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Abstract

Laser induced breakdown spectroscopy (LIBS) is a spectroscopic technique for chem-
ical analysis. LIBS can be used in rough environments and measurements can often
be made without any sample preparation. These properties make LIBS interesting
for in-situ measurements in industrial settings. However this physical robustness
and flexibility come at a cost: There are processes involved in a LIBS measurement
that are difficult to model. Therefore statistical methods constitute the best choice
for analysis of LIBS spectra. The accuracy and robustness obtained with current
methods have not been sufficient for widespread industrial adoption of LIBS. Careful
statistical analysis is required to further develop LIBS analysis and reach a level of
robustness and accuracy that enables widespread industrial adoption. This thesis
aims at contributing to that development by developing a method for multivariate
linear regression of LIBS spectra. The first part uses multivariate linear regression
on a calibration set to estimate the spectra of the elements in the sample, referred to
as the pure spectra. These pure spectra are then used to predict the concentrations
of new samples. The second part is a Bayesian continuation, utilizing a model from
CF-LIBS to create a constraining prior for the regression. The method constitutes a
change in perspective from previous multivariate attempts where the concentrations
are inferred from the spectrum using methods such as partial least squares, principle
component regression or multiple linear regression. The method presented in this
thesis builds on the view of the spectrum as a multivariate response to the concen-
trations. A relatively simple model is suggested for this response. This model builds
on common assumptions made when analyzing LIBS spectra using the conventional
univariate approach. As a result of this model-based approach, the method is not
only more interpretable and easier to develop but perhaps more importantly the de-
grees of freedom are decoupled from the number of pixels in the spectrum. Instead
the degrees of freedom are determined by the number of elements in the analysis
with two orders of magnitude improvement.



i



Contents

ot

Introduction . . . . . .. .. Lo 1
1.1 Outline of thesis . . . . . . . .. ... .. L. 1
1.2 Properties of LIBS spectra . . . . . . .. .. ... .. ... .. 2
Theory . . . . . . )
2.1 Linear regression . . . . . . . .. ... oL 6
2.2 Bayesian analysis . . . . .. .. ... oL 11
Model . . . . . o 15
3.1 Bayesian approach . . . . . ... ..o 18
Result . . . . . . . 24
Discussion . . . . . . ... 25
Conclusion . . . . . . . . . .. 30

1ii



iv



1 Introduction

This work is aimed at developing quantitative analysis of data obtained with Laser-
induced Breakdown spectroscopy (LIBS), which is a spectroscopic method for chem-
ical analysis. By focusing a pulsed laser on a material, a small part of the material
is ablated and excited to a plasma. In this state the molecules have broken down to
their constituent elements and the atoms are brought to higher energy levels (i.e. ex-
cited levels). The emission resulting from the atoms returning to their ground states
contains information on the chemical composition of the material. The emission is
detected with a spectrometer and its spectrum is analyzed. The analysis could be
either qualitative or quantitative. As a qualitative tool it can be used for a wide
range of applications such as to separate different aluminum alloys in a recycling
plant or to check the claimed origin of red wines [1][2][3]. As a tool for quantitative
analysis however it is still lacking in accuracy. There is a strong interest in devel-
oping improved methods to process LIBS data, and this thesis will investigate new
approaches that have so far not been presented in literature.

The thesis connects to ongoing LIBS-work at Swerim, where the two major projects
are CONSENSO and AUSOM.! The aim of CONSENSO is to enable in-situ mea-
surements of the chemical composition of slag in metallurgical processes. These
measurements could then be used to optimize the production processes. The char-
acteristics of slag vary depending on its chemical composition and with better quality
control it has potential to become a usable byproduct instead of a waste stream.
The project AUSOM aims at making sorting equipment based on LIBS-sensors. One
goal is to perform analysis so that a decision on the sorting fractions can be made
based on the chemical content. Quantitative analysis allows for the operator to
adapt the classification or sorting procedure to changing requirements.

1.1 Outline of thesis

This thesis represents an attempt at creating a method for multivariate regression
of LIBS spectra and concentration. To effectively present this, the thesis is split into
six sections. The introduction presents the background and aim for the project. Ad-
ditionally, an introduction to the properties of LIBS and some existing quantitative
methods of analysis is included. The introduction section is followed by a theory
section where the necessary theory for subsequent chapters is presented. This is
followed by the model section, where the conventional univariate method serves as
the basis for the development of two multivariate approaches. The two approaches
are tested on a dataset of aluminum samples and the result is presented in the sub-
sequent result chapter. The approaches and the results are then discussed in the
discussion section and finally a conclusion is presented in the conclusion section.

Ihoth CONSENSO and AUSOM are financed via EIT RawMaterials under the Horizon 2020
EU framework program.
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Figure 1: A LIBS spectrum of an aluminum alloy with some of the peaks marked
with their corresponding element.

1.2 Properties of LIBS spectra

The classic approach to quantitative LIBS analysis is a univariate method where a
function, a calibration curve, is fitted, for each element, to a calibration dataset.
For each element, the analyst selects a peak at a wavelength where the element
is known to emit. This peak should ideally follow an affine relationship with the
concentration of the element and have no interference from other elements in the
reference samples. Affine functions can then, in principle, be fitted to infer the
concentrations of elements to the maximum intensity or area of the corresponding
peak.

A typical LIBS spectrum is seen in figure 1. The spectrum consists of signal from
a number, J, of pixels. Fach pixel, indexed with j, registers light in a small range
of wavelengths. Put together with the wavelengths of the pixels on the horizontal
axis and the signal on the vertical axis, a LIBS spectrum is formed. As seen, the
various constituting elements have several emission peaks and with varying peak
intensities. The emission intensity is different from each element and also the signal
strength typically varies a lot from one measurement to the other. It is therefore
customary to normalize the spectra. Total intensity can be used, i.e. the sum of the
intensities of all the pixels, but as some elements have far more peaks than others
this can introduce bias. Another method for normalizing spectra is by dividing each
spectrum by the intensity of a reference peak [4]. This peak should belong to one
of the main elements of the samples, have no (or very little) interference from other
elements and follow a linear relationship with the concentration of its corresponding
element.

After normalizing with respect to a reference peak the spectra are negatively biased
to the reference element as a higher concentration of this element would result in a
stronger intensity of the peak and thus a larger denominator in the normalization.
However, this can be corrected by dividing the concentrations with the concentra-
tion of the reference element. A problem arises when considering inference of the
reference element itself as the relative concentration for this element is constant.
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Figure 2: A weak spectrum (left) that should be discarded and part of a too strong
spectrum (right) with intensities surpassing the limit of the spectrometer resulting
in flat tops.

To get around this, an assumption is made that the P investigated elements are
the only ones present in the sample so that the concentrations must sum to one.
The concentration of the reference element can then be calculated indirectly by the
relative concentrations of the other elements.

P
Z Tp =1,
p=1

oy (z x) | 1)

where z, is the concentration of element p and Z, is the relative concentration,
~ -1 . . .
Tp = TpT,.p, that is estimated from the regression.

In addition to normalizing the spectra, bad spectra are identified and discarded in
the analysis. These are typically spectra from weak measurements where the noise
to signal ratio is unfavorable or strong measurements that exceed the maximum
signal strength which the spectrometer can register, see figure 2. One method of
filtering out bad spectra is to consider the maximum intensity of each spectrum and
the intensity of the reference peak. If the maximum intensity is close to the limit
of the spectrometer, the spectrum is discarded. Likewise, if the maximum intensity
of the reference peak is below some threshold, determined ad hoc, the spectrum is
deemed too weak and discarded.

After the spectra of the measurements have been selected and normalized, they are
averaged for each sample so that there is one spectrum per sample consisting of the
average of the spectra from all measurements of that sample. This accomplishes
two objectives: It reduces the number of spectra to be analyzed in upcoming steps
and it reduces the impact of heterogeneity and local contamination on the sample.
The focal point of the laser is typically 50pm diameter and the measurement is
therefore very local. Local variations in the sample composition thus causes the
LIBS spectrum to vary. In addition the amount of material that is analyzed in a



Figure 3: A baseline can be used when the peak does not start from zero either due
to overlap with nearby peaks or continuous emission.

measurement is small so even a small contamination can have a large impact on the
resulting spectrum.

If there is a large offset under the base of the peak, either due to continuous emission
or overlap from neighboring peaks, the analyst can define a baseline for the peak,
see figure 3. The peak’s intensity is then measured from the baseline instead of from
Zero.

Once the spectra have been normalized, filtered and averaged; peaks have been
selected for each element and their baselines have been corrected; a function can
be fitted to link peak intensity and concentration. A good peak of good spectra
with good pre-processing should be affine and simple linear regression can be used.
However sometimes self-absorption is involved, and a quadratic term is added to the
regression. It is not unusual either to not be able to find peaks that are independent
of the other elements, so that even after baseline correction there is interference
from another element. To alleviate this another term can be added, related to the
interfering element. Let g, and g, be the pre-processed signal of peaks belonging to
the element and the interfering element, respectively, the relative concentration 7,
of element p could then be estimated by

Ep = Bo+ b1 + G382 + Gals, (2)
where the [ are estimated using linear regression on the calibration set.

Low accuracy can be a limiting factor to the adoption of LIBS in industrial settings.
One potential way of increasing the accuracy is to use multivariate methods instead
of the classical univariate calibration curves. By using more than one peak in the
analysis, the impact of noise and interference from other elements can potentially be
reduced. An additional benefit of using the entire captured spectrum in the analysis
is that the variation between predictions from different analysts, on the same data,
can be reduced. Such inter-analyst variations have been identified as an issue in
analysis of LIBS spectra and peak selection is a contributing part [5].

Several multivariate statistical methods have been tried, with varying degrees of
success, for analyzing LIBS spectra. Two promising methods are partial least squares
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(PLS) and principal component regression (PCR) [6]. While both have been shown
to perform better than the univariate approach in some cases, results vary and
neither have risen to become a standard approach in the analysis of LIBS spectra
[6]. A big issue with full-spectra analysis is that the number of features (registered
pixels in the spectra) is typically much larger than the available samples. A typical
calibration set might have a few dozens of samples and the spectrometer might have
thousands of pixels.

Another alternative approach for a quantitative analysis of LIBS spectra is to use
calibration free methods, CF-LIBS. In such methods, first principle knowledge of
the emitting plasma and databases with various physical properties are combined to
estimate the chemical composition from a LIBS spectrum. This was first suggested
in 1999 by Ciucci et al. and the method has been further developed thereafter by
several researchers [7][8][9].

In CF-LIBS, the integrated peak of species? p is assumed to follow the following

model:
—(Er/kpT)

R N R A—— 3

p b rq Up (T) ( )
where I]7 is the integrated line intensity corresponding to the transition from energy
state E, to I, for the emitting species p, F' is a spectrum-wide scaling constant that
accounts for experimental factors, x, is the concentration of the emitting species p,
Ay, is the transition probability, g, is the r level degeneracy, kp is the Boltzmann
constant, 7' is the temperature and U,(T) is the partition function for the emitting
species. The energy states E,, transition probabilities A,, and the degeneracy of
the states g,, can be found in atomic spectra databases such as the NIST database
[10].

To find the concentrations of the sample that generated the spectrum, the analyst
selects a couple of good peaks just as in the univariate method. These peaks are
then integrated to determine the integrated line intensities ;7 of their correspond-
ing emission lines. The emission lines are characterized by their transition energy
levels, E, and E,, and the difference between these determine the wavelength of the
emission line. These integrated line intensities are then used to solve for the con-
centrations by linear regression of the logarithm of equation (3) [7]. The advantage
of CF-LIBS is that no matrix-specific® calibration is needed to analyze a spectrum.

2 Theory

The two regression methods that are used in this work are multivariate linear re-
gression and a Bayesian method. In this chapter the principles of the these methods
are presented in general terms. Their application to the LIBS data follow in chapter
3.

2In CF-LIBS it is necessary to separate between not only elements but also ionic charge, hence
species is used in place of element.
3Here matrix refers to material type.



2.1 Linear regression

Linear regression is a common tool in both science and industry. It is sometimes
taught to students as early as in secondary education and is often thought of in
terms of ordinary least squares regression (OLS). In OLS the parameters that mini-
mize the sum of squared residuals are used as estimates for the unknown regression
parameters. In this thesis linear regression is performed on a model with multiple
dependent variables. Linear regression on multiple dependent variables is called
multivariate linear regression, a term that is often mistakenly used for multiple lin-
ear regression which involves a single dependent variable but multiple independent
variables. This section presents the concept of the best linear unbiased estimator
and the Gauss-Markov theorem. This will serve as a preamble for the following
presentation of multivariate linear regression.

Assume there are N observations of a variable, arranged in the vector y € RY, and
an additional N observations of P non-random variables, arranged in the matrix
X € RV*P Further let X have full rank. Consider the linear model

y=XB+e, (4)

where 3 € R is a vector of unknown but fixed parameters and € € R” is a vector
of random errors. Make the following assumptions for the error random variables
€,1=1,...,N:

1 The errors ¢; are homoscedastic, i.e. Var(¢;) = o2 for i = 1,..., N.
2 The errors are uncorrelated, Cov(e;, €;) = 0 if ¢ # 5.
Definition 1. A linear estimator of § is an estimator such that:
. N
Bi = Z CijYi,
i=1
where the coefficients ¢;; do not depend on the underlying parameter j3;.

Definition 2. An unbiased estimator has the true parameter 3 as its expected
value,

E[3] = 8.

Definition 3. A linear estimator B is the best linear unbiased estimator or BLUE
if it is an unbiased estimator and for any p € RY and any other linear unbiased

estimator B A 3
Var(p? X 3) < Var(p" X ).

There are many forms of linear regression, however the following theorem states that
the OLS estimate is the BLUE for the linear model under the assumptions made
above. Recall that the OLS estimator of equation (4) is

b= (x"x)" X"y, (5)
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The proof of the theorem follows presentation on the Wikipedia page for the Gauss-
Markov theorem with some small adjustments [11].

Theorem 1 (Gauss-Markov theorem). The ordinary least squares estimator, equa-
tion (5), is the BLUE for the linear model, equation (4).

Proof. Let 5 = Cy be another linear unbiased estimator of 3. For some non-zero
-1
D eRNXP (O = (XTX) XT+D.

E[5] = E[Cy]
]E[((XTX)_l X7 4 D) (X8 +6)]

X) ' XTXB+ DXB+ ((XTX)1 XT 4 D) E[d

(X"
(XTX) XT"Xp+DXp
= Up+DX)p

Since 3 is unobserved, / is unbiased if and only if DX = 0.

Var(f3) = Var(Cy)
= O Var(y)C"
= o?CCo”
— o? <(XTX>_1 X7 ¢ D) <<XTX)_1 XT + D)T

_pe ( (XTX)_l XTx (XTX)_l +
DX (X"x) "+ (X"X) ' XTD" + DDT>
— 52 <(XTX>_1 + (XTX)_l (DX)" + DDT)
= o2 ( (x"x) "+ DDT>
= Var(B) + o>DDT
since DD is positive semidefinite,
Var(p" X 3) = p" X Var(8) X"
= p"X (Var(B) + 2DDT) X%
> p" X Var(8) X" p = Var(p" X 3)
O

R. Christensen presents an even stronger result in Plane Answers to Complex Ques-
tions (2011), theorem 10.4.5, which will be included in part here without proof
[12].



Theorem 2. Consider the linear model (4) with Cov(e) = o*V for some matriz
V e RVXN_ Let C(A) denote the column space of a matriz A, then the OLS estimate
is a BLUE of the linear model if and only if C(VX) C C(X).

A common way to evaluate regression models is the coefficient of determination R?.
First define the sum of squared residuals, SSR, and the total sum of squares, SST:

N
SSR = Z(y’ — gi)z,
=1

N

SST = ZQ/@ — uy)2,

i=1
where g1, is the mean of the vector y and ¢ is the regression estimate of y. The
coefficient of determination is then defined as follows:

SSR
~ 39T (6)

A R? value of 1 represents a perfect fit while a value of 0 means that the regression did
not fit the data better than just picking the mean. The coefficient of determination
can take negative values if the sum of squared residuals is larger than the total sum
of squares.

R?:=1

Another common way to evaluate regression models is the root mean squared error,
RMSE. It is defined as follows:

SSR
RMSE := N

Multivariate linear regression

This section presents an estimator for linear models with multiple dependent vari-
ables. The presentation largely follows that of R. Christensen in Linear Models for
Multivariate, Time Series, and Spatial Data (1991) [13].

Let a process have a multivariate response y € R’ and let each dependent variable
follow a linear relationship with a vector of independent variables x € R” that is
shared between the dependent variables.

where 3; € R is a vector of unknown but fixed parameters and €; ~ N(0, ajz) is
random noise. If N observations are taken of such a process then the relationship
in equation (7) can be expressed in matrix form as

Y =XB+e, (8)

where Y € RV*/ X € RV*P B ¢ RP*/ ¢ € RV*/. Each column of Y contains val-
ues of a dependent variable and each column of X contains values of an independent
variable.



The columns of Y can be calculated independently of one another as

Yj = XB] + €.5
Hence (8) is equivalent to
Y, X 0 ... 0 B, e
Y. 0 X | B €.
=1 e 9)
: : .0 : :
Y., 0 0 ... X| LBy €.

Assume that the errors are uncorrelated, and have equal variance, between the
observations,

Ohh! if i = i/
covtemston) = {O ifi#4d

It follows that Cov(e.,epn) = opwln. Equation (9) is univariate and the error
vector has mean zero and covariance matrix:

ouly oIy ... ouly
oy owply ... ooyly (10)
owdn o9ydn ... o55ly

Definition 4. The vectorization transformation, Vec(-), transforms a matrix into a
column vector. Let A be a m x n matrix then Vec(A) is a mn x 1 column vector,

VGC(A) = [Al,la ceey Am,h A1,27 ceey Am,?a cey Al,na ceey Am’n]T.

Definition 5. Let A be a m xn matrix and B be a px ¢ matrix. Then the Kronecker
product A ® B is the pm x gn block matrix:

Al,lB c. Al,nB

ApiB ... An,B

The following theorem presents selected properties of the Kronecker product. It is
included without proof and the interested reader is referred to e.g. Topics in Matrix
Analysis by Horn and Johnson (1991) [14].
Theorem 3 (Properties of ®).
o Mixed-product property:
(A® B)(C ® D) = (AC) ® (BD).

9



e Inverse of a Kronecker product:
(A ® B) is invertible if and only if A and B are invertible and,

(AB)'=A"1® B

e Transpose of a Kronecker product:

(A B)" = AT @ B”.

Using the vectorization transformation and the Kronecker product, rewrite equation
(9) as
Vec(Y) = (I; ® X) Vec(B) + Vec(e), (11)

and the covariance matrix as ¥ ® Iy, where X;; = oy for 7,5 = 1,2,...,J. By
theorem 2,

. -1
Vee(B) = (I, ® X)"(I; @ X)) (I, ® X) Vec(Y), (12)
is the best linear unbiased estimate of Vec(B) if and only if
C(E@IN)I;®X)) cC(;®X). (13)

By the mixed-product property:

(EeIy);eX) =21 (IyX)

=X
_O'HX P 0'1JX
_O'JlX PN O'JJX
X 0 ... 0 onln oy ... ouln
|10 X : oIy owln ... o5l
: 0 : : i
0 0 ... X|lowiy owln ... oyyln

=(1; ® X)(X® In)

For any two matrices R and S of conforming size it holds that C(RS) C C(R).
Hence equation (13) holds and equation (12) is the BLUE. Using the properties of
theorem 3, equation (12) can be reduced back to the original dimensions.

(LexX)"Lex) (LX) =(LeX")I,eX) (Iex")
(I; @ XTX)MI; ® XT)

(I ® (XTX) ™) (I @ X7)

(I; @ (XTX)7'XxT)

—_
=)



Equation (12) is thus equivalent to

(XTX)1XT 0 . 0 Yy

A T y\-1yT : Y.
Vee(B3) = 0 (XTX)'X : 2
: 0 :

0 0 L (XTX)TIXT) LYY

which in turn is equivalent to

B=(X"X)"'X"Ty. (14)

2.2 Bayesian analysis

Bayesian and frequentist statistics are the two dominant paradigms of statistics.
The key difference between the two is the view of what probability is. While the
frequentist reserves the notion of probability for random processes, the Bayesian may
use probability to represent uncertainty. The Bayesian can thus assign probability
to processes that are not viewed as random but whose outcome is uncertain due
to limited knowledge. This allows the analyst to include prior information in the
analysis, whether this information is from another experiment, subjective belief or a
combination of the two. The prior information is formulated into a prior distribution
and is combined with the model using Bayes’ theorem. Bayes’ theorem and a prior
distribution can also be used as a form of regularization.

Let A and B be events and P(B) # 0. Bayes’ theorem then states that,

P(BJA)P(A)

P(AIB) = =5

When working with continuous random variables this is expressed as

fyix=2(y)fx (@)
fxy=y(x) = , (15
where fx|y—y(x) is referred to as the posterior, fy|x=.(y) as the likelihood, fx(x)
as the prior and fy(y) as the marginal likelihood. The likelihood is derived from
the model and the prior is selected by the analyst. The marginal likelihood can be
expressed, using the law of total probability, as

o) = [ Frix=elw) fx(©)de. (16)

Note that for given data y the marginal likelihood is constant and fy (y) can be seen
as the normalizing constant that ensures that the posterior integrates to one. Hence
the geometry of the posterior distribution is completely determined by the product
of the likelihood and the prior. In light of this, it is common not to include the
denominator when writing Bayesian models. Instead the posterior is expressed as
proportional to the product of the likelihood and the prior,

P(A|B)  P(B|A)P(A).

11



Since the entire distribution of the parameters is expressed in the posterior distri-
bution, it is relatively easy to tailor an evaluation method to the problem at hand.
However if the exact application and requirements of the model is unknown, a well
known standard method of evaluation might be the best choice. One such method
is equal tailed credible intervals. The « equal tailed credible interval is the interval
that a parameter falls in with probability «a such that the probability that the pa-
rameter is outside of the interval is the same, 1(1 — a), at the lower end and the
upper end.

Markov chain Monte Carlo

The numerator in equation (15) is typically straightforward to calculate but the
denominator given by equation (16) quickly becomes unfeasible to calculate as the
number of parameters increase. One way to get around this is by using Markov
chain Monte Carlo (MCMC) methods. A MCMC algorithm creates a Markov chain
whose stationary distribution is the sought probability distribution. Under certain
conditions this stationary distribution is unique and the Markov chain converges to
the stationary distribution. It is then possible to sample from the sought probability
distribution by sampling from the converged Markov chain.

A rigorous discussion on the convergence of the Markov chains used in this thesis is
out of scope of the thesis. Instead an informal introduction to MCMC methods will
be presented. The foundation of this introduction is the detailed balance and its
connection to stationary distributions. The following two definitions, theorem and
proof are inspired by Monte Carlo Statistical Methods by Robert and Casella (2004)
[15]. Let k be the transition kernel which describes the dynamics of the Markov
process (X, t=1,2,...) via

P(Xs1 € B| X, =1) = /B k(z,dy), for all t.

Here k is a map such that for each x in a space S k(z,-) is a measure on S in its
second argument.

Definition 6. Let S be the state space for a Markov chain defined by its transition
kernel k. A probability distribution 7, defined on S, is stationary if

/B7T(dx) = /S/B k(x,dy)m(dx),
for all B C S.

Definition 7. A Markov chain with a transition kernel k satisfies the detailed
balance condition if there exists a function f satisfying

[ [k p@ar = [ [ K.y,

for any subsets A and B in the state space S.

12



Theorem 4. Suppose a Markov chain with a transition kernel k satisfies the detailed
balance condition with ™ a probability density function defined on the state space S,

[ [ Kedgyntan) = [ [ by, doym(ay), n

for any subsets A and B in S. Then the density w is a stationary distribution of the
Markov chain.

Proof. For any measurable set B C S,

// (z, dy)(dz) // (y, dz)m
AL

]

Many MCMC algorithms utilizes theorem 4 to sample from distributions that are dif-
ficult to sample from directly. In some algorithms, such as the Metropolis-Hastings
algorithm, the transition is split into two steps, a proposal step g and an acceptance
step a [16],

Py(X € Blz) = /Bg(x,dy)-

A transition from state x works out as follows: A new state y is drawn from the
proposal distribution g(z, -). This state is then accepted or rejected randomly deter-
mined by the acceptance probability a(z,y). If the state is rejected the chain stays
at x, if it is accepted it moves to y. This corresponds to the following transition

kernel [17]:
k(a,dy) = (o, dy)a(e, ) +6.(dy) [ (1= alw,w))g(,du), (18)

where ¢, is the Dirac measure,

5,(A) 1 ifze A
* " 10 otherwise

The choice of proposal and acceptance distributions should be such that the transi-
tion kernel, equation (18), fulfils the conditions of theorem 4. To this end, define

() = [(1 = ala, u))g(a, du).

and insert equation (18) into equation (17):
/ / (x,dy)a(x,y)r(dx) —|—/ / 0. (dy) I (z)m(dz) =
[, [ 9. dw)aty, x)x(dy) + [ [ 6,(dx)1(y)(dy)

13
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By the definition of the Dirac measure, the second terms of the left and right hand
side are 0 unless x and vy, respectively, are in A N B. Therefore,

[ [ atni@intan) = [ 1(@in(dn),
/B /A%(daf)f (y)m(dy) = /A  Iy)m(dy).

Hence the second terms of both sides of equation (19) cancel out and the transition
kernel, equation (18), satisfies the conditions of theorem 4 together with the posterior
distribution 7 if and only if,

/. | st ayatz.y)n(a) = | [ gy, dr)aly. x)r(ay),
AJB BJA
for any subsets A and B in S.

Assume there is a function f such that 7(dx) = C f(x)dx, for some constant C, and
choose the following acceptance probability:

(O f (y))
a(r,y) =min | 1, == 20
(2) =i (1,42 20
Further assume that the proposal kernel g is symmetric so that:
9(z, dy)h(z,y)dz = g(y, dz)h(z, y)dy, (21)
for all functions h. If f(y) < f(x) (the other case being similar),
_ f(y)
g(@, dy)a(z, y)m(dx) = g(x,dy)mof(x)d
= g(y, dx) ?1/) Cf(y)dy
a(y,r

using equation (21) in the second step, therefore:

/A/Bg(ac,dy)a(w,y)w(dx)z/B/Ag(y,dx)a(y,x)ﬂ(dy)

Thus any Markov chain with symmetric proposal distribution ¢ and acceptance
distribution given by equation (20) will have the sought distribution 7 as its sta-
tionary distribution, given that there exist a function f satisfying 7(dz) = C'f(x)dzx.
When the sought distribution is the posterior distribution, the product between the
likelihood and the priors are taken as f.

In this thesis, Stan is used for MCMC sampling. More specifically the default

sampler of Stan, the No-U-Turn-Sampler or NUTS is used. NUTS is a Hamilto-
nian Monte Carlo (HMC) algorithm and in principle does not need to follow the
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structure presented above. However the Stan implementation of HMC uses the ac-
ceptance step, equation (20), to counteract errors from numerical integration [18].
Furthermore the proposal process is symmetric and the algorithm thus takes the
structure presented above with an especially clever proposal function [19]. A de-
tailed discussion on HMC is not included but can be found in e.g. R. M. Neal 2011
[19].

3 Model

In the univariate method one tries to calibrate a function for each element p, that
is usually affine, so that
ij - f(g7 ﬁ)“27

is minimized. Here 7, € R" is a vector with the relative concentrations of element p
and § € RY is a vector with pre-processed intensities of a peak corresponding with
element p. Each entry in the vectors Z, and § thus contains a relative concentration
or a pre-processed intensity, respectively, of one of the N samples. With an affine
function this minimization is accomplished by simple linear regression. Let

f(gaﬁoy 51) = /80 + gﬁla

using simple linear regression one estimates the Bo and Bl that minimize the sum of
squared errors between 7, and f(7, 8o, £1). This regression problem corresponds to
the model

Zp=Bo+ Pl +e. (22)

If one would like to extend this method to take advantage of more information from
the spectra then a natural choice would be multiple linear regression. If one would
like to use the entire spectrum, i.e. all of the .J pixels, then

fY.B):=YB, (23)

where Y € RV*/ contains the pre-procesed captured spectra and 8 € R’ contains
the parameters estimated in the regression.

A remark on notation: Hereafter the notation y();) will sometimes be used for
different variants of y (different accents, sub- or superscripts). y(\;) is the signal
at pixel j and )\, is the wavelength corresponding to that pixel. y(\;) is scalar.
The natural association to continuous functions is embraced and the index j will
sometimes be dropped to heighten this association. However no attempt is made
at modelling how the pixels register the continuum of wavelengths. Instead the
modelling is done on the pixel level. There is nothing stopping us however, other
than reality, from increasing the number of pixels J to be arbitrarily large and
thereby approach the continuum.

The multiple linear regression problem, with the function declared in equation (23),
can then be seen as the problem of finding weights 3; so that the weighted sum
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Z;le 9(A;)B; maps to the concentrations of the samples as well as possible. This
regression corresponds to the model

J
5= Y T8 + ¢ (24)

While both the univariate and the multivariate models discussed above can be used
to map LIBS spectra to sample concentrations; their corresponding models, equa-
tions (22) and (24), do not reflect current understanding of LIBS. The linear rela-
tionship between concentration and intensity has support from models building on
an understanding of the plasma* [7][20]. However this form of the model suggests a
view of the concentration as random and there is no obvious interpretation of 5. A
more intuitive univariate model would be

g(A) = b(] + .i’pbl +e. (25)

Here 7, is not random, instead the measured intensity ¢()) is random as a result of
€, representing noise.

Now consider a non-normalized spectrum at a wavelength corresponding with ele-
ment p, y(A,). All other parameters fixed it is expected that y(),) follows an affine
relationship with the concentration of element p, similar to equation (25). However
as discussed in the introduction, large variations between different measurements
are expected. Assume that these variations are multiplicative and constant over the
the spectrum, the spectrum can then be modelled as.

Y(N) = hby + a,b1) + €. (26)

where h is the spectrum constant factor, called hit factor, accounting for the mea-
surement to measurement variations. by can now be interpreted as the background
signal and b, as the expected signal if the concentration was 1 and there was no
background signal.

Using this form of the linear relationship also offers a natural way to deal with
interference from peaks of other elements. Since emission from different sources with
the same wavelengths are added to the signal in the spectrometer it is motivated
to view the signal at a pixel as a superposition of signals from different elements.
Motivated by the interpretation of by as the background signal and b, as the expected
signal of the pure element (x, = 1), the notation is adjusted and the following model
is suggested

y(A) = hy"(\) + I 2_: Yy (Nzp + 6, (27)

where P is the total number of elements, 3*9()\) is the background signal at A and
y;’ (M) is the expected signal of pure element p at A. Note that unlike the univariate

4given that non-linear effects such as self-absorption are negligible
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model we do not include second order terms from (2) and leave that out for future
work.

The model, equation (27), is however not a linear model when h is allowed to vary.
To get around this it is normalized in the same way as in the univariate method,
i.e. the spectra are normalized to the reference peak and the concentrations to
the concentration of the reference element. Assume the reference peak (pixel) has
negligible contribution from elements other than the reference element, negligible
background contribution and negligible error,

Y(Nref) = hyler(Nrep)Tres. (28)

The normalized spectra thus follows,

y L N L N

y()‘ref) - yqz)ef()\ref) Lref p=1 yz?ef(/\ref) Lref hyqu()\ref)xref ‘
Let,
i y) ¥ (\)
y()\> =N W Yy g<)\) =N v
Y(Arer) yler(Nrer)
P
] yp (>\) - Tp - €
U, (A) i= 52—, T:= , €:= . (29)
b yZDef(Aref> Tref hyfef<)\ref)xref
The normalized model can then be expressed as,
P
§N) = 7Ny + D5 (VT + €. (30)
p=1

If N samples with concentrations of P elements are taken with a spectrometer
capturing J pixels, let X € RV* contains the relative concentrations of the samples
and again let Y € RV*/ contain the pre-processed captured spectra. In a similar
fashion let Y € R”*/ contain the normalized pure spectra in its rows, % € R’
contain the background signals at the pixels and let € contain the errors. The model
(30) can be expressed in matrix form as

Y =DB+E§ (31)

where row n of D is given by,

-1
[Xn,refaXn,la Xn,27"'7Xn,P )

and column j of B is given by,

|:g?9’ 5}'7’ }779

Lj» =250

-.,YP,j} .
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Given a calibration set {X° Y !} the normalized pure spectra Y? can be esti-
mated using linear regression. For simplicity we assume that the normalized errors
are both uncorrelated and have equal variance between samples. Substituting X for
D in equation (14), the BLUE for (31) is

B = (DT'D)DTy*! (32)

Noting that
B, = (D"D)" DT, (33)

i.e. the estimated signals of the normalized pure spectra and background signal
at a pixel from the multivariate regression is the same as those estimated from a
multiple regression of the data at that pixel. Hence one shouldn’t hope for any
better results, at a given pixel, than from multiple linear regression and since a
typical LIBS calibration set contains a couple of dozen samples and around a dozen
elements one should expect overfitting. In addition to a poor samples-to-variables
ratio, it is quite likely that there is some correlation in the concentration data as
samples typically come from, or approximates samples from, some industrial process.

Now assume that §? and Y” have been estimated and that we want to determine
the concentration x given a normalized LIBS spectrum §°%. In the case with a single
variable, equation (25), the relative concentration can be estimated by solving the
equation presented by the model when ignoring the error term, i.e. dividing the
measured signal with the expected signal of the pure element after subtracting the
background contribution. However it is unlikely that an exact solution is available
in the multivariate case so a least-squares approach is adopted instead,

minimize ||§°** — BYd||?, (34)

deRP+1

where
T

7 A—1l A 2 2
d= |5, T1,T2,...,Tp

The concentrations are then calculated by inverting the first regression coefficient
(:%;elf) and multiplying the relative concentrations with this value.

The suggested full spectra extension of the univariate calibration method is thus a
multivariate calibration method where the normalized pure spectra 17173, }7273, ey fflf ,
and the background spectrum % are first estimated from the calibration set where-
after predictions are made by solving the model, with the error term ignored, for
the relative concentrations . Since an exact solution is unlikely in the multivariate
case, the estimated concentrations are solved for in a least-squares sense.

3.1 Bayesian approach

As mentioned, overfitting is expected at any given pixel for a typical LIBS calibration
set. Ideally the issues from this overfitting would cancel out over the large number
of pixels so that the final concentration estimate would be accurate and robust.
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However when trying the method on the available datasets this was not found to be
the case.

To alleviate the problem with overfitting a Bayesian version of the model was con-
structed. The idea being that with additional information, relayed with the priors,
the overfitting could be reduced enough that over a large number of pixels, accurate
and robust estimates could be obtained. Priors as well as probability distributions
for the errors € are needed to create a Bayesian model. The errors are assumed to
be normally distributed and independent over both samples and pixels so that for
pixel 7 of a pre-processed spectrum g,

U ~ NPl + YT - 3,07). (35)

This equation formulates a forward model for the observable pre-processed spec-
trum in terms of the unknown normalized background spectrum gj;?g , the unknown
normalized pure spectra )7;’ and the known or unknown z (both x;elf and T are
determined from the concentration x). In the case of the calibration z is known and
in the case of the prediction gj?g and f/f are the results from the calibration step
while x is the parameter to estimate.

We first consider a two-step procedure where the y?g and Y/f are estimated in the

calibration step and thereafter the x is estimated, using the estimated y?g and }7;)
from the calibration step, in the prediction step.

Here one has the choice of plugging in a point estimator for equation (35) or one
write the joint posterior of the model. In the calibration step when z is known, the
joint posterior of everything unknown given everything observed, based on equation
(35), is expressed as:

P(g", Y7, 5y ) oc P(Y!|§", Y, 2)P(§") P(YP)P(%). (36)
Similarly the prediction step is expressed as:
Pz, 79, YP 3|5, V) o« P(§°|x, 3", YT, 8)P(x)x
P50, Y, 2[ye). (37)

Y is the covariance matrix and with the assumptions of equation (35) it takes the
following form:

o2 0 ... 0
s 0 o?

. 0

0 0 ... 0%

The Bayesian model can be seen as a two-step process, first the parameters are
estimated on the calibration set and then the prediction is performed on new data
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using the posterior of the calibration step as one of its priors. However the two steps
can also be combined into a one-step process and this one-step process is easier to
implement in Stan. As a one-step process the model is written as:

Pz, 7%, YP 2|5, V) oc P(5°%|x, 3%, YF, )P () x
PY |3, YP S)P(§*)P(YT)P(E). (38)

An example will help illustrating the equivalence between the two-step process, equa-
tions (36) and (37), and the one-step process with its rather daunting expression,
equation (38).

Example  Consider some forward model for y in terms of x and 6. Given
two sets of observations, the first set with observations of both
y and x and the second with observations of only y, we want to
estimate the unknowns 6 as well as the x giving rise to the second
set of observations of y. To clarify, we have a forward model with
probability distribution,

fylz,0),

two sets of observations, (x1,y;) and yo; from this we want to
determine the unknowns x5 and 6. Let A be the distribution for
the unknown variables conditional on the known variables,

h(xs, 0|1, y1, y2),

and let g be the joint distribution for the observations y; and s,

g(y17y2|x1;$2,‘9).

Using Bayes’ theorem on the distribution, A, for the unknown
variables conditional on the known variables,

0 0)m,
h(x279’x1’y17y2) _ g(y17y2|’r17l’2’ )71—9( )7'(' (IQ), (39)

&

where ¢, is the normalizing constant, my and 7, are priors for
and x. The observations y; and ¥y, are independent, conditional
on 6, of one another as well as the = of the other observation set,
ie.

g<y17 y2|$1, L2, 9) = f(y1|:1:1, 6)f(y2|£€2, 6)

20



Substituting into equation (39) and rearranging,

9(y1, yo|x1, 22, 0) T (0) T4 (202)
(&3]

f(ya|m2, 0) 2 (22) f (Y1 |1, 0) 0 (0)

)
C1

we identify the one-step process, equation (38). To get the corre-
sponding two-step process, note that the corresponding calibra-

tion step is
f (|21, 0)7o(0)

Q(e‘xlayl) = & ) (40)

where ¢ is the normalizing constant. Putting it all together,

8)mo(8).
W, 81, 1, o) = g(yl’yQ‘xl’xQ; )7o(B)e 22)
1

_ f(elwa, 0)ma(22) f (31|71, 0)7e(0)

[ (ya2|z2, 0) s (22) (f(yﬂiﬁla 9)70(9>651)

—1
C1Cy
_ f(y|w2, 0) 7 (w2)q(0]21, 11)

0102_1

We identify this as the prediction step, equation (37), and to-
gether with the calibration step, equation (40), the two-step pro-
cess.

O

Noting that the two-step process, equations (36) and (37), and the one-step process,
equation (38), are equivalent but that the two-step process is easier to understand
while the one-step process is easier to implement in Stan; the model is explained in
terms of the two-step process and implemented in Stan as the one-step process.

In the prediction step the priors consists of the posterior from the calibration step,
equation (36), and a Dirichlet distribution for the concentrations z. In the cali-
bration step, the priors for 3%, f/jp and o; consists of Gaussian-, exponential- and
Cauchy distributions, respectively. The Cauchy distribution for the variances is
clipped at 0 to prevent undefined negative variances.

For the parameters of the priors of the pure spectra, equation (3) was taken as the
foundation together with data from the NIST atomic spectra database [10]. Values
for g,, £, and A,, were taken from the NIST database for all emission lines of all
elements present in the samples. Together with chosen values for F' and T, the
integrated line intensities could be calculated using equation (3). The integrated
line intensities were then converted to pixel intensities. To do this a peak was
constructed from each integrated line intensity by multiplying it with Gaussian
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Figure 4: Multiplying the integrated line intensity, or the transition intensity, with

a Gaussian distribution approximates the broadening of the signal that naturally
occurs.

distributions, see figure 4. The Gaussians were centered at the wavelength of their
corresponding emission line. All peaks belonging to a given element were then added
together to create the prior pure spectra ny °(A) of that element. For simplicity all
Gaussians had the same variance B referred to as the broadening factor.

The prior pure spectra were then normalized by dividing their intensities with the
intensity of the reference element (Al) at the reference pixel. This normalization
step cancels out the F' factor in equation (3) so that only 7" and B remains to be
determined. Plug-in estimates were used for both of them. The normalized prior
pure spectrum of Si is shown in figure 5.

The normalized prior pure spectra contains the information that will be used to at-
tempt to overcome the overfitting issue. The exponential priors for the pure spectra
are the means to relay this information to the model. The rate of the exponential
distributions was set proportional to the inverse of the prior pure spectra. This
choice highly constrains the pure spectra that are not expected to have any signal
at a given pixel while leaving the pure spectra that are expected to have signal at
the pixel relatively free, see figure 6. It also forces the pure spectra to be positive,
which is in line with the interpretation of the parameters Y7 as the expected spectra
of the pure elements.

Using the inverse of the prior pure spectra inevitably causes problems in practice
when a prior pure spectra is close to 0 at a pixel. For example, at the pixel cor-
responding to A = 404.58, the prior pure spectrum of Zn is rounded to 0 by the
computer, see table 1, and its inverse is therefore undefined. To get around this the
prior pure spectra is simply clipped at a small value, e.g. 107, so that any value
smaller than 107? is replaced by 107%. This is in line with the general idea of the
taken approach. The main objective of the priors is to reduce overfitting and this is
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Figure 5: Normalized prior pure spectrum of Si calculated with 7" = 4800 and
B =1.5.
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Figure 6: Exponential distributions for rates 0.1, 1 and 10. Larger rates have very
small probability mass for large values and will thus constrain the pure spectra with
small (large inverse) prior pure spectra from taking large values in the regression.
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Table 1: Prior pure spectra at A = 404.58.

Si  8.85-107%
Fe 6.79-1073
Mg 5.15-1076
Ni 2.13-10°
Zn O

Cu 8.07-107°
Mn 1.42

Cr 5.81-107¢

accomplished by constraining the pure spectra from taking unreasonable values.

For the calibration step, it remains to address the parameters of the priors for the
background signal y* and for the variances ;. These are taken to be only weakly
informative.

4 Result

To evaluate the models and gain insight into their strengths and limitations they
are applied to data from aluminum samples. The data consists of around 40,000
spectra taken on 27 samples. Each spectrum consist of signals at 4094 pixels. The
spectra are filtered, removing any spectra with too high (60,000) maximum signal
or too low (5000) signal at the reference pixel A,y = 308.23nm.

After the weak and strong spectra have been removed, the spectra are normalized.
For every spectrum the signal of each pixel is divided with the signal of the reference
pixel. The concentrations are likewise normalized by dividing the concentrations of
each sample with its aluminum concentration. Finally, the spectra are grouped by
their samples and averaged so that there is one spectrum per sample. The data
now consist of 27 normalized spectra, each paired with relative concentrations of 12
elements as well as the inverse of the concentration of the reference element Al.

To evaluate the multivariate linear regression model, leave-one-out cross validation
is performed. For each sample, the remaining 26 samples are used as the calibration
set. The samples have relative concentrations of 12 elements: Si, Fe, Mg, Ti, Ni, Zn,
Cu, Mn, Pb, Sn, Cr and Al. However concentrations of Ti, Sn, and Pb are low and
to reduce the degrees of freedom these are dropped from the model. The calibration
set, (X Y<) is used to estimate the normalized background signal %9 and the
normalized pure spectra Y using equation (32). The relative concentration of the
left out sample is then estimated according to equation (34). The solution to this
minimization problem is the well known ordinary least squares estimate.

When using normalized spectra and relative concentrations in calculations, the re-
sulting estimates are relative concentrations. These are transformed into concentra-
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Table 2: Coefficents of determination, R?, and root mean squared errors, RMSE,
for the univariate- and multivariate method. The univariate method is evaluated on
the same data as used in the regression while the multivariate method is evaluated
using leave-one-out cross-validation. Note that this is not an entirely fair comparison
because we are comparing with a univariate model with second terms and hand-
selected baseline correction.

R? Univariate | R? MV | RMSE Univariate | RMSE MV
Si 0.960 -0.065 5.48 - 1073 4.37-1072
Fe | 0.473 -0.840 2.29-1073 4.25-1073
Mg | 0.988 0.943 1.33-1073 2.90-1073
Ni -0.399 3.60- 1073
Zn | 0.992 0.105 1.23-1073 1.93 - 1072
Cu | 0.984 0.760 1.47-1073 6.46 - 1073
Mn | 0.927 0.788 1.09-1073 1.92-1073
Cr 0.572 6.93- 1074
Al -0.599 5.51-1072

tions and the estimated concentrations are then used to calculate individual coeffi-
cients of determination and root mean squared errors for each element, these can be
found in table 2 together with coefficients of determination from estimates by the
univariate method.

The Bayesian model is evaluated by comparing approximated 90% equal tailed cred-
ible intervals for the concentrations with the actual concentrations, see figure 8. The
credible intervals are computed from samples of the posterior distribution obtained
through the MCMC method implemented in Stan. Since the evaluation method
is visual and since the MCMC sampling takes far longer to compute, 7 random
aluminum samples are used instead of using all aluminum samples as in leave-one-
out cross validation. For each aluminum sample, the posterior is estimated using
the data from the other 26 aluminum samples as calibration data. The same pre-
processing as for the multivariate linear regression is used but Ti, Sn and Pb are
included in the analysis. However, due to computational constraints, all pixels could
not be included. Instead 52 selected pixels and their two neighbor-pixels were used.

Samples from the posterior, equation (38), was drawn using the default Stan settings
but with the number of iterations increased to 3000. The parameters used for the
priors can be found in table 3 and in figure 7. Stan did not print any warnings and
no further convergence checks were made.

5 Discussion

This thesis presents a shift in perspective. Instead of attempting multivariate anal-
ysis of LIBS data through calibration of a multivariate mapping from the spectrum
to the concentrations; the spectrum is modelled as a multivariate response to a
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Table 3: Prior distributions used in evaluation of the Bayesian model. x is trans-
formed into relative concentration Z according to equation (1).

y® | Gaussian distribution with mean 0 and standard deviation 0.5.

Exponential distribution with rate 0.1 x (YP)_l,

Y” clipped at 1076.

Dirichlet distribution with parameter a, = 1 for all

elements except Al, 99 for Al.

b Cauchy distribution with mean 0.1 and scale 0.4, clipped at 0.

YP

le-01 1 10 100 1000 10000 le+05

Figure 7: Rate parameters for the exponential distributions used as priors for the
pure spectra. Each column shows the rate parameters used for one of the selected
pixels. The rate parameters are one tenth of the inverse of the clipped prior pure
spectra.
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Figure 8: Equal tailed credible intervals for the concentrations predicted by the
Bayesian model (lines) and actual concentrations (orange dots) for seven randomly
selected samples. The samples were removed one by one when evaluating the
Bayesian model, i.e. the predicted sample is not in the calibration set. Aluminum
is not included for illustrative purposes (concentration is close to 0.9).
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process and finding the concentrations is the inverse problem to this model. This
perspective has two key advantages.

Firstly it is a model based approach. This makes results more interpretable, assump-
tions easier to scrutinize and further development easier. Take the normalization as
an example. The reference peak method has been used both in this thesis and in the
classical univariate LIBS analysis [4]. The model based approach taken here made it
possible to derive this normalization method and in the process be very clear about
the assumptions being made.

Indeed, the normalization method presents an example on how the model based
approach can help scrutinizing the made assumptions. To claim that equation (32)
is BLUE for the model, equation (31), the normalized errors were assumed to have
equal variance between the samples. However looking at the definition for the nor-
malized error, equation (29), this hardly seems reasonable. The errors of the non-
normalized spectra would somehow need to correlate with the signal at the reference
pixel to compensate for the scaling resulting from the normalization. A multivari-
ate weighted linear regression estimator would likely be a better choice of estimator
than the one used, equation (14), when analyzing the normalized spectra. Another
approach could be to use a different transformation than normalization to deal with
the varying measurement to measurement intensity. Using the same assumptions,
equation (28), h can be expressed as,

h o~ y<)\ref)
Yrer(Aref)Tres’

so the model, equation (27), can be transformed into,
P
y(N) =hy™ (A) +h Yy (N, +e
p=1

bg A )\re a )\re
%yp( )y( f) If)g( f) Lp yP(/\)+E
yref(Aref)mref p=1 yref()\”’ef) Lref

p
P
:y(Aref)gbg(A)$;eljc + y()\ref) Z g;D(A)‘%P + €

p=1

making the assumption of equal variance between the samples more reasonable.

Another way that the approach facilitate further improvements is through sensitivity
analysis. The model, equation (27), presents a highly simplified view of LIBS spectra
and contain errors. Indeed comparing the multivariate model with the more detailed
CF-LIBS model, equation (3), coupled with broadening; we note that variability
between samples in either temperature 7' or amount of broadening would not be
accounted for. The sensitivity to these effects could be investigated by simulating
spectra from equation (3) and applying the method to these. This can of course
be done with methods such as multiple linear regression too, but the increased
interpretabilty stemming from the model based approach, clearly stated assumptions
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and the clear interpretation of the parameters arguably makes it easier to identify
error sources to investigate.

A careful sensitivity analysis of the model was deemed out of scope for this thesis
but would likely be highly valuable in the pursuit of a good method for multivariate
analysis of LIBS spectra. The effect of known non-linear effects such as variation
in plasma temperature, broadening and self-absorption could be investigated by
applying the method to computer generated spectra. The insights from this analysis
could potentially be used to improve the model or to develop criteria for the use of
the model. These criteria could then replace or complement the filtering method
described in the introduction and hopefully improve performance.

The second key advantage of the taken approach is that it decouples degrees of free-
dom and number of pixels. Mapping the spectrum to concentration using methods
like multiple linear regression means that the degrees of freedom are linked to the
number of pixels. This leads to the counter intuitive behaviour that an increase in
resolution of the spectrometer likely results in worse predictions. Indeed it is un-
likely that the majority of the pixels could be used in the first place as the number
of samples are likely counted in the dozens while the number of pixels are counted
in thousands. The approach taken in this thesis eliminates this problem. Only
the number of elements in the analysis counts towards the degrees of freedom. This
makes the success of the analysis more feasible. More pixels also correspond to more
data in the prediction step and thus hopefully better predictions.

Even with this improvement, the ratio of samples to degrees of freedom was poor. In
an attempt to reduce this issue the Bayesian model was created. Both approaches
show promise as potential tools for quantitative analysis of LIBS spectra with many
or all pixels. However neither perform as well as the univariate method, see table
2 and figure 8, and further improvement is needed. Fortunately it is much eas-
ier to identify potential improvements, as argued above, compared to an approach
based on e.g. PLS. The models could thus be systematically investigated and hope-
fully improved to the degree that they constitute an improvement to the univariate
method.

A noteworthy idea is to exploit the sparsity of the spectra. Not every element emits
on each frequency - on the contrary, only a few peeks are important, see figure 7.
This makes the problem of finding the pure spectra a sparse regression problem. In
regression respective the Bayesian paradigm can incorporate such sparsity constrains
naturally through a penalty terms or the choice of prior. Note that in this situation
very good prior information about the frequency response of the elements exist, for
example the competing approach CF-LIBS is purely based on prior information and
it is conceivable that combining prior information of CF-LIBS with a non-parametric
Bayesian statistical approach. This seems to be a subject to future research.

Another related idea is to weight the pixels in the prediction step, equation (34).
One could be fooled to identify this as a conventional linear regression problem and
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proclaim that a weighted linear regression would be BLUE. However that would
be a mistake as B is random. Which weights to use is thus not straightforward
and left for future work; however some things to consider are signal strength at the
pixel, uncertainty in the estimates of the pure spectra at the pixel and amount of
interference between the elements at the pixel.

6 Conclusion

Neither of the two approaches outperform the univariate method and are in need of
further improvement. The positive aspects are however that both approaches present
a model based approach to multivariate quantitative LIBS analysis and with their
clearly stated assumptions, they allow for systematic development. Perhaps most
importantly the approaches shift the degrees of freedom from being dependent on
the number of pixels to being dependent on the number of elements. This is a two
orders of magnitude improvement. The thesis can thus be seen as a first step in a
new direction for multivariate quantitative LIBS analysis. Hopefully with further
steps, this leads to increased performance so that LIBS can be used for in-situ
measurements; enabling decreased energy and material consumption, better quality
and usable biproducts.
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