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Abstract

This thesis is a modelling and control study of a RLV (Reusable Launch Vehicle), which
will bring three individuals to space with a rocket engine and then glide back to Earth.

Both a classic linear control design and a family of nonlinear block backstepping
controllers were tried.

The linear controller had a proportional and an integral part and was gain scheduled
over the envelope for different altitudes and Mach numbers. Tuning the gains in gain
scheduling is a time consuming process, which was solved by mapping the flight handling
qualities to the space of the controller gains and thereby choosing the gains.

The Block backstepping control laws are designed in one piece for all the controlled
variables. This is done over the whole envelope by replacing the open-loop dynamics of
the vehicle by a desired dynamics. Both the linear and the nonlinear control laws had
sufficient control performance.

The worst-case pilot input of the block backstepping control laws were investigated
using a global optimiser in a clearance test. It was shown that the backstepping control
laws were sensitive to rate saturation of the control surfaces.
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collaboration with Johan Knöös from KTH (Royal Institute of Technology), supervised
by Fredrik Berefelt and John Robinson at FOI.

Patrik Rodstedt, Stockholm 11/9/11





Contents

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 The spacecraft 4
2.1 Rigid-body equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Closer look at aerodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Control surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Actuator dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5.1 Longitudinal dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5.2 Lateral Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.6 Handling qualities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.7 The spacecraft and the mission . . . . . . . . . . . . . . . . . . . . . . . . 13
2.8 Static stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Linear controller 15
3.1 SAS and CAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Longitudinal controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Lateral controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Parameter tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.5 Gain scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.6 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.6.1 Simultaneous step . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.6.2 Coordinated turn . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

i



CONTENTS

4 Nonlinear Control 27
4.1 Lyapunov theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Lyapunov based control design idea . . . . . . . . . . . . . . . . . . . . . . 29
4.3 Backstepping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3.1 Control affine form . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.2 Controlled variables and objective . . . . . . . . . . . . . . . . . . 30
4.3.3 Change of coordinates . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3.4 Actuator dynamics and integral state . . . . . . . . . . . . . . . . 32
4.3.5 Error variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3.6 Block backstepping control law . . . . . . . . . . . . . . . . . . . . 33
4.3.7 NDI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4.1 Backstepping simulations . . . . . . . . . . . . . . . . . . . . . . . 35
4.4.2 Backstepping and NDI . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Clearance of flight control laws 41
5.1 Global optimisation methods . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.1.2 Differential evolution algorithm . . . . . . . . . . . . . . . . . . . . 42

5.2 Clearance test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2.1 Pilot input parameterisations . . . . . . . . . . . . . . . . . . . . . 43
5.2.2 Pilot induced oscillations . . . . . . . . . . . . . . . . . . . . . . . 46

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6 Conclusion 55

Bibliography 58

ii



Nomenclature

α Angle of attack

β Sideslip angle

δa Aileron deflection

δb Bodyflap deflection

δe Elevator deflection

δr Rudder deflection

φ Euler bank angle

ψ Euler azimuth angle

θ Euler elevation angle

Cφ Short for cos(φ)

Cψ Short for cos(ψ)

Cθ Short for cos(θ)

Fxb Aerodynamic force component in the xb direction

Fyb Aerodynamic force component in the yb direction

Fzb Aerodynamic force component in the zb direction

g Acceleration of gravity

Ixxb Moment of inertia

Iyyb Moment of inertia

Izxb Product of inertia
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m Mass of spacecraft

Mxb Aerodynamic moment around xb axes

Myb Aerodynamic moment around yb axes

Mzb Aerodynamic moment around zb axes

p Roll rate

q Pitch rate

r Yaw rate

Sφ Short for sin(φ)

Sψ Short for sin(ψ)

Sθ Short for sin(θ)

u The x-component of the airspeed expressed in body coordintates

V Body-axes velocity

v The y-component of the airspeed expressed in body coordintates

w The z-component of the airspeed expressed in body coordintates

xf Northward Earth-fixed coordinate

yf Eastward Earth-fixed coordinate

zf downward Earth-fixed coordinate
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1
Introduction

1.1 Background

The past years, a number of space tourist projects have shown up. One company that
aims to commercialise space traveling is Virgin Galactic. who managed to perform the
first commercial manned flight on an altitude of over 13.7 km [1]. Since 2005 it has been
possible to book a ticket with Virgin Galactic and have a seat in a future space experience.
The ticket prices have a neat sum of 200 000 USD. Virgin Galactic is only operating in
America at the moment. This is due to that US Federal Aviation Authority (FAA) has
temporary relaxed the regulation requirements for commercial suborbital flights until
2012 and thus made the market possible. In Europe the FAST20XX (Future high-
Altitude high-Speed Transport) project is a first step to its own commercial suborbital
flight [2].

This thesis is a part of the European space project FAST20XX, on behalf of ESA
(European Space Agency). A number of companies and institutions around Europe have
signed up as project partners and each partner will deliver small parts to the project.
One partner in the project is FOI (Swedish Defense Research Agency), which has the
task of designing a manual control system.

The main goal with the project is to, within five to ten years, provide the technology
needed for two different types of spacecraft. This means that the project does not aim
to deliver a spacecraft at the end of the time period, but to deliver the knowledge to the
day when Europe decides to start the development of such a spacecraft.

There are two different types of spacecraft in the project, both satisfies the idea of
bringing humans into space. This work focus only on one of them, called Alpha (Airplane
Launched Phoenix Aircraft), which is a small carrier with three passengers and a pilot,
see Figure 1.1. The Alpha aircraft is planned to be released in the air from a large
military airplane of similar size to the Antonov plane and from there use a hybrid rocket
motor to proceed out from the atmosphere to give the passengers a view of earth from
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CHAPTER 1. INTRODUCTION

space before it returns and land on earth in a curve shaped path.
FAST20XX is divided into six technology areas, which are: hybrid propulsion, inno-

vative high performance cooling technique, separation techniques, flow control, guidance
and navigation control (GNC), and safety analysis. The GNC part aims to use modern
control techniques to give a robust control design. It will have both an auto-pilot and
a manual control system. The manual control system will only act as a back-up system
when the auto-pilot cannot be used. There are a number of situations when a pilot
would have to rely on the manual system, for example in the case when the landing site
is moved to a new location or if an accident has occurred. Hence, the manual system is
a small but equally important part of the overall design. To be able to commercialise
space transportation the safety aspects are of great value. The psychological effect of
having a stand-by system if the auto-pilot malfunctions is therefore very important, even
if it will never be used in practice.

Figure 1.1: This is a schematic image of the Alpha.

1.2 Objective

The following parts were the objective of this work:

• Model and simulate the suborbital carrier Alpha.

• Construct linear and non-linear control laws and specifically try a design built on
backstepping.

• Perform a clearance investigation of the control laws.

1.3 Scope

The following assumptions and constraints were applied to this project:

• The sensors are considered to be ideal.
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CHAPTER 1. INTRODUCTION

• Control laws during landing procedure are not considered.

1.4 Method

The project was divided into the following sub projects:

• Setup of simulation platform for Alpha in Matlab.

• An Open-loop trim investigation.

• A linear baseline control design.

• A nonlinear control design.

• Clearance test with global optimisation.

To be able to start investigating the Alpha a simulation environment was built in Matlab.
The most important step was to interpret and import the aerodata1 into the simulation
platform.

In the second part a study of different trim states and the Alphas open-loop charac-
teristics was performed. Longitudinal trim, vector velocity roll and a coordinated turn
were analysed.

The main goal of the project was to try different nonlinear control theories, but
the design first started with a baseline linear controller. The baseline controller was
tuned with the help of a mapping theorem by Ackermann, which speeded up the gain
scheduling process and also gave an overview of the handling qualities.

As nonlinear controllers, two related design methods, NDI (Nonlinear Dynamic In-
version) and backstepping were investigated. Both controllers were designed and proved
stable by the use of Lyapunov theory.

In the end a clearance test was set up that searched through different stick combi-
nations to find a worst case scenario and thereby testing the performance of the con-
trollers. The clearance test was made with a optimisation package for Matlab developed
by Fredrik Berefelt at FOI [3].

1The aerodata holds the information of how the forces and moments act on the spacecraft during
flight. It is gathered through wind tunnel experiments.
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2
The spacecraft

This chapter aims to be a short summary of the theory used for modelling the Alpha.
Since the Alpha behaves as an aircraft at the lower part of its envelope, the theory in
this chapter is identical to what is used in the aircraft community.

The chapter starts with a brief explanation of the rigid-body equations, followed by
a model of the control surfaces, the oscillatory modes and static stability1. It ends with
an overview of the flight envelope.

2.1 Rigid-body equations

The first step in describing the dynamics of the Alpha is to derive its force and moment
equations in a body-fixed coordinate system. Assume that the Alpha vehicle is a rigid
body and Newtons second law gives

F +W =
d

dt
(mV ) + ω × (mV ) (2.1)

M =
d

dt
(Iω) + ω × (Iω), (2.2)

where W is the gravitational force vector of the Alpha vehicle, M = [Mxb Myb Mzb]
T is

the moment about the body-fixed center of gravity, V = [u v w]T and ω = [p q r]T are
the translational and rotational velocities of the Alpha vehicle, respectively in body-fixed
coordinates (see Figure 2.1). Since the vehicle in this study does not have an engine,
the force F = [Fxb Fyb Fzb]

T only involves the aerodynamic forces acting on the body.

1Static stability is a situation when the Alpha is flying with no acceleration.

4



CHAPTER 2. THE SPACECRAFT

v

u

w

q

p

r

Figure 2.1: Body-fixed velocity vector and angular rates.

In the above equations, m is the Alphas mass and I is its inertia tensor

I =

 Ixxb 0 −Ixzb
0 Iyyb 0

−Izxb 0 Izzb

 . (2.3)

Expressing the moment and force equations in more detail involves writing the Alphas
body-fixed coordinate system to the Earth fixed. This is done by introducing the Carte-
sian Earth-fixed coordinate system [xf yf zf ]T and how the body is orientated relative
to the Earth by the three Euler angles [φ θ ψ]T [4, p. 735]. With the help of the Euler
angles the gravitational force can be written in the body-fixed coordinates asWxb

Wyb

Wzb

 = g

 − sin θ

sinφ cos θ

cosφ cos θ

 . (2.4)

By using the new expression for the gravitational force in body-fixed coordinates (2.4)
and carrying out the cross products in (2.1) and (2.2), the following two complete ex-
pressions u̇v̇

ẇ

 =
1

m

FxbFyb

Fzb

 + g

 −SθSφCθ

CφCθ

 +

rv − qwpw − ru
qu− pv

 (2.5)

ṗq̇
ṙ

 =

 Ixxb 0 −Ixzb
0 Iyyb 0

−Izxb 0 Izzb


−1  Mxb + (Iyyb − Izzb)qr + Ixzbpq

Myb + (Izzb − Ixxb)pr + Ixzb(r
2 − p2)

Mzb + (Ixxb − Iyyb)pq − Ixzbqr

 (2.6)
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CHAPTER 2. THE SPACECRAFT

are achieved, which completely describe the Alpha vehicle in its six degrees of motion,
where Sθ and Cθ are short for sin θ and cos θ. The last step of explaining the Alphas
motion is to know how its position and orientation in the Earth-fixed coordinates change
over time. This is done by using transformation matrices between Earth- and body-fixed
coordinates on the translation and rotation velocity vectors (u,v,w) and (p,q,r) of the
body. The transformation matrices are built up by cosine and sine elements of the Euler
angles (φ,θ,ψ). The following two expressionsẋfẏf

żf

 =

CθCψ SφSθCψ − CφSψ CφSθCψ + SφSψ

CθSψ SφSθSψ + CφCψ CφSθSψ − SφCψ
−Sθ SφCθ CφCθ


uv
w

 +

VwxfVwzyf

Vwzf

 (2.7)

φ̇θ̇
ψ̇

 =

1 SφSθ/Cθ CφSθ/Cθ

0 Cφ −Sφ
0 Sφ/Cθ Cφ/Cθ


pq
r

 , (2.8)

gives the differential equations of the Earth-fixed coordinates and the Euler angles, where
[Vwxf Vwyf Vwzf ] is wind velocity vector. The twelve differential equations (2.5), (2.6),
(2.7) and (2.8) can easily be integrated numerically and yields a complete description of
the Alphas state in the Earth- and body-fixed coordinates. [4]

In some applications, as aerodynamic modelling, it is more convenient to describe
the body velocity with the triple (V,α,β) instead of the usual velocity vector (u,v,w) (see
Figures 2.2 and 2.3). The transformation between (u,v,w) and (V,α,β) is given by

α
v
γ

θ

q

Figure 2.2: The Alpha from the side, where γ is the flight path angle, α is the angle of
attack, θ is the Euler elevation angle, V is the body-axis velocity and q is the pitch rate.
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β

v
r

Figure 2.3: The Alpha from the top, where β is the sideslip, V the body-axis velocity and
r the yaw rate.

V =
√
u2 + v2 + w2

α = arctan
w

u

β = arcsin
v

V
.

(2.9)

It is also very common to use (V̇ , α̇, β̇) in simulations instead of (u̇,v̇, ẇ). The differential
equations for (V̇ , α̇, β̇) are derived by differentiating (2.9) to get

V̇ =
1

m
(FTx cosα cosβ + FTz sinα cosβ)

α̇ =
1

V m cosβ
(−FTx sinα+ FTz cosα) + q − (p cosα+ r sinα) tanβ

β̇ =
1

V m
(−FTx cosα sinβ + FTy cosβ − FTz sinα sinβ) + p sinα− r cosα,

(2.10)

where the force FT i = Fib +Wib is the total force in the corresponding body-axis.

2.2 Closer look at aerodynamics

The aerodynamic forces and moments on the body depend on a number of variables,
such as the body state and the atmosphere. In general, there are no complete formulas
to calculate the forces and moments from the Alphas state. Instead they are calculated
by first determining the aerodynamic coefficient (CF ,CM ) from a lookup table and then
use the formulas

Fib = q̄ACFi(δ,α,β,p,q,r,α̇,β̇ · · · ) (2.11)

and
Mjb = q̄AlCMj (δ,α,β,p,q,r,α̇,β̇ · · · ). (2.12)

7



CHAPTER 2. THE SPACECRAFT

Here,

• the index i corresponds to the different body-axis (xb,yb,zb).

• the index j corresponds to the three different moments around the body-axis
(xb,yb,zb).

• A denotes the wing-area of the Alpha.

• l denotes the wing-length.

• q̄ is called the aerodynamic pressure and equals to 1
2ρ(h)V 2 and it captures the

aerodynamic stress the aircraft experience at the altitude h, the air density ρ and
with the velocity V .

• δ denotes the control surfaces. [5]

The lookup table is made from wind tunnel experiments in a lab and are limited to
sideslip angles ±90 deg and angle of attacks between −2 deg and 24 deg. Figures 2.4 and
2.5 shows an example of how the side and normal force coefficients CFx and CFz change
over the angle of attack α and sideslip angle β for a fixed Mach number of 0.3.

Figure 2.4: The side force coefficient CFx at Mach number 0.3.
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Figure 2.5: The normal force coefficient CFz at Mach number 0.3.

2.3 Control surfaces

The Alpha has five different control surfaces, all shown in Figure 2.6. The outboard and
inboard elevons can be used either as elevators or aileron, by either deflecting the elevon
couple symmetrically or differentially,

δsymm =
δleft + δright

2
(2.13)

δdiff =
δleft − δright

2
. (2.14)

A symmetrical deflection corresponds to a pull-up or a pull-down, but a differential
deflection makes a roll. In this work the outboard elevons have been used as ailerons
and the inboard elevons as elevators. Each control surface has its own deflection limits,
which are given in Table 2.1 with a short summary for what each control surface is used.

2.4 Actuator dynamics

The dynamics of the control surfaces are modelled by first order systems

ẋ = (u− x)
1

τ
, (2.15)
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CHAPTER 2. THE SPACECRAFT

Table 2.1: A summary of the control surfaces usage and limits.

Control surface Usage Deflection limit [deg]

Body Flap Keep longitudinal trim -15 to +20

Elevator Inboard Give pitch control -20 to +20

Rudder Give yaw control -10 to +10

Elevator Outboard Used as aileron to give roll control -20 to +20

Speed Break Velocity control 0 to 40

Rudder

Body Flap

Inboard Elevon

Outboard Elevon

Speed Brake

Figure 2.6: The different control surfaces of the Alpha.

where u denotes the commanded actuator deflection. The time constant τ is set to 0.03 s
and the angular velocity of the actuators are also limited to saturate at 50 deg/s. These
values are taken from a similar project by NASA [6].

2.5 Dynamics

The dynamics of an aircraft can be described by six differential equations (three trans-
lational and three rotational degrees of freedom), see (2.5) and (2.6). If the aircraft
moves with small deviations from an equilibrium point the flight equations can be ap-
proximated by a linearisation. If the flight manoeuvre is slow enough the six differential
equations can be separated into two subsystems, one with longitudinal and one with
lateral dynamics. Both the longitudinal and the lateral subsystem has a number of os-
cillatory modes. Each mode has a given name and their damping and eigenfrequency
are commonly used as a measure of the handling qualities (see section 2.6). Because
the modes characteristics change during the flight envelope, linear flight controllers may
need to be gain scheduled.
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2.5.1 Longitudinal dynamics

The longitudinal dynamics are made out of a subsystem with the states

x = [α q V θ]T , (2.16)

and the input vector
u = δe, (2.17)

where δe denotes the elevator deflection. This subsystem has two complex eigenvalue
pairs, which are called phugoid and short-period mode in the flight community [5]. The
phugoid mode is sometimes called long-period mode and has more damping and an
eigenfrequency corresponding to a period usually around 30 s. The short-period mode is
much lower damped and has a period of just a few seconds.

After linearisation and calculation of the eigenvalues of the subsystem it is always
easy to separate the modes apart. The short-period mode will always have the eigenvalue
pair with the largest magnitude. It depends on a combination of the pitch rate q and
the angle of attack α, whereas the phugoid mode depends mostly on the airspeed V and
the Euler pitch angle θ. The dynamics of the short-period mode can be calculated from
the approximated subsystem[

α̇

q̇

]
=

∂fα
∂α

∂fα
∂q

∂fq
∂α

∂fq
∂q

[
α

q

]
+

∂fα
∂δe
∂fq
∂δe

 δe, (2.18)

where ∂fα
∂α is the linearisation around an equilibrium point α̇ = 0 in (2.10). This sub-

system approximation is later used when calculating the handling qualities of the short
period mode.

Most of the longitudinal handling qualities are specified in the short-period mode
since the pitch responsiveness depends on this mode. The high frequency combined with
a too low damping of the mode can give the pilot problems to manoeuvre the aircraft.

2.5.2 Lateral Dynamics

In the same way as the longitudinal dynamics, the lateral subsystem has four states

x = [β φ p r]T , (2.19)

but two inputs
u = [δa δr]

T , (2.20)

where δa denotes aileron deflection and δr denotes rudder deflection. Calculating the
eigenvalues of the subsystem shows that the system has one complex pole pair and two
real poles. The two real poles are called roll mode and spiral mode and the roll mode is
heavily damped while the spiral mode is less damped and can be unstable. The complex
pole pair is called the dutch roll mode and it is very low damped with a short period
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CHAPTER 2. THE SPACECRAFT

of a few seconds. It can be excited by a rudder impulse and can give problems during
landing with gutsy wind.

The short-period, roll, and dutch roll mode are together called the three rotational
modes that gives the manoeuvrability of the aircraft. [5]

2.6 Handling qualities

The performance of a flight controller is very hard to evaluate in an objective and
quantified way and the main reason is that each pilot has its own opinion of what a
good aircraft response is. The opinion is also different depending on the type of aircraft
and flight phase (landing, takeoff or steady level flight) [5]. One quantified criteria of
aircraft performance is the US Military Specifications for the Flying Quality of Piloted
Airplanes [7], which contains one way to analytically express the handling qualities. As
the Alpha behaves as an aircraft in its lower part of the flight envelope (below 12 km)
the same methods of evaluating classic commercial and military aircraft can be used for
the Alpha.

The specifications contains different criteria for each flight class, flight phase and
level. The Alpha is considered as a medium weight and manoeuvrable airplane and
should be able to do gradual manoeuvres in nonterminal flight, which puts it in airplane
class I, flight phase category B, and flying quality level 1 (see Tables 2.2 and 2.3). CAP

Table 2.2: Handling qualities for longitudinal flight phase B and class II.

HQs Level 1 Good Level 1

Short period mode ζSP 0.35<ζSP<1.35 0.7<ζSP<1.35

Control anticipation parameter CAP 0.085<CAP<3.6

(Control Anticipation Parameter) [5] is a criteria that indirectly specifies the undamped
natural frequency of the short period mode ωnSP and is defined as,

CAP =
ωnSP
n/α

, (2.21)

where n/α is the aircraft load-factor response in g’s per radian.

Table 2.3: Handling qualities for lateral flight phase B and class II.

HQs Level 1 Level 2

Dutch roll damping ζDR 0.08<ζDR 0.02 <ζDR

Dutch roll frequency ωnDR 0.4<ωnDR 0.4<ωnDR

Dutch roll ζDRωnDR 0.15<ζDRωnDR 0.05<ζDRωnDR

Roll-mode time constant <1.4 s <3 s
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CHAPTER 2. THE SPACECRAFT

2.7 The spacecraft and the mission

The manual control system is designed to be used for the lower part of the Alpha’s
trajectory. The whole trajectory can be seen in Figure 2.7, but only the lower dashed
part starting at 12.5 km will be considered during the design. In that part of the envelope
the heat dissipation is of less importance and the Alpha will behave more as an aircraft.
In Figure 2.7 to the left the Alpha speed is shown and it ranges between 0.23 Mach and
0.46 Mach. This gives an indication of what the altitude and Mach number limits of the
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Figure 2.7: The Alpha’s trajectory.

mesh used during gain scheduling design should be. To make the Alpha more flexible a
Mach number of 0.8 was chosen as the upper limit and 0.2 as the lower limit. It would
be preferred choose a lower limit below 0.2, but then the aerodata does not support any
smaller Mach number than 0.2. For the altitude the controller is limited to an altitude
between 12.5 km and ground. Finally, the gain schedule mesh is built up by 5 different
altitudes and 5 different Mach numbers, which means that there are 25 different gain
couples from which the linear controller is interpolated.

2.8 Static stability

A trimmed flight is when the Alphas actuators are set so that it is in a static equilibrium
and there is no acceleration. In other words when,

ṗ = q̇ = ṙ = 0 and u̇ = v̇ = ẇ = 0. (2.22)

This is called steady-state flight [5]. Of all steady-states there are five standard examples
that have their own names. Each one of them have some additional constraints listed in
Table 2.4.

The Alphas airframe is designed to be naturally stable and its stays in a trim position
by itself during the whole flight. In case of a disturbance it returns back to the trim
position on its own.

The control surfaces of an aircraft consists of the ailerons, bodyflaps, elevators and
the rudder and they help the aircraft to transit between different trim positions. The
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CHAPTER 2. THE SPACECRAFT

Table 2.4: A summary of the different trim situations.

Trim Constraints

Steady wings-level flight φ = φ̇ = θ̇ = ψ̇ = 0

Steady turning flight φ̇ = θ̇ = 0, ψ̇ = turn rate

Steady pull-up φ = φ̇ = ψ̇ = 0, θ̇ = pullup rate

Steady roll θ̇ = ψ̇ = 0, φ̇ = roll rate

aircraft can be designed to be easy or difficult to keep in a trim position and this is given
by the aircraft handling qualities.

In Figure 2.8, the Alpha has been steady-state flight trimmed over the flight envelope
(a Mach number between 0.2 and 0.8 and the altitude 12.5 km to ground) with a constant
flight path angle. To keep the trim during the upper part of the envelope, the bodyflap
saturates and the elevator needs to be active too (the grey colored area). At lower
altitude the speed and the dynamic pressure is higher and the longitudinal trim is held
only with the bodyflap (the white colored area).
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Figure 2.8: This figure shows how the Alpha is trimmable for different Mach numbers
and altitudes. The Alphas flight envelope after an altitude of 12.5 km is marked with a
dashed line starting at the cross and ending at the circle. The color map tells if the Alpha is
trimmable only with the help of the bodyflap(white), with the need of both the bodyflap and
its elevator(grey), and if it is not trimmable at all with both the bodyflap and the elevator
in use (black).
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3
Linear controller

This chapter will present a linear controller built on classic design techniques. The
purpose of the linear controller is to compare its design and performance with the later
nonlinear controllers.

In flight control there are two requirements of a control system. First, it should
keep the vehicle stable during the whole flight and secondly, it should satisfy the flight
handling qualities, see section 2.6.

These requirements have to be fulfilled globally and, since the vehicle dynamics
depends on the speed and altitude, one single linear controller is not enough for the
entire envelope. To be able to use linear control theory a number of controllers have to
be designed for various operating points and the control algorithm has to switch between
the gains as the vehicle changes speed and altitude, which is known as gain scheduling.
In this chapter both a global longitudinal and a lateral controller will be designed.

3.1 SAS and CAS

In the aircraft control community there are three different expressions one have to keep
separated, namely the Stability Augmentation System (SAS), the Control Augmentation
System (CAS), and the autopilot [5].

The SAS is used to measure and feedback angular rates of different body-axes to
produce a desired damping effect, mainly on the three different rotational modes: short-
period, roll, and dutch roll mode. In High-performing modern air and spacecraft the
damping can be very low or the modes can even be unstable, to increase the maneuver-
ability. A stability augmentation system is then crucial.

The CAS design is used when a specific response to an input is wanted and not just
the damping of different modes as in the SAS design. An example of this is when a
pilot input affects the normal acceleration along the z-axis. It is also used when a very
precise tracking is required, which is very common in modern high performance air and

15



CHAPTER 3. LINEAR CONTROLLER

spacecraft.
The autopilot is designed to help the pilot to hold the aircraft steady and to give the

pilot a ”time off” during flights.
The control system of the Alpha requires help with both damping and precise track-

ing, and this motivates the need of a CAS design and not just a SAS. But some parts of
the implemented control systems has autopilot characteristics as the choice of controlling
the Euler bank angle φ.

3.2 Longitudinal controller

There are many different options when choosing control variables and they depend on
the overall goal of the CAS. It is common to use pitch-rate or normal acceleration as
control variable. A popular control variable is C*, which combines both the pitch-rate
and the normal acceleration and it is the control variable used here.

C* control

The C* criteria is a time history criteria and it is built up by a mix of normal acceleration
and the pitch-rate. The motivation of constructing a mixed criteria is that depending on
the velocity the pilot either use the normal acceleration or the pitch-rate when controlling
an aircraft. For low velocity the pitch-rate dominates the feeling of the vehicle, but at
high velocity it is the response from normal acceleration that the pilot feels the most.
From pilot test it has been concluded that the linear combination

C∗ = nz +Kq, (3.1)

gives the best results and with K = 12.4 [8].
The longitudinal control augmentation system used by the Alpha is implemented

with C* as the controlled variable and the controller used is a proportional controller
with integral action (see Figure 3.1). There are many options in choosing the type of
linear controller. This controller was chosen because of its simplicity and short design
time and not for its superior performance. The controller is tuned by the proportional
and integral gains Kp and KI and through the eileron (EI) a pitch moment is produced,
which then controls the Alpha.

The control design helps the pilot with tracking as well as fulfilling the handling
qualities of the short period mode. An important observation is that the proportional
gain is fed back with an inner-loop to lower a large overshoot but still keeping the location
of the poles.

3.3 Lateral controller

The lateral controller is slightly more complex than the longitudinal. The main reason
is that even when the system is seen as decoupled from the longitudinal dynamics it is
a MIMO (Multi Input Multi Output) system. The two inputs aileron (AO) and rudder
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C∗
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q

Figure 3.1: Block diagram of the longitudinal CAS with the C* criteria. The transfer

functions Nnz(s)
DC(s) and

Nq(s)
DC(s) denotes the open-loop system of the Alpha.

(RU) gives a roll and a yaw moment to control the Euler bank angle φ and keep the
sideslip angle β zero. In this control law will the sidelip angle not be controlled, instead
the rudder will take its position from a look-up table of trim values.

The controller can be seen in Figure 3.2 and it has three gains that need to be tuned.
The purpose of the gain Kpp in the inner SAS loop is to speed up the roll mode and thus
increases the possible roll rate and to push the dutch roll poles until the lateral handling
qualities are met. The outer CAS loop with the proportional and integral gains Kpφ and
Kiφ has the function of bringing the roll angle φ to the commanded φcmd value.

Np(s)
Dφ(s) ,

Nφ(s)
Dφ(s)

Kpp

ΣΣ

Kiφ
s

Kpφ

Σ

Table

p

φ

−

−
AO

RU

εφcmd

Figure 3.2: Block diagram of the lateral controller. The transfer functions
Np(s)
Dφ(s)

and
Nφ(s)
Dφ(s)

denotes the open-loop system of the Alpha.

3.4 Parameter tuning

In Sections 3.2 and 3.3 the structure of the longitudinal and lateral control systems were
shown and motivated. The next step in the design process is to choose the gains so that
the handling qualities are met, which means choosing gains so that the rotational modes
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gets the proper damping and eigenfrequency.
The design is built upon linear control theory and to know the open-loop transfer

function the system is linearised around an operating point and from the linearisation
calculate the closed-loop system. Below are the closed-loop transfer functions of the
lateral and longitudinal control systems,

Φ(s)

Φcmd(s)
=

Nφ(s)(Kpφs+Ki)

(Dφ(s) +Np(s)Kpp +KpφNφ(s))s+KiφNφ(s)
(3.2)

C∗(s)

C∗
cmd(s)

=
Ki(KNq(s) +Nnz(s))

(DC(s) + (KNq(s) +Nnz(s))Kp)s+ (KNq(s) +Nnz(s))Ki
. (3.3)

The Nx(s) and Dx(s) are the nominator and dominator of the linearised open-loop
system were the subscript x denotes the output variable (q, nz or φ). They have the
forms

Nnz(s) = b1s+ b2

Nq(s) = b1s+ b2

DC(s) = s3 + . . .+ a2s+ a3

Nφ(s) = b1s
2 + b2s+ b3

Np(s) = b1s
3 + . . .+ b3s+ b4

Dφ(s) = s4 + . . .+ a3s+ a4.

(3.4)

The next step is to make the closed-loop system satisfy the handling qualities by
tuning the gains. The handling qualities are many and it is not clear how to do the
tuning in a way that all are satisfied. To simplify, the gains were chosen by first mapping
the handling qualities to the parameter space of the closed-loop system and then pick
the gains graphically. The process of constructing the map and choosing the gains from
the maps is explained further below.

Mapping theorem

At first sight the flight handling qualities look very complicated and many, but they
can easily be illustrated as lines and curves in the complex plane. In Figure 3.3 the
handling qualities of the short period mode are drawn together. The damping criterion
becomes a straight line with the slope depending on the damping. The frequency criteria
correspond to circles with a radius that equals the natural frequency. Together the circles
and lines build up a closed boundary ∂Γ in the complex plane. The boundary can be
described as

∂Γ := {s | s = σ + jω(σ), σ ∈ [σ−;σ+]}.

A line with constant damping D and a circle with constant natural frequency ωn can be
written as:

s = σ + jσ

√
1−D
D

(3.5)

s = σ + j
√
ω2
n − σ2 (3.6)
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0Re

Im

Figure 3.3: Handling qualities of the short period mode illustrated graphically. The inner
and outer arch are the two CAP criteria and the slope is the damping.

The short period poles should be inside the boarder ∂Γ to fulfill the handling qualities.
Similar figures can be made for the lateral handling qualities. Many of the open-loop
poles are already inside ∂Γ, but not all of them and the pilot might desire a uniform
response in the whole envelope.

The linear controllers in Section 3.2 have two parameters, a proportional gain Kp

and an integral gain Ki. A infinite number of combinations of Kp and Ki keep the
closed-loop poles inside the boundary of ∂Γ and thus a whole area in the parameter
space of Kp and Ki gives an acceptable closed-loop system. One way to find the area is
to map the boundary ∂Γ into the parameter space q(Kp,Ki), see Figure 3.4.
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Figure 3.4: Mapping the handling qualities in the complex plane to the left into the
parameter space on the right. Values inside of the borders fulfills the handling qualities in
both of the figures.

Let the characteristic polynomial p(s,q) = [1 s . . . sn]a(q) = [1 s . . . sn][an an−1 . . . 1]T

of the closed-loop system be the denominator of either (3.2) or (3.3) and the following
set

QIm(σ) := {q | p(σ + jω(σ),q) = 0, σ ∈ [σ−;σ+]},

be the set of parameters q(Kp,Ki) that gives closed-loop poles on the boundary ∂Γ of
the handling qualities or, in other words having a root pair at s = σ ± jω(σ) of (3.5) or
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(3.6). Then the following theorem1 is a way to construct a map between the handling
qualities and the parameter space q.

Theorem 1 (Boundary Representation Theorem, Ackermann, Kaesbauer)
Consider a polynomial family p(s,q) = [1 s . . . sn]a(q) and the set

QIm(σ) := {q | p(σ + jω(σ),q) = 0, σ ∈ [σ−;σ+]}

Now q ∈ QIm(σ) if and only if[
d0(σ) d1(σ) ... dn(σ)

0 d0(σ) ... dn−1(σ)

]
a(q) =

[
0

0

]

for some σ ∈ [σ−;σ+], where

d0(σ) = 1

d1(σ) = 2σ
...

di+1(σ) = 2σdi(σ)− [σ2 + ω2]di−1(σ), i = 1,2, . . . ,n− 1

[9]
When the map between the handling qualities and the parameter space is determined,
the controller can be designed by picking a Kp and Ki pair inside of the boundary and
then satisfying the handling qualities. If one prefers a more damped controller it is easy
to add another damping line in the complex plane and then apply the mapping theorem
again. The result will be a more narrow area in the parameter space.

To illustrate, consider an example of a situation when the longitudinal open-loop
system of the Alpha does not fulfill the handling qualities (see Figure 3.5). The Alpha has
a velocity of 0.4 Mach and an altitude of 10 km and it can bee seen that the short period
mode is slightly under-damped. By picking Kp = −3.4 and Ki = −2 the controller
increases the damping a bit and push the pole inside the boundary of the handling
qualities. The Alpha changes its dynamics as the altitude and the Mach number changes.
Therefore, the same controller cannot be used for all altitudes and Mach numbers. Figure
3.6 illustrates how the boundaries in the mapping theorem moves when the Mach number
increases.

3.5 Gain scheduling

Gain scheduling is the process of dividing a control design of a nonlinear system into a a
desing of a number of linear time-invariant controllers. Each linear controller will have
the same structure but different gains depending on the linearisation of the dynamics
at different Mach numbers and altitudes. While the gain scheduling technique is widely

1The complete proof can be found at [9, p. 240].
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Figure 3.5: These two figures gives an example of when the open-loop pole lay outside of
the handling qualities but when closing the loop and picking the gains inside the allowed
region in parameter space the handling qualities are met.
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Figure 3.6: Handling qualities for the Mach numbers 0.4, 0.5 and 0.6 mapped into the
parameter space of the closed loop system. The areas have high dependence on the Mach
number.

used the idea is rather old. It originates from the 1960’s and has successfully been used
in both aerospace and process control [10]. In the flight community the gain scheduled
controllers are often the starting point of control design. In this report two different gain
scheduled controllers has been adopted, one longitudinal and one in the lateral direction
(it assumes that the channels are decoupled), see section 3.2 and 3.3. Together they
serve as the baseline controller of the Alpha.

The most obvious drawback of the gain scheduling process is the amount of work the
design process takes. However, each step in the process is rather simple compared to
other approaches. One major reason that the gain scheduling approach is still popular is
that many safety certification requirements are specified in linear control theory. Below
is a short summary of how it has been implemented here.

1. The flight envelope is first divided into a fine grid of equilibrium points by Mach
number and altitude (see Section 2.7).
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2. The dynamics of the Alpha are approximated by a linearisation in each equilibrium
point and this is done numerically.

3. From each linearisation the open-loop transfer function is calculated.

4. Next step is to determine the closed-loop transfer function for the controller con-
nected to the open-loop system.

5. With Ackermann’s Boundary representation theorem the handling qualities are
mapped into the parameter space of the closed-loop system.

6. Finally the controller gains are picked by choosing a gain-values inside the mapped
curve in parameter space, such that the handling qualities are fullfilled.

7. The steps 2 to 6 are then repeated for each point in the envelope.

8. The final result is a mesh of controller gains covering the whole flight envelope. As
the Alpha moves through the envelope its controller interpolate between the gains
in the mesh.
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3.6 Result

This section presents the simulation results of the linear controller. Two different sim-
ulations were made and the first is showing steps in the controled variables, angle of
attack α and Euler bank angle φ. The second simulation shows coordinated turn, a
spiral motion towards the ground. Both simulations were carried out at an altitude of
4 km and with a Mach number 0.24.

3.6.1 Simultaneous step

This manoeuvre starts out from a longitudinal steady state trim with zero rotation rates
and a flight path angle of −10.6 deg. At time zero a pull-down is commanded with a
C∗ of -1 followed by step in the Euler bank angle of 20 degrees after five seconds (see
Figure 3.7). The manoeuvre tests both the behaviour of the longitudinal and the lateral
controller and the decoupling between them. It can be seen that there is not much
coupling between the axes. The small dip in the curve during the C∗ step comes from
that the proportional gain is feedback in an inner-loop to decrease the overshoot. Worth
to notice is the specially ”smooth”step response the Euler bank angle shows. The sideslip
angle is a bit oscillating since it it is not controlled. Some of the oscillation contributes
to the small dip in C∗.

In Figure 3.8 the actuator deflections are shown and it can be seen that none of the
actuators are close to saturation during the steps.
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Figure 3.7: Simultaneous performing a pull-down and a roll. The dashed lines shows the
reference signal.
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Figure 3.8: This figure show the deflection of the three actuators elevator (Ei), aileron
(Ao) and rudder (Ru).

3.6.2 Coordinated turn

At the same starting altitude of 4 km was a coordinated turn initiated, starting from a
steady level flight. The desired result of the coordinated turn is a spiral motion toward
the ground with a constant flight path angle and a constant turn rate of 4 deg/s, which
is the commanded turn rate or yaw rate ψ̇. The turn rate may appear small but the
maximum turn rate is at 8 deg/s and is only possible to achieve in parts of the envelope.

In Figures 3.9 and 3.10 the coordinated turn is shown in Earth coordinates, the more
circular in shape and more sine-shaped the better the coordination turn. The first part
of the manoeuvre is not circular because the Alpha starts out from a straight-level flight,
but after a while does the Alpha fall in the commanded turn rate and the turn is just
slightly elliptic.

The commanded values for C∗ and Euler bank angle φ are not constant. They change
with Mach number and altitude and they are taken from a trim table of coordinated
turns together with the rudder value. How the controlled variables change during the
envelope can be seen in Figure 3.11. In Figure 3.12 are the Euler angles bank, pitch and
yaw shown. The yaw angle starts out at zero and increases slowly the first seconds until
it falls in the commanded turn rate. In the end of the simulation the Euler yaw angle
has reached 200 degrees in 50 seconds, which (200/50=4) corresponds to the commanded
turn rate of 4 deg/s.
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Figure 3.9: Here is the coordinated turn shown in north coordinates and altitude.
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Figure 3.10: Here is the coordinated turn shown in north and east coordinates. The more
circular, the better coordinated turn.
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Figure 3.11: This figure shows the controlled variables and how they change as the Alpha
moves in the flight envelope. The controlled variables are commanded to make a coordinated
turn.

0 10 20 30 40 50
−50

0

50

φ
 [
d
e
g
]

0 10 20 30 40 50
−10

0

10

θ
 [
d
e
g
]

0 10 20 30 40 50
0

100

200

Time [s]

ψ
 [
d
e
g
]

Figure 3.12: The Euler angles during the coordinated turn.
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4
Nonlinear Control

This chapter will describe the design of a nonlinear controller using the backstepping
technique. The idea with backstepping is to use Lyapunov theory and in a recursive way
design the controller and at the same time guarantee stability.

The nonlinear controllers have a number of advantages compared to the linear con-
trollers. One of the major advantages is that a nonlinear controller is designed using
the nonlinear dynamics of the vehicle and thus designed in one piece, which can make
the controller globally valid. The linear counterpart is designed using linearisation and
is thus only valid locally. To deal with this the linear controllers are gain scheduled, a
process that is very time consuming.

The backstepping controller synthesised in this chapter is on a vector form and the
controlled variables are the angle of attack, sideslip angle, and the Euler bank angle phi.
They are controlled using pitch, roll, and yaw rate. The model is extended to include
actuator dynamics so that the rates are controlled by the moments, which in turn are
manipulated through the moments derivatives. Finally an integrator state is added to
handle modelling errors and to synthesis second order dynamics.

A related controller to backstepping is NDI (Nonlinear Dynamic Inversion) and the
design process differs only in a few steps. The NDI controller implemented will also have
actuator dynamics and the integrator states as the backstepping controller.

In the beginning of the chapter some Lyapunov theory will be presented, followed by
how it is implemented in backstepping and NDI design.

4.1 Lyapunov theory

The design of a backstepping controller uses Lyapunov theory, which is part of the design
process and guarantees stability. Before the backstepping procedure can be understood
one has to understand some basic Lyapunov theory, starting with the definition of sta-
bility and presenting the key theorem used in the nonlinear control design.
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A nonlinear system can be written as

ẋ = f(x), (4.1)

where f : D → Rn is a locally Lipschitz map from an open, connected domain D ⊂ Rn
and let x0 ∈ D be the initial point of the system at time zero. Further, the system
has an equilibrium at x = 0 ∈ D. Then the following definition will be used for the
equilibrium [11].

Definition 1
The equilibrium point is said to be

• Stable: if for each ε > 0 there exists a δ(ε) > 0 such that

‖x0‖ < δ ⇒ ‖x(t)‖ < ε, ∀ t ≥ 0

• Unstable: if not stable

• Asymptotically stable: if stable and attractive, i.e., there exists a r > 0, and for
each ε > 0 a T (ε) > 0 exist such that

‖x0‖ < r ⇒ ‖x(t)‖ < ε, ∀ ≥ T

Lyapunov theory is built upon mapping the states x of (4.1) on to a scalar function V
that can be thought as the total energy of the system. The time derivative V̇ along the
solution trajectories to (4.1) then expresses how the energy of the system changes over
time. If asymptotically stable, the system is moving to an equilibrium. The following
theorem is used in Lyapunov theory to prove stability of a system on a domain D [11].

Theorem 2
Let x = 0 be an equilibrium point of the system (4.1) and D ⊂ Rn be an open and
connected domain containing x = 0 and let V : D → R be a continuous, differentiable
scalar function such that

V (0) = 0, V (x) > 0 ∀x ∈ D \ 0 (4.2)

and
V̇ (x) = V T

x (x)f(x) ≤ 0. (4.3)

Then, the equilibrium x = 0 is stable.
Further, if

V̇ (x) = Vx(x)f(x) < 0 x ∈ D \ 0 (4.4)

then the equilibrium is asymptotically stable.

A continuous and differentiable scalar function V , which fulfills (4.2) and (4.3) is called
a Lyapunov function. The nonlinear controllers designed in this chapter needs a version
of the Theorem that covers when the system is time varying. It will not be covered here,
but can be found in [11, Chapter 4.5].
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4.2 Lyapunov based control design idea

To explain how the Lyapunov based control design works, consider the nonlinear system

ẋ = f(x,y), (4.5)

where x is the state vector and y is the input vector. If the control task is to bring the
state x to the origin and D is the largest set that x is defined on, then the problem turns
into how to design a control law y = u(x) so that the origin becomes asymptotically
stable on D. To show asymptotic stability Lyapunov theory can be used and Theorem 2
says that if we find a positive definite function V (x) and a function u(x) chosen such
that

V̇ = V T
x f(x,u(x)) < 0, x 6= 0, (4.6)

then the closed-loop system is asymptotically stable. It is important to note that the
theorem does not say how to choose the function or the control function, but if (4.6) is
satisfied it stability is guaranteed. One method of how to decide the control function is
backstepping.

4.3 Backstepping

Lyapunov theory is a tool to prove stability of a system, but it does not give any tool of
how to find the controller. Backstepping can be seen as one solution to that and gives a
systematic way of finding a family of possible control laws.

The backstepping designed in this chapter has the objective to control the angle of
attack, roll angle and sideslip angle and it is extended from the scalar case and written in
vector form, called block backstepping [12]. The linear controller in the chapter before
differs in the choice of longitudinal control variable. Here the angle of attack is the
controlled variable but in the linear controller it was the C∗ criteria, a mix between
pitch rate and normal acceleration. The main difference is that C∗ is a criteria designed
for the pilot and is easier to transfer to a stick motion, while the choice of angle of attack
is due to the restriction of having a control affine form (see Section 4.3.1). With the
use of angle of attack there has to be a mapping between stick motion, desired aircraft
motion and angle of attack change. A change in angle of attack of course gives a change
in C∗ and vise versa. This is important to keep in mind when comparing the linear and
the nonlinear controller.

In the following pages the design process of a backstepping controller and an NDI
controller are shown.
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4.3.1 Control affine form

A general backstepping system has to be on a lower triangular form as the system,

ẋ = f(x,y)

ẏ1 = h1(x,y1,y2)

...

ẏi = hi(x,y1, . . . ,yi+1)

...

ẏm = hm(x,y1, . . . ,ym,u).

(4.7)

where x ∈ Rn, yi ∈ Rm, hi ∈ Rn, f ∈ Rm, the control input u ∈ Rm. When the
system is written on vector form it is called block backstepping. Backstepping is made
in a recursive manner and a lower subsystem of (4.7) is used to form a virtual control
law y = yd for a subsystem one level higher and u is the control input for the lowest
subsystem. By designing virtual control laws in recursive steps and a Lyapunov function
for the first system is known, higher order system can be controlled as long as they are
on a lower triangular form.

In flight dynamics the restriction of having a system on a lower triangular form means
that the actuators should only give moments and their force contribution should be small
enough to be neglected. During control design it is found that forces from the actuators
of the Alpha indeed were not small and this was handled by adding the actuator forces
as an error to f(x,y). In addition of having a lower triangular system the following
assumptions must hold [13]:

1. The lift and side force coefficients depends only on α and β.

2. The altitude and Mach number vary slowly and their time derivatives are neglected.

4.3.2 Controlled variables and objective

In this backstepping design there will be only four subsystems as in (4.7). However, we
will start the design with the most basic system

ẋ = f(x) + g(x)y

ẏ = h(y) + ku,
(4.8)

where the controlled outputs are the angle of attack, sideslip angle and the Euler bank
angle

x = [α β φ]T,

and the virtual control vector used is the turn rates

y = [p q r]T.
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By comparing terms, the dynamics of Alpha (2.6), (2.8), (2.10) can be written on the
form (4.8) with

f(x) =


− L(x)
V m cosβ
Y (x)
V m

0

 (4.9)

,

g(x) =

− cosα tanβ 1 − sinα tanβ

sinα 0 − cosα

1 sinφ tan θ cosφ tan θ

 . (4.10)

and
h(y) = −I−1(y × Iy), k = I−1. (4.11)

In the above expression
L(x) = −FTx sinα+ FTz cosα (4.12)

and
Y (x) = −FTx cosα sinβ + FTy cosβ − FTz sinα sinβ (4.13)

equals the lift and side force and I is the moment of inertia tensor. The moments

M b = [Mxb Myb Mzb]
T

in (2.6) will act as the control variable and will be denoted u from now on.

4.3.3 Change of coordinates

The objective of the flight control system is to follow the reference

xc = [αc βc φc]
T (4.14)

and not move the state vector x to its origin (only the sideslip angle should be controlled
to zero). Therefore the formulation of (4.8) is modified to a tracking problem with a
smooth time varying reference signal with the aim of bringing the error

x̃ = x− xc (4.15)

to zero. In the rest of the chapter the tracking formulation

˙̃x = f̃(x̃,t) + g̃(x̃,t)y

ẏ = h(y) + ku
(4.16)

is used with the new system f̃ equal to

f̃(x̃,t) = f(x̃+ xc)− ẋc (4.17)

and g̃ to
g̃(x̃,t) = g(x̃+ xc). (4.18)
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4.3.4 Actuator dynamics and integral state

The model in (4.16) is fairly easy to extend to include actuator dynamics and an integral
state without making backstepping design much more complex. To add a first order
actuator state a third row

u̇ = v (4.19)

is added to (4.16) and from now on is it the moment derivative v ∈ R3 that is the
controller input. In the code implementation, the moment derivatives have to be mapped
to the corresponding surface deflections. This is done by linearising the moments in real
time and solving

v =
∂Mb

∂t
=
∂Mb

∂δ
|δ0
∂δ

∂t
(4.20)

together with the actuator dynamics (2.15) to get the surface deflections δ.
By adding the state

ξ̇ = −Aξξ + x̃ (4.21)

to (4.16) the controller will include a ”leaky integral” action, where Aξ ∈ R3×3 is a
”small” diagonal positive semidefinite matrix. Integral action is used both to handle
modelling errors and to give the system second order dynamics. The extended model
with integrator state and actuator dynamics has the following form

ξ̇ = −Aξξ + x̃

˙̃x = f̃(x̃,t) + g̃(x̃,t)y

ẏ = h(y) + ku

u̇ = v.

(4.22)

The next step in the backstepping design is to recursively form the virtual control laws
and in the end the input control law v.

4.3.5 Error variables

We introduce the two virtual control laws yd and ud. Each one of them will be designed
to stabilise the subsystem one ”integration level above” so that yd will stabilise the x̃
dynamics and ud will stabilise the y dynamics in (4.22). Introducing the error variables

z1 = y − yd(x̃,t)

z2 = u− ud(x̃,z1,t)
(4.23)

and forcing them to zero makes y and u go towards their desired virtual control law
values yd, ud and stabilising the system.

If the system is rewritten in the new error variables it becomes

ξ̇ = −Aξξ + x̃

˙̃x = f̃(x̃,t) + g̃(x̃,t)(z1 + yd(x̃,t))

ż1 = h(z1,t) + k(z2 + ud(x̃,z1,t))− ẏd(x̃,y,t)

ż2 = v − u̇d(x̃,z1,z2,t),

(4.24)
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where the notations ẏd and u̇d refers to total time derivative along the solution trajectory.
To calculate the ẏd and u̇d the time derivative of the lift and side forces have to be
known, which depend on the state vector. To be able to differentiate them, the forces
were approximated by two polynomials.

The question remains of how to chose the virtual control laws to stabilise the system.
In the next section Lyapunov theory is applied to show stability and at the same time
chose the two virtual control laws.

4.3.6 Block backstepping control law

Stability of the system (4.24) is shown by introducing the following positive definite
Lyapunov function

V (ξ,x̃,z1,z2) =
1

2
‖ξ‖2Qξ +

1

2
‖x̃‖2Qx +

1

2
‖z1‖2Qz1 +

1

2
‖z2‖2Qz2 , (4.25)

where the matrices Qξ ∈ R3, Qx ∈ R3, Qz1 ∈ R3 and Qz2 ∈ R3 are all diagonal positive
definite and used as scaling between the variables. To achieve a stable system the virtual
control laws yd, ud and the control law v are chosen such that

V̇ (ξ,x̃,z1,z2) = ξTQξξ̇ + x̃TQx
˙̃x+ zT

1Qz1 ż1 + zT
2Qz2 ż2

= ξTQξ(−Aξξ + x̃) + x̃TQx(f̃(x̃,t) + g̃(x̃,t)(z1 + ỹd))

+ zT
1Qz1(h̃(z1,t) + k(z2 + ud)− ẏ) + zT

2Qz2(v − u̇d)

(4.26)

becomes negative definite and Theorem 2 ensures stability. It follows that by using the
two virtual control laws

yd = g̃(x̃,t)−1(−f̃(x̃,t)−Axx̃−Q−1
x Qξξ)

ud = k−1(−h(z1,t)−Az1z1 + ẏd −Q−1
z1 g̃(x̃,t)TQxx̃)

(4.27)

and the input control law

v = u̇d −Az2z2 −Q−1
z2 k

TQz1z1 (4.28)

(4.26) becomes

V̇ (ξ,x̃,z1,z2) = −ξTQξAξξ − x̃TQxAxx̃− zT
1Qz1Az1z1 − zT

2Qz2Az2z2. (4.29)

The matrices Aξ ∈ R3×3, Ax ∈ R3×3, Az1 ∈ R3×3 and Az2 ∈ R3×3 are all diagonal and
positive semidefinite and (4.29) becomes negative semidefinite. It is possible to have off
diagonal elements but keeping them diagonal decouples the system.

If the control laws (4.27) and (4.28) are inserted into (4.24), the closed-loop system
takes the following form

ξ̇ = −Aξξ + x̃

˙̃x = −Axx̃+ g̃(x̃,t)z1 −Q−1
x Qzξ

ż1 = −Az1z1 + kz2 −Q−1
z1 g̃(x̃,t)TQxx̃

ż2 = −Az2z2 −Q−1
z2 k

TQz1z1,

(4.30)
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where it can be seen that the matrices Aξ, Ax, (Az1 and Az2) can be used to tunethe
desired dynamics of the system.

4.3.7 NDI

Nonlinear Dynamic Inversion is very related to the backstepping controller shown above
[14]. The difference between the NDI controller and the backstepping controller is that
NDI uses that the system is time-scale separated to simplify the control laws (4.27) and
(4.28) by dropping terms. By time-scale separation means that the system has a ”slow”
part and a ”fast” part [15]. The dynamics of x are considered as slow and y dynamics as
fast in (4.8). If the y dynamics are fast enough they can successfully be used as virtual
control laws for the x system.

The NDI controller will have the following simplified control laws

yd = g̃(x̃,t)−1(−f̃(x̃,t)−Axx̃−Q−1
x Qξξ)

ud = k−1(−h(z1,t)−Az1z1)

v = −Az2z2.

(4.31)
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4.4 Result

This section presents the result of the nonlinear simulations of the two nonlinear control
laws backstepping and NDI.

First, a simulation similar to the simultaneous step in the linear controller is shown.
Next, two different simulations illustrates the performance of steps with different am-
plitude. Also a ”staircase” structured simulation is illustrated to show the result of
commanding an angle of attack in Earth coordinates.

Finally, the backstepping controller is compared to the NDI controller.

4.4.1 Backstepping simulations

The following simulations were performed with the backstepping controller. The first
manoeuvre starts out from a longitudinal trim with zero rotation rates at 4 km, a flight
path angle of −10.6 deg and a Mach number of 0.24. After five seconds a step is in-
troduced in both the angle of attack and the Euler bank angle. The sideslip angle is
commanded to stay at zero during the whole manoeuvre. After 15 seconds the Alpha
is commanded to pull-up and at the same time bank back to the initial position. In
Figure 4.1 it can be seen that the resulting responses are ”smooth” and satisfying with
no coupling between the axis and the sideslip angle returns shortly after the steps. In
Figure 4.2 are the corresponding surface deflections shown.
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Figure 4.1: A pull-down simultaneous as a roll. The reference signal is in dashed lines.

In the next simulation, steps of 10 deg, 15 deg and 20 deg in angle of attack was
performed. The results are shown in Figure 4.3. They were performed at an altitude of
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Figure 4.2: This figure shows the performance of the surface deflections.

0 2 4 6 8 10
0

10

20

30

α
 [
d
e
g
]

0 2 4 6 8 10
0

5

10

15

C
*

TIme [s]

Figure 4.3: This figure shows three steps with the amplitudes 10 deg, 15 deg and 20 deg in
angle of attack. In the upper figure is the angle of attack shown and in the lower figure is
the corresponding C∗. The reference signal is shown in dot dashed lines.

1 km and a Mach number of 0.35.
First does the simulation show how the controller perform at a lower altitude with

different step amplitudes but secondly how the corresponding move would look like in
the C∗ parameter used in the linear controller. It can be clearly seen that the high angle
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of attack, 20 deg, is troublesome for the controller and there is some oscillation.
More interesting is how the commanded steps look like in the C∗ parameter. A step

in angle of attack gives a short but sharp ”bump” of two seconds in C∗ and then slowly
decreasing. The slowly decreasing C∗ is due to that the Mach number is decreasing and
the lift force goes down. The figure also shows that an extra commanded angle of attack
of 5 deg gives a C∗ of around 3 deg. This illustrates the need of a mapping between the
desired pilot motion and the commanded angle of attack.

The next figure shows steps of 20 deg, 40 deg and 60 deg in the Euler bank angle (see
Figure 4.4). They were all performed at an altitude of 1 km and a Mach number of 0.35.
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Figure 4.4: This figure shows three steps in the Euler bank angle of 20 deg, 40 deg and
respectively 60 deg.

In the lower figure are the aileron deflection shown and it can be seen that the curves are
triangular shaped because of the rate limit. When a step of 60 deg is commanded the
controller is demanding a deflection beyond −20 deg and it is saturated and therefore
the larger overshoot.

The next simulation is started at 4 km and at a Mach number of 0.24. The simulation
is as long as 50 seconds and the Alpha will be flying down to an altitude below 2 km.

The simulation starts out in a longitudinal trim and after a second a pull-down of
5 deg is commanded and ten seconds later one more pull-down is commanded. The
pattern is repeated until an angle of attack of 0 deg is reached, when instead pull-ups are
commanded until the Alpha reaches the initial angle of attack of 15 deg. The resulting
flight envelope has a ”staircase” structure (see Figure 4.5).

The manoeuvre shows the performance of pull-ups and pull-downs at different alti-
tudes and initial conditions and each step is alike. It can also be seen how the elevator is
working with different dynamic pressure due to the altitude and Mach number change.
For each step a smaller deflection is needed. In Figure 4.6 the flight in Earth coordinates
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Figure 4.5: This figure shows pull-down and pull-ups by 5 deg in angle of attack in a
”staircase” structure. The simulation started at an altitude of 4 km. The reference signal is
in dashed lines.

is shown. It illustrates that with an altitude below 2 km (and a higher Mach number) a
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Figure 4.6: In this figure the Alphas movement is shown in Earth coordinates when per-
forming the staircase steps in 4.5.

commanded angle of attack of 15 km is a powerful pull-up, even though it was a straight
level flight initially. This shows again the difference between the C∗ parameter and the
control of angle of attack.
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4.4.2 Backstepping and NDI

In Figure 4.7 and 4.8 the backstepping controller is compared to the NDI controller. The
simulations took place at an altitude of 1 km and a Mach number of 0.35. In the first
simulation (Figure 4.7) a step in angle of attack of 5 deg was ordered by both controllers.
In the next simulation (Figure 4.8) a step in the Euler bank angle of 20 deg was made.

Both controllers are designed to have the similar characteristics as far as possible
and it can be seen in Figure 4.7 that both controllers have always the same longitudinal
response and actuator usage. The response to a step in Euler bank angle shows that the
NDI controller is slightly slower, but at the same time it has slightly more rate saturated
actuator. More comparisons between the controllers are made in the clearance test in
the next chapter.
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Figure 4.7: This figure shows a comparison between the backstepping controller (solid)
and the NDI controller (dashed). A step of 5 deg in angle of attack is performed at 1 km
and Mach number 0.35. The reference signal is in dot-dashed lines.
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Figure 4.8: This figure shows a comparison between the backstepping controller (solid)
and the NDI controller (dashed). A step of 20 deg in Euler bank angle is performed at 1 km
and Mach number 0.35. The reference signal is in dot-dashed lines.
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5
Clearance of flight control laws

The Alpha has to be functional at different altitudes, Mach numbers and manoeuvres.
Therefore a design is put into further development a computer based clearance test is
both a cheap and fast way to test the performance of the control laws.

When commanding high angle of attack and rotation rates the dynamics of the
Alpha will be more nonlinear and cross-couplings between different axis are stronger.
Demanding flight commands can both saturate the control surfaces and their rates,
which give more nonlinearities that are not included in the control law design.

It is also important to know how sensitive the Alpha is to a change in the position
of the mass center or other parameters.

In this chapter it is investigated how the control laws withstand a clearance test of
worst pilot input. The test was performed with a global optimization method called
differential evolution. The chapter starts with a brief explanation of global optimisation
and differential evolution, followed by the clearance test.

5.1 Global optimisation methods

The clearance test will be performed with a global optimisation method called differential
evolution, which is a statistical method. The most widely used statistical method in
the industry is Monte Carlo simulations, which are more computationally expensive in
contrast to global optimisation methods [16].

Other approaches are analytical linear robustness tests as gain and phase margins or
nonlinear continuation or bifurcation analysis against single parameter variations.

In the following sections global optimisation and differential evolution will be briefly
introduced.

41



CHAPTER 5. CLEARANCE OF FLIGHT CONTROL LAWS

5.1.1 Problem formulation

This section will only serve as a brief introduction to global optimisation and more can
be read in the original paper on differential evolution [17].

A general optimisation problem is to find the ”best” or optimal solution to a problem
that can be stated as

max
x

f(x) (5.1)

subject to
x ∈ Rn (5.2)

and the constraints
xmin ≤ x ≤ xmax, (5.3)

where f(x) is called the cost or object function and x is called optimisation parameters.

5.1.2 Differential evolution algorithm

Differential evolution is a global search method that is easy to use with few control
parameters and it is also easy to run in parallel on different cores [17]. The algorithm
starts by choosing a first population of N parameter vectors by random. During the
optimisation the population size stays fixed for each iteration but the elements mutate
by combining the parameters from two individuals and add them to a third population
member. If the new mutation gives a lower objective function value than the original it
will take its place in the population. It can be seen as the population evolve from the
iteration before in a similar way as in a living population evolve for each generation by
survival of the ”fittest”. There are different variants of the differential evolution algo-
rithm but the one used here works in the following way [3];

Initialise a population
Evaluate fitness for each member
while not ready

for each member xj in population of size N
Mutation;
Crossover;
Evaluate;
Select;

end
end

In the mutation step three different individuals (xj1 xj2 xj3) are selected at random
to build up a mutation vector vj through

vj = xj1 + F (xj2 − xj3). (5.4)

None of the three individuals can be the current member xj in the ”for loop” and here F
is a scale factor that can be used as a tuning parameter, but its default value was used.
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Next, a new member uj is formed by component-wise selecting at random parts from
the mutant vector vj or the current member xj with some fixed probability and this step
is called crossover. Then, the objective function value f(uj) is evaluated and compared
to the objective value of the original member xj . The one with the lowest objective
function value is selected and kept for the next iteration.

5.2 Clearance test

Before finishing the design of a control law it is important to do a clearance test. The
more that can be foreseen in a computer simulations before a ”real” flight test the better,
since changes after the simulation stage can be both expensive and time consuming.

The Alpha will fly over a wide range of altitudes and Mach numbers. When the
Mach number changes rapidly many aerodynamic parameters will change rapidly and
it is therefore important to know how the Alpha will respond to that. The behaviour
when commanding high angle of attack and roll combinations are also interesting.

The following clearance test will focus on finding the ”worst-case”pilot input as in [18]
and [3]. By worst-case pilot input means a pilot stick combination that gives the largest
overshoot, or even instability. The overshoot for a step is defined as,

overshoot =
actual− commanded

commanded
. (5.5)

The test will also include the effect of moving the center of mass as well as lowering the
actuators deflection rate. A saturated deflection rate can be one reason for PIO (Pilot
Induced Oscillations).

5.2.1 Pilot input parameterisations

To find the worst-case pilot input three different parameterisations of stick combinations
were used. They are presented below and each one is a sequence of steps with different
amplitudes and step length.

Parameterisation 1 In the first parameterisation the optimiser is commanding a
sequence of pull-up and pull-down steps in angle of attack α and Euler bank angle φ,
with the fixed amplitudes,

{0 ∆αmax}
and

{∆φmin ∆φmax}.
By ∆ means an α or φ value ∆ degrees from the straight level trim value of α and φ.
The search space x as in (5.2) is defined as the relative time instances

[∆t1α ∆t2α ∆t3α ∆t4φ . . . ∆t7φ ] ∈ [0.5 4] sec,

to perform the steps. Totally, the angles will change at seven different time instances ti
(three different commanded angle of attack and four different Euler bank angle), where
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tiα =
∑iα

1 ∆tiα and tiφ =
∑iφ

4 ∆tiφ . Figure 5.1 illustrates the step sequence in only
the angle of attack, but it looks equivalent for the Euler bank angle. After the step
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Figure 5.1: Illustration of the step sequence in Parameterisation 1 in angle of attack. The
sequence in Euler bank angle looks equivalent.

sequence the trim values in angle of attack and Euler bank angle (αtrim and φtrim) are
commanded.

The aim of the optimiser is to find combinations of ∆t1 to ∆t7 that gives the worst-
case, which means the largest overshoots and sideslip. The optimisation problem is
stated as to maximise a combination of the overshoot in angle of attack, Euler bank
angle and sideslip angle. The cost function is defined as

f(x) = β2
max + α2

overshooot + φ2
overshoot. (5.6)

Parameterisation 2 This parameterisation is similar to the first, but the steps in
angle of attack are also allowed to take values below the trimmed value,

{∆αmin ∆αmax}.

The steps in Euler bank angle are done with the same fixed amplitude as in Parameter-
isation 1,

{∆φmin ∆φmax}.

As in Parameterisation 1 the optimiser is finding combinations of

[∆t1α . . . ∆t4α ∆t5φ . . . ∆t8φ ] ∈ [0.5 4] sec,

that gives the worst-case pilot input. The step sequence is illustrated in Figure 5.2.
The same cost function (5.6) as in Parameterisation 1 were used.
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Figure 5.2: Illustration of the step sequence in Parameterisation 2 in angle of attack. The
sequence in Euler bank angle looks equivalent.
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Figure 5.3: Illustration of the step sequence in Parameterisation 3 in angle of attack. The
sequence in Euler bank angle looks equivalent.

Parametrisation 3 The third parameterisation will allow the optimiser to vary both
the time instances of the steps as well as their amplitudes, see Figure 5.3. As in the first
two parameterisations both angle of attack and Euler bank angles are commanded and
the following will be the optimisation parameters,

[∆t1 . . . ∆t8] ∈ [0.5 4],

[∆α1 . . . ∆α4] ∈ [∆αmin ∆αmax]

and
[∆φ1 . . . ∆φ4] ∈ [∆φmin ∆φmax].

Here, the ∆t1 to ∆t4 are the time instances of when a step in angle of attack is applied
with amplitude ∆α1 to ∆α4 from the trim value and ∆t5 to ∆t8 tells when a step with the
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amplitude ∆φ1 to ∆φ4 from the trim value in Euler bank angle. There 16 parameters in
total, which makes the convergence slower compared to the first two parameterisations,
but it is also much more general in allowed pilot input. In the end of the step sequence,
the trim values in angle of attack and Euler bank angle (αtrim and φtrim) are commanded.
As in the first two parameterisations the optimiser is looking for how to maximise the
angle of attack and the Euler bank angle. The cost function is defined as

f(x) = α2
max +

1

4
φ2
max. (5.7)

The clearance test was applied on the two nonlinear controllers, backstepping and
NDI. All three parameterisations were tried with both controllers at the two altitudes
2 km and 4 km. The first two parameterisations were used to build up rough maps of the
controller limits with far less numbers of iterations (fixed at 300) than Parameterisation 3,
which was run until convergence. The maps were done by running several optimisations,
but with increased maximum and minimum amplitudes (∆αmin, ∆αmax, ∆φmin and ∆φmax)
for each optimisation. This is a way to illustrate the problem more than giving a proof
of concept of how to make a clearance test with global optimisation.

In one test the center of mass was moved 5% aft (around 25 cm) to see the effect it
had on the backstepping controller and this was only done at the lower altitude of 2 km.
Also, the actuators deflection rate were decreased to as low as 30 degrees per second to
search for PIO at the altitude 2 km(see Section 5.2.2). In the end, the two controllers
were tried with Parameterisation 3 at 4 km again with an actuator deflection rate of 50
and 100 degrees per second. In Table 5.1 all simulations are summarised.

Table 5.1: A summary of the different clearance tests. ∆xcg denotes a movement of the
mass center in percent.

Test Parametrisation Alt [km] Rate lim [deg/s] ∆xcg % ∆α [deg] ∆φ [deg]

1 1 2 50 0 [0 12] [−50 50]

2 1 2 30 0 [0 12] [−50 50]

3 1 2 50 5 [0 12] [−50 50]

4 2 4 50 0 [−8 8] [−50 50]

5 2 4 100 0 [−8 8] [−50 50]

6 3 2 50 0 [0 8] [−38 38]

7 3 4 50 0 [−4 4] [−38 38]

5.2.2 Pilot induced oscillations

Pilot Induced Oscillation (PIO) is an unwanted oscillation of the aircraft that comes from
an extreme combination of the pilot input and the aircraft. There are many reasons for
PIO but some of them are, rate saturated actuators, high gain controllers, system delays
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and phase lags. One of the first and most famous cases of PIO happened on the first
flight of the X-15 [19]. The reason of the PIO was rate saturated actuators.

When the actuator rate saturates it causes a ”time delay” and a ”gain reduction” as
in Figure 5.4. The time delay initiates an unwanted oscillation of the aircraft, which can
be seen in Figure 5.5. In the clearance test many PIO showed up, both because of less
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Figure 5.4: This figure illustrates the upcoming of the ”time delay”Td and ”gain reduction”
Gr when the actuators saturates in a PIO. The solid line is the controller output and the
dashed line is the actual actuator deflection.
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Figure 5.5: This figure shows a PIO coming from saturated actuators. The top figure
shows a pull-down in the angle of attack and the lower shows the elevator deflection. The
blue dashed lines correspond to a rate limit of 50 deg/s and the blue solid lines when there
is no rate limit exists. The green dashed line is the commanded signal. The PIO is so strong
that it is unstable.

dense atmosphere at high altitudes and of experimenting with different rate saturations.

47



CHAPTER 5. CLEARANCE OF FLIGHT CONTROL LAWS

5.3 Results

In this section the result from the clearance test are presented. The clearance test was
applied on the two nonlinear controllers using the three parameterisations described in
5.2.1. A summary of the different test can be found in Table 5.1.

Test 1 This test was carried out at an altitude of 2 km, a Mach number of 0.35 and a
flight path angle of −23.6 deg, when the pilot needs much maneuverability for tracking
the landing site. The test was done with Parameterisation 1. In Figure 5.6 the result
for the backstepping controller is shown. Each colored square in the figures corresponds
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Figure 5.6: Clearance Test 1 for the backstepping controller. To the left is the angle of
attack overshoot and to the right the Euler bank angle overshoot.

to the worst-case overshoot after 300 iterations in one optimisation with a fixed ∆α
(x-axis) and ∆φ (y-axis). The grey scale illustrates the overshoot. The axis ∆φ and
∆α are the maximum fixed step size the optimiser can command from the trim point
in parameterisation 1 (see Figure 5.1). For example, when ∆φ = 50 deg the optimiser
is commanding steps from −50 deg to 50 deg. The figures are truncated at an overshoot
larger than 1 (overshoots larger than 100%) and the black areas at the edges shows points
when the Alpha becomes unstable and even departure so far that it reaches outside the
limits of the aerodata of the angle of attack and Mach number.

In the left of Figure 5.6 the overshoot of the angle of attack is shown and it can be
seen that for small commanded angle of attack and large commanded bank angles the
overshoots are large. This shows that the decoupling is not ideal and large commanded
bank angles affects the angle of attack. The right figure shows the overshoot in Euler
bank angle. The backstepping controller is stable under most of the possible commanded
angles. Worth to notice are the dark spots in the lower right corners of the figures. In
those spots the optimiser holds a pull-up as long as possible until the Alpha stalls.

In Figure 5.7 the same test is carried out on the NDI controller. The dark areas are
significantly larger than for the backstepping controller. Some of it could be due to the
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Figure 5.7: Clearance Test 1 for the NDI controller. To the left is the angle of attack
overshoot and to the right the Euler bank angle overshoot.

hand made tuning of the control parameters.

Test 2 This test was carried out in the same way as Test 1, but the actuators rate
limits were decreased to 30 deg/s. The result is shown in Figures 5.8 and 5.9. The lower
rate limit affects both controllers and it can be summarised that both controllers are
tuned too fast for the lower rate limit and specially the NDI controller. The result of
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Figure 5.8: Clearance Test 2 for the backstepping controller with an actuator rate limit of
30 deg/s. To the left is the angle of attack overshoot and to the right the Euler bank angle
overshoot.

the lower rate limit is that the controller commands an actuator position that cannot be
reached fast enough, with the effect of a gain reduction and a time delay as explained in
the section about PIO (see section 5.2.2).

In Figure 5.10 the worst-case is shown for the NDI controller with fixed steps ∆φ =
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Figure 5.9: Clearance Test 2 for the NDI controller with an actuator rate limit of 30 deg/s.
To the left is the angle of attack overshoot and to the right the Euler bank angle overshoot.

22 deg and ∆α = 3 deg in Parameterisation 2. The saturated actuators can be seen
in Figure 5.11. Note how the controller manage to bring the Alpha back from the
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Figure 5.10: This figure shows the controlled variables in the worst-case of the NDI con-
troller when ∆α = 3 deg and ∆φ = 22 deg in Parameterisation 1.

oscillation after 10 seconds.

Test 3 In this test the center of mass was moved 5% aft, which corresponds to around
25 cm), but otherwise the same setup as in Test 1.

In Figure 5.12 the result for the backstepping is controller presented . The area of
stable amplitudes has shrunk and the overshoots in angle of attack are on the average
larger.

Test 4 This simulation shows the control outcome at the higher altitude of 4 km, a
Mach number of 0.24 and a flight path angle of −10.6 deg (see Figure 5.13). The test
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Figure 5.11: This figure shows the actuators in worst-case of the NDI controller when
∆α = 3 deg and ∆φ = 22 deg in Parameterisation 1.
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Figure 5.12: Clearance Test 3 for the backstepping controller with the center of mass
moved 5% aft. To the left is the angle of attack overshoot and to the right the Euler bank
angle overshoot.

was carried out with Parameterisation 2.
The overshoots are still small as on the lower altitude in Test 1, but the higher

altitude affects the Alpha in the longitudinal axis. This could be due to the fact that the
Alpha needs a larger angle of attack of 15 deg to keep the trim at the higher altitude.
This compared to only 5 deg at the altitude 2 km and each increase in ∆α step size is
tougher for to control at the higher angle of attack.

Test 5 This simulation shows the improved performance when the rate limit is doubled
to 100 deg/s at an altitude of 4 km, see Figure 5.14. As in Test 4, the test was carried
out with Parameterisation 2. The white areas are larger compared to when the rate limit
was set to 50 deg/s and also the overshoots are smaller. This confirms that the actuator

51



CHAPTER 5. CLEARANCE OF FLIGHT CONTROL LAWS

∆ α [deg]

∆
 φ

 [
d

e
g

]

 

 

0 2 4 6 8

0

10

20

30

40

50

0

0.2

0.4

0.6

0.8

1

∆ α [deg]
∆

 φ
 [

d
e

g
]

 

 

0 2 4 6 8

0

10

20

30

40

50

0

0.2

0.4

0.6

0.8

1

Figure 5.13: Clearance Test 4 for the backstepping controllers at an altitude of 4000. To
the left is the angle of attack overshoot and to the right the Euler bank angle overshoot.
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Figure 5.14: Clearance Test 5 for the backstepping controllers at an altitude of 4000 and
a actuator rate limit of 100 deg/s. To the left is the angle of attack overshoot and to the
right the Euler bank angle overshoot.

rate limit is important to consider in the control design process.

Test 6 and 7 In Test 6 and 7 the optimiser was allowed to try the more general
manoeuvres in Parameterisation 3 at the altitudes 2 km and 4 km. In Table 5.2 there
is a summary of the test results. The column max α and max φ in Table 5.2 means
the maximum α and φ measured on the whole step sequence of the worst-case. Test
6.1 to 6.7 shows that the more general parameterisation does not result in combinations
that gives a departure within the ”cleared” (the non black areas with ∆α ∈ [0 8]
and ∆φ ∈ [−38 38]) areas in figures 5.6 and 5.7. This indicates that easiest way to
parameterise a clearance test is to let the optimiser command values only at the minimum

52



CHAPTER 5. CLEARANCE OF FLIGHT CONTROL LAWS

Table 5.2: This table shows a summary of the Tests 6 and 7. The backstepping is denoted
B and the NDI controller N. Max α and max φ are the maximum deviation from the trim
values that the optimiser could find.

Test Controller Max α [deg] Max φ [deg]

6.1 B 10.8 41.6

6.2 B 10.5 41.3

6.3 B 8.5 41.6

6.4 B 8.65 42

6.5 N 10.5 40.4

6.6 N 13.6 36.5

6.7 N 8.5 42.4

7.1 B 129.7 254

7.2 B 194 812

7.3 B 4.5 41.2

7.4 N 194.7 183

7.5 N 194.8 199.3

and maximum allowed values. In Test 7.3 it can be seen that the optimiser sometimes
get caught in a local maximum.

In Figure 5.15 the worst case in Test 6.1 is shown. The optimiser starts out by
commanding a maximum angle of attack and Euler bank angle simultaneously, to next
roll back to a minimum roll angle. The rudder is too slow to keep the sideslip and that
combined with the high angle of attack of 20 deg gives the large error. The high angle
of attack makes the Mach number fall rapidly, which also strains the controller since it
is assumed that the Mach number is slowly varying. The controller however, keeps the
Alpha stable during the whole flight.

In Figure 5.16 the convergence plot of the simulation is shown. It can be seen that
the more general Parameterisation 3 needs around 5000 iterations to converge.
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Figure 5.15: The controlled variables found in Test 6.1 in Table 5.2.
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Figure 5.16: The convergence plot of Test 6.1 in Table 5.2. On the y-axis is the cost
function and on the x-axis number of function evaluations.
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6
Conclusion

In this report we have shown the design procedure of a control law built on a classic
design with gain scheduling, as well as two nonlinear designs built on block backstepping.
Both the linear and the nonlinear control methods proved to give satisfying results.

The linear control design has two different controllers, one for the lateral and one
for the longitudinal system, which increases the design time compared to the nonlin-
ear controllers. The process of gain scheduling the controller is also time consuming,
but was fastened by applying a mapping theorem. On the other hand, the block back-
stepping controller was designed in one piece for the whole envelope, which decreases
the development time compared to the linear controller. Backstepping relies on a deeper
knowledge of mathematics, which makes the control law much more complex and difficult
to troubleshoot than the linear controller.

For a stable airframe as the Alpha, both the linear and the nonlinear control laws
gives satisfying results and the controller performance does not motivate the usage of a
nonlinear controller. The advantage of using a nonlinear controller is first found when
tuning the gains. Retuning the backstepping controller is done fast but redoing the gain
scheduling for the linear controller takes a longer time.

The computer based clearance test is a cheap method to investigate the robustness
of the control design. To set up a clearance test with a global optimiser is not difficult
and the hardest part is to setup a good cost function that will have proper scaling
and constraints. By using a global optimiser the computer power is used much more
efficiently than in older methods.

The clearance test showed that the nonlinear control designs were very sensitive to
rate saturation of the actuators, which is therefore important to consider in the control
design.

Future Research

• Apply a method to handle rate saturations.
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• Construct a clearance test that includes changes of aerodynamic parameters.

• Continue with the control law design to include landing.

• Construct a map between a pilot-input variable as C∗ and the controlled angle of
attack in backstepping.
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