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Automatic test code generation from acceptance test cases for large-scale software
products

KUVALAYA DATTA JUKANTI
PRASHANT KUMAR
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
The process of evaluating whether or not a software system is conformed to the
requirement specifications plays an important role in a large-scale software environ-
ment. The test engineers identify the test scenarios and implement the code ac-
cording to the software standards which enables the verification of required criteria
for the product delivery. In the development model adopted by several companies,
including Ericsson, the requirements for a product are defined first on a high level.
These requirements are analysed and transformed into test plans or test cases which
are tested after the product development stage. But today, Ericsson has adopted a
new practice of software development which is the test-driven development process
where the test cases are defined before the software is fully developed. The test
engineers then write executable code for the test cases and test the product for dif-
ferent scenarios.

However, in the context of large-scale software development with multiple products
and teams, it is not trivial to implement code for all the test cases. Today, the
common way of performing acceptance testing is through manual labour by under-
standing the requirements, implementing the test scripts and execute them. The
developers create tests to determine if the requirements are met with the contract.
This serves as one of the challenges as it is a time consuming process. Thereby,
it is important to automate the testing process to rely less on the test engineers
and sufficiently serve the purpose. Today there are more advanced technologies and
resources which could help in developing such a tool that can reduce the costs and
time for the company.

This project has as its goal to automate the process of translating the test descrip-
tion to test code. The approach involves the use of natural language processing
techniques and other deep learning techniques for analyzing the the test case speci-
fication written in natural language and generate the corresponding executable test
code. This test code follows the syntax of Robot Test Automation Framework.
However, as every test scenario involves different parameters to consider, the aim
is to generate the code with suitable functions and be user-friendly allowing human
experts’ adjustments to add configurations and parameters.

Keywords: Acceptance testing, Test case specifications, Automatic test code genera-
tion, Natural Language Processing, Deep Learning, Robot Framework.
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1
Introduction

Software testing is the process of evaluating or verifying that a software product
or application meets the expected requirements. It is considered the most critical
stage of the software development life cycle as it not only ensures that the software
system is error or bug free but also ensures high quality of the software system [34].
Over the past few years, the software products have grown in size and complexity
making the entire process expensive in terms of cost, time and efforts.

The testing process involves a group of people analyzing the specification document,
identifying the test cases and then implementing code. The requirement specification
document describes what the software is intended to do and how it will be expected
to perform. The software testers analyze these steps or functions and develop the
corresponding code to test that the software is performing according to the expec-
tations. In the past two decades, there have been many advances in the software
development approaches. The evolution of Agile development has introduced many
realistic and efficient approaches moving towards continuous delivery and high speed
to customers or clients. In recent years, one such practice that has grown in popu-
larity and has been recognized as one of the efficient approaches in the agile software
development niche is test-driven development (TDD). With TDD, developers create
tests that validate the functionality of the software. In simple words, developers
write the test before developing the actual code. This is mainly used for acceptance
testing. Acceptance Testing is a process of evaluating a system’s compliance with
business requirements and determining whether it is acceptable for delivery.

The major difference between the traditional testing approach and the TDD is that
in the traditional approach, the code is written first, and the tests are executed at
the end. TDD promotes the red-green-refactor approach. Red refers to the details
that any feature should start with a failure of test case, green denotes that the code
to be implemented and get the new test case pass and refactor signifies that the
code should be cleaned up [26]. In other words, it is based on the idea that the
developers use the test cases before writing the actual code. Figure 1.1 shows the
same. This helps in building quality software as it helps developers understand the
requirements, and with the constant feedback there is more test coverage and veri-
fication that the software works as intended.

Today, the most common method of testing is through manual labour. In today’s
world, the concept and nature of the software testing has changed. The industry has
equipped new approaches or techniques with regard to software testing, specifically

1



1. Introduction

Figure 1.1: Test Driven Development (TDD) process illustrating the
red-green-refactor approach

the changes pertaining to the testing procedure. Having said that, there is a contin-
uous transition from manual to automated testing [37]. Test automation improves
software testings’ effectiveness, efficiency, and coverage. However, human intuition
and deduction is not fully achieved with the current methods of test automation
and therefore manual software testing is still considered as an important approach
in software testing [7].

Manual software testing is a resource-intensive and time-consuming procedure, de-
spite being one of the most common techniques of testing. As the software products
grow in size, the costs and efforts also increase which makes the software testing
process very expensive. Automating the process of test code generation eliminates
or reduces the manual efforts, thereby aiding to substantial time and financial sav-
ings for the organizations.

One of the key sources of information for developing test cases is specifications.Because
test case requirements must be simple to use and comprehend, they are frequently
written in natural languages like English and hence using Natural Language Pro-
cessing (NLP) techniques for understanding the test cases serves an appropriate
methodology [34]. NLP approaches have demonstrated promising outcomes pre-
viously when it comes to understanding raw data pertaining to a specific area or
domain. This sparked a growing interest in natural language processing approaches
in a wide variety of applications, for example, machine translation, text generation,
information extraction, etc. On the other hand, code generation has become an im-
portant area to predict code with structure and syntax. Deep learning models are

2



1. Introduction

emerging technologies in this area to achieve the difficult code processing problems
such as code generation and code summarization. The combination of NLP and
deep learning will yield in analyzing the test cases and generate the corresponding
test code in the current study. Several previous studies on the generation of code
from text have been conducted [31, 21, 11, 28]. However, most of these solutions are
implemented on general-purpose programming languages where there is abundance
of data available which makes the models learn the structure and syntax better.
Such languages would not be available in a domain-specific environment especially
when it comes to writing test code, and if available, they require a lot of data and
expert guidance in understanding the structure and syntax of them.

This thesis proposes, implements, and evaluates a method for generating test code
from test case requirements or specifications expressed in natural language. The
solution involves the generation of test scripts in Robot Test Automation framework
(a keyword-based testing framework explained in section 2.9). This is implemented
by using deep learning and NLP techniques. The proposed approach is used and
tested on an existing industrial project at Ericsson AB.

1.1 Background
This thesis is done in collaboration with Ericsson AB, with the sub unit that devel-
ops real-time telecom software systems. Their software development team handles
some of the major applications developed till date. Evidently, these application have
huge repositories of code which contain thousands of features and functionalities.
In the software development department, there are two versions of applications that
are of importance for this project. First, a monolithic application which is struc-
tured in the form of a single-tiered architecture, consists of all the code composed
in one piece. This version of application is old and has tests written using Robot
Test Automation Framework. Having said that, there are no corresponding test case
descriptions through which the executables were implemented.

There is newer version which ought to replace the monolithic application which is
based on test-driven development and consists of acceptance test cases and no ex-
ecutables. To elaborate, the newer version only has the test descriptions whereas
the robot test code is not yet implemented. Ericsson’s idea is to make use of the
monolithic application, understand the syntax and structure of the robot scripts and
use it to generate the same for the new acceptance test cases. That is, given a test
case specification in natural language, generate the corresponding robot test code
with the involvement of human interpretation.

1.2 Purpose
The purpose of this study is to investigate the possibility of building a system or
a model that (a) translates the test case specifications written in natural language

3



1. Introduction

into robot test code by incorporating NLP and deep learning techniques; (b) be
user-friendly and allow human experts’ adjustments to add configurations and pa-
rameters. The proposed solution capitalizes the existing tools / technologies such
as NLP and deep learning to generate the code in the syntax of Robot framework.
The study is being carried out by Ericsson AB, who are interested in using Artificial
Intelligence (AI) and Machine Learning (ML) in a variety of areas. Software testing
is one such arena where AI and ML can be utilized to reduce the time and efforts
put in by the developer teams. It will also facilitate easier maintenance and reuse of
test cases if there are any changes in the test case scenarios. This study’s findings
could pave the way for minimizing the costs for software testing department in the
company.

1.3 Problem Definition

The main objective of this thesis study is to generate code for a particular test de-
scription written in natural language for large-scale software products. As a result,
the following research questions arise:

RQ1. How can the test cases of existing applications be leveraged to prepare data
and use it to generate code for other applications?

RQ2. How can test case specifications written in natural language be translated to
test code in robot framework syntax for large-scale software products?

RQ3. How does the quantity of the data used for training affect the generation of
accurate code results?

RQ4. How can the obtained results be useful for the developers at Ericsson?

1.4 Scope

There exist several ways one can write the test case specifications. These descrip-
tions can be both abstract and detailed. In this project, the test case specification
is viewed as a series of steps, each of which corresponds to a small module in an
entire block of code. Furthermore, in this investigation, the generated code will not
be executed in its entirety; instead, a human expert will intervene and adjust the
settings and parameters. To elaborate, since the model will be trained on the mono-
lithic application (see section 1.1), it cannot produce the new parameters pertaining
to the unseen test cases. In such cases, a human expert will have to manually alter
the parameter values in order to execute it correctly. As for the expectations set
for this project, the model is expected to understand the test case description and
generate the keywords (section 2.9) required in the test code.
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1.5 Limitations
1. Lack of data - The approach for this study involves the usage of deep learning
models, which often requires a large amount of data to produce good results. The
data provided by Ericsson is considerably not in large amounts. In addition, the new
version, which is a test-driven application, contains acceptance test cases, which are
far less in number.

2. Extraction of data from different applications - The test driven application
which consists of acceptance test cases do not have any corresponding robot files
implemented. Therefore, the data from the monolith version which contains the
robot files is used. Having said that, the limitation is that the two versions are very
different from one another, creating a risk of obtaining sub-optimal results.

3. Human intervention - The generated code script will consist of parameters,
variables, and keywords which act as functions in Robot Framework. However, in
order for the test file to run, human intervention is required to update the settings
and parameters. As a result, the created file cannot be executed directly.

4. Evaluation - The generated result is evaluated by testing and domain experts
from the company. As a result, the scoring would be determined by the individual’s
viewpoint. Different people would have different opinions on which to base their
scores.

1.6 Thesis Outline
The report has a total of five chapters. Chapter 1 offers an introduction to the sub-
ject, as well as a summary of the problem statement, the study’s purpose, and its
scope. The related work and theory for the topic is provided in Chapter 2. It covers
various approaches dealing with code generation and the procedures or techniques
followed in this study. It also explains the deep learning and natural language pro-
cessing approaches which are applicable for our study. Chapter 3 gives an outline of
the methodology and implementation of the proposed approach. Chapter 4 contains
the study’s findings and outcomes, along with drawing the reasons for the obtained
results. Chapter 5 includes the conclusion for the thesis.
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2
Theory

This chapter describes the overview of the information required for this project.
The initial couple of sections gives an overview of NLP and Deep Machine Learning.
The next few sections focus on covering the theoretical concepts relevant to the
thesis. Section 2.3 focuses on explaining the recurrent neural networks and its
variants. Section 2.4 describes the concept sequence-to-sequence learning which is
the fundamental idea for this project study. Section 2.5 describes the use of attention
mechanism in deep learning models. Section 2.8 explains code deobfuscation, a
technique used to mask elements in source code and recover them to their original
state after training the model. The next section gives a brief idea about the Robot
Framework and the benefits of using it. Section 2.10 explains the evaluation method
suited for the current problem. The chapter is closed with a section of information
providing the insights gained from previous related work in the area of NLP and
deep learning for code generation.

2.1 Natural Language Processing (NLP)

Natural language is a language that humans use in everyday communication. It
can be ambiguous because of its huge and diversified vocabulary, words with many
meanings, and be spoken in a variety of accents. NLP is a field that combines com-
puter science, artificial intelligence, and linguistics to investigate how computers
can understand and process natural language text or speech [8]. The growth and
research in the area of NLP has been growing rapidly, however, it is still considered
a difficult process since computer interaction requires a precise and clear language,
which is not the case with natural language.

Typically, a NLP system is made up of many processing stages. Lower levels include
morphological analysis, syntactic analysis, and semantic mapping, whereas higher
levels include discourse and pragmatic analysis [6, 34]. The majority of today’s NLP
systems are focused on lower-level processing probably because the lower levels focus
on smaller elements, such as words and phrases. There are different kinds of steps
or techniques involved when dealing with text data. It is a wide area to describe
and it often depends on the type of problem dealt with and therefore, the required
NLP techniques used in this project is described in section 3.3.

7



2. Theory

2.2 Deep Machine Learning
Living amidst of the big data era, in which vast volumes of data are generated across
all disciplines of science and industry, presents society with unparalleled hurdles in
analyzing and interpreting them. This allowed deep learning to be a new learning
paradigm in the world of AI and ML [14]. It is a methodology based on the concept
of Artificial Neural Network (ANN) that has been gaining a lot of attention as it is
producing quality results [18]. Recent breakthroughs in the areas of image analy-
sis, speech recognition and Natural Language Processing have sparked widespread
interest in this topic. Since it refers to a group of techniques rather than a single
method for learning large prediction models, it also appears that applications in a
variety of other domains are feasible. In the context of natural language processing
tasks, there have been immense positive outcomes in various problems such as text
categorization, POS tagging, document classification, and others. NLP tasks re-
quire a very robust feature engineering which can be both time consuming and cost
intensive. Deep learning techniques are extremely useful in those complex situations
when domain expertise is scarce. There are a variety of representations accessible,
but each is best suited to a given goal.

2.3 Recurrent Neural Networks (RNN)
A recurrent neural network is a type of Artificial Neural Network that can learn the
sequential features of data and use patterns to forecast the next likely occurrence.
Because most natural language problems comprises a sequence of characters, phrases
or sentences with correlated elements, using RNN to process sequences makes it rel-
evant to these type of problems. Furthermore, the key feature of RNN is the ability
to use its internal memory to store past information. Like other neural networks,
recurrent neural networks are divided into layers, with each layer consisting of in-
terconnected nodes having an activation function. They can process sequences by
the fact that the current state is affected by its previous states [31].

Figure 2.1: Unrolled Recurrent Neural Network

While dealing with text, the network needs to process the previous word or character
in the sequence. RNNs perform the same task for every element in the sequence
which gives them the ability to remember what has been done previously. Figure 2.1
demonstrates the simple structure of RNN network, where xt is input at each time

8



2. Theory

step t, ht is hidden state at time t, Wx and Wh are weights of input and recurrent
neuron respectively, and yt is output at time step t. It can be seen that, at each time
step, the weights and biases are constant to every input and hidden state allowing
RNN to handle inputs of varying lengths.

2.3.1 Long Short-Term Memory (LSTM)
RNN units have the limitation of not being able to hold long-term dependencies
due to vanishing gradients. The weights of the neural network is updated using the
gradient descent algorithm. As the network descends into lower layers, the gradients
get smaller. A change in the gradient teaches the model something new. The output
of the network is affected by this alteration. However, if the gradient difference is
very small, the network will not learn anything and hence there will be no difference
in the output. As a result, a network facing a vanishing gradient problem will not
be able to find a good solution [24]. This problem is solved by using LSTM by using
four different network layers rather than using just one as in the simple RNN. All
these layers are associated with each other forming a concrete structure to deal with
the problem of long-term dependency. LSTMs consist of a memory cell, an input
gate, an output gate and a forget gate. They are designed to remember the essential
information by the use of cell states (Ct) as shown in Figure 2.2.

Figure 2.2: An illustration of the process done inside an LSTM memory cell from
the article [13]

The first step in a LSTM cell is a sigmoid operation on (hi−1) and (xt) deciding
what information will not be remembered. The output (ft) from the equation 2.1
is computed for each element in the cell state (Ct−1) where 0 means to discard the
information completely and 1 retain the complete information. The next step in
the cell determines which information will be stored and is done in two steps. The
sigmoid layer specifies which values have to be updated, and the new candidate
values are created by a tanh layer. These both steps are computed by the equations
2.2 and 2.3 respectively. bf , bi, bc, bo are bias vectors.
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ft = σ(Wf · [ht−1, xt] + bf ) (2.1)

It = σ(Wi · [ht−1, xt] + bi) (2.2)

C ′
t = tanh(Wc · [ht−1, xt] + bc) (2.3)

Later, the final cell state (Ct) is calculated as shown in equation 2.4. The final
step is to compute the cell output (ht) (equation 2.6) which is calculated by using
a sigmoid (Ot) (equation 2.5) and a tanh activation function, so that it forced to
return the values between -1 and 1.

Ct = Ft ⊙ Ct−1 + It ⊙ C ′
t (2.4)

Ot = σ(Wo · [ht−1, xt] + bo) (2.5)

ht = Ot ⊙ tanh(Ct) (2.6)

2.3.2 Gated Recurrent Unit (GRU)
GRU is another technique that solves the vanishing gradient problem of RNN. It is
quite similar to LSTM except that the output of GRU consists of two gates: update
gate and reset gate. The key benefit of GRU is that it preserves information for
a considerably longer period of time [9]. The update gate (Zt) specifies how much
past data must be passed to future and is computed by the equation 2.7. The reset
gate (Rt) indicates how much of the past data must be forgotten and is computed
by the equation 2.8. A GRU cell is represented in Figure 2.3.

Zt = σ(W (z)xt + U (z)ht−1) (2.7)

Rt = σ(W (r)xt + U (r)ht−1) (2.8)

Finally, a tanh layer and an update gate output are used to calculate the current
state memory.

h′
t = tanh(Wxt + rt ⊙ Uht−1) (2.9)

ht = zt ⊙ ht−1 + (1 − z) ⊙ h′
t (2.10)

10
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Figure 2.3: Illustration of Gated Recurrent Unit cell with the update gate and
reset gate from the article [13]

2.4 Sequence-to-Sequence Learning
Deep Neural Networks (DNN) are incredibly powerful machine learning models that
excel at challenging tasks such as object detection, speech recognition etc. They
have the ability that to perform parallel computations and perform complex com-
putations in less time, hence making it powerful. One of the major challenges while
working with deep neural networks is dealing with sequences of variable lengths. Se-
quence to Sequence mechanism can be used in these scenarios of handling variable
lengths and map sequences to sequences.

Figure 2.4: A general sequence-to-sequence architecture with encoder and
decoder components

Sequence-to-sequence learning is the process of training models to translate se-
quences from one domain to sequences of another domain. It is build using recurrent
neural networks or its variants. The main components are encoder and decoder. En-
coder converts an input sequence into a series of continuous representations that are
subsequently fed to the decoder. The decoder reverses the process by using the pre-
vious input and input sequence to turn the vector into a target item. An encoder and
decoder can have multiple RNN cells to process the sequences where the sequences
are processed one step at a time which are extracted by the next cell. The study
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from the paper [36] introduces an architecture to handle the sequence-to-sequence
problem using an LSTM architecture. The experiment was done to translate an
English text to French and have achieved a BLEU (see section 2.10.1) score of 34.8.
This introduced the concept of sequence to sequence learning which is now widely
used in various text related problems.

2.5 Attention mechanism
A strategy that has recently been employed to improve translation is the atten-
tion mechanism. The idea behind attention is for the network to focus on different
sections of the input for different time steps by enhancing few parts of the input
sequence. The part to focus on and to decide which is more important depends
on the context of the problem and is trained by gradient descent algorithm. The
mechanism was introduced by Dzmitry Bahdanau, Kyunghyun Cho, Yoshua Bengio
et al. [5]. Suppose, there are two 10-word statements that are practically iden-
tical except for two words. Encoders and decoders must be subtle to depict the
change as there is a very minor shift in space. The author with this kind of imagina-
tion addressed the problem by allowing the decoder to focus on specific areas of the
input because normally the fixed length vector has to encode the complete sequence.

The attention weights are calculated using the current state of the hidden layer and
each encoder output, yielding a vector to be of size equal to the input sequence.
These weights are multiplied by the encoder outputs to produce a context vector.
The context vector is the weighted sum of encoder states, where each weight (aij) is
the quantity of attention paid to the output of the encoder which is considered as
the decoder input (hj). The context vector is computed by the equation 2.11.

ci =
Tx∑

j=1
aijhj (2.11)

where each weight aij is a normalized attention energy and is given as 2.12

aij = exp(eij)∑Tx
k=1 exp(eik)

(2.12)

where the attention energy aij is computed using some function a using the last
hidden state si−1 and the decoder input and is given as in equation 2.13.

eij = a(si−1, hj) (2.13)
Minh-Thang Luong, Hieu Pham, Christopher D. Manning et al. [25] explain about
“global attention” models, where the major difference is how the attentions scores
are calculated. In global attention, all the states of encoder are used to generate
context vector which is illustrated in the Figure 2.5. The attention weights at each
time step t is computed by considering the variable length at based on the current
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decoder state ht and encoder states si. The global context vector will then be the
weighted average for particular at.

Figure 2.5: A representation of how the context vector is computed in a global
attention model [25]

Attention scores can be calculated by using different functions which are of three
kinds: (a) a dot product between the encoder state and decoder state; (b) general,
a dot product between the hiddden state of the decoder and the encoder state; (c)
concat,a dot product of a new parameter and the linear transform of all the states
combined [10]. These scoring functions help in building specific attention modules
and gives the flexibility to switch between different scoring methods. In our study,
the ’general’ scoring mechanism is used. The scores are defined in the equation 2.14.

score(ht, h̃s) =


hT

t h̃s dot
htWah̃s general
vT

a Wa[ht; h̃s] concat
(2.14)

2.6 Word Embedding
NLP-powered systems generally have the ability to recognize words, grammar and
other language characteristics to process and generate text. Since computer systems
can only grasp numbers, the text is often converted into a numerical representation.
Word embedding or word vectorization is the process of mapping words to a vector
of real numbers. The transformation of text to vectors is done in such as a way
that words having similar meanings have similar vector representations. This tells
that the word embedding is formed by understanding the semantic meaning of the
words present in the text. There are different kinds of techniques on how the embed-
ding is performed. The most common embedding techniques are TF-IDF, based on
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the word importance and frequency of words in the corpus, word2vec, a mechanism
where cosine similarity is used to find similarities among words, GloVe, a pre-trained
word embedding built as an extension to word2vec and many others. In our thesis
study, the PyTorch embedding is used, which store the vector representation for all
the words in a dictionary. It acts as a lookup table. Further explanation about the
embedding is described in the methodology of the study.

2.7 Masked Cross Entropy Loss
Cross entropy (CE) loss is evolved from the information theory where entropy is
defined as the measure of uncertainty for outcomes of a random variable. It is a
measure of the difference between two probability distributions for a given random
set of events [4]. This is a very commonly used technique in deep learning models
and is used to optimize the neural networks by minimizing the loss. The probabili-
ties of predictions are compared to the actual output after which a loss is computed
where the probability is penalized so that it can minimize the differences between
predicted value and actual value [22]. Cross Entropy loss can be calculated by the
equation 2.15.

LCE = −
n∑

i=1
tilog(pi) (2.15)

where, n is the number of classes, pi is the predicted probability of ith class and ti

represents the desired distribution of the classes.

There is a enhanced version of cross entropy loss which is used in sequence-to-
sequence models known as masked cross entropy. In sequence generation problems
where the length of the output is not fixed, the sequences are often padded or
trimmed to form batches of sequences, all having the same length in order to feed
to the model. Due to this padding, it leads to a challenge in the optimization
phase during the computation of gradients and updating the loss through back
propagation. To overcome this, the approach taken in masked cross entropy is to
mask the loss i.e. set the loss to zero before back propagation if it is computed using
the pad tokens, and then update the weights and biases. In our study, masked cross
entropy has been used to calculate the losses during the training process.

2.8 Code Deobfuscation
Code obfuscation is an approach to modify source code in order to make it diffi-
cult for humans to understand. Code deobfuscation is the process of recovering the
obfuscated code. In the context of programming code, there are elements that are
unimportant and would often lead the to memory waste and poor model perfor-
mance. For example, a variable name or function name can be anything in the code.
This type of information is not required for the model to learn and predict. On the
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basis of code obfuscation, Facebook has presented a new objective, Deobfuscation
(DOBF) [33]. The main idea behind DOBF is to obfuscate various elements in the
code such as the variable and function names etc., with special tokens. In other
words, the elements are masked with some special tokens and are then fed to the
model for training. Once the training is completed, the obfuscated elements can be
recovered to their original state.

Figure 2.6: Working of MLM and DOBF approaches from the paper [33]

A similar approach was developed before named as Masked Language Modelling
(MLM) where random words are masked in the input text and then recovered later.
The DOBF approach differs from the MLM approach where all the occurrences of
the variables are masked with the same special token [33]. It can be better visualized
in the Figure 2.6

2.9 Robot Framework
Manual testing is a traditional method of testing which requires a tester to perform
the operations. However, as the organizations grow and develop large products, the
time taken to test all the functionalities also increases. Therefore, manual testing
has become time and cost intensive for organizations. Additionally, the integration
testing also becomes quite complex [35]. In recent years, industries have started to
adopt test automation processes to evaluate a software’s functionality and identify
errors. There are a variety of commercial and open source test automation tools
available, but only a few are suited for black box testing. Moreover, many of the
tools available are ideal for unit tests carried out either by quality engineers or de-
velopers [27].

Robot Framework is a simple, yet powerful tool that leverages the keyword driven
testing approach. Keyword-driven testing is explored as a framework since it allows
test scripts to be executed at a higher degree of abstraction. It is similar to a service
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or subroutine in programming, in which the same code can be run with multiple
values, making it an excellent alternative for the desired automation [17]. Robot
framework follows this keyword-driven methodology. It can be used for automat-
ing test processes to construct powerful and versatile automation solutions [1]. The
framework helps in connecting with any other tool and can be utilized in distributed,
heterogeneous situations where diverse technologies and interfaces are required for
automation [2]. The support to the multi-platform environment makes it one of the
popular open source tools and is widely used for acceptance testing and test-driven
development.

Robot Framework uses human-readable terms and therefore has a simple syntax.
Libraries can be written in Python, Java, or in a variety of other programming lan-
guages [1]. It has a highly modular architecture where the test data is presented in
a simple, editable tabular format. A glimpse of how the robot codes are written is
shown in the Figure 2.7.

Figure 2.7: Sample examples of robot scripts from their official website [1]

2.10 Evaluation Method
There are not many standard metrics for evaluating code generation tasks. As a
result, while dealing with code generation problems, the majority of people rely on
human evaluation. Currently, the evaluation will be carried out using two alternative
ways. (a) On basis of historical data by splitting the dataset into training and testing
data. This is done by using the BLEU metric. (b) Human expert validation, where
code generated from the model in the form of robot syntax will be judged by a test
expert.

2.10.1 Bilingual evaluation understudy (BLEU)
BLEU is an evaluation metric that matches the n-gram of translated text to reference
text and make a count of matched n-grams irrespective of position. The score is

16



2. Theory

between the range of 0and 1. The BLEU score is computed by formula shown
in the equation 2.17, where BP refers to brevity penalty, a exponential decay for
translation extremes i.e. too small or too long, N represents number of n-grams, wn

is the respective weight (default is 0.25 for N=4) and pn is modified precision which
is sum of all counts of n-grams in translated text which is divided by the number of
n-grams in the translated text [29]. The brevity penalty, BP, is computed by,

BP =

1 if c > r

e(1−r/c) if c ≤ r
(2.16)

where c is the length of candidate translation and r is the length of the target
sequence. Then,

BLEU = BP · exp(
N∑

n=1
wnlogpn) (2.17)

2.10.2 Human expert validation
The human assessment is used while evaluating the test cases for the new version
of the software application. This is because the test cases are acceptance test cases,
which do not have a ground truth target output against which the predicted output
can be assessed. Therefore, a human expert who has the necessary domain knowl-
edge with respect to both the acceptance test cases and the robot framework makes
it an ideal scenario to evaluate the obtained results.

Human evaluation metrics entails asking human specialists to score the generated
code on a variety of criteria. The human evaluation metrics include two aspects:
Content-related, and Effectiveness-related. The evaluation metrics are inspired from
the paper [19]. The code is rated by using the metrics on a scale of 0 to 5, with 0
indicating the worst and 5 indicating the greatest. It is also important to mention
that the evaluation is majorly focused on the keywords that are generated in the
predicted code while giving less priority to other elements in the code.

1. Content-related: This metric is used to measure the amount of contents that
have been translated from the input description to the generated code. Two content
related metrics are used to evaluate the predicted code.

• Adequacy: It is the state of being sufficient. In this study, it measures whether
generated code misses some essential information.

• Conciseness: The quality of being clear. This metric is used to measure
whether the generated code contains unnecessary information.

2. Effectiveness: This metric is used to measure the predicted code is useful and
readable to the developers. This is done by evaluating it by two sub metrics: use-
fulness and code suitability.
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• Usefulness: It is used to evaluate how useful the code is. For example, if all
or some of the keywords generated are useful for developers.

• Code suitability: This metric is used to evaluate to what extent the generated
code is suitable for the test description.

2.11 Related Work
Generating code from natural language is commonly researched for the general pur-
pose programming languages where massive amounts of data is available. The prob-
lem arises when a task is addressed in a less commonly used language with less data.
As a result, the pre-trained models will not produce good outcomes. There have
been a few studies done in the field of solving problem when the source code language
is less popular or the problem statement is domain-specific. However, generating a
domain specific language where the content is dependent on various functionalities
is very challenging is still considered to be a very challenging task. The purpose of
this literature survey was to understand the methods and steps followed for a generic
code generation problem even though it is different from the current problem.

The authors, Luis Perez et al. [30] have proposed a machine learning model for
generating code in Python language by using a pre-trained language model (GPT-
21). The utilization of the embedding approach was an intriguing aspect of their
research. They discovered that employing Byte-Pair encoding, as used in GPT-2, is
a far superior technique for generating code than simply using characters. The pur-
pose of this strategy was to avoid having to understand word-level embedding. They
discovered that using words from NLP models was degrading the model’s perfor-
mance since most of the grammar involved in creating code are not from ordinary
vocabulary. The paper also describes the implementation of a fine-tuned GPT2
model which consists of 117M parameters. The dataset used was CodeSearchNet
which consisting of around 2 million (comment, code) pairs scraped from various
open source libraries such as github, stack overflow etc., having a mixture of dif-
ferent programming languages. The idea of using python docstrings as the natural
language text has encouraged us to follow a similar strategy to build the dataset
for the current study. It also helped in understanding how to mitigate the problems
faced with long sequences. Apart from the pre-trained model, they have also build
an RNN model as their baseline where the training was performed based on many to
many sequence model by taking 50 characters in a sequence and then predict next
character using previous sequence. This resulted in higher chances of gradient ex-
plosion while processing long sequences. The problem was solved by using gradient
clipping. However, in our study, the number of tokens present in the code is much
higher and the amount of data is less. Therefore, using a pre-trained model may
not result in good outcomes.

1https://huggingface.co/gpt2
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Srinivasan Iyer et al. [21] presented an approach on how to map natural language
to code for a particular environment. The goal of the project was to construct class
member functions in JAVA using English documentation. They employed a special-
ized neural encoder-decoder model that encodes natural language as well as distinct
units for environmental identifiers using a two-step attention method. This way of
having two step attention model helped them to match the words with the identifies
in the environment, thereby enhancing the learning of the model. The application
and motive for adopting Bi-LSTM aided in the comprehension of how to deal with
these types of issues. Our work is fully based on domain-specific functional tasks
that follow a different syntax and structure. Furthermore, the block of code in robot
scripts are not contained within a single method; rather, the functions may call other
functions internally, which is different from the problem they are attempting to solve.

A study proposed by Li Dong, Mirella Lapata et al. [12], had a similar challenge but
instead of generating code they concentrated on generating meaningful representa-
tion with the help of semantic parsing. In other words, they tried to address the
problem where minimal domain knowledge is required and try to map the natural
text to effective logical form. The implementation involved the usage of attention
mechanism. Another study by Sajad Norouz et al. [28] found that transformer-
based seq2seq models can reach a competitive or superior performance with models
specifically designed for semantic parsing. They also propose an alternative to in-
ductive bias design for future advancement. However, both the works do not serve
the purpose of generating executable code. Moreover, in the context of test code,
most of the code depends on how well the description is written. This is not ideal
in our study as we observed that not all the descriptions are clear and detailed.

Although mapping natural language to fully executable programs is a hot topic
in the field of natural language processing and software engineering, most existing
research is based on a completely structured syntax, such as generating regular ex-
pressions from test in the paper [23], or generating database queries as explained in
the paper [20]. Another study has presented the usage of neural network models to
link natural language to a sequence of API calls [15]. Our study is much more com-
plicated with numerous elements involved in a robot file, such as API calls, function
calls, and so on, making it difficult to frame it in a systematic manner. Therefore,
our strategy is to use a transformer architecture, which is a tried-and-true method
for sequence to sequence translation. When mapping text to rigorous syntax based
modules, the attention technique is also highly promising. Our main goal in this
thesis is to get the output text closer to natural language and build a model that is
considerably more effective at learning the structure.

In the context of testing, there has been work done in generating test cases from
the requirement specifications. Several studies have demonstrated the generation of
test cases from specification documents. The study done by Imran Ahsan et al. [3]
have investigated several NLP techniques to identify the right techniques to generate
automated test cases. They have identified six NLP techniques which are beneficial
for developers while working with test generation problems. This helped in under-
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standing the different techniques that can be used to analyze the text from the test
descriptions since the work was mainly focused on system testing and acceptance
testing. The popular techniques used were parsing, tokenization, POS tagging etc.

The study by Chunhui Wang et al. [41] proposed a system to generate test cases
from use case modelling for system tests (UMTG). The approach involved analyzing
the behavioral information using natural language processing techniques by which
the test scenarios were identified. Their approach needed a domain model (e.g., a
class diagram) which enables them to create input constraints. It is also said that
these requirements are very commonly used in different companies and therefore
was developed using the use case specifications. This work has directed us to other
works which involved generation of test cases by the usage of activity diagrams or
abstract syntax trees [32, 40, 39]. The work done by David Turner et al. [39] ex-
plains an activity oriented approach where the activities and their dependencies are
represented as an activity diagram which helps in generating a workflow. A model
was developed which consists of domain objects and activities where objects are
basically the state of the application, user details etc. while the activities are the
interactions with the system. This model generates the test codes based on activity
diagram and its workflow dependencies. But these works are far from the current
problem because except the fact that it has helped in understanding the various
NLP techniques used, there were no solid approaches in how to generate test code
from the specifications. Most of the above works for generating test cases used
formal models where the specifications were first translated to formal specifications
which then were used to generate the test cases. The current work is involved in
analyzing the test case specifications directly to generate the corresponding code
which differed from the previous works.

Another interesting work which has helped in understanding how to make use of the
special tokens which consisted in the on both the input and target was from the work
done by Alzahraa Salman as part of their thesis study “Test Case Generation from
Specifications Using Natural Language Processing”. The study involves mapping
the keywords from test case specifications to label vectors of available test scripts
[34]. The problem was seen as a multi-label text classification problem where the
implementation involved training the model over a few test scripts and the output
therefore would be from one of them. Therefore, given a test case specification, there
is a possibility that more than one test script can be produced as output, thereby
the problem is seen as a recommendation system. The major drawback of the study
was that the model could not suggest unseen test scripts. Our study is focused on
understanding the data available in the code so as to generate a new test code when
a test description is inputted.
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Methods

This chapter describes the methodology of the proposed approach and how the work
has been carried out as part of the thesis. The work is centered around creating
models that can generate the test code from test specifications. First, an overview
of the technique is given, as well as the several phases in the proposed approach.
The technique for constructing the dataset is described in section 3.2. Various pre-
processing approaches are described in section 3.3 and 3.4 focusing on the NLP
techniques that are applied on the data. The next section 3.5 involves the workflow
and algorithms used to build the model and test on the data.

3.1 Overview

Figure 3.1: Stages of the methodology for the proposed approach
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The aim of this project is to create, test, and evaluate a method for automating the
generation of test code from test case specifications expressed in natural language.
Figure 3.1 shows the different stages of our approach in this study. The implemen-
tation is based on using NLP and deep learning techniques. This is accomplished
by parsing the data and creating feature vectors, which are then fed into the model.
On the other hand, the test code is also converted to feature vectors with some
additional preprocessing. The input and output are the specification and the code,
respectively.

3.2 Data Preparation
At Ericsson, the data needed to complete this operation was not readily available.
As a result, the first stage in this project was to extract the necessary data and create
the dataset in order to examine and comprehend how the test cases and test scripts
are written. As mentioned earlier in section 1.1, the product development team at
Ericsson deals with two versions of applications. First, a monolithic application,
which was created many years ago and describes a single-tiered program because all
of the code is written in one piece. This version of the application has test cases writ-
ten using Robot Framework. Having said that, there are no corresponding test case
descriptions through which the executables were implemented. Every test instance,
however, had a short block of information tagged as “Documentation” in the code.
This information served as the test case’s description, while the accompanying code
served as the target value. Figure 3.2 shows a sample of the structure of the robot
test code in which the documentation is extracted as the input and the remaining
text served as the target value.

Figure 3.2: An example of Robot test code from the monolithic application. The
test description acts as our input while the remaining code becomes our test code

The newer version, on the other hand, is built on test-driven development and com-
prises acceptance test cases, which should eventually replace the monolithic program.
This version has a small amount of data and no ground truth, i.e. no executables.
To elaborate, the updated version just contains test descriptions; the robot test code
has not yet been implemented. This data will primarily serve as our test data i.e.
will serve as unseen data, meaning the model will not be trained on it. These test
case specifications in natural language are bound to be inconsistent or ambiguous
at times. Furthermore, these specifications are semi-structured and can be of varied
lengths. These test cases steps are considered as individual test cases each of which

22



3. Methods

corresponds to a small module in entire block of code (section 1.4).

Figure 3.3: Statistics of the corpus used in the project

3.2.1 Regex Parsing
The goal was to utilize regex expression to extract the required information from
the code, as demonstrated in the sample code in Figure 3.2. This facilitates the
conversion of data from an unstructured to a structured format as shown in Figure
3.4. The first step was to convert all of the code scripts from .robot extension to .txt,
so that they could be read and parsed. Once the text files were available, a python
parser package named pyparser was used to parse through each file and retrieve the
information needed using a regex expression. The final dataset is saved as a csv
file consisting of around 4000+ elements of the data with two columns namely the
test description and the test code. The summary of the data statistics is shown in
Figure 3.3.

Figure 3.4: Sample data in tabular form after extracting the text and code
separately from the robot scripts using parser and regex expressions

3.3 Data Preprocessing for Test case description

3.3.1 Overview
This section describes the transformation of the data into suitable feature vectors in
order to input to the model. In order to do this, the data needs to be cleansed and
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formatted. This is achieved by using several NLP techniques. The Python library
Natural Language Toolkit (NLTK) is used to implement most of these steps. Figure
3.5 shows different kinds of preprocessing steps on the test case descriptions which
are in natural language.

Figure 3.5: Pre-processing steps performed on the test case descriptions

3.3.2 Lowering Case
The initial pre-processing step in every text analysis problem is to lower the case
of the text. The reason for normalizing the case is that the model may treat a
word that starts with a capital letter at the beginning of a sentence differently than
the same term that appears later in a sentence without capital letters in the vector
space. This might lead to a decrease in the performance of the model. To change
the case of the text in the dataset, Python’s string lower() method was utilized.

3.3.3 Removing Noise
Articles or text that contain symbols are not often used in the English language
are considered noise. In the case of this project, the special characters, as well
as other non-essential information like URLs and stopwords are considered to be
noise. The special characters are generally the punctuation marks, which are used
to break up text into sentences, paragraphs, and to frame sentences, among other
things. Non-removal of these characters will have an impact on the results, espe-
cially when using a text processing approach to find the frequency of terms and
phrases. It also contributes to the noise, which causes uncertainty in the model’s
training. Python’s string punctuation technique is used to choose which symbols
or characters to keep. The implementation involves searching the data set and re-
moving all the entries that contain symbols that are part of the string punctuation
method’s pre-initialized string.

Furthermore, since the project deals with test cases, it is bound that there will be
a lot of parameters or configurations that are often described as part of the test
descriptions. One of the most common elements observed is the presence of URLs
in the text. Removing URLs helps the model to focus on the important features
rather than focusing on elements which do not carry much information. Therefore, a
regex expression matching the pattern of the URL is created and used for eliminat-
ing URLs. Apart from this, in any human natural language, there are plenty of stop
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words. Removal of these stopwords1 helps in eliminating the low-level information
from the text, allowing to focus more on the crucial information. The elimination
is done using the NLTK library.

3.3.4 Tokenization
A lot of the embedding methods such as BOW, TFIDF, and Word2Vec function
by embedding text data in the form of tokens. Thereby, tokenization is required
to break down the sentences in the test case description into separate tokens. A
tokenizer breaks the natural language text into chunks of information that can be
regarded as separate elements. These token occurrences in a document can be uti-
lized to create a vector that represents the document. Tokenization can separate
sentences, words or letters. Word tokenization is splitting a series of words into dis-
crete elements. In the case of this study, the text is tokenized into discrete elements
of words. This is achieved by using the NLTK library which contains the tokenize
package. Figure 3.6 shows a sample text with the sequential transformation of the
description to the pre-processed format.

Figure 3.6: An example of the sequential transformation of the test description
pre-processing

3.3.5 Normalization
The process of converting text into a standard format is known as normalization.
It aids in reducing the amount of unique tokens in the text, hence eliminating text

1https://pythonspot.com/nltk-stop-words/
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variants. Lemmatization is one of the popular normalization methods which is used
in text processing. It is the procedure for finding a word’s base form. This is ac-
complished through the use of vocabularies and word morphological analysis. The
inflected components of the words can therefore be recognized by a single unit known
as the lemma. The NLTK library has lemmatizer package which makes it easier to
implement on any text processing problem. This is done after the tokenization of
the text.

3.4 Data Preprocessing for Test Code

3.4.1 Overview
This section explains how to convert the text in the code into appropriate feature
vectors for feeding to the model. The normal preprocessing approaches used in most
of the text processing problems cannot be utilized in this scenario since code is built
up of language with grammar, keywords, and structure, each of those pertaining
a special meaning. These elements cannot be viewed as ordinary text and hence
cannot be deleted. As a result, there was no preprocessing required for test code and
therefore, the model development began. However, when the data loader (explained
in section 3.5.1) was developed, there were a large number of tokens, the most
of which were unnecessary. There were elements in the model that didn’t need
to be processed from the model building perspective. By analysing the code, one
mechanism that emerged as being useful and had the potential to change the course
of the model training was explored. The concept of code deobfuscation was used in
the pre-processing of the test code.

3.4.2 Masking the code
As described in section 3.4.1, code contains different elements such as variable names,
variable values, function names, keywords, and other elements. The keyword func-
tions are critical parts for the model to predict because the code is created using a
robot framework, which is a keyword-driven testing technique. Variable names and
function names used in any programming language can be of any form, a letter or
a word. Hence, suggesting suitable variable names or function names by the model
is a difficult task as it requires the understanding of the context and the domain.
Therefore, the technique of code deobfuscation is capitalized to mask various ele-
ments in the code. The concept of code deobfuscation is explained in section 2.8.

In our study, the variable names in the code are represented in curly braces pre-
ceded by a dollar sign. This can be seen as part of the example robot script shown
in the Figure 3.2. It can be observed that the variable name “response” is repre-
sented as ${response}. This pattern is used as an advantage in implementing the
deobfuscation approach for the variable names in robot scripts. All occurrences of
different variables are replaced with masked variables in the form of special token
represented as VAR_i, where i is the count of the variable. This technique is imple-
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Figure 3.7: Example of a robot script masked with special token represented as
VAR_i for variable names and <FUNC_NAME> for function names

mented by using the NLP techniques to tokenize the text, and regex expressions to
parse through the text and search for the required pattern to mask it with a special
token. Similarly, it can also be observed that every robot script starts with a unique
name pertaining to that testcase. Hence, this term is also masked with a special
token <FUNC_NAME>. This special token is used to replace all the unique function
names of the robot scripts. Overall, the deobfuscation works similar to supervised
machine translation, with a seq2seq model trained to map an obfuscated code into
a dictionary represented as a sequence of tokens [33]. Figure 3.7 shows how the
original code is transformed into a code with masked variables. A dictionary is
maintained to store the mapping of the variables i.e., the original variable acts as
the key and the masked variable represents the corresponding value.

Additionally, each code script includes certain parameters. These parameter val-
ues are generally mentioned in the test description. Since these configurations are
removed from the test description during the preprocessing stage, they cannot be
predicted in the target output. Therefore these parameters shall be removed from
the code as well. But eliminating the parameter values can affect the format and
structure of the code. Therefore, these parameters are masked with a special token
<PARAM_VALUE>. The goal is to replace all parameter values with this special token
so that the model wouldn’t have to learn the specific parameter values but only
that there is some value that exists in the code. This will help the model learn
better and predict the special token rather than trying to predict the specific value
of the parameter. Similarly, the numeric values are also masked as <NUM>. The chal-
lenge while implementing this mechanism is that unlike the variable names in the
code, there is no specific format on how these parameter values are represented and
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Figure 3.8: Example of a robot script masked with special token represented as
<PARAM_VALUE> for parameter values

therefore is difficult to identify and mask them. Having said that, there might be
instances where a parameter value still exists in code as that has not been identified
while processing. An example of the masked parameter value is shown in Figure
3.8.

3.5 Model Training
The robot script contains various entities which are close to natural language. There-
fore, this problem is seen as a translation problem dealing with a domain-specific
language. Neural networks is a well-proven method for solving translation prob-
lems. Since the problem is seen as a mapping of one sequence of words/elements
to another sequence of words/elements (which in our case is the robot output), any
RNN model which has the ability to handle long sequences can be used. Having
said that, LSTM and GRU becomes an obvious choice as described in Chapter 2.
However, dealing with significant contextual mapping is an issue as RNN and its
variants assign equal weight to each element in the sequence. Additionally, there is
a considerable risk of missing vital information while modeling. To deal with this,
an attention mechanism is also combined with the RNN algorithms used.

3.5.1 Building a dataloader
The construction of the dataset is explained in section 3.2. To use the saved csv file,
the data should be loaded and fed to the model. The data is read and are formed
into pairs of the input sequence and the target sequence. A crucial part of every
machine learning system is data loading. Most of high-end configuration systems
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won’t have enough RAM to process the large data in its entirety. As a result, al-
ternate methods are used to perform the task efficiently. Because the entire dataset
cannot be loaded into the GPU memory, a dataloader is designed to sample batches
from the dataset. At this stage, it is evident that the data corpus is divided into
two parts: a training set and a testing set.

Figure 3.9: Left - LongTensor of the dimension batch_size x max_seq_len.
Right - Tensor of dimension max_len x batch_size at single time step. The
numbers represented are word indices that are assigned to each unique word

The train set is utilized throughout the training phase, which is batched according
to the batch_size. The batch size can be configured manually and in our case, a
batch size of 4 is used. The value is chosen based on the configurations and the
memory space of the GPU used. The maximum sequence length is the length of
the longest sequence in the training set. A LongTensor2 with an array (batches) of
arrays (sequences) is initialized to create a (batch_size x max_seq_len) tensor.
Selecting the first dimension, for example, results in a single batch. However, when
training the model, it requires a single time step at once, therefore the transpose,
(max_len x batch_size) is used.

PAD_token = 0 # For padding short sentences
SOS_token = 1 # Start -of - instruction token
EOS_token = 2 # End -of - instruction token
UNK_token = 3 # For Unknown words

class Vocabulary :

def __init__ (self , name ):
self.name = name
self. word2index = {"PAD" : PAD_token , "<SOI >": SOS_token ,

"<EOI >": EOS_token , "<UNK >": UNK_token }
self. word2count = {"PAD": 0, "<SOI >": 0, "<EOI >": 0,

"<UNK >": 0}
self. index2word = {v:k for k,v in self. word2index .items ()}
self. num_words = 4

2https://pytorch.org/docs/stable/tensors.html
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self. num_sentences = 0
self. longest_sentence = 0

def add_word (self , token ):
if token not in self. word2index :

# if the word (token) is making an entry for first time
self. word2index [token] = self. num_words
self. word2count [token] = 1
self. index2word [self. num_words ] = token
self. num_words += 1

else:
# if the Word exists , increase word count
self. word2count [token] += 1

def add_sentence (self , sentence ):
sentence_len = 0
for word in sentence .split(' '):

sentence_len += 1
word=word.strip ()
self. add_word (word)

if sentence_len > self. longest_sentence :
# tracking the length of longest sentence
self. longest_sentence = sentence_len

# Counting number of sentences
self. num_sentences += 1

As seen in the Figure 3.9, the sequences are represented as numbers. To train the
model, the sequences must be converted into a form that the models can process,
which in our case is numbers. Numbers here are natural numbers that are assigned
to each unique word. Hence, each sequence is split into words and are assigned a
unique index. A helper class named Vocabulary is built to maintain a track of the
words and indices, which splits the sentences, and assigns indexes to each unique
word while maintaining three dictionaries: word2index (word to index mapping),
index2word (index to word mapping) and word2count (frequency of each word).
Each word’s LongTensor is built using these indexes. The vocabulary for the test
description and the test code are maintained separately by creating class objects for
each. The implemented code is illustrated above and a sample of the dictionaries is
illustrated in Figure 3.10.

In Figure 3.9, it can also be observed that not all sequences are of the same length
and are padded with empty values (0) . The sequences have to be padded to the
length of the longest sequence for a network to take in a batch of varied length
sequences. As a result, every training sentence will have the same length, and the
model’s input becomes (batch_size x max_seq_length). This is carried out for
both the input and target sequences. To pad the sequences, a helper function is
implemented and the same is shown below where the value of the PAD_token is 0.

# Padding the sequence with the PAD symbol
def pad_seq (seq , max_length ):

seq += [ PAD_token for i in range(max_length -len(seq ))]
return seq
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Figure 3.10: A sample of the resulting vocabulary dictionaries for the target
column i.e. test code

In addition, a filtering technique is also implemented to filter pairs of a certain
length. It is observed during our analysis that a significant majority of the sequence
lengths are found to be between 10-500, thus any pairs that do not fall within this
range are removed the train set. At each evaluation step, a random batch is used
for evaluation. The evaluation frequency is set to 100 i.e. for every 100 epochs of
training, there is one evaluation step.

3.5.2 Training the model - LSTM
The LSTM model as described in section 2.3.1 deals with the problem of the long-
term dependency. In our study, the LSTM model is built using the encoder-decoder
architecture. The encoder converts the input sequence into a single vector i.e. a
context vector. The decoder then decodes the context vector, generating one word
at a time to generate the target sequence. The model implemented in three modules;
the encoder class, the decoder class and a seq2seq model class. The encoder class is
used to process the input sequence, the decoder produces the output sequence while
the seq2seq class acts as an intermediary between the encoder and decoder. The
model is built with the inspiration from the works [38] and [16].

Encoder: The encoder built is a 2 layer LSTM. A high-level model architecture
pertaining to our problem is shown in Figure 3.11. It can be observed that the
tokens in the sequence are first transformed into numbers and are fed into the
encoder hidden cells word by word. Therefore, the input to the LSTM cell would
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be the embedding of the input word and the hidden state from the previous time
step. Subsequently, to form the encoder network, the output from the first LSTM
layer is passed as the input to the second LSTM layer. The arguments given to the
encoder class are input dimension i.e. the vocabulary size of the input, size of the
embedding layer and the hidden state, number of LSTM layers and dropout. The
dropout value helps in avoiding over fitting.

Figure 3.11: Representation of LSTM model using an encoder-decoder
architecture. Left - The 2-layer LSTM Encoder block taking the input sequence.

Right - The 2 layered LSTM Decoder block generating the target sequence

The model is built using the packages PyTorch and torchtext, making it easier
to use various libraries to create layers and process the sequences. The libraries
nn.Embedding3, nn.LSTM4, nn.Dropout5 are used to generate the embedding, LSTM
and dropout layers respectively. The encoder finally returns three values: the last
state of the hidden layer for each time step, last hidden state and cell states for each
layer.

Decoder: The decoder is also a 2-layer LSTM. The decoder is used to decode the
sequences to generate the target sequence. Similar to the encoder, the input for the
decoder is the embedding of the input word and the hidden state from the previous

3https://pytorch.org/docs/stable/generated/torch.nn.Embedding.htmlembedding
4https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html?highlight=lstmtorch.nn.LSTM
5https://pytorch.org/docs/stable/generated/torch.nn.Dropout.html?highlight=dropouttorch.nn.Dropout
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time step. It is important to note that the final encoder hidden state becomes the
first decoder hidden state. The arguments given to the decoder class are output
dimension, size of the embedding layer and the hidden state, number of LSTM lay-
ers and dropout. The output dimension refers to the vocabulary size of the target.
Similar to the encoder, the embedding layer is then passed and dropout is applied.
Essentially, this embedded input is fed to the decoder module together with the
hidden and cell states. A linear layer is used to take the decoder output to output
the prediction value at the end. The decoder finally returns the prediction together
with hidden and cell states.

Seq2Seq: This class was build as a bridge between the LSTM encoder and LSTM
decoder. The input to the function is the input sequence, target sequence and
another parameter named teacher-forcing ratio whose value is set in the configu-
rations. Teacher forcing ratio is a value which is used to decide the next token in
the target sequence sent to the decoder. How it decides is by using the probability
value. When the probability is equal to the teacher_forcing_ratio, the original
target’s next token is sent as the input to the decoder. If the probability is 1 -
teacher_forcing_ratio, the next token to the decoder would be the token that
is predicted by the model. The major difference is that in the second case, the
predicted token is sent to the decoder even when it is not the same when compared
to the ground truth token in the sequence.

As mentioned earlier, the seq2seq class acts as the interface between the encoder and
the decoder. As mentioned earlier, the input sequence is first sent to the encoder
which outputs last hidden state and cell state. It then follows the following sequence
of instructions for each iteration:

• pass the decoder input, previous hidden states and previous cell states to the
decoder

• receive the prediction, new hidden and new cell states
• place the prediction in a tensor that is initialized prior
• decide if teacher forcing should be applied or not

Finally, when all the predictions are done, the method returns tensor where all the
predictions are stored.

Training: After the model is built, a training function is implemented to begin
training it. First, the model is initialized and the model configuration is set in the
config file of the code repository. The dimensions for the embedding and the hidden
states are set with respect to the size of the vocabulary. The parameters set for the
LSTM model are shown in Figure 3.12.

The cross-entropy loss (explained in section 2.7) is calculated between the predicted
and the ground truth tokens. The loss is back-propagated and the optimizer used is
the Adam optimizer6 with a learning rate of 104. On the whole, the model is run for

6https://pytorch.org/docs/stable/generated/torch.optim.Adam.html?highlight=adamtorch.optim.Adam
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Figure 3.12: Hyperparameter configuration for LSTM model

10000 epochs. This helps in understanding how well the model is learning together
with how well the predictions are made. At each iteration, the train method does
the following tasks:

• generate the input and target sentences from a batch and feed the input and
target into the model, first to encoder and then to decoder, to get the predic-
tion

• compute the loss by using loss.backward()
• Use the optimizer to modify the parameters of the model
• total the loss and keep track of it

Finally, the mean of the loss returned computed over all batches. The loss is printed
for each epoch while the evaluation is done for every 100 epochs.

3.5.3 Training the model - LSTM with attention
While a normal LSTM model can be used for sequence-to-sequence translation, a
more advanced mechanism called the attention mechanism has lately been used to
improve the translation as described in section 2.5. Therefore, the second model
implemented in our study is by combining the LSTM with attention. As a result,
the model is built in three stages, the encoder, the decoder and the attention layer
for computing the attention weights. The model is build by taking inspiration from
the work [10].

Encoder: The input to the encoder will be a batch of word sequences, a long tensor
of size (max_len x batch_size). The model architecture is shown in Figure 3.11.
The inputs fed to the encoder are tensors of numbers replacing the text. Similar to
the LSTM model, the arguments to the encoder class are the input size, size of the
embedding layer and the hidden state, number of LSTM layers and dropout.
The libraries nn.Embedding, nn.LSTM and nn.Dropout are used to generate the em-
bedding, LSTM and dropout layers respectively. The input to the encoder is the
input sentence and the length of the input sequence. The embedding layer is used
to transform the input sentence into dense vectors and are then fed to the LSTM
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cells. The resulting output from the encoder is the last hidden state for each time
step, last hidden state and cell states.

Figure 3.13: LSTM attention architecture with encoder and decoder blocks. The
attention layer depicts the computation of attention score. The encoder outputs

and the current decoder output are supplied to the attention layer

Attention: The attention class is implemented to compute the attention scores.
There are three different kinds of score functions, a dot, general and concat. In
our study, the scoring mechanism used is general (see section 2.5 for further expla-
nation).

The attention class takes the hidden state of the decoder and the outputs from the
encoder as input to compute the attention energies. First, a variable tensor of zeroes
is created to store attention energies. Then, for each batch of encoder outputs, the
attention score is computed by calculating the dot product between the encoder and
hidden state. These energies are normalized to weights by using softmax and are
resized to 1 x batch_size x seq_len.

Decoder: The decoder is used to decode the sequences to generate the output
sequence. The input to the decoder is the embedding of the input word from the
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target sequence, the hidden state from the previous time step and the output from
the encoder. The initial state for the decoder would be the final state from the
encoder as shown in the Figure 3.13. The arguments to the decoder class are similar
to that of the encoder class except that the output dimension i.e the size of the vo-
cabulary of the target is used instead of the input dimension. First, the embedding
layer is created by using nn.embedding on the input. Then, a dropout is applied.
In addition, there is also a Linear layer that used to make the predictions from the
last hidden state layer. After this, the attention weights are computed by passing
the last hidden state and the outputs from the encoder to the attention method.
The embedded input word and the output from the attention method are combined
and run through the LSTM finally resulting the output, state of the hidden layer,
and attention weights.

Training: After the model is built, a training function is implemented to start
training it. To begin with, the models are initialized, optimizers and loss functions
are set up. The loss is calculated by using masked cross entropy (explained in section
2.7) between the predicted and the ground truth tokens. The optimizer used is the
Adam optimizer with a learning rate of 0.0001. The parameter teacher forcing
ratio is used to decide which token will be used as the decoder’s next input while
training. The model is run for 4000 epochs. Similar to the previous LSTM model,
the dimensions for the embedding and the hidden states are set with respect to the
size of the vocabulary. The parameters set for the LSTM model with attention is
shown in Figure 3.14.

Figure 3.14: Hyperparameter configuration for LSTM attention model

At each iteration, the train method does the following tasks:

• feed the input sequence through encoder one word at a time
• Feed the decoder input, decoder hidden and the output from the encoder

through decoder for each time step
• Store the decoder outputs in a pre-initialized tensor, say Y*
• compute the loss by using loss.backward()
• Use the optimizer to modify the parameters of the model
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The returned loss for each epoch is summed and is averaged over the number of
batches. Similar to the above models, the loss is printed for every epoch while the
evaluation is done for every 100 epochs.

3.5.4 Training the model - GRU with attention
The third and the last model implemented in our study is GRU with attention.
GRUs tend to be more computationally efficient and solve the problem of vanishing
gradient. In addition, it is observed that GRU performs well when there isn’t a
larger training set. Since the amount of data used in our study is not large when
compared to the amount of data used for training deep learning models, the idea was
to make implement the GRU model using an encoder-decoder architecture where
the encoder ´transforms the input sequence into a single vector which is used by
the decoder to form a new sequence. To further improve the performance of the
model, the attention mechanism is implemented, allowing the decoder to focus on
particular elements of the input sequence. The model is build by taking inspiration
from the work [10]. The model is implemented in three stages; the encoder, decoder
and the attention layer for computing the attentions weights.

Encoder: Most of the architecture is similar to the LSTM attention model de-
scribed in section 3.5.3, but with a few changes. The input to the encoder is a
batch of word sequences, a long tensor of size (max_len x batch_size). It out-
puts an encoding for each word, a float tensor of size (max_len x batch_size x
hidden_size). The embedding layer is created using nn.Embedding where the
inputs fed are embedded for each word, with size sequence_len x hidden_size.
This is resized to sequence_len x 1 x hidden_size to match the expected input
of the GRU layer of nn.GRU 7.

The first hidden cell for the encoder is created automatically as a tensor of all ze-
ros. Finally, the GRU encoder cell returns: output sequence of size seq_len x
hidden_size and the last hidden state for each layer. The model’s architecture is
shown in Figure 3.15.

Decoder: The decoder’s inputs are the input word, last hidden state and all encoder
outputs. The initial decoder hidden state is the final encoder hidden state as shown
in the Figure 3.15. First, the embedding layer is created by using nn.embedding on
the input. Then, a dropout is applied. The hidden size and the number of layers
are passed to the nn.GRU method. After this, the attention weights are computed
by using the encoder outputs and the current hidden states. The embedded input
word and the output from the attention method are combined and run through the
LSTM finally resulting the output, state of the hidden layer, and attention weights.

Attention: The attention class is same as the attention class built for LSTM model.
It takes the hidden state and the outputs of the encoder as input and compute the

7https://pytorch.org/docs/stable/generated/torch.nn.GRU.html?highlight=grutorch.nn.GRU
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Figure 3.15: Gated Recurrent Unit with attention using the encoder-decoder
architecture. The attention layer shown is by using the global attention model

attention scores. For each batch of encoder outputs, the attention score is computed
by calculating the dot product between the encoder and hidden state. These scores
are normalized to weights by using softmax and are resized to (1 x batch_size x
seq_len). The attention class is implemented as below:

class Attention (nn. Module ):
def __init__ (self , hidden_size ):

super(Attention , self ). __init__ ()
self. hidden_size = hidden_size
self.attn = nn. Linear (self. hidden_size , self. hidden_size )

def attn(self , hidden , encoder_outputs ):
max_len = encoder_outputs .size (0)
batch_size = encoder_outputs .size (1)
attn_energies = Variable (torch.zeros(batch_size , max_len ))
for b in range( this_batch_size ):

for i in range( max_len ):
attn_energies [b, i] = self.score( hidden [:, b],

encoder_outputs [i, b]. unsqueeze (0))
return F. softmax ( attn_energies ). unsqueeze (1)
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def score(self , hidden , encoder_output ):
energy = self.attn( encoder_output )
energy = hidden . matmul ( energy .T)
return energy [0][0]

Training: After the model is built, a training function is implemented to begin
training it. To start with, the models are initialized, optimizers and loss functions
are set up. The loss and the optimizers used are similar to the LSTM attention
model implemented before. The loss is calculated by using masked cross entropy
(section 2.7) between the predicted and the ground truth tokens. The optimizer is
used is the Adam optimizer with a learning rate of 0.0001. The model is run for
4000 epochs. At each iteration, the train method does the following tasks:

• feed the input sequence through encoder one word at a time.
• Feed the decoder input, decoder hidden and the encoder outputs through

decoder one time step at a time
• Store the decoder outputs in a pre-initialized tensor, say Y*
• compute the loss by using loss.backward()
• Use the optimizer to modify the parameters of the model

The returned loss for each epoch is summed and is averaged over batches. Similar
to the above models, the loss is printed for every epoch while the evaluation is done
for every 100 epochs. The parameters set for the GRU model is shown in Figure 3.16.

Figure 3.16: Hyperparameter configuration for GRU attention model
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4
Results

This chapter describes the results and interpretations from the models built in our
thesis. The project analysis is done in two different ways. (a) Considering the data
only from the monolithic application, (b) Experimenting on the acceptance test cases
from the new test-driven application. The two methods of evaluation are described
in sections 4.1 and 4.2 respectively. Each of the sections contains the discussion
where the reasons for the obtained results are given and argued. A few examples of
the results are also illustrated in the sections.

4.1 Evaluation - Method 1
The method 1 describes the evaluation of the models only on the data of the mono-
lithic application. The data prepared from the robot scripts belonging to the mono-
lithic application is split into two parts - training and testing sets. The models are
trained using the data from the training set and tested on the unseen data i.e. data
from the testing set. Since the problem of the thesis is seen as a translation problem,
a widely used metric to evaluate the language is BLEU. It evaluates the quality of
text that is translated from one natural language to another. The description of
BLEU is explained in section 2.10.1.

The training of all the three models is monitored using one metric which is by cal-
culating the loss. The loss is calculated by using masked cross entropy as described
in section 2.7. This criterion computes the entropy loss between predicted output
and the original output. The loss plotted is the average masked cross entropy loss
calculated for every 20 epochs. That is, for every 20 epochs of the model training,
the computed loss till then is averaged. Generally, the decrease in loss indicates that
the model is learning correctly and is confident in making the predictions. The less
the loss, the more the model has learnt. The training loss for all the three models
is depicted in the Figure 4.1.

The plot illustrates the average losses obtained for each of the models after every
20 epochs. It can be observed that in all the three models, the loss is decreased
significantly after very few epochs and later in order to reach to a much lesser
value, it takes a lot of epochs. Due to computational constraints, all the models
are trained with batch size of 4. The LSTM model is trained over 14000 epochs
while the LSTM attention and GRU attention models are trained for 4000 epochs.
Another observation that can be done is how far the loss has reached. It can be no-
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(a) LSTM training loss (b) LSTM Attention training loss

(c) GRU Attention training loss

Figure 4.1: Training losses for all the three models

ticed that the GRU model has achieved a lesser value of loss compared to the other
two models. This means that GRU attention model has learnt a lot more and can
make better predictions. The models are trained on Nvidia TITAN RTX GPU. On
an average, training LSTM model took 16 hours while LSTM attention and GRU
attention models took 35 hours each to achieve the loss as less as shown in the plots.

The feasibility of the approach in this thesis is evaluated by performing two exper-
iments on the data for understanding the improvements and drawing conclusions.
To understand the role of the data in training a deep learning model and to answer
RQ-3, the thesis work involves two different experiments. Experiment 1 involves
the usage of only 40% of the data for training while Experiment 2 uses 90% of
the data. Both the experiments use the same hyper parameters and are executed
for the same number of epochs. The summary of the results obtained is depicted in
Figure 4.2. It can be observed that when the models are trained over more data,
results achieved had higher BLEU score.

42



4. Results

Figure 4.2: Results of the two experiments done using the three models. The
BLEU score achieved is evaluated on the test data

The results in the Figure 4.2 are computed on each instance of the testing set,
i.e. the score is calculated for each test code, and averaged on the total number
of elements in the testing set. It is evidently seen that the BLEU scores are much
higher in the experiment 2 when compared to experiment 1. This means that the
data plays an important factor in learning and predicting good results. With more
data, more precise results can be achieved. It can also be observed that the in both
the experiments, the GRU attention model has achieved a better BLEU score when
compared to other two models. There has been a 36% increase in the BLEU score of
GRU attention model from experiment 1 to 2. Similarly, there has been a 31% and
32% increase in the BLEU score for LSTM and LSTM attention models respectively
when 50% of more data is used for training.

4.1.1 Discussion
The evaluation results from the method 1 say that the GRU attention model has
achieved the best BLEU score of 0.12, an improvement of 31-32% over the the other
two sequence-to-sequence models. In addition, the score attained was a reasonably
good score when compared to the pre-trained code generation model implemented
by Luiz Perez, Lizi Ottens et al. [30] who have achieved a BLEU score of 0.22. Al-
though the pre-trained model was trained over approx. 500K python code scripts,
considering the limitations of the current study, the score obtained can be consid-
ered a relatively good score. Figure 4.3 shows a sample example containing the
input sequence, the original output and the predicted output from all the three
models. As mentioned earlier, the predicted output from the models LSTM and
LSTM attention models were not great and the same can be seen in the example.
The output of the LSTM model was not at all good since the tokens generated were
just being repetitive and not understandable. Even though LSTM can handle long
sequences and have the capability to remember them, one of the reasons why the
output isn’t good is because of the input and output sizes. The length of the output
in many cases is thrice or more than that of the input. This makes it difficult for the
model to map and remember the long sequences and hence fail to predict correctly.
It is the similar case with LSTM attention model except that the output is little
better compared to normal LSTM. The reason could be the usage of the attention
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mechanism and how the decoder focuses on to utilize the most relevant parts of the
input sequence as explained in the methodology. However, after some period, the
output becomes repetitive containing a lot of unnecessary information and the same
can be seen in the Figure 4.3. A possibility for improvement is to make the test
descriptions much more informative so that the model processes more information
which can lead to better predictions.

Figure 4.3: Sample example comparing the original output with the predicted
outputs from LSTM, LSTM attention and GRU attention models given the test

description from experiment 2

The output from the GRU attention model seemed promising and as seen in the
Figure 4.3, the predicted sequence matches most of the keywords from the original
sequence. The model has learnt the format and the tokens properly and as a result,
has provided much better results than the other two models. Though there was
confidence in believing that the model would generate better results after looking at
the training loss, it was promising to see the actual output. Figure 4.4 gives a much
closer look at the comparison between the original output and the predicted output
of the GRU attention model. Even though LSTM should in theory remember long
sequences, GRU attention model outperformed it due to the ability of modelling
long-distance relations. As mentioned earlier, the input to output sequence ratio is
very large and therefore, it is difficult for the models to remember the information.
GRUs work efficiently in these scenarios as it is designed flexibly with the input
and output gates in the architecture. The example in the Figure 4.4 depicts a much
more clear view to understand how many of the keywords were actually the same
and how many were different. The tokens highlighted in blue are the ones that are
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missing from the predicted sequence while the tokens highlighted in yellow are extra
and considered as unnecessary information since they are not present in the original
sequence. This also explains why there was a higher BLEU score for GRU attention
model as there are many sequences in the test set that were closer to their original
outputs.

Figure 4.4: Comparison of the original output and the predicted output from
GRU attention model from experiment 2

To support the numbers shown in Figure 4.2, and to understand how much of the
output has improved when the model was trained with more data, an example of
GRU model is chosen and illustrated in Figure 4.5. It can be observed that the out-
put of the GRU model from experiment 1 is lot different from the original output
whereas the predicted sequence from experiment 2 is closer to the original sequence.
The analysis was done to prove the fact that with more data, more accurate predic-
tions can be achieved.

This analysis was done to answer the research question 3. This is also considered
important for this study as one of the major limitations for this project is the avail-
ability of large amounts of data. By looking at the summary of the data statistics
in the Figure 3.3, it is understood that the data is not sufficient to train a deep
learning model and achieve higher accurate results.
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Figure 4.5: Comparison of the predicted outputs from GRU attention model
between experiment 1 and experiment 2

4.2 Evaluation - Method 2

The method 2 involves an experiment to evaluate the models trained over the data
from the monolithic application and test on the acceptance test cases from the newer
application which does not contain the ground-truth target sequences. Since there
are no original robot scripts implemented, the standard evaluation metrics cannot
be used. Therefore, the evaluation for this method is done through human expert
evaluation. A scoring mechanism is designed and is explained in the section 2.10.2.
The analysis of the outputs is done for three different examples by three different
experts from Ericsson who have the required domain knowledge with respect to the
software application and also the robot framework. The metrics are scored on a
scale from 0 to 5 (0 means the worst and 5 means the best).

A sample example of the predicted output for an input sequence is illustrated in
Figure 4.6. The figure shows the input i.e. an acceptance test case description and
the predicted output from the three models LSTM, LSTM attention and GRU at-
tention. A general idea by looking at the predicted outputs is that the tokens in
the LSTM model are not useful as they contain a lot of unnecessary and repetitive
information. The LSTM attention model, though has a better output than LSTM,
still contains unnecessary information and becomes repetitive after a few predicted
tokens. The GRU attention model has a concise output with different keywords.
The overview of the outputs seemed like a similar pattern when predicted with the
evaluation method 1 above.
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Figure 4.6: An example of the predicted outputs from LSTM, LSTM attention
and GRU attention models given a acceptance test case

The generated outputs are reviewed by the test experts at Ericsson and are scored
based on the designed metrics. Figure 4.7 gives a summary of the scores obtained.
The scores illustrated are average scores for three different examples evaluated by
three different experts i.e. the scores are first averaged for all the examples evaluated
by one person for a model and then again averaged by the numbers of evaluators.
The maximum score that can be attained is 5 and minimum is zero. It can be
observed that the scores obtained are all below average showcasing that the GRU
attention model is better when compared to the other two models.

Figure 4.7: Human evaluation scores averaged for each metric for each model

4.2.1 Discussion
The evaluation results from the method 2 say that GRU attention model has achieved
better results compared to the other two models. This was also clearly seen when
the outputs are manually seen as shown in the Figure 4.6. However, the scores at-
tained are not high and are below the average line. There are multiple factors and
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reasons that can be drawn by looking at the score sheet.

1. As stated as one of the limitations, the output is rated by different people with
different expertise. So, it is possible that the scores from one person differ greatly
from another. Therefore, the mean of the scores are calculated.

2. The scores are given only by looking at the input and the predicted sequence
pertaining to that specific test case. Since test cases are written as a sequence of
instructions, our study considers each instruction as a different test case and is in-
putted accordingly. This brings a confusion when the resulting output is viewed.
Additionally, since there is no ground-truth available, it is much more difficult to
analyse by just looking at test code once, as they are not generally implemented
perfectly in one go.

3. The applications are different. As mentioned earlier, the model is trained over a
different application and tested on another application. This results in lower rele-
vancy of the output since the input and target data are from different domains.

To understand the reasons, the evaluators were also asked for their feedback. This
helped in understanding more concrete reasons for the results obtained. A common
feedback by all the experts is that the results are not completely relevant since the
acceptance test cases tested belonged to another domain. The test cases for the
domain to which the trained data belonged to, is still in the development stage at
Ericsson and can be tested soon once it is completed.

One of the evaluators quoted "The GRU_Attention is the one that had a better result
in comparison with the other ones. But I think that the main question is that the
data available for the analysis was not enough, I mean only Ericsson xxxxx product
repository information is not enough. The GRU_Attention somehow returned a good
test structure without many useless things, and it has some logical order of the test
case. But, to have a more general and precise result for an autonomous automation
test generation, we need to have more sources of data, because the same expression
can mean a lot of different things". This means that the results obtained are not
completely worst and there is scope for improvement if trained with more data and
with more versatile data i.e. data belonging to different domains.
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Analyzing test case specifications and manually developing the code is a time inten-
sive and a resource intensive process. Automatic test code generation is one method
for streamlining the software testing process and saving time and costs for the or-
ganization. In this thesis, an approach for automatically generating the test code
in robot framework syntax from test case descriptions written in natural language
is designed, implemented and evaluated. The study involves different experiments
to understand the feasibility and usage of the approach. The work is done using
natural language processing and deep learning techniques. Three different models
are implemented to compare, analyse and evaluate the performance of the models
over the data.

The data available at Ericsson from the older applications was leveraged to build a
corpus and use it to train the models. Therefore, the data preparation stage played
an important role for extracting information from existing robot scripts and use it
for training the models. This approach has helped in obtaining good results and
therefore has helped to answer our RQ-1.

The evaluation involves performing different experiments to obtain answers for the
defined research questions. The method 1 of the evaluation involves the training
and testing of the models only on the data from the monolithic application. Based
on the results obtained, it is concluded that the GRU attention model has resulted
in performing the best by achieving a BLEU score of 0.12. Despite the fact that
the problem is seen as a sequence translation problem, the data used is still in a
programmatical context and therefore is complex to map natural language text to
a code containing natural language elements. However, it is found that the model
treats the programming language as another domain specific natural language to
produce the results. This answers the RQ-2 proving that a code can be generated
in robot syntax by building models using NLP and deep learning techniques. The
evaluation method 2 involves the testing on the acceptance test cases where the
evaluation is done manually by human experts. The GRU attention model outper-
formed the other two models, however, the scores achieved are still below average.
Various reasons have been discussed with the major reason being that the domains
are not similar. It is concluded that there is a need for more variety of data in order
to attain more general and precise results.

Another experiment involved performing the training with different amounts of data
so as to compare the results obtained. It has been observed that the models trained
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with only 40% of the data did not produce good results when compared to the
models trained with 90% data. The results are shown and described in the previous
chapter. This answers the RQ-3, showing that the model performance is affected
with the amount of data available.

The final research question (RQ-4) provided a thought of sensibility to our study.
This question was raised while receiving the feedback on our evaluation method 2.
From the meetings with the test experts helped in understanding how the generated
results could help them. The generated keywords could be reused while implement-
ing test code rather than implementing them from scratch, thereby, minimizing their
time and efforts.

To conclude the thesis, it is clear that using Natural Language Processing tech-
niques and Deep Learning methods to automatically produce test code from a test
description expressed in natural language has potential and possibility. The pro-
posed method was successful in predicting appropriate keyword functions that are
required in robot scripts. It has the potential to reduce the developer’s time spent
on implementing test code, by considerable amounts. Further enhancements and
developments to the study can aid the testers by relieving them from the manual
operation of implementing test code from scratch and provide a more automated way
for the testing process thereby minimizing the time and costs for the organization.
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