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Abstract

In the context of regular arithmetic circuits, the effect of pin placement on the quality of

layout and routing is not well understood. Current methodologies depend on library-based

flows to design such circuits. However, the benefits of regularity are lost in the process of

automated place and route techniques employed by these methodologies. As process tech-

nologies grow smaller, this will have a large effect on the yield and variability. Enforcing

regularity to combat variability is being advocated in the form of restricted design rules.

This thesis attempts to develop a methodology to implement customized pin orientations

for the cells. These cells are used in the design to harness the benefits of regularity and in

the process, mitigate variability. HPM multiplier is taken as a case study and different pin

orientations are tried out for the cells constituting rectangular PPRT of the multiplier.

The tool-set to be used for this project include Cadence Virtuoso for implementing the stan-

dard cell layouts, Cadence Encounter Library Characterizer to perform characterization of

the implemented layouts and Cadence SoC Encounter to implement the HPM multiplier

using the customized standard cells.
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— Life is pretty simple: You do some stuff. Most fails. Some works. You do more of what

works. If it works big, others quickly copy it. Then you do something else. The trick is

doing something else.

Leonardo da Vinci

— Whatever you do in life will be insignificant, but it’s very important that you do it.

Because nobody else will.

Tyler (Remember Me)
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1
Introduction

1.1 Column Compression Multipliers

Integer multiplication is an important and commonly occurring operation in logic circuits

of medium to high complexity. The alternatives to designing the parallel multipliers may

be classified into array multipliers, routinely presented in text books, or logarithmic-depth

multipliers, such as those proposed by Dadda [1] and Wallace [2]. Another approach which

relies on finding a globally optimal interconnection pattern, determined heuristically for the

reduction network, is called the Three Dimensional Method [3]. These architectures all

consist of three basic structures to achieve multiplication:

• Partial Product Generator (PPG),

• Partial Product Reduction Tree (PPRT) and

• Final adder, to compute the product from the reduction tree.

The common goal in all these architectures is to reduce the delay of the PPRT, since it is

the critical part which determines the overall performance of the respective architecture.

1



Chapter 1. Introduction 2

However, a shortcoming common to all of these approaches is the lack of regularity in

terms of layout and routing, leading to high-effort custom design. One proposed variant of

the Dadda architecture, the HPM architecture, has a regular layout while retaining all the

performance benefits of Dadda architectures. Regularity of layout is an extremely desirable

trait, if it delivers the high performance of existing algorithms at the lowest possible design

effort. Previous work [4] has shown, that the HPM architecture can match the performance

of a Dadda implementation and perform better than a Wallace implementation. Another

project [5] implemented regular PPRT structures using standard-cell design techniques. The

evaluation of results from that project indicated that the routing algorithms employed by

the EDA tools were unable to harness the possibility of regular routing; consequently the

performance suffered. One of the possible reasons for this is that the foundry-provided cells

lack the proper pin orientations when their layout orientation is flipped, to remain consistent

with the abutted placement philosophy. In order to be able to exploit the benefits of a regular

layout completely, proper pin orientations then become necessary [6].

1.2 Motivation and Scope of Thesis

Various standard cell libraries like the one provided by STMicroelectronics, provide differ-

ent variants of cells in terms of the drive strength but they lack such utility when it comes

to having same cells with different pin orientations. Thus when the cells with fixed pin ori-

entations are incorporated in the design, the designers have to rely on routing tools without

providing any assistance to ease routing. The placement tool flips the cells horizontally in

every alternating row in order to share common supply rails (vdd and gnd) thereby changing

the pin order. This idea is well depicted in Fig. 1.1, where 32-bit rectangular PPRT of HPM

architecture is taken as an example to demonstrate the flipping action.

It is evident from the Fig. 1.1 that the abutted placement philosophy results in pin order to

change for every alternating row, which is an undesired trait. The HPM algorithm displays

a regular layout with a possibility of regular routing structure [4] and we can attain more

benefits out of this routing regularity by trying out different pin orientations. An added

benefit of having flexibility in terms of pin orientation is, that it may reults in shorter wires

and fewer number of vias, which in turn result in lower variability. These starting clues thus

provided the primary motivation of this work.

As predicted in [5], by customizing the cell’s pin placement, we might able to achieve

more routing regularity. But in order to validate this hypothesis, it is necessary to have cell

2



Chapter 1. Introduction 3

FIGURE 1.1: 32-bit rectangular PPRT depecting flipping

library that support such cells. Till now, we have not come across any standard cell libraries

supporting such idea. This necessitated the goal of creating custom cell library having cells

needed to form PPRT i.e. half adder (HA) and full adder (FA) cells. This custom cell library

is so designed to have cells with different pin orientations.

Since custom cell design with different pin orientations is still in its infancy, it is very im-

portant to develop a methodology for carrying out this investigation. A reliable and stable

methodology shall enable researchers to take this concept further beyond and apply it to

other arithmetic circuits.

As a candidate to test the methodology, the HPM multiplier was chosen, since present re-

search is the continuation of the research conducted by Subramaniyan [5]. This facilitated

the reuse of scripts developed in [5] while helping to keep focus on new design challenges.

Furthermore, rectangular PPRT was used as a design case in order to see the impact of pin

placement since long wires lengths in rectangular PPRT enables to observe the gain in terms

of routing regularity.

In order to complement the fast layout exploration flow described in [7], two test cases were

designed, each using 32-bit HPM multiplier with rectangular PPRT. In the first case, a single

type of custom cells was used, as depicted in Fig. 1.2(a). This forms a reference case, since

we cannot directly compare the results with that of optimized, foundry-characterized cells.

3



Chapter 1. Introduction 4

In the second case, we use flipped cells as shown in Fig. 1.2(b). These are designed to be

the flipped copy of normal cells, replacing them at the flipped instances in the PPRT thus

preserving the pin positions in all cell rows as shown in Fig. 1.3.

(a) Normal cells (b) Flipped cells

FIGURE 1.2: Design approach for custom cells

FIGURE 1.3: 32-bit rectangular PPRT with preserved pin positions in all cell rows

Summarizing: this thesis has a focus on the development of a design methodology to en-

able layout exploration of full custom cells with different pin orientations. As a candidate

to test the methodology, the HPM multiplier was chosen due to its inherent benefits from

a regularity of layout standpoint and reusability of the previous work carried out in depart-

ment. Further, a custom cell library consisting of cells needed for PPRT was used to test the

hypothesis that the pin orientation of the cells does impact the routing regularity.

4



Chapter 1. Introduction 5

1.3 Organization

Any well developed methodology has clarity of flow. To highlight all the important as-

pects of the newly developed methodology, the research was carried out in two distinct

steps: forming custom cell library and layout exploration. These, then form the first two

parts of the document. The implementations carried out as a result of this methodology are

addressed in the third part of the thesis as a case study.

Part I deals with the design of Full Custom Library. Chapter 2 in this part describes the re-

quirements and introduces the tool flow. Chapter 3 introduces layout of custom cell design.

Chapter 4 deals with the abstract generation in order to capture geometry information to the

custom cells. Chapter 5 discusses custom library characterization used to capture timing in-

formation of the custom cells. The output from the abstraction generation along with library

characterization thus forms full custom cell library.

Part II deals with the details of Layout Exploration. Chapter 6 deals with the integrated flow

to implement a complete design. It also discusses Wired as a passing topic as it was not used

in thesis directly but the outputs produced from Wired in previous work [5] was rendered.

These together constitute the methodology from a layout exploration standpoint. Part III of

this document deals with the implementations carried out during the course of this thesis.

Section 7.1 of Chapter 7 describes the various implementations while section 7.2 reports the

results from those implementations. Section 7.3 is a discussion of the results and how this

work may be further developed.

5
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Custom Cell Library



2
Tool Flow Methodology

Full custom design flows have been used to achieve the highest performance. The designers

can alter any design parameters down to the transistor level to increase accuracy of design.

However, this accuracy comes at the cost of design effort and time. The Non-Recurring

Engineering (NRE) costs for a full custom design is high and the scope of reuse limited.

This is true for any circuit designed using full custom techniques. With shrinking process

technologies, there has been an up rise in complexity of design and with growing design

rule checks, full custom techniques are now limited to the design of the most performance

critical circuits. In the case of parallel column compression multipliers this has proved

vital, as multiplication operation is known to occur in most of the designs of medium to

high complexity and a circuit employing such a multiplier will have a critical path through

it more often than not. However, given the effort required to successfully create a high

performance column compression multiplier in a custom design flow, even the slow array

multiplier may be considered, if performance requirements are low [5].

7



Chapter 2. Tool Flow Methodology 8

2.1 Requirements

An effort into developing a methodology to implement column compression multipliers; it

was considered from the very beginning that such a methodology must be capable of having

flexibility, so that it can be extended to the implementation of other arithmetic circuits such

as shifters and multiplexers etc. Given the primary requirement of design exploration in the

context of custom pin placement, the design flow may include:

• Compatibility with existing design flows. This is a requirement because the means to

achieving the end goal should not come at the cost of a steep learning curve.

• Developing a full custom library having same logical cells with different pin orienta-

tions.

• Compatibility of the custom cell library to that of the standard cell libraries so that

multiplier as a whole can be implemented by following a semi-custom approach

where performance critical part i.e. PPRT incorporates cells from the custom cell

library, while rest of the implementation uses foundry provided cells.

Since the effort was directed at nanometer geometries, an effort was made to build upon

previous related work [5]. The primary need, in view of the existing research, became an

effort to identifying key aspects of implementing a portion of complete multiplier (PPRT)

using a custom cell library approach. Fig. 2.1 describes the process description of the devel-

oped methodology. The layout design along with verification and SPICE-netlist generation

is discussed in custom cell design chapter, while chapter 4 and chapter 5 focuses on forming

custom cell library. The frontend-backend integration step is covered in part II of the thesis.

Given the fact that this work was aimed at nanometer regime designs, implementations were

set to be carried out using the 90nm process technology for laying out custom cells while

having standard cell libraries from STMicroelectronics for rest of the blocks.

2.2 Introduction to Tool Flow

The following tools are used to implement the methodology:

1. Cadence Virtuoso Custom Design Platform (IC5.10.41) for constructing cell layouts.

8



Chapter 2. Tool Flow Methodology 9

FIGURE 2.1: Methodology

2. Calibre Interactive by Mentor Graphics for DRC and LVS check.

3. Virtuoso Abstract Generator by Cadence for capturing geometric information of cus-

tom cells.

4. Encounter Library Characterizer by Cadence for capturing timing information of cus-

tom cells.

5. Cadence Encounter for physical synthesis.

The following chapters discuss how the tools were applied.

9



3
Custom Cell Design

The necessity of creating a custom cell library arises from the fact that there are not many

standard cell libraries supporting the idea of having cells with same logic but different pin

orientations. It must be noted here that we only aim to have cells needed to form PPRT of

a multiplier, since it is the critical part of HPM. So the custom cell library we talk about,

contains two versions of half adder and full adder cells each, with different pin orientations

as depicted by Fig. 3.1.

FIGURE 3.1: Symbolic representation of different versions of half adder and full adder
cells used in the flow

10



Chapter 3. Custom Cell Design 11

It is evident from the Fig. 3.1 that each version of cell is logically same as their respective

cell and the only difference is the pin order, so arranged to have order symmetry when used

in a design that follows abutted placement. While writing the placement aware description

of the PPRT of the multiplier, we make sure that the tool picks the respective cell while

following abutted placement.

In the next sections, we shall discuss the logic functionality of the cells and process of layout

and SPICE netlist generation of each cell.

3.1 Layout Design

CMOS technology is highly used by design community due to its high noise immunity

and low static power consumption [8]. In this project, the custom layout of adder cells are

implemented in CMOS technology in Cadence Virtuoso using 90-nm process from ST.

As mentioned in section 1.2, we are going to use same cells in both of the design cases and

make comparison between them. This makes the design choice of constructing adder cells

much easier, as now, we can use any of the design without focusing much on optimization.

3.1.1 Half Adder

A half adder is a logical circuit that performs an addition operation on two one-bit binary

numbers often written as A and B. The half adder output is a carry and a sum of the two

inputs usually represented with the signals CO and S, respectively. Following is the logic

description for a half adder:

CO = A.B

S = A⊕B

The sum equation can be extended to have the following;

S = (A′B +AB′)′′

S = (AB +A′B′)′

S = (AB + (A+B)′)′

This can be implemented by using an OR gate along with AOI12 gate as depicted in Fig. 3.2(a).

The corresponding layouts of the half adder cell are shown in Fig. 3.2(b) and Fig. 3.2(c). The

circuit consists of 16 total transistors (10 transistors used for construction of sum function

while 6 transistors for carry). For the first case, named ”Normal Cells” in section 1.2 of the

11



Chapter 3. Custom Cell Design 12

(a) Half Adder schematic

(b) Layout of half adder cell used in normal case

(c) Layout of half adder cell used in flipped case

FIGURE 3.2: Half Adder cells
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Chapter 3. Custom Cell Design 13

report, only the cell in Fig. 3.2(b) is used. The second case, named ”Flipped Cells” used

both cells shown in Fig. 3.2(b) and Fig. 3.2(c). These cells are logically same having the

aspect ratio (L/H) of 1.339 with only difference of inverted pin order.

3.1.2 Full Adder

A one-bit full adder is a logic circuit with three single bit binary inputs (A, B, CI) and two

single bit binary outputs (CO, Z), where CO represent carry and Z represents sum output of

the full adder. Of the three inputs, CI is the fast arriving signal in multiplier implementation

while A and B are two late arriving signals. The basic logic relationship of the full adder

can be described as:

CO = (A.B) + (B.CI) + (CI.A)

Z = A⊕B ⊕ CI

In the present research, the full adder is implemented as a Mirror Full Adder. It optimizes the

output signals and consists of 28 transistors totally (4 transistors used for the construction

of two inverters), as shown in Fig. 3.3(a). The design symmetry of the mirror adder makes

the layout design much easier. Fig. 3.3(b) and Fig. 3.3(c) shows the layouts of full adder

cell with two different pin orders.

The aspect ratio (L/H) of both the layouts is 2.417. For the ”Normal Cells” design case, the

cell in Fig. 3.3(b) is used, while for the ”Flipped Cells” design case, both the cells shown in

Fig. 3.3(b) and Fig. 3.3(c) are used.

3.1.3 Design Constraints

Looking at Fig. 3.2 and Fig. 3.3, it can be seen that the cell layouts are not optimized for area.

It is entirely due to the fact that we are focusing on impact of pin placement and following

relative comparison of design cases by employing same kind of cells, so presently, the area

optimization is not a major concern. As we follow a semi-custom design approach for the

multiplier design as a whole, where full custom cells are being used along with the foundry

provided cells, so we have following design constraints to harmonize integration of custom

library cells.

• The naming convention is kept consistent to standard cell libraries.

• Cell pins, with the exception of abutment pins (vdd and gnd) must be placed on the

intersections of the vertical and horizontal routing grids.

13



Chapter 3. Custom Cell Design 14

(a) Full adder schematic

(b) Layout of full adder cell used in normal case

(c) Layout of full adder cell used in flipped case

FIGURE 3.3: Full Adder cells

• The widths and heights of the cells are kept multiple of the metal 1 and metal 2

pitches, respectively.

• The heights of all the cells are made equal to the standard row height (3.92 m) in order

to make the P&R job easier.

14



Chapter 3. Custom Cell Design 15

3.2 Verification

A successful Design Rule Check (DRC) ensures that the layout conforms to the rules de-

signed/required for faultless fabrication. However, it does not guarantee if it really repre-

sents the circuit you wish to fabricate. This is where a Layout Versus Schematic (LVS)

check is used.

There are several vendors that provide tools to perform these checks. The licensing issues

hindered the usage of other tools, hence Calibre Interactive by Mentor Graphics was used

to perform DRC and LVS. The detailed procedure of setting up the tool and using it can be

found in [9].

3.3 SPICE Netlist Generation

Once all the violations in the layouts are fixed, we are ready to perform parasitic extraction.

The Post-Layout Simulation (PLS) tool-kit by STMicroelectronics is used to automate in-

terconnect RC parasitics extraction from a GDSII database and a CDL netlist to a SPICE

netlist at device (transistor) level [10]. The PLS graphical interface manages all the steps

starting by the LVS verification of the design, the parasitic extraction, up to the conversion

and packaging of the extracted netlist to netlists that can be simulated by the supported

simulators.

The PLS tool can be invoked either from the Cadence Layout or Schematic editor. In the

present research, we used PLS flow based on textual netlist import. To perform LVS verifi-

cation, Calibre from Mentor is used while the interconnect parasitic extractor tool supported

is Star-RCXT provided by Synopsys. The target simulator used in PLS flow was Spectre.

After having a successful PLS flow, we get a set of textual cellviews that are simulable

extracted netlists, and a set of graphical cellviews that are usable as stopping views in the

Analog Artist Simulation Environment. The SPICE netlist generated is used in library char-

acterization process. The detailed process of characterization is discussed in Chapter 5.

15



4
Abstract Generation

Place and route tools do not require the full cell layout. They however, need geometric

information about the cells. Another view of the standard cells called the abstract view

contains all such information and needs to be generated. Abstract generator is a library

modeling tool that lets user create abstracts for standard cells, macro blocks, and IOs from

detailed layout information in Library Exchange Format (LEF), Design Exchange Format

(DEF), and Graphics Design Station II (GDSII) Stream formats [11].

4.1 Goals of Abstract Generation

The abstract view provides information like:

• Cell name, site name, cell orientation.

• Cell PR boundary.

• Pin names, locations, pin metal layer, type and direction (input/output/input-output).

• Provides location of all metal track and vias in the layout (obstructions).

16



Chapter 4. Abstract Generation 17

This information is passed to the P&R tool in the LEF format (Library Exchange Format).

The LEF file contains all the cell descriptions and may contain technology information if

needed. Fig. 4.1 below shows the abstract view of a simple inverter as an example.

FIGURE 4.1: Abstract view of an Inverter

It is evident from the figure that abstract of a cell layout contains information only about

metal and via layers. The abstracts are used in place of full layouts to improve the perfor-

mance of P&R tools. After the P&R is complete, the abstracts are replaced back with the

layouts.

17
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4.2 Abstract Generator Environment

In order to generate abstract view of the cells, we need to import the GDS file containing

our standard cell layouts. This can be easily achieved by first exporting the standard cell

library to stream (GDS) format and then re-importing the GDS file into abstract generator.

By default five bins are available in the abstract generator to place cells with different pro-

cessing requirements. These are core, IO, corner, block, and ignore bins. Each cell in a

library is always contained in exactly one bin. All standard cells go under the Core bin.

Since we did not construct any other type of cells; except for the one needed to form PPRT

of the multiplier; so we confined ourselves to use only the core bin in present research.

There are three main steps and one optional step in generating abstracts.

• Generating the pins view.

• The extract view.

• The abstract view.

• Finally the verify step which is optional.

The resulting abstract view contains only the net and the blockage information. A LEF file

is then generated, using the Abstract view of the standard cells. The steps mentioned above

are discussed briefly in the following sub-sections.

4.2.1 Pins Step

While exporting standard cell layouts to the GDS file, all the information regarding pins is

lost. So we need to re-instate that information before proceeding. The abstract generator

derives pins from the text labels in the layout view and places the locations at the text origins.

The Pins step maps text labels to the metal layers, designating certain metal blocks as pins.

4.2.2 Extract Step

The Extract step merges metal blocks under the same net into one single net. It also traces

the connectivity between shapes and terminals, starting at the pin purpose shapes created

in the Pins step. It also changes any metal.pin layer into metal.net. The abstract generator

performs the following functions during the Extract step:

18
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• Extracts each terminal net, one shape at a time.

• Constructs the correct database model for strong, weak, and must connect pins.

• Creates library process antenna information for standard cells.

4.2.3 Abstract Step

The Abstract step copies the pin (net) information from the Extract step, and generate block-

ages for the metal and via layers (or any other layer that has been specified). These block-

ages tell the P&R tool (namely SoC Encounter); which parts of the standard cell to avoid

routing over with certain layers. The abstract generator performs the following functions

during the Abstract step:

• Adjusts pin shapes.

• Performs blockage modeling.

• Creates sites. The site tells the placer where it can place the cells and all cells within

the same bin are associated with the same site.

• Calculates overlap layers.

• Calculates and analyzes grid.

4.2.4 Verify Step

This is a not a mandatory step in abstract generation process and we can export the abstract

in LEF format without performing this step from the File menu. The abstract generator

performs the following functions during the Verify step:

• Checks terminals for any differences between logical and abstract views.

• Checks any pins and geometries off the manufacturing grid.

• Creates a small test design for each abstract and verifies whether it can be routed using

either Silicon Ensemble or Cadence Encounter.

• Verifies the geometry of each abstract in either Silicon Ensemble or Encounter.
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5
Custom Characterization

In order to form a custom cell library and to be able to read it into EDA tools, it requires

geometry information and timing characteristics of the library cells based on their physical

implementation (layout). The geometry information is captured by the abstract generation

process while Cadence Encounter Library Characterizer (ELC) can be used to generate tim-

ing, power and noise models of library cells for different process corners. Since this thesis

is the continuation of the previous research [5] carried out at Chalmers, so the scripts for

setting up the tool were used from the same work and modified accordingly.

5.1 ELC Basics

Encounter Library Characterizer is a characterization tool that supports characterization of

cells for timing, power, noise and statistical variation for different process corners. It accepts

SPICE or Spectre descriptions of the cells to be characterized and characterizes them for

timing, and optionally for power, noise and variation depending on the settings passed to it

[12].
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Encounter library characterizer characterizes input gate capacitance using both rising and

falling input signals while generates an output driving model called Effective Current Source

Model (ECSM). Three process corners, namely typical-typical (TT), fast-fast (FF) and slow-

slow (SS), are used to generate the output models. The ECSM model describes the effective

current for different combinations of input slew rates and output loading capacitances. The

output from ELC can be exported in LIBerty library (LIB) format. The LIB files from the

characterizer combined with the LEF files from the abstract generator define the cell library

of the custom cells.

ELC also has other inputs that specify the characterization environment. These support

files set tool configuration environment variables, database commands, simulation settings,

incremental characterization settings, variation parameters and miscellaneous settings like

the cell footprint information. These are discussed in detail in the following subsections.

Complete details about ELC may be found in [12, 13].

The results of characterization can be captured in the Advanced Library Format (ALF),

the standard Library compiler (lib) format, or both. The cell characterization is carried

out for Half Adder and Full Adder circuits, so designed to be used in the semi-custom

implementation of the rectangular PPRT of the HPM.

5.1.1 SPICE Input Files

Library characterizer requires following SPICE input files to setup the characterization en-

vironment.

• SPICE format subcircuit (SUBCKT) files of the cells to be characterized. Support for

both the SPICE and the Spectre descriptions are provided. The subcircuit description

includes all the transistors and local RC component circuits defined for each standard

cell.

• A SPICE-format device model file, which specifies the device parameters for the tech-

nology. It is usually provided by the foundry and is generally available in both the

SPICE and the Spectre formats. If more than one model files are used, they may be

invoked easily using the .lib command in SPICE specifying the process corner to be

used. The general format is:

.lib’<model1.sp>’PROCESS CORNER
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5.1.2 Command File

This file specifies the database commands that are used to access the library database for the

cell being characterized. A comprehensive list of the commands can be found in [13].

5.1.3 Configuration File

The configuration file (always called elccfg) is used to setup the session environment vari-

ables and settings. It include details like the format of the input subcircuit files (SPICE or

Spectre), device names in the model file (NSVT and PSVT for 90-nm STMicroelectronics

devices) and characterization settings. A complete list of the configuration variables can be

found in [13].

5.1.4 Simulation Setup File

This file contains the details about the SPICE simulation that is setup as part of the charac-

terization process. ELC runs SPICE simulations for the vectors it identifies and generates

for the cell being characterized through Piece Wise Linear (PWL) waveforms. More details

about this file can be found in [12].

5.2 Methodology

The flow shown in Fig. 5.1 produces the timing and power information of the custom library

cell(s) under consideration. This along with the LEF output from abstract generator fully

defines the custom library. Once the library and technology files for the cells are available

the characterization flow is complete and the custom cells may be read into Encounter with

the .lib and .lef files as inputs, for the use in semi-custom implementation of the HPM

multiplier.

The flow in Fig. 5.1 doesn’t capture the incorporation of custom cell library in Wired en-

vironment which is used as a frontend tool. However, it is evident from the outputs from

abstract generator and ELC that once a custom cell library is formed then, rest of the flow

follows same routine like any flow using foundry provided cell libraries.
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FIGURE 5.1: Custom characterization of cells using ELC

23



Part II

Layout Exploration



6
Methodology for Layout Exploration

In the study presented, an unconventional frontend design technique in Wired has been

combined with the conventional backend flow associated with the digital circuits and applied

to a library of cells custom created to test our hypothesis. The sign-off quality designs

are not yet produced due the fact that all the efforts have been put to evolve a reliable

methodology, where designers can employ custom library along with netlist from Wired

into the conventional SoC Encounter flow to achieve significant gains in time. The work

done as part of this project has opened up exciting opportunities in layout exploration. At

this point fully routed designs have been produced. The scope of this methodology is still

nascent and we hope that this work will enable accurate assessment of design decisions with

reasonable effort. Fig. 6.1 shows the outline of this flow.

The sections following this, details the flow from a layout standpoint. It is assumed that

complete HPM Wired descriptions are available as is the required RTL for the remaining

blocks that are not implemented in Wired.

25



Chapter 6. Methodology for Layout Exploration 26

FIGURE 6.1: Flow chart for a Wired Encounter Flow Methodology

6.1 Physical Synthesis -RTL Compiler

The parts of the design where the designers anticipate benefits from constraining the place-

ment are produced using Wired which is discussed in next section. Such parts in case of

HPM are the PPRT and PPG [5]. The remaining portions, namely: the input and output

registers, and the final adder remain as RTL implementations. These components are tech-

nology mapped to the 90-nm SVT library provided by STMicroelectronics, using Cadence

RTL compiler, allowing for the existence of the PPRT and PPG as blackboxes. This gives

rise to a block based or partitioned flow. The PPRT and PPG are incorporated into the design

using SoC Encounter via the DEF file produced by Wired.

During the course of this investigation, since work from past research was brought together,

so we rely on RTL netlists generated by Subramaniyan [5], but it is important to give an

overview of how it was done in order to understand the underlying methodology.

The RTL for the HPM was generated from a PHP based generator maintained by Magnus

Själander [14]. In order to accommodate the goals of this thesis, the RTL for the PPRT and

PPG is replaced by the blackbox descriptions. This is implemented at the logic synthesis

phase in RTL Compiler, where a technology mapped netlist of the HPM is modified to match

the hierarchy and the port names with the one produced in Wired [5].
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6.2 Wired as Frontend

A netlist consisting of the PPRT and the PPG was implemented using Wired for the purpose

of this study. Wired is a hardware description language based on the functional program-

ming language Haskell [15]. It elegantly describes the logic functions and cell placement

of a design and is wire-aware, in the sense that basic timing information can be extracted.

Wired adopts an applicative style, using labels to describe the logical functions. In theory,

this means that we can dispense with any additional synthesis!

Wired also provides the designer with powerful tools like recursion and higher-order func-

tions making it extremely simple to describe regular hardware structures like the multiplier

reduction tree or prefix adders. Placement directives are simple descriptors to indicate the

relative placement of the cell(s). These are also applicative and are part of the description.

In order to allow interactive development Wired also provides a pictorial Postscript output.

Finally, in order to interface with the P&R tools, the complete description can be written out

in the Design Exchange Format (DEF). For a more detailed description refer to [16].

6.3 Backend Layout using SoC Encounter

The backend flow starts once a technology mapped netlist of the whole design and the DEF

output from Wired describing the placement aware blocks of the design is available. SoC

Encounter relies on number of commands, either based on Graphical User Interface (GUI)

or command line prompt or even both. In adopting a partitioned flow, we make use of both

of these types at different stages. The layout flow can be separated into four distinct steps,

namely:

1. Floorplanning and Placement

2. Power Planning

3. Clock Tree Synthesis (CTS)

4. Routing

These are usually applied interchangeably, depending on the design, but in general follow

the order listed above. In order to make the implementation flow clear, it is split into three

subsections in light of choosing to implement multiplier designs as test candidates for the
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FIGURE 6.2: Flow chart detailing the Backend synthesis flow in SoC Encounter

methodology, and given the fact that a partitioned flow is to be used by necessity. Further,

the layout steps listed above are highlighted as they appear in each implementation step.

Fig. 6.2 shows how these steps are applied in general.

6.3.1 Setting up the Design

The first step is to setup the complete design. In this case, the input and output registers,

and the final adder have distinct modules in the technology mapped netlist output from RTL

Compiler, while the PPRT and PPG appear as empty modules with port connectivity to the

rest of the design. The blackbox geometry is specified as a Library Exchange Format (LEF)

file. This is important as, it decides the initial area for the complete design. While it does not

have to be perfect, make sure a reasonable number is specified. It can be modified at a later

time in the flow. The complete design, the timing libraries, technology files and blackbox

LEF can now be imported into SoC Encounter with the switch to read empty modules as

blackboxes set.

Floorplanning and Placement

With the design imported into the SoC Encounter environment, the initial chip floorplan

with the design blocks placed outside should be visible. At this stage, discrete blocks like

input and output registers and final adder are created and pre-placed. The blackbox (es) may

be resized and/or re-specified if necessary. The required partitions are setup and pins are

28



Chapter 6. Methodology for Layout Exploration 29

assigned to them from the Edit -> Pin Editor menu. Also assign pins to the whole design

using the same menu (fix the pins if necessary). Commit the partitions and carry out an

initial non-timing driven placement to get an initial area budget. The partitions can be saved

by using the File -> Save -> Partition menu. Exit the design using freeDesign. This

command clears the design but keeps the Encounter session active. Listing the directories

reveals that under the partition directories, the following partitions files have been saved:

netlist, placement and Encounter configuration files.

6.3.2 Block Development

The previous step sets up the blackbox for further development. In this step we will complete

the layout of the blackbox for integration into the top level later on.

Floorplanning and Placement

In order to read DEF netlists into Encounter, we must first have the standard cell libraries

along with our custom cell library and technology files (LEF’s) loaded. These are loaded us-

ing the loadLibrary and loadleffile commands respectively. These commands can

be collectively put into a script file that can be sourced from within the Encounter session.

Once this is done, the DEF file for the block which was obtained from Wired is loaded us-

ing the loaddeffile command. This command causes the Wired <filename>.def

to be converted to <filename>.def.v for the use within the Encounter environment.

Once the DEF file is loaded, we are free to perform any minor placement changes neces-

sary, like creating fences or replacing components. The placement status of the PPRT cells

is changed to Fixed while PPG are re-placed (non-timing driven in this case, as there are

no synchronous elements), to get a better block floorplan. The status of the block is that it

is now pre-placed but still has no routing information. In keeping with the philosophy of

the flow so far, we have completed block development. Before proceeding further however,

a few things need to be done. Firstly, in order to be able to convey the block details to

the top level, save (replace) the netlist, that was originally saved while saving the partition.

Also save the placement information as <partition name>.place.gz. Secondly,

as previously indicated the DEF file read into Encounter creates <filename>.def.v.

Delete this file, so that no conflicts are caused when block assembly is carried out. Use

freeDesign to unload the design after all the relevant files have been saved.
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6.3.3 Block Assembly

Once all the blackboxes in the design have been developed, we can assemble the top level

design. This is easily accomplished through the updateBlock command [17] from the

design root directory. Before using this command check the top level partition configura-

tion file (<top level design name>.conf) to ensure that the blackbox LEF file is

removed (It gets saved when the partitions are saved). Run updateBlock to merge all

the block data into the top level. Running this command creates a flattened netlist of the top

level design. The design flow now reverts to the conventional flow.

Floorplanning and Placement

The top level design can now undergo a final pass on Floorplanning and placement. The

floorplan may be refined to get a better die area or aspect ratio. The timing constraints

for the entire design can now be loaded and timing driven placement (full or incremental)

can now be run. Care should be taken however, to ensure that all applicable placement

constraints are in place. In the Encounter environment, this can be checked easily through

the design browser.

Power Planning

Power planning involves setting up the power supply network to the whole chip. In case the

design in complex, modular power domains may be setup in order to ease the load on the

power network. The Encounter environment allows the user to setup power rings and stripes

through a GUI with a number of options. Power routing may be completed through the use

of sRoute command. There is also a GUI available for this under the Route -> SRoute menu.

This command sets up alternating rows of supply and ground rails across the area of the die

thereby enabling an abutted placement of standard cells.

Clock Tree Synthesis

Once the power planning step is complete, the clock tree may be routed globally. Encounter

setups the clock specification through *.ctsch files. These clock specifications can

either be manually created or Encounter can generate a default script that can be modified

to suit the design needs. Save the clock nets of the design and proceed to route the global

signals. The WRoute tool can be run to globally route only the clock and reset nets of the

design by directing the routing tool to route only the named nets. The routing mode is set to

global route with the timing driven option set. Proceed to detailed routing to complete the

entire routing of the design Routing Once the clock tree has been synthesized all other nets
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in the design may be routed. The WRoute tool can be invoked again, this time to run routing

on all nets. A number of modes are available to the user to completely route the design.

For the primary routing pass, choose Global and Detail Route with the timing driven option

selected. Depending on the complexity, a number of correction passes may have to be made

before a DRC compliant design is realized. Another routing tool called Nanoroute is also

available to perform the same tasks of global and detailed routing. This tool however is a

much more ”fine grained” tool than WRoute and performs better in optimizing the routing.

It is invoked during timing optimization runs post CTS.
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7
Results

The results presented in this section represents the work carried out in the course of this

whole thesis. It is based on a hypothesis and some predictions from the previous work [5].

The idea implies that by having different pin orientations of the cells might result in some

useful gain in terms of routing regularity thereby producing shorter routing wires and less

number of vias. The aim of the research was to develop a methodology for carrying out

the task defined above. The results obtained for the implementations of the test candidates

for the underlying methodology proved to be very promising in terms of wire lengths and

number of vias.

7.1 Test Case Implementation

The 90-nm GP library from ST is used for the physical synthesis of the rest of the blocks con-

stituting 32-bit HPM multiplier. The two cases of rectangular PPRTs defined in section 1.2

of the thesis were implemented by following same constraints. Timing-driven placement

was carried out with congestion optimization effort set to medium for both cases. Fig. 7.1

shows the placement of flipped cell case after power planning has been carried out. Since
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the layout for normal cell case is not that visually different from Fig. 7.1 unless it is zoomed

enough so that the pin names are visible, we elected not to have a screen shot of that.

Timing-driven routing was done using NanoRoute with congestion effort set to 2.

FIGURE 7.1: Power routed 32-bit rectangular HPM

Fig. 7.2 shows a blown-up view of the layout using flipped cells with customized pin loca-

tions. In this case, the pins are flipped about the x-axis with customized locations for the ’A’

and ’B’ inputs. As the results show, this minor change in placement turns out to be getting

better values in terms of wire length and number of vias.

(a) PPRT having normal cells (b) PPRT having normal and flipped cells

FIGURE 7.2: Magnified version of PPRT cells showing different pin placement
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7.2 Impact of Pin Placement

Table 7.1 shows the comparison results of the normal cell case and flipped cell case in terms

of slack, wire length and number of vias. The slack figure for normal case is much better

than the flipped case and it can be argued that the change in pin orientation didn’t result in

decent value in terms of slack. In order to get optimal slack values without losing substantial

gain in terms of wire length and number of vias, one has to try out different pin orientations.

If we consider total wire length or average wire length values, it is pretty evident that the

flipped case resulted in shorter wire length. Less wiring means impact of variability, in

terms of absolute performance drop, ought to reduce. Less vias means higher yield. Form

the table it is pretty evident that the flipped cell case has a lead on normal cell case in both

regards. This is an important breakthrough as now we can mitigate the variability issue even

on placement level.

Slack Total wire Avg. wire No. of
(ns) length (µm) length (µm) vias

Normal 0.259 230,058 57.3 39,784
Flipped 0.185 208,938 52.0 24,352
ST Lib. 0.804 165,783 41.3 41,110

TABLE 7.1: Comparison of wire length and number of vias for different implementa-
tions

Table 7.1 also shows the test parameter values for the design case which employs only

standard library cells. It is clear from the values that standard library cell case has better

values in terms of slack and wire length from any of the case which uses custom library

cells. It is because, the custom cells are not as compact and optimized area wise as compared

to standard library cells, and the cell optimization requires more time investment. Since the

focus of the thesis was to study impact of pin placement and not on having cells competing

standard library cells, so we stick with the cell layout which look pretty decent. As a passing

note, HA from custom library occupies the same area as the FA from ST library. Also the

number of vias value turns out to be much worse for ST. Library case and this is also due

to the same reason that non-optimized cells offer more space for over-the-cell routing thus

requiring less jogging.
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7.3 Conclusion and Future Work

The results presented above shows promising figures which leads to the fact that it is worth

investigating the presented idea further and applying it to various other test cases and see

the impact. From the perspective of the HPM for example, observations made in the results

indicate the following:

• Pin orientation does have impact on routing. By supplying cell with many differ-

ent pin placements, the overall wiring figures and number of vias tends to reduce.

Both reductions in wire length and number of vias advocate regular routing and lesser

jogging in metal layers. With shrinking process technologies, design variability is

becoming worse, so any assistance in making the regular design tends to improve the

variability.

• Although no power analysis was made in the present course of study, however the

results suggest that by constraining the number of layers used and having shorter wire

lengths, the power dissipation may be controlled as well.

• We need to have standard cell libraries providing various versions of same cells with

different pin orientations if one cannot change the pin order itself.

There are other possibilities that need to be investigated further; for example: what, if the

same idea is applied to other multiplier architectures like TDM (Three Dimensional Multi-

plier) or to arithmetic circuits exhibiting regular structures such as shifters and multiplexers?

Shall there be any considerable gains in terms of routing regularity or not? For the rectan-

gular HPM, only two different pin orientations were tried out in which only pin order of

not so important pins (A and B) were changed while the remaining pins remained more or

less same. This change caused gain in terms of wire length and number of vias but slack to

decrease as well which is an undesired effect. It would be very interesting to try out different

pin order for these pins as well and try to figure out optimal position.

In conclusion, the work carried out as part of this thesis presents design methodology to

mitigate variability effects in cell based layouts. A semi-custom approach has been fol-

lowed for HPM implementation which itself uses full-custom cells for the critical block i.e.

PPRT. Since the present research was a continuation of research being made at department,

it complements the Wired-Encounter methodology developed by Subramaniyan.
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