above example is heavily dependent on the choice of
rope interval. In one extreme, a rope defined by the interval (−∞,∞) would corre-
spond to saying that all classifiers are practically equivalent, which is nonsensical.
At the other extreme there would be no rope, which is to say that two classifiers
never have the same performance even though a small difference might not be of
practical importance. A reasonable definition is to say that the difference in accu-
racy has to exceed one percentage point for it to be practically significant, which
implies the rope interval [−0.01, 0.01]. The interval can also be chosen based on
domain-specific knowledge, for instance we can define a wider interval if a certain
domain accepts more misclassifications. However, we use the [−0.01, 0.01] interval
in our comparisons.

We used the Python library baycomp1 (provided by the authors of [27]) to perform
Bayesian correlated t-tests. In baycomp, a posterior probability distribution is gen-
erated from a list of differences in accuracy of two classifiers from i iterations of
k-fold cross-validation. The input must come from cross-validation since the library
performs a correction under this assumption. For us, this motivates a distributed
partitioning of the MNIST data into folds, as described in 4.4. We chose to use
5-fold cross-validation because it gives us a decent compromise between additional
computation and retained test examples (higher k means more computation and
smaller folds).

4.4 Data distribution

All of our distributed benchmarks contain a total of 100 clients and it is up to us to
distribute the MNIST training data between these clients. A straightforward way
to distribute a dataset is to shuffle the data and distribute an equal amount to all
clients. This will give us Independently and Identically Distributed (IID) data; no
client is special. Assuming IID data in a federated setting does not, however, reflect
a realistic scenario and we will therefore also use non-IID data.

We use the term non-IID data to refer to samples that have been purposely given
to a client because they have certain values. We did this by sorting and dividing
the data into shards, following the approach of [3]. The step-by-step process is to
sort the data, divide the data into equally sized shards, and then randomly assign a
number of these shards to each client. In the case of MNIST with 100 clients, each

1baycomp library: baycomp.readthedocs.io/en/latest/index.html
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client had 2 shards of size 300. An example of how our IID and non-IID distributions
compare to each other is given in Fig. 4.3.
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Figure 4.3: Side-by-side comparison of an IID and non-IID distribution from an
actual client we used.

4.4.1 Versions for cross-validation

We also want to use IID and non-IID data partitionings for 5-fold cross-validation.
The IID variant is created by shuffling and dividing the full MNIST dataset, includ-
ing the test set, into 5 folds. Each fold is then partitioned into 100 equally sized
subsets, one for each client. Since MNIST consists of 70,000 labelled images, each
client will have 140 unique samples in each fold, 560 in total if one fold is left out.

The first two steps of the non-IID approach applied to folds is the same as for the
IID approach. The rest is almost the same as the previous non-IID approach. The
step-by-step process is:

1. Shuffle the dataset.

2. Divide it into 5 folds.

3. Sort each fold.

4. Divide each fold into 200 shards of size 70.

5. Uniquely assign 2 random shard positions to each client.

6. Assign 2 shards to each client at its shard positions from each fold.

A difference from the previous non-IID approach is the decrease in shard size, from
300 to 70, but each client also receives more shards, from 2 to 5 × 2. However,
this does not mean that each client is expected to have 5 times as many unique
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labels. The shards that are taken from the same position in each fold are expected
to contain the same labels. They are expected to be the same because each fold
is sorted and no fold is expected to have more samples of a particular label than
another. This is the reason why this distribution is still considered to be non-IID.
In practice we saw that most clients had 2 unique labels, a few 3 or 1, and in rare
cases one client had 4 unique labels.

4.5 Artificial neural network architecture

A multilayer perceptron with two hidden layers, referred to as 2NN, is used in [3].
We used the 2NN architecture to obtain comparable results. The 2NN has two
hidden layers, where each hidden layer has 200 neurons and each neuron has a ReLu
activation function. Since we used this for MNIST it has 28 × 28 = 784 inputs
and 10 outputs. The activation function for the output layer is a softmax function.
Moreover, we use the cross-entropy loss function, which is a common choice for neural
networks [26, Sec. 6.2]. In total, 2NN has (784+1)·200+(200+1)·200+(200+1)·10 =
199210 trainable parameters.

4.6 Choosing hyperparameters

To have as fair a comparison as possible between the different optimisation algo-
rithms, we need each algorithm to perform as well as possible. The performance
of our algorithms is highly dependent on the configuration of their hyperparame-
ters. Therefore, we should try to find the optimal set of hyperparameters for each
algorithm.

H. B. McMahan, et al. did a hyperparameter search for FedAvg [3] and found that
“the optimal learning rates do not vary too much as a function of the other parame-
ters”, but they did not present the optimal values. Because of this, we did parameter
searches of our own for learning rate η and learning rate decay λ while keeping the
other parameters fixed. We also explored how the algorithm behaves with different
C and E values.

FSVRG and CO-OP have no explicit parameter search in their papers. The only
adjustable hyperparameter for FSVRG is the stepsize h, but no explicit value is
given in [4]. The same goes for CO-OP, where no values are given to bl, or bu in [29].
CO-OP did, however, mention a batch size and a learning rate for their experimental
setup, but not for the simulation setup that we were interested in. Because these
previous works do not share their parameter values, we had to explore h, bl, bu, and
η together with a decay to find the best configuration for our particular problem.

Our approach to searching was either grid-based or randomised. Both approaches
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require an interval to limit their search space. Grid search is performed by divid-
ing the search space into a grid with a desired number of points. Random search
is performed by picking random points in the search space, often with a uniform
probability and a multidimensional search space [31].

Before we searched for a decay we searched for learning rates without a decay to see
potential improvements with decay and the breaking point where η is too big. The
first learning rate values were 3−e, e = 3, 4, ..., 8. From those observations, we did a
second search in the interval (0.02, 0.09).

Usually, a learning rate decay is used when smaller steps are necessary after a while
to hone in on the optimal value. There is, however, another benefit of using a decay
alongside FedAvg. FedAvg does not always let all clients train at the same time,
which means they will temporarily be out of sync. Some clients might contribute
more to the global model than others, making the global model biased towards those
clients and their data. A learning rate decay only decreases the learning rate for
a client when it trains. Therefore, the global model is less biased towards clients
that train often when a learning rate decay is used. The CO-OP algorithm also
shares some of these benefits since some clients might make more updates than
others. There is, however, a drawback for using a decay with CO-OP: a client who
is outdated will discard an update which has already decayed its learning rate. If the
learning rate is not explicitly reverted in this case, then the learning rate is decayed
even though no progress was made.

We utilised random search when searching for a pair of learning rate and decay.
Learning rates were taken uniformly from the interval (0.02, 0.15) and learning rate
decays from the logarithmic interval (−8,−3) with base 10. The search space was
sampled 20 times and used for FedAvg. A subset of these values were reused for
CO-OP, which makes their results more comparable.

The stepsize h can be interpreted as a learning rate, since in FSVRG a local model
is updated with hk times a gradient. From what we observed from FedAvg, we
wanted hk×B to be between about 0.05 and 0.15. The factor B is included because
FSVRG will do B times more updates compared to an algorithm using a batch size.
The rearranged formula for hk is h = hk · nk, where nk = 600 with 100 clients. For
FedAvg, we used a batch size B = 20, meaning we tried h values between 1 and 5.

Hyperparameter optimisation is computationally expensive, especially if the search
space is large. Therefore, we handpicked values which we were particularly inter-
ested in for a few parameters. More specifically, the handpicked values were for the
parameters C and E from FedAvg, and the age filter from CO-OP. The C and E
values were selected separately and then combined into a combinatorial grid search
pattern. The bounds for the age filter were picked to at least conform to our con-
straints. We included extreme values like bl = 0 and bu =∞. We also kept track of
how many times a client was outdated and overactive to try to predict what would
give a good performance.
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We used the Hyperas2 library to find parameters for the centralised learning ap-
proach. Hyperas was used to perform random search, for which we included param-
eters η, λ, and B.

All hyperparameter searches ran with MNIST non-IID, because out of our two dis-
tributions it is the most difficult one to learn. The parameter values and their
corresponding results are reported in Sec. 6.1.

4.7 Termination criterion for cross-validation

Running the algorithms until they converge in our final comparison would take
too much time on our experimental setup. Instead, we need a fair measurement
that works for all of them, like the same total number of uploaded models from
clients. The network throughput is important in Federated Learning and the upload
speed is especially important since it is generally slower than the download speed.
Therefore, we used a termination criterion of 100 estimated uploads per client, which
is equivalent to 10000 uploads from 100 clients for FedAvg (C = 0.1), CO-OP, and
FSVRG. In terms of communication rounds, this translates to 1000 communication
rounds for FedAvg and 50 for FSVRG. FSVRG is only allowed 50 communication
rounds because each of the 100 clients will upload two times each round; one upload
for the full gradient and one for the updated model.

4.8 Framework stress test

Ideally, we would demonstrate that the Erlang framework scales with the number
of added nodes, that is to say, investigate if the framework could be used on a large
vehicle fleet. However, this requires that each node has access to a separate processor
core, and since we do not have 100 processors, our client nodes must compete for
resources. Since the CPU is a shared resource between nodes, it is clear that our
setup cannot demonstrate real-world scalability. The best we can do is to launch as
many concurrent nodes as possible and have each node do a minimal amount of work,
that is, immediately replying to the server. Such an experiment has been carried
out to show that the framework can handle many simultaneously connected clients.
Because the experiment results are not immediately relevant to our evaluation, we
defer these results to Appendix A.4. The remainder of this section motivates how
the scalability experiments were performed.

In the first experiment, only the Erlang distribution framework is considered, leaving
out Python computations and communication via JSON. Including Python would
introduce unpredictable overhead due to periodical thread blocking between check-
ing the file system for updates. Such variability is generally undesirable since we

2Hyperas: maxpumperla.github.io/hyperas
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follow [32] by measuring scalability as throughput — the total number of successful
distributed Erlang operations — after a fixed amount of time.

Contrary to [32], we are limited to the processing power of three four-core machines.
It is then to be expected that our first experiment quickly reaches a point where
the processors become overwhelmed. The limitation in computing power can be
artificially bypassed if we significantly increase the latency of each pong response.
Additional latency is trivial to introduce without additional computational strain,
for instance, by sleeping or blocking until a specific event occurs. In the second
experiment, we achieve this by relaying the pong response through the computing
framework, that is, including Python and communicating with JSON files. With
additional latency, we observe linear scaling in the number of clients. Details are
provided in Appendix A.4.
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5
Implementation

A distributed system is required to perform Federated Learning. This chapter con-
tains an overview of how our system is implemented and how we used it to obtain
results from running our algorithms.

5.1 Erlang distribution framework

Most work on Federated Learning focuses on the optimisation algorithms, while little
to no time is spent considering the distribution framework. An exception is found
in [33], where the authors demonstrate that the functional programming language
Erlang is well suited to handle the distribution of computations to local nodes in
the context of Federated Learning. For computation on the clients, they used either
Erlang or C. However, we used Python together with the machine learning library
Keras1 for its ease of use.

We need some means of communication between Erlang, which handles the distri-
bution of the model, and Python, which performs machine learning tasks. A simple
approach is to read and write to JSON-files. A more direct approach to Erlang
interoperability is via Erlang ports, where one can either write custom port drivers
or use existing interfaces, for instance ErlPort2 or Pylang [34]. Using ports will
free us of overhead otherwise introduced by file I/O in the JSON approach. The
main downside with ports is that each language we want to support requires custom
port drivers, and writing such drivers is a more intricate task compared to parsing
a JSON file. Since the potential speed-up of using ports would be invisible in our
benchmarks, the straightforward JSON approach is used in our implementation.

Though Erlang excels at handling many concurrent processes (scaling within a node),
it scales poorly in the number of distributed nodes. Here, a node refers to an Erlang
Virtual Machine (Erlang VM) running on a host machine. Erlang’s scaling issues
across nodes are mainly due to transitive connections and global name registration,
which are mechanisms for fault tolerance [35].

1Keras: github.com/keras-team/keras
2ErlPort: github.com/hdima/erlport.org
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Using Erlang’s transitive connections implies a fully connected network of nodes; if
node a connects to node b, then a will also create connections to all of b’s neigh-
bours and vice versa. The total number of connections is therefore quadratic in the
number of nodes, O(n2). Because these are live TCP/IP-based connections, simply
maintaining all connections can strain the communication network. Previous bench-
marks also show that the frequency of global operations is a severe bottleneck for
scaling a fully connected network of nodes [32]. To deal with these issues in prac-
tice, a common ad hoc approach is to disable transitive connections [36, Sec. 3.2],
for instance by using so-called hidden nodes that do not share their connections
at the cost of reduced capabilities for fault tolerance. We apply this approach by
turning all clients into hidden nodes that explicitly connects to the server, so that
each client node is aware of no other connection than to the server.

To reflect a practical framework for Federated Learning we added a user node.
The user node represents a data analyst who assigns machine learning tasks to the
central server, which in turn distributes the computations to clients. The user node
consists of an Erlang node that communicates with the server and a Python script
for a programmer to communicate with the Erlang node. There could be several
user nodes, but one user is sufficient for benchmarking purposes. The added benefit
of using Erlang for communication is that we can easily move the user interactions
to a computer separate from the server.

Nodes U, S, and C in Fig. 5.1 are written in Erlang. Node Ci , i = 1, 2, ..., n,
communicates with Client i through JSON, which is also used in communication
between node U and User. In our case, both User and Client are written in Python.
Since we apply a JSON-based approach, the user and client could be written in
any language that can read and write JSON files, making the Erlang framework
language-agnostic.

User Client 1

C1

U
Client n

S

Cn

Figure 5.1: The nodes U, S, and C are Erlang nodes. User and Client are language-
agnostic as they only need to communicate via JSON.
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5.2 Client data

We distribute MNIST data statically to clients in multiple ways, as discussed in
Sec. 4.4. These are the IID and non-IID partitionings as well as several versions of
IID and non-IID divided into folds that are used in cross-validation. All distributions
are static in the sense that we create them once and store them on the file system.
In terms of implementation, each client is associated with unique files that contain
raw training data and respective labels. Therefore, clients access their data from a
particular partitioning by reading the correct files directly from the file system. Note
that no training data is communicated over the Erlang framework in this approach,
which reflects how Federated Learning would be performed in practice.

Different iterations of cross-validation should use different data in their folds. Be-
cause we perform several cross-validation iterations, we create a new partitioning
(IID or non-IID) for each iteration.

5.3 Benchmarks

We primarily utilised the user node to run benchmarks. Since we can interact with
the user node with Python, we can write a benchmark script that writes one or more
JSON files and then awaits a result for each JSON file. Each JSON file is called an
assignment, which contains information about what termination criterion, dataset,
algorithm, and hyperparameters to use.

For FedAvg and FSVRG we evaluate the global model on a test set once per com-
munication round. CO-OP, on the other hand, does not have an equally convenient
opportunity to perform an evaluation. In CO-OP, evaluating the global model every
time it is updated would slow down our benchmarks because a single update from
a client is fast compared to a synchronous communication round. Therefore, we
used an evaluation frequency of once every 10th update. This is also comparable to
FedAvg with C = 0.1 in the number of models uploaded per evaluation.

The server is written in Erlang which is not well suited for machine learning com-
putations. Therefore, we implemented the evaluation itself in Python — the same
way it was implemented on the clients. The communication between the server and
the Python evaluation process is done with JSON just like it was described in Fig
5.1.
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5.4 Experimental setup

During our benchmarking we mostly used three computers. Tab. 5.1 shows their
specifications. Each computer could simulate 100 clients with at most around 40
clients training simultaneously before it ran out of memory. Even when three com-
puters would give better CPU utilisation than one, it was still a good idea to run
on as few computers as possible when we could. Running FedAvg with C ≤ 0.2 was
even faster on one computer, because of the overhead of sending data over a LAN.
However, neither FSVRG, CO-OP, nor FedAvg with C = 1.0 could run on less than
three of our computers.

Table 5.1: Technical specifications of computer A, B, and, C.

Computers A B C
VirtualBox 5.2.4 5.2.4 5.2.8
Ubuntu 16.04 LTS 16.04 LTS 16.04 LTS
CPU i7-6700K i7-6700K i7-7700K
Virtual RAM 23.5 GiB 23.5 GiB 23.4 GiB

Clients were distributed evenly to our three machines, where one machine also acts
as the server and user. Note that CO-OP is affected by how clients are distributed
to the machines in our experimental setup. In CO-OP, clients simulated on the
same machine that runs the server will be faster to upload since they do not have
to communicate over Ethernet. Therefore, these clients are often deemed overactive
by CO-OP’s age filter. This behaviour may in turn cause clients on other machines
to be outdated. To ensure consistent behaviour in all CO-OP benchmarks, the
machines always had the same number of simulated clients.

5.5 Model merging in FedAvg

As noted in Sec. 3.1, the global update step in the FedAvg algorithm is somewhat
imprecisely stated. This ambiguity forced us to actively choose which one of the
three identified interpretations to use in our benchmarks. To make an informed
decision about what update to implement, some kind of initial evaluation had to be
carried out. A single run for each variant is presented in Fig. 5.2.

In Fig. 5.2, variant 1 converges much faster than the other two. Both variant 0 and
2 are impeded by being weighted against older models, although these weightings
contribute additional stability. Variant 2 is stable enough that it is difficult to see
the difference between the raw values in Fig. 5.2 and a smoothed plot (provided in
appendix A.2 Fig. A.1).

All three variants ran for 15 hours each on one machine, where some had time to
make more communication rounds than others. None of the implementations were
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Figure 5.2: Three different variants of FedAvg. Variant 0, 1, and 2 represent the
updates given by (3.1), (3.2), and (3.3), respectively. All of them used C = 0.1, E =
5, B = 20, η = 0.05, λ = 10−5. Accuracy was evaluated after each communication
round.

particularly optimised and they shared as much code as possible. With that said,
the number of communication rounds in Fig. 5.2 is bounded by the slowest variant,
which is variant 2. We conjecture that this is because a model has to be saved
for each client, and those models will contribute to a sum that is computed every
communication round.

We decided from this point onward to use variant 1. It converges faster and is
presumably the variant that the original authors intended to convey. This hypothesis
is supported by the fact that a follow-up paper [13] reformulates the global update
to take the form of variant 1.
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6
Results

This chapter contains comparisons between FedAvg, CO-OP, FSVRG, and cen-
tralised learning. The first four sections are dedicated to finding good hyperpa-
rameter values for each algorithm and include the results of our hyperparameter
searches. Finally, after deciding on what hyperparameters to use, Sec. 6.5 evalu-
ates each algorithm via 5-fold cross-validation and includes comparisons based on
Bayesian correlated t-tests.

6.1 Optimised FedAvg

For FedAvg we searched for good values of learning rate η, learning rate with decay λ,
and client proportion C with local epochs E. The results from the hyperparameter
searches of η and η with λ are presented in the form of tables to summarise 1200
communication rounds of training. Two abbreviated versions of these tables are
presented below in Tab. 6.1 and 6.2, while the complete results can be found in
Appendix A.3. The values presented for each parameter setup are the maximum
accuracy, the minimum error, the average accuracy, and something we call the drop
sum. The drop sum is described mathematically in (6.1) as the sum of the difference
between the accuracy of one communication round to the next when the accuracy
decreases.

sum(drop) =
1200∑
c=2

max (0, accc−1 − accc) (6.1)

Note the low average accuracy for η = 0.09 in Tab. 6.1. Higher learning rates
are usually faster, but at some point they will start to become more unstable and
eventually diverge, which is what happened with η = 0.09.

In Tab. 6.2, the configuration η = 0.11, λ = 2.2 · 10−7 gave the best result. Also
note that a low drop sum is not always a positive trait: the configuration η = 0.14,
λ = 7.8 · 10−4 has a very low drop sum, but it also diverges fast which is reflected in
the average accuracy. In other words, it had a low drop sum because the accuracy
could not drop much lower.
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Table 6.1: A truncated table of the learning rate searches for FedAvg. The best
values are coloured green. The other parameters were C = 0.1, E = 5, B = 20,
λ = 0, and non-IID MNIST.

η max(acc) min(err) avg(acc) sum(drop)
3−8 ≈ 0.00015 0.9052 0.3448 0.8345 4.216
3−3 ≈ 0.037 0.9727 0.1107 0.9429 5.429
0.05 0.9738 0.1083 0.9481 4.936
0.06 0.9761 0.1053 0.9513 4.489
0.07 0.9759 0.1049 0.9518 4.908
0.09 0.9307 0.2296 0.2515 6.804

Table 6.2: Random search for good values of η and λ for FedAvg. The best values
are coloured green. The other parameters were C = 0.1, E = 5, B = 20, λ = 0, and
non-IID MNIST.

η λ max(acc) min(err) avg(acc) sum(drop)
0.05 1.6e-06 0.9767 0.101 0.9582 5.014
0.068 2.8e-07 0.978 0.109 0.96 5.058
0.088 3.2e-06 0.9788 0.09794 0.9638 4.115
0.098 2.4e-08 0.979 0.1325 0.9562 7.108
0.11 2.2e-07 0.9792 0.09315 0.9658 3.444
0.14 7.8e-04 0.6962 0.8643 0.09896 0.8438

6.1.1 B and E

Using the best η and λ from the previous search in Tab. 6.2, we continued by
looking for better C and E values. Fig. 6.1 shows the results of this. Contrary
to our previous beliefs from Sec. 4.6, our best η and λ values did not transfer well
to other C and E values. All three E values diverged with C = 0.5 and C = 1.0
diverged for the case of E = 1.

The divergent results from Fig. 6.1 made it difficult to observe the relationship
between different C and E values. Therefore, we chose some other parameters to
prevent divergence. In Fig. 6.2, we can see how E = 1 is slower than the others
and how stable C = 1.0 is compared to the others. Another noteworthy observation
from Fig. 6.2 compared to Fig. 6.1 is that C = 0.2 does not always have the highest
maximum accuracy.

The final hyperparameter configuration we settled for was η = 0.088, λ = 3.2 · 10−6,
B = 20, E = 10, and C = 0.1, which can be seen in Fig. 6.2b. We initially went
for η = 0.11 and λ = 2.2 · 10−7. Unfortunately, those values were not only unstable
for different C values but also caused instability during cross-validation where less
training data is used. A new pair, η = 0.088 and λ = 3.2 · 10−6, was then selected
to have a less aggressive learning rate and still maintain a high average accuracy.
The main motivation for not using C = 0.2, even though it was more stable, was

36



6. Results

0 200 400 600 800 1000
Communication rounds

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

Ac
cu

ra
cy

FedAvg E = 1, best ,

C = 0.1, max: 97.7%
C = 0.2, max: 97.8%
C = 0.5, max: 95.9%
C = 1.0, max: 96.3%

0 200 400 600 800 1000
Communication rounds

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

Ac
cu

ra
cy

FedAvg E = 5, best ,

C = 0.1, max: 97.7%
C = 0.2, max: 97.8%
C = 0.5, max: 94.0%
C = 1.0, max: 97.4%

0 200 400 600 800 1000
Communication rounds

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

Ac
cu

ra
cy

FedAvg E = 10, best ,

C = 0.1, max: 97.8%
C = 0.2, max: 97.8%
C = 0.5, max: 96.3%
C = 1.0, max: 97.4%

Figure 6.1: A single run of FedAvg with η = 0.11, λ = 2.2 · 10−7, B = 20 for
different C and E values. The dataset was MNIST non-IID.

that C = 0.1 was much faster to run. Intuitively, C = 0.2 should be better because
it has twice the number of updates, but the maximum accuracy was never really
better. We applied similar reasoning to choose what E value to use. The bigger the
E, the slower the algorithm will be. From observations, E = 5 was not much slower
than E = 1 while still converging faster. The parameter value E = 10 performed
practically the same as E = 5, but was also noticeably slower and more unstable for
C = 0.1.
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Figure 6.2: A single run of FedAvg with different C and E values; B = 20. The
dataset was MNIST non-IID.

6.2 Optimised CO-OP

The subset we reused from FedAvg was the η and λ values that can be seen in
Tab. 6.3. Interestingly enough, the best values from FedAvg (C = 0.1) also applied
for CO-OP, but in this case it was stable enough to use. A graph representation
with the same values can be seen in Fig. 6.3.
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Table 6.3: Random search for good values of η and λ for CO-OP. The best values
are coloured green. The other parameters were bl = 16, bu = 51, E = 1, and B = 20.
The dataset was non-IID MNIST and all simulations ran until 50000 models were
uploaded to the server.

η λ max(acc) min(err) avg(acc) sum(drop)
0.05 1.6e-06 0.9566 0.1429 0.9106 23.28
0.061 1.8e-06 0.9613 0.1261 0.9186 21.52
0.068 2.8e-07 0.9632 0.1188 0.9218 21.75
0.081 3.2e-06 0.9661 0.1085 0.9273 19.49
0.088 3.2e-06 0.9665 0.1075 0.928 19.93
0.098 2.4e-08 0.9683 0.0989 0.9322 19.11
0.11 2.2e-07 0.9696 0.09602 0.9351 15.82
0.13 3.5e-04 0.9524 0.1618 0.9178 23.26
0.14 7.9e-05 0.9655 0.1121 0.9284 22.78
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Figure 6.3: Monotonic representations of how CO-OP’s training progressed for
the different learning rates and decays from Tab 6.3. The legend is sorted from the
highest to the lowest final accuracy.

The age filter used in these runs was arbitrarily chosen, within our restrictions from
Sec. 3.3.1, to be bl = 16 and bu = 51. We also tried seven other filters and their
performance was practically equivalent. The one with bl = 16 was marginally better
than the others while also having some outdated clients and some more overactive
clients. The best values were chosen as our final configuration for CO-OP: bl = 16,
bu = 51, E = 1, B = 20, η = 0.11, and λ = 2.2 · 10−7.
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6.3 Optimised FSVRG

The search for stepsize h started at 1 and was increased by 1 until the accuracy no
longer improved. The best value we found was h = 4, which can be seen in Tab. 6.4
and Fig. 6.4.

Table 6.4: A linear search for FSVRG’s stepsize parameter h. The best values are
coloured green. The dataset was non-IID MNIST.

h max(acc) min(err) avg(acc) sum(drop)
1.0 0.975 0.07994 0.9314 1.031
2.0 0.9799 0.07058 0.9159 2.375
3.0 0.9801 0.06742 0.9157 2.29
4.0 0.9816 0.0663 0.9135 2.527
5.0 0.9811 0.06648 0.9081 3.769
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Figure 6.4: Graphical representation of Tab. 6.4, in which a linear search for a
stepsize h was performed for FSVRG.

6.4 Optimised centralised learning

The interval we used when searching for η was between 10e, where e ∈ (0,−2).
For λ, the interval was 10e, where e ∈ (−3,−6). And B was uniformly taken from
the set {10, 20, 50, 600}. The best parameter values found after testing 56 random
configurations were η = 7.03 ·10−2, λ = 3.77 ·10−6, and B = 10. Each run performed
at most 50 epochs.
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6.5 Cross-validation and Bayesian analysis

Results from three iterations of cross-validation were used as input to each Bayesian
correlated t-test. Many such tests were performed, and the resulting posterior dis-
tributions are shown in Fig. 6.5 (IID) and Fig. 6.6 (non-IID). The vertical lines show
the region of practical equivalence, which we chose to be between [−0.01, 0.01]. Note
that three of the comparisons in each figure are to centralised learning.

All probability density functions in Fig. 6.5 have more than 95 percent of their
mass within one region. Because this mass is interpreted as a probability of relative
performance, we immediately make the following decisions for IID data:

• FedAvg is practically better than both CO-OP and FSVRG.

• Centralised learning is practically better than both CO-OP and FSVRG.

• FedAvg and Centralised learning are practically equivalent

• CO-OP and FSVRG are practically equivalent.

Similarly, all density plots for comparisons on non-IID data in Fig. 6.6 have more
than 95 percent of their mass within one region. Therefore, we decide on the fol-
lowing:

• FedAvg is practically better than both CO-OP and FSVRG.

• CO-OP is practically better than FSVRG.

• Centralised learning is practically better than FedAvg, CO-OP, and FSVRG.

The comparisons made so far might seem unfair since the federated algorithms are
limited by the number of uploads and are therefore further away from converging.
To give an extra edge to CO-OP and FSVRG, we let them do more uploads and
refer to them as CO-OP×5 and FSVRG×10. These are shown in Fig. 6.7 and they
have only performed two iterations of cross-validation. CO-OP×5 did 5 times and
FSVRG×10 did 10 times more uploads than before. FSVRG×10 made the greatest
number of uploads, but it updated the global model with just as many local models
as CO-OP×5.

Note in Fig 6.7 that only the CO-OP×5 vs. FSVRG×10 comparison has more than
95 percent of its mass in one of the three regions. In the other five comparisons, we
have to be more broad and say practically equivalent or better. We can then say the
following from Fig. 6.7:

• FSVRG×10 is practically equivalent or better than FedAvg

• FSVRG×10 is practically better than CO-OP×5
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• FedAvg is practically equivalent or better than CO-OP×5.

• Centralised learning is practically equivalent or better than FSVRG×10.

• Centralised learning is practically better than CO-OP×5.
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(f) CO-OP vs. Centralised

Figure 6.5: Comparisons between the federated optimisation algorithms on IID
MNIST in form of posterior distributions. Each algorithm ran 3 iterations of 5-fold
cross-validation. Each comparison has a mass p on either side of the rope, which
represents the probability of the algorithm on that side to be practically better.
Note that the x-axes have different scales.
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(f) CO-OP vs. Centralised

Figure 6.6: Comparisons between the federated optimisation algorithms on
non-IID MNIST in form of posterior distributions. Each algorithm ran 3 iterations
of 5-fold cross-validation. Each comparison has a mass p on either side of the rope,
which represents the probability of the algorithm on that side to be practically
better. Note that the x-axes have different scales.

43



6. Results

0.015 0.010 0.005 0.000 0.005 0.010 0.015
difference

FedAvg: 0.968
p=0.000

FSVRG+: 0.975
p=0.186

rope
pdf

(a) FedAvg vs. FSVRG(×10)

0.020 0.015 0.010 0.005 0.000 0.005 0.010 0.015 0.020
difference

FSVRG+: 0.975
p=0.000

Centralised: 0.984
p=0.346

rope
pdf

(b) FSVRG(×10) vs. centralised

0.020 0.015 0.010 0.005 0.000 0.005 0.010 0.015 0.020
difference

FedAvg: 0.968
p=0.851

CO-OP+: 0.955
p=0.000

rope
pdf

(c) FedAvg vs. CO-OP(×5)
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(e) CO-OP(×5) vs. FSVRG(×10)

Figure 6.7: Comparisons between the federated optimisation algorithms on
non-IID MNIST in form of posterior distributions, where the superscripts indicate
that a algorithm performed more uploads. Each algorithm ran 2 iterations of 5-fold
cross-validation. Each comparison has a mass p on either side of the rope, which
represents the probability of the algorithm on that side to be practically better.
Note that the x-axes have different scales.
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7
Conclusion and Discussion

In this thesis report we implemented and evaluated three Federated Learning algo-
rithms (FedAvg, CO-OP, and FSVRG) on the MNIST dataset using 100 simulated
clients. Our main goals were to evaluate if any algorithm is competitive with cen-
tralised learning and compare the algorithms to determine if any one of them should
be the preferred choice. To this end, we also created a distributed framework for
Federated Learning using the functional programming language Erlang. Moreover,
we have explored three different approaches to model merging in FedAvg in Sec 5.5
and identified two new restrictions on the age filter used by CO-OP in Sec. 3.3.1.

7.1 Result discussion

Our main results consist of a performance comparison between the three algorithms
as well as a comparison to a centralised approach. The results show that out of
FedAvg, CO-OP, and FSVRG, FedAvg is practically better on MNIST digit recog-
nition when we limit the number of uploads made by clients to 10000. When we
let the others have an unfair advantage and do five times as many model uploads
on non-IID MNIST, FedAvg is still competitive. FSVRG does, however, overtake
FedAvg when it did ten times as many uploads. Moreover, even though CO-OP
was the worst performing algorithm in terms of accuracy, it could still be viable in
practice due to the advantage of being asynchronous.

The results also show that centralised learning is at least as good as FedAvg. This is
not controversial since it is known that the centralised approach is easier to optimise.
What is interesting, however, is that FedAvg was practically equivalent to centralised
learning using IID MNIST. In particular, if we allow 1000 communication rounds,
then FedAvg achieves an accuracy that is within one percentage point of a fully
centralised approach on the IID partitioning. Moreover, given 1000 communication
rounds, FedAvg is somewhere between one and two percentage points worse on
the challenging non-IID partitioning. This shows that FedAvg has the potential to
achieve good accuracies that are comparable to a centralised approach.

In our performance comparison, CO-OP sees no benefits in pure accuracy over Fe-
dAvg, not even if we allow CO-OP to perform five times as many normal uploads as

45



7. Conclusion and Discussion

FedAvg. One difference between our and Wang’s original CO-OP implementation is
in how edge devices access their data. We assume that all data is available from the
start, whereas Wang trains each client on a single batch per update to simulate a
scenario where data is generated dynamically on edge devices. We have not explored
if his approach is beneficial.

We were only able to perform 2–3 iterations of cross-validation for each algorithm.
This number is quite low, and we would ideally have performed many more iter-
ations. However, a complete iteration of cross-validation on all three algorithms
takes about 25 hours (with 10000 uploads) or 90 hours (with more uploads) on our
setup. Since our third machine was only sporadically available, completing tens of
iterations was practically impossible. Note that including more iterations will give
more representative result and is likely to somewhat change the appearance of the
posterior plots. The probabilities of relative practical performance that we have
presented should therefore not be taken completely at face value.

When performing cross-validation to obtain data for generating the Bayesian poste-
riors, we made use of the entire MNIST dataset (both test and training sets) when
partitioning data into folds. These classifiers have therefore been allowed to train
on parts of the original MNIST test set. This is not an issue in our comparison
since all classifiers have trained on the same data distributions. However, note that
the accuracies in Fig. 6.6, 6.7, and 6.5 should not be directly compared with results
that are evaluated on the original MNIST test set.

7.2 Practical considerations

While FedAvg may be the best performing algorithm, CO-OP does enjoy the ben-
efits of being asynchronous, which makes it worthwhile to consider in practice. An
asynchronous algorithm does not have to wait for a set of clients to complete be-
fore model merging. Therefore, CO-OP is less sensitive to laggards and clients who
loose their connection to the server. Also, CO-OP’s age weighting scheme for model
merging allows clients to dynamically generate new training data without having to
communicate additional information, such as nk. One of CO-OP’s drawbacks is that
the age filter bounds, bl and bu, are difficult to tune and must be set with knowledge
about the expected number of participating clients.

A straightforward observation is that FSVRG is strictly inferior to the other two
in terms of communication efficiency. This is inherent to the FSVRG algorithm
since every client is forced to upload its model gradient before any training can
ensue. Therefore, FSVRG will always require more uploads per communication
round compared to FedAvg. Because FedAvg also achieves better accuracies given
same number of uploads, FSVRG has no practical benefits over FedAvg.

Federated Learning is not only motivated by big data, but requires a big data setting
to be a sensible approach. If the amount of training data is not huge, then simply
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uploading the raw data is quite possibly a more communication efficient approach.
For instance, if we apply FedAvg to a dataset of 60MB (MNIST is ≈ 55MB), a
model of 1.6MB (200k 64-bit floats), and include 10 clients per communication
round, then 10 ∗ 1.6 = 16MB would be uploaded by clients per communication
round. This would only allow for ≈ 3.8 communication rounds until clients have
uploaded the same amount of data as the whole dataset. If consumer privacy laws
do not apply to the intended application, then one should evaluate if there is enough
data to motivate a federated approach or if a centralised solution would be more
efficient.

While Federated Learning optimises for communication efficiency, our test environ-
ment makes several assumptions that are too strong in a deployed system. For
instance, our hardware units are connected via stable Ethernet, we assume that
messages arrive and are trustworthy, and we perform no encryption of transmitted
data as suggested by [37, 38]. Also, our framework has a single point of failure,
namely the server. In short, we have committed to several of the eight fallacies of
distributed computing [39]. However, this is to be expected since our framework
implementation is a research prototype rather than a production-ready system.

7.3 Related work

The term Federated Learning was coined by [3], who used their proposed algorithm
FedAvg to evaluate the difference in the number of required communication rounds
until convergence compared to synchronised stochastic gradient descent. Further
work used compressed updates to reduce the total amount of communication data
by two orders of magnitude, and still produce the same high quality model, but at
the cost of additional communication rounds before convergence [13].

The FedAvg algorithm was preceded by [4], which introduced the first federated
optimisation algorithm, FSVRG. Their work focused on analysis and experiments for
convex optimisation. However, the authors also note that there is nothing stopping
us from applying the non-federated version (SVRG) to non-convex problems, such
as deep neural networks. Indeed, results from [40] suggest that SVRG is a viable
alternative to SGD, though we are not aware of any previous attempts to evaluate
FSVRG applied to non-convex optimisation. Hence, to the best of our knowledge,
our FSVRG implementation is the first attempt to do so.

Wang’s work on CO-OP [29] includes a simulation that compares CO-OP with Fe-
dAvg on MNIST digit recognition. The results suggest that CO-OP outperforms
FedAvg in the number of rounds needed before convergence as well as converging to
higher accuracies. However, Wang’s FedAvg implementation performs much worse
on MNIST (below 90% accuracy) compared to the original results in [3] (at least
97% accuracy). We see several possible reasons for this discrepancy. In Wang’s
comparison, FedAvg has been adapted to follow an asynchronous protocol and does
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not strictly follow the original description since it does not, for instance, randomly
select a subset of clients in each simulation round. We, on the other hand, lever-
age our distribution framework to separately implement synchronous FedAvg and
asynchronous CO-OP without adapting one to the other. Moreover, Wang use a
single layer ANN architecture with the tanh activation function. We adopt the 2NN
architecture with ReLu as activation function used in [3] for a better comparison
against their results.

We are aware of a few other Federated Learning algorithms besides the three we
have implemented. These are mocha [41] and Federated Meta-Learning [42]. How-
ever, Federated Meta-Learning was only recently published and focus mainly on
recommendation systems. The mocha algorithm formulates a federated version of
multi-task learning, but is not applicable to non-convex deep learning.

7.4 Future work

CO-OP does not suffer as much from the practical issue of laggards as synchronous
algorithms, such as FedAvg, do. Therefore, we can conjecture that CO-OP would
in practice perform more updates than FedAvg during the same amount of time if
an appropriate age filter is used. The question is then how much faster CO-OP
is compared to FedAvg; is it just enough to compensate for the extra number of
uploads needed to compete with FedAvg, or could CO-OP give better accuracies
faster? While our results could suggest that CO-OP would have to upload more
than five times as much as FedAvg, our simulated system is insufficient to answer
this question.

One major alteration we made to our CO-OP implementation was how clients collect
and train on data. The original paper aggregated a batch of data for a client before
it could do an update [29]. We, on the other hand, let each client have access to
all of its training data at all times. The natural question would then be: does the
choice of method for aggregating data matter?

Because we only benchmark on MNIST, we can only draw conclusions about per-
formance on that particular task. A more general result could be obtained if more
datasets were included in the comparison. For instance, a Bayesian hierarchical
t-test [27] would be able to summarise algorithm performance on multiple datasets.

In our work, we only considered a balanced distribution where all clients are given the
same amount of data. However, this does not adequately reflect a federated setting
where clients have different amounts of local data. While an uneven partitioning
of data to clients is reported to slightly facilitate learning with FedAvg [3], it is
unclear if the same is true for CO-OP and FSVRG. Investigating how CO-OP and
possibly also FSVRG performs when client data is unevenly distributed would be
an interesting continuation of our work.
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When trying different age filters, we quickly discovered two possibilities of deadlock-
ing for CO-OP. To avoid these deadlocks, we added two restrictions to the age filter
(see Sec. 3.3.1). This indicates an immaturity in the theory behind CO-OP and a
better understanding of the algorithm should therefore be explored. For instance,
the restriction bu ≥ 2bl is not needed after the first bl updates. Setting the initial
age values for the clients to something like a1 = 0, a2 = 1, ..., aK = K − 1 may then
make that restriction obsolete. Or perhaps a dynamically optimised age filter could
remove the problem altogether.
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Acronyms

ANN Artificial Neural Network. 1, 3, 5–7, 9, 48

AUC Area Under the Curve. 10, 19, 20

AUROC Area Under the Receiver Operating Characteristic curve. 10

FCC Fraunhofer-Chalmers Research Centre for Industrial Mathematics. 3

FFI Fordonsstrategisk Forskning och Innovation. 3

FSVRG Federated Stochastic Variance Reduced Gradient. v, 13, 15, 16, 26, 40,
41, 45–48

IID Independently and Identically Distributed. v, 2, 7, 22, 23, 31, 36, 39–45

LAN Local Area Network. 2, 32

ROC Receiver Operating Characteristic curve. 10, 20

rope region of practical equivalence. 12, 21, 22, 41–44

SGD Stochastic Gradient Decent. 5, 6, 13, 16

57



Acronyms

58



Glossary

2NN is an ANN with 2 hidden layer and 200 neurons per layer (see Sec. 4.5). 24,
48

federated setting is a context where data is generated by many computers and
they are connected to some kind of network (e.g. Internet of Things). 2, 7,
22, 48

hyperparameter within the area of machine learning is a parameter which is set
before training. 13, 24

Keras is a machine learning library designed to be more intuitive to use, while
using Tensorflow as a backend. 29

learning rate used in machine learning as a step size or a scaling factor to the
gradient used for optimising a model. 13, 16, 24

learning rate decay is a way of decreasing learning rate after each epoch. Intu-
itively, it is a way of learning a lot in the beginning and less in the end when
there are only finer details left to learn. 13, 16, 24, 25

multilayer perceptron is a subset of feedforward artificial neural networks with
multiple fully connected layers. Each neuron also has a non-linear activation
function. 24

ReLu stands for rectified linear unit and is a common activation function for ANN.
The vanilla version is defined as f(x) = max (0, x). 24, 48

softmax function or normalised exponential function, is a logistic function that
makes a multidimensional vector to sum to 1. Commonly used for classification
tasks to represent a probability distribution in the output. 9, 24
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A
Appendix 1

A.1 Notation

Common notation
K number of clients
n total amount of data (training examples) over all clients
(xi, yi) i:th training example
Pk set of indices for the training examples residing locally on client k
nk = |Pk| the amount of data residing locally on client k
wt global model at timestep t
wk

t client k’s locally trained model at timestep t
d dimensionallity of wt and wk

t

η learning rate
λ learning rate decay
B
B batch size used in SGD
E the number of epochs before a client sends an update

Specific to Federated Averaging
C fraction of clients that will participate in a communication round
St set of clients that participate in the communication round at timestep t
µ = ∑

k∈St
nk total amount of data (training examples) over all clients in St

|St| = C ·K number of participating clients in the communication round at timestep t

Specific to CO-OP
a age of the shared global model
ak age of client k’s local model
bl ∈ Z lower limit on the age difference between a and ak.
bu ∈ Z, bu > bl upper limit on the age difference between a and ak.
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A.2 Variants of FedAvg

Fig. A.1 shows the same plots as Fig. 5.2 but these are smoothed. The smoothing
function is equivalent to how tensorboard does smoothing1, with a weighting factor
of 0.2.
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Figure A.1: Three different variants of FedAvg. All of them uses C = 0.1, E = 5,
B = 20, η = 0.05, λ = 10−5.

A.3 Hyperparameter search for FedAvg

Table A.1, A.2, and A.3 show all runs made for the hyperparameter search for
FedAvg. A more detailed explanation of the columns can be found in Sec. 6.1.

Table A.1: Exponential parameter search for learning rate η for FedAvg.

η max(acc) min(err) avg(acc) sum(drop)
0.00015 0.9052 0.3448 0.8345 4.216
0.00046 0.9087 0.3268 0.8336 14.89
0.0014 0.9192 0.2673 0.8413 19.24
0.0041 0.9419 0.192 0.8766 14.51
0.012 0.9586 0.1367 0.9146 9.19
0.037 0.9727 0.1107 0.9429 5.429

1Tensorboard’s smoothing function: github.com/tensorflow/tensorflow
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Table A.2: Linear parameter search for learning rate η for FedAvg.

η max(acc) min(err) avg(acc) sum(drop)
0.02 0.9646 0.1264 0.929 7.044
0.03 0.9699 0.1148 0.9391 5.638
0.04 0.973 0.1091 0.9452 4.833
0.05 0.9738 0.1083 0.9481 4.936
0.06 0.9761 0.1053 0.9513 4.489
0.07 0.9759 0.1049 0.9518 4.908
0.08 0.9755 0.1453 0.9455 6.482
0.09 0.9307 0.2296 0.2515 6.804

Table A.3: Random search for η and λ for FedAvg.

η λ max(acc) min(err) avg(acc) sum(drop)
0.037 4.9e-06 0.9742 0.1078 0.9525 5.973
0.047 2.5e-05 0.9747 0.09802 0.9567 5.054
0.05 1.6e-06 0.9767 0.101 0.9582 5.014
0.056 1.3e-08 0.9773 0.1033 0.9585 5.847
0.061 1.8e-06 0.9777 0.09984 0.9607 4.749
0.068 2.8e-07 0.978 0.109 0.96 5.058
0.068 8.0e-07 0.9778 0.1026 0.961 4.769
0.081 3.2e-06 0.9784 0.09968 0.9629 3.986
0.082 2.1e-08 0.9787 0.1043 0.9618 4.791
0.084 1.0e-04 0.9761 0.09407 0.9602 4.717
0.088 3.2e-06 0.9788 0.09794 0.9638 4.115
0.091 4.1e-05 0.9775 0.1004 0.9623 4.728
0.094 4.5e-04 0.9732 0.09498 0.9574 4.959
0.098 2.4e-08 0.979 0.1325 0.9562 7.108
0.11 2.2e-07 0.9792 0.09315 0.9658 3.444
0.12 2.3e-08 0.7447 0.6367 0.1039 1.319
0.12 1.2e-07 0.979 0.1031 0.964 4.493
0.13 3.5e-04 0.9748 0.09387 0.9602 4.68
0.14 7.8e-04 0.6962 0.8643 0.09896 0.8438
0.14 7.9e-05 0.8854 0.3951 0.1047 2.877

A.4 Framework scalability experiments

Fig. A.2 shows the results of the two experiments discussed in Sec. 4.8. Each exper-
iment used 20 different client configurations, ranging from a single to 1000 clients.
Four benchmarks were performed per client configuration and each benchmark lasted
for five minutes. The four iterations are averaged to produce the measured values
in Fig.A.2.
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Figure A.2: Connection tests simulated on one machine with up to 1000 clients
connected simultaneously to the Erlang server node. Simulated locally on one ma-
chine. (a) The simulation computer is quickly overwhelmed when latency is low.
(b) Throughput scales linearly with the number of clients when additional delay is
introduced.

Both experiments measure throughput as the number of distributed operations. In
our case, a distributed operation is counted whenever the server receives a pong
response from a client. Specifically, a benchmark was performed as follows. The
user tells the server to run a benchmark for 5 minutes with a throughput counter
initially set to zero. The server records the start time and sends out ping messages to
all connected clients, collecting responses as they arrive. Clients then immediately
send a pong response to the server upon receiving a ping message. Whenever the
server receives a pong response, it asserts that the benchmark is still active and
then increments the throughput counter by one. Once the benchmark has ended,
the throughput counter is not incremented but instead reported to the user. Given
that all clients have responded, and the benchmark has not ended, the server sends
out new ping messages.

A.5 Statements regarding the CO-OP age filter

This section is a collection of remarks and one proposition about CO-OP’s age filter.

Remark 1. The intuition behind bl is: a client cannot do another normal update
until bl other clients have done one normal update each.
Remark 2. The intuition behind bu is: a client that just did a normal update will
be outdated if it does not make another update before bu normal updates have been
done by other clients.
Proposition 1. It is possible for the CO-OP algorithm to deadlock if bu < 2bl, and
K ≥ bu − bl + 1.
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Proof. Initially, a = bl and ∀k : ak = 0. To reach a state where a = bu + 1, we need
at least bu− bl + 1 updates. Assume that these updates are performed by bu− bl + 1
distinct clients. Then, a = bu + 1 and the bu − bl + 1 clients who updated have ages
bl + 1, bl + 2, . . . , bu + 1. Let f be the client who performed the very first update,
hence af = bl + 1. From the algorithm, it follows that client f is overactive if the
following holds:

a − af < bl ⇔
(bu + 1)−(bl + 1)< bl ⇔
bu − bl < bl ⇔

bu < 2bl . (A.1)

Assuming (A.1) holds, f , and all of the other bu − bl clients who have updated so
far, are regarded as overactive. Recall that there are K − (bu − bl + 1) clients that
still have ak = 0. If these clients read the most recent a = bu + 1, then they are
considered to be outdated and set their ak = a. However, we are now in a state
where all clients are considered to be overactive. In other words, it is possible for
CO-OP to deadlock if bu < 2bl.
Remark 3. The constraint bu−bl ≥ K−1 is a special case of the constraint bu ≥ 2bl

where bl = K − 1.
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