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Abstract

Current methods for free energy calculations in materials science are either com-
putationally expensive, as λ-integration, or based on the harmonic approximation
and thus only applicable to materials with stable lattices. Thus, a computationally
cheap yet highly accurate method with broad applicability is sought after.

The objective of this thesis is to establish a method for one-shot free energy
calculations utilizing effective harmonic models, obtained by fitting forces from
molecular dynamics simulations. This approach enables extraction of effective
harmonic representations of fully anharmonic crystals at finite temperatures. In
addition, residual corrections to the free energy are incorporated using free energy
perturbation.

Three systems are considered, titanium, iron and a dimer. The dimer is studied
to highlight general features of harmonic models, whereas iron is considered as a
robust test system for verification during method development. Finally, titanium
is used as an example for a system with a rich temperature-pressure phase diagram
featuring several entropically stabilized phases. λ-integration and velocity auto-
correlation functions serve as reference methods for comparison of the free energy
and phonon properties, respectively.

Excellent agreement with reference methods is reported for phonon dispersion
and free energy in iron. For titanium the approach successfully reproduces the
temperature dependence of soft modes. The resulting free energies exhibit larger
deviations from the reference data than in iron. An improvement in this work
compared to a similar approach recently published is the reduction of the number
of parameters enabled by using symmetry properties directly during force matching
and the application of free energy perturbation.

The proposed model requires only one simulation whereas λ-integration re-
quires typically on the order of ten simulations. Hence, the proposed method
reduces the total simulation time with a factor of 10. The approach outlined in
this thesis enables accurate free energy calculations for arbitrary crystalline mate-
rials at a greatly reduced cost. It is therefore ideally suited for simulations based
on electronic structure methods such as density functional theory.
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1

Introduction

The ability to predict and understand structural behavior of materials under pres-
sure and temperature is of vital importance in both science and technology. Various
industries, such as automotive as well as aero and space industry, are driven by
light yet strong materials that can be used in frames and engines to obtain for ex-
ample enhanced durability and lower fuel consumption. More recent applications
of cutting edge materials science are biomedical implants and consumer products
such as cameras and golf clubs [1].

Thermodynamics ascertains that the free energy is minimal in thermal equilib-
rium. Knowledge of the free energy landscape is therefore key for understanding
materials properties and performance. While for many systems the free energy
is well described within the harmonic approximation (HA), this approach fails
for a considerable number of scientifically and technologically important materials
that are strongly anharmonic or even mechanically unstable at zero temperature.
The objective of the present thesis is to establish a method for obtaining free en-
ergies from one-shot molecular dynamics (MD) simulations that is applicable to
arbitrary crystalline materials removing the constraints of the standard HA. This
approach implicitly incorporates phonon-phonon interactions and represents an
improvement compared to the HA for all crystalline systems.

1.1 Background

Density functional theory (DFT) enables accurate calculations of materials prop-
erties based on a quantum mechanical description of the electronic structure [2].
Combining DFT with MD simulations allows studying systems at finite temper-
ature. DFT calculations, however, are still computationally very expensive and
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1.2. SCOPE CHAPTER 1. INTRODUCTION

therefore restricted to small systems and short time scales.
Empirical potentials consider interactions between atoms rather than electrons.

They are therefore computationally far more efficient than DFT calculations but
lack the accuracy and transferability of the latter.

Free energies can be calculated in a few different ways. The self-consistent
ab initio lattice dynamics approach by Souvatzis et al. [3] incorporates effective
temperature dependence of phonon frequencies via a finite displacement method.
This method has been used for example to reproduce the experimental phonon
dispersions of high temperature phases of group IV metals [4]. Recently Hellman
et al. [5] proposed a method based on classical molecular dynamics simulations.
In their work an effective harmonic representation of an anharmonic system is
extracted by fitting the full force-constant matrix. They report excellent agreement
with experimental phonon dispersions in lithium and zirconium, as well as good
agreement with the experimental phase diagram of zirconium. Their approach
requires fitting on the order of N2 matrix elements, where N is the number of
degrees of freedom in the supercell used in the simulations. It is furthermore
noteworthy that the accuracy of the free energies in Ref. [5] has been neither
assessed in terms of size convergence nor compared to a reference method such as
λ-integration [6].

1.2 Scope

The objective of this project has been to develop a method for free energy cal-
culations suitable for anharmonic crystals. Similarly to the work by Hellman et
al. the spirit in this work has been to fit temperature dependent harmonic models
for anharmonic systems. The approach described in this thesis, however, requires
fitting only on the order of 10 × n parameters, where n is the number of sym-
metry inequivalent atoms in the primitive unit cell. A major focus has been to
determine the accuracy of the free energy obtained in this fashion by comparison
with λ-integration. In addition free energy perturbation corrections [7] have been
applied.

There are several ways to fit harmonic models, which means there is not a single
optimal harmonic fit for a given system. The derivative based quasi-harmonic ap-
proximation (QHA) is a static lattice method that neglects anharmonicity, where
temperature dependence is approximately incorporated through temperature de-
pendent volumes. Alternatively, harmonic models can be constructed by consid-
ering correlations between displacements of different atoms in MD simulations [8].
This approach incorporates finite temperature effects and is expected to provide
better estimates of the free energy.

Two new methods are evaluated in this thesis. The first employs singular

2



1.2. SCOPE CHAPTER 1. INTRODUCTION

value decomposition (SVD), whereas the second is based on fitting symmetry
reduced force constants. These methods are compared with reference methods.
λ-integration is used as reference method for free energy calculations, whereas
phonon properties are compared with results from velocity autocorrelation (VAC)
functions. Since λ-integration requires a series of simulations while the new method
requires only a single simulation the latter is referred to as a one-shot approach.
This approach explicitly incorporates finite temperature effects, and thus yields
effective harmonic models (EHMs).

Three different systems have been studied. First a system with only two atoms,
a dimer, was studied. The atoms interact through a Morse potential, and the
system behaves as a strongly anharmonic oscillator. This textbook example is
used to highlight the advantages and limitations of harmonic representations. The
second system that was studied was a body-centered cubic (bcc) iron crystal.
This serves as a robust test system for validation and benchmarking of the new
methods. The third and final material that has been studied is titanium. Since the
high temperature bcc phase is dynamically unstable at zero K and is thermally
stabilized by phonon-phonon coupling the QHA cannot be applied [9, 10]. The
first goal of this work has been to determine the accuracy that can be achieved
using EHMs. The second goal has been to evaluate the computational cost by
comparing computational efficiency of the EHM approach with conventional λ-
integration. The model systems were simulated using empirical potentials in order
to obtain results that are numerically fully converged. Eventually the utility of
the approach outlined in this thesis, however, lies in its applicability to electron
structure calculations as DFT.

The report is organized as follows. In chapter 2 the basics of the simulation
technique are presented. General aspects of molecular dynamics simulations are
discussed first, followed by a description of different ensembles and the empirical
potentials used in this work. In chapter 3 details of the methods for free energy
calculations are presented. First λ-integration is described, followed by the har-
monic approximation and the EHM scheme proposed in this work. Free energy
perturbation (FEP) is introduced as a means to incorporate residual anharmonic
corrections to the free energy. Finally the VAC approach to obtain phonon proper-
ties is presented. In chapters 4, 5 and 6 method evaluation, free energy calculations
and results for dimer, iron and titanium are presented. In chapter 7 results from
chapter 4, 5 and 6 are discussed. Conclusions are summarized in chapter 8.
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2

Molecular dynamics simulations

Molecular dynamics (MD) is a classical simulation technique for many-body sys-
tems such as gases, liquids and solids. Classical means in this context solving the
equations of motions from classical mechanics, which implies that quantum me-
chanical effects are ignored. In this work the open-source MD code LAMMPS has
been used [11].

2.1 Relation to experiments

Performing MD simulations very much resembles experiments. First chemical com-
position and structure of the system have to be specified, such as number of atoms,
atom types, lattice structure, boundary conditions and interaction potential. Sub-
sequently thermodynamic boundary conditions have to be chosen, correspond-
ing to proper thermodynamical ensembles, e.g. canonical (NV T ), microcanonical
(NV E), or isobaric-isothermal (NPT ).

The simulation is started with equilibrating the system under the desired con-
ditions, i.e. a specific pressure and/or temperature. Subsequently equilibrium
quantities such as potential- and kinetic energy or particle position and velocity
can be calculated. Observables in classical thermodynamic correspond to ensemble
averages in statistical mechanics. To obtain thermodynamic quantities from MD
simulations the system is assumed to be ergodic, which enables replacing ensem-
ble averages with time averages. As in a real experiment there are fluctuations
and noise of measured quantities. Extending the length of the simulation reduces
uncertainty in the estimated quantities.
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CHAPTER 2. MOLECULAR DYNAMICS SIMULATIONS

2.2 Ensembles

The natural way to perform MD simulations is in the microcanonical NV E-
ensemble, that is, to let the system evolve according to the classical equations of
motions without any coupling to external baths. More commonly one is however
interested in the canonical ensemble which represents equilibrium with respect to
an external heat bath. In practice this can be accomplished by modifying the equa-
tions of motion by introducing an artificial parameter that couples to the particle
velocities. By introducing this parameter the temperature can be controlled and
time averages from simulations will equal canonical ensemble averages. For fur-
ther details about temperature control in the extended-Lagrangian formulation see
pp. 148 in Ref. [12]. Similarly to adding temperature control one can implement
pressure control. The pressure control changes the volume of the system to reach
a target pressure and the resulting ensemble is known as the isothermal-isobaric
NPT ensemble.

In the present work simulations were carried out in NV E, NV T and NPT

ensembles. Nosé-Hoover thermostat and barostat have been used for temperature
and pressure control [13–16].

2.3 Empirical potentials

The iron system presented in chapter 5 has been modeled with an embedded atom
method (EAM) potential [17]. In the EAM formalism [18–20] the potential energy
of atom i is given by

Ei = Fa

�
�

j �=i

ρb(rij)

�
+

1

2

�

j �=i

φab(rij),

where rij is the distance between atoms i and j, and φab is a pairwise potential
with subscripts denoting atom types, ρb is the electron density of atom of type b.
Finally, Fa is an embedding potential representing the energy of placing an atom
of type a into the electron cloud. Summations are performed only over atoms that
are within a potential specific cut-off distance. Note that each atom contributes
with a spherical symmetric electron density.

The titanium system presented in chapter 6 has been modeled with a modified
embedded atom method (MEAM) potential [21, 22]. In the MEAM formalism the
potential energy of atom i is given by

Ei = Fa(ρ̃i) +
1

2

�

j �=i

φab(rij),
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CHAPTER 2. MOLECULAR DYNAMICS SIMULATIONS

which takes bond directionality into account in the calculation of the electron
density ρ̃i. While this extends the flexibility and application range of the poten-
tial it also renders MEAM potentials computationally more expensive than EAM
potentials.
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3

Methods

In this chapter the computational methods used in this work are described in more
detail. λ-integration, which is the reference method for the free energy calculations,
is outlined in section 3.1. In section 3.2 harmonic models are discussed. After
introducing the harmonic approximation, two schemes for fitting effective harmonic
models are described. The free energy perturbation correction allows taking into
account anharmonic contribution beyond effective harmonic models is presented
in section 3.3. Finally the velocity autocorrelation function approach to obtain
phonon properties is presented in 3.4.

3.1 λ-integration

The coupling parameter method, also known as λ-integration, was proposed by
Kirkwood in 1935 [23], and implemented in the context of computer simulations
of particle systems by Frenkel and Ladd [6]. It is a general method that enables
calculation of free energies by doing thermodynamic integration. An integrable
path that links the target system S1 to a reference system S0 is constructed through
a parameterized potential U(λ). The main goal in this section is to show that the
free energy can be obtained by integration along this path.

The reference system should be chosen such that its free energy is known and
such that it can be switched smoothly into the target system. For the solid state
an appropriate reference system is the Einstein crystal, which is a system of N
independent identical harmonic oscillators. The internal energy U0 of the Einstein
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3.1. λ-INTEGRATION CHAPTER 3. METHODS

crystal is given by the displacements from the ideal lattice positions

U0 = α/2
N�

i=1

(ri − r0,i)
2
,

where α denotes the spring constant of the oscillators. Taking finite size corrections
into account the free energy of the Einstein crystal takes the form

F0

NkBT
= −

3

2
ln

�
k
2
B
T

2
m

�2α

�
−

3

2N
ln

�
α

2πkBT

�
−

1

N
ln

�
N

V

�
−

3

2N
ln(N),

where m is the mass of the oscillating particle, kB is Boltzmann’s constant, � is
Planck’s constant, T is the temperature and V is the volume [24]. To construct
the integrable path one now specifies the parameterized potential as a linear com-
bination of the target potential U1 and the reference potential U0 as follows

U(λ) = U0 + λ(U1 − U0).

For λ = 0 the parameterized potential describes the Einstein crystal whereas for
λ = 1 it describes the target system, and by letting λ : 0 → 1 one can smoothly
switch between the two systems. The configurational partition function Zλ for a
canonical ensemble (NV T ensemble), i.e. when the number of particles is fixed
and volume and temperature are constant, is given by

Zλ =

�
exp (−U(λ)/kBT )dx,

where the integral extends over the entire configuration space. The partition func-
tion is linked to the free energy via

Fλ = −kBT lnZλ. (3.1)

By taking the derivative of eq. (3.1) with respect to λ and integrating from 0 to 1
one arrives at the following result

F1 = F0 +

� 1

0

dλ

�
∂U(λ)

∂λ

�

λ

= F0 +

� 1

0

dλ�U1 − U0�λ, (3.2)

which expresses that by sampling �U1−U0�λ for configurations generated by U(λ)
where λ : 0 → 1 the free energy of the target system F1 can be calculated. One has
to ensure that the integration path is chosen such that the integrand �U1−U0�λ is
continuous. Integrating over a first order phase transition is therefore problematic
[12].
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3.2 Harmonic models

At low temperatures T many solid materials behave as if the interatomic potential
would be of purely harmonic character. This correlates with the fact that the
atomic mean square displacement �u2� approaches zero at low T . Mathematically
speaking a series expansion of the interatomic potential around the static lattice
shows that the leading contribution at low T is quadratic and contribution from
higher order terms are negligible due to small displacements ui at low T [25].

In the harmonic approximation one tries to describe the behavior of the real
system using only the lowest order non-vanishing terms in the expansion. The
potential energy of the system is then given by

φ(r) = 1/2
�

ijαβ

φ
αβ

ij
u
α

i
u
β

j
, (3.3)

where the indices denote atoms i and j respectively, while α and β denote cartesian
directions. Each atom is coupled to every other atom with a spring which means
that the forces are linear in the displacements. The elements of the 3N × 3N
force constant matrix are denoted by φ

αβ

ij
, where N is the number of atoms, and

u
α

i
denotes the displacement of atom i from its ideal position along direction α.

The matrix elements φ
αβ

ij
are the parameters of this model, and can be obtained

in different ways.
From the force constant matrix the dynamical matrix can be determined. To

express the dynamical matrix the atom indices i(j) are unfolded into collective
indices l(l�), k(k�) which label unit cell and atom within each unit cell, respectively.
In this notation the associations are as follows i ↔ lk and j ↔ l

�
k
� and the

dynamical matrix reads

D
kk

�

αβ
(q) =

1
√
mkmk�

�

l�

φ
αβ

ij
exp [iq · (rj,0 − ri,0)]. (3.4)

Where Dkk
�

αβ
(q) is an 3n×3n matrix, n is the number of atoms in the unit cell, and

ri,0 denotes the average position of atom k in unit cell l. Using the conventional
ansatz, in the spirit of eq. (3.13), displacements can be expressed as a superposi-
tion of phonon modes. Substituting this ansatz into the equations of motion and
requiring non-trivial solutions leads to the following condition

|D
kk

�

αβ
(q)− ω

2(q)I| = 0. (3.5)

Solving this equation gives the phonon dispersion [26]. Note that each wave vector
q is associated with 3n eigenvalues and that I is a 3n×3n identity matrix. Since the
dynamical matrix is Hermitian the eigenvalues ω2(q) are real. The square root of

11



3.2. HARMONIC MODELS CHAPTER 3. METHODS

the eigenvalues are the phonon frequencies ω(q). By diagonalizing the dynamical
matrices one can thus obtain the phonon spectrum. For a more elaborate discussion
of dynamical matrices see Ref. [27].

From the phonon dispersion one can compute the phonon density of states
and harmonic free energy to study dynamical properties, structure and stability
aspects. An expression for the classical harmonic free energy FH can be obtained
the following way. First the potential energy is expressed in a quadratic form

φ(r) = u
T
Qu, (3.6)

which is a reformulation of eq. (3.3), where Q ∈ R3N×3N is the force constant ma-
trix and u ∈ R3N are the atomic displacements. The corresponding configurational
partition function is

Z =

�
exp (−u

T
Qu/kBT )du =

�
exp (−u

T
K

T
DKu/kBT )du. (3.7)

where the force constant matrix has been diagonalized Q = K
T
DK. The config-

urational partition function can then be written

Z =
3N�

i=1

� ∞

−∞
exp (−ν

2
i
ω
2
i
/kBT )dωi, (3.8)

which is a product of gaussian integrals. The νi’s are the square roots of the
diagonal elements

√
Dii and carry the information about the phonon spectrum.

Insertion of the partition function in eq. (3.1) yields the vibrational free energy

Fvib = −kBT

�
3

2
ln

�
2π

kBT

�
−

1

N

3N�

i=1

ln νi

�
. (3.9)

Apart from a constant shift due to the static lattice energy this is the expression
that has been used for the harmonic free energies in chapter 5 and 6. In the next
sections distinct schemes for determining the parameters in a harmonic model are
presented. The elements of the force constant matrix φ

αβ

ij
are the parameters in

section 3.2.1 and 3.2.2, whereas the phonon spectrum νi is fitted directly in section
3.2.3.

3.2.1 Derivative based approach

The most common approach for calculating free energies of crystalline solids in-
vokes the so-called quasi-harmonic approximation (QHA). In this scheme the force
constant matrix is obtained by explicitly computing the second derivative of the

12
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potential energy for the static lattice (corresponding to zero K). In addition, a
volume range is scanned to find the trace in the temperature-volume plane that
minimizes the free energy. In this fashion the leading contribution to thermal ex-
pansion included. This is not the case in the harmonic approximation (HA), where
the volume is fixed.

3.2.2 Effective harmonic models

A substantial number of materials of scientific and/or technological interest are
mechanically unstable at zero K. This implies that eigenvalues of the dynamical
matrices are negative yielding imaginary frequencies. As a result the QHA is
strictly not applicable. Instead, an approach where the force constant matrix is
fitted to forces from MD simulations can be employed. This yields a harmonic
model that embodies an effective representation of the fully anharmonic system.

As pointed out previously the force constant matrix scales quadratically N
2

with the number of atoms in the systems, but the matrix elements are not all
independent. From the given crystal structure the number of independent elements
is reduced by symmetry. Furthermore, a cut-off radius, which is an upper limit to
the length scale at which interactions are important, can usually be established. In
our case this simply boils down to the number of neighbor shells that are included.
In this picture the potential energy in the effective harmonic model (EHM) can be
expressed

φ(r) = 1/2
�

ijαβ

κ
αβ

ij
u
α

i
u
β

j
r
α

ij
r
β

ij
, (3.10)

where κ
αβ

ij
is an element of a reduced force constant matrix, and r

α

ij
is the α com-

ponent of the normalized bond vector connecting atoms i and j. The summation
over ij is restricted to pairs within the cut-off range. The reduced force constant
matrix is essentially a sub-matrix of the full force constant matrix. The prod-
uct of the bond vector components rα

ij
r
β

ij
corresponds to a rotation of the matrix

with respect to the bond. For bcc crystals the reduced force constant matrix κ(1)

representing the nearest neighbor interaction reads

κ(1) =





a1 b1 b1

b1 a1 b1

b1 b1 a1



 .

Next-nearest neighbors are located along �100�, which implies that off-diagonal
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elements will be zero, since r
α

ij
r
β

ij
= δαβ. Thus, κ(2) is diagonal, and reads

κ(2) =





a2 0 0

0 a2 0

0 0 a2



 .

The reduction of the number of independent elements is deduced from the lattice
symmetry. Similarly κ(3),κ(4), ... will be 3 × 3 matrices, for bcc systems. For
other crystal structures the reduced force constant matrix grows with the number
of atoms in the primitive cell. It is computationally more efficient to use the
symmetry properties directly in the fitting process, as described here, rather than
fitting the full force constant matrix as in Ref. [5], where symmetrization is carried
out at a later stage.

Only the structure of the reduced force constant matrices has been discussed
so far but not the actual fitting procedure. The force constants are optimized in a
least square sense where the residual

χ
2 =

1

3CN

C�

i=1

N�

j=1

x,y,z�

α

�
f
(p)
ijα

− f
(t)
ijα

,

�2
(3.11)

is minimized. Here C is the number of configurations, N is the number of atoms,
α is the cartesian direction, f (p)

ijα
is the predicted force and f

(t)
ijα

is the target force.
Minimization is performed using the conjugate gradient method.

3.2.3 Singular value decomposition

In this work yet another approach to constructing EHMs using singular value
decomposition (SVD) has been explored. Within the harmonic approximation
displacements of atoms from equilibrium positions u(t) = r(t)−r0 can be expressed
as a superposition of normal modes

u(t) =
�

k

ak exp(iωkt)ξk (3.12)

where u(t) ∈ R3N refer to the displacement from the ideal positions at time t.
Furthermore, ak, ωk and ξk denote amplitude, frequency and polarization vector
of phonon mode k. For our purposes it is more convenient to rewrite eq. (3.12) in
component form

ui(t) =
�

k

ak exp(iωkt)ξik. (3.13)
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3.3. FREE ENERGY PERTURBATION CHAPTER 3. METHODS

Discretizing in time by replacing t → j∆t eq. (3.12) can be formulated in index
notation as

uij =
�

k

akwkjξik, (3.14)

where wkj = exp(iωkj∆t). Now consider the SVD of a n×m matrix M in index
notation

Mij =
�

kl

UikSklVlj, (3.15)

here U ∈ Rn×n, S ∈ Rn×m and V ∈ Rm×m where U and V are Hermitian. In
addition S is diagonal which leads to

Mij =
�

k

UikSkVkj. (3.16)

By comparison with eq. (3.14) one immediately obtains the following relations

Mij = uij,

Uik = ξik,

Sk = ak,

Vkj = wkj = exp(iωkt),

where wkj contains information about the phonon frequencies ωk. This suggests
that the harmonic phonons can be directly obtained from the decomposition of the
displacement matrix without explicitly fitting force constants. In addition, phonon
life times can be extracted from the broadening of the spectrum. One difference
between this approach and the method described in the previous section is that
here we rely on using strongly correlated configurations, that is, the time window
between snapshots must be small compared to the time scale of the dynamics.
For the previous approach it is rather the opposite as one requires independent
decorrelated configurations.

3.3 Free energy perturbation

Describing an anharmonic system with a harmonic model may lead to a systematic
deviation of the harmonic free energy from the true free energy. The free energy
perturbation (FEP) formula of Zwanzig [7] can be used to estimate this deviation.
Its derivation is straightforward as shown in the following. In statistical mechanics
the partition function Z is given by

Z =

�
dxdp exp (−βH),
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where H = T+U is the Hamiltonian of the system. Assuming the potential energy
is velocity independent the ratio of the partition function of the fully anharmonic
system Z1 and the harmonic partition function Z0 can be written as

Z0

Z1
=

�
dxdpe

−β(T0+U0)

�
dxdpe−β(T1+U1)

=

�
dxe

−βU1e
−β(U0−U1)

�
dxe−βU1

= �e
−β(U0−U1)�1,

where Ti, Ui are kinetic and potential energy respectively. The brackets �·�1 denote
the ensemble average and the subscript 1 indicates that the average is generated by
sampling the fully anharmonic system. Using eq. (3.1) the free energy difference
∆F = F0 − F1 can be written

∆F = −
1

β
ln
�
�e

−β(U0−U1)�1

�
,

which expresses that calculating the potential energy difference U0 − U1, from
configurations generated with the full potential, a correction to the harmonic free
energy can be obtained. The free energy of the fully anharmonic system is then
given by

F1 = F0 +
1

β
ln
�
�e

−β(U0−U1)�1

�
, (3.17)

which is know as Zwanzig’s equation.

3.4 Velocity autocorrelation

Fourier transformation of the velocity autocorrelation (VAC) function is a method
for determining phonon dispersions at elevated temperatures [28, 29]. This ap-
proach is prone to finite size effects, and thus requires large systems. The normal-
ized VAC function is defined as

Cv(τ) =
�vn(τ)v0(0)�

�vn(0)v0(0)�
, (3.18)

where the expectation value is given by

�vn(τ)v0(0)� =
1

τ̃3N

τ̃�

t

3N�

i

vi(t+ τ)vi(t), (3.19)

here the summation ranges over all snapshots in time from 0 to τ̃ , and over the
3N velocity components. The Fourier transform of the VAC gives the phonon
spectral density, which in turn is proportional to the phonon density of states
(DOS). Mathematically this is expressed as

DOS(ω) ∝

� ∞

−∞
dτe

iωt
Cv(τ). (3.20)

This expression has been used to calculate DOS for the iron system in chapter 5.
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4

Dimer

A dimer is a system with only two atoms. Due to its simplicity it is well suited as
a starting point for studying the validity of the harmonic approximation and the
importance of anharmonic effects. The aim is to illustrate general features and
limitations of harmonic representations.

Specifically, two identical particles with a mass of 50 atomic mass units were
considered. The interaction between the particles was modeled using a Morse
potential,

U = D0

�
e
−2α(r−r0) − 2e−α(r−r0)

�
, (4.1)

where r, r0 = 1.5 Å, are particle separation and equilibrium separation, D0 = 3 eV
and α = 2 Å−1, which sets energy scale and curvature, respectively. The particles
were initiated with velocities in opposite directions and the system evolved under
the influence of the potential. The velocity range from 0.01 Å/ps to 1.4 Å/ps was
considered. At the lower end of this range the system is described very well within
the harmonic approximation while at the higher end anharmonicity is strong.

Figure 4.1 shows the Morse potential, the trajectory of the dimer and illustrates
the harmonic fit to the forces in the simulation. At a velocity of 0.1 Å/ps one
observes very good agreement between harmonic fit and full potential. Since the
deviation from the equilibrium bond length is small the harmonic approximation
describes the system well. As the velocity is increased, the discrepancy between
harmonic fit and full potential increases. At a larger velocity of 1.0 Å/ps the
effective harmonic potential is much softer and the mismatch with the full potential
is very apparent.

It is instructive to compare the characteristic oscillation frequency of the dimer
with the frequency deduced from the harmonic fit. The characteristic oscilla-
tion frequency, defined as the main peak in the frequency spectra, is obtained by
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Figure 4.1: Morse potential and harmonic fit are plotted for 0.1 and 1.0 Å/ps in
the upper panels. The harmonic fit is obtained by fitting one force constant to the
forces in the simulation. The characteristic oscillation frequency obtained by Fourier
transformation of the time evolution of bond length is shown in the lower panels.
Higher harmonics are observed at 1.0 Å/ps.

Fourier transformation of the time evolution of the bond length, see Figure 4.1.
One frequency component is dominating at 0.1 Å/ps whereas higher harmonics
are observed as a result of anharmonicity at 1.0 Å/ps. This frequency is to be
used as reference and compared with the frequency deduced from fitting the force
constant. Note that there is only one force constant for the harmonic dimer and
the corresponding frequency is given by ω =

�
k/µ were µ is the reduced mass of

the system.

A comparison between characteristic frequencies and harmonic frequencies is
shown in Figure 4.2. The overall agreement is good, and at the lower end of the
range excellent agreement is observed. The discrepancy increases with velocity
which is due to the fact that increased velocity leads to significant probing of the
anharmonic parts of the potential. As more and more anharmonic parts of the
configuration space are explored the harmonic approximation should be used with
caution.
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.

To further discuss the limitations of harmonic representations we consider a
scatter plot where predicted forces are compared with target forces, as shown in
Figure 4.3. For a model that perfectly fits the target forces all points in the scatter
plot would fall onto a line through the origin with slope one. One observes that
for increasing initial velocity the discrepancy between predicted forces and target
forces increases, in particular when the absolute value of the force is large.

The slope of the fit is less than one since minimization of the residual, see eq.
(3.11), yields predicted forces that on average underestimate the target forces. This
underestimation is systematic and hence represents a bias rather than a statistical
uncertainty.
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In the HA, the oscillation frequency of the dimer would be independent of
velocity. Note that velocity plays the role of temperature in this context. In
contrast to the HA, an EHM incorporates thermal motion which enables it to
follow the reference frequency. The conclusion is that EHMs are performing well,
but discrepancy between harmonic oscillation frequency and reference oscillation
frequency is increasing with temperature. This discrepancy originates from a bias,
and it is expected that it can be accounted for when it comes to free energies by
using FEP, see section 3.3. This correction is discussed in the subsequent chapters
about iron and titanium.
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5

Iron

The motivation for studying the iron system, which is stable from zero K up to the
melting point, is to verify and benchmark the methods described in chapter 3. The
first aspects that are discussed in this chapter are the integration time step, which
is a simulation setting, and thermal expansion, which is a calibration. Simulations
and calculations related to λ-integration and harmonic models are presented in
section 5.2 and 5.3, respectively. Results from the SVD approach are discussed
in section 5.3.1, and the EHMs obtained from fitting the force constant matrix
are presented in section 5.3.2. The chapter is concluded with a comparison and
discussion of the calculated free energies.

5.1 Time step and thermal expansion

The integration time step must be chosen small enough to ensure energy conserva-
tion and avoid large discretization errors. At the same time it should be chosen as
large as possible to use computational resources efficiently. Microcanonical simu-
lations were carried out at 1200 K and the total energy was monitored. The time-
evolution of the total energy is presented in Figure 5.1(a), where the 8 fs time step
violates energy conservation. Furthermore, the 4 fs time step gives rise to small
oscillations in total energy. A time step of 2 fs has therefore been concluded to be
the optimum choice, balancing energy conservation and computational efficiency.

Thermal expansion in bcc iron has been studied by NPT simulations. In
Figure 5.1(b) the resulting lattice parameters from 300 K to 1000 K at 0 GPa are
presented. These lattice parameters have been used inNV T and NV E simulations
presented later in this chapter. The corresponding volume expansion from 300 K
to 1000 K is 2.5%. Even though this is a small expansion it is important to point
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Figure 5.1: (a) Test of energy conservation where integration time-steps 1 fs, 2
fs, 4 fs and 8 fs are shown. (b) Temperature dependence of lattice parameter in
BCC-iron at 0 GPa.

out that the measured pressure in NV T or NV E ensemble simulations is very
sensitive with respect to changes in the lattice parameter.

5.2 λ-integration

The starting point for the λ-integration was to choose spring constant k for the
Einstein crystal as well as to choose density of λ-values, where the spring constant
should be chosen so that the Einstein crystal resembles the real system. The
optimum value of the spring constant has been determined to k = 7 eV/Å2 at
500 K from calculations of mean square displacement �∆r

2�λ and potential energy
difference �U1−U0�λ. The corresponding plots of �U1−U0�λ and �∆r

2�λ are shown
in Figure 5.2.

An Einstein crystal is a non-interacting system. Due to lack of interactions
a divergence of �U1 − U0�λ for small values of λ appears, see Figure 5.2. This
originates from configurations with overlapping particles generated by sampling
with λ close to zero. Those configurations will be very high in energy for the
target system since it is strongly repulsive at short distances. This divergence is
prominent for k ≤ 5 eV/Å2 at 500 K, and is even more pronounced as temperature
is increased. To avoid the divergence a larger value of the spring constant k =
20 eV/Å2 has been chosen. When choosing a stiff spring the potential energy
difference falls off rapidly for λ close to one. At first this seems as if one divergence
is replaced by another sharp fall off, but the latter is easier to handle. The density
of λ has been chosen so that ∆λ = 0.05. This choice is dense enough to enable
an accurate fit of �U1 − U0�λ and it is also reasonable when considering use of
computational resources.
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To find a suitable simulation length the convergence of the free energy has
been considered. In Figure 5.3 the difference |Fc − Fi| is shown, where Fc is the
converged value of the free energy, and Fi is the free energy obtained by using
only a fraction of the time steps. The simulation is in total 200 ps long with
a 20 ps initial equilibration, and a time step of 2 fs, and a temperature of 300
K. For an overview of the settings in the simulations see Table 5.1. Clearly the
deviation is smaller than 0.1 meV/atom after 90 ps which indeed is promising.
To accurately map out phase diagrams, which will be discussed for titanium in
the next chapter, the uncertainty should be smaller than 1 meV/atom. The free
energy using λ-integration is compared with the harmonic free energy from EHMs
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in section 5.4.

Table 5.1: These settings were used for the NVT runs.

Time step (fs) 2

Simulation length (ps) 200

Equilibration time (ps) 20

System size (atoms) 250

5.3 Effective harmonic models

Two effective harmonic representations have been implemented and tested, namely
the SVD approach and the effective harmonic model. In this section tests, verifi-
cations and results for these methods are presented.

5.3.1 Singular value decomposition

MD simulations were performed in the NV E ensemble. This is particularly im-
portant since the SVD approach relies on trajectories unperturbed by e.g., ther-
mostating and/or barostating. A supercell with 250 atoms was used.

The SVD approach expresses atomic displacements as superpositions of har-
monic phonon modes, see eq. (3.12). In this picture the term wkj contains infor-
mation about mode frequencies, see eq. (3.14). Two phonon modes, denoted mode
1 and mode 2 respectively, from a 300 K simulation are presented in Figure 5.4.
This figure shows the time evolution of wkj which is expected to oscillate harmon-
ically in time, as well as the Fourier transform fft(wkj) which is expected to have a
sharp peak. The result for mode 1 is promising, it oscillates harmonically with only
small modulations of the amplitude, and the corresponding Fourier transformation
yields a sharp peak in the frequency spectrum. The results for mode 2, however,
are less encouraging. Contrary to the results for mode 1, mode 2 is not oscillating
harmonically, but exhibits damping as well as interfering frequencies, see Figure
5.4. Analysis of other modes shows that SVD generates frequency spectra without
well-defined peaks. It was therefore concluded to abandon the SVD approach as
it is unable to reliably separate all harmonic modes as required for calculating the
harmonic free energy.
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.

5.3.2 Effective harmonic models

Simulations are performed in the NV T ensemble with lattice parameters obtained
from previous NPT simulations. Fixed volume ensures well defined equilibrium
positions, which is necessary since the EHM is based on fitting displacements from
these equilibrium positions. The reduced force constant matrices κ are translated
to a full force constant matrix, which in turn is transformed to a set of dynamical
matrices. Diagonalization of these gives the phonon dispersion.

Since the phonon spectrum determines the free energies, we commence with a
comparison of the phonon dispersions and DOS obtained from QHA at 0 K, and
EHMs at 200 K and 800 K presented in Figure 5.5. The phonon dispersions show
identical symmetry properties, with softening of high energy phonons at elevated
temperatures as the only noticeable difference. Furthermore, the two methods
generate indistinguishable phonon dispersions in the low temperature limit, which
is not explicitly presented here. This excellent agreement is a first indication for
the usefulness of EHMs as well as a verification of the implementation of the
force constant fit procedure described in section 3.2.2. Phonon density of states
(DOS) obtained from EHM and VAC are presented in Figure 5.6. Identical cut-off
frequencies and overall agreement is observed.

Next the target forces at each time step are compared with the corresponding
forces predicted by EHMs. This is shown in scatter plots in Figure 5.7 at temper-
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.

atures of 400 K and 900 K respectively. For increased temperatures the deviation
between a perfect fit and the actual fit increases, see Figure 5.8. Note the excellent
agreement in the low temperature limit, where the slope of the fit is one. The slope
is monotonically decreasing for increasing temperatures, which is a manifestation
of systematic underestimation of the target forces. Again, the key observation is
that the discrepancy between the actual fit and a perfect fit is due to bias enforced
by the model and not due to statistical uncertainty.

The harmonic free energy deduced from the EHM is presented along with the
free energy calculated from the reference method in section 5.4.
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Convergence

The number of configurations Nc and the number of neighbor shells Nnbs needed
to converge the EHMs is discussed in this subsection. The convergence has been
studied at 300 K and 900 K to quantify the influence of increased thermal energy.
In Figure 5.9 the elements of the reduced force constant matrix are plotted. The
y-axis specifies the value of the matrix elements, where a are diagonal elements
and b are off-diagonal elements. The x-axis specifies the interaction shell, that
is nearest neighbor shell (”1”), next nearest neighbor shell (”2”), and so on. The
colors indicates the number of neighbor shells included in the fitting. From the
panels it seems as if it suffices to include only the 1st and 2nd nearest neighbor
shells since the elements in subsequent shells are small in comparison.

Even though the elements in higher neighbor shells are small the impact on
the free energy has been analyzed. The free energy was studied as function of Nc

and Nnbs. It was found that the free energy using Nnbs = 4 was indistinguishable
from the free energy calculated with more neighbor shells taken into consideration.
The free energy obtained by using only Nnbs = 2 or 3 tends to converge to a value
that differs slightly from the free energy obtained by using Nnbs = 4, 5 or 6. This
discrepancy is increasing with temperature. For efficiency reasons it is desirable

28



5.3. EFFECTIVE HARMONIC MODELS CHAPTER 5. IRON

to use as few neighbor shells as possible and this analysis indicates that Nnbs = 4
is a reasonable choice.

The number of configurations needed to converge the free energy has been
further studied using specifically Nnbs = 4 and the result is plotted in Figure 5.10.
The x-axis represents number of configurations Nc, where the configurations were
randomly selected from a 300 ps trajectory. For each Nc the fitting procedure was
repeated 50 times with randomly chosen configurations. The standard deviation
σF of the distribution of free energies is seen to decrease monotonically with Nc.
Given a specific convergence criteria the corresponding Nc can be found from this
analysis.
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5.4 Method comparison

Figure 5.11 shows a comparison of the free energies from QHA, EHMs and λ-
integration. The residual contribution from free energy perturbation (FEP) using
Zwanzig’s equation is also presented. In the plot below the same quantities are
presented with respect to the free energy from λ-integration. The main obser-
vations are that the EHM approach is doing significantly better than QHA, and
that the EHM are in better agreement with the λ-integration than the EHM with
FEP contribution included. This last observation is surprising and a satisfactory
explanation has not been found.
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6

Titanium

From a structural point of view titanium is non-trivial and displays several phases
as function of pressure and temperature [22]. At ambient conditions experiments
show stabilization in the hexagonal-close-packed structure (α-phase). For ambient
pressure and temperatures above 1200 K it transforms into the body-centered-
cubic structure (β-phase). Under pressure the hexagonal (ω-phase) turns out to
be most stable. The lattice structures are shown in Figure 6.1. The high tempera-
ture β-phase is stabilized by phonon-phonon coupling, and at zero K the phase is
mechanically unstable. The QHA, assuming a stable static lattice, is therefore not
applicable. In the following it is shown that EHMs, however, do not suffer from
this limitation.

The first section 6.1 is presenting estimated transition temperatures from NPT

simulations in the vicinity of the β → α transition, where step-like behavior in
potential energy is observed for a particular system size. In section 6.2 method
details, convergence aspects and results using EHMs, with particular focus on
phonon softening and observations of system size effects, are presented. In section
6.3 method analysis and results from λ-integration are presented, for both high
temperature β → α and low temperature α → ω transitions. The chapter is
concluded with presenting the calculated phase-diagram, which is based on free
energy calculations of α, β and ω-phases.

6.1 Martensitic transition

The β → α transition has been studied to map out parts of the phase diagram. One
of the goals has been to replicate the result presented by Hennig et al. in Ref. [22].
For this purposeNPT simulations have been performed and the structure as well as
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Figure 6.1: The hexagonal-close-packed, body-centered cubic and hexagonal struc-
tures α, β and ω, respectively.

 0

 2

 4

 6

 8

 10

−4.66 −4.64 −4.62 −4.60

F
re

q
u

e
n

cy
 (
×

 1
0

−
2
)

Potential energy (eV/atom)

data

total

α

β

(b)

P
o

te
n

tia
l e

n
e

rg
y 

(e
V

/a
to

m
)

Time (ps)

n=3 n=6 n=9

−4.65

−4.60

−4.55

0 50 100

(a)

Figure 6.2: (a) Potential energy from NPT simulations at 1300 K and 0 GPa for
systems sizes n = 3 (54 atoms), n = 6 (432 atoms) and n = 9 (1258 atoms). (b)
Double gaussian fit to step-like potential energy for system size n = 6.

energy of the system were observed. As temperature is decreased the longitudinal
[110] and transversal 2

3 [111] modes are expected to soften, driving the β → α and
β → ω transformations, respectively [10]. The supercell is chosen such that these
modes are accessible, which requires cell dimensions, nx×ny×nz, to be multiples of
3. In Figure 6.2(a) potential energy at 1300 K and 0 GPa from NPT simulations is
plotted for several system sizes. This particular choice of temperature is expected
to be close to the transition temperature at 0 GPa. For the smallest system n = 3
(54 atoms) fluctuations in potential energy are large. For the largest system n = 9
(1458 atoms) the potential energy is stable exhibiting only modest fluctuations. For
the intermediate system size n = 6 (432 atoms) potential energy is showing a step-
like behavior indicating accessibility of two structures. This dynamics is expected
to be observed also for n = 9 if the computational time would be extended to
increase the number of attempts to overcome the critical nucleation barrier. For
n = 3 the step-like behavior is dwarfed by large fluctuations.

Assuming the potential energy obeys a Gaussian distribution, the data can be
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of α and β-phase. For large values of γ the α-phase is dominating while for small
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different temperatures.
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where u is the potential energy, σi, µi are the standard deviation and the expecta-
tion values for phase i. The parameter γ measures the relative occurrence of β and
α-phase respectively. In Figure 6.2(b) the double Gaussian fit to n = 6 data at
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Table 6.1: Transition temperatures for the β → α transition, estimated from NPT

simulations using the double Gaussian ansatz, see eq. (6.1).

Pressure (GPa) 0 2 4 6 8 10 12

Temperature (K) 1294 1278 1279 1249 1330 1380 1410

1300 K is presented. At this particular temperature the β-phase is more prevalent
than the α-phase indicating that the transition temperature is slightly below 1300
K.

NPT simulations were performed from 1200 K to 1400 K in increments of 10
K to map out the 0 GPa transition in detail. For each temperature the relative
occurence γ was calculated. The result is presented in Figure 6.3(a) where γ is
fitted to a Fermi function

γfit =
1

1 + exp((T − T0)/σ)
. (6.2)

The transition temperature is estimated from the fit as T0 = 1294 K. Furthermore,
the potential energies of the α and β-phase as well as the total system are plotted in
Figure 6.3(b). In a completely analogously manner, the transition temperature for
higher pressures have been determined. In Table 6.1 these transition temperatures
the are presented.

Up until now observations of the β → α transition are based on monitoring
potential energy in NPT simulations. Another approach to study the instability
of the β-phase is to fit the forces from NV T simulations using EHMs. Since the
β-instability is driven by softening of phonons one can expect to see softening in
phonon dispersions obtained from EHMs, which is discussed in the next section.

An interesting manifestation of the dynamical instability in the β-phase is
seen in the extrapolated 0 K potential energy. The average potential energy was
computed from NV T simulations in the range 1000 K to 1500 K. In Figure 6.4 the
potential energy with respect to the static lattice energy is presented, where the
dashed line is a linear fit to the data points. As soon as the temperature is raised
above 0 K the β-phase deforms into a structure with lower potential energy and
symmetry.

6.2 Effective harmonic models

Simulations are performed in the NV T ensemble with lattice parameters obtained
from NPT simulations. Since the β-instability is driven by phonon softening
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Figure 6.6: Phonon dispersion in β-titanium obtained from EHMs at 250 K, 500
K and 750 K. Drastic temperature dependence is observed around the N -point.
Even more interesting is the β → ω instability along H − P , where the softening is
pronounced for the smaller system.

one can expect to see softening in phonon dispersions obtained from EHMs. The
temperature where β goes from being metastable to unstable can then be extracted
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systems sizes n.

from the temperature dependence of the respective modes. Phonon dispersions
obtained from EHMs at 950 K, 1200 K and 1400 K using system size n = 6 are
presented in Figure 6.5. At the N -point the most prominent softening is observed,
where the longitudinal mode drives the transition. The stabilization temperature
is estimated to 975 K from simulations at 50 K increments. The transversal mode
along H − P at 2/3[111] which corresponds to the β → ω instability shows in
comparison only modest softening.

Finite size effects for systems with n = 3, 4, 6, 9, 12 corresponding to 54, 128,
432, 1458 and 3456 atoms, respectively, has been explored. In Figure 6.6 phonon
dispersions from EHMs at 250 K, 500 K and 750 K are presented for n = 3 and
6 respectively. The softening along H − P related to the β → ω instability is
pronounced for n = 3, which indicates that small systems can show features not
present or as dominating in larger systems. Furthermore, softening around N and
along H − P for systems with n = 3, 4, 6, 9, 12 is presented in Figure 6.7. At
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the N -point, the destabilization temperature converges to a higher temperature
for increasing system sizes. Along the H − P direction, only n = 3 and 4 are
completely destabilized.

6.2.1 Convergence

The number of configurations Nc and the number of neighbor shells Nnbs needed to
converge the force constant fitting is discussed in this subsection. The convergence
has been studied at 1400 K for n = 6. In Figure 6.8 converged elements of the
reduced force constant matrix are plotted. The y-axis specifies the value of the
matrix elements, a are diagonal elements and b are off-diagonal elements. The x-
axis refers to the interaction shell, that is nearest neighbor shell (”1”), next nearest
neighbor shell (”2”), and so on. The colors represent Nnbs which here are shown
for Nnbs ≤ 6. The elements of the force constant matrix for titanium are smaller
than the ones for iron, which reflects the softer titanium potential.
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Figure 6.8: Elements of the reduced force constant matrices, where a and b denote
diagonal and off-diagonal elements, respectively. The colors represent the number
of neighbor shells that was considered.

.

Even though elements between the 2nd and 6th neighbor shells are small, the
impact on the free energy is studied as function of Nc and Nnbs. It was found that
the free energy using Nnbs = 4 was in agreement with the free energy calculated
using more neighbor shells. The number of configurations needed to converge
the free energy has been studied using specifically Nnbs = 4 and the results are
plotted in Figure 6.9. The x-axis represents the number of configurations Nc. The
configurations where randomly selected from a trajectory of 300 ps. For each Nc

the fitting procedure was repeated 50 times with randomly selected configurations.
The standard deviation σF of the distribution of free energies is seen to decrease
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to in the plot above. The standard deviation σF of the distribution of free energies
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.

with Nc. Given a specific convergence criteria the corresponding Nc can be found
through this analysis.

6.3 λ-integration

Titanium has a complex phase diagram and there are various phase transitions as
function of pressure and temperature. To begin with we will revisit the β → α

transition at 0 GPa. From thermodynamics it is well known that minimization
of the free energy determines the preferred structure. In Figure 6.10(a) the free
energies of α and β-phase at 0 GPa from 1200 K to 1450 K are presented. In this
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α → ω transition. In (a) the free energies from the α and ω-phase are plotted. It
is hard to resolve the transition temperature. In (b) the free energies difference
Fα − Fω is plotted. The transition temperature is found to be 223 K.

range both phases exhibit an approximately linear temperature dependence, with
a steeper slope for the β-phase. The free energy drops roughly 200 meV/atom for
both phases from 1200 K to 1450 K. The free energy difference Fβ − Fα shown in
Figure 6.10(b) is small compared to this drop. The α-phase has lower free energy
for positive values and the β-phase has lower free energy for negative values of the
difference. The transition temperature is estimated to be 1270 K.

In the range from 1200 K to 1450 K the difference Fβ − Fα changes by only
7 meV/atom. To ensure reasonable precision in the calculated transition tem-
perature the numerical accuracy and the convergence should be better than 1
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meV/atom. The convergence of |Fc − Fi| is plotted in Figure 6.12, where Fi is
computed from a fraction of the simulation length and Fc is the converged value.
The uncertainty in the converged value is smaller than 0.5 meV/atom, which gives
an estimated uncertainty in transition temperature of ±20 K.

The α → ω transition has been studied at 0 GPa in the same way as the
β → α transition, where the latter occurs around 1280 K and the previous is
expected to occur below 300 K. The free energies for α and ω-phase are presented
in Figure 6.11(a) and the difference Fα−Fω is shown in 6.11(b). The corresponding
transition temperature is found to be 223 K. Furthermore, both α → ω and β → α

transitions have been studied up to 12 GPa. The phase diagram resulting from
these free energy calculations will be discussed in section 6.5.

6.4 Method comparison

Figure 6.13 shows a comparison of free energies from EHMs and λ-integration.
The residual contribution from free energy perturbation (FEP) using Zwanzig’s
equation is also presented. In the bottom panel of Figure 6.13 the same quanti-
ties are presented with respect to the free energy from λ-integration. The main
observation is that the FEP contribution significantly improves the raw EHM re-
sults with respect to the reference method. In chapter 5 where iron was discussed
the free energy from QHA was also presented. It should be recalled that such a
comparison is not sensible for β titanium since QHA assumes mechanically stable
zero K lattice.
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Figure 6.13: Comparison of the computed free energies for β-titanium. Above the
free energy from λ-integration, EHM and EHM with FEP contribution are shown.
Below free energy differences with respect to the λ-integration are shown.

6.5 Phase diagram

The stability regions deduced from free energy calculations have been compiled
into the phase diagram shown in Figure 6.14. Below melting, for temperatures
above 1300K and pressures below 10 GPa the β-phase is found to be most stable.
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dashed line shows the β → α transition temperature obtained from studying the
instability of the β-phase in NPT . The open triangles, circles and boxes represents
the equilibrium structure from NPT simulations presented in Ref. [22].

Above 10 GPa the α → β transition temperature increases with pressure.
The α → ω transition temperature increases roughly linear with pressure over

the entire range explored in the present work. Experiments show that the α-
phase is the most stable structure at ambient conditions, whereas DFT calculations
predict the ω-phase to be the most stable at zero temperature and pressure. Since
the empirical potential employed in this work has been fitted explicitly to DFT
data it reproduced the latter behavior. The free energy calculations locate the
α → ω transition, at 0 GPa, at 223 K, which is in good agreement with Ref. [22].

The obtained transition temperatures, from direct MD in section 6.1, for the
β → α transition are also presented in the phase diagram. These temperatures
are in good agreement with the free energy calculations in this work as well as
the result reported in Ref. [22]. The most notable discrepancy is around 6 GPa
where free energy calculations predict a higher transition temperature. As reported
in Ref. [22] the transitions in these region exhibit pronounced hysteresis, which
implies that free energy calculations should be the most reliable estimator for the
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preferred structure.
Monitoring the transition between β and α-phase from observation of the po-

tential energy in the NPT ensemble is enabled by the short time scale of the
transformation due to the nature of the transition, and the sampled configuration
space which is related to specific simulation settings. The transition is martensitic
which are displacive in contrast to e.g. diffusive transitions. Dynamics of displacive
transitions is fast compared to very slow diffusive motion hardly observable in
simulations. Furthermore, the coupling strength of the thermostat and barostat
determines the time scale of changes in temperature and volume, where the β → α

transition requires rapid distortions of the simulation box. The interplay between
free energy landscape and sampled configuration space is balanced by the mag-
nitude of fluctuations. Temperature and system size influence the magnitude of
fluctuations, and are therefore important parameters.

45



6.5. PHASE DIAGRAM CHAPTER 6. TITANIUM

46



7

Discussion

The discussion is organized in three sections which reflects the structure of the
thesis. First the dimer, then the iron and finally the titanium system are discussed.
The ordering of the chapters emphasizes the increasing complexity as one moves
from the simple dimer via the stable iron crystal to the full titanium system with
the dynamically stabilized β-phase.

7.1 Dimer

The aim with studying the dimer was to apply EHMs to a simple system as well as
illustrate general features of harmonic representations. In the language of EHMs
the dimer is characterized by a single force constant which is fitted to forces from
MD simulations to obtain an optimal harmonic representation. Good agreement
between EHMs and the full potential in particular for low velocities is found (Figure
4.1). Increasing velocity leads to an increasing deviation due to the asymmetry
of the full potential, which results in underestimated and overestimated forces at
small and large bond lengths, respectively (Figure 4.3). From comparison of target
forces and predicted forces the small deviation is concluded to be systematic, and
hence leading to a bias.

The oscillation frequencies deduced from the EHMs follow the reference fre-
quencies rather well, where the deviation is smaller than 20% even for the largest
velocities (Figure 4.2). Within a raw HA, neglecting thermal motion, the oscillation
frequency is velocity independent which results in a significantly larger deviation
that grows fast with increased velocity.

Even though the dimer is a simplified model system the understanding gained
from the study in particular regarding possible sources of bias is helpful when
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considering the more complex systems.

7.2 Iron

The motivation for studying the iron system, which is stable from zero K up to
the melting point, was to verify and benchmark EHMs vs. λ-integration. This has
been conducted by comparing phonon DOS obtained from EHMs and VAC, and
free energies from EHMs, QHA and λ-integration. Proceeding from the dimer to
a many-body system also enabled verification of the symmetrization procedure in
the implementation of the EHMs.

λ-integration, used as reference for free energy calculations, works very well
for iron. The free energy converges fast with respect to simulation time. Within
tλ = 2 ps the uncertainty is smaller than 1 meV/atom. Using the entire 180 ps
MD trajectory reduces the uncertainty to less than 0.1 meV/atom. This high
accuracy and the fact that our λ-integrations are free of bias justify that we use
free energies from λ-integration as reference values. To achieve this precision 20
values of λ have been used, which corresponds to ∆λ = 0.05. For optimized use
of computational resources, without loosing to much accuracy, the increment can
be set to ∆λ = 0.1. From this point of view λ-integration is robust and reliable to
use for free energy calculations. Nevertheless, the method is associated with high
computational cost, and information about phonon dispersions are not provided
stressing the need for complementary methods.

The SVD approach to extracting EHMs was appealing since it in principle
would give not only effective harmonic representations but also phonon life times.
However, the approach was abandoned as it yields frequency spectra without well-
defined peaks, and hence the phonon spectrum is not extractable (Figure 5.4). In
the harmonic approximation amplitudes of atomic displacements are determined
by temperature and phonon frequency (see e.g. Ref. [26]), whereas in the SVD
approach the phonon amplitudes ak enter as additional parameters [see eq. (3.13)].
Due to these additional degrees of freedom the SVD approach yields frequency
spectra without well-defined peaks.

In contrast, it has been shown that by fitting forces obtained from MD simu-
lations one can generate EHMs that well reproduce the vibrational properties at
the temperature of interest (section 5.3.2). In the zero K limit phonon dispersions
for iron obtained from EHMs and QHA are indistinguishable, and as temperature
is increased the phonon dispersion from EHMs is softened relative to QHA (Fig-
ure 5.5). This demonstrates that EHMs allow to explicitly take anharmonicity,
from not only thermal expansion but also thermal motion, into account. This is
supported by the comparison of free energies where the EHM results follow the
reference data obtained by λ-integration more closely than the QHA does (Figure
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5.11). Taking the residual anharmonic correction from Zwanzig’s equation (FEP)
into account was expected to give a further improvement. The opposite, however
was observed, a behavior that has not been satisfactorily explained yet.

Using the EHM scheme suggested in this work strongly reduces the number
of parameters needed since symmetry properties are used directly in the fit. It is
shown that 4 neighbor shells are required to properly describe the system (Figure
5.9), and for 250 atoms in bcc configuration this results in only 7 parameters
(section 3.2.2). This is compared with the model proposed by Hellman et al. in
Ref. [5] for which the same system would have on the order of 106 parameters.

The number of configurations required to converge the EHMs is Nc = 10,
which ensures an uncertainty of less than 1 meV/atom (Figure 5.10). By assuming
that the decorrelation time in MD is ∆t = 0.2 ps the required simulation time is
estimated to Nc · ∆t = 2 ps. The corresponding simulation time to achieve the
same accuracy in λ-integration is approximately 1/∆λ · tλ = 20 ps. The conclusion
is that the EHM is one order of magnitude faster than λ-integration.

7.3 Titanium

From a structural point of view titanium is more complex than iron and displays
several phases as function of pressure and temperature. The high temperature β-
phase is stabilized by phonon-phonon coupling and mechanically unstable at zero
K. The QHA, assuming a stable static lattice, is therefore not applicable to the β-
phase [30]. To show that the EHM is applicable to dynamically unstable systems,
and in particular, to determine its accuracy in describing vibrational dynamics,
has been a focal point in this work.

The high temperature β → α transition was monitored in the isothermal-
isobaric NPT ensemble by observing discontinuities in potential energy. Studying
the transformation in this fashion is enabled by rapid dynamics of martensitic
phase transitions and specific barostat settings enabling fast distortions of the
simulation box. The interplay between free energy landscape and sampled config-
uration space is balanced by the magnitude of the fluctuations. Temperature and
system size influence the magnitude of fluctuations and are therefore important
parameters. In particular it was observed that the potential energy in systems with
432 atoms exhibits discontinuities (Figure 6.2). For larger systems and smaller sys-
tems, the discontinuities are absent and dwarfed by noise, respectively. Transition
temperatures have been estimated by using double Gaussian fits to the potential
energies (Figure 6.2 and Table 6.1). These temperatures are in good agreement
with the temperatures reported by Hennig et al. in Ref. [22].

Looking closer at the structure resulting from monitoring the β → α transition
in the NPT ensemble it is found that the structure is not purely α but rather a mix
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of structures. This has been concluded by comparing potential energies, volumes
and structural parameters from α, β and ω NPT simulations. In the reference
paper the 432 atom β supercell is claimed to be commensurate with both α and
ω-phase if properly strained [22]. From the simulations carried out in the context
of the present work it is concluded that the simulation cell indeed deforms to pure
ω at low temperatures but the β → α transition invariably led to strongly defected
α structures.

λ-integration, used as reference for free energy calculations, works well also
for titanium. Compared to iron the free energy converges slower with respect to
simulation time. Within tλ = 30 ps the uncertainty is smaller than 1 meV/atom.
The reason for longer simulation time, where the corresponding time for iron is
2ps, is that the temperature is higher and that the titanium system is not modelled
as well by the Einstein crystal.

The instability of the β-phase has been mapped out by fitting EHMs to forces
from simulations in the canonical NV T ensemble. The focus has been on quan-
tifying finite size effects and temperature dependence. The EHMs capture the
softening of the phonon modes in the vicinity of the instability very well. In par-
ticular the softening at the N -point is found to drive the instability (Figure 6.5).
The corresponding temperature where the β-phase goes unstable is estimated to
975 K for the system with 432 atoms. For larger and smaller systems the insta-
bility occurs slightly higher and lower in temperature, respectively (Figure 6.7).
Furthermore, the instability driving the β → ω transition is only observed in the
smallest systems, 54 and 128 atoms, respectively. This indicates that small sys-
tems with on the order of 100 atoms or less have to be used with caution as one
might observe pronounced features that are not present in larger systems due to
finite size effects.

The number of configurations needed to converge the EHMs is Nc = 60, which
ensures an uncertainty of less than 1 meV/atom (Figure 6.9). By assuming that the
decorrelation time in MD is ∆t = 0.2 ps the required simulation time is estimated
toNc·∆t = 12 ps. The corresponding simulation time to achieve the same accuracy
in λ-integration is approximately 1/∆λ · tλ = 300 ps. The conclusion is that in
the case of titanium the EHM scheme is more than one order of magnitude faster
than λ-integration, which indeed demonstrates the benefit from using the EHMs.

EHMs are observed to overestimate the reference free energy from λ-integration
by 80 meV/atom (Figure 6.13). This overshoot is a result of the β-phase being
mechanically unstable at zero K, and can be understood from observing the ex-
tracted zero K potential energy in Figure 6.4 and realizing that in any harmonic
model the static lattice energy is added by hand. However, the FEP contribution
significantly improves the estimated free energy with respect to the reference free
energy. The full EHM+FEP result is off with roughly 8 meV/atom which indeed
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is a remarkable improvement compared to the bare results. Interestingly in the
work by Hellman et al. in Ref. [5], the residual correction to the harmonic free
energy is not mentioned, whereas in this work the correction is found to be crucial.

Symmetry properties of the α and ω-phase have at the time of writing not been
implemented in the EHM fitting code. The EHMs based phase diagram is therefore
still to be determined. Verification of the latter with respect to the results from
λ-integration will be another important test of the EHM approach.

The phase diagram for titanium deduced from the explicit MD study described
in section 6.1 and the free energy calculations in section 6.3 shows good agreement
with the phase diagram reported in Ref. [22] as well as in Ref. [31–33]. The general
features are very similar with β → α and α → ω transition temperatures at zero
GPa in good agreement. In the present work the α → ω transition above zero
GPa is found to have a weaker pressure dependence, which implies that the α-
phase is the most stable structure in a larger part of the temperature-pressure
phase diagram (Figure 6.14).

The zero GPa phase diagram is presented in the bottom panel in Figure 7.1.
The region in which the β-phase is metastable, from 975 to 1270 K, is indicated.
The free energy landscape is sketched in the top panel.
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Figure 7.1: Zero GPa phase diagram for titanium obtained from this work. The
background colors represent the structure with lowest free energy in respective re-
gion. Note that the region where the β-phase is metastable is indicated. The top
panel is a sketch of the free energy landscape.
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8

Conclusions

The goal of this project has been to develop a computationally efficient method for
free energy calculations to enable accurate modeling of a wide range of materials.
Using bcc iron as a prototype for a system that is mechanically stable at zero K
the accuracy in the computed free energy is concluded to be significantly improved
in the EHM approach compared to the QHA. The deviation from λ-integration
is 1 meV/atom and 4 meV/atom for EHM and QHA, respectively, implying a
relative improvement of 75%. This is an important result for two reasons. Firstly,
effectively including anharmonic effects (phonon-phonon coupling) into the model
improves the accuracy. Secondly, QHA is inadequate for dynamically unstable
materials, thus the EHM presented here is not only more accurate but it can also
assess materials where the QHA is inapplicable.

To explore the latter point bcc titanium was considered as a system that is
mechanically unstable at zero K and is explicitly stabilized by anharmonic ef-
fects. The discrepancy between the EHM free energy and the reference free en-
ergy was 80 meV/atom. However, the free energy perturbation contribution from
Zwanzig’s equation made a significant improvement and reduced the deviation to
8 meV/atom. The relative improvement thus mounts to 90%.

Symmetry was utilized to reduce the number of force constant parameters that
had to be fitted. In combination with the fact that the interactions are usually
rather short ranged, this implies that for bcc lattices typically only 7 parameters are
needed, corresponding to 4 neighbor shells. This number is independent of system
size and several order of magnitudes smaller than the corresponding number from
the method suggested in Ref. [5].

The EHM is concluded to converge approximately as fast as λ-integration
with respect to simulation length. However, the EHM scheme is a one-shot tech-
nique whereas λ-integration requires several MD runs, which implies that the new
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method is typically at least a factor of ten computationally more efficient. The util-
ity of the approach outlined in this thesis is thus concluded to be highly interesting
from the point of view of electronic structure calculations such as DFT.

A flow chart summarizing the connection between simulations and computa-
tions utilized in the present thesis is shown in Figure 8.1.
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Figure 8.1: Illustration of simulation and computational schemes used in the
present work. The lattice parameters (think α, β, ω) for a specific pressure and
temperature are obtained from NPT MD simulations. The multi-shot branch to
the left (orange) represents the simulations and computations that are required for
λ-integration. The one-shot branch in the middle (green) presents the steps in the
fitting process where the harmonic free energy is obtained from EHMs. In the end
the reference free energy is compared with the EHM approach and residual anhar-
monic correction from FEP.
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