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Hierarchical Portfolio Allocation in an Active Management Framework
ADNAN DEUMIC
JAMES MEIJER
Department of Mathematical Sciences
Chalmers University of Technology

Abstract
This master’s thesis focuses on developing and evaluating a hierarchical portfolio
allocation algorithm that combines hierarchical clustering and Markowitz Modern
Portfolio Theory while being adapted to an active management framework. Sixteen
different constellations were constructed and evaluated on equities return data from
01/03/1990 to 10/01/2022, using three different sets of observations as input and
five different performance measures.

The results demonstrate that the combination of Equal Risk Contribution and Sin-
gle Linkage generates the best outcomes. In general, the results also show that
Tracking Error is significantly smaller when Equal Risk Contribution is used as a
between-cluster allocation method. Moreover, the choice of linkage criteria is crucial
for cluster size and the numerical stability of the associated sample covariance ma-
trices. For instance, Single Linkage produces the smallest set of clusters, followed by
Group-Average Linkage, Complete Linkage, and Ward’s method. In addition, the
ordering of the leaves in the hierarchical structure did not have a significant effect
on the results. The suggested hierarchical portfolio allocation algorithm performs
consistently and is able to capture the hierarchical structure between assets during
different market conditions.

Keywords: hierarchical clustering, portfolio allocation, active management, mini-
mum variance, modern portfolio theory, graph theory, covariance matrix, correla-
tion, clustering.
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HCAA Hierarchical Clustering Based Asset Allocation
HERC Hierarchical Equal Risk Contribution
HPAA Hierarichal Portfolio Allocation Algorithm
HRP Hierarchical Risk Parity
MDP Maximum Diversification Portfolio
MPT Modern Portfolio Theory
MST Minnimal Spanning Tree
RC Risk Contribution
RP Risk Parity
SERC Single Linkage, Equal Risk Contribution
SEWE Single Linkage, Equal Weighting
SOERC Single Linkage, Optimal Leaf Ordering, Equal Risk Contribution
SOEW Single Linkage, Optimal Leaf Ordering, Equal Weighting
S&P 500 Standard & Poor’s 500
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Nomenclature

Below is the nomenclature of indices, sets, parameters, and variables that have been
used throughout this thesis.

Indices

i,j Indices for assets
t Time index

Sets

D Set of clusters indices for non-singleton clusters
E Set of cluster indices for singleton clusters
T Set of time steps

Variables

p Number of assets
α Excess returns
r

(t)
i Observed return of asset i between day t and t + ∆t

r(t)
zi

Normalized return for asset i

P
(t)
i Closing price of asset i at day t

w p-dimensional column vector of portfolio weights
wb p-dimensional column vector of benchmark weights
b(t) Bets at time t

b∗,(t) Optimal bets at time t

r
(t)
P Portfolio return at time t

rb Returns of benchmark
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r̄(t) Sample mean vector of returns at time t

σi Standard deviation of the returns of asset i

ρi,j Correlation coefficient of the returns for asset i and j

Σ True covariance matrix
C True correlation matrix
Σ̂ Estimated covariance matrix
S Sample covariance matrix
Ĉ Sample correlation matrix
D′ Dissimilarity matrix
D Distance matrix
S′ Similarity matrix
d Distance measure
d̃ Euclidean distance between columns of distance matrix
c Concentration ratio
κ Condition number
µC Mean vector of cluster
TO Turnover Ratio
Wk Within-cluster dissimilarity
k∗ Optimal number of clusters
kfinal Final number of clusters
∆k Difference between final number of clusters and optimal number of

clusters
θ Scaling vector
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1
Introduction

Portfolio optimization can be described as the process of allocating capital optimally
amongst a set of assets. The objective and constraints of the optimization are de-
termined by the preferences of the investor. Markowitz (1952) introduced Modern
Portfolio Theory (MPT), which is foundational in the field of portfolio optimization
and has been studied extensively. In essence, Markowitz’s mean-variance framework
yield the optimal portfolio which either maximizes the expected return given a spec-
ified level of risk, or minimizes the risk given a specified level of expected return.
This framework provides investors with an intuitive and practical approach to di-
versification and allocation of capital, which explains its appeal among researchers
and practitioners.

Even though MPT is optimal in theory, there are issues that arise when the theory is
applied in practice (Kolm et al., 2010). Firstly, MPT requires the estimation of ex-
pected returns, and secondly, the estimation and inversion of the covariance matrix.
Due to the inherently difficult challenges in estimating expected returns (Jagan-
nathan and Ma, 2003), many researchers and practitioners choose to aim attention
on estimating the covariance matrix. This has resulted in an increase in portfolio
allocation strategies that are risk-based such as equal risk contribution (Maillard et.
al, 2010) and maximum diversification (Choueifaty and Coignard, 2008). Nonethe-
less, there exist practical difficulties in estimating covariance matrices which can
lead to negative consequences for the risk-based allocation methods. The practical
difficulties are a result of the need to invert a potentially ill-conditioned estimated
covariance matrix, which often is the case in a high-dimensional setting. The in-
version operation of a numerically ill-conditioned covariance matrix augments the
estimation errors within the matrix, which results in a portfolio allocation that may
be far from optimal. DeMiguel et. al. (2009) argue that the naive approach of
allocating capital evenly amongst assets outperforms more sophisticated portfolio
optimization strategies. This may be a result of the negative effects of errors in
covariance matrix estimation that erases the benefits of portfolio optimization.

Consequently, in order to enhance the effectiveness and applicability of portfolio
optimization methods that rely on covariance matrix estimation, several different
areas of research have attempted to improve robustness and decrease the instability
of the estimation of the covariance matrix (Kolm et al., 2010). Such areas of research
include shrinkage estimators (Ledoit and Wolf, 2003), denoising of the covariance
matrix (López de Prado, 2020), multi-factor models (Fan et. al., 2008) and sparse
estimators (Levina et. al., 2008), to name but a few. The intensity of research

1



1. Introduction

dedicated to this area highlights the significance of portfolio optimization.

López de Prado (2018) proposed a new portfolio allocation strategy based on graph
theory and machine learning that circumvents the need to invert a covariance matrix,
and thus circumvent the issues with traditional risk-based optimization methods.
The method, referred to as Hierarchical Risk Parity, utilizes hierarchical clustering
to find groups of assets with related characteristics, and allocate capital using a
risk-based approach. Simon (1962) and Billio et. al. (2012) suggest that the fi-
nancial markets can be viewed as a complex system with a structure that can be
described as hierarchical with great interdependence and connectivity. Hierarchical
Risk Parity attempts to capture this notion of hierarchy and, by extension, improve
the diversification and robustness of portfolio allocation compared to other, more
traditional optimization strategies.

These portfolio allocation methods have all been studied and examined in a passive
setting, where returns and performance are measured in an absolute sense. For ac-
tive management, this is not the case as their performance is always related to a
benchmark. Additionally, different constraints on the portfolio allocation may exist
which increases the level of difficulty for active fund managers. The amount of liter-
ature regarding portfolio optimization in an active management framework is rather
small, especially concerning hierarchical methods. This thesis aims to expand and
contribute to this area of research. It is written in collaboration with the Second
Swedish National Pension Fund, which is an active management fund, and hence
this thesis aims to construct and evaluate a hierarchical portfolio allocation method
that is adapted to active management. In addition, this thesis attempts to develop
a set of different variations of the proposed hierarchical portfolio allocation method
to discover a favorable configuration of the original algorithm.

This thesis is organized as follows. In Chapter 2, definitions and theory concerning
covariance matrices are provided. Further, reasons for covariance matrix instabil-
ity are discussed as well as a description of active management is provided. In
Chapter 3 the theory behind hierarchical clustering and its relevance for portfolio
allocation is explained. Next, in Chapter 4, different portfolio allocation methods
are presented. Drawing inspiration from these methods, Chapter 5 describes the
hierarchical portfolio allocation algorithm proposed in this thesis. Chapter 5 also
introduces the performance criteria used to evaluate the allocation algorithms, as
well as a description of the data used in this thesis. The results obtained from
the proposed method are presented in Chapter 6. The obtained results are then
discussed and examined in Chapter 7. In chapter 8 the conclusions, remarks and
future research are presented.

2



2
Theory

This chapter presents the theoretical frameworks relevant for this thesis. More
specifically, definitions and theory regarding covariance matrices are presented, as
well as a description of the active management framework outlined by the Second
Swedish National Pension Fund. Finally, a discussion about the numerical instability
issues that arise when estimating the covariance matrix is presented in the final
section of this chapter.

2.1 Definitions
In this section, definitions of the variables used in this thesis are presented. First,
let

{
R

(t)
i

}
t∈T

be the stochastic process of the returns for asset i between time t and
t + ∆t where

R
(t)
i = P

(t+∆t)
i − P

(t)
i

P
(t)
i

(2.1)

and P
(t)
i denotes the price of the asset at time t. Asset prices are often modelled

as cumulative sums of mean-independent increments ϵ
(t)
i , meaning that E(ϵ(t)

i ) =
E(ϵ(t)

i |ϵ(t−∆t)
i = β), for any β ∈ R, such that

P
(t)
i = P

(t−∆t)
i + ϵ

(t)
i = · · · =

t∑
τ=0

ϵ
(τ)
i . (2.2)

Since the scale of the increments, ϵ
(t)
i grows with the level of P

(t−∆t)
i , P

(t)
i is consid-

ered to be a non-stationary random variable. However, since

R
(t)
i = P

(t+∆t)
i − P

(t)
i

P
(t)
i

=
∑t+∆t

τ=0 ϵ
(τ)
i − ∑t

τ=0 ϵ
(τ)
i

P
(t)
i

= ϵ
(t+∆t)
i

P
(t)
i

, (2.3)

the scale of R
(t)
i does not grow with the levels of P

(t)
i and, we assume that

{
R

(t)
i

}
t∈T

can be approximated as a stationary stochastic process.

Furthermore, denote the standard deviation of the stochastic process
{
R

(t)
i

}
t∈T

by
σi and the covariance between

{
R

(t)
i

}
t∈T

and
{
R

(t)
j

}
t∈T

as σij. Then, the true co-
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2. Theory

variance matrix is defined as

Σ =


σ11 σ12 σ13 . . . σ1p

σ21 σ22 σ23 . . . σ2p
... ... ... . . . ...

σp1 σp2 σp3 . . . σpp

 . (2.4)

Let ρi,j be the correlation coefficient between the return time series
{
R

(t)
i

}
t∈T

and{
R

(t)
j

}
t∈T

such that, ρi,j = σi,j√
σi

√
σj

. Then, the true correlation matrix C is defined
as

C =


ρ11 ρ12 ρ13 . . . ρ1p

ρ21 ρ22 ρ23 . . . ρ2p
... ... ... . . . ...

ρp1 ρp2 ρp3 . . . ρpp

 . (2.5)

A portfolio is defined as a p-dimensional column vector

w(t) :=
(
w

(t)
1 , w

(t)
2 , . . . , w(t)

p

)
,T (2.6)

where p is the number of assets and w
(t)
i represents the weight, or the proportion of

the total capital, assigned to asset i at time t. Note that the portfolio weights must
sum up to 1, i.e.

p∑
i=1

w
(t)
i =

(
w(t)

)T
1 = 1, (2.7)

where 1 = (1, . . . , 1)T .

The portfolio return
(
w(t)

)T
R(t), between time t and t + ∆t is

(
w(t)

)T
R(t) =

p∑
i=1

wiR
(t)
i , (2.8)

where R(t) =
(
R

(t)
1 , R

(t)
2 , . . . , R(t)

p

)T
.

Furthermore, the variance of the portfolio return is

Var
[(

w(t)
)T

R(t)
]

=
∑
i,j

ρi,jσiσjw
(t)
i w

(t)
j =

(
w(t)

)T
Σw(t), (2.9)

and the standard deviation is

σ
[(

w(t)
)T

R(t)
]

=
√

(w(t))T Σw(t). (2.10)
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Now, let ri =
(
r

(1)
i , r

(2)
i , . . . , r

(n)
i

)
be the time series of observed realisations of{

R
(t)
i

}
t∈T

. The Pearson sample correlation, ρ (ri, rj), between ri and rj is

ρ̂ij = ρ (ri, rj) =
∑

t(r
(t)
i − r̄i)(r(t)

j − r̄j)√∑
t(r

(t)
i − r̄i)2 ∑

t(r
(t)
j − r̄j)2

, (2.11)

and the sample standard deviation s(ri) of ri is

s(ri) =
√√√√ 1

n − 1

n∑
t=1

(
r

(t)
i − r̄i

)2
. (2.12)

where r̄i is the sample mean of ri. The sample covariance matrix S of the returns,
which is an estimation of Σ, is

S = 1
n − 1

n∑
t=1

(
r(t) − r̄

) (
r(t) − r̄

)T

=


s11 s12 s13 . . . s1p

s21 s22 s23 . . . s2p
... ... ... . . . ...

sp1 sp2 sp3 . . . spp

 ,

(2.13)

where r(t) =
(
r

(t)
1 , r

(t)
2 , . . . , r(t)

p

)T
. p is the number of assets and r̄ is the sample mean

vector defined as

r̄ = 1
n

n∑
t=1

r(t) = (r̄1, r̄2, . . . , r̄p)T . (2.14)

Finally, the sample correlation matrix Ĉ of the returns, which is an estimation of
C, is

Ĉ =


ρ̂11 ρ̂12 ρ̂13 . . . ρ̂1p

ρ̂21 ρ̂22 ρ̂23 . . . ρ̂2p
... ... ... . . . ...

ρ̂p1 ρ̂p2 ρ̂p3 . . . ρ̂pp

 . (2.15)

2.2 Active Management
In active management, the objective is slightly different compared to traditional
Markowitz portfolio theory. The aim is to deliver higher returns for the investors
compared to a designated benchmark with a similar risk level. Hence, the MPT
and the other risk-based portfolio allocation methods can not be utilized without
adapting the methods to this framework.

If one defines w
(t)
b ∈ Rp :

(
w

(t)
b

)
1 = 0 as the weight vector of the assets in

the benchmark at time t, then the return of the benchmark between time t and
t + ∆t, is

R
(t)
b = (w(t)

b )T R(t). (2.16)
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Define w(t) to be the weight of the active portfolio at time t, such that the associated
properties outlined in the section above holds. Then, the bet vector is

b(t) = w(t) − w
(t)
b . (2.17)

Since
(
w(t)

p

)T
1 = 1 and

(
w

(t)
b

)T
1 = 1, it follows that

(
b(t)

)T
1 = 0. An important

note concerning this notation is that b
(t)
i < −w

(t)
b,i represents taking a short position

in asset i at time t, something that is allowed in some funds, but not in others.

Now, let
{
α(t)

}
t∈T

be the stochastic process of the excess return s.t.

α(t) =
(
w(t)

)T
R(t) −

(
w

(t)
b

)T
R(t) =

(
b(t)

)T
R(t). (2.18)

Hence, α(t) is the difference between the portfolio return and the benchmark return
between time t and t + ∆t. Since

(
b(t)

)T
1 = 0,

α(t) =
(
b(t)

)T
R(t)

=
(
b(t)

)T
R(t) − ξ

(
b(t)

)T
1

=
(
b(t)

)T (
R(t) − ξ1

)
, for any ξ ∈ R.

(2.19)

Setting ξ = r̄(t) =
∑p

i=1 R
(t)
i

p
, where r̄(t) is the average return of the asset between

time t and t + ∆t and R̄(t) = r̄(t)1, one obtains

α(t) =
(
b(t)

)T (
R(t) − R̄(t)

)
(2.20)

which shows that α(t) is a function of each asset’s relative return, (R(t)
i − r̄(t)).

Hence, the variance of α is

Var
[
α(t)

]
= Var

[(
b(t)

)T
R(t)

]
=

(
b(t)

)T
Σb(t) (2.21)

Where R(t) is the random vector of the returns of all assets in the portfolio and b(t)

is the bets chosen by the investor. Σ now denotes the covariance matrix with entries

Σij = σ

R
(t)
i − R̄(t)

σ
(t)
i

,
R

(t)
j − R̄(t)

σ
(t)
j

 . (2.22)

The reasons why the covariance between R
(t)
i −R̄(t)

σi
and R

(t)
j −R̄(t)

σj
is considered are

twofold. Firstly, the excess return α is a function of the relative return, and thus it
is natural to subtract the average return from each individual asset return. Secondly,
since bT 1 = 0, the scale of each element in b does not matter when considering the
variance of α. In this case, the covariance matrix is scale-independent as well, and
thus it is more naturally to consider normalized stock prices.
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To properly assess active management one may utilize the Fundamental Law of
Active Management (FLAM) (Grinold, 1989), which is an approach to measure an
active fund’s effectiveness and quality. This assessment framework consists of four
distinct factors that determine the performance of an active fund: 1) an Information
criterion ρ(b, r), 2) Market turbulence expressed as the sample standard deviation
of the market return, s(r), 3) Length of bets, expressed as the sample standard
deviation of the bets, s(b) and 4) Size of portfolio p. This leads to

α = bT r = (p − 1)ρ(b, r)s(r)s(b) (2.23)

Using this assessment framework, one can construct a measure or evaluation cri-
terion which measures how well an active fund tracks a benchmark index without
replicating it. This divergence between the price behavior of an active fund and a
benchmark index is denoted as Tracking Error (TE), and thus represents the devi-
ation from a benchmark index due to active bets taken by a fund. The only factor
in Equation (2.23) that is dependent of Σ is ρ(b, r). Since one objective of this
paper is to asses how well the proposed hierarchical portfolio allocation algorithm
performs, the Tracking Error (TE) is expressed as:

TE = s
({

ρ
(
r(t,t+∆t), b(t)

)}N

i=1

)
(2.24)

where ρ is the sample correlation between the vectors and s denotes the sample
standard deviation.

2.2.1 Investment Objectives and Constraints
Firstly, the objective of the active management framework, provided by the Second
Swedish National Pension Fund, is to find the optimal bets b∗ which minimize the
active risk, i.e. the variance of the excess return (see Equation (2.21)). Hence, one
has to solve the following optimization problem at each time t,

b∗,(t) ∈ arg min Var(α(t)) = Var
[(

b(t)
)T

R
]

=
(
b(t)

)T
Σb(t)

s.t.
(
b(t)

)T
1 = 0

(2.25)

However, this is minimized by the trivial solution b(t) = 0, which implies that one
replicates the benchmark which is not the aim of an active fund. Thus, one needs
to add another constraint to Problem (2.25) to overcome the issue of replication.

Indeed, one needs to specify in the optimization problem that w(t) ̸= w
(t)
b . In this

thesis, this is achieved by equaling the bet on the asset q that yielded the highest
return during the previous time period to one. More specifically, including this
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constraint to problem (2.25) yields

b∗,(t) ∈ arg min
(
b(t)

)T
Σ̂b(t)

s.t.
(
b(t)

)T
1 = 0

b∗,(t)
q = 1.

(2.26)

Often, there are other constraints added to the objective that one needs to consider
when investing in an active setting. These constraints might include bet sizing,
lower bounds on the expected excess return, and other allocation rules that the ac-
tive manager needs to take into consideration.

The investment framework considered in this thesis consists of only one such con-
straint, namely that it is not allowed to hedge a certain bet using an asset of dis-
similar characteristics, such as industry sector, geographical location, or any other
type of characteristics that can determine that two assets are too different. In other
words, one is only allowed to hedge a bet using assets that shares similar character-
istics or behavior. In this thesis, the considered characteristic is the covariance of
the excess returns between the assets. Highly correlated assets are assumed to be
similar and vice versa.

If one groups the assets in the portfolio so that similar assets are placed together
in group G ∈ {1, . . . , nG}, where nG is the number of groups. Combining this
constraint with Problem (2.26) results in:

b
∗(t)
G ∈ arg min

(
b(t)

)T

G
Σ̂Gb

(t)
G

s.t.
(
b(t)

)T

G
1 = 0

b
∗(t)
Gp

= 1,

(2.27)

where b
∗(t)
G is the vector of optimal bets for the assets in group G. Using this nota-

tion, b∗(t) is the concatenation of b
∗(t)
G ∀ G ∈ {1, . . . , nG}, such that b

∗(t)
1 , b

∗(t)
2 , . . . b∗(t)

p

corresponds to the bets taken in asset 1, 2, . . . , p, respectively.

As mentioned in the previous section, the scale of b∗ does not matter when evalu-
ating the variance of the excess return. Hence, there is no need to add constraints
regarding short positions since the investor may just scale the bet vector if such
positions are not allowed. With the same reasoning, the investor may also scale the
bet vector if the constraint b∗

Gq
= 1 is not satisfactory.

2.3 Covariance Instability
Several portfolio allocation methods use the covariance matrix as an input in order
to determine portfolio weights. One has to carefully separate the true covariance
matrix Σ from the estimates of the covariance matrix Σ̂. Since the true covariance
matrix, Σ, is unobservable, one has to use Σ̂, which is often set to be the sample
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covariance matrix, S. Naturally, the quality of the estimated covariance matrix, Σ̂,
will have a strong impact on the quality of the portfolio weights. Bun et. al (2017)
show that in the context of portfolio allocation, the predicted risk underestimates
the true, realized risk due to the induced errors in the estimation of Σ.

For a non-singular covariance matrix Σ, the sample covariance matrix S is posi-
tive definite a.s. with rank(S) = p when the concentration ratio c := p

n
∈ (0, 1), i.e

when the sample size n is greater than the number of assets in the portfolio p (Alfelt,
2021). In the limit, when n → ∞, S converges to the true covariance matrix Σ. On
the contrary, the sample covariance matrix S is numerically ill-conditioned when
the concentration c = p

n
≥ 1, with p, n → ∞, i.e. in a context of high-dimensional

asymptotics (Bodnar et. al., 2017). This is due to the fact that one has to estimate
p(p−1)

2 elements of the true covariance matrix, using a n×p matrix. It is not possible
to accurately estimate p2 parameters from n · p noisy observations without some
structural assumptions on the true covariance matrix Σ.

To quantify the stability of Σ̂, or in other words, quantify how much Σ̂ can change
due to a small change in the input arguments, one can use the condition number
κ (Belsley et. al., 1960). The condition number κ is defined as the product of the
Euclidean-norm of the estimated covariance matrix Σ̂ and its inverse, Σ̂

−1, or

κ(Σ̂) = ||Σ̂|| × ||Σ̂−1|| (2.28)

For normal matrices, i.e. matrices that commute with their conjugate transpose,
this is equivalent to the condition number defined as the absolute value of the ratio
between the maximum and minimum eigenvalues of a covariance matrix, i.e.

κ = |λmax

λmin

| (2.29)

A covariance matrix is said to be ill-conditioned if the condition number is large,
meaning that Σ̂ can vary drastically because of small changes in the input argu-
ments. A covariance matrix with a small condition number is called well-conditioned.

In an ideal case, the correlation between the asset returns is zero and the corre-
lation matrix equals the identity matrix. Hence, the condition number κ equals one
and the sample covariance matrix S is well-conditioned. Outside of this ideal case
correlations will not equal zero and the condition number will be larger than one.
As more correlated assets are added to the portfolio, the condition number of the
associated Σ̂ typically grows, and the matrix becomes more ill-conditioned. Hence,
the diversification benefits that arise when more assets are added, might be erased
by the estimation errors. López de Prado (2020) referees this as signal-induced in-
stability caused by the data structure.

On the contrary to the estimation errors inferred from sampling the covariance
matrix S, signal-induced instability can not be remedied by increasing the number
of observations n. However, the assets in a portfolio may be grouped into subsets

9



2. Theory

which has a higher correlation among themselves, compared to the rest of the port-
folio. Such a subset is then subject to a common eigenvector, with eigenvalues that
explain a greater amount of variance. Since the main diagonal of a correlation ma-
trix C consists of ones, the trace of C is always n. This, by extension, implies that
an eigenvalue can only increase if the other eigenvalues decreases within this subset
of assets in the correlation matrix, resulting in a condition number κ ≥ 1. Therefore,
the condition number increases when the interdependence between grouped assets
increases since the ratio between the largest- and smallest eigenvalue grows. In order
to extract these subsets from the correlation matrix, López de Prado (2020) suggests
hierarchical clustering, further discussed in Chapter 3.
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3
Graph Theory and Hierarchical

Clustering

This chapter introduces hierarchical clustering and the theory supporting it. It ex-
plores and describes the relations behind hierarchical clustering, graph theory and
covariance matrices and how they can be used to construct hierarchical structures
of assets. More specifically, graph theory and its ability to reduce the complexity
of a correlation matrix is explored in Section 3.1, dendrograms are demonstrated
in Section 3.2, hierarchical clustering algorithms are described in Section 3.3. The
different linkage criteria considered in this thesis are introduced in Section 3.8, and
methods supplementing hierarchical clustering are described in the final subsections.

As mentioned in the introduction, Billio et. al. (2012) describes the current fi-
nancial system as a dynamic, complex system where the distinctions between actors
in different markets have become blurred, driven by financial innovation and deregu-
lation. Thus, the current setting of the financial markets is characterized by greater
interdependence and connectivity where financial assets correlate to varying degrees.
Simon (1962) argues that the structure of the financial markets can be described as
hierarchical where the hierarchical structure of interactions among elements has a
distinct influence on the dynamics of the financial markets. By using hierarchical
clustering, one can utilize the current structure of the financial system and create
clusters of assets based on similarity. These clusters may then be used to shrink
the covariance matrix to deal with the problems that arise when estimating covari-
ance matrices in a high-dimensional setting. López de Prado (2020) highlights the
signal-induced instability of the covariance matrix (see Section 2.3), as an additional
reason to use hierarchical clustering.

3.1 Graph Theory
A graph in which each node is connected to all the other nodes through a weighted
edge is known as a complete weighted graph. Often, the most important information
of a complete weighted graph can be found in just a few of its edges. A common
approach to reducing the complexity of the graph, while keeping the most important
information is to create a minimum spanning tree (MST). A minimum spanning tree
is a subset of the edges of a complete graph that connects all the vertices together,
without creating any cycles and with the minimum possible total edge weight. The
complexity of the graph is hence reduced from n

2 (n − 1) to n − 1 edges, which is
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illustrated in Figure 3.1.

Figure 3.1: Example of a complete graph with 4 nodes and 6 edges (left) and a
minimum spanning tree with 4 nodes and 3 edges (right).

The relationships between the returns of assets in a portfolio can be represented as
a complete weighted graph. To achieve this, a dissimilarity measure dij between ri

and rj ∀ i, j ∈ {1 . . . p} needs to be determined. A function d : (ri, rj) → [0, ∞] is
a dissimilarity measure between ri and rj if the following holds:

1. d(ri, rj) ≥ 0 ∀ i, j and d(ri, rj) = 0 iff i = j
2. d(ri, rj) = d(rj, ri) ∀ i, j
3. d(ri, rj) ≤ d(ri, rk) + d(rk, rj) ∀ i, j, k ∈ {1 . . . p}

This may be achieved in several ways, for example López de Prado (2018) suggests
to transform the return matrix into a dissimilarity matrix D with entries

dij = d(ri, rj) =
√

1
2(1 − ρij) (3.1)

where
ρ(ri, rj) = σij√

σi
√

σj

(3.2)

is the correlation coefficient between the returns of asset i and j. The relationship
among the assets in the portfolio can be represented as a complete weighted graph
where the assets are the nodes and the entries dij are the weight of the edge between
node i and j. Hence, the complexity of the relationship structure between the returns
of the assets in a portfolio may be reduced, for example by creating a minimum
spanning tree from the aforementioned complete graph.

3.2 Dendrograms
Another way to visualize relationships among data structures is through dendro-
grams. The advantage of dendrograms, compared to graphs discussed above, is that
they can visualize hierarchical structures within the data. A dendrogram is a graph
representing a binary merge tree. In the leaves of the dendrogram, all elements are
considered to be single element clusters or singleton sets. As one transverses further
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up in the levels of the dendrogram, similar elements are merged into clusters until all
elements are merged into one, single cluster at the highest level of the dendrogram.
One can also transverse the tree using a top-down approach, starting with an all-
encompassing cluster and creating sub-clusters by partition, ending with singleton
sets. The greater the height of the branch in the dendrogram, the less similar the
elements which are merged. In Figure 3.2, a dendrogram is illustrated. Evidently,
the height of the branch between data points 5 and 7 is smaller than the branch
between data points 0 and 1. Hence, the dissimilarity between data point 5 and 7
is smaller than the dissimilarity between data point 0 and 1.

Figure 3.2: Example of a dendrogram

The hierarchical structures, represented by a dendrogram, can be obtained by ap-
plying a hierarchical clustering algorithm on a dataset, which is described in the
following section.

3.3 Hierarchical Clustering Algorithms
Hierarchical clustering, which lies in the domain of unsupervised learning, is closely
related to graph theory. There are two main types of hierarchical clustering algo-
rithms, namely agglomerative hierarchical clustering and divisive hierarchical clus-
tering. The objective of divisive hierarchical clustering is to maximize the inter-
cluster dissimilarity. Initially, in divisive hierarchical clustering, all data points in
the dataset belong to one large single cluster. The algorithm then partitions these
clusters into sub-clusters in order to construct a binary merge tree, where the parti-
tion is performed recursively until all the data points are in single element clusters
(Hastie et. al., 2001).

In contrast to divisive hierarchical clustering, the objectives of agglomerative hi-
erarchical clustering is to minimize the inter-cluster dissimilarity. Initially, in ag-
glomerative hierarchical clustering, all data points are considered as single element
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clusters or singleton sets. Then, clusters are merged, forming larger clusters at
higher levels in the binary merge tree. This process is then performed iteratively
until all clusters have been merged into one large cluster that contains all observa-
tions (Hastie et. al., 2001).

Even though the objectives and the method differ between agglomerative- and
divisive- hierarchical clustering, both results in the same dendrogram if the same
dissimilarity measures is used. Hastie et. al., (2001) concludes that agglomerative
clustering is the most efficient of the two. Hence, this method will be the one further
discussed and used in this thesis.

The key in cluster analysis is the dissimilarity measure. The criteria of which clus-
ters to merge in each step of the merging process is determined by the intercluster
dissimilarity between clusters. The intercluster dissimilarity can be determined us-
ing several different measures, referred to as linkage criteria. Some commonly used
linkage criteria are presented in the following sections.

3.4 Single Linkage
In Single Linkage, the distance between two clusters is the minimum distance be-
tween members of the two clusters:

dSL(A, B) = min
i∈A,i′∈B

dii′ . (3.3)

The Single Linkage method creates a minimum spanning tree between the clusters.
Hence, in line with the arguments in Section 3.1, it is likely that this method selects
the most relevant connections. However, a problem is that if the dissimilarity be-
tween one element in each cluster is small, the clusters are considered close. This can
lead to a violation of the compactness property, which states that all observations
within each cluster should be more similar to each other than to elements in other
clusters and hence result in chaining (Raffinot, 2018). This effect is illustrated in
Figure 3.3a.

3.5 Complete Linkage
In Complete Linkage, the distance between two clusters are defined as the maximum
distance between two members of each cluster:

dCL(A, B) = max
i∈A,i′∈B

dii′ . (3.4)

Thus, the distance between two clusters are determined by the distance between
the two furthest members in the two clusters. In contrast to Single Linkage, two
clusters are considered to be close if all observations in both clusters are relatively
alike. As a result, Complete Linkage is sensitive to outliers but tends to form dense,
similar-sized clusters. However, it can also create clusters with members which are
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closer to other clusters than to certain members of the same cluster (Hastie et al.,
2001). A dendrogram using Complete Linkage is illustrated in Figure 3.3b, where
it can be viewed that the structure is different from Single Linkage.

3.6 Group Average Linkage
In Group Average Linkage, the distance between two clusters, A and B, is defined
as the average of all distances between members of the two clusters:

dGAL(A, B) = 1
NANB

∑
i∈A

∑
i′∈B

dii′ , (3.5)

where NA, NB is the number of observations in the clusters respectively. Group
Average Linkage is a compromise between Single Linkage and Complete Linkage.
The idea of Group Average Linkage is to construct clusters that on average are
close together internally but far apart from other clusters (Hastie et al., 2001). The
hierarchy given by Group Average Linkage is illustrated in Figure 3.3c.

3.7 Ward’s Method
In Ward’s Method (Ward, 1963) the distance is defined as the increase in the squared
error that would occur if clusters A and B were merged.

dW M(A, B) = NANB

NA + NB

∥µA − µB∥2 , (3.6)

where µA and µB are the mean vectors of each cluster. A prevalent issue with Ward’s
Method is that it often creates larger clusters. On the contrary, it is more robust
to noise and outliers than to the other linkage criteria (Raffinot, 2018). Figure 3.3d
illustrates the created hierarchical structure obtained when Ward’s method is used
linkage criterion.

3.8 Linkage Criteria Discussion
The different linkage criteria affect the dendrogram differently and result in different
tree structures since the linkage criteria define the proximity of clusters. To math-
ematically establish the superiority of a linkage criteria over another is not feasible
(Jain and Dubes, 1988). Hence, the user needs to inspect empirical experiments
to see how the different linkage criteria construct the hierarchical structure. For
example, Papenbrock (2011) argues that the Single Linkage algorithm creates both
large and small clusters that are chained together, which is illustrated in Figure 3.3a.
Thus, Single Linkage preserves the original structure as much as possible if one uses
the perspective that elements that depart early in the structure can be viewed as
different. This can lead to clusters that consist of outliers and are different from the
rest of the elements. On the contrary, Complete Linkage creates more balanced and
tight cluster where similar objects are grouped, see Figure 3.3b. Papenbrock (2011)
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argues that Group Average Linkage is a trade-off between Single- and Complete
Linkage and that Ward’s Method is capable of constructing very distinct clusters
with clear separation. Figure 3.3 illustrates the hierarchical structures produced
by the different linkage criteria. One can see that Complete Linkage and Ward’s
Method produce more symmetrical tree structures compared to Group Average- and
Single Linkage.

(a) Single Linkage (b) Complete Linkage

(c) Group Average Linkage (d) Ward’s Method

Figure 3.3: Example of dendrograms using different linkage criteria.

3.9 Selection of Number of Clusters
Hierarchical clustering subsets input data into clusters based on pairwise dissimi-
larities between observations, but does not find the optimal number of clusters. As
opposed to other clustering methods, such as k-means (Lloyd, 1982), the number of
clusters, k, is not needed as an input parameter for hierarchical methods. Indeed,
hierarchical clustering methods find a cluster structure from 1 to p clusters among
p assets which may induce potential overfitting. By randomly choosing the number
of clusters k, one might end up with clusters that do not reflect reality very well
(Raffinot, 2018). Hence, for correlation clustering problems, obtaining a suitable
number of clusters k∗ is an essential part of the problem. Cluster analysis is used
to provide statistics for assigning an unknown number of natural clusters, defined
as k∗. Usually, data-based methods examine the within-cluster dissimilarity Wk, as
a function of the number of clusters k ∈ {1, 2, . . . p}

Hastie et. al. (2001) proposed the Gap Statistic Index (GSI), which now is a
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commonly used method to estimate k∗. The main idea of GSI is to compare the log-
arithm of the within-cluster dissimilarity, log[Wk], with uniformly distributed data
with no apparent clusters. The within-cluster dissimilarity Wk is defined as the sum
of the pairwise distances Cq for all points in a cluster q,

Wk =
k∑

q=1

1
2nq

Dq, (3.7)

where Dc = ∑
i,i′ ∈Cq

dii′ , dii′ is the Euclidean distance between node i and i
′ and nq

is the number of points in Cq.

The idea behind GSI is to standardize the graph of log(Wk) by comparing it with
the expectation under a null reference distribution of the data. Tibshirani et. al.
(2001) stress the importance of an appropriate null model. The goal of the estimate
is to provide the most information possible about a dataset compared to a reference
distribution with no hierarchical structures or clusters, which corresponds to the
value of k for which log[Wk] falls the farthest below this reference curve. Hence the
measure is defined as follows:

Gapn(k) = E∗
n{log[Wk]} − log[Wk], (3.8)

where E∗
n denotes the expectation under a sample of size n from the reference dis-

tribution.

To account for the dispersion of Wk, the optimization problem is adjusted using
the standard deviation to account for the varying volatility of estimates, calculated
as:

sk =
√

1 + (1/B)σ(k), (3.9)
where B is the number of performed simulations of the reference distribution to
obtain σ(k). The estimated number of clusters k̂ by GSI can then be computed as
follows,

min
k

Gap(k)

s.t. Gap(k) ≥ Gap(k + 1) + sk+1.
(3.10)

To find reliable estimations of the distribution one needs a large number of draws
from the null distribution. Hence, there is a trade-off between computation time
and accuracy.

Yue, Wang, and Wei (2008) proposed an alternative approach to compute the GSI
in order to obtain the optimal number of clusters k∗. The authors argue that this
method is not as computational expensive and provides more stable results compared
to the previously presented method. Yue, Wang, and Wei (2008) substitute the two-
order difference formation for the objective function in the original Gap Statistic
Index. Hence, the new index for clustering optimality is characterized as,

k∗ = arg max Wk − 2Wk+1 + Wk+2

s.t. 0 ≤ k ≤
√

n.
(3.11)
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3.10 Optimal Leaf Ordering
When performing hierarchical clustering on a set of data, the order of the leaves
matter for the optimality of the clustering. Since there are 2p−1 orderings of a
hierarchical tree with p leaves, hierarchical clustering algorithms depend on heuris-
tic approaches based on local similarities or self-organizing maps to determine the
global leaf ordering. Utilizing heuristic approaches may produce non-optimal leaf
orderings, which in turn can yield sub-optimal results (Bar-Joseph et al. 2001). Bar-
Joseph et al. (2001) present a leaf ordering algorithm, that maximizes the sum of
similarities of adjacent elements in the leaf ordering. More specifically, the objective
of the algorithm is to find a linear ordering amongst 2p−1 possible orderings that are
optimal, and can be expressed as

Dϕ(T ) =
p−1∑
i=1

S′(zϕi
, zϕi+1), (3.12)

where S′ is the similarity matrix, which is the opposite concept to the dissimilarity
matrix discussed in Section 3.1, and where zϕi

is the ith leaf when a binary tree T is
ordered according to ϕ. The objective of the optimization is to obtain the ordering
or arrangement of arguments ϕ which maximizes Dϕ(T ), such that

ϕ∗ = arg max Dϕ(T ), (3.13)

The algorithm developed by Bar-Joseph et al. (2001) shows superior performance
compared to hierarchical clustering approaches that depend on heuristics on a random-
, artificial- and biological dataset. This in extension enables the user to establish
meaningful cluster boundaries as well as identify the relationships between clusters
in a superior manner. As can be seen in Figure 3.4, this results in more symmetrical
structures.

(a) Random Leaf Ordering (b) Optimal Leaf Ordering

Figure 3.4: Example of dendrograms using Ward’s Method with Random Leaf
Ordering (left) and Optimal Leaf Ordering (right).
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3.11 Hierarchical Correlation Clustering
Since the interest of this thesis lies in clustering assets in order to shrink the covari-
ance matrix, the return data needs to transformed into a distance matrix D with
entries dij, as explored in Section 3.1. To obtain a satisfactory distance metric, the
Euclidean distance between the pairwise column-vectors of the distance matrix D
is then computed (López de Prado, 2016) as

d̃ij = d̃[Di, Dj] =

√√√√ p∑
m=1

(dmi − dmj)2. (3.14)

The difference between dij and d̃ij is small. While dij measures the distances be-
tween the column vectors of the sample correlation matrix C, d̃ij measures the
distances between the column vectors of the D, which in turn yields a distance of
distances (López de Prado, 2016). This final distance matrix, D̃ , is then used to
find correlation clustering within the asset portfolio through hierarchical clustering
algorithms.
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Portfolio Allocation Methods

This section presents different allocation methods stemming from Markowitz’s Mod-
ern Portfolio Theory, and covers established risk-based methods as well as more novel
techniques such as hierarchical allocation methods. The presented methods repre-
sent a source of knowledge used for developing the hierarchical portfolio allocation
algorithm presented in the following chapter.

4.1 Equally-Weighted Portfolio
The Equally-Weighted portfolio is the naive approach to allocate capital evenly
amongst assets within a portfolio. Hence, given p assets, the portfolio weights
w = (w1, . . . , wp) are given by

wi = 1
p

∀i = 1, . . . , p. (4.1)

This simplistic approach has surprisingly performed well during different market
regimes and has often out-performed more sophisticated asset allocation strategies
(DeMiguel et. al, 2009; Ernst et. al., 2016; Kolm et. al, 2014). DeMiguel et. al
(2009) highlight the estimation risk inherent in optimization portfolios as a cause
for their inferiority compared to the naive approach of distributing capital evenly
amongst assets. The need for estimation of returns and covariances, a necessity
in several optimization methods, induce bias and error which results in portfolio
weights that can be far from optimal.

4.2 Modern Portfolio Theory and Minimum Vari-
ance

Markowitz’s (1952) work on Modern Portfolio Theory (MPT) revolutionized the field
of portfolio construction, as it provided investors with a method to allocate capital
amongst a set of assets efficiently. More specifically, Modern Portfolio Theory is a
method for constructing portfolios with the objective to minimize the risk in the
portfolio for a given level of expected returns, or vice versa (Markowitz, 1952). If
an investor wants to invest in p risky assets with an expected return vector µ, and
covariance matrix Σ, using Markowitz’s theory, the investor aims to obtain a p × 1
weight vector w. The expected return of the portfolio is wT µ and the variance of
the portfolio is wT Σw. Hence, if investors want to construct minimum-variance
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portfolios with a lower bound on the expected return β, the following quadratic
optimization needs to be solved

min wT Σw

s.t. wT 1p = 1
µT w ≥ β.

(4.2)

The Efficient Frontier, illustrated in Figure 4.1, is the set of optimal portfolios that
yield the lowest risk given a level of expected return, and vice versa. Typically, the
risk is calculated using the standard deviation of the portfolio returns.

Figure 4.1: Example of Markowitz Efficient Frontier (red) using simulated data
with four assets and 1000 observations. The dashed black line represents the lower
bound on expected return β.

However, Markowitz’s efficient solution to the problem of capital allocation has faced
criticism when implemented in practice. Michaud (1989) highlights the inherent es-
timation risk within MPT and argues that the estimation procedure of the expected
returns and the covariance matrix induces bias, which in turn leads to significant
underestimation of an optimal portfolio’s true level of risk. This paper also high-
lights the requirement of inversion of the estimated covariance matrix, which may
not be possible to obtain in a high-dimensional setting. Thus, small changes in
input parameters can lead to considerable changes in optimal solutions, due to the
ill-conditioning and instability of the covariance matrix. Perrin and Roncalli (2020)
emphasise that in order to generate acceptable solutions for the minimum-variance
problem, appropriate weight constraints must be established. Hence, minimum-
variance optimization is inherently a trial-and-error process, and not a systematic
approach.

4.3 Risk Parity
In contrast to Markowitz’s Modern Portfolio Theory, Risk Parity (RP) is an invest-
ment framework that has the objective of creating portfolios where each asset class
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contributes equally to the overall risk of the portfolio in order to obtain diversi-
fication (Qian, 2005a). Inherently, Risk Parity allocates risk instead of capital in
a heuristic sense, in comparison to other traditional cross-asset portfolios such as
market portfolios (where the weights are determined by market capitalization) or
60/40 portfolios of equities/bonds, in order to construct well-diversified portfolios.
For instance, since equities are naturally riskier than bonds or other fixed-income
products, the traditional 60/40 portfolio is not diversified from a Risk Parity per-
spective since equities contribute to an disproportional amount of risk to the overall
portfolio compared to bonds, even though the capital between the two asset classes
have been distributed rather evenly. Qian (2005b) stresses the importance of risk
contribution and illustrates empirically that risk contribution approximates the ex-
pected loss contribution from the underlying components of the portfolio. Risk
Parity has historically outperformed and yielded investors better returns than tra-
ditional portfolios such as the market- and 60/40 portfolio (Asness et. al., 2012).

Diversifying risk instead of capital amongst asset classes within a portfolio is the
fundamental idea of Risk Parity and is in clear contrast to Markowitz and other
type of portfolios. Extensions of the idea of Risk Parity is Equal Risk Contribution
portfolios, which are described in more detail in the following section.

4.4 Equal Risk Contribution
Maillard et. al. (2010) present a different approach to the capital allocation problem
which is an extension of the idea of Risk Parity (see Section 4.3). Every asset in a
portfolio contributes with a varying level of risk to the overall portfolio, depending
on the risk characteristics of the asset. Hence, the risk contribution from an asset i
is the proportion of the overall portfolio risk related to that component. To obtain
the risk contribution of asset i, one needs to calculate its marginal risk contribution
which is defined as the change of the total risk of the portfolio as a result of an
infinitesimal increase in weight of the asset i. More specifically, given a portfolio of
p assets, the marginal risk contribution MRCi, of asset i is defined such that

MRCi = ∂σ(w)
∂wi

(4.3)

where σ(w) =
√

wT Σw represents the risk of the portfolio. Furthermore, the risk
contribution RCi, of asset i is defined as the product of its marginal risk contribution
and weight in the portfolio, i.e.

RCi = wi · MRCi = wi
∂σ(w)

∂wi

= wi
(Σw)i√
wT Σw

(4.4)

Maillard et. al. (2010) shows that the risk contributions are additive by Euler’s
theorem for homogeneous functions, and thus is the total risk of the portfolio the
sum of the risk contributions from its different assets, namely σ(w) = ∑p

i=1 RCi.

The Equal Risk Contribution (ERC) portfolio is the portfolio where the risk contri-
butions from the different assets are equalized. Naturally, different assets contribute
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with varying degrees of risk to the overall portfolio, which is adjusted by the allo-
cation of capital to the different assets so that the risk contribution amongst the
assets in the portfolio is equal. Hence, the ERC portfolio, where short positions are
prohibited, is defined as

w = {wi ≥ 0 : wT 1 = 1, wi(Σw)i = wj(Σw)j ∀ i, j = 1, . . . , p}. (4.5)

4.5 Hierarchical Risk Parity
López de Prado (2018) uses hierarchical clustering to develop a novel approach for
portfolio optimization that is not dependent on the inversion of the covariance ma-
trix, named Hierarchical Risk Parity (HRP). According to this paper, the method
decreases the instability and the portfolio weight concentration prevalent in other
portfolio optimization methods. As mentioned before, hierarchical clustering meth-
ods such as HPR can construct efficiently allocated portfolios on ill-conditioned and
even singular covariance matrices since the methods do not rely on the inversion of
the covariance matrices. HRP uses the information in the covariance matrix with-
out requiring it to be invertible or positive-definite. The algorithm consists of three
stages: hierarchical clustering, quasi-diagonalization, and naive recursive bisection,
which are described in the following sections.

4.5.1 Hierarchical Clustering
The objective in this primary stage of the HRP method is to cluster p assets into
a hierarchical structure using agglomerative clustering so that the asset allocations
can flow downstream through a tree. López de Prado (2018), applies the Single
Linkage criterion, which as previously mentioned, produces the same result as that
of the Minimum Spanning Tree.

The original method suggested by López de Prado (2018) is similar to the gen-
eral clustering algorithm detailed in Section 3.3. First, compute a p × p correlation
matrix C with entries ρ = {ρi,j}i,j=1,...,p where ρij = ρ[ri, rj] is the Pearson correla-
tion coefficient between the return time series of asset i and j. Next, the distance
measure is defined as:

di,j = d(ri, rj) =
√

1
2(1 − ρi,j) (4.6)

López de Prado (2018) verifies that Equation (4.6) is a dissimilarity measure, where
perfectly correlated assets with ρi,j = 1 has a distance di,j = 0 and conversely, per-
fectly negatively correlated assets with ρi,j = −1 has a distance di,j = 1. Next, the
distance matrix D = {di,j}i,j=1,...,p is computed.

Then, the Euclidean distance between any two column vectors of D is computed as

d̃i,j = d̃[Di, Dj] =

√√√√ N∑
n=1

(dn,i + dn,j)2 (4.7)
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Hence, d̃i,j is a distance of distances. Next step is to cluster the pair columns (i∗, j∗)
with Single Linkage, such that (i∗, j∗) = arg min(i, j)i ̸=j{d̃i,j}. Then, the distance
between the newly formed cluster and the remaining clusters is defined by the Single
Linkage criteria, discussed in Section 3.3. These steps are then executed recursively
until there is only one cluster that contains all assets. The produced hierarchical
structure is the output from this primary stage of the HRP method.

4.5.2 Matrix Reordering
The next step of the HRP method reorders the rows and columns of the covariance
matrix to obtain a quasi-diagonal covariance matrix where assets with high corre-
lation are placed adjacently and close to the matrix diagonal, while assets with low
correlation are placed apart. Figure 4.2 illustrates the effect of quasi-diagonalization
of a covariance matrix using Single Linkage. The quasi-diagonalization of the co-
variance matrix reflects the hierarchical structure that was found in the hierarchical
clustering step of the method and is shown in Figure 4.2. López de Prado (2018)
proves that the inverse-variance allocation, which is used in the next stage of the
HRP method, is in fact optimal when the covariance matrix is diagonal.

Figure 4.2: Example of reordered correlation matrix using Single Linkage

4.5.3 Naive Recursive Bisection
The previous step of the HRP method yielded a quasi-diagonal matrix, which is
used in this final stage to allocate weights to the assets in the portfolio. The asset
weights are calculated recursively by bisecting the covariance matrix into subsets
of equal size until there are only singletons sets left, and where the weight of each
asset is determined by inverse-variance allocation. In detail, this stage of the HRP
algorithm can be described as follows:

Initialize a list of clusters of assets in the portfolio, denoted L = {L0} with L0 =
{i}i=1,...,p and initialize a between-cluster weight vector of unit weights:

wi = 1 ∀ i ∈ [1, . . . , p]. (4.8)

Then, for each cluster Li ∈ L with more than one asset (non-singleton set), bisect Li

into two equally-sized subsets L
(1)
i and L

(2)
i such that Li = L

(1)
i ∪L

(2)
i . The bisection
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of Li preserves the order.

The next step is to calculate the variance of each bisection L
(j)
i , j = 1, 2 as

Var(j)
i = w̃

(j)T
i Σ(j)

i w̃
(j)
i j = 1, 2 , (4.9)

where Σ(j)
i is the covariance matrix of the assets in cluster j and w̃

(j)
i is defined such

as

w̃
(j)
i = diag[Σ(j)

i ]−1

Tr[diag[Σ(j)
i ]−1]

j = 1, 2 , (4.10)

where diag[·] and Tr[·] is the diag- and trace operator, respectively.

The weight allocation to clusters is computed using a split factor θi which is de-
fined as the inverse-variance allocation between clusters, i.e.

θi = 1 − Var(j)
i∑

j Var(j)
i

j = 1, 2 . (4.11)

Finally, re-scale and update the between-cluster weights for the sub-clusters such
as:

wi := θi × wi ∀i ∈ L
(1)
i

wi := (1 − θi) × wi ∀i ∈ L
(2)
i .

(4.12)

This process iterates until there are only singleton sets left, i.e. when each asset
constitutes a cluster. Hence, this stage of the HRP method uses a top-down ap-
proach to assign cluster weights.

Moreover, López de Prado (2018) allocates the HRP weights in a naive manner
since the algorithm does not incorporate the hierarchical structure from the pri-
mary stage. Since the quasi-diagonal matrix provides the ordering of the assets,
which is stored in a list and then bisected into subsets of equal size resulting in a bi-
nary tree that is distinctly different from the hierarchical structure produced in stage
1, which consecutively leads to distinctly different clusters as well. This entails that
the order of assets in the input data is highly important since the naive recursive
bisection stage of the HRP algorithm creates clusters, and thus cluster weights, that
are dependent of the order on assets. In a portfolio optimization context, investors
would desire an allocation method that is independent of the ordering structure of
the input data.

4.6 Hierarchical Clustering-Based Asset Alloca-
tion

Raffinot (2017) builds on López de Prado’s (2018) notion of Hierarchical Risk Parity
and proposes a method referred to as Hierarchical Clustering-Based Asset Allocation
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(HCAA) that attempts to mitigate some of the issues that are prevalent in the HRP
method. HCAA consists of four major stages, namely:

(I) Hierarchical tree clustering

(II) Determining optimal number of clusters

(III) Allocation of capital across clusters

(IV) Allocation of capital within clusters

Using the HCAA algorithm, Raffinot (2017) conducted experiments on several datasets
of varying characteristics, such as multi-asset- and individual stock datasets as well
as on a S&P 500 sector dataset to assess the performance of HCAA compared to
more traditional portfolio optimization methods. The out-of-sample performance of
the hierarchical clustering portfolios shows that they are able to be well-diversified
while achieving statistically superior risk-adjusted returns compared to traditional
risk-based allocation strategies.

4.6.1 Hierarchical Tree Clustering
The hierarchical tree clustering stage in HCAA follows the initial stage of HRP and
the theory described in Section 3.3, where the hierarchical structure is built using
an agglomerative approach. However, a different distance measure is used to encode
the correlation matrix to a distance matrix D with entries di,j (Mantegna, 1999),

di,j =
√

2(1 − ρi,j). (4.13)

Also, Raffinot (2017) considers a wider set of linkage criteria in the hierarchical
clustering of the assets compared to HRP, namely Ward’s method as well as Single,
Group Average, and Complete Linkage.

4.6.2 Determining the Optimal Number of Clusters
The second stage of HCAA consists of finding the optimal number of clusters, which
is achieved using Gap Statistic Index, described in Section 3.9. The use of Gap
Statistic Index to find the optimal number of clusters reduces the computation time
of the algorithm as the full tree does not need to be constructed. Additionally,
prohibiting the tree from growing to maximum depth can mitigate overfitting issues
that can lead to estimation errors in portfolio weights.

4.6.3 Allocation of Capital Across and Within Clusters
Steps three and four of HCAA incorporate the same reasoning regarding capital
allocation, namely equal weighting of capital between clusters as well as between
assets within clusters. Raffinot (2017) focuses on capital allocation simplicity and
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efficiency, so that a large number of correlated assets receive the same overall allo-
cation as a single uncorrelated asset. This contrasts with López de Prado’s (2018)
original algorithm which instead uses inverse-variance allocation.

4.7 Hierarchical Equal-Risk Contribution
Raffinot (2018) developed yet another hierarchical clustering allocation method, re-
ferred to as Hierarchical Equal Risk Contribution Portfolio (HERC). HERC aims to
combine the best of HRP and HCAA, respectively, resulting in a portfolio allocation
method with the objective to diversify capital- and risk allocation. HERC follows
the initial steps of HCAA and HRP, however, it is in the latter stages of HERC
that diverges from the other hierarchical methods. HERC uses a top-down recur-
sive division approach for allocating assets, similarly to HRP’s recursive bisection
step, but the method employs equal risk contribution (ERC) to calculate the scaling
factor θi. This enables the user to implement a larger scope of risk metrics, such
as conditional drawdown at risk (CDaR) and conditional value at risk (CVaR), to
calculate the allocation of portfolio weights.

Using Ward’s Method as linkage criteria for the agglomerative clustering in the
HERC method, Raffinot (2018) conducted comparison studies using HERC, HCAA,
and HRP on two separate empirical datasets consisting of asset classes and indi-
vidual stocks, respectively. The conclusion was that HERC and HCAA are very
similar in their out-of-sample performance and generated comparable risk-adjusted
returns. There was also a difference in the out-of-sample performance of the HERC
method for different risk measures, were using conditional drawdown at risk as a risk
measure yielded the largest outperformance. Finally, both HERC and HCAA were
able to deliver statistically higher risk-adjusted returns and better diversification
compared to HRP on the primary dataset consisting of asset classes. This was not
true for the second dataset consisting of individual stocks where HRP outperformed
the HCAA model but unperformed the HERC model.

We now provide more details about HERC. It can be summarized in four distinct
stages:

(I) Hierarchical tree clustering

(II) Determining the optimal number of clusters

(III) Top-down recursive bisection

(IV) Naive risk parity within the clusters

Stages one and two are identical to the two first stages of HCAA (see Section 4.6.1
and Section 4.6.2), where agglomerative clustering is used to construct a binary tree
with an optimal number of clusters determined by Gap Statistics Index using Ward’s
Method as linkage criteria. The top-down recursive bisection and the naive risk
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parity within clusters stages of the HERC algorithm are described in the following
subsections, respectively.

4.7.1 Hierarchical Recursive Bisection
Similarly to HRP, the clustering of assets is used to determine the allocation of
weights using recursive bisection. Nonetheless, as previously detailed, HRP does
not utilize the hierarchical structure of the produced binary tree - only the ordering
of assets. HERC captures on the contrary this hierarchical structure by bisecting
clusters into two sub-clusters at each node by traversing the binary tree using a
top-down approach. Note that HERC does not require an equal size of the sub-
clusters, which is not true for HRP. The bisection process terminates when the
optimal number of clusters k∗, given by Gap Statistic Index in the preceding stage,
is reached. The scaling factor θi is determined by using ERC portfolio allocation, in
particular

θi = 1 − RC(j)
i∑

j RC(j)
i

j = 1, 2 (4.14)

where RCi is the risk contribution from each cluster. Here, one can consider a range
of different risk measures to calculate RCi. For instance, one can calculate cluster
variance using (4.10). Consequently, one can then calculate the cluster weights as

wn := θi × wn

wn := (1 − θi) × wn

(4.15)

4.7.2 Within-Cluster Weight Allocation
Furthermore, the last and final step of HERC consists of computing the asset weights
within a cluster. Consider the set of assets X := {x1, x2, . . . , xn} ∈ Ci, where
Ci ∈ [1, . . . , k∗] is an arbitrary cluster of n assets. Then, using inverse-risk allocation
to determine the weights for X in Ci one obtains the naive risk parity weights:

wCi
NRP =

1
RC

Ci
i∑n

k=1
1

RCk

∀i ∈ [1, . . . , k∗] (4.16)

Where the variance of cluster i is the most common risk metric RCi. Using wC
NRP for

a cluster Ci, one can compute the asset weight in cluster Ci by taking the product
of the cluster weights and the naive risk parity weights, i.e.

wHERC = wn × wCi
NRP ∀ Ci (4.17)
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The methodology used in this thesis is constituted by three main stages: 1) Liter-
ature study, 2) Development of hierarchical portfolio allocation algorithms and 3)
Evaluation using empirical data. In the primary stage, a study of previous research
in the field of portfolio allocation and hierarchical clustering was conducted. The
study primarily focused on the works of Markowitz (1952), López de Prado (2018),
and Raffinot (2017; 2018), as well as on some supplementary research regarding hi-
erarchical clustering. This primary stage of the methodology is detailed in Chapter
2. Secondly, based on the conducted literature study, a hierarchical portfolio allo-
cation algorithm (HPAA) was developed in order to adapt the methods of López
de Prado (2018) and Raffinot (2017; 2018) to an active management framework.
Several different constellations of the algorithm were constructed for comparison
purposes. Thirdly, all of the developed allocation algorithms were tested and eval-
uated using empirical data. All numerical calculations have been performed using
Python. Finally, the latter two stages are explained in the following sections in this
chapter.

5.1 Description of Evaluated Portfolio Allocation
Algorithms

The main objective of the proposed hierarchical portfolio allocation algorithm is to
place a set of bets on certain assets and hedge those bets so that the variance of the
total excess return is minimized. As mentioned in Section 2.2, there are constraints
that needs to be taken into consideration to be able to hedge the placed set of bets,
since the proposed hierarchical portfolio allocation algorithm operates in an active
management framework. For instance, it is not allowed to hedge a certain bet using
an asset of dissimilar characteristic. In this thesis, the considered characteristic is
the covariance of the excess returns between the assets. Highly correlated assets are
assumed to be similar and vice versa.

Based on the previously detailed objective and constraint, the different constel-
lations of HPAA that has been developed in this study encompasses four stages:

(I) Hierarchical clustering of assets

(II) Cluster selection
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(III) Allocation of bets within clusters

(IV) Scaling of bets across clusters

The first step performs hierarchical clustering on assets to obtain a hierarchical struc-
ture. The second step applies a modified version of Gap Statistic Index presented by
Yue, Wang, and Wei (2008) to determine the initial number of clusters considered.
This number is then used as the first level in the hierarchical structure to start the
recursive search for the final number of clusters where all clusters are invertible. In
the third step, the bets within clusters are calculated based on Markowitz’s minimum
variance. Finally, in step four the bet scaling between clusters is determined. These
four stages are the foundation of each portfolio construction method developed in
this thesis. However, every construction method is unique since the primary and
the final step can be changed using different modifications. The following sections
describe each step of the hierarchical portfolio allocation algorithm, the rationale
behind every step as well as the implemented modifications.

5.1.1 Hierarchical Clustering
As previously stated, all of the evaluated allocation algorithms consists of a primary
hierarchical clustering stage which follows the approach described in Section 4.5,
where the sample correlation matrix Ĉ is computed using the normalized returns.
Using the sample correlation matrix Ĉ, a distance matrix D = {di,j}p

i,j=1 is calcu-
lated using Equation (4.6). From the distance matrix D, a hierarchical structure of
the assets is constructed in an agglomerative fashion using a different set of linkage
criteria, such as Single-, Complete- and Group Average Linkage as well as Ward’s
Method.

5.1.1.1 Optimal Leaf Ordering

To complement the primary step 5.1.1, Optimal Leaf Ordering was implemented
(see Section 3.10) to optimally reorder the leaves in the hierarchical structure to
examine the algorithm’s impact on performance.

5.1.2 Cluster Selection
In order to obtain the clusters used for calculating the optimal set of bets, not only
is the hierarchical structure of the assets necessary but also the number of clusters
is needed. A natural approach to find the optimal number of clusters k∗ is to apply
the Gap Statistic Index (GSI), described in Section 3.9. Using a modified version of
this approach for this study (see Equation (3.11)), the number of clusters obtained
k∗ provide an optimal middle ground between overfitting and information loss.

However, one problem with using Gap Statistic Index is to determine the clus-
ter selection. In order to place bets in the next stage, the sample covariance matrix
Sc associated with each clusters must be invertible. This is due to the fact that the
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optimal set of bets for every cluster b∗
c is a function of S−1

c (See Equation (2.26)).
Therefore, the optimal number of clusters k∗, given by GSI, is not equal to the final
number of clusters considered in the latter stages of HPAA. Instead, k∗ represents
the level in the hierarchical structure from where to prune the binary tree from a
top-down perspective and start the recursive search for invertible clusters. This is
illustrated in the following Figure 5.1:

(a) Hierarchical structure before
pruning

(b) Hierarchical structure after
pruning

Figure 5.1: Illustration of before and after pruning of the hierarchical structure
using k∗. The red dashed line represents where the number of clusters equals k∗.

Then, starting with k∗ clusters, the hierarchical algorithm transverses through the
binary tree using a top-down approach and checks the invertibility of the covariance
matrix Sc for each cluster c. If Sc is not invertible, the associated cluster c is
partitioned into two new sub-clusters with respect to the hierarchical structure. If
Sc is invertible, the algorithm will not partition c into sub-clusters. This procedure is
then applied recursively until all the covariance matrices associated with a cluster are
invertible and there are kfinal clusters. Note that this second stage of the hierarchical
algorithm is identical for all of the different portfolio construction methods.

5.1.3 Within-Cluster Bet Selection
Using the clusters obtained from the previous step, the optimal set of bets is con-
structed. This is achieved by computing the sample covariance matrix Sc, asso-
ciated with each cluster c. Using Sc, the optimal set of bets b∗

c for every cluster
c ∈ {1, . . . , kfinal} is obtained by solving the following optimization problem:

b∗
c ∈ arg min bT

c Scbc

s.t. bT
c 1 = 0

bcq = 1.

(5.1)

Since the objective of the evaluated alocation algorithms is to place bets on assets
and hedge those bets so that the variance of the total excess return is minimized,
the selection of which bet that is needed to be hedged is necessary. This is achieved
by equalling bcq to one in the last constraint of Problem (5.1). q is the index of the
asset in the cluster that has had the highest normalized return from the previous
week. One can choose amongst several different criteria to obtain q, however, the
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previously detailed approach was chosen in this thesis. Additionally, for clusters
only containing one asset the bet is set to zero, since in order to hedge a bet, there
must be another asset to hedge it against. Finally, one obtains an optimal set of
bets b∗, which is the concatenation of b∗

c ∀c ∈ {1, . . . , kfinal}. This stage is also the
same for all portfolio construction methods.

5.1.4 Between-Cluster Allocation
The last step of the proposed allocation method is to scale bets between clusters. In
this thesis, the equally-weighted portfolio (see Section 4.1) and a modified version
of equal risk contribution (see Section 4.4) are used and evaluated.

In the original equal risk contribution method proposed by Maillard et. al. (2010),
the risk contribution from asset i is defined as

RCi = wi
(Σw)i√
wT Σw

(5.2)

However, to adapt Equation (4.4) to active management where the interest lies in
the minimization of the variance of the excess return rather than the variance of the
portfolio, a different approach is utilized to calculate the risk contribution RCc for
every cluster c, namely:

RCc = bT
c Σcbc∑kfinal

c=1 bT
c Σcbc

(5.3)

In short, the heuristics behind equal risk contribution is that each asset in a portfolio
should contribute to an equal amount of risk to the overall risk of the portfolio (see
Section 4.4). In this case, clusters are considered instead of individual assets and
thus should every cluster have an equal risk contribution. To achieve this, the bets
b∗

c for every cluster c are scaled by a scaling factor θc. In the case of clusters with only
one asset, the associated θc is set to zero, since the risk contribution for those clusters
is equal to zero. Finally, to obtain the scaling vector θ = [θ1, θ2, . . . , θkfinal

] such
that the risk contribution from every non-singleton cluster is equal, the algorithm
solves the following optimization problem:

min θT RC

s.t.
m∑

i=1
θi = 1

θiRCi = θjRCj ∀ i, j ∈ D
θi = 0 ∀ i ∈ E

(5.4)

where RC = [RC1, RC2, . . . , RCkfinal
], D is the set of cluster indices for the clusters

containing more than one asset, and E is the set of cluster indices for the clusters
containing only one asset.

Furthermore, when using an equal-weighted portfolio approach to determine the
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between-cluster allocation (see Section 4.1), the scaling vector θ = [θ1, θ2, . . . , θkfinal
]

is calculated by:

θi = 1
∥D∥

∀ i ∈ D

θj = 0 ∀ j ∈ E
(5.5)

where D is the set of cluster indices for the clusters containing more than one asset,
and E is the set of cluster indices for the clusters containing only one asset.

Once θ has been calculated, b∗
c is scaled:

bscaled
c = θc · b∗

c (5.6)

Finally, one obtains a vector of scaled bets bscaled, which is the concatenation of
bscaled

c ∀ c ∈ {1, . . . , kfinal}.

5.2 Summary of Evaluated Allocation Methods
To summarise this section, there are sixteen different constellations of HPAA which
are evaluated in this thesis. All of the methods incorporate similar cluster selection
and within-cluster bet selection. The clustering methods, the use of optimal leaf
ordering and between-cluster allocation methods vary between the different portfolio
allocation methods. This is visualized in Table 5.1 below (see List of Acronyms for
portfolio names).
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Portfolio Linkage Criteria Optimal Leaf
Ordering

Between-Cluster
Allocation

Single Group
Average Complete Ward’s

Method Yes No EW ERC

SOERC x x x
SOEW x x x
SERC x x x
SEW x x x
GAOERC x x x
GAOEW x x x
GAERC x x x
GAEW x x x
COERC x x x
COEW x x x
CERC x x x
CEW x x x
WOERC x x x
WOEW x x x
WERC x x x
WEW x x x

Table 5.1: Overview of allocation algorithms. The names of the different alloca-
tion algorithms are acronyms based on their linkage criteria, usage of optimal leaf
ordering and between-cluster allocation. For example, SOERC incorporates Single
Linkage, Optimal Leaf Ordering and Equal Risk Contribution.

5.3 Performance Measures

The different portfolio construction methods were evaluated both on their ability to
replicate the returns of a benchmark with a similar risk level, and the stability of
the calculated bets over time. The ability to replicate the returns of a benchmark
is assessed by using Tracking Error as a performance measure. In addition, the
stability of the calculated bets is determined by the Turnover Ratio. To expand the
performance analysis of the proposed hierarchical portfolio allocation algorithm, the
number of clusters given by GSI and the final number of clusters were stored. In
addition, the condition number for each sample covariance matrix for every cluster
in the final number of clusters was computed in order to analyze the numerical
stability of the estimations. Finally, the cluster size, meaning the average number
of assets in a cluster was computed for comparison purposes. These measures are
defined and described in the following subsections.
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5.3.1 Tracking Error
Tracking Error is the divergence between the return of a portfolio and the return of
a related benchmark, with a similar level of risk. In this thesis, the risk is defined as
the variance of the excess return. In a relative setting like this, Tracking Error is a
commonly used metric to gauge how well an investment in a portfolio is performing.
Most portfolios behave differently compared to the benchmark and the Tracking
Error is used to quantify this difference. In this thesis, the Tracking Error is defined
in line with the one used by The Second Swedish National Pension Fund

TE = s
({

ρ
(
r(t,t+∆t), b∗(t)

)}N

t=1

)
, (5.7)

where b∗(t) are the bets placed at time t, r(t,t+∆t) is the return vector between time
t and t + ∆t, ρ(x, y) is the Pearson sample correlation between a vector x and a
vector y, and s(x) is the sample standard deviation of a vector x. This definition
measures how much the correlation between the bets and the returns fluctuates over
time.

5.3.2 Turnover
To measure the stability of the bets as well as to quantify how much b∗ changes over
time, a turnover measure was implemented. The mean and the standard deviation
of the turnover measure were studied. The Turnover between time t and t + ∆t,
TO(t) was defined as follows:

TO(t) =
∥∥∥b∗(t) − b∗(t+∆t)

∥∥∥ . (5.8)

The sample mean of the Turnover is

TO =
n−1∑
t=1

TO(t)

n − 1 ,. (5.9)

and its sample standard deviation is

sT O =
√√√√ 1

n − 1

n∑
i=1

(TO(i) − TO)2. (5.10)

The goal of the hierarchical portfolio allocation algorithms is to have TO and sT O

as small as possible since it is typically undesirable to change positions frequently.

5.3.3 Condition Number
To evaluate the numerical stability of the sample covariance matrices associated
with the clusters (see Section 5.1.3), the condition number of each sample covari-
ance matrix was computed and stored. The condition number was calculated using
Equation (2.28). Since there typically are several clusters, and thus several sam-
ple covariance matrices, only the minimum κ

(t)
Min, maximum κ

(t)
Max, average µ(t)

κ and
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standard deviation σ(t)
κ of the condition numbers were stored at each time t. What

is presented below is the averages of these measures,

κMin =
∑n

i=1 κ
(i)
Min

n
, (5.11)

κMax =
∑n

i=1 κ
(i)
Max

n
, (5.12)

µκ =
∑n

i=1 µ(i)
κ

n
, (5.13)

and

σκ =
∑n

i=1 σκ(i)

n
. (5.14)

5.3.4 Number of Clusters
In order to evaluate the potential overfitting of the clusters, the number of formed
clusters k

(t)
final is compared to the number of clusters suggested by the Gap Statistics

Index, k∗,(t), resulting in the value ∆k(t) = |k(t)
final − k∗,(t)|, for each time t. The

measures presented are the mean and standard deviation of ∆k(t) over time,

∆k =
∑n

i=1 ∆k(i)

n
(5.15)

and

s∆k =
√√√√ 1

n − 1

n∑
i=1

(∆k(i) − ∆k)2. (5.16)

5.3.5 Cluster Size
The size of each of the clusters, i.e. the number of assets in each cluster, for every
allocation algorithm was stored to inspect how the cluster size varies based on the
parameter configuration for each portfolio. The average cluster size and standard
deviation of the cluster sizes generated by every allocation algorithm were computed
at each time t. The presented results are the averages of these measures over time
such that,

nC =
∑n

i=1 n
(i)
C

n
(5.17)

and

snC
=

√√√√ 1
n − 1

n∑
i=1

(n(i)
C − nC)2. (5.18)

Note that n denotes the number of time steps considered and nC denotes the number
of assets in a cluster, i.e. the cluster size.
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5.4 Empirical Walk-Forward Backtest
To construct the sample covariance matrices, the normalized returns for the asset
are essential. As previously discussed in Section 2.3, the number of observations n
used to construct the sample covariance matrix S is a parameter of great importance
that has a considerable influence on the quality of S. As previously stated, when
n → ∞ with p fixed, the sample covariance matrix S converges to the true covari-
ance matrix Σ. However, in practice investors desire to use as recent return data as
possible to reflect current market conditions. Therefore, a middle ground between
a too narrow and too wide time window is required. To evaluate the influence of
n on the quality of the purposed hierarchical portfolio allocation algorithm, three
different time windows are considered for constructing the sample covariance matrix
S: 100-, 300- and 500 days.

Since the return data is in the form of time series, a rolling window analysis is
performed. Denote the total number of days in the dataset as ∥T∥. The sample
covariance matrix S is then estimated on m := ∥T ∥

n
subsets of normalized returns

for all p assets in the dataset, where n ∈ {100, 300, 500}. Using S, the optimal
set of bets is computed using Equation (2.26) for every subset m. The estimation
procedure and bets computation are performed iteratively by starting from the be-
ginning of the dataset and incrementing m by one until the complete dataset has
been iterated through.

5.5 Data
This section includes a presentation and description of the empirical data used in
this study, as well as a presentation of the data manipulations performed.

5.5.1 Original Dataset
The empirical data considered in this study consists of weekly equity returns for
5815 stocks in the time period between 01/03/1990 and 10/01/2022. Note that not
all assets have available weekly returns for the whole period. All data used in this
project were provided by The Second Swedish National Pension Fund.

The data provided by The Second Swedish National Pension Fund consisted of
weekly returns for each asset, the currency that the asset is denoted in, the country
listing of the asset as well as the Global Industry Classification Standard (GICS)
developed by MSCI and Standard & Poor’s, geographical market of the asset. The
weekly equity returns ri = r

(t,t+∆t)
i ∈ Rp for asset i are defined as

r
(t,t+∆t)
i = P

(t+∆t)
i − P

(t)
i + d

(t)
i

P
(t)
i

, (5.19)

where P
(t)
i is the closing price at time t for asset i and d

(t)
i is the dividend payed

for asset i between t and t + ∆t. Since the dataset consist of weekly returns, ∆t
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corresponds to one week, i.e. five trading days. All returns are given in Swedish
currency SEK.

The different geographical markets and the number of assets associated to each
market is shown in Table 5.2:

Geographical Market Number of Assets

Asia 1115
Eastern Europe 154
Europe 1392
Japan 618
Latin America 257
Middle East / Africa 213
North America 1650
Pacific / Japan 471

Table 5.2: The geographical distribution of assets.

5.5.2 Data Manipulation

Since the interest of this thesis lies in the excess return, all weekly equity returns
have been normalized by the subtraction of the average return r̄ ∈ R between t and
∆t, and division of the sample standard deviation of the market return s(r). Here,
r ∈ Rp is a vector of the returns of the assets in the portfolio between time t and
∆t, such that the normalized weekly return rzi

∈ R for assets i is given by

rzi
= ri − r̄

s(r) ∀i = 1, . . . , p (5.20)

Evidently, r̄zi
= 0, s (rzi

) = 1 ∀i = 1, . . . , p at every time t > 0.

To handle the fact that weekly return data is not available for each asset during
the whole time period, the data set was divided into four subsets of an equal num-
ber of weekly returns. These four subsets consist of the data associated with the
assets with consistent weekly returns between 1990-03-01 and 1998-02-13, 1998-02-16
and 2006-01-31, 2006-02-01 and 2014-01-16, 2014-01-17 and 2022-01-03, respectively.
This resulted in the geographical market distribution illustrated in Table 5.3.

38



5. Method

Periods

Geographical Market Belonging Period 1 Period 2 Period 3 Period 4
Asia 23 0 224 231
Eastern Europe 0 0 29 13
Europe 362 221 258 246
Japan 266 180 198 147
Latin America 0 0 49 51
Middle East / Africa 0 0 25 20
North America 356 221 385 365
Pacific / Japan 148 51 90 68
Total 1155 673 1256 1141

Table 5.3: The geographical distribution of assets with consistent weekly returns
for different time periods.

Table 5.3 illustrates that the number of assets decreased from partitioning the data
using the aforementioned approach. On the other hand, one can argue that the
total number of assets is still large enough in each period for the portfolios to be
considered high-dimensional and thus, it can be used to achieve the aims of this
thesis.
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Results

In this chapter, the empirical results are presented. This chapter is divided into
sections associated with each of the performance measures presented in Section 5.3,
namely Tracking Error, Turnover, condition number, number of clusters and cluster
size. The results includes the investigated time periods, see Section 5.5.2, and were
obtained following the methodology described in the previous chapter.

6.1 Tracking Error

From the sub-figures in Figure 6.1, it is evident that the Tracking Error produced by
the different portfolio construction methods do not change considerably over time
since the results are rather similar irrespective of which time period is considered.
This implies that the proposed hierarchical clustering allocation algorithm is robust
over time and for different market regimes. Note that the Tracking Error in period
two is larger for all allocation algorithms compared to the other periods. This indi-
cates that all the allocation algorithms perform better when more assets are added
to the portfolio. The combination of Single Linkage and ERC outperformed the rest
of the portfolios for all considered time periods. The implementation of ERC as a
between-cluster allocation method seems to produce superior portfolios compared
to EW, which produces relatively high TE. In addition, optimal leaf ordering seems
to have a little or no effect on the produced TE across all linkage criteria. Similarly,
the size of the time windows used for the construction of covariance and correlation
matrices does not enhance the TE remarkably. However, larger time windows do
usually produce smaller TE in general, even if the improvement is small.
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(a) Average TE for different portfolio construction methods in Period 1, correspond-
ing to the period between 01/03/1990 and 13/02/1998.
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(b) Average TE for different portfolio construction methods in Period 2, correspond-
ing to the period between 16/02/1998 and 31/01/2006.
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(c) Average TE for different portfolio construction methods in Period 3, correspond-
ing to the period between 01/02/2006 and 16/01/2014.
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(d) Average TE for different portfolio construction methods in Period 4, correspond-
ing to the period between 17/01/2014 and 03/01/2022.

Figure 6.1: Average TE for different portfolio construction methods during differ-
ent time periods.
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6.2 Turnover

The Turnover TO is illustrated in Figure 6.2. Similar to Tracking Error, the overall
patterns are similar across different time periods, and exists clear differences in the
performance between different portfolio construction methods that are consistent
over time. Portfolios incorporating EW produce better results since the Turnover of
bets is considerably smaller than for portfolios constructed using ERC. Additionally,
the set of bets produced using EW does not fluctuate frequently since the standard
deviation is significantly smaller in comparison to ERC. This difference is most
distinguishable for portfolios using Single Linkage as linkage criteria. It is evident
that the combination of Single Linkage and EW (SOEW and SEW) yields very
stable bets over time with little variation. Moreover, Single Linkage seems to be the
favorable linkage criteria with respect to TO. However, it is difficult to establish
any substantial differences between the Turnover results of the remaining allocation
algorithms, barring the portfolios created using Ward’s method that experience a
slightly higher turnover of bets. Additionally, optimal leaf ordering and the size of
the time windows do not seem to have a significant impact on the turnover of bets
over time.
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(a) Average TO and sT O for different portfolio construction methods in Period 1,
corresponding to the period between 01/03/1990 and 13/02/1998.
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(b) Average TO and sT O for different portfolio construction methods in Period 2,
corresponding to the period between 16/02/1998 and 31/01/2006.
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(c) Average TO and sT O for different portfolio construction methods in Period 3,
corresponding to the period between 01/02/2006 and 16/01/2014.

44



6. Results

SOERC SOEW SERC SEW
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Single Linkage

GAOERC GAOEW GAERC GAEW
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Group Average Linkage

COERC COEW CERC CEW
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Complete Linkage

WOERC WOEW WERC WEW
0.00

0.05

0.10

0.15

0.20

0.25

Ward´s MethodT
O

(d) Average TO and sT O for different portfolio construction methods in Period 4,
corresponding to the period between 17/01/2014 and 03/01/2022.

Figure 6.2: Average TO for different allocation algorithms during different time
periods. The black line represents the standard deviation of the TO for every port-
folio constellations. The blue, orange and green bars represents the results using
time windows of size 100-, 300- and 500 days, respectively.
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6.3 Condition Number
Table 6.1 shows as expected, that the condition number for the different portfolio
construction methods decrease as one increases the number of observations used for
constructing the covariance and correlation matrices. This is true for all time peri-
ods and portfolio construction methods considered, and is in line with the discussion
in Section 2.3. However, the effect diminishes when going from n = 300 to n = 500
in comparison to when going from n = 100 to n = 300. This is as expected, since
the standard deviation of the estimates decrease with a factor 1√

n
. Single Linkage

portfolios outperformed the other portfolios with respect to κ, and also exhibiting
the lowest variability σκ. Concerning condition number, Single Linkage portfolios
performed best and were followed by Group Average Linkage, Complete Linkage,
and lastly, constellations constructed using Ward’s method. The discrepancy be-
tween the condition numbers by Single Linkage and Ward’s method is large, Ward’s
method yield on average 4.5 times larger condition numbers across the different time
windows. There exists no difference in the condition numbers obtained when imple-
menting EW or ERC, as expected. This is due to the fact the obtained covariance
matrices are the same, irrespective of which between-cluster allocation method is
used. Interestingly, leaf order does not have any impact on the condition numbers.
The condition numbers are in general smaller in period two compared to the other
periods, which might depend on the fact that this period contains fewer assets.

n = 100

κMin κMax µκ σκ

SOERC 3.21 663.46 27.88 70.05
SOEW 3.21 663.46 27.88 70.05
SERC 3.21 663.46 27.88 70.05
SEW 3.21 663.46 27.88 70.05

GAOERC 2.58 1019.20 45.55 101.87
GAOEW 2.58 1019.20 45.55 101.87
GAERC 2.58 1019.20 45.55 101.87
GAEW 2.58 1019.20 45.55 101.87

COERC 3.26 945.69 54.45 103.96
COEW 3.26 945.69 54.45 103.96
CERC 3.26 945.69 54.45 103.96
CEW 3.26 945.69 54.45 103.96

WOERC 6.17 1588.70 134.91 217.72
WOEW 6.17 1588.70 134.91 217.72
WERC 6.17 1588.70 134.91 217.72
WEW 6.17 1588.70 134.91 217.72

n = 300

κMin κMax µκ σκ

SOERC 2.23 532.42 22.53 59.31
SOEW 2.23 532.42 22.53 59.31
SERC 2.23 532.42 22.53 59.31
SEW 2.23 532.42 22.53 59.31

GAOERC 1.77 767.90 25.48 73.42
GAOEW 1.77 767.90 25.48 73.42
GAERC 1.77 767.90 25.48 73.42
GAEW 1.77 767.90 25.48 73.42

COERC 2.20 722.07 37.97 84.26
COEW 2.20 722.07 37.97 84.26
CERC 2.20 722.07 37.97 84.26
CEW 2.20 722.07 37.97 84.26

WOERC 4.99 1029.08 84.17 150.33
WOEW 4.99 1029.08 84.17 150.33
WERC 4.99 1029.08 84.17 150.33
WEW 4.99 1029.08 84.17 150.33

n = 500

κMin κMax µκ σκ

SOERC 2.02 488.52 22.30 57.27
SOEW 2.02 488.52 22.30 57.27
SERC 2.02 488.52 22.30 57.27
SEW 2.02 488.52 22.30 57.27

GAOERC 1.58 692.83 22.19 66.98
GAOEW 1.58 692.83 22.19 66.98
GAERC 1.58 692.83 22.19 66.98
GAEW 1.58 692.83 22.19 66.98

COERC 1.93 702.91 34.13 81.08
COEW 1.93 702.91 34.13 81.08
CERC 1.93 702.91 34.13 81.08
CEW 1.93 702.91 34.13 81.08

WOERC 4.41 888.83 72.03 131.25
WOEW 4.41 888.83 72.03 131.25
WERC 4.41 888.83 72.03 131.25
WEW 4.41 888.83 72.03 131.25

(a) Condition number κ all allocation algorithms in Period 1, corresponding to the
period between 01/03/1990 and 13/02/1998.
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n = 100

κMin κMax µκ σκ

SOERC 3.01 361.47 21.38 46.91
SOEW 3.01 361.47 21.38 46.91
SERC 3.01 361.47 21.38 46.91
SEW 3.01 361.47 21.38 46.91

GAOERC 2.67 599.90 39.11 73.42
GAOEW 2.67 599.90 39.11 73.42
GAERC 2.67 599.90 39.11 73.42
GAEW 2.67 599.90 39.11 73.42

COERC 4.07 605.67 47.56 78.78
COEW 4.07 605.67 47.56 78.78
CERC 4.07 605.67 47.56 78.78
CEW 4.07 605.67 47.56 78.78

WOERC 13.64 1033.30 119.70 167.58
WOEW 13.64 1033.30 119.70 167.58
WERC 13.64 1033.30 119.70 167.58
WEW 13.64 1033.30 119.70 167.58

n = 300

κMin κMax µκ σκ

SOERC 2.17 243.01 15.17 33.94
SOEW 2.17 243.01 15.17 33.94
SERC 2.17 243.01 15.17 33.94
SEW 2.17 243.01 15.17 33.94

GAOERC 1.78 400.89 22.12 50.03
GAOEW 1.78 400.89 22.12 50.03
GAERC 1.78 400.89 22.12 50.03
GAEW 1.78 400.89 22.12 50.03

COERC 2.91 448.69 33.46 63.89
COEW 2.91 448.69 33.46 63.89
CERC 2.91 448.69 33.46 63.89
CEW 2.91 448.69 33.46 63.89

WOERC 11.06 638.48 75.21 114.46
WOEW 11.06 638.48 75.21 114.46
WERC 11.06 638.48 75.21 114.46
WEW 11.06 638.48 75.21 114.46

n = 500

κMin κMax µκ σκ

SOERC 1.97 195.60 13.53 28.22
SOEW 1.97 195.60 13.53 28.22
SERC 1.97 195.60 13.53 28.22
SEW 1.97 195.60 13.53 28.22

GAOERC 1.59 338.50 19.46 44.40
GAOEW 1.59 338.50 19.46 44.40
GAERC 1.59 338.50 19.46 44.40
GAEW 1.59 338.50 19.46 44.40

COERC 2.52 399.33 30.40 59.14
COEW 2.52 399.33 30.40 59.14
CERC 2.52 399.33 30.40 59.14
CEW 2.52 399.33 30.40 59.14

WOERC 9.94 563.73 68.37 105.30
WOEW 9.94 563.73 68.37 105.30
WERC 9.94 563.73 68.37 105.30
WEW 9.94 563.73 68.37 105.30

(b) Condition number κ all allocation algorithms in Period 2, corresponding to the
period between 16/02/1998 and 31/01/2006.

n = 100

κMin κMax µκ σκ

SOERC 3.23 593.08 27.09 62.28
SOEW 3.23 593.08 27.09 62.28
SERC 3.23 593.08 27.09 62.28
SEW 3.23 593.08 27.09 62.28

GAOERC 2.59 760.74 41.84 76.06
GAOEW 2.59 760.74 41.84 76.06
GAERC 2.59 760.74 41.84 76.06
GAEW 2.59 760.74 41.84 76.06

COERC 3.33 747.45 50.34 79.87
COEW 3.33 747.45 50.34 79.87
CERC 3.33 747.45 50.34 79.87
CEW 3.33 747.45 50.34 79.87

WOERC 10.72 1445.82 134.22 189.76
WOEW 10.72 1445.82 134.22 189.76
WERC 10.72 1445.82 134.22 189.76
WEW 10.72 1445.82 134.22 189.76

n = 300

κMin κMax µκ σκ

SOERC 2.31 340.05 18.98 39.70
SOEW 2.31 340.05 18.98 39.70
SERC 2.31 340.05 18.98 39.70
SEW 2.31 340.05 18.98 39.70

GAOERC 1.76 437.39 24.08 47.17
GAOEW 1.76 437.39 24.08 47.17
GAERC 1.76 437.39 24.08 47.17
GAEW 1.76 437.39 24.08 47.17

COERC 2.27 478.67 34.52 56.53
COEW 2.27 478.67 34.52 56.53
CERC 2.27 478.67 34.52 56.53
CEW 2.27 478.67 34.52 56.53

WOERC 7.39 774.50 82.17 113.04
WOEW 7.39 774.50 82.17 113.04
WERC 7.39 774.50 82.17 113.04
WEW 7.39 774.50 82.17 113.04

n = 500

κMin κMax µκ σκ

SOERC 2.13 288.56 17.49 35.01
SOEW 2.13 288.56 17.49 35.01
SERC 2.13 288.56 17.49 35.01
SEW 2.13 288.56 17.49 35.01

GAOERC 1.59 343.23 21.47 40.54
GAOEW 1.59 343.23 21.47 40.54
GAERC 1.59 343.23 21.47 40.54
GAEW 1.59 343.23 21.47 40.54

COERC 2.00 455.69 31.68 54.30
COEW 2.00 455.69 31.68 54.30
CERC 2.00 455.69 31.68 54.30
CEW 2.00 455.69 31.68 54.30

WOERC 6.78 603.80 70.91 90.79
WOEW 6.78 603.80 70.91 90.79
WERC 6.78 603.80 70.91 90.79
WEW 6.78 603.80 70.91 90.79

(c) Condition number κ all allocation algorithms in Period 3, corresponding to the
period between 01/02/2006 and 16/01/2014.

n = 100

κMin κMax µκ σκ

SOERC 3.22 800.44 28.47 73.76
SOEW 3.22 800.44 28.47 73.76
SERC 3.22 800.44 28.47 73.76
SEW 3.22 800.44 28.47 73.76

GAOERC 2.62 841.59 43.51 80.95
GAOEW 2.62 841.59 43.51 80.95
GAERC 2.62 841.59 43.51 80.95
GAEW 2.62 841.59 43.51 80.95

COERC 3.26 764.29 51.27 80.06
COEW 3.26 764.29 51.27 80.06
CERC 3.26 764.29 51.27 80.06
CEW 3.26 764.29 51.27 80.06

WOERC 4.40 746.83 55.02 79.24
WOEW 4.40 746.83 55.02 79.24
WERC 4.40 746.83 55.02 79.24
WEW 4.40 746.83 55.02 79.24

n = 300

κMin κMax µκ σκ

SOERC 2.27 486.74 19.85 46.33
SOEW 2.27 486.74 19.85 46.33
SERC 2.27 486.74 19.85 46.33
SEW 2.27 486.74 19.85 46.33

GAOERC 1.84 509.95 24.75 48.69
GAOEW 1.84 509.95 24.75 48.69
GAERC 1.84 509.95 24.75 48.69
GAEW 1.84 509.95 24.75 48.69

COERC 2.29 512.73 34.47 56.61
COEW 2.29 512.73 34.47 56.61
CERC 2.29 512.73 34.47 56.61
CEW 2.29 512.73 34.47 56.61

WOERC 9.57 656.64 84.59 102.37
WOEW 9.57 656.64 84.59 102.37
WERC 9.57 656.64 84.59 102.37
WEW 9.57 656.64 84.59 102.37

n = 500

κMin κMax µκ σκ

SOERC 2.11 419.50 18.05 39.66
SOEW 2.11 419.50 18.05 39.66
SERC 2.11 419.50 18.05 39.66
SEW 2.11 419.50 18.05 39.66

GAOERC 1.62 462.65 21.62 43.65
GAOEW 1.62 462.65 21.62 43.65
GAERC 1.62 462.65 21.62 43.65
GAEW 1.62 462.65 21.62 43.65

COERC 2.03 453.67 30.66 50.54
COEW 2.03 453.67 30.66 50.54
CERC 2.03 453.67 30.66 50.54
CEW 2.03 453.67 30.66 50.54

WOERC 9.16 534.71 73.94 85.82
WOEW 9.16 534.71 73.94 85.82
WERC 9.16 534.71 73.94 85.82
WEW 9.16 534.71 73.94 85.82

(d) Condition number κ all allocation algorithms in Period 4, corresponding to the
period between 17/01/2014 and 03/01/2022.

Table 6.1: Statistics for condition number κ for all allocation algorithms during
the different time periods.
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6.4 Number of Clusters

Figure 6.3 shows that there exists a clear discrepancy between the results from the
different linkage criteria. Single Linkage portfolios create a large number of clusters,
suggesting that it does not reflect the true hierarchical structure very well. These
portfolios exhibit small variation, indicating that Single Linkage consistently cre-
ates a set of clusters that is far from the optimal number. In addition, for Single
Linkage portfolios, the time window n does not reduce ∆k considerably. This is
in contrast to portfolios based on Ward’s method, which produces sets of clusters
that are much closer to k∗. Also, for Ward’s method the size of the time window n
imposes a more significant impact on the produced ∆k, where larger n reduces the
discrepancy between the final and the optimal number of clusters. This is most clear
for the WOERC and WOEW portfolios in the fourth period, where one can see a
considerable decrease in ∆k when increasing the number of observations n. Alloca-
tion algorithms based on Complete and Group Average Linkage performed rather
similarly with respect to ∆k. On the other hand, a difference between Complete and
Group Average Linkage portfolios is that the former criteria produced smaller ∆k
when using larger time windows n, whereas the opposite is true for Group Average
Linkage portfolios. Note, that the reason why ∆k is smaller in Period 2 is that this
period contains fewer assets compared to the other periods.

SOERC SOEW SERC SEW
0

100

200

300

400

500

600

700

Single Linkage

GAOERC GAOEW GAERC GAEW
0

50

100

150

200

Group Average Linkage

COERC COEW CERC CEW
0

25

50

75

100

125

150

Complete Linkage

WOERC WOEW WERC WEW
0

20

40

60

80

Ward´s Method∆
k

(a) Average ∆k and s∆k for different portfolio construction methods in Period 1,
corresponding to the period between 01/03/1990 and 13/02/1998.
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(b) Average ∆k and s∆k for different portfolio construction methods in Period 2,
corresponding to the period between 16/02/1998 and 31/01/2006.
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(c) Average ∆k and s∆k for different portfolio construction methods in Period 3,
corresponding to the period between 01/02/2006 and 16/01/2014.
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(d) Average ∆k and s∆k for different portfolio construction methods in Period 4,
corresponding to the period between 17/01/2014 and 03/01/2022.

Figure 6.3: Average ∆k for the different portfolio construction methods during
different time periods. The black line represents the standard deviation of ∆k for
every portfolio construction method. The blue, orange and green bars represents
the results using time windows of size 100-, 300- and 500 days, respectively.
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6.5 Cluster Size

Figure 6.4 shows that as previously suspected, Single Linkage portfolios produce
remarkably small clusters with very few assets. On the contrary, Ward’s method
creates clusters of larger size and where Complete and Group Average Linkage con-
stitutes a middle ground for cluster size. For example, Ward’s method portfolios
produce approximately 9.8x, 1.9x, and 2.8x larger clusters on average than Single
Linkage, Complete Linkage, and Average Linkage, respectively. Also, notice that
for allocation algorithms using Ward’s method and Complete Linkage, the average
cluster size nC increases as more data points are included, while the cluster size for
allocation algorithms using Single and Group Average seems to be unaffected by the
increase of n. Additionally, allocation algorithms incorporating these latter linkage
criteria exhibit a larger variability regarding average cluster size compared to Ward’s
method and Complete Linkage. Finally, Figure 6.4 exhibit a natural relationship
between ∆k and nC , namely that large ∆k imply smaller clusters on average.
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(b) Average cluster size nC and snC
for different portfolio construction methods in

Period 2, corresponding to the period between 16/02/1998 and 31/01/2006.
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Period 4, corresponding to the period between 17/01/2014 and 03/01/2022.

Figure 6.4: Average cluster size nC for the different portfolio construction meth-
ods. The black line represents the standard deviation of snC

for every portfolio
construction method. The blue, orange and green bars represents the results using
time windows of size 100-, 300- and 500 days, respectively.
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6.6 Summary of the Results
To summarize the results from the previous sections in this chapter, Table 6.2 il-
lustrates the ranking of the evaluated allocation methods with respect to each in-
vestigated performance criteria. As shown, methods constructed using ERC yield
lower Tracking Error compared to methods constructed using EW. In general, the
opposite is true regarding Turnover. The average difference between the final num-
ber of clusters and the optimal number of clusters ∆k seems to be most affected by
the implemented linkage criteria. The same is true for µκ, however, the ranking is
inverted. As seen in the results, the relationship between ∆k and nC holds for all
allocation methods.

TE TO ∆k µκ nC

WEW 0.027 0.202 51.44 94.75 17.06
WOEW 0.027 0.203 53.2 94.75 17.06
WOERC 0.018 0.265 53.2 94.75 17.06
WERC 0.018 0.26 53.2 94.75 17.06
COEW 0.029 0.137 108.9 39.24 9.11
COERC 0.017 0.199 108.9 39.24 9.11
CEW 0.030 0.137 108.9 39.24 9.11
CERC 0.018 0.199 108.9 39.24 9.11
GAEW 0.030 0.110 158.70 29.27 5.95
GAOEW 0.029 0.114 165.86 29.27 5.95
GAERC 0.019 0.172 165.86 29.27 5.95
GAOERC 0.018 0.175 165.86 29.27 5.95
SEW 0.029 0.042 579.14 21.06 1.74
SOEW 0.026 0.068 579.14 21.06 1.74
SERC 0.016 0.192 579.14 21.06 1.74
SOERC 0.013 0.217 579.14 21.06 1.74

Table 6.2: Comparison of all of the evaluated allocation methods based on dif-
ferent performance measures. The bold numbers represent the best result for each
performance measure. Note that the comparison is based on the averages over all
time periods and time windows.
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Discussion

This chapter discusses the empirical results obtained in Chapter 6 in order to pro-
vide insights into the performance of the hierarchical portfolio allocation algorithms.
This discussion includes a comparison between the different portfolio construction
methods as well as a broader analysis of the practical implications, strengths and
weaknesses of the different hierarchical portfolio allocation algorithms. Finally, this
chapter includes suggestions for future research.

The hierarchical portfolio allocation algorithms developed in this thesis is an ex-
tension and adaptation of the works by Markowitz (1952), López de Prado (2018),
and Raffinot (2017; 2018). The methods in these papers have all been developed
and shown prominence in a passive setting, but have not been examined in and
adapted to an active management framework. Based on the results from this the-
sis, it can be argued that the proposed hierarchical portfolio allocation algorithm,
which operates in an active management framework, is able to capture the existing
hierarchical structure between assets, similarly to HRP, HCAA, and HERC (López
de Prado 2018; Raffinot 2017; Raffinot 2018). In addition, based on the results of
this thesis, the hierarchical portfolio allocation algorithms are robust and flexible
since they yield consistent results over time and is able to adapt to different market
events and conditions. The algorithms performed similarly over different time peri-
ods, suggesting that they can be used to create favorable sets of bets, irrespective
of the market climate. The proposed hierarchical portfolio allocation algorithms
enables the active investor to capture the hierarchical structure of different assets
in a high-dimensional setting, while reducing inherent estimation errors resulting in
bets that reflect the returns of a related benchmark effectively.

Single Linkage yielded the lowest Tracking Error amongst the set of linkage criteria,
suggesting that when using this linkage method the allocation algorithm replicates
the benchmark returns quite well. One of the reasons why this is the case may be
that the average cluster size is less than two when Single Linkage is used, implying
that many of the clusters contain only one asset, resulting in bets that are equal
to zero for these singleton clusters since there is no other asset to hedge against.
This entails that many of the portfolio weights are identical to the weights of the
benchmark. Hence, few of the total bets are forced to equal one, creating a scenario
where there are only a few bets which need to be hedged. In addition, there are
also fewer assets that the forced bet can be hedged against. By extension, the small
Tracking Error obtained from the Single Linkage algorithm suggests that the algo-
rithm creates clusters of assets with almost perfect correlation, and therefore there
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does not exist a need for a large number of assets to hedge bets against.

The number of assets within a cluster is related to the condition number of the
sample covariance matrix. Hence, since the average cluster size is smaller when
employing Single Linkage compared to the remaining linkage criteria, the condition
number for these clusters becomes smaller as well. This implies that the obtained
sample covariance matrices from the clusters are more well-conditioned, which natu-
rally leads to a more stable bet selection process. Also, the Turnover is smaller when
Single Linkage is incorporated. Since the clusters are small and consist of highly
correlated assets, a low Turnover becomes a natural result as long as the correlation
between assets is stable over time. What also has to be mentioned is the fact that
the difference between the final number of clusters and the optimal number of clus-
ters suggested by GSI (Hastie et. al., 2001) is very high for allocation methods that
employ Single Linkage. By extension, this implies that the obtained clusters do not
generalize very well and overfit the data. However, allocation methods constructed
using Single Linkage still result in a significantly smaller Tracking Error compared
to linkage methods where the differences between the final number of clusters and
the optimal number of clusters are smaller.

The difference in Tracking Error is small between methods incorporating Complete
Linkage, Group Average Linkage, and Ward’s Method. However, the use of Com-
plete Linkage and Group Average Linkage results in a smaller Turnover compared
to Ward’s method. This suggests that the investors do not have to rebalance the
portfolio as often while still obtaining a similar Tracking Error if Complete Linkage
or Group Average Linkage is used. This can be explained by the size of clusters
produced by the different linkage criteria, as it affects the size of condition number
significantly. Ward’s method produces on average the largest set of clusters, followed
by Complete and Group Average Linkage. Consequently, the size of the condition
number follows the same order, explaining why Ward’s method produces bets that
alternate more frequently compared to Complete and Group Average Linkage.

By incorporating the optimal leaf ordering algorithm in a subset of the different
allocation algorithms, it is clear that its effect on the performance was marginal at
best. The ordering of the leaves in the hierarchical structure does not seem to have
an impact on the different performance measures over time. One plausible explana-
tion for this phenomenon is that, on average, very similar hierarchical structures are
constructed, irrespective if optimal leaf ordering is implemented or not. Naturally,
if the constructed structures are similar or identical, it is expected that the hierar-
chical structures produce indistinguishable results. This by extension, entails that
the ordering of the input data is near-optimal or optimal, creating a scenario where
the algorithm proposed by Bar-Joseph et al. (2001) is non-crucial for the results.
However, this might not have been the case for all of the other 2p−1 orders that the
input data could have had. In addition, it is important to highlight the size of the
data in this thesis which has an averaging effect on the results. If one conducted a
more granular analysis with a smaller dataset, the effects from optimal leaf ordering
could be more distinguishable.
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The results display the importance of choosing the appropriate between-cluster allo-
cation method. In this thesis, the results from implementing equal risk contribution
(Maillard et. al., 2010) and equal weighting were investigated. Evidently, when con-
sidering Tracking Error, equal risk contribution performed substantially better than
equal weighting across all linkage methods and time windows. To understand and
explain this substantial outperformance, one can view the benchmark as a weighted
sum of assets with varying levels of inherent risk. Naturally, the benchmark encom-
passes assets that are riskier than other assets in the benchmark, and if one assumes
that risky assets exhibit large correlations amongst themselves than to less risky
assets, one can view the benchmark as an average of a set of clusters containing
assets that are similar in risk profile. This is very closely related to the notion of
equal risk contribution. Therefore, if the clusters from the hierarchical clustering
are similar to the groupings of assets in the benchmark from a risk perspective, it is
reasonable to suggest that the equal risk contribution method constructs bets that
reflect the benchmark very well.

This is in contrast to equal weighting, which naively allocates weights between the
clusters. If one assumes that risky assets drive the direction of the benchmark,
the obtained results from allocation algorithms using equal weighting indicate that
this between-cluster allocation method allocates insufficient amounts of weight to
these driving assets. Conversely, this holds also if the opposite scenario is true, i.e.
when assets of lower risk dictate the direction of the benchmark. The conclusion
is that portfolios that incorporate equal weighting in this thesis either allocate too
much or too little capital to the clusters of assets that determine the direction of
the benchmark, resulting in greater Tracking Error compared to allocation methods
that incorporate equal risk contribution.

However, if one assesses equal risk contribution and equal weighting based on Turnover,
it is evident that equal weighting creates considerably more stable bets over time
compared to allocation algorithms constructed using equal risk contribution. Pri-
marily, the equal weighting allocation method does not require the estimation of
the sample covariance matrix for every cluster, since it scales cluster bets evenly.
On the contrary, equal risk contribution requires the sample covariance matrix to
determine the risk contribution from each cluster. Hence, the induced errors from
the estimation of the covariance matrix may create very sensitive and numerically
unstable bets that alternate frequently over time. This is in line with the arguments
of DeMiguel et. al. (2009), who argue that portfolio optimization methods that are
dependent on the estimated covariance matrix yield unstable portfolio weights due
to the inferred estimation errors.

Another interesting aspect of the results is that the time window used to compute
the sample correlation and covariance matrices does not seem to have a significant
impact on the obtained Tracking Error for any of the allocation algorithms. As
suspected, the allocation methods perform on average better when more data is
used as input, but the difference is lower than expected. Even though the condition
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numbers show an inverted relationship with the length of the time window, they do
not differ considerably. This implies that the stability of the obtained covariance
matrices does not depend significantly on the time window. Hence, it is natural to
assume that the Tracking Error does not depend on it either. One may assume that
the small difference in condition number for different time windows is a result of the
cluster selection process. The clusters are partitioned if their associated covariance
matrix is not invertible, leading to a smaller ratio between the number of assets and
number of observations. If many partitions are made, which has been seen in the
results, the length of the time window becomes insignificant since the number of
assets already is small.

As previously mentioned, the number of assets in a cluster seems to have an impact
on the Tracking Error, and an even more significant impact on the Turnover. The
reason for this is clear, since the obtained sample covariance matrix of a cluster is
usually more well-conditioned when the concentration ratio is small, as previously
outlined in Section 2.3. Hence, a small number of assets decreases the concentration
ratio when the number of observations grows, yielding more numerically stable sam-
ple covariance matrices that in turn affect Tracking Error and Turnover positively,
which is supported in the obtained results.

The primary objective of the evaluated allocation methods is to group assets that
exhibit high correlations amongst themselves into clusters. Then, these clusters
are partitioned into sub-clusters containing assets with an even greater intracluster
correlation. This process is performed recursively until the corresponding sample
covariance matrix is invertible. As discussed in Section 2.3, the correlation among
assets within a portfolio causes signal-induced instability in the corresponding co-
variance matrix. Hence, the procedure of grouping highly correlated assets to obtain
an invertible covariance matrix is problematic since signal-induced instability can
not be decreased by increasing the number of observations when constructing the
covariance matrix. This might explain the large discrepancy between the optimal
number of clusters suggested by GSI and the final number of clusters.

Finally, the number of small clusters or singleton sets does not seem to be an is-
sue when the objective is to minimize the Tracking Error. Although, if additional
constraints are added to the portfolio optimization problem, one might need to find
clusters of larger size. Another issue that occurs partly due to singular covariance
matrices is the construction of singleton clusters. Since one is not able to place a
bet in singleton clusters, this drastically decreases the range of bet options for the
active portfolio manager. In order to increase the options, and also to increase the
cluster size in general, the evaluated hierarchical portfolio algorithms need to be
developed further.

7.1 Future Research
There exist several interesting areas of research in the intersection of hierarchical
clustering, portfolio optimization, and active management that can be explored fur-
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ther. A few of these are discussed in this section. First and foremost, the main issue
with the purposed hierarchical portfolio allocation algorithm is that the number of
obtained clusters is disproportionate in relation to the optimal number of clusters
suggested by GSI. We see mainly two ways to handle this. Firstly, an interesting
area of research is the combination of shrinkage (Ledoit and Wolf, 2004) and hier-
archical clustering, where different variations of shrinkage methods can be used to
shrink the covariance matrices of different clusters to obtain more well-conditioned
estimates.

Secondly, a relevant part of future research is to develop allocation algorithms where
the sample covariance matrix does not need to be inverted. This has already been
achieved in a passive setting, for example HRP, HCAA, and HERC (López de Prado
2018; Raffinot 2017; Raffinot 2018). Hence, it should also be feasible to accomplish
this in an active setting. The instability and the small cluster size that some of the
allocation algorithms experience mainly depend on the singularity of the covariance
matrix. Therefore, it is of great importance to evaluate if the hierarchical structure
of the assets can be used to a greater extent, instead of solely being used for inversion
of the covariance matrix in order to place bets in an active management framework.

Moreover, the scope of different between-cluster allocation methods can be broad-
ened to investigate the scaling of bets, as there existed a distinct discrepancy in
the results of this thesis. For example, Maximum Diversification (Choueifaty and
Coignard, 2008), as well as other variations of Equal Risk Contribution should be
evaluated. Also, in this thesis, the bet associated with the asset which showed the
best performance the last week was forced to equal one. The subject of bet-hedging
within clusters is a very interesting area and can be extended further by incor-
porating other, more sophisticated methods to conduct the hedging of bets. This
particular subject has been studied extensively in other types of investment settings.
However, the hedging strategy may be of great importance and should be evaluated
further in an active management setting where the hierarchical structures of the
assets are taken into account. Further, the results regarding hedging strategies may
depend on the choice of linkage criterion, and hence, this is something that needs
to be evaluated further.

Lastly, other performance measures beyond those provided in this thesis can be
included to widen the notion of performance. For example, not all active funds
may define risk as the variance of the excess return. An interesting area to explore
further is how the incorporation of hierarchical structures affects the value at risk
within active funds. Since the objective of this thesis was to minimize the variance
of the excess return, the expected excess return has been left out of the discussion.
Hence, this is another interesting subject of future research that may be explored
further.
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8
Conclusion

The aim of this thesis was to construct hierarchical portfolio allocation algorithms
based on the works of Markowitz (1952), López de Prado (2018), and Raffinot (2017;
2018) which are adapted to an active management framework. The hierarchical
portfolio allocation algorithms performs satisfactorily in an active management set-
ting where the objective is to minimize the variance of the excess return and were
capable of yielding consistent results over different time periods. From an active
management perspective, the proposed algorithms are well-adapted since they are
able to replicate benchmark returns without reproducing the associated benchmark
weights. The proposed hierarchical portfolio allocation algorithms allows an active
investor to capture the hierarchical structure of various assets in a high-dimensional
setting while minimizing inherent estimation errors, resulting in bets that effectively
reflect a related benchmark.

To contribute to the existing literature, several different portfolio allocation meth-
ods were constructed and evaluated. Specifically, allocation methods incorporating
Single Linkage outperformed other types of methods with respect to Tracking Er-
ror. These methods construct smaller clusters of highly correlated assets, which
alleviates the process of hedging bets, leading to small Tracking Errors. In addition,
the usage of Equal Risk Contribution for between-cluster allocation decreases the
Tracking Error significantly. This leads to the conclusion that the combination of
these methods yields the best results for replication of the benchmark returns.

Depending on the objectives and constraints of the active investor, there might ex-
ist advantages in selecting an appropriate linkage criterion that produces fewer, but
larger clusters. Consequently, these criteria increase the options of selecting which
bets to hedge as well as to reduce overfitting of the portfolio allocation methods.
Allocation algorithms that incorporate Ward’s method, Group Average Linkage or
Complete Linkage generate Tracking Errors that are comparable with Single Link-
age, but have the advantage of producing larger clusters. Apparently, there exists
a trade-off between cluster size and Turnover, something that has to be taken into
account by the active investor.

An interesting aspect of this thesis is the efficiency of Equal Risk Contribution
as a between-cluster allocation method for reducing the Tracking Error. The results
from this thesis indicate that a benchmark might be viewed as a set of clusters
with dissimilar levels of risk that alternate over time, which in turn drives the direc-
tion of the benchmark to varying degrees. This thesis shows that the combination
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8. Conclusion

of hierarchical clustering and Equal Risk Contribution captures this notion of the
benchmark structure very well. Hence, it may be used to allocate capital efficiently
with the objective to decrease the portfolio risk with respect to the benchmark.

There exists several areas of research which should be evaluated further in order
to construct efficient portfolio allocation methods in an active management frame-
work. Examples of such areas are the combination of hierarchical clustering and
different shrinkage methods. Bet selection algorithms that are independent of the
inversion of the covariance matrix are highly desirable in an active management
setting, and constitute an interesting subject for future research.

In conclusion, it can be established that employing hierarchical clustering in an
active management framework with the purpose of replicating the returns of a re-
lated benchmark is achievable, and in fact produces satisfactory and robust results.
Several different compositions of the proposed hierarchical portfolio allocation algo-
rithm can be considered. It has been demonstrated that the combination of Single
Linkage and Equal Risk Contribution may be the most advantageous choice.
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A
Appendix A

A.1 Period 1: 01/03/1990 – 13/02/1998

TE T O ∆k κ nC

µ σ µ σ Min Max µ σ µ σ

SOERC 0.0112 0.2512 0.1273 686.4599 31.5095 3.2058 663.4582 27.8816 70.0516 1.6059 1.7359
SOEW 0.0285 0.0410 0.0074 686.4599 31.5095 3.2058 663.4582 27.8816 70.0516 1.6059 1.7359
SERC 0.0112 0.2512 0.1273 686.4599 31.5095 3.2058 663.4582 27.8816 70.0516 1.6059 1.7359
SEW 0.0282 0.0408 0.0073 686.4599 31.5095 3.2058 663.4582 27.8816 70.0516 1.6059 1.7359

GAOERC 0.0155 0.1999 0.0934 177.7414 20.4636 2.5793 1019.1992 45.5487 101.8722 5.9783 3.9476
GAOEW 0.0275 0.1148 0.0083 177.7414 20.4636 2.5793 1019.1992 45.5487 101.8722 5.9783 3.9476
GAERC 0.0155 0.1999 0.0934 177.7414 20.4636 2.5793 1019.1992 45.5487 101.8722 5.9783 3.9476
GAEW 0.0299 0.1147 0.0083 177.7414 20.4636 2.5793 1019.1992 45.5487 101.8722 5.9783 3.9476

COERC 0.0158 0.2218 0.1022 141.9650 15.4501 3.2586 945.6940 54.4482 103.9642 7.5905 3.9796
COEW 0.0268 0.1336 0.0088 141.9650 15.4501 3.2586 945.6940 54.4482 103.9642 7.5905 3.9796
CERC 0.0158 0.2218 0.1022 141.9650 15.4501 3.2586 945.6940 54.4482 103.9642 7.5905 3.9796
CEW 0.0301 0.1331 0.0089 141.9650 15.4501 3.2586 945.6940 54.4482 103.9642 7.5905 3.9796

WOERC 0.0164 0.2777 0.1085 77.1547 10.9443 6.1746 1588.6985 134.9067 217.7241 12.6805 6.0366
WOEW 0.0250 0.2005 0.0154 77.1547 10.9443 6.1746 1588.6985 134.9067 217.7241 12.6805 6.0366
WERC 0.0164 0.2777 0.1085 77.1547 10.9443 6.1746 1588.6985 134.9067 217.7241 12.6805 6.0366
WEW 0.0250 0.2005 0.0154 77.1547 10.9443 6.1746 1588.6985 134.9067 217.7241 12.6805 6.0366

Table A.1: Comparison of performance criteria between the different allocation
algorithms with rolling time window n = 100. Note that the κ and nC values are
averages. ∆k represents the difference between kfinal and k∗

TE T O ∆k κ nC

µ σ µ σ Min Max µ σ µ σ

SOERC 0.0105 0.2827 0.1624 657.4091 35.5705 2.2263 532.4246 22.5256 59.3051 1.6752 2.4989
SOEW 0.0284 0.0379 0.0112 657.4091 35.5705 2.2263 532.4246 22.5256 59.3051 1.6752 2.4989
SERC 0.0105 0.2827 0.1624 657.4091 35.5705 2.2263 532.4246 22.5256 59.3051 1.6752 2.4989
SEW 0.0288 0.0380 0.0111 657.4091 35.5705 2.2263 532.4246 22.5256 59.3051 1.6752 2.4989

GAOERC 0.0139 0.2118 0.1256 191.2319 20.7474 1.7701 767.9036 25.4825 73.4198 5.4827 5.5060
GAOEW 0.0270 0.0983 0.0073 191.2319 20.7474 1.7701 767.9036 25.4825 73.4198 5.4827 5.5060
GAERC 0.0139 0.2118 0.1256 191.2319 20.7474 1.7701 767.9036 25.4825 73.4198 5.4827 5.5060
GAEW 0.0291 0.0987 0.0074 191.2319 20.7474 1.7701 767.9036 25.4825 73.4198 5.4827 5.5060

COERC 0.0148 0.2334 0.1227 118.7878 12.5902 2.2047 722.0696 37.9729 84.2618 9.0893 6.5749
COEW 0.0268 0.1286 0.0088 118.7878 12.5902 2.2047 722.0696 37.9729 84.2618 9.0893 6.5749
CERC 0.0148 0.2334 0.1227 118.7968 12.5853 2.2047 722.0696 37.9730 84.2619 9.0893 6.5749
CEW 0.0291 0.1291 0.0088 118.7968 12.5853 2.2047 722.0696 37.9730 84.2619 9.0893 6.5749

WOERC 0.0145 0.2939 0.1476 56.1682 9.4545 4.9892 1029.0766 84.1672 150.3261 16.6863 10.4451
WOEW 0.0257 0.1860 0.0141 56.1682 9.4545 4.9892 1029.0766 84.1672 150.3261 16.6863 10.4451
WERC 0.0145 0.2939 0.1476 56.1682 9.4545 4.9892 1029.0766 84.1672 150.3261 16.6863 10.4451
WEW 0.0257 0.1860 0.0141 56.1682 9.4545 4.9892 1029.0766 84.1672 150.3261 16.6863 10.4451

Table A.2: Comparison of performance criteria between the different allocation
algorithms with rolling time window n = 300. Note that the κ and nC values are
averages. ∆k represents the difference between kfinal and k∗
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TE T O ∆k κ nC

µ σ µ σ Min Max µ σ µ σ

SOERC 0.0104 0.2805 0.1620 624.6151 37.7266 2.0242 488.5229 22.3009 57.2679 1.7628 3.0103
SOEW 0.0277 0.0359 0.0120 624.6151 37.7266 2.0242 488.5229 22.3009 57.2679 1.7628 3.0103
SERC 0.0104 0.2805 0.1620 624.6151 37.7266 2.0242 488.5229 22.3009 57.2679 1.7628 3.0103
SEW 0.0277 0.0359 0.0120 624.6151 37.7266 2.0242 488.5229 22.3009 57.2679 1.7628 3.0103

GAOERC 0.0139 0.2120 0.1353 203.5961 18.9505 1.5823 692.8282 22.1884 66.9814 5.1929 6.1881
GAOEW 0.0278 0.0938 0.0070 203.5961 18.9505 1.5823 692.8282 22.1884 66.9814 5.1929 6.1881
GAERC 0.0139 0.2120 0.1353 203.5961 18.9505 1.5823 692.8282 22.1884 66.9814 5.1929 6.1881
GAEW 0.0278 0.0938 0.0070 203.5961 18.9505 1.5823 692.8282 22.1884 66.9814 5.1929 6.1881

COERC 0.0143 0.2206 0.1021 112.5604 13.7651 1.9311 702.9099 34.1331 81.0805 9.2992 7.6706
COEW 0.0259 0.1244 0.0081 112.5604 13.7651 1.9311 702.9099 34.1331 81.0805 9.2992 7.6706
CERC 0.0143 0.2206 0.1021 112.5604 13.7651 1.9311 702.9099 34.1331 81.0805 9.2992 7.6706
CEW 0.0280 0.1253 0.0083 112.5604 13.7651 1.9311 702.9099 34.1331 81.0805 9.2992 7.6706

WOERC 0.0145 0.2856 0.1383 49.0541 10.7789 4.4062 888.8324 72.0349 131.2460 17.7602 12.3118
WOEW 0.0261 0.1768 0.0136 49.0541 10.7789 4.4062 888.8324 72.0349 131.2460 17.7602 12.3118
WERC 0.0145 0.2856 0.1383 49.0541 10.7789 4.4062 888.8324 72.0349 131.2460 17.7602 12.3118
WEW 0.0261 0.1768 0.0136 49.0541 10.7789 4.4062 888.8324 72.0349 131.2460 17.7602 12.3118

Table A.3: Comparison of performance criteria between the different allocation
algorithms with rolling time window n = 500. Note that the κ and nC values are
averages. ∆k represents the difference between kfinal and k∗

A.2 Period 2: 16/02/1998 – 31/01/2006

TE T O ∆k κ nC

µ σ µ σ Min Max µ σ µ σ

SOERC 0.0170 0.2687 0.1650 394.7404 20.9999 3.0070 361.4693 21.3822 46.9112 1.6458 1.8193
SOEW 0.0390 0.0532 0.0119 394.7404 20.9999 3.0070 361.4693 21.3822 46.9112 1.6458 1.8193
SERC 0.0182 0.2655 0.1611 394.7404 20.9999 3.0070 361.4693 21.3822 46.9112 1.6458 1.8193
SEW 0.0385 0.0534 0.0119 394.7404 20.9999 3.0070 361.4693 21.3822 46.9112 1.6458 1.8193

GAOERC 0.0257 0.2175 0.0899 85.9584 11.5655 2.6702 599.8954 39.1119 73.4217 6.8569 4.2163
GAOEW 0.0379 0.1567 0.0113 85.9584 11.5655 2.6702 599.8954 39.1119 73.4217 6.8569 4.2163
GAERC 0.0261 0.2129 0.0858 85.9584 11.5655 2.6702 599.8954 39.1119 73.4217 6.8569 4.2163
GAEW 0.0394 0.1565 0.0116 85.9584 11.5655 2.6702 599.8954 39.1119 73.4217 6.8569 4.2163

COERC 0.0258 0.2386 0.0841 68.3367 9.8136 4.0673 605.6669 47.5589 78.7811 8.8119 4.0904
COEW 0.0372 0.1830 0.0118 68.3367 9.8136 4.0673 605.6669 47.5589 78.7811 8.8119 4.0904
CERC 0.0267 0.2377 0.0887 68.3367 9.8136 4.0673 605.6669 47.5589 78.7811 8.8119 4.0904
CEW 0.0393 0.1825 0.0116 68.3367 9.8136 4.0673 605.6669 47.5589 78.7811 8.8119 4.0904

WOERC 0.0263 0.3204 0.0897 36.2165 7.8220 13.6357 1033.3004 119.7025 167.5821 14.8403 5.5144
WOEW 0.0355 0.2750 0.0204 36.2165 7.8220 13.6357 1033.3004 119.7025 167.5821 14.8403 5.5144
WERC 0.0263 0.3204 0.0897 36.2165 7.8220 13.6357 1033.3004 119.7025 167.5821 14.8403 5.5144
WEW 0.0355 0.2750 0.0204 36.2165 7.8220 13.6357 1033.3004 119.7025 167.5821 14.8403 5.5144

Table A.4: Comparison of performance criteria between the different allocation
algorithms with rolling time window n = 100. Note that the κ and nC values are
averages. ∆k represents the difference between kfinal and k∗
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TE T O ∆k κ nC

µ σ µ σ Min Max µ σ µ σ

SOERC 0.0180 0.2569 0.1741 377.7077 19.6117 2.1730 243.0138 15.1698 33.9446 1.7162 2.4703
SOEW 0.0361 0.0459 0.0160 377.7077 19.6117 2.1730 243.0138 15.1698 33.9446 1.7162 2.4703
SERC 0.0178 0.2673 0.1911 377.7077 19.6117 2.1730 243.0138 15.1698 33.9446 1.7162 2.4703
SEW 0.0368 0.0461 0.0160 377.7077 19.6117 2.1730 243.0138 15.1698 33.9446 1.7162 2.4703

GAOERC 0.0250 0.1917 0.0837 85.8307 12.2889 1.7789 400.8863 22.1195 50.0319 6.9070 6.3218
GAOEW 0.0363 0.1388 0.0122 85.8307 12.2889 1.7789 400.8863 22.1195 50.0319 6.9070 6.3218
GAERC 0.0254 0.2028 0.1018 85.8307 12.2889 1.7789 400.8863 22.1195 50.0319 6.9070 6.3218
GAEW 0.0369 0.1398 0.0123 0.0000 0.0000 1.7789 400.8863 22.1195 50.0319 6.9070 6.3218

COERC 0.0241 0.2373 0.0990 53.5542 9.6501 2.9102 448.6915 33.4650 63.8859 11.3388 7.0330
COEW 0.0347 0.1808 0.0138 53.5542 9.6501 2.9102 448.6915 33.4650 63.8859 11.3388 7.0330
CERC 0.0248 0.2410 0.1132 53.5480 9.6579 2.9102 448.6915 33.4644 63.8854 11.3386 7.0326
CEW 0.0350 0.1810 0.0143 53.5480 9.6579 2.9102 448.6915 33.4644 63.8854 11.3386 7.0326

WOERC 0.0250 0.3205 0.1201 25.0948 6.9322 11.0631 638.4841 75.2080 114.4576 20.6368 9.9483
WOEW 0.0344 0.2621 0.0220 25.0948 6.9322 11.0631 638.4841 75.2080 114.4576 20.6368 9.9483
WERC 0.0250 0.3205 0.1201 25.0948 6.9322 11.0631 638.4841 75.2080 114.4576 20.6368 9.9483
WEW 0.0344 0.2621 0.0220 25.0948 6.9322 11.0631 638.4841 75.2080 114.4576 20.6368 9.9483

Table A.5: Comparison of performance criteria between the different allocation
algorithms with rolling time window n = 300. Note that the κ and nC values are
averages. ∆k represents the difference between kfinal and k∗

TE T O ∆k κ nC

µ σ µ σ Min Max µ σ µ σ

SOERC 0.0181 0.2501 0.1746 362.4421 17.2370 1.9736 195.6007 13.5306 28.2188 1.7815 2.7040
SOEW 0.0354 0.0423 0.0169 362.4421 17.2370 1.9736 195.6007 13.5306 28.2188 1.7815 2.7040
SERC 0.0186 0.2543 0.1788 362.4421 17.2370 1.9736 195.6007 13.5306 28.2188 1.7815 2.7040
SEW 0.0358 0.0428 0.0163 362.4421 17.2370 1.9736 195.6007 13.5306 28.2188 1.7815 2.7040

GAOERC 0.0239 0.1968 0.0957 85.2729 12.2003 1.5912 338.5041 19.4642 44.3969 6.9882 7.4724
GAOEW 0.0350 0.1344 0.0138 85.2729 12.2003 1.5912 338.5041 19.4642 44.3969 6.9882 7.4724
GAERC 0.0250 0.2000 0.1074 85.2729 12.2003 1.5912 338.5041 19.4642 44.3969 6.9882 7.4724
GAEW 0.0366 0.1354 0.0138 85.2729 12.2003 1.5912 338.5041 19.4642 44.3969 6.9882 7.4724

COERC 0.0242 0.2353 0.0988 50.0611 9.0555 2.5215 399.3264 30.3977 59.1443 12.1795 8.6026
COEW 0.0346 0.1774 0.0145 50.0611 9.0555 2.5215 399.3264 30.3977 59.1443 12.1795 8.6026
CERC 0.0251 0.2375 0.1094 50.0611 9.0555 2.5215 399.3264 30.3977 59.1443 12.1795 8.6026
CEW 0.0353 0.1782 0.0144 50.0611 9.0555 2.5215 399.3264 30.3977 59.1443 12.1795 8.6026

WOERC 0.0244 0.3197 0.1276 21.2640 6.5474 9.9376 563.7267 68.3723 105.2995 23.2631 12.3704
WOEW 0.0337 0.2556 0.0228 21.2640 6.5474 9.9376 563.7267 68.3723 105.2995 23.2631 12.3704
WERC 0.0244 0.3197 0.1276 21.2640 6.5474 9.9376 563.7267 68.3723 105.2995 23.2631 12.3704
WEW 0.0337 0.2556 0.0228 0.0000 0.0000 9.9376 563.7267 68.3723 105.2995 23.2631 12.3704

Table A.6: Comparison of performance criteria between the different allocation
algorithms with rolling time window n = 500. Note that the κ and nC values are
averages. ∆k represents the difference between kfinal and k∗
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A.3 Period 3: 01/02/2006 – 16/01/2014

TE T O ∆k κ nC

µ σ µ σ Min Max µ σ µ σ

SOERC 0.0115 0.1978 0.1539 734.1861 32.3504 3.2322 593.0827 27.0946 62.2827 1.6229 1.7505
SERC 0.0115 0.1978 0.1539 734.1861 32.3504 3.2322 593.0827 27.0946 62.2827 1.6229 1.7505
SOEW 0.0250 0.0408 0.0065 734.1861 32.3504 3.2322 593.0827 27.0946 62.2827 1.6229 1.7505
SEW 0.0250 0.0408 0.0065 734.1861 32.3504 3.2322 593.0827 27.0946 62.2827 1.6229 1.7505

GAOERC 0.0161 0.1676 0.1014 192.3291 22.5604 2.5948 760.7436 41.8450 76.0582 5.9418 3.9370
GAOEW 0.0264 0.1067 0.0074 192.3291 22.5604 2.5948 760.7436 41.8450 76.0582 5.9418 3.9370
GAERC 0.0161 0.1676 0.1014 192.3291 22.5604 2.5948 760.7436 41.8450 76.0582 5.9418 3.9370
GAEW 0.0264 0.1067 0.0074 192.3291 22.5604 2.5948 760.7436 41.8450 76.0582 5.9418 3.9370

COERC 0.0157 0.1827 0.1020 148.8727 15.0907 3.3308 747.4482 50.3431 79.8743 7.6284 3.9010
COEW 0.0262 0.1241 0.0070 148.8727 15.0907 3.3308 747.4482 50.3431 79.8743 7.6284 3.9010
CERC 0.0157 0.1827 0.1020 148.8727 15.0907 3.3308 747.4482 50.3431 79.8743 7.6284 3.9010
CEW 0.0262 0.1241 0.0070 148.8727 15.0907 3.3308 747.4482 50.3431 79.8743 7.6284 3.9010

WOERC 0.0164 0.2368 0.0930 80.5568 11.2095 10.7235 1445.8178 134.2199 189.7557 13.2728 5.4246
WOEW 0.0241 0.1881 0.0124 80.5568 11.2095 10.7235 1445.8178 134.2199 189.7557 13.2728 5.4246
WERC 0.0164 0.2368 0.0930 80.5568 11.2095 10.7235 1445.8178 134.2199 189.7557 13.2728 5.4246
WEW 0.0241 0.1881 0.0124 80.5568 11.2095 10.7235 1445.8178 134.2199 189.7557 13.2728 5.4246

Table A.7: Comparison of performance criteria between the different allocation
algorithms for the third period with rolling time window n = 100. Note that the κ
and nC values are averages. ∆k represents the difference between kfinal and k∗

TE T O ∆k κ nC

µ σ µ σ Min Max µ σ µ σ

SOERC 0.0109 0.1904 0.1298 672.2856 27.0229 2.3143 340.0514 18.9807 39.6970 1.7674 2.5602
SERC 0.0109 0.1904 0.1298 672.2856 27.0229 2.3143 340.0514 18.9807 39.6970 1.7674 2.5602
SOEW 0.0235 0.0390 0.0077 672.2856 27.0229 2.3143 340.0514 18.9807 39.6970 1.7674 2.5602
SEW 0.0235 0.0390 0.0077 672.2856 27.0229 2.3143 340.0514 18.9807 39.6970 1.7674 2.5602

GAOERC 0.0159 0.1440 0.0638 202.3211 21.1354 1.7588 437.3867 24.0775 47.1725 5.6858 5.5338
GAOEW 0.0258 0.0930 0.0069 202.3211 21.1354 1.7588 437.3867 24.0775 47.1725 5.6858 5.5338
GAERC 0.0159 0.1440 0.0638 202.3211 21.1354 1.7588 437.3867 24.0775 47.1725 5.6858 5.5338
GAEW 0.0258 0.0930 0.0069 202.3211 21.1354 1.7588 437.3867 24.0775 47.1725 5.6858 5.5338

COERC 0.0153 0.1694 0.0698 122.5734 13.4356 2.2700 478.6749 34.5154 56.5311 9.1489 6.3887
COEW 0.0253 0.1188 0.0067 122.5734 13.4356 2.2700 478.6749 34.5154 56.5311 9.1489 6.3887
CERC 0.0153 0.1694 0.0698 122.5734 13.4356 2.2700 478.6749 34.5154 56.5311 9.1489 6.3887
CEW 0.0253 0.1188 0.0067 122.5734 13.4356 2.2700 478.6749 34.5154 56.5311 9.1489 6.3887

WOERC 0.0150 0.2277 0.0972 61.2624 8.8925 7.3936 774.4973 82.1655 113.0407 17.4239 9.4131
WOEW 0.0225 0.1731 0.0109 61.2624 8.8925 7.3936 774.4973 82.1655 113.0407 17.4239 9.4131
WERC 0.0150 0.2277 0.0972 61.2624 8.8925 7.3936 774.4973 82.1655 113.0407 17.4239 9.4131
WEW 0.0225 0.1731 0.0109 61.2624 8.8925 7.3936 774.4973 82.1655 113.0407 17.4239 9.4131

Table A.8: Comparison of performance criteria between the different allocation
algorithms with rolling time window n = 300. Note that the κ and nC values are
averages. ∆k represents the difference between kfinal and k∗
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TE T O ∆k κ nC

µ σ µ σ Min Max µ σ µ σ

SOERC 0.0115 0.1842 0.1343 633.8779 33.4172 2.1282 288.5553 17.4937 35.0073 1.8756 3.0200
SOEW 0.0229 0.0401 0.0084 633.8779 33.4172 2.1282 288.5553 17.4937 35.0073 1.8756 3.0200
SERC 0.0115 0.1842 0.1343 633.8779 33.4172 2.1282 288.5553 17.4937 35.0073 1.8756 3.0200
SEW 0.0229 0.0401 0.0084 633.8779 33.4172 2.1282 288.5553 17.4937 35.0073 1.8756 3.0200

GAOERC 0.0165 0.1397 0.0608 207.5840 16.7790 1.5861 343.2316 21.4727 40.5384 5.5364 6.1382
GAERC 0.0165 0.1397 0.0608 207.5840 16.7790 1.5861 343.2316 21.4727 40.5384 5.5364 6.1382
GAOEW 0.0263 0.0894 0.0067 207.5840 16.7790 1.5861 343.2316 21.4727 40.5384 5.5364 6.1382
GAEW 0.0263 0.0894 0.0067 207.5840 16.7790 1.5861 343.2316 21.4727 40.5384 5.5364 6.1382

COERC 0.0157 0.1640 0.0722 118.0032 11.7101 1.9995 455.6906 31.6768 54.3037 9.5373 7.3063
COEW 0.0253 0.1159 0.0069 118.0032 11.7101 1.9995 455.6906 31.6768 54.3037 9.5373 7.3063
CERC 0.0157 0.1640 0.0722 118.0032 11.7101 1.9995 455.6906 31.6768 54.3037 9.5373 7.3063
CEW 0.0253 0.1159 0.0069 118.0032 11.7101 1.9995 455.6906 31.6768 54.3037 9.5373 7.3063

WOERC 0.0154 0.2175 0.0901 57.271 7.863 6.7821 603.8029 70.9113 90.7895 18.8961 10.9201
WOEW 0.0233 0.1663 0.0113 57.271 7.863 6.7821 603.8029 70.9113 90.7895 18.8961 10.9201
WERC 0.0154 0.2175 0.0901 57.271 7.863 6.7821 603.8029 70.9113 90.7895 18.8961 10.9201
WEW 0.0233 0.1663 0.0113 57.271 7.863 6.7821 603.8029 70.9113 90.7895 18.8961 10.9201

Table A.9: Comparison of performance criteria between the different allocation
algorithms with rolling time window n = 500. Note that the κ and nC values are
averages. ∆k represents the difference between kfinal and k∗

A.4 Period 4: 17/01/2014 – 03/01/2022

TE T O ∆k κ nC

µ σ µ σ Min Max µ σ µ σ

SOERC 0.0141 0.1530 0.0303 651.1369 30.6713 3.2169 800.4378 28.4708 73.7613 1.6812 1.7314
SOEW 0.0276 0.0431 0.0063 651.1369 30.6713 3.2169 800.4378 28.4708 73.7613 1.6812 1.7314
SERC 0.0141 0.1530 0.0303 651.1369 30.6713 3.2169 800.4378 28.4708 73.7613 1.6812 1.7314
SEW 0.0276 0.0431 0.0063 651.1369 30.6713 3.2169 800.4378 28.4708 73.7613 1.6812 1.7314

GAOERC 0.0166 0.1487 0.0260 183.7444 16.8835 2.6249 841.5940 43.5099 80.9470 5.6947 3.9104
GAOEW 0.0293 0.1092 0.0068 183.7444 16.8835 2.6249 841.5940 43.5099 80.9470 5.6947 3.9104
GAERC 0.0166 0.1487 0.0260 183.7444 16.8835 2.6249 841.5940 43.5099 80.9470 5.6947 3.9104
GAEW 0.0293 0.1092 0.0068 183.7444 16.8835 2.6249 841.5940 43.5099 80.9470 5.6947 3.9104

COERC 0.0162 0.1628 0.0270 141.8778 12.6325 3.2614 764.2937 51.2694 80.0615 7.2760 3.8788
COEW 0.0286 0.1266 0.0066 141.8778 12.6325 3.2614 764.2937 51.2694 80.0615 7.2760 3.8788
CERC 0.0162 0.1628 0.0270 141.8768 12.6331 3.2614 764.2937 51.2694 80.0615 7.2760 3.8788
CEW 0.0286 0.1266 0.0066 141.8768 12.6331 3.2614 764.2937 51.2694 80.0615 7.2760 3.8788

WOERC 0.0160 0.1624 0.0280 134.6055 11.3658 4.3987 746.8262 55.0209 79.2414 7.6259 3.8550
WOEW 0.0272 0.1275 0.0068 134.6055 11.3658 4.3987 746.8262 55.0209 79.2414 7.6259 3.8550
WERC 0.0160 0.1624 0.0280 134.6055 11.3658 4.3987 746.8262 55.0209 79.2414 7.6259 3.8550
WEW 0.0272 0.1275 0.0068 134.6055 11.3658 4.3987 746.8262 55.0209 79.2414 7.6259 3.8550

Table A.10: Comparison of performance criteria between the different allocation
algorithms with rolling time window n = 100. Note that the κ and nC values are
averages. ∆k represents the difference between kfinal and k∗
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TE T O ∆k κ nC

µ σ µ σ Min Max µ σ µ σ

SOERC 0.0134 0.1442 0.0300 592.7077 28.3389 2.2704 486.7430 19.8481 46.3313 1.8414 2.2979
SOEW 0.0261 0.0420 0.0080 592.7077 28.3389 2.2704 486.7430 19.8481 46.3313 1.8414 2.2979
SERC 0.0134 0.1442 0.0300 592.7077 28.3389 2.2704 486.7430 19.8481 46.3313 1.8414 2.2979
SEW 0.0261 0.0420 0.0080 592.7077 28.3389 2.2704 486.7430 19.8481 46.3313 1.8414 2.2979

GAOERC 0.0168 0.1398 0.0252 186.3188 16.6996 1.8372 509.9514 24.7458 48.6880 5.5987 5.1641
GAOEW 0.0305 0.0948 0.0069 186.3188 16.6996 1.8372 509.9514 24.7458 48.6880 5.5987 5.1641
GAERC 0.0168 0.1398 0.0252 186.3188 16.6996 1.8372 509.9514 24.7458 48.6880 5.5987 5.1641
GAEW 0.0305 0.0948 0.0069 186.3188 16.6996 1.8372 509.9514 24.7458 48.6880 5.5987 5.1641

COERC 0.0158 0.1606 0.0279 118.5542 11.3215 2.2918 512.7307 34.4650 56.6143 8.5432 6.1515
COEW 0.0288 0.1197 0.0069 118.5542 11.3215 2.2918 512.7307 34.4650 56.6143 8.5432 6.1515
CERC 0.0158 0.1606 0.0279 118.5542 11.3215 2.2918 512.7307 34.4650 56.6143 8.5432 6.1515
CEW 0.0288 0.1197 0.0069 118.5542 11.3215 2.2918 512.7307 34.4650 56.6143 8.5432 6.1515

WOERC 0.0148 0.1640 0.0326 105.5847 9.3217 3.6294 472.2443 38.2956 53.7298 9.6286 6.7752
WOEW 0.0268 0.1233 0.0076 105.5847 9.3217 3.6294 472.2443 38.2956 53.7298 9.6286 6.7752
WERC 0.0148 0.1640 0.0326 105.5847 9.3217 3.6294 472.2443 38.2956 53.7298 9.6286 6.7752
WEW 0.0148 0.1640 0.0326 105.5847 9.3217 3.6294 472.2443 38.2956 53.7298 9.6286 6.7752

Table A.11: Comparison of performance criteria between the different allocation
algorithms with rolling time window n = 300. Note that the κ and nC values are
averages. ∆k represents the difference between kfinal and k∗

TE T O ∆k κ nC

µ σ µ σ Min Max µ σ µ σ

SOERC 0.0139 0.1409 0.0270 562.1450 21.6246 2.1134 419.4956 18.0460 39.6559 1.9362 2.5852
SOEW 0.0256 0.0410 0.0084 562.1450 21.6246 2.1134 419.4956 18.0460 39.6559 1.9362 2.5852
SERC 0.0139 0.1409 0.0270 562.1450 21.6246 2.1134 419.4956 18.0460 39.6559 1.9362 2.5852
SEW 0.0256 0.0410 0.0084 562.1450 21.6246 2.1134 419.4956 18.0460 39.6559 1.9362 2.5852

GAOERC 0.0166 0.1378 0.0246 188.4027 18.0820 1.6171 462.6501 21.6197 43.6479 5.5270 5.6719
GAOEW 0.0299 0.0911 0.0077 188.4027 18.0820 1.6171 462.6501 21.6197 43.6479 5.5270 5.6719
GAERC 0.0166 0.1378 0.0246 188.4027 18.0820 1.6171 462.6501 21.6197 43.6479 5.5270 5.6719
GAEW 0.0299 0.0911 0.0077 188.4027 18.0820 1.6171 462.6501 21.6197 43.6479 5.5270 5.6719

COERC 0.0163 0.1587 0.0288 112.7322 10.6603 2.0265 453.6685 30.6576 50.5414 8.9000 7.0242
COEW 0.0289 0.1162 0.0075 112.7322 10.6603 2.0265 453.6685 30.6576 50.5414 8.9000 7.0242
CERC 0.0163 0.1587 0.0288 112.7322 10.6603 2.0265 453.6685 30.6576 50.5414 8.9000 7.0242
CEW 0.0289 0.1162 0.0075 112.7322 10.6603 2.0265 453.6685 30.6576 50.5414 8.9000 7.0242

WOERC 0.0161 0.2224 0.0418 47.9644 8.3617 9.1626 534.7059 73.9350 85.8157 18.9239 11.5091
WOEW 0.0261 0.1734 0.0130 47.9644 8.3617 9.1626 534.7059 73.9350 85.8157 18.9239 11.5091
WERC 0.0148 0.1661 0.0358 96.4014 9.6168 3.7209 438.9038 35.0804 49.8256 10.4390 8.1613
WEW 0.0270 0.1217 0.0085 96.4014 9.6168 3.7209 438.9038 35.0804 49.8256 10.4390 8.1613

Table A.12: Comparison of performance criteria between the different allocation
algorithms with rolling time window n = 500. Note that the κ and nC values are
averages. ∆k represents the difference between kfinal and k∗
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