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Components of the Macrolide Resistome
David Lund
Department of Mathematical Sciences
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Abstract

Antibiotic resistance is growing among pathogenic bacteria all across the world,
and has been called one of the most serious threats that humanity is facing. Typi-
cally, bacteria are able to develop resistance as a result of acquiring specific antibi-
otic resistance genes from other bacteria though so called horizontal gene transfer.
One commonly used class of antibiotics for which resistance is spreading rapidly is
macrolides. While a lot of research has been devoted to studying the genes that
confer resistance to these antibiotics, the evolution of these macrolide resistance
genes has not been determined. It has been suggested that resistance determinants
that eventually find their way into the clinical environment originate from external
environments, however the mechanisms behind this flow of resistance is not known.
To prevent resistance to macrolide antibiotics from spreading further, it is there-
fore important to characterize how the resistance genes have evolved. Furthermore,
knowledge about which genes are present in what environments will help with an-
ticipating which genes might mobilize into the clinical environment in the future,
and facilitate preemptive measures being taken.
This project aims to use a bioinformatic approach to characterize novel macrolide
resistance genes, applying a computational method called fARGene. To achieve
this, profile hidden Markov models have been developed that are able to identify two
types of genes that confer resistance to macrolides, mediated by enzymes called Erm
23S rRNA methyltransferases and Mph macrolide phosphotransferases respectively,
from biological sequencing data. The models have been used to analyze data repre-
senting over 400,000 bacterial genomes, and over 14 terabases of metagenomic data.
Hundreds of gene families have been identified from the bacterial genomes, most of
which are previously uncharacterized, and these have been analyzed based on their
phylogenetic relationships. The results revealed a large variety of uncharacterized
macrolide resistance genes that seem to have evolved primarily in bacteria from the
phyla Firmicutes and Actinobacteria. In addition, several uncharacterized resistance
genes that have potentially been mobilized have been identified from the results. No
singular origin was determined for either of the analyzed gene classes, however the
previously hypothesized evolutionary relationship between Erm methyltransferases
and the housekeeping methyltransferase KsgA is supported by the results. In ad-
dition, the results from the analysis of metagenomic data indicate that the studied
macrolide resistance genes are likely to mobilize from the human gut, naturally
presenting a way through which the genes may enter the clinical environment.

Keywords: Antibiotic resistance, Macrolides, Bioinformatics, fARGene, Metage-
nomics, Evolution
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1
Introduction

1.1 Background

Antibiotic resistance is a phenomenon that continues to increase all over the world.
Since the discovery of antibiotics, and their subsequent introduction into pharma-
ceutical treatments, pathogenic bacteria have emerged which are resistant to these
antibiotics [1]. Diseases that can no longer be treated, due to the bacteria that cause
them being resistant to multiple types of antibiotics, has been listed among the most
serious threats to human health today [2, 3], and it is vital that strategies are devel-
oped to counteract this issue. To do this, more knowledge and understanding about
the phenomenon must be obtained, especially as it relates to the antibiotics that are
most frequently used for human treatment.

Figure 1.1: Structure of ery-
thromycin A.

Macrolides make up a well-established class
of antibiotics that has a long history of use
in clinical settings [4]. Although there are
many different types of macrolides, they are
all composed of a large lactone ring of vary-
ing size, to which one or more sugars are at-
tached via glycoside bonds. The lactone ring
can also be substituted in various ways de-
pending on the specific macrolide [5, 6]. To
illustrate this, Figure 1.1 shows the chemical
structure of erythromycin A, the first clini-
cally relevant macrolide which was isolated
from the bacterium Saccharopolyspora ery-
thraea(formerly Streptomyces erythreus) in
1952 [7, 8]. The chemical structure that is
shared among macrolides give them a hydrophobic nature that prevents them from
efficiently permeating the outer membrane of Gram-negative organisms, and they
are thereby primarily used as a treatment for infections caused by Gram-positive
bacteria [9].
Since the discovery of erythromycin, more macrolides have been discovered and
developed. Of note are the two semi-synthetic macrolides clarithromycin, which
has increased activity against certain Gram-positive cocci, and azithromycin, which
shows increased activity against Gram-negative bacteria while maintaining activity
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1. Introduction

against Gram-positive organisms and thereby bypasses one of the largest disadvan-
tages of macrolides [10].
After entering the bacterial cell, macrolides act by binding to the 50S ribosomal
subunit in the nascent peptide exit tunnel. There they act as a protein synthesis
inhibitor [6], and while it was previously thought that the inhibition was a result of
sterical hindrance interfering with the formation of the nascent peptides, it has since
been shown that the mode of action is more complex. It instead seems macrolides
can interact differently with different peptides by interfering with peptide bond
formation rather than blocking the ribosomal exit tunnel. This is dependent on
both the structure of the peptide, where if it lacks certain motifs its exit from the
ribosome will be unobstructed by the presence of the drug, and the structure of the
specific macrolide [11, 12].
Today, macrolides are among the most prescribed antibiotics in the world, with
both human and animal applications [13, 14]. In addition to being the first choice
antibiotic to combat certain infections, they also play a critical role as a preferred
alternative treatment for patients where penicillin is not applicable due to allergies
[13, 6]. Macrolides were present on the list that the World Health Organization
published in 2017 describing the highest priority antibiotics for human medicine
[15]. For these reasons, it is very problematic when pathogenic bacteria appear that
show resistance to macrolide antibiotics.
How bacteria have evolved to become resistant to macrolides is something that re-
mains largely unclear. While it is known that antibiotic resistance is often a result
of acquiring specific antibiotic resistance genes (ARGs), and that bacteria can share
these genes through so-called horizontal gene transfer [1], it is uncertain where the
ARGs originated before making their way into pathogens in the clinical environment.
While humanities overuse of antibiotics has certainly provided a selection pressure
that promotes the acquisition of resistance determinants, the issue has been shown
to be more complicated [16]. Understanding the evolution and mobilization of ARGs
is of great interest to prevent these from spreading further. It has been suggested
that there is a flow of ARGs from commensal and other harmless bacteria in exter-
nal environments, including remote environments not polluted by antibiotics, into
pathogens in the clinical environment, however further research is required to un-
derstand the process behind this transfer [17, 18]. This also highlights the fact that
the macrolide resistome, the resistome meaning the complete collection of ARGs
in bacteria [19], is likely much vaster than what is currently known, and through
increasing the knowledge about the contents of the macrolide resistome, it can be-
come easier to anticipate which ARGs might become problematic in the future and
develop strategies to handle it [20].

1.2 Aim

The aim of this thesis is to characterize part of the macrolide resistome. As the
resistome contains a massive amount of genes even when only considering ARGs
that confer resistance to macrolide antibiotics, the project will be limited to the in-
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1. Introduction

vestigation of two types of macrolide ARGs. These genes encode so called Erm 23S
rRNA methyltransferases and Mph macrolide phosphotransferases respectively, and
the project aims to get a comprehensive overview of these resistance determinants
by identifying novel gene families encoding these, as well as investigating the phylo-
genetic relationships of the identified genes, both new and known, in an attempt to
elucidate how these genes have evolved in bacteria. This will be achieved through
analysis of large amounts of sequencing data representing bacterial genomes, using
profile hidden Markov Models that will be built for this purpose and a software
called fARGene [21].
In addition, the project aims to identify environments from where these macrolide
ARGs might mobilize. This aim will be achieved through the acquisition and anal-
ysis of several terabytes of shotgun metagenomic data from a variety of environ-
ments, using a similar approach to what is described above. Information about
such environments can empower us to take measures to keep the flow of resistance
determinants to a minimum.

3



1. Introduction

4



2
Theory

In this chapter, the mechanisms that give rise to macrolide resistance are described.
The two types of genes that the project is based around are given extra focus, with a
summary of the current knowledge of their origin, spread, and evolution. In addition,
the chapter also includes a section about the theory behind bioinformatic methods,
specifically hidden Markov models, and how they can be applied to identify genes
in DNA sequencing data.

2.1 Acquired resistance to macrolide antibiotics

As previously mentioned, resistance to macrolides has developed in pathogenic bac-
teria [1]. When compared to other types of antibiotic resistance, macrolide re-
sistance is particularly problematic, since today macrolide resistant bacteria have
become widespread throughout the world rather than being concentrated in specific
areas [22]. The majority of macrolide resistance mechanisms fall into one of three
broad categories; target modification, efflux, or enzymatic inactivation of the drug
[23]. In addition, genetic mutations involving base substitutions in the macrolide
binding site have also been shown to lead to a macrolide-resistant phenotype [24],
however these will not be further discussed as they are not able to transfer hori-
zontally. To limit the scope of this study, it will focus on two specific resistance
mechanisms; target alteration of the 23S ribosomal subunit, mediated through erm
family methyltransferases, and inactivation of macrolides through phosphorylation,
mediated through mph family phosphotransferases [25, 26].

2.1.1 Target alteration by 23S rRNA methyltransferases

Bacteria are able to develop resistance to macrolide antibiotics by acquiring genes
from the erm methyltransferase family. These genes encode enzymes which are able
to either mono- or dimethylate the N6 position of nucleotide A2058 (Escherichia coli
annotation) of the 23S rRNA subunit [27]. Methylation at this position prevents
the drug from binding to the ribosomal RNA, and thereby renders the host bacteria
resistant to it’s inhibitory effects [25] (Figure 2.1). This mechanism has been stated
to be the most common way that bacteria acquire resistance to macrolides [25], with
the gene erm(B) being the most widespread variant [22]. Genes associated with this
mechanism generally also confer resistance to lincosamide and streptogramin b-type
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2. Theory

antibiotics, and the resulting phenotype is therefore called the MLSb phenotype
[28].

Figure 2.1: Target methylation by Erm 23S rRNA methyltransferase enzymes.

The origins of erm genes have not been completely characterized, however it has
been reported that erm methyltransferases, together with efflux-pumps, make up
the main mechanisms behind self-resistance in macrolide producers [29]. These
producers are bacteria of the Actinobacteria phylum, and as a measure of protection
against the antibiotics they produce they use erm mediated methylation of their
own ribosomes. The most obvious example of this is the erythromycin producing
bacteria S. erythraea, which harbors a resistance gene of this type called erm(E)
[30]. While it could reasonably be speculated that all erm genes originate from
macrolide producing bacteria and have since mobilized, it has also been suggested
that there is an evolutionary relationship between erm methyltransferases and the
housekeeping methyltransferase ksgA/rsmA [31].
KsgA is a highly conserved enzyme that methylates two adjacent adenosines in
the 16S ribosomal subunit. In bacteria this enzyme is not essential for growth,
however it does provide growth advantage and competitiveness [32]. Due to the high
sequence homology between ksgA and erm genes, in addition to the high similarity
in structural architecture and function between the two, it has been proposed that
the two gene types either evolved separately from a common ancestor or that erm
genes might have descended from one or several preexisting ksgA genes [31]. It has
also been reported that some erm variants have arisen through recombination of
two previously existing genes, one example being the gene erm(33) which is a result
of recombination between erm(A) and erm(C) [33].
In total, 44 classes of erm genes have been characterized, some of which have
been found on mobile genetic elements [34, 35]. Out of these, several classes have
been found in pathogenic bacteria, including erm(A), erm(B), erm(C), erm(F), and
erm(39) [36, 37]. These genes have predominantly been encountered in bacteria from
the Firmicutes phylum, with erm(A) and erm(C) typically being associated with
staphylococci and erm(B) being associated with streptococci and enterococci [38].
In addition, erm(B) has also been encountered in Campylobacter species isolated
from fecal samples and has shown to always be associated with genes that confer
resistance to multiple antibiotics [39]. By contrast, erm(F) is found in anaerobic
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2. Theory

species such as Bacteroides but has also been encountered in Haemophilus influen-
zae [38, 36], while erm(39) has been identified in Mycobacterium species, which
belong to the Actinobacteria phylum.
It comes as no surprise that these resistance genes are found in Actinobaceria
however, for reasons described above. Other examples of such bacteria that have
been shown to harbor erm genes are clinical Corynebacteria isolates, opportunistic
pathogens which were found to harbor a combination of erm(A), erm(C), as well
as erm(X) genes [40]. Select strains of Corynebacteria have been shown to carry
erm(B) as well [41]. The fact that these genes appear across multiple phyla speaks
to their mobility, and thereby the importance of characterizing from where they
were originally mobilized.
Other erm genes have been identified on mobile elements, though they are not yet
known to have transferred into pathogens. One such example is erm(48), that was
identified on a plasmid in Staphylococcus xylosus isolated from bovine mastis milk
[42]. While erm genes being found in bacteria isolated from milk and fecal samples
suggests that the genes might originate from the human and animal microbiota,
genes of this type have been also been encountered in the environment. For exam-
ple, the gene ermG was discovered in Bacillus sphaericus isolated from soil samples
[43], however the origin of these soil samples were unclear from the original study
and thereby there is a possibility that the gene was transferred to the soil via hu-
mans or animals. Furthermore, erm(B) and erm(F) have also been encountered in
bacteria isolated from water samples taken from surface drainage connected to swine
farms [44], strengthening the hypothesis that these genes might originate from the
animal microbiome. These genes have also been found in isolates from a wastewater
treatment plant in Zagreb, along with several other variants [45].

2.1.2 Drug inactivation by macrolide 2’-phosphotransferases

As previously mentioned, another mechanism by which resistance can occur is
through inactivation of the drug. One way that macrolides can be inactivated is
through phosphorylation by Mph 2’-macrolide phosphotransferase enzymes. These
enzymes interact with 14- 15- and 16-membered macrolides by attaching a phos-
phate group to the 2’-OH group on the macrolide (Figure 2.2). This makes the drug
unable to interact with A2058 on the 23S rRNA subunit, thereby making bacteria
that harbor genes that encode these enzymes resistant [27].
mph genes are present in bacteria from a range of different origins, and it is known
that at least four variants (mph(A), mph(B), mph(C) and mph(E)) have mobilized
into pathogens [26]. Furthermore, it is known that these enzymes do not all have the
same substrate specificity, notably MphI and MphK show a more narrow substrate
range than other Mph enzymes, lacking the capability to phosphorylate macrolides
containing a C3 cladinose [26]. Additionally, it has been shown that MphB has a
broader substrate range than MphA, being able to act upon 16-membered macrolides
in addition to 14- and 15-membered macrolides [46], while simultaneously being
unable to act upon azithromycin unlike MphA [47]. There are conflicting reports
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about the latter statement however, with some sources claiming that MphB does
have an affinity towards azithromycin, although this may also be a result of amino
acid substitutions in the enzyme [48, 49].

Figure 2.2: Phosphorylation of macrolides catalyzed by Mph macrolide phospho-
transferase enzymes.

It has been shown that the functionality of Mph enzymes is dependent on the or-
ganism that harbors them. As an example of this, the gene mph(J), a close homolog
of the previously mentioned mph(I), exists in bacteria from the Brevibacillus genus
that are still susceptible to erythromycin. This would suggest that the acquisition
of MphJ does not result in a macrolide resistant phenotype, however when heterolo-
gously expressing mph(J) in E. coli it showed the capacity to phosphorylate a wide
range of macrolides [50]. In addition to showing the functionality of the MphJ en-
zyme, this also suggests that sequence homology is not necessarily correlated with
substrate specificity.
Not much is known about how these genes have evolved or where they originate.
As previously mentioned, four Mph homologs are known to have mobilized into hu-
man pathogens, including E. coli, Acinetobacter baumanii and Klebsiella pnemoniae,
however when studying ancient strains of these bacteria it was shown that these did
not carry the mph genes in question [26]. This suggests that a gene transfer event
of these occurred from some other bacteria long ago.
On this point it is also of note that the gene mph(C) often appears on mobile genetic
elements together with other macrolide resistance genes, notably the efflux pump
msr(A) very often appears in its genetic vicinity. However, a cluster of genes related
to antibiotic and metal resistance was identified on the chromosome of a clinical
isolate of the Gram-negative bacterium Stentrophomonas maltophilia, which points
towards the exchange of mph(C) between Gram-negative and Gram-positive bacte-
ria, since the gene has also been known to appear in bacteria from the Staphylococcus
genus [35].
As is the case for erm genes, mph genes have also been found in the environment.
mph(G) has been reportedly found in marine bacteria in Japan [51], while mph(A)
and mph(B) have been found in wastewater treatment plant isolates from Zagreb
[45]. In samples from the Haihe river in China, mph(A) was identified as the most
frequently occurring macrolide resistance gene on plasmids, and this gene was also
found to often appear on plasmids together with the methyltransferase gene erm(B).
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2. Theory

This might suggest thatmph genes have marine origins, however it is likely that these
genes were promoted in these environments as a result of antibiotic selection pressure
or other human intervention. Further research is needed to definitively characterize
the origins from where these genes have mobilized.

2.2 Application of bioinformatics tools for antibi-
otic resistance research

Scientists have been aware of the problem with emerging antibiotic resistance for a
long time [52]. Much research has therefore been devoted to the problem, tradition-
ally using experimental methods to discover resistance determinants, characterize
their properties [53, 54], and study their evolution [55]. While such experimental
studies are still essential, and can not be replaced, today they can be supplemented
by computational methods such as bioinformatics. Bioinformatics is an interdisci-
plinary field combining biology, mathematics and computer science to create tools
that can be used to analyze biological data [56], and the insights obtained from such
analysis can then be used to help design better experiments, and devise new ways
of combating antibiotic resistance [57].
As a result of the decreasing costs of DNA sequencing associated with the introduc-
tion of next-generation sequencing technologies, the amount of publicly available
sequencing data has seen a considerable increase over the last decade [58]. Many
different software tools and approaches have been developed to process this data,
however as it relates to identifying novel genes of specific functions from bacterial
DNA, perhaps the most popular approach makes use of hidden Markov models [59].

2.2.1 Hidden Markov models for ARG finding

A hidden Markov model (HMM) can be explained as a model describing a probability
distribution over a potentially infinite number of sequences [60]. The model consists
of two stochastic processes, where one is the so called observed process, meaning
that it produces an observable output, and the other is the underlying hidden
process from which the model derives its name [61]. The hidden process X can
not be observed, and takes the form of a finite-stage homogeneous Markov chain
[62], and while it may be of higher orders this section will only concern first-order
HMMs. A first-order Markov chain is defined as a random process of jumping
between states in a sample space S = {s1, ..., sN}. The definition of Markov means
that the probability of what the next state j in the chain will be, the so-called
transition probability aij, is only dependent on state i that the process is currently
in [63]. Transition probabilities can be denoted as

aij = P (Xt = sj|Xt−1 = si), si, sj ∈ S. (2.1)

The starting state i of the chain is determined through so-called initial probabilities
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2. Theory

πi [64], here denoted as

πi = P (X1 = si), si ∈ S. (2.2)

The observed process Y generates output as a function of the hidden states, and in
general lacks the Markov property. This means that, in any given state, the hidden
process is independent of the observed process while the opposite is not true since
the observed process is dependent on the current state of the hidden process and
deterministically on the sequence of the observed process [62], i.e.,

Y T
1 : Yt = f(Xt). (2.3)

The probabilities that the observed process will generate an output Yt given a state
of the hidden process Xt are called emission probabilities. The collection of these
probabilities is called the emission distribution [65], and can be denoted as

bj(Yt|Y t−1
1 ) = P (Yt|Y t−1

1 , Xt = j). (2.4)

The above described probabilities comprise the parameters that need to be estimated
in any given HMM before it can be used as a predictive tool. Parameters are
estimated by training the model on a set of training data, which is typically the most
difficult step when creating HMMs, and then evaluating the model to see whether it
is a decent enough representation of reality through calculating the probability that
the observed sequence was generated by the model given the estimated parameters
[65]. The basics of HMM theory has been adapted for a variety of applications, and
one variation of HMMs that has proved useful for gene finding is so-called profile
HMMs.

2.2.1.1 Profile HMMs

This section is a summary of what was written by SR Eddy in 1998 [60], as I consider
it to be a well-written, comprehensive overview of the theory behind profile HMMs,
and want to adhere to established notations. Profile HMMs are a type of HMM
architecture introduced by Krogh et. al in 1994, adapted for representing profiles of
multiple sequence alignments [66]. Given such an alignment, each consensus column
corresponds to a ’match’ state wherein the distribution of residues allowed in the
column is modeled. For a protein sequence alignment these residues would represent
amino acids in the sequences. In order to allow for insertions between residues in the
alignment, as well as deletions of consensus residues at a given column, corresponding
’insert’ and ’delete’ states also exist within the given state space (Figure 2.3)
Profile HMMs can be used to score a sequence within an alignment by converting the
probability parameters of HMMs to additive log-odds scores. This is different from
how alignments are typically scored. In traditional gapped alignments an insert of x
residues is usually scored using an affine gap penalty a+b(x−1), where a is the score
for the first residue and b is the score of each subsequent residue in the insertion.
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In a profile HMM, for an insertion of length x there is a state transition into an
insert state which costs log(tMI) (where tMI is the state transition probability for
moving from the match state to the insert state), (x− 1) state transitions for each
subsequent insert state that cost log(tII) and a state transition for leaving the insert
state that costs log(tIM). This is analogous to the traditional affine gap penalties,
with the open gap cost expressed as a = log(tMI) + log(tIM) and the gap extend
cost expressed as b = log(tII).

Figure 2.3: Schematic describing the
hidden process of an arbitrary multi-
ple sequence alignment (top left). Ar-
rows indicate transition probabilities
between states in the state space. The
state space comprises three types of
states; match states (squares) which
have a number of emission proba-
bilities corresponding to the possible
residues at that position, insertion
states (diamonds) with a similar num-
ber of corresponding emission proba-
bilities and delete states (circles) with-
out any associated emission probabili-
ties.

The difference, however, is that while the
affine gap penalty in traditional gapped
alignment can be considered arbitrary, this
is not the case with profile HMMs. As
an example of why this matters, one could
theoretically optimize the model parameters
such that the score of a sequence in the align-
ment would be maximized by assigning the
gap costs a value of zero. In this scenario,
while the score would be high, the align-
ment itself would be atrocious. Contrast-
ing this to profile HMMs, here the proba-
bility associated with transitioning from a
match state to an insert state is connected to
the probability to transition from one match
state to another, meaning that there is ac-
tually a cost associated with a match-match
transition that does not exist in traditional
alignment. The gap cost can be lowered
by increasing the value of tMI towards 1.0,
however this in turn leads to tMM decreas-
ing towards 0, and the cost for sequences
with no insertion approaching negative in-
finity. For this reason, there is a trade-off
when assigning state transition probabilities
as sequences without insertion have to be
balanced against sequences with insertion.
Another difference when comparing profile HMMs to traditional alignments, is how
insert residues are handled. While in traditional alignment there is no cost associated
with inserts aside from the gap penalty, profile HMMs include emission probabilities
in the insert states as well. Given that these insert state emission probabilities are
equal to the background amino acid frequency, the score of inserted residues become
log(fx|fx) = 0, effectively similar to what is seen for traditional alignment. However,
for insertions that do not share the same amino acid distribution as proteins in
general, this information can be incorporated into the model through the insert
state emission probabilities. As this is often the case, with insertions being more
common in surface loops of protein structures, this results in profile HMMs being
able to score sequences in a way that more accurately describes biological reality.
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3
Methods

This chapter contains a detailed description of the methodology and workflow ap-
plied during the project. This includes the creation of profile HMMs, their subse-
quent application on various datasets as well as the post-processing of the output
sequences yielded by the analysis.

3.1 Model creation and optimization

Figure 3.1: Phylogenetic tree
displaying the Erm sequences that
showed an amino acid similarity
< 70%. The two groups that were
used to create separate models are
highlighted in the tree.

Amino acid sequences representing known
macrolide resistance genes were downloaded
from NCBI GenBank, based on Genbank IDs
provided on the official Tetracycline and MLS
nomenclature website [67, 34]. In total, se-
quences representing 38 of the 41 listed erm
genes were downloaded, as the representative
protein sequences for two of the Erm enzymes,
namely ErmI and Erm37, could not be lo-
cated. Furthermore, research revealed that one
of the listed resistance determinants, Erm32, de-
viated from other Erm variants in both func-
tion and protein structure [23], and this gene
was therefore excluded from all further analy-
sis (NOTE: In February 2020 the official list of
erm macrolide resistance determinants was up-
dated, adding two new genes, denoted erm(50)
and erm(51) [34], however for obvious reasons
these were also not included in the creation of
the models). Similarly, representative protein se-
quences for 13 of the 15 listed Mph variants were
downloaded, since the sequences corresponding
to MphD and MphH could not be identified from
the GenBank IDs provided by the official list,
and thereby these were also excluded during the
creation of the models. To avoid bias when creat-
ing models, such that only the regions responsible for interaction with the macrolide
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would be considered, the sequences were clustered at 70% amino acid sequence simi-
larity using usearch with parameters ’-cluster_fast’, ’-id 0.7’ [68]. This resulted in 28
representative Erm sequences being left after clustering, while all 13 Mph enzymes
showed an amino acid similarity < 70% and were therefore kept.
To investigate the similarity and evolutionary relationship of the remaining genes,
multiple sequence alignment was performed using the online client of clustal omega
[69]. Similar sequences without the resistance functionality were included in the
alignment to act as outgroups in the resulting phylogenetic trees. From these trees
a few observations were made, most importantly in the erm-tree where the genes
appeared to cluster together in two distinct clades, with genes in one of these show-
ing more similarity to one of the negative genes than they did to the other clade
containing known erm genes (Fig 3.1). Taking this into consideration, it was decided
to generate two separate HMMs for identifying erm genes. One of these would be
built from the 16 protein sequences in the topmost group in Figure 3.1, this model
will henceforth be referred to as the Erm group 1 model, while the other, built from
the 12 protein sequences in the bottom-most group in 3.1, will be referred to as the
Erm group 2 model. A similar observation was made about the mph genes, where
three genes clustered outside of the intended outgroup in the tree, however since the
number of available sequences were lower for this type of genes it was decided to
only make one model representing the entire class of genes.

(a) Erm group 1 model (b) Erm group 2 model (c) Mph model

Figure 3.2: The sensitivity and specificity of the three obtained HMMs as a function
of threshold score, for full-length genes. The blue lines represent the sensitivity, the
green lines represent 1 - specificity and the dashed black lines represent the chosen
threshold scores used for analysis for each model.

To estimate the specificity when creating the aforementioned models, sequences from
the same protein superfamilies as the macrolide resistance genes were identified us-
ing NCBI’s Conserved Domain Database [70], and then obtained from GenBank. In
total, 19 various sequences from the AdoMet MTase superfamily to which the erm
genes belong were obtained. This also included 5 different sequences representing
the ksgA gene, which is suspected to have an evolutionary relationship to erm as
described in the background section. From the superfamily to which the mph genes
belong, 45 sequences representing homoserine kinase II were obtained. These neg-
ative sequences were used as input, together with the positive sequences for each
specific model, to create profile HMMs for the three genetypes using the command
’fargene_model_creation’ from the fARGene package [21]. The created models were
first evaluated based on their sensitivity and specificity for full-length genes, which
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were determined through leave one out cross-validation and misclassification of the
confirmed negative sequences respectively.
It was observed that the Mph model displayed an overall better performance in
terms of both sensitivity and specificity than either of the Erm models (Figure 3.2).
This allowed for a lower threshold score to be set when using this model for analysis
where these parameters would both still retain as high a value as possible, and it was
decided to set the threshold at a score of 100 for the Mph model. As can be seen from
Figure 3.2a, there was no score that allowed for both a sensitivity and a specificity
of 1 for the Erm group 1 model. It was decided that a threshold score of 200 would
be used, which would sacrifice some sensitivity but retain a high specificity. Finally,
for the Erm group 2 model it was decided to use a threshold score of 175, which was
within the narrow range where both parameters were evaluated to be optimal as is
displayed in Figure 3.2b. The models were also evaluated in the same way based on
their ability to correctly classify 33 AA long fragments from resistance genes, while
not misclassifying fragments of equal length from confirmed negative genes. These
fragments are supposed to represent metagenomic data, which is fragmented in its
nature.

(a) Erm group 1 model (b) Erm group 2 model (c) Mph model

Figure 3.3: The sensitivity and specificity of the three obtained HMMs as a func-
tion of threshold score, for 33 AA long gene fragments. The blue lines represent
the sensitivity, the green lines represent 1 - specificity and the dashed black lines
represent the chosen threshold scores used for analysis for each model.

The Mph model once again proved to have superior performance to the other two
models (Figure 3.3). After considering the results of the evaluation of all models,
the threshold scores chosen to use for classification of metagenomic fragments were
10 for the Mph model, 15 for the Erm group 1 model and 14 for the Erm group 2
model. Once the evaluation of the models was complete, they were used to search
both genomic and metagenomic data for the presence of macrolide resistance genes.

3.2 fARGene analysis and post-processing

All bacterial genomes present in NCBI GenBank in October of 2019 were down-
loaded [67]. This included 15,438 complete genomes and 412,095 draft genomes,
which were analyzed separately. The analysis of this data was performed using fAR-
Gene, applying the newly constructed HMMs with threshold scores for full-length
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as specified above (Figure 3.2), but otherwise default parameters, which resulted in
a set of predicted sequences corresponding to each analyzed genetype.
To extract meaningful information from the predicted ARG sequences, a number
of post-processing steps were performed (Figure 3.4). For the first analysis, the
predicted protein sequences of the two genetypes were aligned separately using
mafft v7.23 [71] with default parameters, and a phylogenetic tree representing each
macrolide ARG was generated from the alignments using FastTree v2.1.10 [72], again
using default parameters. At this point the sequences found by the two Erm mod-
els were analyzed together, and for the tree representing these genes one sequence
representing the methyltransferase ksgA was used as outgroup due to the suspected
evolutionary relationship between these genes. Correspondingly, three sequences
representing aminoglycoside phosphotransferases were used as outgroup in the mph-
tree based on a publication by Pawlowski et. al, where these had been used for the
same purpose [26].

Figure 3.4: Graphic representation of the workflow used when analyzing and post-
processing genomic data. Boxes with solid borders represent various files, boxes with
dashed borders represent external software used during each part of the analysis.

The trees were visualized using ggtree v2.0.1 [73, 74], with additional information
about the leaves being included to improve the interpretability of the trees. To
visualize the distribution of previously known ARGs in the trees, a BLAST search
was performed for each protein sequence against the reference sequences using blast+
v2.6.0 [75]. The best hits from the BLAST searches were extracted, and if they
showed ≤ 79% amino acid similarity to any known gene they were considered as
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the same gene based on the principles of MLS gene nomenclature [76]. Additionally,
metadata about the source from which the bacteria that correspond to the genomes
in GenBank had been isolated was retrieved using Entrez direct v13.3 [77]. This
information, for the genomes where it was available, was included in the final tree
alongside information about the phylum to which the bacteria that harbored each
ARG belonged. To investigate whether any specific type of bacteria were enriched
for the presence of the analyzed macrolide ARGs, phylum enrichment analysis was
performed by counting the number of unique species harboring a macrolide ARG
and comparing that number to the total number of species from that phylum in the
database using Fisher’s exact test.
Next, the novel gene families that were identified by the fARGene analysis were
studied. To this end, the predicted protein sequences were clustered together with
the verified ARG sequences of the corresponding type at 70% amino acid similarity
using usearch v8.0.1445 with parameters ’-cluster_fast’, ’-id 0.7’ [68]. Information
about the contents of each cluster was gathered, including which organisms the
sequences corresponded to, and if one or more of the previously known sequences
clustered together with sequences identified in the data, the family was considered
as known, otherwise the gene family was considered novel. After clustering, phylo-
genetic trees were created from the representative centroid sequences of each cluster
using a similar methodology as described above, with the exception that information
about where the bacteria were isolated from was excluded, and the addition that
the trees were rerooted at the outgroup using the Interactive Tree of Life web client
[78].
Based on the results from the genome analysis, metagenomic datasets that were
suspected to contain macrolide ARGs were selected. This included metagenomes
from the Human Microbiome Project (HMP) [79], gut microbiomes of patients with
Parkinson’s disease [80] and type 2 diabetes [81], pig gut microbiomes [82], wastew-
ater treatment plants (WWTP) in Sweden [83], the antibiotic-polluted Pune river
in India [84], marine environments from the Tara oceans expedition [85], oil contam-
inated bacterial communities in marine sediments [86], antarctic soil [87], soil from
forests in China [88], feces from wild baboons[89] (as it has been noted that baboons
have a similar gut microbiome composition to humans [90]), gut microbiomes of rhi-
nos [91], lake Hazen in northern Canada [92], and a river in the Amazon rainforest
[93]. These were all analyzed using fARGene, with the threshold scores of the profile
HMMs set as previously specified (Figure 3.3, Figure 3.2), and the sequences of the
identified ARGs were post-processed in the same way as the sequences found in the
genomic data.

17



3. Methods

18



4
Results

In this chapter, all of the results from the study are presented. Section 4.1 contains
the results relating to the analysis of genome sequences, while section 4.2 contains the
results obtained from analyzing the metagenomic datasets. Each section is divided
into subsections where the results relating to the two genetypes are presented sep-
arately, and mainly contains figures and tables, as well as the information required
to interpret them. The interpretations and discussions of the presented information
will be addressed in the following chapter.

4.1 Analysis of bacterial genomes

After analyzing the genomes in NCBI GenBank, the results revealed that both erm
andmph type macrolide ARGs are widely present in many different types of bacteria.
Genes of type erm were found across more species (875) than genes of type mph
(568), and in addition more different erm gene families (< 70% AA similarity) were
identified compared to mph. However, more individual instances of mph genes were
found, with 3.19% of all genomes in GenBank harboring an mph gene as compared
to 2.77% of all genomes in GenBank.

Table 4.1: Phylum distributions of the predicted genes from the two gene types.
Genes refer to the individual occurrences of ARGs found within the data, while
classes refer to clusters of < 70% AA identity.

Erm Mph
Dataset Genes Familiesa,b Genes Familiesa,b

NCBI RefSeq 330 10/21 1107 13/59
NCBI Assembly 12423 27/316 14033 14/210
Total: 12753 28/320c 15140 14/221c

a AA similarity < 70%
b Known/new
c Non-redundant

Interestingly, the number of different new gene families discovered greatly outnum-
bered the number of families that have been characterized for both erm and mph
type genes to date (Table 4.1). While this indicates the presence of a vast and

19



4. Results

uncharacterized macrolide resistome, the majority of the predicted unknown fam-
ilies contained only a few predicted sequences originating from very similar, non-
pathogenic, organisms. This can be compared to some of the gene families that are
known to be widespread, which in some instances were identified in thousands of
different, often pathogenic, genomes. Most likely this means that these newly iden-
tified genes have not mobilized, and thereby that they currently are not of clinical
interest.
When comparing the species of bacteria that harbored the two different genetypes,
distinct differences were found. Looking towards erm methyltransferase-genes, the
number of genes found in bacteria from the Firmicutes phylum vastly outnumbered
the number of genes found bacteria from the Proteobacteria, Actinobacteria or Bac-
teroidetes phyla, which all harbored a number of genes comparable to each other.
By contrast, mph phosphotransferase-genes were found to be most widespread in
bacteria from the Proteobacteria phylum, with Firmicutes also containing a large
number of these genes while the number of mph genes found in both Actinobac-
teria and Bacteroidetes proved to be comparatively very small (Table 4.2). It is
also of note that while a very small number of mph-genes were identified in bacte-
ria assigned to any phylum other than the four previously mentioned, this number
was substantially larger in the case of erm-genes. In addition, a larger number of
genomes not assigned to any phylum in the database was shown to harbor mph
genes compared to the corresponding number for erm genes.

Table 4.2: Phylum distributions of the predicted genes from the two gene types.

Erm Mph
Phylum Genes Familiesa Genes Familiesa

Firmicutes 9535 102 4377 111
Proteobacteria 711 5 8211 16
Actinobacteria 877 135 280 67
Bacteroidetes 855 8 36 15
Miscellaneous 243 50 34 11
NA 532 50 2202 15
Total: 12753 348b 15140 235b

a AA similarity < 70%
b Non-redundant

Regarding the diversity of sequences, Table 4.2 shows a few interesting observations.
First, with respect to the amount of ARGs found within Proteobacteria, the diversity
among these is surprisingly small for both gene types. Aside from this, the diversity
of identified sequences within a given phylum with respect to the number of predicted
sequences is in general larger for mph type genes.

4.1.1 Erm 23S rRNA methyltransferases

To account for the number and diversity of the analyzed genomes, phylum en-
richment analysis of known and new Erm sequences was performed for species be-
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longing the four most abundant phyla using Fisher’s exact test (Figure 4.1). The
over- or underrepresentation of a specific phylum can be determined by whether
the calculated odds ratio is above or below one, given that the test was signif-
icant. Interestingly, when comparing the odds ratios of known and new genes,
there was a distinct difference between these. For known Erm variants, Firmi-
cutes and Bacteroidetes displayed a large (ratio=4.56, p-value<10−15) and moderate
(ratio=1.98, p-value=6.26×10−8) over-representation respectively, while Proteobac-
teria were significantly underrepresented (ratio=0.109, p-value<10−15). This was
contrasted against the previously uncharacterized Erm variants, where Actinobacte-
ria were the most significantly overrepresented phylum (ratio=4.74, p-value<10−15),
with Firmicutes being moderately overrepresented (ratio=2.08, p-value=2.74×10−11)
and Proteobacteria being heavily underrepresented (ratio=0.024, p-value<10−15).
Two tests proved to not be significant, these corresponded to Actinobacteria for
known genes and Bacteroidetes for new genes.

Figure 4.1: Phylum analysis of species containing known and new Erm sequences
identified from NCBI GenBank. The odds ratios where calculated using Fisher’s
exact test, and a star above the bar denotes whether the corresponding test was
significant using a p-value cut-off of 0.001.

To get a measure of the distribution of known Erm classes, and ratio of known to
new variants identified in the data, all predicted sequences were compared against
the reference sequences of all known variants using BLAST. From the results, it was
shown that a majority of the identified sequences corresponded to three known genes
(Figure 4.2). Out of these, ErmB was shown to be the most widely present one,
followed by ErmA and ErmC. Afterwards, the sequences were clustered into gene
families sharing 70% sequence identity, the similarity being intentionally set much
stricter than what is necessary for a gene to be classified as new to avoid problems
with accidentally misclassifying known genes as novel, and to avoid having several
families representing variants of the same gene. This did, however, also mean that in
some cases several known genes clustered into the same family as their similarity was
higher than 70%. In total, 28 known families were formed representing 34 out of the
42 known erm genes, while 341 gene families representing previously uncharacterized
Erm variants were formed.
It is important to recognize that the results yielded from the Erm models are not
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without a certain degree of false positives. This is indicated in the phylogenetic
tree formed from the aforementioned gene families (Figure 4.3), as a number of
unlabeled sequences cluster together with the outgroup (KsgA). Upon investigation,
it was revealed that these gene families indeed represented KsgA variants rather
than novel Erm classes, and the close homology between these genetypes resulted
in some misclassification of these sequences. Thankfully, these false positives were
easily identified from their location in the tree, and no other sequences showed any
indication of being incorrectly classified. Accordingly they have not been considered
in any of the results presented in this chapter, with the exception of the phylogenetic
Erm trees, and will not be further mentioned.

Figure 4.2: Distribution of known Erm sequences identified in the genomic data.
The five most frequently identified variants are displayed as individual bars, all se-
quences that showed >79% AA similarity to any known Erm variant other than these
five are compiled into the bar titled ’Other known’, while all sequences that showed
<79% AA similarity are compiled into the bar titled ’New’.

When studying the evolutionary relationships of the predicted gene families from the
phylogenetic tree (Figure 4.3), a number of interesting observations can be made.
The tree is largely structured based on what organisms the sequences originate
from. Largely, the tree can be seen as consisting of eight groups, where four groups,
separated from each other in pairs, correspond to genes mostly originating from
bacteria of the Firmicutes phylum, two adjacent groups where the majority of the
sequences were identified in bacteria from the Actinobacteria phylum, one small
group containing gene families from the Bacteroidetes phylum and one lager group
that is mostly represented by sequences from other, more exotic phyla. It is of
note that the previously known Erm classes are well spread out throughout the
tree, speaking to the overall diversity of this type of genes. It should also be noted
that there at several locations in the tree are indications of horizontal gene transfer
events having occurred, as indicated both by the black tips, which represent either
gene families that were shown to contain sequences identified in bacteria from more
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than one phylum, gene families containing sequences identified on plasmids, as well
as previously known variants that are known to be mobile. In addition, there are
instances where sequences originating from bacteria belonging to a certain phylum
appear in parts of the tree where the majority of sequences come from another
phylum, also indicating mobility.

Figure 4.3: Phylogenetic tree displaying representative centroid sequences obtained
by clustering the predicted Erm sequences at 70% similarity. The color of the tips
represent the phylum of the organism from which the representative sequence origi-
nates. All known Erm enzymes that were found in the data have been placed out in
the tree.

When studying the clustered ARG families, some information gets lost as only the
representative centroid sequence for each cluster gets considered. As interesting
metadata regarding where the bacteria corresponding to many genomes in GenBank
had been isolated from was available, it was decided to generate a cladogram from
the complete set of predicted Erm sequences and include this information as a map
around the tree (Figure A.1, Appendix A).
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The majority of the known erm genes identified in the database originated from
bacteria that seemingly had been isolated from humans or animals. In some cases it
was explicitly stated that the bacteria were isolated from the clinical environment.
The novel genes, by contrast, showed a greater tendency towards being harbored by
bacteria that had been isolated from various environmental samples, though there
exceptions to this, notably a Bacteroidetes-associated cluster of novel genes where all
members of the cluster were hosted by bacteria of either human or animal origin. It
should be noted that this information was not available for a substantial amount of
the analyzed genomes, and furthermore sometimes the information was very vague
even if it did exist.

4.1.2 Mph macrolide phosphotransferases

Looking towards Mph macrolide phosphotransferases, the same analysis pipeline
as previously described was employed. Phylum enrichment analysis of known and
new Mph sequences again revealed distinct differences between the types of bac-
teria harboring these. Firmicutes were significantly overrepresented among the
hosts of known mph genes (ratio=4.35, p-value<10−15), while Actinobacteria and
Bacteroidetes were significantly underrepresented (ratio=0.14, p-value=2.55×10−12,
ratio=0.21, p-value=2.28×10−6 resp.) (Figure 4.1). By contrast, Actinobacteria
were significantly overrepresented among the hosts of previously uncharacterized
mph genes (ratio=2.35, p-value=1.79×10−12), along with Firmicutes (ratio=3.68, p-
value<10−15), while Proteobacteria were significantly underrepresented (ratio=0.14,
p-value<10−15). The tests that did not prove significant related to Bacteroidetes for
new Mph sequences and Proteobacteria for known Mph variants.

Figure 4.4: Phylum analysis of species containing known and new identified Mph
sequences from NCBI GenBank. The odds ratios where calculated using Fisher’s
exact test, and a star above the bar denotes whether the corresponding test was
significant using a p-value cut-off of 0.001.

Similarly to what was observed for the Erm type genes, a substantial majority
of the identified Mph sequences corresponded to previously known genes (Figure
4.5). In particular, close to half of the identified genes corresponded to a single
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gene, MphA, with two other known variants, MphE and MphC, also being widely
occurring. In contrast to the Erm genes, where about a fourth of the known genes
were not identified in the analyzed genomes, all 14 of the known Mph genes (with the
exception of MphD, for which no reference sequence was ever located) were identified.
After clustering the sequences into gene families with <70% sequence identity, 14
families representing the known Mph variants were obtained (in contrast to the Erm
sequences no family contained multiple known sequences) along with 221 families
representing previously uncharacterized Mph variants.

Figure 4.5: Distribution of known Mph sequences identified in the genomic data.
The five most frequently identified variants are displayed as individual bars, all se-
quences that showed >79% AA similarity to any known Mph variant other than these
five are compiled into the bar titled ’Other known’, while all sequences that showed
<79% AA similarity are compiled into the bar titled ’New’.

The phylogenetic tree describing the evolutionary relationships of these gene fami-
lies is displayed below (Figure 4.6). The tree is overall similarly structured to the
tree displayed in Figure 4.3, with genes identified in similar organisms clustering
together. All parts of the tree contain known Mph classes, with the only notable
exception being the clade at the top right of the tree, containing sequences identified
in Actinobacteria. As this group of sequences clusters outside of the main tree in
addition to containing no known Mph variants this could be an indication of these
sequences being false positives, however unlike the previous case a further investiga-
tion of these sequences did not give any indication about this being the case. There
is again multiple indications of horizontal gene transfer having occurred some time
in the past, though compared to Figure 4.3 this tree contains fewer such indications.
As was the case with the previous genetype, it was also of interest to study the
complete set of predicted Mph sequences. Specifically it was still of interest to
analyze any trends in the isolation sources of the bacteria harboring these genes, as
that could provide a basis for metagenomic analysis. To achieve this, a cladogram
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Figure 4.6: Phylogenetic tree displaying representative centroid sequences obtained
by clustering the predicted Mph sequences at 70% similarity. The color of the tips
represent the phylum of the organism from which the representative sequence origi-
nates. All known Mph enzymes that were found in the data have been placed out in
the tree.

constructed from all of the predicted sequences, where the isolation source was added
as a map around the tree (Figure A.2).
Similar to the bacteria harboring erm genes, the majority of the bacteria harboring
known mph genes were isolated from human or animal microbiomes. Here, there
seemed to be a variety among the bacteria containing novel genes however, with some
being isolated from environmental microbiomes, some being isolated from humans or
animals and some being isolated from food. There was no clear pattern among these,
though the majority seemed to be environmentally associated. Taking these results
into consideration together with what was previously observed for the predicted erm
genes, it was clear that both genetypes were present in various types of samples,
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including human, animal and environmental, and therefore a wide range of different
types of metagenomes were chosen for the next step in the analysis.

4.2 Analysis of metagenomic data

To identify environments that serve as a reservoir from which macrolide ARGs can
mobilize, metagenomic datasets were searched for the presence of these genes. Af-
ter analyzing more than 14 terabases of metagenomic data, it was found that erm
genes were much more prevalent than mph genes (Table 4.3). Notably, the human-
associated (HMP, Human gut 1, Human gut 2) and human-adjacent (Pig gut,
WWTP, Pune river) metagenomes contained the majority of the identified genes
of both type erm and mph, with both genetypes being most prevalent in the Pig gut
metagenome. Comparatively, the environmental metagenomes contained almost no
macrolide ARGs, and this was also true for wild animal microbiomes. Two notable
exceptions to this were the forest soil metagenome, which contained a number of
mph genes that was comparable to the number found in the human-associated mi-
crobiomes, and the samples from lake Hazen, which curiously contained a relatively
large number of uncharacterized erm genes.

Table 4.3: Number of macrolide ARGs identified in each analyzed metagenome.

Erm Mph
Metagenome Size (nt) Genes Familiesa,b Genes Familiesa,b Ref
HMP 4.69× 1012 82 6/8 8 1/1 [79]
Human gut 1 1.93× 1011 15 4/7 2 1/1 [80]
Human gut 2 1.32× 1012 14 6/4 2 1/1 [81]
Pig gut 1.74× 1012 145 8/11 17 1/0 [82]
Baboon gut 1.37× 1011 0 0/0 0 0/0 [89]
Rhino gut 6.21× 1010 0 0/0 0 0/0 [91]
WWTP 4.82× 1011 49 6/35 8 4/4 [83]
Pune river 3.91× 1011 45 6/33 13 4/7 [84]
Tara oceans 4.89× 1012 2 0/2 1 0/1 [85]
Antarctic soil 6.25× 109 0 0/0 0 0/0 [87]
Forest soil 1.99× 1011 6 1/5 6 3/2 [88]
Oilspill 2.75× 1011 0 0/0 0 0/0 [86]
Lake Hazen 2.75× 1011 32 0/21 0 0/0 [92]
Amazon river 2.88× 1011 0 0/0 0 0/0 [93]
Total 14.38×1012 389 8/100c 57 9/13c

a AA similarity < 70%
b Known/new
c Non-redundant
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4.2.1 Erm 23S-rRNA methyltransferases

When analyzing the number of Erm sequences that were assembled from the various
metagenomic datasets (Figure 4.7), a clear pattern could be seen. In general, the
number of predicted genes per gigabase was higher in environments where antibi-
otics may be present, with the highest density of known genes being observed in the
pig gut microbiota and the highest density of new erm genes being found in sam-
ples from the Pune river in India. As previously noted, the lake Hazen metagenome
proved to be an interesting deviation from the trend, as it harbored the third highest
density of new erm genes, while simultaneously containing no known variants. This
is interesting as the only other metagenome that harbored new erm genes without
any known genes being found within the same dataset was the Tara oceans metage-
nomic dataset, however since only two separate occurrences being found within this
data, which also was the single largest dataset analyzed, containing samples from a
multitude of locations [85], this does not seem comparable.

Figure 4.7: Number of predicted erm genes per gigabase in all of the analyzed
metagenomic datasets

Far from all known Erm variants were identified in the analyzed metagenomic data,
however it is noteworthy that all but one of the known variants that were found
were present in the pig gut environment. A total number of 11 known Erm variants
were identified; ErmA, ErmB, ErmC, ErmF, ErmG, ErmQ, ErmT, ErmX, Erm47,
Erm49 and Erm50. Some of the most prevalent classes included ones that have
known clinical significance, such as ErmA and ErmB, and variants that do not have
such significance such as ErmQ. To study the relationships between the sequences
identified from different environments, a phylogenetic tree was generated from all of
the reconstructed Erm sequences together with reference sequences for known vari-
ants (Figure 4.8). Mostly, sequences identified from the same environment naturally
tended to cluster together, however it was notable that in some cases very similar,
or even identical, uncharacterized Erm sequences were reconstructed from different
datasets.
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Figure 4.8: Phylogenetic tree displaying the Mph sequences found in the metage-
nomic data. To improve the interpretability of the tree, it has been spiked with
reference sequences of known Mph classes.

4.2.2 Mph macrolide phosphotransferases

When observing the number of assembled Mph sequences per gigabase of metage-
nomic DNA (Figure 4.9), the results proved to be both similar to, and different from
the corresponding results from the Erm sequences. Similarly, the environments from
wastewater treatment plants (WWTP) and the Pune river were among the densest
environmnets with respect to Mph sequences, with the Pune river metagenome be-
ing the densest when considering previously uncharacterized Mph sequences. Where
the mph genes differed was considering the previously known genes, as the highest
number of assembled known mph genes per gigabase was found in the forest soil
metagenome, sampled from pristine forests in China.
As noted from Table 4.3, the identified Mph sequences could be divided into a total
of 22 gene families sharing <70% AA similarity. 9 of these represented previously

29



4. Results

Figure 4.9: Number of predicted mph genes per gigabase in all of the analyzed
metagenomic datasets

known Mph variants, namely MphA, MphB, MphC, MphE, MphF, MphG, MphI,
MphL and MphM. To study the evolutionary relationships between the assembled
genes, a phylogenetic tree was created from all of the reconstructed sequences to-
gether with all of the reference Mph sequences (Figure 4.10). The tree presents a
number of interesting observations, not the least of which being that MphB, which
was the known gene with the most occurrences across the data, was almost exclu-
sively identified in the pig gut environment.
As the tree is not composed of clusters of identified genes, but rather the raw out-
put sequences from fARGene, the similarity among the sequences can be studied.
The more level the leaves that cluster together are, the more similar the assem-
bled sequences are, and if the points are located next to each other on a line that
means that they are identical. While if this occurs within the same datasets it can
be attributed to a number of factors, it can be observed that here many identical
sequences have been predicted across different datasets as well. Most notably five
identical sequences have been identified in both the WWTP and the Pune river sam-
ples, all but one representing new gene families. For the identical pair representing
MphE, these were also identical to the reference sequence for this gene familiy. An-
other point of note in the tree is the set of 7 identical sequences at the top left,
representing a new gene family, as these were identified among all three human gut
microbiomes.
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Figure 4.10: Phylogenetic tree displaying the Mph sequences found in the metage-
nomic data. To improve the interpretability of the tree, it has been spiked with
reference sequences of known Mph classes.
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In this chapter the results described in the previous chapter will be further in-
terpreted and discussed with respect to reliability and implications. To make the
chapter less confusing, the two genetypes will be discussed separately, including the
findings from both the genomic and metagenomic data.

5.1 Erm 23S-rRNA methyltransferases

The distribution of Erm sequences identified from the genomes in NCBI GenBank
seems to be largely consistent with what has been reported previously. Indeed,
erm(B) has been described as the most widespread gene of this type, and erm(A),
erm(C) and erm(F) are all known to have mobilized into pathogens and would
therefore be expected to be more widespread than many other variants. Looking
towards the types of bacteria that these were identified in, ErmA, ErmB and ErmC
were all predominantly identified in bacteria from the Firmicutes phylum, with
ErmA and ErmC primarily being found among the Staphylococcus genus and ErmB
being found among the Streptococcus/Enterococcus genera. These results are exactly
in line with what has been stated about these genes in the literature, and accordingly
erm(F) was also primarily identified where it would be expected, namely in bacteria
from the Bacteroidetes phylum, specifically among the Bacteroides genus. As these
findings seemingly correspond so well to reality, it speaks to the reliability of the
remaining results, with the exception of obvious false positives.
The fact that the models missclassified some ksgA-genes can likely be explained
by the high similarity and close evolutionary relationship between these two types
of genes. When examining the scores assigned to the false positives it could be
seen that they were of a comparable magnitude to those assigned to some of the
verified known Erm variants, and thereby the score threshold could not be raised
to completely remove the false positives without simultaneously misclassifying true
positive Erm variants as negatives. By contrast, mph genes are more evolutionary
close to eukaryotic genes than they are to most bacterial genes, explaining why the
Mph model allowed for a much lower threshold score to be set while not gaining any
obviously missclassified sequences.
The overall distribution of bacteria harboring the predicted erm genes, as displayed
in Table 4.2 and Figure 4.1, is both reasonable and rather interesting. As bacteria
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of the Firmicutes phylum are Gram-positive and thereby very susceptible to the
effects of most macrolides, in addition to the phylum containing many pathogens
that are prime targets for the clinical use of macrolides, it is clear that having these
genes can provide an evolutionary advantage. Therefore it makes sense that Firmi-
cutes are heavily overrepresented when it comes to harboring both known and new
macrolide ARGs. A similar rationale can be applied regarding the overrepresenta-
tion of Actinobacteria among hosts of uncharacterized Erm variants, as these are also
Gram-positive bacteria with some prominent pathogens, notably Mycobacterium tu-
berculosis, present within the phylum. The phylum contains a large diversity of
different bacteria with different functions however, many of which exist as environ-
mental bacteria [94]. It is also of note that all macrolide producing bacteria belong
to the Actinobacteria phylum, and as mentioned in the Theory chapter it has been
described that one of the main mechanisms used by such producers to achieve self-
resistance is through Erm type methyltransferases. This information can be used to
explain the overrepresentation of Actinobacteria, as they also obtain an evolutionary
advantage from harboring Erm methyltransferases.
Proteobacteria and Bacteroidetes on the other hand are Gram-negative bacteria,
and therefore not nearly as susceptible to macrolide antibiotics in general. This
can help explain the massive underrepresentation of Proteobacteria harboring both
known and new erm genes, as they are already intrinsically resistant to all natu-
rally occurring macrolide antibiotics and would therefore only benefit from having
these genes in environments were macrolides made or modified by humans, notably
azithromycin, are being used. This is reflected in the results as most genes that were
identified in Proteobacteria where known mobile variants such as erm(B) that exist
in the clinical environment. There were a few exceptions to this however, which
serves as an indication of some genes being mobile and/or gene transfer events hav-
ing occurred some time in the past, as the sequences identified in Proteobacteria
appeared in parts of the tree that clearly had an evolutionary connection to another
phylum. This implies that while a relatively small number of erm genes have mobi-
lized into Proteobacteria, the diversity of the gene families that have transferred is
quite large as they originate from all across the phylogenetic tree.
The subject of evolution of Erm 23S-methyltransferases, as indicated by the phy-
logenetic tree presented in Figure 4.3 presents a number of insights, but also a
number of questions. The two top left clusters in the tree, containing 12 known
Erm sequences, are in part dominated by genes found in Firmicutes bacteria that
have an association with the human and animal gut microbiota, such as Clostridi-
ales and Lachnospiraceae, and in part dominated by sequences from other types of
Firmicutes bacteria, notably Staphylococcus. Of the genes found in this part of the
tree all but five variants (erm(Q), erm(43), erm(44), erm(45), and erm(47)) are
known to be mobile, but their locations in the tree indicate that they all mobilized
from very similar or the same ancestors in the past regardless of the hosts they are
currently found in. This becomes clear when observing erm(G), a gene that was
most predominantly found in bacteria from the Bacteroides genus, its location in
the tree clearly indicates that it has mobilized from bacteria from the Firmicutes
phylum, which are genetically very different from Bacteroidetes.
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The large group of sequences at the top right of Figure 4.3 is for this reason very
curious. Here, new erm genes originating from most of the more exotic bacteria,
not belonging to any of the four main phyla, cluster together. These bacteria are
phylogenetically very diverse, hailing from a range of different phyla including more
than 20 different ’Candidatus’ phyla, a notation that describes a type of bacteria
that is not very well studied and also unculturable, but do not necessarily share
a close taxonomic relationship [95]. What is perhaps more interesting than the
fact that genes from these exotic bacteria cluster together however, is the fact that
the previously described Firmicutes-based clusters are connected to this part of the
tree. In between these parts are a group of gene families containing sequences from
Firmicutes, Proteobacteria and Actinobacteria, which also includes the known genes
erm(42) and erm(49). This might indicate that these genes originate from these
more exotic bacteria and have since transferred to other, more common bacteria.
The remaining parts of the tree are easier to summarize. The pair of Firmicutes-
derived clusters to the left are heavily dominated by bacteria that would typically
be found in the environment, mostly various types of Bacilli. It is interesting to
observe this group in relation to the previously mentioned Firmicutes clusters, since
those genes seemingly share a closer relationship with the genes identified in the
miscellaneous exotic bacteria than with the genes in this cluster. Instead, the genes
in the left cluster seemingly share a closer relationship with the genes identified in
Bacteroidetes, which locate to a small cluster above. Aside from those harboring
the known ErmF/Erm35 sequences, the remaining hosts represented in this cluster
are dominated by environmentally associated species from Bacteroidetes, and this
might provide an indication that these bacteria have shared genes with the aforemen-
tioned Bacilli within these environments long ago. The two Actinobacteria clusters
that locate to the bottom of the tree, containing several known Erm variants, are
seemingly closest to the environmentally associated Firmicutes and Bacteroidetes in
terms of evolutionary distance. This is reasonable since Actinobacteria are typically
associated with environmental samples as well, and points to a large diversity of erm
genes hailing from the environment when considering the number of gene families
that are associated with it. As a final note, there is seemingly no discernible differ-
ence between the organisms whose genes make up the two Actinobacteria clusters,
meaning that there must be another reason for their division.
The metagenomic analysis further elucidated which environments erm methyltrans-
ferase genes currently exist in, and where they might mobilize from. By observing
the results presented in Table 4.3, it becomes clear that the gut microbiota serves
as a reservoir for both new and previously known Erm variants. Notably, most
of the clinically relevant Erm variants were identified in both human and pig gut
microbiome, as well as the samples from WWTP and the Pune river. Likely, the
high levels of antibiotics present within these areas have resulted in a selection pres-
sure leading to the need for many bacteria to acquire ARGs to gain a competitive
advantage.
There are several implications that come with macrolide ARGs mobilizing from the
human gut. The most major implication is that by having humans as a reservoir,
these genes will inevitably end up in the clinical environment if they become mobile.
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This is supported by the fact that all known mobile genes that were identified in
human samples have been encountered in the clinical environment. Further, the
fact that the effluent from WWTPs and polluted rivers such as the Pune contains
macrolide ARGs is likely a result of the presence of human fecal matter in these
environments, showcasing how ARGs can spread from the gut environment. The
implication here is that these effluents flow out into the more remote environments,
promoting the spread of macrolide ARGs at various locations across the world. For
example, it is not unlikely that many of the environmentally associated species that
were shown to harbor Erm variants from the genomic data originated from environ-
ments exposed to antibiotic selection pressure. However, the genes reconstructed
from the forest soil and lake Hazen metagenomes further support that antibiotic
resistance can develop even in pristine environments.
Considering all of the obtained results, this study was able to substantially con-
tribute to the knowledge about erm type macrolide ARGs. Discounting the con-
firmed false positives, a total of 320 novel gene families of this type were identified,
across a large number of diverse bacterial genomes and over a dozen terabases of
metagenomic data. While it seems likely that many of these genes have not yet
mobilized, and hopefully many of them never will and thereby will not cause any
problem in the future, it is important to recognize that these genes exist in a variety
far greater than previously known, and have the possibility of mobilizing from many
different environments. Since a main reservoir is indicated to unfortunately be the
gut microbiome, it is of utmost importance that we in the future limit our use of
antibiotics to not further promote the spread of erm genes.

5.2 Mph macrolide phosphotransferases

The Mph model, similarly to the other two models, produced results that corre-
spond well to what is stated in literature about these genes. In the genomes in
NCBI GenBank, the most frequently found gene by far was mph(A), followed by
mph(E) and mph(C). As these are all known to be mobile genes of clinical signifi-
cance, these results are not surprising. Primarily MphA and MphE sequences were
identified in Proteobacteria, with Escherichia and Acinetobacter being the most
prevalent host genus respectively, though both variants were present in Klebsiella
and Salmonella as well. Contrarily, MphC was most frequently occurring in bacteria
from the Firmicutes phylum, specifically of the Staphylococcus genus. All of these
three variants also had a small number of occurrences in bacteria from phyla other
than the one primarily associated with them, confirming their mobility across phyla
and contributing to the reliability of the results as this has been reported before (see
the Theory chapter). In addition, as previously mentioned, the dissimilarity of mph
phosphotransferase-genes to most other bacterial genes is likely what contributed
to the lack of obvious false positives for this type of gene, despite a much lower
threshold score being used during the analysis.
Comparing the distribution of species carrying mph genes presented in Table 4.1
and Figure 4.4, to the corresponding information for erm genes, the results are
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both similar and different. The first thing to note is that Proteobacteria carrying
mph genes are seemingly much more prevalent, however it should be noted that
close to all occurrences of mph genes in Proteobacteria are represented by the two
mobile genes mph(A) and mph(E). This explains the small diversity of the genes
found in Proteobacteria with respect to the total number of identified sequences,
as well as the significant underrepresentation of Proteobacteria among the hosts of
uncharacterzed erm genes visible in Figure 4.4. It is very reasonable that there is
a large number of different Mph variants harbored by bacteria from the Firmicutes
phylum, for the same reasons that they collectively host a large number of Erm
variants. It is interesting however, that the number of occurrences in Actinobacteria
is not very high, but highly diverse with respect to the overall count. This is
reflected by their significant overrepresentiation among carriers of new Mph variants.
Unlike Erm-mediated resistance, Mph-mediated resistance has not been reported as
responsible for self resistance in macrolide producing Actinobacteria, however as
they are Gram-positive bacteria that are susceptible to macrolides this means that
they are indeed likely to gain a competitive advantage from harboring these genes.
Finally, while the number of genes identified in bacteria from the Bacteroidetes
phylum is comparatively very small, the diversity of the predicted ARG sequences
is surprisingly high, suggesting that some of these bacteria obtained this type of
genes long ago, and that they may have evolved along with the organisms.
The phylogenetic tree presented in Figure 4.6 tells an interesting and curious tale
about the evolution of this type of macrolide resistance. It becomes clear from
the tree that a quite large variety of mph-genes has evolved within Gram-negative
bacteria, as two clusters mostly comprised of sequences identified in Proteobacteria
and one cluster comprised mainly of sequences identified in Bacteroidetes can be
clearly seen to the top right, left and top of the tree respectively. This is highly
interesting since it has been shown that some Gram-negative bacteria, e.g E. coli,
are intrinsically resistant to macrolides on account of the structure of their outer
cellular membrane [96]. However, it has also been shown that this does not apply
to all Gram-negative organisms, as Bacteroides fragilis, an anaerobic bacteria from
the Bacteroidetes phylum that has a complete outer membrane, has proven to be
susceptible to macrolide antibiotics [97].
This suggests that there are more complex factors that determine weather a bac-
terium is intrinsically resistant to macrolides than it just being Gram-negative.
Looking towards the types of bacteria present within the aforementioned Gram-
negative clusters, the majority of the gene families, besides the previously known
ones that were present in pathogens, originated from the genomes of bacteria about
which not a lot of information was available. Examples of genera represented are
Corallococcus (Proteobacteria), Methylophaga (Proteobacteria), and Sphingobacte-
ria (Bacteroidetes), and it is not unreasonable to assume that since macrolide resis-
tance genes have evolved in these genera, they are likely among the Gram-negative
bacteria that are not intrinsically resistant to macrolides. Regardless, it sees appar-
ent from the phylogenetic tree that MphA and MphF have evolved in Proteobacteria,
and that MphE and MphG have likely evolved in Bacteroidetes and then mobilized
into Proteobacteria.
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Despite a relatively high diversity of uncharacterized Mph variants being identified
in bacteria of the Actinobacteria phylum, it is interesting to note that only two
known variants, MphH and MphO, were identified in bacteria of this phylum. The
sequences from Actinobacteria also notably clustered into two separate groups, with
one being placed higher up in the tree, closer to the outgroup. These groups are
seemingly defined by the species of Actinobacteria that the sequences were found
in, with the larger group containing the two known variants being dominated by
species like Brevibacterium, Brachybacterium and Arthrobacter, and some sequences
identified in Deltaproteobacteria locating to this part of the tree as well. These
misplaced Proteobacteria are particularly noteworthy, as they mainly belong to the
the genusMyxococcus. These bacteria are predators that tend to feed on soil-dwelling
bacteria [98], such as the Actinobacteria represented in these clades, and the fact
that these predators have obtained genes that have evolved in their prey might
suggest that genes are able to transfer to new hosts through consumption of the
original host. This might be a way for genes to cross the phylum barrier, however
it is of course also possible that these genes have simply mobilized into Myxococcus
using other means as they exist in the same environments as the original hosts,
unrelated to their predatory nature.
The smaller group corresponding to Actinobacteria that is located higher up in
the tree is primarily comprised of sequences identified in bacteria from the genera
Streptomyces and Saccharopolyspora. As mentioned in the introduction, these genera
include bacteria that produce macrolides. Even though this type of resistance has
not been reported in macrolide producers, the type of bacteria represented in this
cluster, as well as its position in the tree, indicate that the gene families present
within this group may be derivative of ancestral Mph sequences. These may have
developed in producers or similar bacteria, and have later spread among other phyla
and evolved into the variations that we know today.
By observing the remaining parts of the phylogenetic tree, it seems apparent that
the majority of known mph genes have evolved in bacteria from the Firmicutes
phylum. Similarly to the groups representing Actinobacteria, the Firmicutes-derived
sequences also are divided into two groups, however when analyzing the species
represented within these groups it was revealed that both groups were comprised of
sequences that were primarily identified in different types of Bacilli. Instead it is
likely that the groups here are defined by the substrate specificity of the encoded
enzymes, as it MphK and MphI, which exist in the same group, are both known to
have a narrow substrate range compared to most Mph variants. It is therefore likely
that the uncharacterized Mph sequences within this group represent enzymes with
similarly narrow substrate ranges, that likely evolved from broad-range enzymes
that over time lost the affinity for some substrates. It is also of note that MphJ,
the closest known variant in the tree, is not considered to have a narrow substrate
range, and may thereby be representative of the Mph enzymes that evolved into the
narrow-range enzymes over time given their close evolutionary distance [26].
The most noteworthy sequence that locates to the second Firmicutes-derived group
is MphB, which corresponds to the sixth most prevalent of the genes in the data.
This gene is very interesting, as it clearly has evolved in Firmicutes based on its
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placement in the tree, yet more than 90% of the occurrences came from Proteobac-
teria, mostly E. coli. The remaining occurrences were identified in bacteria from
the Clostridium genus, and it is likely that the gene mobilized from these bacteria
into pathogens from Proteobacteria as a result of selection pressure or other factors
some time in the past. Regardless, it is interesting to compare this gene, which
is present in these Proteobacteria and known to be mobile, to another gene with
the same properties. The perfect candidate for this comparison is MphA, a mo-
bile gene which is also widely present in E. coli, but also seemingly has evolved in
Proteobacteria rather than spreading there as a result of horizontal gene transfer.
As was noted from Figure 4.5, MphA is so widespread that it represented close to
half of all identified genes in the data, and E. coli genomes harboring MphA were
more than 20 times as prevalent as E. coli genomes harboring MphB. There are
likely several reasons for MphA being more prominent, one being that since MphB
originates from a different phylum the codon structure of the gene mph(B) is not as
optimal for E. coli as the one of mph(A), since evolution within the same phylum has
likely promoted the most efficient codons over time. This was confirmed during an
analysis of these two genes, and another interesting fact that was revealed was that
the two genes tended to be located on plasmids of the same incompatibility group,
that being IncFIB. Since bacteria can not simultaneously promote two plasmids of
the same incompatibility group, that means that in this case MphA, being able to
be more efficiently transcribed and as previously noted in the Theory chapter as
having a better affinity towards phosphorylating azithromycin, which is both the
most prescribed macrolide as well as the one that is engineered to be used against
Gram-negative bacteria, will provide the highest advantage and will therefore be
promoted under selection pressure.
Observing the results of the metagenomic analysis, the environments where mph
genes were present were mostly the same as the environments where erm genes were
present, however the quantity of mph genes was much lower. This is in line with
what has been stated in the literature, as it is known that Erm-mediated resistance
is the most common type of macrolide resistance, and therefore not surprising. This
means that mph genes may also mobilize from the gut microbiota and that antibiotic
pollution has promoted the spread of mph genes. Aside from this however, there are
a few interesting observations that can be made from the phylogenetic tree presented
in Figure 4.10.
It is highly interesting that so many instances of previously uncharacterized se-
quences were assembled from different metagenomes that were identical to each
other. As most of these instances were pairs of sequences were one sequence was as-
sembled from theWWTPmetagenome and the other from the Pune river metagenome.
How these genes have transferred across the world between Sweden and India is pos-
sibly a result of humans traveling from one location to the other, bringing with them
bacteria that have these genes that can then transfer them to the bacteria that exist
in the other location. This likely also has the implication of these genes existing in
other parts of the world, considering the distance between the locations correspond-
ing to the samples in which they were identified during the metagenomic analysis
here, and might be worth investigating further in case they have a possibility of be-
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coming problematic. One of these pairs in particular clusters together with MphA
in the tree, and given that that implies that they have similar properties this gene
would be a prime candidate for further investigation. Another similar group of
identical, unknown sequences clusters together with MphE, and was identified in all
human metegenomes that were analyzed. Since the human samples came from both
America and China, this might mean that this gene might exist in humans all over
the world, and might mobilize from the gut microbiota in the future.
The final interesting point relates to the gene mph(B). This gene accounted for
almost a third of all identified Mph variants, while simultaneously being almost
exclusively found in the pig gut microbiota. As mentioned above, it seems likely
that the original hosts of mph(B) come from the genus Clostridium before the gene
was mobilized into Proteobacteria. This agrees with the metagenomic results, as it
has been shown that Clostridium sp. is very prevalent within the pig gut microbiota
[99], and might imply that the original mobilization of this gene happened within
the pig gut environment. Considering the amount of antibiotics that are used when
breeding such animals today, this would provide a suitable selection pressure for this
gene to become advantageous and widespread across the bacteria in the gut, and if
this is in fact what happened this is a fine example of why antibiotic use should be
limited not just for human applications, but for animal applications as well.
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Through analysis of both genomic and metagenomic data, we were able to predict
320 novel erm gene families, not including false positives, as well as 221 novel mph
gene families. This potentially represents a more than seven-fold increase in the
number of known erm genes, as well as a more than fourteen-fold increase in the
number of known mph genes. It is important to recognize however, that none of
the predicted gene families can be considered for inclusion in the list of known
macrolide ARGs before their functionality has been experimentally validated. This
would therefore be a future prospect for this study.
Furthermore, through phylogenetic analysis we were able to elucidate the evolution-
ary relationships between the predicted ARG families, and suggest how they might
have evolved. Finally, through metagenomic analysis we were able to conclude that
the gut microbiome of humans and animals acts as a reservoir for both of the stud-
ied genetypes, where pathogens are likely to acquire mobile macrolide ARGs. This
highlights the importance of taking proper measures in the future, as humans are
likely to have spread these genes to environments across the world, as highlighted
by two ARG hotspots identified in the metagenomic data, where one was located in
India and the other in Sweden. More metagenomes would need to be analyzed to
identify environments where these genes originally evolved and originally mobilized
from, which would be useful information to have in order to, if possible, take pre-
cautions that would prevent new macrolide ARGs from mobilizing into the clinical
environment. In total, this study highlights that the macrolide resistome is vaster
and far more diverse than we are currently aware of and that it would be interesting
to study it further, including resistance determinants that were not a part of this
study.
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A
Supplementary Figures

Figure A.1: Cladogram displaying all of the genes predicted by the two erm models.
The innermost of the map represents the phylum of the organism where the sequence
was identified, and the outermost map represents the source from which the organism
was isolated.
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A. Supplementary Figures

Figure A.2: Cladogram displaying all of the genes predicted by the mph model.
The innermost map represents the phylum of the organism where the sequence was
identified, and the outermost map represents the source from which the organism
was isolated.
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