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Abstract 

Microelectrode Recording (MER) that can measure the activity from individual 
neurons is a popular method for target nucleus localization used during deep brain 
stimulation for Parkinson Disease (PD). Currently, MER assessment is performed by 
experienced neurologists during the surgery by analyzing the audio and visual 
conversions of the MER signal. The process of MER signal assessment could increase 
the patients’ burden since patients are awake during the surgery. 

In this thesis, an automated localization algorithm was developed, which could 
provide reliable and fast target nucleus localization. Firstly, MER signal was 
separated into: background noise, action potentials and artifacts. Then the best 
indicators were chosen for developing the targeting algorithm by extracting multiple 
computational features and comparing the performance among them. The tests were 
performed afterwards to validate the efficacy of the resulting algorithm. The overall 
result was that 89% agreement level was achieved from the comparison between the 
annotations from automated algorithm and three independent neurologists’ 
annotations. 

Keywords: Deep brain stimulation, microelectrode recording, signal components 
separation, feature extraction, threshold detection, target localization.
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Abbreviations 

PD: Parkinson Disease 
DBS: Deep Brain Stimulation 
MER: Microelectrode Recording 
STN: Subthalamic Nucleus 
SN: Substantia Nigra 
AC: Anterior Commissure 
PC: Posterior Commissure 
SNc: Substantia Nigra Pars Compacta 
GPe: Globus Pallidus External 
GPi: Globus Pallidus Internal 
ISI: Inter Spike Interval 
MBI: Modified Burst Index 
CL: Curve Length 
ANE: Average Nonlinear Energy 
AAD: Average Absolute Difference 
PR: Pause Ratio 
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TI: Tonic Index 
PS: Poisson Surprise 
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Preface 

This is a master thesis report for the master program Communication Engineering at 
Chalmers University of Technology. The thesis work was performed at Philips 
Research in Eindhoven, Netherlands from 2009-03-01 to 2009-11-30. The objective 
of this thesis work is to develop an automated target localization algorithm for the 
Deep Brain Stimulation) neurosurgery.  

This report is organized in the following way: 

In chapter 1, the necessary background information for this thesis work is introduced 
regarding the pathology of Parkinson Disease (PD), Deep Brain Stimulation (DBS) 
and the basic concept of microelectrode recordings (MER). The objective and the 
work flow of this thesis are also briefly described.  

The following chapters are the detailed descriptions of the processing and analysis of 
the MER signal. In chapter 2, according to thesis work flow, background noise level 
estimation is applied to the raw MER signal using three different methods. Then, 
artifact rejection and spike detection algorithm are performed with respect to the 
estimated noise level. 

In chapter 3, multiple computational features are introduced separately for the purpose 
of target nucleus localization. The feature extraction is applied on several types of 
transformed MER signals. Good features that can indicate the locations of brain 
structures, like subthalamic nucleus (STN) and substantia Nigra (SN) will then be 
chosen for developing the target localization algorithm. 

Chapter 4 describes the automated target localization algorithm. Following the 
development of the targeting algorithm, the test and the analysis of the resulting 
algorithm are applied.  

The conclusion and possible future work are presented in Chapter 5.
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Chapter 1 Background Information 

1.1 Parkinson Disease 

1.1.1 Pathology of Parkinson Disease 

Parkinson Disease (PD) is a chronic and progressive disease. This disease belongs to 
the group of movement disorders, which mostly happens among people older than 60 
years old. The specific causes of PD remain unknown and the symptoms of PD are 
varying from patient to patient. However, tremor, rigidity, bradykinesia and postural 
instability are considered as four cardinal symptoms for this disease[1]. Tremor 
describes a rhythmic and involuntary muscle movement. Rigidity refers to the 
resistance to passive movement of the patients. As to bradykinesia, it is defined as the 
slowness of PD patients’ movement. And postural instability, which usually appears 
in the late stages of PD, means that the movements of PD patients are not stable, so 
they have poor balance and may easily fall.  

The basal ganglia area of the brain has become an interesting region to study due to 
clinical observations of PD and other kinds of movement disorders disease. The basal 
ganglia area consists of following interconnected nuclei: the striatum that composed 
of two nuclei caudate and putamen, the external and internal segments of globus 
pallidus (GPe & GPi), subthalamic nucleus (STN), and substantia Nigra (SN)[2]. The 
relative locations of these nuclei are shown in Figure 1.1.  

 

Figure 1.1 The Basal Ganglia area. Main nuclei within the Basal Ganglia area of the brain are: striatum, 

GPe, GPi, STN and SN. (Figure adapted from [3].) 
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The signal transmission for movement control could be seen as a closed circuit 
(Figure 1.2). Functionally, the basal ganglia nuclei take part in excitating and 
inhibiting movement, controlling the action selection and timing issues. The output of 
basal ganglia projects onto the thalamus, which in turn projects to the cortex (the 
highest processing center in the brain).  

Motor Cortex

D1  Striatum  D2

SNcGPe

STN GPi

Thalamus

 

Figure 1.2 Neural network for movement control (normal). Neural Signal Transmission for Movement 

Control is started from the nucleus SNc, the output projects to striatum, which then goes via direct and 

indirect ways to GPi. After that, the Output signal from GPi delivers to thalamus that direct 

communicates with Motor Cortex. 

Substantia nigra pars compacta (SNc) is a portion of SN. The transmitted signal from 
SNc projects to striatum at first. Then at striatum, the dopaminergic input from the 
SNc affects two dopamine receptors D1 and D2, respectively. The transmitted signal 
excites D1 receptors, but inhibits D2 receptors. After that, the output of the striatum 
projects to the GPi via two links. One is the “direct pathway” that excites movement. 
The other is “indirect pathway” that inhibits transmission from the striatum to the GPe. 
The output signal from GPi will project to thalamus and communicates with cortex 
directly. 
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For a PD patient, the dopaminergic neurons degenerate in the SNc. Because of this, 
the signal transmission though both the direct and indirect pathways are altered in PD 
patients when compared with the healthy people. In the direct pathway, the inhibition 
signal projected from striatum to GPi reduces, which then leads to the decrease of 
inhibition of neural activity in the GPi. On the other hand, in the indirect pathway, the 
inhibition signal from GPe to GPi decreases and at the same time the excitation signal 
from STN to GPi increases. The signal transmitted both in the direct and indirect 
pathways lead to the hyper-activity in the GPi. The consequences are the increased 
inhibition signal in the thalamus, which finally inhibits the control of voluntary 
movement through the projections from thalamus to motor cortex[4]. Moreover the 
imbalanced signal transmission in the direct and indirect pathways also leads to a 
synchronized oscillatory neuronal activity in the basal ganglia area within the 
frequency ranged from 3 to 30Hz[5]. Figure 1.3 shows the abnormal neural signal 
transmission in a PD patient. 

 

Figure 1.3 Neural network for movement control (PD patient). Neural Signal Transmission in a PD 

patient is different from Figure 1.2 (neural signal transmission for healthy brain). Due to the 

dopaminergic neurons degeneration in SNc, the signal transmission in both direct and indirect ways 

changed. The hyper-active signal in GPi finally leads to the increasing inhibition signal back to cortex. 
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1.1.2 Treatment for Parkinson Disease 

At the beginning stage of PD, when dopamine starts to degenerate in the SNc, the 
brain can dynamically adapt to its loss through compensating the movement control 
via other neuron signal transmission circuits within the brain. However, at the level 
that about 80% of dopaminergic neurons degenerated in the SNc, the cardinal 
symptoms of PD start to show up. Since pathological and synchronized neuronal 
activities of the affected nuclei result from the absence of dopamine within the basal 
ganglia area, the treatment for PD is either to improve the dopamine level in the basal 
ganglia or to disrupt the synchronization between these nuclei in order to retrieve their 
independent firing.  

The medication treatment for PD is trying to improve the level of dopamine in the 
basal ganglia area on the brain. Levodopa is widely used for the treatment since it can 
transform into dopamine and reduces the effect of the SNc degeneration. However, 
levodopa does not only increase the concentration of dopamine within the basal 
ganglia area but also increase the dopamine level in the other brain areas and 
introduces some unwanted side-effects[1]. 

Treatment that can be considered at advanced stages of PD is neurosurgery. Lesion 
surgery is the earliest surgery that ablates several nuclei affected by the loss of 
dopaminergic neurons in the SNc. Specifically, the ablated nuclei are: STN, GPi or 
the thalamus. After lesioning, the symptoms of PD patients reduced dramatically. 
However, the procedure of lesioning may lead to potential damage to the neighboring 
brain structures and introduce unwanted side-effect. In 1950s, electrical stimulation 
was accidently applied during lesioning surgery and the reducing of the PD symptoms 
are observed without nuclei ablation, which on the other hand means it is much safer. 
As a result, electrical neuro stimulation surgery has gradually replaced the lesioning 
surgery. And this electrical neuro stimulation surgery is the so called Deep Brain 
Stimulation (DBS) [4].  
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1.2 Deep Brain Stimulation 

Deep Brain Stimulation (DBS) is a neurosurgery to treat PD and other kinds of 
movement disorder diseases. By implanting a small electrode within the target 
nucleus, either the STN or the GPi in the basal ganglia area of the brain and then 
applying high frequency electrical stimulation at 130-185Hz [4], the pathological 
neural activities in the target nucleus could be altered.  

 

Figure 1.4 Deep Brain Stimulation (DBS). For DBS surgery, an electrode is implanted in the brain for 

applying high frequency stimulation. The electrical impulse is delivered through wire connection from 

pulse generator that embedded under collar bone. ((Figure adapted from [6].) 

1.2.1 Mechanism of Deep Brain Stimulation 

One hypothesis of DBS’s action mechanism is that DBS acted as a functional lesion. 
With respect to the cardinal features of the movement disorders, lesioning and high 
frequency stimulation lead to similar clinical results. However, evidence later 
suggested that DBS stimulation not only suppress local neuronal activities but also 
increase the output from the stimulated target nucleus. Whether high frequency 
stimulation leads to the direct neuronal blockage or causes the activation of inhibitory 
elements has not been clarified, but it has been proved that the mechanism of DBS is 
more complicated than lesioning [4].  
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1.2.2 DBS Procedure 

The procedure of DBS surgery is composed of two parts. The first part is the 
stereotactic neurosurgery that involves implanting a small electrode at the target 
location inside the brain. And the second part is to embed a pacemaker under the 
collarbone of the patient. The pacemaker connects to the electrode through a hair-thin 
wire. Thereby, it can deliver electrical impulses to the electrode to apply high 
frequency stimulation at target location. The surgical time spend on the first part for 
electrode implantation is around 6-8 hours, thus the second part often takes place on a 
different day.  

As to the part of electrode implantation, the work flow is shown in Figure 1.5: 

Trajectory 
Determination

Target 
Localization

Test 
Stimulation

Electrode 
Implantation

 

Figure 1.5 Electrode implantation work flow. Before DBS electrode implantation, there are three pre 

steps: trajectory determination, target localization and test stimulation. 

The first step is trajectory determination. Before the surgery, the neurosurgical team 
first needs to determine a suitable trajectory and an estimated target point for 
electrode implantation. Trajectory is determined through visually analyzing the 3D 
medical images, such as MRI scan. With respect to the anatomical landmarks AC (the 
anterior commissure) and PC (the posterior commissure), a trajectory is planned 
which reduces the risk of penetrating any critical cerebral tissue. MR image also helps 
to give suggestion about the approximate estimated target nucleus STN, but it is not 
accurate enough because the STN is located in the gray matter regions of the deep 
brain, the size of it is very small, and the contrast of it is relatively poor compared 
with the surrounding structures on MR image. Moreover, the actual optimal location 
for applying high frequency electrical stimulation within STN varies from patient to 
patient for DBS surgery. Therefore, imaging alone cannot provide accurate target 
location and a more accurate localization method is needed, which is the necessary 
step after trajectory determination.  

Electrophysiology is the most popular way to pursue accurate target localization. It is 
performed by MER. Nowadays, the experienced neurologists assess the MERs and 
indicate the target location during the surgery. More details about MER are presented 
in Chapter 1.3. 
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After accurate target localization, high frequency stimulation is applied at several 
locations within the target nucleus. This purpose of this step is to choose the target 
location for final implanting DBS electrode that can reduce the symptoms of PD 
without introducing any side effect. 

1.3 Microelectrode Recording 

The cellular membrane of a neuron acts as a capacitor. Through rapid transient 
changes of the membrane potential (action potential), neurons are able to transmit 
information by electrical means and generate extra cellular currents and electrical 
fields. By detecting and recording the electrical signals, microelectrode can measure 
the neuron activity from individual neurons within 100 to 200 microns. 

The tool for microelectrode recording (MER) is a microelectrode needle with tiny 
probes, which can measure the action potentials from individual neurons within the 
local vicinity of the probe tips. Usually, five probes are placed about 2mm away from 
each other in a ‘diamond pattern’. According to anatomical directions (Figure 1.6), 
the recordings we got correspond to five probes are named with central, medial, 
lateral, anterior and posterior.  

Dorsal 
Anterior

Lateral

Posterior
Ventral

Medial

 

Figure 1.6 Anatomical Directions [7] 

With respect to the determined trajectory, the microelectrode probes are slowly 
inserted into the brain in a stepwise manner. Usually, it starts recording about 8 to 
10mm above the dorsal border of the target nucleus till 4mm below the ventral border 
of it. The recordings start and end at the same time for all five probes. And the 
recording duration for each location is normally about 10 or 20s. The sampling rate of 
MER signal is typically 12 or 24 kHz. After each recording, the MER needle will go 
0.5mm deeper into the brain and start new recording.  
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Three MERs shown in Figure 1.7 were obtained at different locations inside the brain 
from the central probe. It can be seen that signal characteristics of these recordings, 
such as the signal amplitude and the background noise level changed a lot for 
different locations. Therefore, it is possible for the experienced neurologists to 
distinguish the recordings from different nuclei through both visually and audibly 
looking into the MER signals, and then make annotations of the target nucleus during 
the surgery.  

 

Figure 1.7 MER signal from different locations. Here shows three traces of MER signals recorded 

from three traces at different locations in the brain. The characteristics of the signal altered with respect 

to different location information.  
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1.4 Thesis Objective 

The MER assessment requires a lot of neurologists’ experience, so it is subjective and 
time consuming. Due to this, it is necessary to develop a supportive tool for assisting 
neurologists to process and analyze the MER signals. 

The objective of the current work is to develop an algorithm for automated 
localization of STN from MER and also validate the algorithm by comparison to 
clinical ground truth data. 

According to the objective, my thesis work is to first perform MER signal processing 
and analyzing and then develop an automated target nucleus localization algorithm for 
DBS electrode implantation. The target nuclei are STN and SN. STN is the target 
nucleus for implanting DBS electrode. And the reason for also locating SN is that it is 
very close to the ventral border of STN, so targeting it can increase our accuracy level 
of targeting the ventral border of STN. 

1.5 Data Collection 

A total of 84 data sets used for this study were obtained during DBS surgery at 
Academic Medical Centre hospital in Amsterdam, the Netherlands. The target nucleus 
for DBS surgery is STN. Each dataset contains MER signals recorded from all depths 
of five probes. 14 datasets were randomly chosen as training data sets to develop the 
targeting algorithm. And the rest 70 data sets were used to test the effectiveness of the 
resulting algorithm. 

1.6 Thesis Work Flow 

The structure of my thesis work can be divided into the following three tasks: 
 Signal Components Separation 
 Feture Extraction 
 Target Localization Algorithm Development 

The flow chart is illustrated in Figure 1.8: 

  



10 

 

Spikes

Target Localization
Algorithm Development

Noise

Raw 
Signal

Artifacts

Signal Components Separation

Features Extraction

 

Figure 1.8 Thesis work flow. The three tasks are: signal components separation, feature extraction and 

target localization algorithm development  

The first crucial element of the work flow is to separte the 3 different signal 
components: noise, spikes and artifacts. The reason is that all of the signal 
characteristics for neurologists to distinguish the locations of STN or SN are 
depending on the changes of either background noise or spikes. Signal components 
separation is not an easy task because the MER signal we are dealing with is 
non-stationary, so the properties of it may vary from time to time. Besides, the 
background noise level is high and some of the artifacts look similar to real spikes 
thus cannot be easily distinguished from each other. 

After that, with all three signal components separated, the next step is feature 
extraction. Based on the signal characteristics of the target nucleus, multiple 
computational features are extracted from the 14 training datasets. The purpose of this 
step is to find out the good indicators that show distinct characteristics for the target 
locations. The results of all features are compared with the neurologists’ annotation 
afterwards and the best indicators are then integrated for the final step of developing 
the STN and SN localization algorithm.   
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Chapter 2 Signal Components Separation 

2.1 MER Signal Composition 

The raw MER signals consists of three distinct components: background noise, action 
potentials and artifacts.[8] One recording of raw MER signal was shown in Figure 2.1.  

 

Figure 2.1 Raw MER signal. The raw MER signals is the combination of three distinct signal 

components: background noise, action potential and artifact.  

The background noise is essentially the broad-band white Gaussian noise generated 
by the background neuronal activities, the electrical interference and other noise; 
Typically, the amplitude for background noise is from 2 to 6µV.  

The action potentials, or say the spikes, are the neuronal activities recorded from 
nearby one or more neurons in a local region. Specifically one spike is composed of a 
positive part and a negative part as shown in the Figure 2.2. The average total 
duration for one spike is about 1-2ms. The time interval between the positive peak 
and the negative peak is around 0.5ms. The average peak amplitude is about 70µV, 
and normally it will not exceed 150µV.  
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Figure 2.2 Spike. One typical spike has total duration approximately 1ms and positive to negative peak 

interval 0.5ms. 

As to the artifacts, they may either result from the mechanical oscillations of the 
sterotactic frame that attached to the patient’s skull or due to patient’s speaking during 
the surgery. Typical artifact signal is oscillatory and compared with the background 
noise and action potentials, the amplitude of the artifact is extremely high (Figure 
2.3).  

 

Figure 2.3 Artifact. One typical artifact has extremely high amplitude and compared with background 

noise and spikes. Oscilation is another characteristic of it. 
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2.2 MER Signal Components Separation Procedure 

Three crucial elements for signal component separation were respectively noise level 
estimation, artifact rejection and spike detection. The Noise level estimation was 
applied first to the MER signal. The following steps of artifact rejection and spike 
detection algorithm were both determined relative to the estimated noise level.  

 

Figure 2.4 Procedure of signal components separation. Three steps for signal components separation 

are: noise level estimation, artifact rejection and spike detection. 

2.2.1 Noise Level Estimation 

The first step of signal components separation was to estimate the noise level bcause 
the background noise level tended to be stable during one single recording. We have 
tried three methods for noise level estimation: rms method, median method and 
noisemode method. 

2.2.1.1 The Rms method 

The conventional way for noise level estimation is to compute the standard deviation 
(rms) of the overall raw signal[8]. However, the drawback of this rms method is 
significant. This method is quite sensitive to the high amplitude ‘outliers’, even if 
only a small portion of the signal is contaminated. So the estimated noise level would 
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be accurate only if the whole recording is composed of just background noise. 
However, for our case, the spikes and artifacts are present in the recordings quite 
frequently and their amplitudes were much higher than the background noise.  

2.2.1.2 The Median method 

A better way for noise level estimation is the median method[8]. For gaussian 
distributed signal, the median of the absolute value of the signal and its standard 
deviation are proportional. By first taking the median of the absolute value of the raw 
signal, and then divided by a constant factor, we can get the estimation of the noise 
level. 

{ }
0.6745N

median X
σ =

 
 

2.2.1.3 Comparison of the Rms method vs. the Median method 

The comparison of the rms method and the median method for noise level estimation 
was shown in Figure 2.5. The simulated signal was white gaussian noise (standard 
deviation equal to 1) added with artificial spikes. Each artificial spike had cosine 
shape with peak amplitude equal to 6 and total duration 2ms.  It can be seen from the 
figure that with the increase of spike number in one recording, the estimated noise 
using rms method started to deviate from actual noise level very fast. The estimated 
noise calculated from median method performed much better. The deviation to the 
actual noise level was very small with less than 50 spikes. So if only a small portion 
of one recording contains spikes or artifacts, even if it has much higher amplitude 
than background noise, the estimated noise level will be accurate. However, with 
more spikes in the recording, or say, a large portion of the signal is contaminated by 
those ‘outliers’, the estimated noise level is not accurate anymore and we need a more 
robust method for noise level estimation. 

 

(2.1) 
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Figure 2.5 Noise level estimation. The bottom red line is the actual noise level which is equal to 1. The 

blue curve is the estimated noise level calculated from the rms method and the cyan curve is calculated 

from median method. With the increasing number of spikes, the estimated noise level from rms and 

median methods deviate from actual noise level with different deviation rate. When there are more 

artifacts and spikes present in the recording, the performances of the median method are always better 

than the rms method.  

2.2.1.3 Noisemode method 

For the case that a large portion of the signal were composed of spikes and artifacts, a 
much complicated but robust method for noise level estimation was the noisemode 
method[8]. Unlike the previous two methods, noisemode method is based on the 
envelope of MER signal but not the raw signal(Figure 2.6). Compared to the raw 
signal, the envelope signal has less fluctuation and therefore can better indicate the 
actual noise level. 
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Figure 2.6 Envelope signal. The envelope of MER signal (red) was less fluctuating than raw MER 

signal (blue). 

The computation of the envelope signal is done by first taking the Hilbert transform of 
the raw MER signal x(t). H(x(t)) is the Hilbert transformed signal. 

( )( ( )) x tH x t dτ τ
πτ

+∞

−∞

−
= ∫  

                                                           
After that, a complex signal is constructed in the following way: 

( ) ( ) ( ( ))z t x t iH x t= +  

Z (t) is the envelope of raw MER signal. When the envelope signal obtained, the next 
step is to compute the amplitude distribution of the envelope (Figure 2.7). The reason 
that we turn to the amplitude distribution is that the amplitude ranges for spikes and 
artifacts are quite different from the background noise. Therefore, by limiting our 
histogram to cover only the range of data that is relevant to the background noise, we 
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found it fits Rayleigh distribution. (Theoretically, the envelope signal of white 
Gaussian noise follows Rayleigh distribution.)  

2

2 2( ) exp( )
2

z zP z
σ σ

−
=                                                            

The mode of Rayleigh distribution is most robust to the outliers. So the corresponding 
amplitude value is estimated as the background noise level.  

 

Figure 2.7 The envelope distribution. The distribution of the MER envelope is shown in blue and the 

red dashed curve is the standard Rayleigh distribution simulated in Matlab[9]. According to the plot, the 

envelope distribution closely follows a Rayleigh distribution. 

2.2.2 Spikes & Artifacts Detection 

After noise level estimation, artifact rejection and spike detection algorithm were 
applied to raw MER signal. Artifact rejection algorithm used an amplitude criterion 
relative to the estimated noise level. With all artifacts removed, the signal only 
contained the information of the background noise and spikes.  
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As to spike detection, we first set a threshold at 4 times the estimated noise level. For 
segments that exceeded this threshold, we then compared them with a spike template 
to check whether they were spikes or false positives. Figure 2.8 shows one example 
MER trace with all spikes and artifacts detected. 

 

  

Figure 2.8 Spike and artifacts detection. In the upper figure, the background noise is shown in blue. 

Detected spikes were marked in pink and the rejected artifacts were marked in cyan. The lower two 

plots were one single spike and one typical vibration artifact.  
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Chapter 3 Feature Extraction 

With all three signal components separated, the next step according to work flow was 
feature extraction [10]. 15 statistical measurements were calculated for each trace with 
each one extracted certain characteristic from the MER signals. The features’ 
performances for ideal MER signals were analyzed at first. All features were then 
applied to the 14 training datasets and compared with the clinicians’ annotation.   

3.1 Signal Characteristics of STN & SN 

Feature extraction was based on the characteristics of the target nuclei STN and SN. 
According to neurologists’ description, the signal characteristics of the target nucleus 
STN are[10]: 

a. An increase in the background noise; 
b. An increased density of neuronal discharge; 
c. An irregular high rate neuronal activity (bursting activity).  

Because of the high neuron discharge rate occurring in STN region, the amplitude of 
background signal increases significantly.  

As the microelectrode entered SN area, the high firing rates are observed as well. 
However, the characteristics of firing pattern are no more irregular bursting but 
periodic firing.  

The characteristics of different firing patterns are introduced in section 3.6. 

3.2 Signal Types for Feature Extraction 

According to these signal characteristics, feature extraction was applied to three types 
of signals:  

a. artifact removed signal 
b. spikes 
c. Interspike Interval (ISI) 

ISI is the time interval between each two consecutive spikes. 
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3.3 Feature Extraction Method 

Feature extraction was applied in the following way. For each dataset, all recordings 
from one channel (central, lateral, medial, anterior and posterior) were processed with 
the increasing depth value. Each recording corresponded to a depth value. Feature 
extraction was then computed for all depths with one feature value obtained 
corresponded to one depth value as well. An example is shown in Figure 3.1. 

 
Figure 3.1 Illustration of feature extraction. Here shows MER signals with the increasing depth value 

(-3.5mm to -1.0mm). One feature value corresponded to one depth value. 
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The next step was to look into the trend of feature values’ change with respect to the 
depth value (Figure 3.2). 

 

Figure 3.2 Illustration of feature extraction. Feature values were plot with respect to different depth 

value (location information). 

3.4 Features Based on Artifact Removed Signal 

Based on artifact removed signal, the features were calculated both in time domain 
and frequency domain. In time domain, the calculated features were: noisemode, 
curve length (CL), average nonlinear energy (ANE), and average absolute difference 
(AAD). 

The way to calculate noisemode was the same as what we did for noise level 
estimation. The only difference was that the input signal was without artifact thereby 
reduced the fraction of outliers in the signal. Figure 3.3 is an example of feature 
noisemode extracted for all depths from certain channel of one patient. The result 
proved the high background noise level for the target nucleus STN. It showed that 
when the probe entering STN, noisemode increased significantly and stayed at high 
value until it exited STN. For the region between STN and SN, noisemode stayed at 
low level. But as soon as the probe entered SN, noisemode value increased again, 
however, comparing with noisemode value obtained within STN area, the noisemode 
for SN area had lower background noise level.  
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Figure 3.3 Noisemode. Depths in red and green were where clinicians annotated as STN and SN area. 

(This was the way we marked clinicians’ annotation and it can be observed continually in the later 

figures.) The blue depths were the region outside of the target nucleus. It can be seen that Noisemode 

for STN and SN area were higher. The highest noisemode were obtained for STN area.  

Curve Length (CL)[10] refers to the cumulative amplitude difference between two 
consecutive signal samples in one recording. So it measured how fluctuating the MER 
signal was. High CL value should be observed for high background activities.  
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Figure 3.4 is the result of the CL measurement. Similarly to noisemode, CL increased 
when entered the target nuclei STN and SN. 
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Figure 3.4 Curve length (CL). STN and SN have higher CL value due to the high background noise 

level. 

Average Nonlinear Energy (ANE) [10] is the feature that measures the average energy 
difference between each signal sample and its two neighboring samples.  
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Again, Xi belongs to the artifact removed signal sample vector X={X1, X2, X3… XN}. 

Average absolute difference (AAD) is the average amplitude deviation of each sample 
from the average amplitude of all samples. It measures the average signal deviation to 
the mean signal amplitude.  
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These two features are shown in Figure 3.5. 
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Figure 3.5 ANE and AAD. Depths in red and green were where clinicians annotated as STN and SN 

area. ANE and AAD have similar properties to curve length and therefore show similar results. 

For the above three measurements (CL, ANE & AAD), if the whole trace mainly 
consists of background noise, moreover, the neuronal activities are contained in a 
small portion of the MER signal, these feature values would be close to zero.  

Besides, several features were also calculated in frequency domain. The reason we 
turned to frequency domain was that synchronized oscillatory activity in certain 
frequency bands was one characteristic of STN[5]. The interested frequency bands 
were: low frequency band (1- 9Hz), alpha band (9-15Hz) and beta band (15-30Hz). 
Corresponded to these frequency bands, three individual frequency indices were 
calculated: low frequency index (LFI), alpha band index (ABI), and beta band index 
(BBI). To calculate these indices, power spectrum (PS) of the rectified signal were 
calculated at first by taking the autocorrelation of the signal and then Fourier 
transformed them into frequency domain. Rectified signal is the square of the artifact 
removed signal subtract the mean of the signal. This procedure shifts the power 
spectrum of the original signal to lower frequencies and enhances the peaks of firing.  

Besides, an additional oscillatory index[5] (OI) was calculated. The forulars for these 
frequency indices are shown in Table 3.1. he frequency resolution for the power 
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spectrum was 1Hz/bin. The power spectrum of the first bin (0Hz) was excluded 
because it contains DC component that might lead to a high index value without real 
high neuronal activities happened. 

LFI (1 9 )
(1 150 )

PS HzLFI
PS Hz

−
=

−
 

BBI (9 -15 )
(1-150 )

PS HzABI
PS Hz

=
 

 

ABI (15 -30 )
(1-150 )

PS HzBBI
PS Hz

=  

OI (1-30 )
(1-150 )

PS HzOI
PS Hz

=  

Table 3-1 Frequency Indices 

Figure 3.6 and Figure 3.7 were two examples of frequency indices for two patients. 
Because of the inconsistence performance of these features, they were not chosen as 
final indicators for target nucleus localization. 

 
Figure 3.6 Frequency indices. For patient a (Case 1), LFI and OI decreased for STN area and there was 

no SN annotated. 
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Figure 3.7 Frequency indices. For patient b, LFI and OI obtained higher value for STN area. However,  

the trends of the rest two features ABI and BBI for the target area were not clear.  

3.5 Features Based on Spikes 

Based on spikes, we computed the compound firing rate, which was the number of 
spikes in one second. According to the Figure 3.8, high firing rates were observed for 
STN & SN area. It should be noticed due to the fact that MER signals also contained 
neuronal activities from nearby multiple units, the measured firing rate was actually 
the “compound firing rate” if no spike sorting algorithm applied beforehand. 
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Figure 3.8 Firing rate. The compound firing rates obtained within STN and SN area were much higher 

than other regions. 

3.6 Features Based on Interspike Intervals 

In order to distinguish different firing patterns, feature extraction was applied with 
respect to inter spike interval (ISI). There are three firing patterns: tonic, random and 
bursting. Tonic means the neuron fires periodically. Random means ISI follows a 
Poisson process. Bursting is similar to tonic firing, but for each period, firing is 
repeated. Three firing patterns are shown in Figure 3.9.  
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Figure 3.9 Firing patterns. Each pink delta impulse represented one spike in all of above figures. Tonic 

firing means neuron fires periodically. Random firing follows Poisson process. And the characteristics 

of bursting are periodicity and repeatability. 

Based on firing patterns, the calculated features were: the standard deviation of ISI 
(ISI rms), modified burst index (MBI), pause index (PI), pause ratio (PR), poisson 
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surprise (PS), tonic index (TI), and the entropy of ISI distribution. Formula 3.5a-d is 
the calculation for ISI rms, MBI, PI, PR and TI. 

#( 10 )
#( 10 )

ISI msMBI
ISI ms

<
=

>  

#( 50 )
#( 50 )

ISI msPI
ISI ms

>
=

<  

( 50 )
( 50 )
ISI ms

PR
ISI ms

>
=

<
∑
∑  

min(pre_interval,post_interval)
TI=

total_length
∑  

All features depended on ISI were computed first on the signal simulated in Matlab 
that has single firing pattern to see how it should behave in theory and then apply to 
all the training datasets. This was because for real MER trace, multiple units might 
fire simultaneously with different firing patterns. And the obtained MER signal was 
the superposition of all units. 

If one depth had less than ten spikes, we considered it as ‘missing data’, and 
artificially set all feature values to zero. 

Theoretically, tonic firing and bursting have smaller ISI rms compared to random 
firing. As shown in Figure 3.10(a), ISI rms for tonic firing stayed at zero no matter 
how firing rate changed. This was because the ISI for tonic firing was fixed. Due to 
the irregularity of neural activities, random firing always had the highest standard 
deviation of ISI. The performances of bursting were between tonic firing and random 
firing. For high firing rate, the values of ISI rms were all converge to 0. This trend had 
also been proved from the results of the training datasets. One example is shown in 
Figure 3.10(b). The target nuclei STN & SN have lower value than other region.   
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Figure 3.10 ISI rms. (a) Theoretically, with increasing firing rate, the ISI rms decreases for both 

random firing and bursting. Tonic firing had no ISI deviation because of its periodicity. (b) Particularly, 

for this training dataset, lower ISI rms had been observed for two target nuclei, which meant the neural 

activities for these regions were more regular. However, it can only distinguish between random and 

regular firing. For distinguishing tonic and bursting, ISI rms was not a good indicator.  

MBI[10] is the ratio of the count of ISIs less than 10ms to the count of ISIs greater than 
10ms. Bursting have more shorter inter-spike interval therefore should obtain high 
value as shown in Figure 3.11. 
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Figure 3.11 MBI. (a) Theoretically, when firing rate equaled to 100Hz for tonic firing, the length of ISI 

equaled to 10ms and therefore the MBI of it stayed at 0 all the time. MBI of random firing increased 

with increasing firing rate. As to bursting, the trend of MBI depended on how we constructed the firing 

pattern (such as the repeat time). (b) For one training dataset, it was observed that MBI values for the 

target nuclei STN & SN were higher when comparing with other regions.
   

PI[10] is the ratio of the count of ISIs that are greater than 50ms to the number less than 
50ms; Similarly, PR[10] is the cumulative ISI time that greater than 50ms divided by 
the cumulative ISI time less than 50ms. Tonic and random firing have longer ISI so 
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higher value of PI and PR were observed both for the simulated signal (Figure 3.12) 
and the training datasets (Figure 3.13). 

 

 

Figure 3.12 Theoretical PI & PR. PI and PR have similar characteristics. For high firing rate, the firing 

patterns converged to zero. As to low firing rate (less than 17Hz), random firing had the highest PI and 

PR. And for tonic firing, PR and PI always stayed at zero. The value of PR reduces according to the 

decreasing of ISI.  
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Figure 3.13 PI & PR for training dataset. Here is one typical result from the training dataset where low 

PR and PI value were observed for STN (bursting) & SN (tonic). However, for other regions (random), 

due to the non-stationary and multiple units firing, high values were not consistently obtained. 

The shannon entropy[11] of ISI measures the randomness of the spike occurance. It 
was calculated in the following way: the distribution of ISI was calculated at first 
(Figure 3.14).  
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Figure 3.14 ISI distribution. The graph shows one example of the distribution of ISI. Only the bins not 

equal to zero were contribute to the calculation of the entropy. 

None empty bins applied the formula 3.6 to get Sj: 

_ _
- _ ( )*log( _ ( ))j

None zero bins
S freq bin i freq bin i= ∑

 

Smax was calculated afterward with known the decided number of bins as formula 
3.7: 

max log(# )S bin=  

Using Sj and Smax, the obtained Shannon Entropy was shown in formula 3.8: 

max

max

jS S
Entropy

S
−

=  

Lower entropy corresponded to random firing pattern. For the regular firing patterns 
(tonic and bursting), the entropy was high (Figure 3.15). The result for training 
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datasets shown in Figure 3.16a had good performance because of the different 
engropy ranges for target nuclei and other regions. But it shoud be noted that the 
depths outside the STN & SN were artificially set to zero. If we didn’t consider firing 
rate as a constrain, then the result of the real entropy obtained (Figure 3.16b) was 
quite fluctuating and couldn’t be used for distinguishing the target nuclei from other 
regions. 

 

Figure 3.15 Theoretical entropy of ISI distribution. Because of regular neural activities of tonic firing 

and bursting, high entropy value should be obtained. On the opposite, the entropy values for random 

firing are quite low.  

0 10 20 30 40 50 60 70 80 90 100
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Firing rate (Hz)

E
nt

ro
py

 o
f I

S
I d

is
tri

bu
tio

n

 

 
tonic
random
bursting



36 

 

 

Figure 3.16 Normalized and real entropy of ISI distribution. The difference between the entropy 

calculated in (a) and (b) is that for (a), we artificially set the entropy value for depth with less than 100 

spikes to zero. And if that constrain removed, the performance of entropy measurement was not 

satisfied as shown in (b).  

TI was another feature based on ISI. For each spike in one recording, we peaked the 
shorter interval between previous ISI and the next ISI (Figure 3.17). TI is the ratio of 
the summation of all of these shorter ISIs to the summation for all ISIs.  
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Figure 3.17 TI. Red stem represent spike. The pre-ISI and post-ISI weee compared for each spike. The 

one with shorter lengh was chosen. And TI is the summation of all these short ISIs divided by total 

length of all ISIs. 
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Ideally, if the recorded MER signal was tonic firing, this index should be 
approximately equal to 1 (Figure 3.18 (a)). However, due to the multiple units firing 
and the different firing patterns combination, no clear trend was shown in the 
trainning datasets (Figure 3.18 (b)).  

 

 

Figure 3.18 Theoretical and real TI. For generated signal, TI for tonic firing was always equal to 1. 

The trend of TI for bursting was stable at high value too (around 0.9). Comparing with tonic firing and 

bursting, TIs for random firing were relatively low. When applying on training datasets, the trend of TI 

was not clear at all for distinguishing STN & SN. 

Neuronal signal processing was nonstationary, which meant the firing patterns of 
neuronal activity changed with time. In order to understand the changes of neuronal 
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activities, sliding window analysis was come in handy for extracting discernable 
information from different periods in one trace.  

Within each of these windows, the stochastic nature of the neuronal signal could be 
considered as stationary signal and the nature of the neuronal activities could be seen 
as random firing with ISI Poisson distributed. Poisson Surprise (PS)[12] was used for 
evaluating the probability of the occurance of irregular events. Therefore, PS was 
introduced as one measurement for distinguishing bursting and tonic activity.  

In the formula 3.9, n is the number of spikes contained in one window epoch (50ms), 
r is the averge firing rate computed in 1s interval that symmetrically around that 50ms 
window, and T is the time interval for the window size. Then, the probability P of the 
randomness within one window could be calculated by: 

- ( )
!

i
rT

i n

rTP e
i

+∞

=

= ∑        

PS is given by equation 3.10: 

- log( )PS P=           

The upper plot in Figure 3.19 was one trace of MER signals obtained within the STN 
area, and the lower plot is the PS. The window size was set to 50ms. High PS was 
observed for the window with much higher firing rate compared to the average firing 
rate. Since the way we calculated PS involved windowing analysis, it could not 
represent the firing patterns with one single value. However, if no windowing analysis 
applied, the result of PS measurement would be similar to TI. Due to the 
non-stationary datasets and multiple units firing, this feature was not useful for target 
nucleus localization. 

(3.9) 

(3.10) 
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Figure 3.19 PS. (a) shows the MER signal for one depth and (b) is the resulting PS computed from 

every 50ms window of the MER signal. Dense neural activities leaded to high PS since more spikes 

obtained with comparison to the average firing rate. The high PS values in the first 0.5s and the last 

0.5s were due to the transcending period. 

Chapter 4 Resulting Target Localization Algorithm 

14 datasets were randomly chosen as training datasets from 84 datasets that obtained 
from AMC hospital in Amsterdam. All of the above features were applied on these 
training datasets. After comparing them with clinical annotations, we found that any 
single measurement of neuronal activities was not reliable for target nucleus 
localization. Thus, the localization algorithm should be an integration of multiple 
measurements with each one carrying on certain independent information.  

According to the observation of feature performance in Chapter 3, we found the 
noisemode that indicated the increasing background noise level and firing rate that 
indicated the increased neural discharge rate had consistent good performance and 
were therefore chosen for developing STN & SN targeting algorithm.  
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The features based on artifact removed signal(CL, ANE, AAD) had similar 
performance to noisemode but with more fluctuation thus less optimal for applying 
threshold detection. Due to the non-stationary datasets and multiple units firing 
simultaneously, the trends for frequency indices had no regularity and cannot used for 
assisting target localization. 

For features depended on ISI, such as MBI, PI, PR, they showed certain 
characteristics for different firing patterns generated according to theory. But when 
applying to the real training datasets, it was hard for us to select baseline and applying 
threshold detection for target localization because of the intense fluctuation among the 
depths. 

Besides, the performance of the entropy of the ISI distribution was mainly depended 
on the changes of firing rate. Without taking firing rate into account, the entropy of 
ISI for real MER signals obtained from 14 datasets provided no useful information for 
distinguishing different firing patterns. The performance of TI was similar to the 
entropy of ISI. PS can distinguish different firing pattern for one single MER trace, 
using windowing analysis. But when we averaged the performance for the whole trace, 
the result would be similar to TI and it was therefore not used for developing the 
target localization algorithm. 

4.1 Target Nucleus STN Localization Algorithm 

Specifically, the development of our targeting algorithm was as follows: 

For STN targeting, we set thresholds for noisemode and firing rate respectively 
(Figure 4.1).  
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Figure 4.1 Threshold detection. Here shows one example from our training datasets. Noisemode and 

firing rate were calculated for all depths. The threshold detection was applied afterwards. The red 

dashed lines were the thresholds for noisemode and firing rate. 

For noisemode, each time when noisemode exceeded this threshold, it should be 
marked as a candidate STN depth. However, how to optimally set this threshold was a 
difficult problem. It was impossible to find the perfect threshold, but the threshold 
should be chosen in a way that false positive and false negative are both minimized 
when comparing with clinical annotation. Based on the trainning datasets, the final 
thresholding for noisemode was set to the median of noisemode baseline multiplied 
with a constant factor( chosen as 1.35), and the first 10 depths were chosen as 
baseline. These two values were chosen so as to achieve the highest agreement level 
with clinicians’ annotations.  

Similarly, for the other good indicator compound firing rate, the threshold was set to 
the average firing rate over all depths. 
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After running through all 14 datasets, there were two cases confronted with respect to 
noisemode and firing rate thresholds. The first case was that some depths survived 
from the noisemode threshold and some depths exceeded the firing rate threshold as 
shown in Figure 4.2.  

In order to annotate the dorsal border of STN, we first searched the first depth that 
exceeded both thresholds and marked it as depth ‘x’. From that depth ‘x’, we searched 
backwards till the depth that the noisemode wnet below threshold. The last depth that 
above the noisemode threshold was marked as depth ‘y’. Then, from that depth ‘y-1’, 
we checked its firing rate. If the firing rate was still above the threshold as shown 
Figure 4.2a, the algorithm would continually searching backwards and annotated the 
dorsal border of STN at depth before firing rate dropped below threshold. Otherwise, 
if the firing rate is already below threshold, we annotated the dorsal border of STN as 
shown in Figure 4.2b. 

 

 

Figure 4.2a STN detection (dorsal border). For this case, depth ‘x’ and depth ‘y’ were both located at 

depth +2.5mm. Firing rate for depth ‘y-1’ was still above the threshold. The depths marked in red were 

the annotated STN area. 
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Figure 4.2b STN detection (dorsal border). For depth ‘y’, the firing rate was already below its 

threshold. Depths in red and blue were the annotated STN and SN area from our automated algorithm. 

About the annotation of the ventral border of STN, from depth ‘x’, we searched 
forward and annotated the depth before it went back below the noisemode threshold. 
(Figure 4.3) 

 

 

Figure 4.3 STN detection (ventral border). The annotation of the ventral border of STN was only 

depended on noisemode. 
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The other case for STN targeting was that no depth survived from noisemode 
threshold but some depths exceeded the firing rate threshold. We first checked the 
consecutiveness of the depths that exceeded the firing rate threshold. If there was only 
one cluster, then all these depths in that cluster were marked as STN. If there was 
more than one cluster, we annotated STN area from the first depth in the first cluster 
till the last depth in the last cluster. 

 

Figure 4.4 STN detection (1 cluster). For this dataset, no depth exceeded noisemode threshold, but 

there was one cluster observed that exceeded firing rate threshold. 

 

Figure 4.5 STN detection (>1 cluster). If more than one cluster exceeded firing rate threshold, the STN 

annotation was start from the first depth of the first cluster till the last depth of the last cluster. 
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It should be noted that we were searching for the clusters that exceeded the firing rate 
threshold. Therefore, if there was just single depth exceeded the threshold but not 
consecutive depths, we would ignore it and considered it as random fluctuation. Also 
for this case 2, only firing rate was used for target localization, so the confidence level 
of our annotation was not as high as the case 1 when both noisemode and firing rate 
exceeded their thresholds. 

4.2 Nucleus SN Locating Algorithm 

Because of the confidence level issue, SN targeting only applied to case 1. From 
ventral border of STN, the algorithm continued searching forward for the increasing 
slope of noisemode after it dropped below its threshold. When the increasing slope 
observed, we then checked the firing rate threshold to see whether dense neuronal 
discharge rate was obtained as well. If yes, those depths would be annotated as SN 
area. One assumption of our algorithm was that there was at least one depth gap 
between STN and SN. (The noisemode value for the gap depth should be below the 
noisemode threshold). If no gap observed, SN would not be annotated and probably 
the remaining depths would be annotated as STN as well.  

 

Figure 4.6 SN detection. Depth +2.5mm and +3.0mm were the gap between STN & SN. The 

noisemode increased again from depth +3.5mm and stayed above the noisemode threshold. Besides, 
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the values of firing rate for depth +3.0mm to depth +4.0mm were above the threshold. Therefore, depth 

+3.0mm to depth +4.0mm were annotated as SN. 

 

4.3 Resulting Algorithm Analysis 

The results of the targeting algorithm was analized in the following way. The 
algorithm for STN and SN detection was first applied to 14 trainning datasets to 
obtain the automated annotations. Figure 4.7 is one example of resulting annotation: 
For this dataset, the annotated STN area from our automated algorithm was from 
depth -2.5mm to +3.0mm. And there was no depth annotated as SN. 

 

Figure 4.7 Resulting annotation. Here shows one example of the resulting annotation from automated 

target localization algorithm. Depths -2.5mm to +3.0mm were annotated as STN because of the high 

noisemode and high firing rate.  

The annotation result was then compared with the surgical team’s annotations made 
during DBS surgery. Besides, two independent annotations made by two neurologists 
were also involved in annotation comparisons.  
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Figure 4.8 Annotation comparison. Red, green and blue bar were clinicians’ annotation and the lowest 

cyan bar was our annotations. All clinicians’ agreed that from depth -1.5mm to +2mm were the regions 

of STN. Two clinicians agreed with us that depths -2.5mm, -2mm and +2.5mm were also belong to 

STN area. But for depth +3mm, no clinician agreed it should be annotated as STN, so probably this 

depth should be considered as false positive.  

Two neurologist only annotated the 14 training datasets to help us developing the 
automated targeting algorithm. Therefore, for the rest 70 datasets, the resulting 
annotations were only compared with the clinicians’ annotation made during the 
surgery. Table 4-1 shows the agreement level of the resulting annotations. 

Agreement Percentage 
Surgical Team 

(84 datasets)  

Expert 1 

(14 training datasets)  

Expert 2 

(14 training datasets)  

Automated Targeting 89% 85% 88% 

Table 4-1 Annotation agreement percentage between automated targeting algorithm and clinicians 

Additionally, the agreement percentage between these clinians’ annotations were 
calculated as well. And the results are shown in Table 4-2. 
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Agreement Percentage 
Expert 1  

% 

Expert 2 

% 

Surgical Team 87 88 

Expert 2 89   

Table 4-2 Annotation Comparison between clinicians 

For accurate localating the target nucleus, STN, the average deviation of border 
annotation was calculated. For both the dorsal border and ventral, the accuracy level 
were 0 ± 2 depths. (1 depth=0.5mm). This accuracy level was high so the result was 
quite satisfied.  
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Chapter 5 Conclusion & Future Work 

As the main conclusion, the objective of this thesis work has been achieved, which 
was to develop an automated target localization algorithm for assisting neurologist to 
make fast and reliable annotation. 

About the procedure of the study, first of all, the most robust noise level estimator 
was developed. With the accurate estimation of noise level, it was possible for the 
next crucial task of separating the MER signal into the components: background noise, 
spike and artifact. The information of background noise and spikes play an important 
role in target localization, since the annotations made by neurologists are mainly 
dependant on the characteristics of these two signals. Next, 15 statistical features are 
extract from the MER trace for distinguishing different signal characteristics. The 
noisemode, which can indicate the changes for target nuclei, and compound firing rate 
that changes according to the density of neural activities were chosen for developing 
the targeting algorithm for their consistent good performance. Threshold detection 
was applied to both features to achieve the highest agreement percentage with 
neurologists’ annotation. After applying the resulting automated algorithm to all 
datasets, a high agreement level was achieved and the accuracy level of targeting the 
border of the target nucleus STN was also high. 

It is still a tricky problem to distinguish different firing patterns for real MER signals 
for the fact that multiple units fire simultaneously, so it could be one possible topic for 
future work. With multiple units separated, the signal characteristics of firing pattern 
for one single unit would behave more close to the theoretical cases. And it would be 
particularly useful for distinguishing tonic and burst firing for two target nuclei STN 
& SN.    
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