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Abstract
Deep learning is prominent in computer vision as a means of learning spatial fea-
tures and processing them in useful ways, such as for image classification and image
segmentation. An application of this in physics is to use videos of fire to predict
how the flames and smoke evolve over time. This thesis explores a simplified version
of this in an attempt to lay the groundwork for future studies. In particular, simu-
lations of fire and smoke were made using the open source software Fire Dynamics
Simulator by NIST. From these simulations, frame by frame states of the physi-
cal system could be extracted. A graph neural network using the MeshGraphNets
framework was trained to predict future states of the fire given two past states as
input. Some of the resulting neural networks were able to reasonably predict over
50 frames into the future and also showed some competence when faced with test
sets with a different physical geometry. The performances of the trained models var-
ied greatly depending on the loss functions used in training, suggesting that more
hyperparameter optimisation could be done in this regard.

Keywords: graph neural network, fire dynamics simulator, deep learning, physics
simulation.
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1. Introduction

Computer vision has come a long way, with deep learning at its core. By using
deep neural networks, spatial features can be computed for images and be processed
for many different purposes, such as image classification and image segmentation.
Conversely, images can also be generated from an input prompt with the help of
generative models.

An interesting question is whether neural networks can be used to process and
generate time series images—that is, videos—of physical systems evolving over time,
using a short video as input. Generating videos of complex physical systems can be
a computationally costly endeavour for traditional, numerical approaches, so having
neural networks that can do it faster is of particular interest. Graph neural networks
have in recent studies (such as Pfaff et al., 2021, Sanchez-Gonzalez et al., 2018,
Watters et al., 2017 and Battaglia et al., 2016) been deployed to learn simulated
physical systems, with much success. The limitations of these studies resulted in
a compromise between either reducing the physical system to a small number of
interacting particles, or having more feature channels in the video input than just
the typical RGB colour channels. The goal of this thesis is to explore the latter
compromise, with the prospect of possibly bridging the gap in the future.

1.1 Specification
This thesis will explore using more detailed features than just RGB video to learn
a complex physical system. A system of fire and smoke will be studied, using the
open source software Fire Dynamics Simulator developed by NIST (2020) to generate
time series data of evolving fire and smoke. This software can export many different
quantities from the state of the system, such as temperature, gas density and gas
velocity, at every point in the simulation space. These features will be used as
training data to teach a graph neural network the dynamics of the system, using a
few consecutive states as inputs in order to predict a future state. The network’s
generalisation capabilities will also be tested on systems with geometries different
from that of the training data. Transitioning into using RGB video inputs can be
done with the complementary software Smokeview, which is able to export the FDS
simulations as images; this is however outside the scope of the study.

1.2 Related Work
Using visual input to predict physical systems has been done with the Visual Inter-
action Network, or VIN for short. The VIN is a neural network developed Watters
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1. Introduction

et al. (2017) that can predict the movement of balls that interact with each other,
either due to gravity or due to some other physical processes like elastic collision.
VIN uses convolutional layers to encode sequences of images of balls into state codes
for each individual ball. It then uses Interaction Networks—a network architecture
introduced by Battaglia et al. (2016) that interprets objects as nodes in a graph and
their interactions with each other as edges between nodes—to predict the future
state codes of the balls, which then gets decoded into their positions and velocities.
This method was successful, but the approach only works for physical systems that
consist of a fixed number of interacting particles.

The MeshGraphNets framework by Pfaff et al. (2021) allows for a graph neural
network to learn a physical system modelled as a field, where every point in space
is assigned a vector of quantities such as temperature and velocity. Unlike the VIN,
which uses a series of images to discern individual particles, the MeshGraphNets
framework uses a graph representing a discretised version of the field as input. This
allows for learning macroscopic systems that consist of a huge number of particles,
and it works better than more conventional convolutional networks such as the UNet.

Fire Dynamics Simulator has been a subject of deep learning research before. Hodges
et al. (2019) used a transpose convolutional neural network to spatially model tem-
perature and gas flow velocities of fires in compartmentalised rooms, given general
information about the rooms’ geometries, ventilations, and source fire intensity and
location. The network did however not learn to predict future time steps; instead,
it was trained to predict the future time-averaged spatial features.

1.3 Ethical Concerns
Since this work researches application of machine learning, there are always ethical
concerns to be aware of. Although using simulations to train a neural network is
essentially risk-free—the only concerns are environmental, since simulating data and
training the network requires a lot of computing power—rolling out the network to
real world use cases can be problematic.

Trained neural networks are essentially black boxes, meaning that they seem to work
without us knowing exactly how they work. In this case, the trained model might be
able to predict fire and smoke patterns in many scenarios, but fail catastrophically in
edge cases that weren’t in the training data. If the model is used for e.g. evaluating
fire safety, this risk of failure is unacceptable. Using black boxes like this is therefore
grounds for ethical concerns in itself. One must thus very thoroughly evaluate and
train the model before use.

This leads to another concern, which is where the training data comes from. Sim-
ulations are approximations of the real world, so in order to have a well-trained
neural network, it is advisable for it to have been trained on real data. One way
of gathering such data is to intentionally start controlled fires, but one again runs
the risk of not testing every possible scenario. The other option is using footage of
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1.3. Ethical Concerns

real fires for training. This option is ethically concerning, especially if the fires have
caused any fatalities.
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2. Background

This chapter will describe machine learning and some necessary mathematics behind
modelling a physical system as a mesh.

2.1 Machine Learning Concepts
This section will give a brief explanation of important concepts in machine learning
in the context of neural networks and deep learning. The content is based largely
on Deep Learning by Goodfellow et al. (2016) and Machine learning with neural
networks: An introduction for scientists and engineers by Mehlig (2021).

In the most general case, a neural network is a function f(x, θ) with parameters θ
that takes an input x that is designed to approximate a target function f ∗(x). Not
all machine learning methods utilise parametrised functions, but this thesis will be
limited to only such cases. The individual elements in x are called features, and are
quantities that describe whatever is relevant to the problem at hand. In a single
particle system, the features in x could for example be the particle’s position, veloc-
ity and mass. Training a neural network means finding the right θ so that the the
network f(x, θ) approximates the target function f ∗(x) well enough. This target
function could range from being a function that correctly predicts tomorrow’s tem-
perature given today’s weather conditions x, to a function that correctly identifies
whether an image x depicts a cat or a dog. A trained neural network is also called
a model.

Training a model generally involves using a set of pairs of training inputs xi and
their corresponding targets yi = f ∗(xi). An instance of these pairs (xi, yi) is called
a training example, and the set of these pairs is called a training set, X =

{
(xi, yi)

}
.

The training is performed by minimising a loss function J(θ) that depends on the
model’s parameters and implicitly on the training set X itself. The loss function is
a measure of how well a model f with parameters θ approximates f ∗ for a given set
of examples X, and can come in many forms. A commonly used loss function for
regression is the MSE loss, or the mean squared error loss,

J(θ) = 1
N

∑
i

(
yi − f(xi, θ)

)2
, (2.1)

where N is the number of training examples. The loss is also a scalar, so the
per-feature mean of the squared errors is also taken. One can minimise J(θ) with
gradient descent, which is an algorithm—also called an optimiser—where θ is succes-
sively moved towards the opposite direction of the loss function’s gradient ∇θJ(θ).
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2. Background

This leads to the parameter update

θ ← θ − η∇θJ(θ) (2.2)

for some positive, usually small, learning rate η. Although this can find a local
minimum, it’s not guaranteed to find the global minimum.

Using gradient descent on the whole set of data at once is called batch gradient
descent. This method of training the model is very expensive for large data sets,
since the whole batch of data might not fit into the memory. A way to alleviate this
problem is by using stochastic gradient descent, or SGD. This samples the training
examples one by one and performs a gradient descent for every such sample. A
similar algorithm is the minibatch SGD, which samples minibatches of data and
updates the parameters accordingly. When the parameters have been updated for
every minibatch in the training set, one epoch of training has been completed.

This kind of training can be done over many epochs. One wants to arrive at param-
eters θ that neither underfits nor overfits the data. In general terms, underfitting
is when the model hasn’t learned enough while overfitting is when the model has
learned the training set well but can’t generalise to other inputs. A so-called val-
idation set or test set Xval can be used to measure how well a model generalises.
The validation set is similar to the training set, but consists of an independent set
of examples that aren’t used to train the model. By keeping track of both the loss
of the training set and the loss of the validation set during training, one can get
an indication of how the training is going; if both the training and validation losses
are still decreasing, the current model is underfitted and can still improve, but if
the training loss is decreasing while the validation loss is not, the model is probably
overfitted.

There are many other kinds of optimisers based on the SGD optimiser. The Adam
optimiser (Kingma et al., 2017) adapts the learning rate for individual parameters
over the course of the training which can result in better performance for some
datasets. AdamW (Loshchilov et al., 2019) is a modification of Adam which penalises
large values of θ in an attempt to reduce overfitting, and has been shown to perform
better than Adam.

2.2 Neural Networks and Deep Learning
Neural networks is a family of functions inspired by neurons in the brain. One of
the simplest kind of neural networks are the fully connected neural networks, also
called multilayer perceptrons, or MLPs. These are a class of neural networks that
consist of an input layer, some number of hidden layers, and an output layer, in that
order. A layer can be seen as a vector whose elements are an affine transformation
of all the elements in the previous layer, composed with an activation function. The
name fully connected neural network comes from this affine transformation, since
every element in a layer is connected to all the elements in the previous layer. This
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2.2. Neural Networks and Deep Learning

connectedness is shown in figure 2.1, which is a diagram over an MLP with only
a single hidden layer. Such a network takes a vector input x with N elements at
the input layer, transforms the input to a vector V with H elements in the hidden
layer and then transforms it into an output O with M elements at the output layer.
While N and M depends on the input and output of the target function f ∗(x) that
the network is to approximate, the hidden layer width H is a model hyperparameter
that can freely be chosen. The individual elements in the vectors are also referred
to as nodes, so the hidden layer has H nodes. Within the transformations from
x to V to O are weights and biases that together make up the model’s learnable
parameters θ.

Input Layer Output LayerHidden Layer

𝑥𝑘 𝑉𝑗 𝑂𝑖

𝑤𝑗𝑘 𝑊𝑖𝑗

Figure 2.1: An MLP with a single hidden layer. The input layer has N = 3
nodes xk, the hidden layer has H = 4 nodes Vj and the output layer has M = 2
nodes Oi. The edges connecting the nodes to each other are the weights wjk
and Wij, which determine the affine transformation between layers. Not shown
are the biases and activation functions.

The hidden layer vector V is computed through

Vj = g

 N∑
k=1

wjkxk + bj

 , (2.3)

where bj are the biases, wjk are the weights and g is an activation function. Likewise,
the output O is then computed with

Oi = g′

 H∑
j=1

WijVj +Bi

 (2.4)
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2. Background

with its own set of weights Wij, biases Bi and activation function g′. The whole
vector of parameters θ thus contains w, W , b and B.

The activation functions, g and g′ in the above example, are chosen per layer. These
are usually non-linear functions, the most popular being the ReLU function g(x) =
max (0, x). Models for regressive tasks, that is, where the outputs of the target
function f ∗ are on a continuous interval in the real number line, often use a linear
activation function g(x) = x at the output layer.

MLPs aren’t restricted to a single hidden layer. Multiple hidden layers, each with
their own number of nodes and activation functions, can be used to obtain a deep
MLP. The depth of a neural network generally refers to the number of hidden layers
it has, and the associated training and usage of networks with more than one hidden
layer is called deep learning.

There are other modifications one can make to the MLPs. One is the residual
connection, or skip connection. Instead of purely forwarding an input x through a
series of hidden layers h(x), one can define a residual connection f(x) = h(x) + x.
This has empirically been shown to be easier to train than standard MLPs, likely
due to how the gradients are calculated.

Another modification is to introduce normalisation in an MLP. Layer normalisation
is one such method, proposed by Ba et al. (2016). It works by normalising the nodes
in a layer to zero mean and unit variance, and has been shown to improve training
speed and performance.

2.2.1 Graph Neural Networks
A particular class of neural network architectures is the graph neural network, or
GNN. A graph G = (V,E) is an object with nodes V and edges E that connects
nodes with each other. A node i ∈ V contains the features vi while an edge (i, j) ∈ E
going from the sender node j to the receiver node i can contain features eij. Graph
neural networks take graphs G as input and compute an output that depends on
the task at hand. These tasks could range from a per node or per edge regression to
a full graph regression. In the layers of a graph neural network, messages get passed
between the nodes according to their edges in order to facilitate learning relations
that are dependent on the graph topology. This could be seen as a generalised con-
volutional neural network that works for non-Euclidean geometry. A comprehensive
review of graph neural networks with many of their use cases is given by Zhou et al.
(2021).

A kind of GNN of particular interest for this work is the Interaction Network, or
IN, as described by Battaglia et al. (2016). It characterises a physical system into
a graph with the nodes being the physical objects and the edges being the objects’
interaction with each other. The IN was then generalised by Sanchez-Gonzalez et al.
(2018) to a so-called Graph network, GN, which takes as input and outputs a graph
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2.2. Neural Networks and Deep Learning

G along with global features xg. This architecture is summarised in figure 2.2.

{𝒗𝑖}

{𝒆𝑖𝑗} 𝑓𝐸

𝑓𝑉

𝒗𝑖, 𝒗𝑗

𝒙𝑔 𝑓𝑔

𝒆𝑖𝑗

𝒗𝑖

𝒙𝑔 𝒙𝑔′ 𝒙𝑔′

𝒗𝑖′

Σ𝒗𝑖
𝑖

′

𝒆𝑖𝑗′
{𝒆𝑖𝑗}′

{𝒗𝑖}′

Σ𝒆𝑖𝑗𝑖𝑗
′Σ𝒆𝑖𝑗𝑗

′

Figure 2.2: The architecture of the Graph network, with the input nodes {vi},
input edges {eij}, input global features xg, output nodes {v′i}, output edges
{e′ij} and output global features x′g. The message passing with this architecture
is performed with the MLPs fE and fV , while the f g is an MLP that updates
the global features.

From the GN’s input (xg, G), the global features xg, an edge eij and its respective
sender and receiver nodes vi and vj get concatenated and passed through an MLP
fE that outputs a new edge e′ij. This is done for every edge in the graph with the
same MLP fE. After updating the edges, the GN takes the global features xg, a
node vi and an aggregation of every edge the node receives, êi = ∑

j e
′
ij, and pass

the concatenation of these through an MLP fV that outputs a new node v′i. This
process is repeated for every node using an identical fV . Finally, the global features
gets updated with an MLP f g that takes a concatenation of xg, ê = ∑

ij e
′
ij and

v̂ = ∑
i v
′
i as input. These updates to the features can be summarised as

e′
ij ← fE(eij,vi,vj), v′i ← fV

vi,∑
j

e′ij

 , x′g ← f g

xg, ∑
ij

e′ij,
∑
i

v′i

 .
(2.5)

The whole GN input to output pipeline is detailed in algorithm 1.

A GN in a network can be treated as a single layer. Several GNs can be composed
together to form a deep graph neural network with multiple layers. Since a single
GN layer has messages passing between neighbouring nodes, a network with n GN

9



2. Background

layers can pass messages up to n nodes away.

Algorithm 1: Graph network
Input: G = ({vi}, {eij}), xg
for each edge eij do

Gather receiver and sender nodes vi and vj;
Compute output edges e′ij = fE(xg, eij, vi, vj);

end
for each node vi do

Aggregate edges with vi as receiver, êi = ∑
j
e′ij;

Compute output nodes v′i = fV (xg, vi, êi);
end
Aggregate all edges and nodes, ê = ∑

ij
e′ij, v̂ = ∑

i
v′i ;

Compute output global features, x′g = f g(xg, ê, v̂);
Output: G′ = ({vi}′, {e′ij}), x′g

2.3 Mesh-based Physical Systems
A physical system can be modelled as a vector valued continuous field, q(r, τ),
where every point r in space at some time τ has an assigned vector that describes
some quantities of the system. This can be spatially discretised into a mesh, where
each cell i contains a sample of the field, or feature vector, qi(τ) = q(ri, τ) and
where ri is the location of the cell. The complete state of the mesh at time τ is then
defined as s(τ) =

{
qi(τ) | ∀i ∈ V

}
, with V being the set of all cells in the mesh.

2.3.1 Next State Calculation
Assuming that the physical system is continuous in time up to the second order, the
Taylor expansion of the state s(τ) around the time τ = t is

s(τ) ≈ s(t) + (τ − t)ṡ(t) + (τ − t)2

2 s̈(t), (2.6)

with ṡ(t) and s̈(t) being the first and second time derivative, respectively 1. Evalu-
ating s(t+ 1) then yields

s(t+ 1) ≈ s(t) + ṡ(t) + 1
2 s̈(t). (2.7)

This approximation is valid if the time unit is small enough. The first time derivative
in equation 2.7 can be approximated with ṡ(t) ≈ s(t)− s(t− 1) = ∆s(t), resulting
in

s(t+ 1) ≈ s(t) + ∆s(t) + 1
2 s̈(t). (2.8)

1The addition used here is performed element-wise between feature vectors belonging to the same
cell, e.g. s(t) + ṡ(t) =

{
qi(t) + q̇i(t) | ∀i ∈ V

}
.

10



2.3. Mesh-based Physical Systems

In a time-discrete notation, this can be expressed as

st+1 ≈ st + ∆st + 1
2 s̈t. (2.9)

From this, it is apparent that one can calculate the state in a future time given the
current state, the past state and the current state acceleration as long as the time
step is small enough. This kind of state update was used by Pfaff et al. (2021) in
their MeshGraphNets framework.

11
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3. Methods

This chapter will introduce the MeshGraphNets framework, which will be used to
model and train a graph neural network to predict future states in a physical system
given two past states. The training data is obtained from FDS simulations, which
will also be detailed. The data will be split into multiple episodes, with each episode
corresponding to a single, completed simulation. In turn, each episode contains
multiple training examples for the neural network.

3.1 MeshGraphNets
MeshGraphNets is a framework for using a graph neural network to learn a mesh-
based physical system, developed by Pfaff et al. (2021). It represents the state of a
mesh-based physical system st, its velocity mesh ∆st and its geometry mesh G(s)
as a graph Gt, where every node i corresponds to a cell in the mesh with some mesh-
space coordinate ui and are connected to its neighbours with edges. The framework
allows for the mesh to represent a Lagrangian system, where the mesh can be a
deforming surface with real world coordinates xi that differ from the mesh-space
coordinates ui. This work will however only consider an Eulerian system, where
the mesh is fixed in real world coordinates. In tandem with that, this work won’t
consider dynamically remeshing the system.

The features in the nodes are the mesh’s feature vector qit, the velocity ∆qit =
qit−qit−1 and a one-hot geometry vector gi that indicates whether there is any solid
material in cell i, defined as

gi =

(1, 0) if i contains solid
(0, 1) otherwise.

(3.1)

This one-hot encoding with two elements is redundant, but allows for future ex-
tensions with more granular geometry segmentation, such as an element indicating
whether a cell is a burner. Meanwhile, the features in an edge between node i
and j were their relative mesh-space coordinates and the length of that coordinate,
eij = (ui − uj, |ui − uj|). Since two time steps are need to calculate the features
for the nodes, the states needed to calculate the whole graph at a time t are st−1
and st.

The MeshGraphNets framework uses a GNN with the graph Gt as input to predict
the future state st+1. Specifically, the output p of the GNN is trained to approximate
1
2 s̈t. This in turn can be used to calculate the next state by using equation 2.9, where

13



3. Methods

st+1 = st + ∆st + p. Figure 3.1 shows the pipeline of calculating features for the
graph, using those features in the GNN and predicting the next state.

𝒔𝑡

Δ𝒔𝑡

−

(𝒔𝑡, Δ𝒔𝑡, 𝒢(𝒔))

GNN

𝒔𝑡−1 𝒑

concatenate

𝒔𝑡+1

Σ

Σ

Σ

Input PredictionGNN forward pass

𝒢(𝒔)

Figure 3.1: A schematic overview of how the next state st+1 is predicted from
an input consisting of st, st−1 and G(s) using the MeshGraphNets framework.
The approximate state velocity ∆st is calculated from the two input states. The
feature-wise concatenation of st, ∆st and G(s) is then turned into a graph Gt

at the input to GNN, which in turns outputs the predicted acceleration p of the
system. Summation of this predicted acceleration, the state st and the velocity
∆st yields a prediction of the next state ŝt+1.

3.1.1 The GNN Architecture
The GNN used in the MeshGraphNets framework operates with an encode-process-
decode architecture. That is, the GNN encodes the input graph into a latent graph
with abstract node and edge features while preserving the graph topology. The
latent graph is then processed through a series of GN layers. The features of the
nodes of the graph at the final GN output are then decoded to the GNN’s output p.
Notably, the GNs used in this framework neither take as input nor give as output
any global features xg. The GNN used is detailed in algorithm 2. A schematic of the
modified GN layers is illustrated in figure 3.2, and a schematic of the whole GNN is
shown in figure 3.3.

At the encoder, the node and edge features in the graph are encoded into latent
features with two MLPs εV and εE, respectively. The same εV are used for every
node while the same εE are used for every edge, meaning that the encoding process
is spatially invariant.

The processor contains L number of GN layers, each with identical architecture
but different learnable parameters. Since no global features were used, the update
algorithm from equation 2.5 is instead just

elij ← fEl (el−1
ij ,vl−1

i ,vl−1
j ), vli ← fVl (vl−1

i ,
∑
j

el−1
ij ) (3.2)
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3.1. MeshGraphNets

at the lth layer in the processor.

The decoder simply takes the node features from the processed graph and applies
an MLP δ node-wise to decode the latent features and then reconstruct it to a mesh
p with the same dimensions as a state st.

Algorithm 2: GNN used in MeshGraphNets
Input: G = ({vi}, {eij})

/* Encoder */
for each edge eij do

Encode edges e0
ij = εE(eij);

end
for each node vi do

Encode nodes v0
i = εV (vi);

end

/* Processor */
for l from 1 to and including L do

for each edge el−1
ij do

Gather receiver and sender nodes vl−1
i and vl−1

j ;
Process edges elij = fEl (el−1

ij , vl−1
i , vl−1

j );
end
for each node vl−1

i do
Aggregate processed edges with vl−1

i as receiver, êi = ∑
j
elij;

Process nodes vli = fVl (vl−1
i , êi);

end
end

/* Decoder */
for each node vLi do

Decode nodes pi = δ(vLi );
end

Output: p = {pi}
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Figure 3.2: The GN layers used by the MeshGraphNets framework. Unlike
the GN described by Sanchez-Gonzalez et al. (2018), this version doesn’t use
global features xg.
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Figure 3.3: The architecture of the GNN used in the MeshGraphNets frame-
work. At the encoder, the MLPs εV and εE encodes every node vi and edge
eij into latent nodes and edges. These then get processed through L GN layers
before the nodes are decoded by the MLP δ into node-wise predictions pi.

3.1.2 Targets, Rollouts and Loss Functions
The goal is to have the GNN learn to output a prediction of the current acceleration,
p = 1

2
̂̈st, given an input (st, ∆st, G(s)). By using equation (2.9) one obtains a

prediction of the future state ŝt+1 = p + st + ∆st. A desired capability is for the
model to be able to predict many states into the future. A prediction like this can
be done with the same GNN model; the predicted state ŝt+1 can be reused as an
input (ŝt+1, ∆̂st+1, G(s)) to predict 1

2
̂̈st+1, which in turn can be reused to predict

yet another future state, et cetera. A series of consecutive predictions n time steps
into the future is called a rollout of length n. Algorithm 3 details how a rollout is
calculated given an initial input (st, ∆st, G(s)) to the model f .

Two different kinds of loss functions were devised that used rollouts as training
targets, taking inspiration from the work of Watters et al. (2017). They were the
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3.1. MeshGraphNets

n-step rollout loss and the n-step corrective rollout loss. With rollouts as targets,
each episode of states is divided into multiple, overlapping training examples. Ev-
ery training example consists of two input states (so that the velocity ∆st can be
calculated), the geometry and the n rollout states. The rollout states were used
to calculate n partial targets. The MSE between the n predictions pk and the n
partial targets were then computed and aggregated into a single loss. An episode
with NE states is thus divided into NE − 2− n overlapping training examples, with
each training example having n partial targets. This approach to targets and loss
functions is different from that used by Pfaff et al., who only used a 1-step rollout
loss.

Algorithm 3: n-step rollout
Input: f, (st, ∆st, G(s))
Calculate current acceleration, p0 = f(st, ∆st, G(s));
Calculate future state, ŝt+1 = p0 + st + ∆st;
Calculate future velocity, ∆̂st+1 = ŝt+1 − st;
for k from time 1 to and including n−1 do

Calculate current acceleration, pk = f(ŝt+k, ∆̂st+k, G(s));
Calculate future state, ŝt+k+1 = pk + ŝt+k + ∆̂st+k;
Calculate future velocity, ∆̂st+k+1 = ŝt+k+1 − ŝt+k;

end
Output: {p0, p1, . . . , pn−1} , {ŝt+1, ŝt+2, . . . , ŝt+n}

n-step rollout loss The n-step rollout loss uses n subsequent ground truth ac-
celerations as partial targets. A training input (st, ∆st, G(s)) therefore has the
target {1

2 s̈t,
1
2 s̈t+1, ..., 1

2 s̈t+n−1}, where each individual acceleration at the time τ is
a partial target. These ground truth accelerations are calculated with

1
2 s̈τ = sτ+1 − sτ −∆sτ , (3.3)

where the sτ+1, sτ and ∆sτ are given directly by the FDS simulation. For each
training input, the model outputs a rollout of length n. The partial losses of this
loss function is then the individual MSE losses between the kth prediction pk and
kth partial target 1

2 s̈t+k. The loss function is a weighted sum of the partial losses,
defined as

Jn(θ) =

n−1∑
k=0

wk
(
pk − 1

2 s̈t+k
)2

n−1∑
k=0

wk
(3.4)

with a tunable hyperparameter w that impacts how much weight will be given to
the partial loss at the kth rollout according to an exponential decay. The mean over
all nodes i and over all features is also taken, so Jn(θ) is a scalar.

n-step corrective rollout loss Instead of using the ground truth accelerations
as partial targets for every partial loss, the n-step corrective rollout loss uses a
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corrective acceleration ak as partial target for k ≥ 1. This acceleration is defined as

ak = st+k+1 − ŝt+k − ∆̂st+k, (3.5)

where ŝt+k and ∆̂st+k are predictions of the state and velocity obtained from the
model itself during a rollout. The total loss function then becomes

Jn, corr(θ) =

(
p0 − 1

2 s̈t
)2

+
n−1∑
k=1

wk (pk − ak)2

n−1∑
k=0

wk
(3.6)

with the same weight w as the above loss. This is designed to incentivise the model
to output accelerations that correct an erroneous current state ŝt+k into a ground
truth future state st+k+1, as it was observed during preliminary test training that a
model could have a low n-step rollout loss but still have compounding errors that
made the states further into a long rollout diverge from ground truth. This is akin
to forcing the model to learn de-noising if the errors introduced by the predictions
are interpreted as noise.

3.2 Implementation Details
Many different combinations of GNN architecture hyperparameters, such as graph
layer depth, MLP depth, MLP size were tested, as well as different optimisers and
loss function hyperparameters. This section will detail some of the more successful
combinations of hyperparameters, as well as how the training data were generated.

3.2.1 GNN Details
The graph neural network used in this work had 6 graph net layers in the processor,
each of which had identical MLP designs fEl and fVl . They consisted of an input
layer, two hidden layers and an output layer. Every layer had a ReLU activation
function, including the output layers. At the end, the outputs got layer normalised.
All layers had 128 nodes except for the input layer, which had 384 nodes for fEl and
256 nodes for fVl due to them concatenating several feature vectors at their inputs.
They also had residual connections between the input and output activation but
before the layer normalisation LN, so that f(x) = LN(x + h(x)) for both fEl and
fVl , and where h is the feedforward from input to output.

The two encoder MLPs εE and εV were also the same, except at the input layer
which took the 3 features of an edge eij or the 18 features of a node vi as input,
respectively. The decoder δ took the output of fV6 as input, had two hidden layers
with 128 nodes each and then an output with size 8, corresponding to the features
in the acceleration s̈. While the other layers also used the ReLU activation, the
output layer didn’t use an activation function at all. No layer normalisation nor
residual connection was used for δ either.
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3.2.2 The FDS Datasets
FDS was used to generate training data by simulating many different episodes of
fires, where an episode is the set of all the states in a whole simulation, {st | t =
0, 1, 2, . . . }. The simulations created were all 20 seconds long and started from
random initial conditions before any fire has started. The simulation domain used
in this work was a cuboid with a width of 1 m along the x-axis, a height of 1 m along
the z-axis and a depth of 0.1 m along the y-axis. The walls in the yz-plane and the
ceiling were ventilated, allowing air to flow through them, while the floor and the
xz-plane walls were solid. This is illustrated in figure 3.4, with the ventilated walls
shaded grey. FDS calculates the dynamics in a 3D grid. The domains used in the
simulations had a grid resolution that were equivalent to 3 cells along the y-axis and
either 10 or 16 cells in the x and z axes, depending on which of the two dataset
scenarios were considered.

Figure 3.4: The simulation domain, not to scale. The shaded walls and ceiling
are ventilated surfaces, allowing for air to pass through, while the floor and the
two unshaded walls are solid.

Fire was generated by placing a rectangular burner at the bottom of the simulation
domain. The burner’s top reacts with the oxygen in the air and burns, creating
generalised soot particles in the process. Optionally, an obstruction could be placed
in the domain in order to obstruct the path of the smoke. The initial conditions
for every simulation episode is such that the fire hasn’t started in the initial frame.
Figure 3.5 shows an example frame from an episode, visualised with Smokeview.

19



3. Methods

Figure 3.5: The front view of a single frame from an FDS simulation visualised
with Smokeview. The grey rectangle is the burner and the solid black regions
are obstructions through which gas can’t flow. The grey smoke is the soot and
the fire visualisation is calculated from the heat reaction rate per unit volume.

Out of the three layers of cells along the y-axis, the center layer was chosen as
the 2D mesh of our system. That is, the state st was a slice of all the features in
the centremost xz-plane. The feature vectors qit in the mesh contained the mean
temperature, HRRPUV (heat reaction rate per unit volume), oxygen density, oxygen
velocity along x and z, soot density, and soot velocity along x and z, of cell i at
time t. A sample of a state st is shown in figure 3.6. Since the internal framerate
in FDS is variable, each episode was interpolated to a uniform 3 frames per second,
resulting in 61 states per episode.
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Figure 3.6: The 2D mesh representation of the system, visualised as a set of
heatmaps, each belonging to a feature. A pixel in a heatmap represents the cell
i ∈ V , and the value of the pixel represents the quantity of the feature at the
location of the cell. The values corresponding to pixel i in all the heatmaps
together form the feature vector qit. A state st is obtained by considering every
pixel in the heatmaps. The state shown in this example is similar but not
identical to the state in figure 3.5.

Two datasets were created from different scenarios: a simple, low resolution dataset
called SmallSet and a slightly more complex, higher resolution scenario called BigSet.

SmallSet The simple SmallSet dataset had a 10×10 grid. A burner was placed in
the middle of the floor of the domain. No obstructions were used. The only variation
in the initial conditions between different episodes was the width of the burner. The
variation in width was smaller than the output grid resolution, meaning that the
initial conditions looked nearly identical. 2900 episodes were used in the training
set and 100 episodes were used in the validation set.

BigSet BigSet had a finer 16× 16 grid, this time with obstructions. The obstruc-
tions were as shown in figure 3.5, wherein a wall was connected to either the right
side or the left side of the burner, with a roof attached at the top on the same side as
the burner. The distributions of the burner’s width, the coordinate of the burner’s
centre, the wall’s height and the roof’s length are shown in figure 3.7. The burner
had to be at least 0.2 m from the edge of the domain, while the roof had to be at
least 0.125 m from the edge. The minimum gap between the burner and the ceiling
was 0.25 m. The thicknesses of the burner, the wall and the roof were all 0.125 m.
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The wall could be on either the left or the right side with equal probability. As in
the previous scenario, 2900 episodes were used in the training set and 100 episodes
were used in the validation set.

Figure 3.7: The distribution of the position of the burner’s centre, the burner’s
width, the wall’s height and the roof’s length from 100 000 samples.

The datasets were standardised, meaning that the input states st and velocities ∆st
of all the training examples had zero mean and unit variance in a per-feature basis
(with feature referring to the distinct features in a node; SmallSet and BigSet had
the same amount of features even though one was a 10 × 10 mesh and the other
was 16× 16). This was obtained by subtracting the mean and then dividing by the
standard deviation of every feature in the training sets. The two different datasets
were standardised independently. The geometry input was, however, not standard-
ised. Similarly, the partial targets—both 1

2 s̈t+k and ak alike—were standardised by
subtracting the mean and dividing by the standard deviation of the first step rollout
accelerations 1

2 s̈t in their respective training set. Using the GNN to predict any-
thing thus requires the input and the output to be standardised and unstandardised
according to the training set.

3.2.3 Training
Multiple MeshGraphNets models with a GNN architecture as described earlier were
independently trained on the two FDS training sets in order to test different hyper-
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parameter configurations. They all used the AdamW optimiser, but with varying
learning rates that decayed for every training epoch by multiplying with the hyper-
parameter γ < 1. Some of the models trained on the simple FDS data didn’t use
the geometry features.

Different models were trained with the 1-step rollout loss, the 8-step rollout loss and
the 8-step corrective rollout loss. For the 8-step rollout cases, the hyperparameter
w was increased over the training epochs with

w = c
(
1− exp(−hn)

)
, (3.7)

where n is the nth training epoch (n = 1, 2, . . . ), c is a constant determining the
maximum value of w and h is a constant determining the speed at which w converges
to c.

The trainings lasted for different number of training epochs. With few exceptions,
the models were trained for a number of epochs that was equivalent to training
on approximately 1 000 000

rollout length episodes worth of partial targets in order to have a
comparable training speed. Since each episode has 61 frames, the training conducted
with the 1-step rollout loss had in total 59 partial targets per episode, whereas
the 8-step rollout trainings had 52 × 8 = 416 partial targets per episode, due to
overlapping training examples in different rollouts. With a training set consisting
of 2900 episodes, the two cases were equivalent to training for 344 and 43 epochs,
respectively, when using the aforementioned criterion.

Training was performed partly on a GTX 1080 Ti with 11 GB memory and partly
on a notebook GTX 1070 with 8 GB memory. The batch size for the minibatches
were chosen to be 64 or however many training examples could fit into the GPU
memory, whichever was smallest. The smallest batch size used was 16 for the 8-step
corrective rollout loss on BigSet, since the implementation required the whole rollout
to be stored in memory during training.

3.3 Metrics for Model Evaluation
The models were trained on the accelerations in either 1-step rollouts or 8-step
rollouts. Since we want to predict the states of the system, it is necessary to consider
the MSE of the states instead of the accelerations. Also, because some models were
trained on 8-step rollouts, it will be of use to measure the MSE between the predicted
states and the ground truth states for every step in an 8-step rollout in the validation
dataset. The step-wise MSEs were averaged over the 100×51 = 5100 8-step rollouts
in the validation set, with 51 being the number of examples per episode.

Long term prediction is also a point of interest. It’s therefore necessary to also
consider rollouts that are as long as whole episodes. One way of gauging this is to
simply look at the MSE between the predicted states and the ground truth states,
with the mean taken over every frame of every episode, in what we’ll call the episode
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MSE. A caveat to this measure is that chaotic physical systems will deviate over
time even for small initial differences. Thus, even for good models, it is possible
that small errors in the predictions will compound in a longer rollout and result in
states that are physically plausible yet very different from the ground truth.

Quantifying the plausibility of a predicted state isn’t straightforward. A naive way
of doing so is to, in a whole episode rollout, compare the predicted state in some
particular episode ne at time t with the ground truth states in every episode at time
t. Specifically, the features averaged over all the cells q̂ne

t,mean of a predicted state
ŝt is compared to the cell and episode mean of the ground truth features qt,mean.
These two quantities are calculated through

q̂ne
t,mean = 1

|V |
∑
i

q̂i, ne
t (3.8)

and
qt,mean = 1

NE|V |

NE∑
ne=1

∑
i

qi, ne
t , (3.9)

where q̂i, ne
t is the predicted feature vector at cell i in time t of episode ne and |V |

is the total number of cells. qi, ne
t is the ground truth feature vector and NE is the

total number of episodes. As can be seen in the equations, qt,mean is the average
over all episodes as well as all cells, while q̂ne

t,mean is just the average over all cells in a
single episode ne. These two quantities are compared using MSE over all episodes,
where we define Qt as

Qt = 1
NE

NE∑
ne=1

(
q̂ne
t,mean − qt,mean

)2
. (3.10)

The elements in Qt are the feature-wise MSEs, so the mean of all the elements ξt is
computed in order to obtain a single measure. This is done with

ξt = 1
|Qt|

∑
j

Qt
j, (3.11)

with Qt
j being the jth feature in Qt. The features are standardised, i.e. with zero

mean and unit variance, so that averaging over the different features is meaningful.
The difference between calculating ξ and calculating the state MSE as usual is that
ξ is a statistic that measures the predictions’ deviation from the dataset’s mean. It
can be called a measure of plausibility since plausible predictions should be close
to the dataset’s mean. However, it is a naive measure since implausible predictions
can also result in small ξ. An example is a network that always outputs the mean
of the ground truths.

A final, and easy, way of evaluating the models is through visual inspection. For a
physical system that is somewhat intuitive like rising smoke, it is easy to tell whether
a series of predicted states is plausible. The downside is that complex patterns, such
as turbulence, can be hard to get an intuition for, and the manual labour can be
tedious. It could function as an indicator as to which models should be tested more,
however.
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3.4 Baseline Comparison with UNet
The UNet architecture as implemented by Thuerey et al. (2020) was also tested as
a comparison. UNet is a deep convolutional network that utilises many recurrent
connections between its layers. The specific architecture used expected a 256 ×
256 sized input and output, so the input and output meshes were upsampled and
downsampled bicubically, respectively. Previous MeshGraphNets results showed
that UNet performed worse (Pfaff et al., 2021), but it might not necessarily be the
case with the datasets used in this work.

3.5 Test Cases for Generalisation
Three test sets were created to test the generalising capabilities of any successful
models trained on BigSet. The three test sets each contain 100 episodes with 61
states. They are a set with a taller simulation domain called TallSet, a set with
taller roofs as well as a taller simulation domain called TallRoofSet, and finally a set
with only a burner called BurnerSet. The tall sets had grid resolutions of 32 × 16
while BurnerSet used the same 16× 16 resolution.
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This chapter details the results from training the neural networks. Also described
is a bug discovered regarding the computation of the systems’ geometries.

4.1 SmallSet
Several GNN models with and without geometry features were trained on SmallSet,
with different training hyperparameters. Table 4.1 lists them along with their MSEs
for their first predicted states in an 8-step rollout, the MSEs for their eight predicted
states in an 8-step rollout as well as their mean state MSE for rollouts lasting for
a whole episode. The whole episode rollouts used only the first two frames of an
episode as input, while the 8-step rollouts could use any two consecutive frames as
input (except the last 8 frames). Figure 4.1 shows several performance measures over
the course of an episode rollout for the models listed in table 4.1. The temperature,
oxygen density and soot density from a single episode rollout for some of these
models are shown in figure 4.2, figure 4.3 and figure 4.4, respectively.

Table 4.1: The performances of different models with different training hy-
perparameters trained on SmallSet. The performance measured are the 1st
predicted state MSE in an 8-step rollout, the 8th predicted state MSE in an
8-step rollout and the mean state MSE for a whole episode rollout. The pre-
dicted states were compared with the ground truth states. All the predictions
are made on the validation set.

Name S1 S8 S1g S8g S8gc
Neural network GNN GNN GNN GNN GNN
Geometry features No No Yes Yes Yes
Rollout steps 1 8 1 8 8
Corrective loss - No - No Yes
Epochs trained 344 43 344 43 43
GPU 1070 1080 Ti 1070 1080 Ti 1080 Ti
Time to train ≈53 h ≈26 h ≈44 h ≈26 h ≈26 h

γ e
ln 0.3
344 e

ln 0.3
43 e

ln 0.3
344 e

ln 0.3
43 e

ln 0.3
43

c - 0.5 - 0.5 0.5
h - 5/43 - 5/43 5/8
1st state MSE 0.43 0.51 0.43 0.51 0.50
8th state MSE 1.0 0.37 0.79 0.44 2.6
Episode MSE 1.1 29 1.1 27.0 21
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Figure 4.1: Three different measures of how well the models performed on the
validation set of SmallSet. The quantities are the episodic averages, plotted over
whole episode rollouts. Plot A and B shows the state and acceleration MSEs,
and are calculated with the respective ground truth quantities. C illustrates
how ξ, as defined in equation (3.11), varies over an episode rollout.

28



4.1. SmallSet

(a) Temperatures in a sample episode rollout for S1.

(b) Temperatures in a sample episode rollout for S1g.

(c) Temperatures in a sample episode rollout for S8.

(d) Temperatures in a sample episode rollout for S8g.

(e) Temperatures in a sample episode rollout for S8gc.

(f) The corresponding ground truth temperatures.

Figure 4.2: Temperatures in a whole episode rollout for different models,
together with the ground truth. The only ground truth used as input for the
predictions are the first two frames. The heatmap ranges are normalised after
the ground truth rollout.
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(a) Oxygen densities in a sample episode rollout for S1.

(b) Oxygen densities in a sample episode rollout for S1g.

(c) Oxygen densities in a sample episode rollout for S8.

(d) Oxygen densities in a sample episode rollout for S8g.

(e) Oxygen densities in a sample episode rollout for S8gc.

(f) The corresponding ground truth oxygen densities.

Figure 4.3: Oxygen densities in a whole episode rollout for different models,
together with the ground truth. The only ground truth used as input for the
predictions are the first two frames. The heatmap ranges are normalised after
the ground truth rollout.
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(a) Soot densities in a sample episode rollout for S1.

(b) Soot densities in a sample episode rollout for S1g.

(c) Soot densities in a sample episode rollout for S8.

(d) Soot densities in a sample episode rollout for S8g.

(e) Soot densities in a sample episode rollout for S8gc.

(f) The corresponding ground truth soot densities.

Figure 4.4: Soot densities in a whole episode rollout for different models,
together with the ground truth. The only ground truth used as input for the
predictions are the first two frames. The heatmap ranges are normalised after
the ground truth rollout.
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4.2 BigSet
Several GNN and UNet models were trained on the complex dataset, with different
training hyperparameters. Table 4.2 lists them along with their MSEs for their first
predicted states in an 8-step rollout, the MSEs for their eight predicted states in an
8-step rollout as well as their mean state MSE for rollouts lasting for a whole episode.
Figure 4.5 shows several performance measures over the course of an episode rollout
for the models listed in table 4.2. The temperature, oxygen density and soot density
from a single episode rollout for some of these models are shown in figure 4.6, figure
4.7 and figure 4.8, respectively.

Table 4.2: The performances of different models with different training hyper-
parameters trained on BigSet. The performance measured are the 1st predicted
state MSE in an 8-step rollout, the 8th predicted state MSE in an 8-step rollout
and the mean state MSE for a whole episode rollout. The predicted states were
compared with the ground truth states. All the predictions are made on the
validation set.

Name C1 C8Long C8Short C8Flat U8Long U8Short
Neural network GNN GNN GNN GNN UNet UNet
Geometry features Yes Yes Yes Yes Yes Yes
Rollout steps 1 8 8 8 8 8
Corrective loss - Yes Yes Yes Yes Yes
Epochs trained 344 43 8 43 43 8
GPU 1070 1080 Ti 1080 Ti 1080 Ti 1080 Ti 1080 Ti
Time to train ≈138 h ≈90 h ≈17 h ≈90 h ≈41 h ≈8 h

γ e
ln 0.3
344 e

ln 0.3
43 e

ln 0.3
8 e

ln 0.3
43 e

ln 0.3
43 e

ln 0.3
8

c - 0.5 0.5 0.5 0.5 0.5
h - 5/43 5/8 ∞ 5/43 5/8
1st state MSE 0.27 0.28 0.25 0.27 0.32 0.25
8th state MSE 0.76 0.11 0.078 0.081 39000 0.078
Episode MSE 0.91 2.1 0.044 0.041 ∞ 0.16
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Figure 4.5: Three different measures of how well the models performed on the
validation set of BigSet. The quantities are the episodic averages, plotted over
whole episode rollouts. Plot A and B shows the state and acceleration MSEs,
and are calculated with the respective ground truth quantities. C illustrates
how ξ, as defined in equation (3.11), varies over an episode rollout.
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(a) Temperatures in a sample episode rollout for C1.

(b) Temperatures in a sample episode rollout for C8Long.

(c) Temperatures in a sample episode rollout for C8Short.

(d) Temperatures in a sample episode rollout for C8Flat.

(e) Temperatures in a sample episode rollout for U8Short.

(f) The corresponding ground truth temperatures.

Figure 4.6: Temperatures in a whole episode rollout for different models,
together with the ground truth. The only ground truth used as input for the
predictions are the first two frames. The heatmap ranges are normalised after
the ground truth rollout.
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(a) Oxygen densities in a sample episode rollout for C1.

(b) Oxygen densities in a sample episode rollout for C8Long.

(c) Oxygen densities in a sample episode rollout for C8Short.

(d) Oxygen densities in a sample episode rollout for C8Flat.

(e) Oxygen densities in a sample episode rollout for U8Short.

(f) The corresponding ground truth oxygen densities.

Figure 4.7: Oxygen densities in a whole episode rollout for different models,
together with the ground truth. The only ground truth used as input for the
predictions are the first two frames. The heatmap ranges are normalised after
the ground truth rollout.

35



4. Results

(a) Soot densities in a sample episode rollout for C1.

(b) Soot densities in a sample episode rollout for C8Long.

(c) Soot densities in a sample episode rollout for C8Short.

(d) Soot densities in a sample episode rollout for C8Flat.

(e) Soot densities in a sample episode rollout for U8Short.

(f) The corresponding ground truth soot densities.

Figure 4.8: Soot densities in a whole episode rollout for different models,
together with the ground truth. The only ground truth used as input for the
predictions are the first two frames. The heatmap ranges are normalised after
the ground truth rollout.
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4.3. Domain Generalisation

4.3 Domain Generalisation
C8Short, which was trained on BigSet, was tested on the generalising datasets. Table
4.3 lists the 1st & 8th state MSE and the episode MSE on the different datasets.
The model’s performance over the course of an episodic rollout is shown in figure
4.9. Rollouts of an episode from the set with a taller domain, with a taller domain
and roof, and without roofs and walls are illustrated in figure 4.10, 4.11 and 4.12,
respectively.

Table 4.3: The 1st and 8th state MSE in an 8-step rollout, as well as the
whole episode MSE for an episodic rollout, calculated for the C8Short model.
C8Short was trained on BigSet. The datasets used were the validation set of
BigSet, TallSet, TallRoofSet, and finally BurnerSet.

1st state MSE 8th state MSE Episode MSE
BigSet 0.25 0.078 0.044
TallSet 0.31 0.11 0.036
TallRoofSet 0.31 0.088 0.035
BurnerSet 0.45 0.068 0.025

Figure 4.9: Three different measures of how well the C8Short performed on
BigSet as well as the additional test sets. The quantities are the episodic av-
erages, plotted over whole episode rollouts. Plot A and B shows the state and
acceleration MSEs, and are calculated with the respective ground truth quan-
tities. C illustrates how ξ, as defined in equation (3.11), varies over an episode
rollout.
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4. Results

(a) Sample rollout soot density as predicted by C8Short.

(b) Sample ground truth soot density of the predictions in (a).

Figure 4.10: Sample soot density rollouts from TallSet. The rollout spans a
whole episode.

(a) Sample rollout soot density as predicted by C8Short.

(b) Sample ground truth soot density of the predictions in (a).

Figure 4.11: Sample soot density rollouts from TallRoofSet. The rollout spans
a whole episode.
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4.4. GNN Performance

(a) Sample rollout soot density as predicted by C8Short.

(b) Sample ground truth soot density of the predictions in (a).

(c) Sample rollout soot density as predicted by C8Short. The burner size and
placement is different from (a).

(d) Sample ground truth soot density of the predictions in (c).

Figure 4.12: Sample soot density rollouts from BurnerSet. The rollout spans
a whole episode. (a) and (c) shows the prediction of two different episodes while
(b) and (d) are their respective ground truths.

4.4 GNN Performance
The time taken to generate 100 episodes of rollouts with the graph neural networks
was compared to the time it took to generate the FDS simulations. The results are
shown in table 4.4.
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4. Results

Table 4.4: The time it took for different hardware to compute 100 episode
rollouts on either SmallSet or BigSet with a GNN, and the time it took for
a Ryzen 5 5600X CPU to simulate a single episode with FDS. The 100 GNN
rollouts were calculated in parallel.

R5 5600X (CPU) 1080 Ti (GPU) 1070 Notebook (GPU)
GNN, SmallSet 65 s 3.6 s 8.7 s
GNN, BigSet 190 s 9.0 s 18 s
FDS, SmallSet ≈13 s - -
FDS, BigSet ≈12 s - -

4.5 Incorrect Data
During testing, some of the data were found to have incorrect geometry G, where
either a roof, a wall or possibly both were missing. G is calculated in the post-
processing of the simulations, which is where the error arose. This means that the
ground truth data weren’t affected, but the inputs to the networks were wrong. The
frequency of these errors is unknown. Two examples of this are shown in figure 4.13
and 4.14.

(a) The soot density rollout as predicted by C8Short, with an incorrect, roof-less
geometry input.

(b) The ground truth soot density corresponding to the predictions in (a). Note
that the geometry feature is incorrect.

Figure 4.13: Sample soot density rollout from TallRoofSet, where the geome-
try has been incorrectly calculated to not have a roof.
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4.5. Incorrect Data

(a) The soot density rollout as predicted by C8Short, with an incorrect, wall-less
geometry input.

(b) The ground truth soot density corresponding to the predictions in (a). Note
that the geometry feature is incorrect.

Figure 4.14: Sample soot density rollout from TallRoofSet, where the geome-
try has been incorrectly calculated to not have a wall.
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5. Discussion

The S8gc model, which was the model that trained with an 8 corrective rollout loss
on SmallSet, was the best performing model trained on SmallSet according to visual
inspection. Figure 4.2 shows that S8gc predicted very reasonable temperatures up
to frame 14, while no other model did well. The 27th frame also seems reasonable.
The same can be said for the predicted soot densities in figure 4.4, but the rollouts
of the oxygen densities in figure 4.3 show bad performance for all models. The
otherwise good results of S8gc are a bit peculiar when compared to the state and
acceleration MSE; figure 4.1 A and B show that S8gc had the among the highest
state and acceleration MSEs around these frames. However, S8gc had the lowest
ξ in that range of frames according to figure 4.1 C. It could be that some parts
of the predictions were somehow smeared out, which didn’t affect ξ but negatively
affected the state MSE. There is however no compelling evidence for that. It’s also
a possibility that the particular episodes that were inspected just happened to show
a well-performing S8gc. Whatever the case is, the discrepancy observed indicates
that the state and acceleration MSEs aren’t necessarily absolute indicators of model
performance.

Table 4.1 shows that S1 and S1g had the lowest episode MSEs. This can be at-
tributed to the latter frames in the predicted oxygen densities, which for these mod-
els were less extreme than for S8, S8g and S8gc. The velocities and the HRRPUV
weren’t considered during the visual inspection, however, so there might be patterns
in those features that are more revealing.

Among the models trained on BigSet, C8Short performed the best, followed closely
by C8Flat and U8Short. Figure 4.7 shows that, while the general distribution of
the oxygen matches the ground truth, U8Short predicted a region of lower oxygen
density disjointed from the fire and smoke. C8Flat also appears to predict very
noisy regions of low oxygen density, unlike ground truth and C8Short. These three
models all had state and episode MSEs that were a couple of orders of magnitudes
smaller than the best models trained on SmallSet. Their ξs were also low, so both
these measures correctly identified the best models. Neither of these indicated that
C8Short was the best model, however.

Although all the models trained on BigSet except C1 used the 8-step corrective
rollout loss, C8Long and U8Long performed much worse than the other three. The
difference between these and their "short" versions was due to different h and γ, and
due to having been trained for more epochs. They had a less aggressive ramping up
of w due to the smaller h, and a slower learning rate decay due to the smaller γ. The
small h resulted in models that were trained on low w for a longer time. As indicated
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5. Discussion

by the results, this slow ramping up of w is worse than quickly letting w converge
to 0.5, or, as in the case of C8Flat, letting w = 0.5 for the whole duration of the
training. The wildly differing results from changing the h and γ hyperparameters
indicate that a finer hyperparameter tuning could increase the performance of the
networks. Varying c could also potentially improve the networks, but this wasn’t
tested.

It’s not clear why the networks were able to learn the BigSet scenarios better than
the SmallSet scenarios. One possibility is that the grid resolution was a major
deciding factor, while another possibility is that the greater variety in the initial
conditions of BigSet resulted in a more robust training.

C8Short was tested on the generalising test sets. One can see from table 4.3 and
figure 4.9 that its performance on the test sets was similar to its performance on
BigSet. An inspection on some rollouts indicate that the model could generalise
rather well; figure 4.10 and figure 4.11 show that reasonable soot patterns were
predicted in TallSet and TallRoofSet. The predictions weren’t perfect—in particular,
the model didn’t predict any build-up of soot in the corner of the ceilings.

C8Short had some trouble with BurnerSet, which didn’t have any obstructions. The
soot patterns in figure 4.12 (c) shows that the model inferred that there was a roof
where there shouldn’t have been one. This is possibly also visible in frame 14 of
figure 4.12 (a), where some soot seem to branch off perpendicularly to the main
smoke plume. This kind of error was a bit surprising, since the geometry of the
domain was part of the input data. However, it was discovered that the geometries
calculated for some episodes had missing roofs or walls, as shown in figure 4.13
and figure 4.14. The FDS simulations were done with the correct geometry, but
the geometry inputs to the GNN were wrong. Assuming this also occurred in the
training data, the model might’ve learned that roofless geometries would still have
smoke that interacts with an invisible roof. This is a likely cause of the invisible
roof in figure 4.12 (c).

The ξ of the BurnerSet was a bit erratic for the first 10 frames. It’s not apparent if
this correlates with the invisible roofs. In fact, ξ has been hard to interpret between
all models and scenarios, which casts some doubt whether it is a good measure at
all. Although better models generally had a lower ξ, they also had a lower state
MSE. In the end, visual inspection was still the best way to evaluate the models in
this study; after all, the fact that the rollouts on the BurnerSet had some glaring
errors was only discovered through visual inspection.

The rollout speeds shown in table 4.4 indicates that using a GNN is faster than
simulating with FDS. An advantage with using a GNN is that multiple rollouts can
be parallelised and be computed on GPUs, while FDS simulations were restricted
to CPUs. Interestingly, calculating at different grid resolutions using FDS didn’t
change the computing time. This is likely due to the FDS using a different internal
resolution during simulation before exporting the data at the desired resolution.
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5.1. Conclusion

If more time had been available, a more thorough hyperparameter tuning would’ve
been made with the current results in mind. Scenarios with even more different
geometries could also have been tested, both as test sets and as part of the training
sets. This would also have helped in understanding why training on BigSet resulted
in better learning than training on SmallSet.

5.1 Conclusion
In this work, a graph neural network was implemented according to the MeshGraph-
Nets framework to learn the behaviour of fire and smoke generated by Fire Dynamics
Simulator. This was successful with the 8-step corrective rollout loss, which was a
loss function developed in this work, but requires some hyperparameter tuning for
optimal performance. Several methods for evaluating the models’ performances were
used. The state MSE and a measure of plausibility ξ seemed to be good albeit rough
predictors of model performance, but models that were close in terms of state MSE
had to be evaluated through manual visual inspection of their outputs.

The trained models had some generalising capabilities, and could generally predict
smoke patterns well when faced with test data outside of the training data’s domain,
but fell short in some specific cases due to bugs in the training data. Fixing these
bugs and tuning the hyperparameters even more would’ve likely resulted in better
models. Small improvements like these notwithstanding, the method seems to work
well enough for future work to study whether the networks can learn to predict
states using RGB video input. An approach similar to the one used by Watters
et al. (2017) can be tested, where a convolutional network encodes the RGB video
into a state code before it gets processed further.
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