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Nonlinear impedance spectroscopy
Using higher harmonics response and di�erential impedance for electrical
characterization of DC insulation materials
LOUISE ALMQUIST
Department of Materials and Manufacturing Technology
Chalmers University of Technology

Abstract
With the growing relevance of high-voltage direct current (HVDC) technologies
comes an increased need of reliable electrical characterization of insulation mate-
rials. Electrical conduction mechanisms in insulation materials under DC voltages
are rather complicated and appropriate characterization tools need to be further
developed. This thesis investigates the potential of using nonlinear impedance spec-
troscopy (IS) for electrical characterization of insulation materials at DC fields, or
at low frequency AC fields. A theoretical background is provided where it is shown
for di�erent models how nonlinear current-field dependence give rise to currents that
contain amplitudes at higher frequencies than that of the exciting voltage (the fun-
damental frequency). Experimentally, di�erent material systems were studied with
two advanced nonlinear IS measurement techniques; higher harmonics measurements
at high fields and di�erential conductivity measurements with small amplitude AC
spectroscopy at large superimposed DC. The main results are presented in form of
steady state current-field characteristics. Figure 5.3 and 5.9 show, for two di�erent
robust material systems, that results from the two IS methods are in close agreement
with each other and with two other setups used for consistency check. We therefore
conclude that nonlinear IS is in principle useful for electrical characterization of non-
linear insulation materials, particularly field grading materials. Limitations of the
methods are related to non-robust material properties and problems with reaching
a quasi-steady state at reasonable frequencies.

Keywords: HVDC insulation, impedance spectroscopy, dielectric spectroscopy, non-
linear materials, field grading.
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1
Introduction

The electric power market is changing due to a growing demand for renewable energy.
Since generation equipment of renewable energy, like wind farms and solar power
plants, seldom are located near to places where the power is needed, novel electric-
ity technologies are developed. High-voltage direct current (HVDC) technology is
expected to grow far beyond its traditional position as a supplement to alternat-
ing current (AC) transmission. Consequently, the need of appropriate insulation
materials for HVDC applications is increasing. In the process of developing direct
current (DC) insulation materials, reliable characterization methods are needed for
the determination of their electrical properties and conduction behaviour at DC
fields.

Unfortunately, electrical conduction mechanisms in technical insulation materials at
DC voltages, or at low-frequency AC voltages, are rather complicated and di�cult
to understand. A good general overview can be found in [1]. Due to the physical
complexity (di�erent possible carrier types, di�erent possible transport mechanisms,
contact e�ects, etc.) and the consequent lack of robustness [2] a set of di�erent exper-
imental tools is needed for a reasonable electrical characterization of the materials.
One such tool is impedance spectroscopy (IS), also called dielectric spectroscopy
(DS).

Impedance spectroscopy is nowadays standard for characterizing dielectric materials
used in AC applications [3, 4]. However, DC fields can lead to conduction behaviour
which is only observable at very low frequencies and at su�ciently high electric fields.
Broadband impedance spectroscopy [5] allows the study of dielectric properties in
the low frequency region. This thesis focuses on the potential of using high voltage
broadband impedance spectroscopy for DC characterization of nonlinear insulation
materials [6, 7].

1.1 Modern broadband impedance spectroscopy

Traditional IS or dielectric spectroscopy (the terms will be used synonymously) is
based on linear response theory, where the current response is measured for small am-
plitude excitations of the applied harmonically oscillating voltage. The frequency of
this harmonic excitation is called the "fundamental frequency". The linear response

1



1. Introduction

has then the same frequency, and in general also a phase shift. Modern IS equip-
ment can go to higher voltages and thus into the nonlinear region, and can thereby
provide additional information on the conduction mechanisms at higher fields. For
larger excitation voltages, the current response can contain amplitudes at higher
frequencies than that of the fundamental frequency. As we will see, such higher
harmonics (“superharmonics”) are generated by nonlinearities.

Three types of IS measurements are in the focus in this thesis:

1. Small signal IS (linear response): Measurements in large frequency ranges
(10≠4 ≠ 106 Hz) at low AC voltage (Urms = 1 V), where the low-frequency
region is of most interest for our purpose. The quantities of interest are the
frequency dependent permittivity and conductivity, or combinations of them
(like the loss angle etc.).

2. High-Voltage IS: Measurements of higher harmonics. These measurements are
performed at rather high AC voltage amplitudes (up to Urms = 1414 V).

3. Superimposed DC-AC IS: Measurements of the current response to an (of-
ten small) AC voltage superimposed to an (often large) DC voltage. This
type of measurement makes it possible to probe dynamic and static properties
along the steady-state current-voltage characteristics, like e.g. the di�erential
conductivity.

The two latter measurement techniques refer to ’nonlinear dielectric spectroscopy’
in our terminology.

Methods that enable nonlinear spectroscopy have already been developed and ap-
plied to a variety of materials, such as liquid crystals and solid ferroelectrics [8].
Measurements of higher harmonics have also been performed on field grading ma-
terials before [9, 10]. Nonlinear IS has been also been used at low frequencies for
comparison with DC field experiments and theoretical results [11]. However, re-
search where IS is used to study the DC behaviour of material systems is very
limited and needs to be understood better.

1.2 Aim of this study

The aim of this work is to contribute to the understanding and to the application of
nonlinear IS techniques for material characterization. More specific, the aims are to
elaborate the potential and to work out the concept of measurement type 2 and 3 in
the previous section as part of the material characterization for HVDC applications.
Focus will be more on the conduction current part, and less on nonlinearities in the
electric displacement.

Important parts are the theoretical understanding, experimental feasibility and lim-
its, elaborating ways of representation, analysis of the measurements and in partic-
ular, consistency between the di�erent approaches.

2



1. Introduction

1.3 Structure of the thesis

The next chapter provides parts of the fundamental theory. The principles of both
linear and nonlinear dielectric spectroscopy are explained and several theoretical
model examples are provided for a deeper understanding of nonlinearities and higher
harmonics. Thereafter, a chapter explaining the experimental equipments is pro-
vided. Subsecquently, di�erent model material systems that were studied are in-
troduced. The experimental results are then presented for the considered material
systems. Finally, the results are discussed and some conclusions are drawn.

3
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2
Theory

In this chapter the fundamental theory underlying this thesis is provided, start-
ing with an overview on linear dielectric spectroscopy. Thereafter the concept of
nonlinearities and superharmonics is explained, including several examples of elec-
tric nonlinear behaviour. Finally, di�erential spectroscopy is introduced, where a
small signal AC voltage is superimposed to a DC voltage. Before going into the
theory sections mentioned, some general remarks that are necessary for a correct
interpretation of this work are explained.

Firstly, in all the experimental and theoretical investigations only plane plate sam-
ples are considered. In IS measurements the system (a single plate or a series of
di�erent plates) under investigation is positioned between two metal electrodes, see
figure 2.1a. Here L is the total sample thickness and A is the area of the elec-
trode, which is relevant for the current flow. In a Cartesian coordinate system only
the dimension perpendicular to the plane of the sample-electrode interfaces, x, has
been taken into consideration. In the same figure the equivalent electric circuit is
shown, see figure 2.1b, with a conduction current flowing through the resistance
and a displacement current over the capacitance. Included for completeness is a
series resistance R0 which is part of the (high voltage) IS measurement circuit in the
equipment. It can become relevant at large currents, e.g. at very high frequencies,
but will only be considered if necessary.

(a) (b)

Figure 2.1: (a) Material system mounted between two conductive plates forming a
parallel plate capacitor and (b) the equivalent electric circuit (solid) consisting of a ca-
pacitance C in parallel with a resistance R (the dashed part of the circuit is an internal
resistance of the measurement circuit).

5



2. Theory

For characterization of this system one is interested in the electric field, E(x, t),
and the conduction current density, j(x, t), which are functions of time t and space
x. However, only the integral quantities U (voltage) and I

tot

(total current) can be
measured. Information on the spatial distribution is lost due to averaging

U =
⁄

L

0
E · dx (2.1)

I

tot

=
⁄

j

tot

· dA. (2.2)

The field strengths and the current densities presented later on are average values
which have been calculated by dividing the absolute current and voltage by the
sample area and the sample thickness, respectively.

ÈEÍ = U

L

(2.3)

Èj
tot

Í = I

tot

A

(2.4)

For simplicity, the brackets will be skipped in the future. Furthermore, measurement
errors of L and A, which need to be determined also experimentally, lead to errors
in E and j

tot

. The total current I

tot

that is measured consist of a conduction current
contribution and a displacement current contribution according to

I

tot

= I + Q̇ = I + CU̇ + ĊU. (2.5)

Here, Q is the electrical charge and C the capacitance, which are related by Q = CU .
From equation (2.5) one finds that even at constant voltage (U̇ = 0) temporal
changes in C imply current contributions (ĊU), which may lead to wrong con-
clusions. These changes in C can for example be caused by temporal changes in
temperature or humidity.

Due to finite size e�ects and the influence of contacts the dielectric properties studied
should be thought of as system properties rather than actual bulk properties.

2.1 Brief overview on linear dielectric spectroscopy

To understand nonlinear dielectric spectroscopy it is essential to first understand
linear dielectric spectroscopy. The interest in dielectric properties and spectroscopy
investigations can be traced back to the late nineteenth century and the science
within this area may be considered as well established [3, 4, 5]. The basic idea of
dielectric spectroscopy is to measure dielectric properties as a function of frequency

6
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by letting a sample interact with a harmonically oscillating electric field. When
applying a periodic voltage U(t) = U0 cos(Êt) with frequency f = Ê/2fi to a system
(in the following we will use the term "frequency" for the angular frequency), the
resulting current has in linear response the form:

I

tot

(t) = I

Õ

1 cos(Êt) + I

ÕÕ

1 sin(Êt) (2.6)

with Fourier coe�cients,

I

Õ

1 = 2
T

⁄
T

0
cos(Êt)I(t) dt (2.7)

I

ÕÕ

1 = 2
T

⁄
T

0
sin(Êt)I(t) dt. (2.8)

Two important dielectric properties which are usually studied with linear dielectric
spectroscopy are the electrical conductivity and the permittivity. The field strength
and current density can equivalently be related by the following equations.

j = (‡Õ + iÊ‘0‘
Õ)E (2.9)

j = ‡

ú
E (2.10)

j = iÊ‘0‘
ú
E (2.11)

Here the prime symbol indicates the real part of the quantities (imaginary parts will
be denoted with double prime symbols) and the asterisk indicates complex quanti-
ties. The conductivity and the permittivity are in general complex and frequency
dependent (Ê = 2fif):

‡

ú(Ê) = ‡

Õ(Ê) + i‡

ÕÕ(Ê) (2.12)

‘

ú(Ê) = ‘

Õ(Ê) ≠ i‘

ÕÕ(Ê) (2.13)

The conductivity measures a material’s ability to conduct a current. For DC (i.e.
Ê = 0), ‡ is real and by definition equals the ratio between the conduction current
density, j, and the applied field:

‡ = j

E

(2.14)

7
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The permittivity is related to the phenomena that a dielectric material becomes
polarized in response to an applied electric field and thereby reduces the net electric
field. In the case of a linear and isotropic medium the permittivity relates the dis-
placement field and the electrical field as D = ‘E. The real part of the permittivity
‘

Õ, also referred to as the dielectric constant, is related to the energy stored in the
material due to the response to the external field. The imaginary part ‘

ÕÕ is related
to the loss of energy within the medium. The Kramer-Kronig relations relates ‘

Õ

and ‘

ÕÕ but will not be discussed here, for further information see [12].

The real and imaginary parts of the conductivity and the permittivity are related
to the amplitudes (or rms-values) I

Õ , I

ÕÕ and U0 by:

‡

Õ = I

Õ

U0
· L

A

(2.15)

‡

ÕÕ = ≠ I

ÕÕ

U0
· L

A

(2.16)

‘

Õ = ≠ I

ÕÕ

U0
· L

Ê‘0A
(2.17)

‘

ÕÕ = I

Õ

U0
· L

Ê‘0A
. (2.18)

In the manual of the Novocontrol IS equipment that has been used [13], the relations
between these quantities are defined in a slightly di�erent way, which changes the
sign of the imaginary part of the conductivity. Throughout this report we will
consistently use the definitions above.

The complex conductivity and the complex permittivity contain the same informa-
tion and it is a matter of taste which representation to use. In this thesis mainly
the real part of the conductivity together with the real part of the permittivity will
be considered.

Another quantity often discussed for AC insulation material is the dissipation factor,
or loss angle, tan(”) which is defined as the ratio between the imaginary and real
part of the permittivity and expresses the loss-rate of energy,

tan(”) = ‘

ÕÕ

‘

Õ . (2.19)

For applications, the value of tan(”) at the utility frequency (50 Hz in Europe or
60 Hz in U.S.) is most relevant.

Furthermore, in applications the power loss density p,

8



2. Theory

p = 1
T

⁄
T

0
jE dt (2.20)

is an important quantity, because it couples to the heat balance equation which
describes the thermal behaviour.

With the current density j corresponding to the current in equation (2.6) and the
applied field E = E0 cos(Êt), the power loss density equals 1

2j

Õ
1E0. If j

Õ
1 = ‡

Õ
E0, the

power loss density can be expressed (in terms of the quantities discussed above) as

p = 1
2‡

Õ
E

2
0 = 1

2Ê‘0‘
Õ tan(”)E2

0 . (2.21)

2.1.1 Example: Drude-Debye model

In this section an example is provided where the resulting current flowing through
a linear dielectric material is calculated when an electric field is applied. The total
current density, j

tot

, is a sum of the conduction current density and the displacement
current density,

j

tot

= j + Ḋ (2.22)

where in this example j is the conduction current

j = ‡E. (2.23)

This term is related to the movement of "free" charge carriers through the material.
In this example the conductivity ‡ is assumed to be constant (‡ = ‡0) in accordance
with the Drude conduction model, where the conductivity is due to carriers with
constant density n and mobility µ:

‡ = e

ÿ

i

µ

i

n

i

(2.24)

Here i denotes the di�erent carrier species.

The displacement current density Ḋ corresponds to the rate of change of the electric
displacement field,

D = ‘0‘ŒE + P (2.25)

where ‘0 is the permittivity of vacuum and ‘Œ is the high-frequency ("optical")
dielectric constant. From equation (2.22) and (2.25) the total current density equals

9
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j

tot

= ‡E + ‘0‘ŒĖ + Ṗ . (2.26)

The second term is due to the quasi instantaneous displacement of the fast dipoles
and the permittivity of free space. The third term is due to changes in the polar-
ization, e.g. due to slow displacements of polar polymer chains, and contributes
to the total current. Another alternative can be trapped charge carriers, which do
not freely move in the material as the conducting carriers do. Since this work con-
cerns characterization of DC insulation systems, where current contributions due
to temporal changes vanishes, primarily the conduction current will be considered.
Nevertheless, this example is discussed for completeness.

The polarization P is given by the Debye dipole relaxation model,

·

p

Ṗ = ‘0‰E ≠ P (2.27)

where ·

p

is a characteristic relaxation time and ‰ is the electric susceptibility, and
both ·

p

and ‰ are constant. We now assume the applied field E = E0 cos(Êt) and
make the ansatz for the solution of the di�erential equation

P = A cos(Êt) + B sin(Êt), (2.28)

which leads to the following amplitudes

Y
__]

__[

A = ‘0‰E0
1+(Ê·p)2

B = Ê·p‘0‰E0
1+(Ê·p)2 .

(2.29)

This gives the total current density,

j

tot

=
C

‡0E0 + ·

p

Ê

2
‘0‰E0

1 + (Ê·

p

)2

D

cos(Êt) ≠
C

‘0‘ŒÊE0 + Ê‘0‰E0
1 + (Ê·

p

)2

D

sin(Êt). (2.30)

Furthermore, j

tot

= (‡Õ + iÊ‘0‘
Õ)Eú where the asterisk denotes that the complex

electric field is considered (Eú = 1
2E0e

iÊt). Since it was assumed that E = E0 cos(Êt),
the total current density is found by adding (‡Õ +iÊ‘0‘

Õ)Eú and its complex conjugate
resulting in

j

tot

= ‡

Õ
E0 cos(Êt) ≠ Ê‘0‘

Õ
E0 sin(Êt). (2.31)

From comparison of equation (2.30) and (2.31) the real parts of the conductivity
and the permittivity can be identified.
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Y
]

[
‡

Õ(Ê) = ‡0 + ·pÊ

2
‘0‰

1+(Ê·p)2

‘

Õ(Ê) = ‘Œ + ‰

1+(Ê·p)2
(2.32)

Figure 2.2 shows an example of how these quantities behave with frequency for a
certain choice of parameters. As can be seen, the real conductivity and the real
permittivity reach plateau values in the limits Ê æ 0 and Ê æ Œ. The value
‡

Õ(Ê æ 0) is often referred to as the DC conductivity and the value ‘

Õ(Ê æ Œ) is
called the high-frequency ("optical") dielectric constant.
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Figure 2.2: The frequency behaviour of the real electrical conductivity (‡Õ) and the real
permittivity (‘Õ) for a specific set of parameters.

In equation (2.32) one can see that ‘

Õ is a function of Ê·

p

. If a linear response function
(like ‘

Õ or ‡

Õ) has this property, it follows that a change of ·

p

(e.g. via changing
the temperature) results in a shift of the curve on the logarithmic frequency axis.
This means that plots done for di�erent ·

p

values will collapse to a single curve if
appropriately shifted (a so-called master curve). However, this requires the relevance
of a single characteristic time, which is in general not the case. An example is even
‡

Õ in equation (2.32), because there are two relevant time scales (·
p

and ‘/‡).

2.2 Nonlinearities and superharmonics

In this thesis nonlinear behaviour generally refers to a nonlinear current response to
an applied electric field. The presence of nonlinearities implies the existence of higher
harmonics, also called superharmonics, i.e. current amplitudes at integer multiples
of the fundamental frequency of the applied voltage. The stronger the nonlinearty
is the more important it becomes to take the superharmonics into account since a
greater part of the total current then is contained in the higher harmonics. Figure
2.3 shows an illustrative example of a linear (to the left) and a nonlinear (to the
right) current-voltage dependence. In the same figure the corresponding current

11
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response in time domain to an applied field E = E0 cos(Êt) is shown, as well as the
corresponding conduction current contributions for di�erent harmonics. Here all the
harmonic contributions are normalized to the current amplitude of the fundamental
frequency. In the linear case all superharmonics vanish, while in the nonlinear case
they constitute a significant part of the total current.

A general nonlinear current response I(t) to a periodic voltage with fundamental
frequency f = Ê/2fi can be written in the form of a Fourier series,

I(t) = I0 +
Œÿ

k=1
{I

Õ

k

cos(kÊt) + I

ÕÕ

k

sin(kÊt)} (2.33)

where I0 is a DC o�set component and the index k indicates the order of the har-
monic. The frequency component at k times the fundamental frequency is called
the kth harmonic. The Fourier coe�cients I

Õ
k

and I

ÕÕ
k

are

I

Õ

k

= 2
T

⁄
T

0
cos(kÊt)I(t) dt (2.34)

I

ÕÕ

k

= 2
T

⁄
T

0
sin(kÊt)I(t) dt. (2.35)

Assuming that the applied field is of the form E = E0 cos(Êt), the coe�cients I

Õ
k

may
contribute to the conduction current. This is because for a steady state (Ê = 0),
the total DC conduction current is given by,

I =
Œÿ

k=0
I

Õ

k

. (2.36)

Note that the amplitudes I

Õ
k

(Ê) can also be zero for Ê æ 0.

In many simple cases, the I

ÕÕ
k

terms belong to the displacement current. However,
in general, free carriers and dipoles can contribute to both I

Õ
k

and I

ÕÕ
k

if dynamic
e�ects play a role, and the di�erent contributions cannot be directly thought of as
conduction currents and displacement currents respectively. This can be seen in the
example with the Drude-Debye model that was provided in section 2.1.1, where the
I

Õ
1 term not only depends on the free carriers but also on, for example, the relaxation

time of the dipoles ·

p

, see equation (2.30).

We now recall that the power loss density can be calculated from equation (2.20)
and consider the current density corresponding to the current in equation (2.33).
When calculating the power loss density for the applied field E0 cos(Êt) all terms
vanish except for the one containing I

Õ
1, or equivalent j

Õ
1, and the result becomes

1
2j

Õ
1E0.

When dealing with Fourier series, like the one in equation (2.33), there are symme-
tries that are helpful to keep in mind. One important symmetry is the time reversal
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Figure 2.3: Example of a linear and nonlinear current-voltage characteristics (a re-
spectively b), the corresponding current response in time domain (c respectively d) and
the corresponding current contributions I

Õ for di�erent harmonics (e respectively f). The
displacement current is not shown here, it would have an amplitude of the fundamental
frequency (linear).
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symmetry which states that since the field E(t) remains invariant under Ê æ ≠Ê

(or equivalent t æ ≠t) the current I(t) must not change either, I

Ê

(t) = I≠Ê

(t)
(or I

Ê

(t) = I

Ê

(≠t)). Using this symmetry for the current in equation (2.33) one
finds that I

Õ
k

(Ê) = I

Õ
k

(≠Ê) and I

ÕÕ
k

(Ê) = ≠I

ÕÕ
k

(≠Ê). For linear cases this means
‡

Õ(Ê) = ‡

Õ(≠Ê) and ‘

Õ(Ê) = ‘

Õ(≠Ê).

Another symmetry arises if the transformation E0 æ ≠E0 (or equivalently Êt æ
Êt + fi) leads to I æ ≠I, which is e.g. valid for odd current-voltage characteristics.
This a�ects the even harmonics (k = 2l) in equation (2.33) since cos(2lÊt + 2lfi) =
cos(2lÊt) and sin(2lÊt+2lfi) = sin(2lÊt). Since this transformation does not change
the direction of the current this only holds if I

Õ
2k

© 0 and I

ÕÕ
2k

© 0. In practice this
symmetry applies for samples where changing the direction of the field, or turning
the sample, does not a�ect the results. Examples will be discussed later.

Materials or material systems with expected significant nonlinear response will
in this thesis be divided into two main categories, namely materials with micro-
interfaces and materials with macro-interfaces. This classification is based on which
type of physics that determines the conduction in the system. Modelling of materials
belonging to the micro-interface class is easier than material systems with macro-
interfaces. This is because they are heterogeneous materials that can be described
by average material quantities. Nonlinearities caused by macro-interfaces will be
further discussed in two examples given in the end of this chapter.

In what follows, an alternative representation of electric nonlinear behaviour is in-
troduced, which di�ers from the commonly seen DC characteristics (i.e. the steady-
state current-field characteristics). With this description both nonlinearities and
frequency dependencies are taken into account [14]. The time-periodic behaviour is
studied in the form of hysteresis curves, where the current density or the displace-
ment field is plotted against the electric field for a certain frequency. This type of
representation in commonly used for ferroelectric materials or in electrochemistry,
where the plots are called "cyclic voltammogram", but has also been applied to field
grading materials [15].

The shape of the curves can provide information about the electrical behaviour at
high fields and at di�erent frequencies. For example, for displacement-electric field
(D-E) loops the widening (opening) of the curves is related to the losses present in
the system (heat production). From IS measurements of higher harmonics the time
dependent behaviour can be constructed, which makes this representation possible
without additional measurements.

We consider an example where the displacement field is given by

D = ‘0E + P (2.37)

with P defined by

·

p

Ṗ = ‘0‰(E)E ≠ P. (2.38)
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In this example we assume the characteristic time ·

p

to be constant and the electric
susceptibility ‰ to be field dependent, consisting of one constant term and one term
proportional to E

2. The total current density is then given by

j

tot

= ‡(E)E + Ḋ (2.39)

where the conductivity is assumed to have a nonlinear field dependence. Figure 2.4
shows how the two types of hysteresis curves can look like for this example. Both
curves indicate a nonlinear behaviour of the system, with losses present.
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2
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(b)

Figure 2.4: Example of two types of hysteresis curves: (a) displacement-electric field
curve and (b) current density-electric field curve.

In figure 2.5 another example is provided of di�erent current density-electric field
curves. Here four di�erent curves are shown, one with nonlinear behaviour of both
the conduction current and displacement current, one with linear conduction current
and nonlinear displacement, one with nonlinear conduction and linear displacement
current and one with linear behaviour of both the conduction current and displace-
ment current. Note that the power density is related to the frequency and the area
of the closed curve [14].
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Figure 2.5: Example of di�erent current density-electric field curves. Black: Nonlinear
conduction and nonlinear displacement, blue: linear conduction and nonlinear displace-
ment, red: nonlinear conduction and linear displacement, yellow: linear conduction and
linear displacement.

In the following sections examples of di�erent types of nonlinear behaviour are pre-
sented.

2.2.1 Example: Modelling of nonlinear I-V characteristics

Fitting experimental data to di�erent conduction models can contribute to the un-
derstanding of the underlying physical processes that determines the conductivity
of a material. Within the scope of this thesis, the material systems considered
will not be modelled with the purpose of understanding details of the conduction
mechanisms. Although, it will be emphasised how to use modelling as a part of a
characterization process. In this section the general idea of how to fit experimental
data from dielectric spectroscopy to existing conduction models is explained. We
will here consider the simple case where the conduction current density, j(E), is an
odd, nonlinear function of the field strength:

j(E) =
ÿ

n odd

a

n

E

n

. (2.40)

Note that this example does not apply for all models, but demonstrates some simple
cases. This type of current-field relation can, for example, physically be explained
by a field dependent mobility. For a harmonic field E = E0 cos(Êt), the current
density can be written as a function of time:

j(t) =
ÿ

n odd

a

n

E

n

0 cosn(Êt). (2.41)

In accordance with equation (2.33), the current density can in this case be written
in the form j(t) = q

k

j

Õ
k

cos(kÊt). The Fourier coe�cients, j

Õ
k

, are then given by the
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following expression (from combining equation (2.41) and (2.34)).

j

Õ

k

= 2
T

⁄
T

0

ÿ

n odd

a

n

E

n

0 cos(kÊt) cosn(Êt) dt (2.42)

The coe�cients j

Õ
k

contain equivalent information as the data given by a dielectric
spectroscopy measurement of higher harmonics. For simplicity, we introduce the
coe�cients g

n

k

:

g

n

k

= 2
T

⁄
T

0
cos(kÊt) cosn(Êt) dt. (2.43)

Hence, equation (2.42) can be written as

j

Õ

k

=
ÿ

n odd

g

n

k

a

n

E

n

0 . (2.44)

We continue now by calculating the coe�cients g

n

k

by first using that T = 2fi/Ê and
then making the variable change z = Êt.

g

n

k

= Ê

fi

⁄ 2fi
Ê

0
cos(kÊt) cosn(Êt) dt = 1

fi

⁄ 2fi

0
cos(kz) cosn(z) dz (2.45)

Moreover, the cosine parts can be expressed in terms of exponential functions.

g

n

k

= 1
fi

⁄ 2fi

0

1
2(eikz + e

≠ikz) 1
2n

(eiz + e

≠iz)n

dz (2.46)

Next, the following binomial formula was used,

(x + y)n =
nÿ

l=0

A
n

l

B

x

n≠l

y

l (2.47)

resulting in,

g

n

k

= 1
2fi

⁄ 2fi

0

1
2n

nÿ

l=0

A
n

l

B

(ei(2l+k≠n)z + e

≠i(2l≠k≠n)z) dz. (2.48)

Since
s 2fi

0 e

i–z

dz = 0 for all nonzero integers –, the only remaining terms will be the
ones that fulfil 2l = n ± k. Therefore, g

n

k=even

© 0 and the g

n

k

for odd k values can
be expressed as

g

n

k

= 1
2n

CA
n

1
2(n ≠ k)

B

+
A

n

1
2(n + k)

BD

. (2.49)
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Because n ≠ 1
2(n ≠ k) = 1

2(n + k), the two terms in this sum are equal. The final
result of the coe�cients g

n

k

is

g

n

k

= 1
2n≠1

A
n

1
2(n + k)

B

for k Æ n. (2.50)

From this result the coe�cients j

Õ
k

can be written as follows, in accordance with
equation (2.44).

j

Õ

k

=
ÿ

n odd

1
2n≠1

A
n

1
2(n + k)

B

a

n

E

n

0 (2.51)

If the coe�cients j

Õ
k

are known from experimental data, a

n

can be determined and
that is equivalent to determining the actual model parameters. In table 2.1 the
coe�cients g

n

k

are given for n, k Æ 7.

Table 2.1: Coe�cients gn

k

for n, k Æ 7.

n
k 1 3 5 7

1 1 - - -

3 3
4

1
4 - -

5 5
8

5
16

1
16 -

7 35
64

21
64

7
64

1
64

As an example, if the current density can be described by j(E) = ‡0E
3 and the

field is given by E = E0 cos(Êt), the first and third harmonic will contribute to the
total resulting current density. These contributions are given by j

Õ
1 = 3

4‡0E
3
0 and

j

Õ
3 = 1

4‡0E
3
0 (all a

n

are zero except a3 which is equal to ‡0). Equation (2.36) then
reads j = j

Õ
1 + j

Õ
3 = ‡0E

3
0 which is obviously correct (the sum of all numbers in a

row of table 2.1 equals one).

2.2.2 Example: Piecewise constant conductivity

This example is a simple description of field grading materials (see section 4.1),
where the physics is based on interfaces between or inside particles that are filled in
polymers. The conductivity is described by

‡(E) =
I

0 |E| < E

c

‡0 |E| Ø E

c

(2.52)
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where ‡0 and E

c

are constants. This means that the conductivity is zero for all field
strengths smaller than E

c

and has a constant value for field strengths larger than E

c

.
The field dependence of the conductivity implies a nonlinear field dependence of the
current density, which gives rise to superharmonics. Considering the conductivity
in equation (2.52) and the harmonic field E = E0 cos(Êt), with E0 > E

c

, results in
the conduction current density:

j(E) =
I

‡0E0 cos(Êt) 0 Æ t Æ t

c

0 t

c

Æ t Æ fi

Ê

≠ t

c

(2.53)

Here, t

c

is defined as the first time the field strength is equal to E

c

, i.e. E0 cos(Êt

c

) =
E

c

(or Êt

c

= arccos(Ec
E0

)). In equation (2.53) the current density is only described
in the first two intervals that arise from the discontinuity of the conductivity. The
behaviour of the current density as a function of time, j(t), can be seen for a whole
period, T = 2fi

Ê

, in figure 2.6.

t
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1

j(t)
∝ cos(ωt)
∝ cos(2ωt)
∝ cos(3ωt)

Figure 2.6: Current density as a function of time for the case with a piecewise constant
conductivity, shown together with cosine functions of di�erent frequencies (corresponding
to di�erent multiples of the fundamental frequency).

The displacement current density is not considered here. The harmonic current
components j

Õ
k

are calculated (in accordance with equation (2.34) in section 2.1)
from

j

Õ

k

= Ê

fi

⁄ 2fi/Ê

0
j(t) cos(kÊt) dt (2.54)

by summing up integrals over the nonzero intervals, i.e. the di�erent intervals where
j(t) is nonzero. In figure 2.6 the cosine functions which appear in the integral are
shown for k = 1, 2, 3 together with j(t) for visualization. The calculations can be be
done analytically (see appendix A for full calculations of j

Õ
1 and j

Õ
3) and j

Õ
k

is given
by
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j

Õ
k

= ‡0E0
fi

Ë
2

k≠1 sin
1
(k ≠ 1) arccos(Ec

E0
)
2

+ 2
k+1 sin

1
(k + 1) arccos(Ec

E0
)
2È

’ odd k Ø 1.

(2.55)

Note that for k = 1 the limit k æ 1 with lim
‘æ0

sin(‘x)
‘

= x holds. Since the
current-voltage characteristics is symmetric around the origin, all amplitudes of
even superharmonics vanish.

In figure 2.7 the current contributions j

Õ
k

are shown for di�erent harmonic orders for
a certain choice of E0, E

c

and ‡0. Note that all even harmonics are zero while the odd
harmonics take on both positive and negative values. The significant contributions
of the superharmonics are reasonable because of the strongly nonlinear nature of
this problem.
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Figure 2.7: Current contributions j
Õ
k

for di�erent harmonic orders. The amplitudes are
normalized with respect to the fundamental frequency, corresponding to k = 1.

From the superharmonics the current-field relation can be reconstructed,

j(E) =
Nÿ

k=1
j

Õ

k

(2.56)

where N is the highest harmonic considered. This was done for several di�erent
values of N , see figure 2.8. As can be seen, the curves converge towards the complete
reconstruction (including all superharmonics) for increasing value of N .
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Figure 2.8: Current-field relation reconstructed from the current density contributions
j

Õ
k

for di�erent number of harmonics included.

2.2.3 Example: Schottky barrier

In this example a non-symmetric case of current-voltage characteristics is considered,
namely a so called Schottky barrier,

I = I0(e≠ eU
kT ≠ 1) (2.57)

where I0 is a constant, e the elementary charge, U the voltage, k Boltzmann’s
constant and T the temperature. The corresponding current-voltage voltage char-
acteristic can be found in figure 2.9. In this case the current is not an odd function of
the voltage which leads to nonzero even superharmonics, as will be shown. Schottky
barriers appear at interfaces of materials with di�erent carrier properties, like p-n
semiconductor junctions.
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Figure 2.9: Current-voltage characteristics of the Schottky barrier.
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Assuming a harmonic voltage U = U0 cos(Êt) and making a Taylor expansion of the
exponential function gives

I(t) =
Œÿ

n=1
C

n

cosn(Êt) C

n

=
3

≠eU0
kT

4
n 1

n! (2.58)

With the use of equation (2.34) the first even superharmonic contribution to the
conduction current I

Õ
2 can be calculated.

I

Õ
2 = 2

T

s
T

0 cos(2Êt)I(t) dt = qŒ
n=1 C

n

Ê

fi

s 2fi/Ê

0 cos(2Êt) cosn(Êt)dt

= 1
2C2 + 1

2C4 + 15
32C6 + ... ”= 0

(2.59)

Figure 2.10 shows normalized current contributions for the five first harmonics for
a certain choice of parameters. As can be seen, the even harmonics do not vanish
in this non-symmetric example.
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Figure 2.10: Current contributions I
Õ
k

for the five first harmonics. The amplitudes are
normalized with respect to the fundamental frequency, corresponding to k = 1.

2.2.4 Example: Blocking contacts

In this section a theoretical model that illustrates the e�ect of blocking electrodes (a
kind of macro-interfaces) is discussed [16]. Ion-blocking interfaces could for example
be present in a system where two di�erent materials are combined. If one of the
materials contains a small amount of ions, these can be swept out of the bulk of this
material and accumulate at the interface to the other material, causing a nonlinear
behaviour.

Assume a quasi-neutral solid containing a single species of positive mobile carriers
placed between a pair of blocking electrodes, see figure 2.11a. For a su�ciently high
voltage the positive charge carriers will accumulate at the electrode with the lowest
potential, forming a thin sheet of charges. This sheet of charge carriers will then
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Figure 2.11: (a) System with blocking electrodes and a moving charge sheet. (b)
Current response: conduction current (red, dotted curve), displacement current (blue,
dashed curve) and the total current (black, solid curve). Note that here, in contrast to
the other examples, a sine voltage is applied and not a cosine voltage.

remain there until the polarity of the applied voltage changes and the charge drifts
to the counter electrode.

The charge density fl(x) is given by

fl(x) = q(”(x ≠ x0(t)) ≠ 1
L

) (2.60)

where x0(t) is the location of the positive charge sheet, q is the total charge per
area and the term q/L represents the negative immobile background charge density.
Knowing the charge distribution, the Poisson equation for the electric potential field
� can be solved.

�ÕÕ = ≠fl(x)
‘

(2.61)

Here the boundary conditions �(0) = U and �(L) = 0 are used together with
continuity of the potential at x0 and discontinuity of the field at x0 given by �|

x0+ ≠
�|

x0≠ = q/‘. Solving the Poisson equation results in the intuitive average field value
Ē = U/L, see appendix A for complete calculations. Assuming a constant mobility,
the drift velocity of the charge sheet is given by

ẋ0 = µ

U

L

. (2.62)

We now apply the voltage U(t) = U0 sin(Êt) and assume that the sheet of positive
charges starts to move from the left electrode at t = 0. The location of the sheet is
then received by integration of equation (2.62).
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x0(t) = µU0
ÊL

(1 ≠ cos(Êt)) (2.63)

We now defined the time t1 as the time until the charge sheet first reaches the right
electrode, meaning x0(t1) = L.

t1 = 1
Ê

arccos
A

1 ≠ ÊL

2

µU0

B

(2.64)

Moreover, the polarity changes at the time fi/Ê, which corresponds to half of a
period. The total current density is then given by

j(t) =
I

‘Ê

U0
L

cos(Êt) + qµ

U0
L

2 sin(Êt) 0 Æ t < t1
‘Ê

U0
L

cos(Êt) t1 Æ t < fi/Ê

(2.65)

where both the conduction current (j = ≠flẋ0) and the displacement current are
included. The conduction current, displacement current and the total current can
also be seen in figure 2.11b as a function of time. Here it is obvious that the
conduction current, and hence the total current, behaves nonlinear.

In figure 2.12 the di�erent harmonic contributions can be seen for a specific case
of parameters. Note that the full amplitude of the fundamental frequency is not
displayed here. Moreover, the I

ÕÕ
1 of the displacement current is not shown.
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Figure 2.12: The current amplitudes I
Õ
k

normalized with respect to the fundamental
frequency.

2.2.5 Space charge limited current

In this section another kind of macro-interfaces is considered, namely charge inject-
ing contacts, and the principle of charge injection and space charge limited current
is explained. Nonlinearity due to charge injecting contacts can occur in an insulator
where the conduction is governed by charge injection from an ohmic electrode. The
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theory of space charge limited current in solids between plane parallel electrodes
was introduced already in 1940 by Mott and Gurney [17]. The phenomena can be
observed for DC voltages and low frequency AC voltage, where the system reaches
a quasi-steady state. In what follows, the space charge limited current in a perfect
insulator is derived, the so called Mott-Gurney law.

Assume a plane plate sample (like the one in figure 2.1) with thickness L of a
material that has no intrinsic conductivity, instead charges are injected from one of
the electrodes. Moreover, the carrier mobility µ and the dielectric permittivity ‘ are
assumed to be constant through the sample. This problem can then be defined by
the following set of equations.

j = flv (2.66)

dE

dx

= fl

‘

(2.67)

U =
⁄

L

0
E · dx (2.68)

Here, fl is the space charge density and v the charge drift velocity. It is further
assumed that the drift velocity is monotonically increasing with the electric field,
i.e. v = µE. Inserting this in equation (2.66) gives

j = flµE. (2.69)

Combining this with equation (2.67) we get

j = ‘µE

dE

dx

= 1
2‘µ

d(E2)
dx

. (2.70)

Integrating equation (2.70) and assuming that the electric field is zero at the charge
injecting electrode, i.e. E(0) = 0 (a so called ohmic electrode), results in

E(x) =
Û

2j

‘µ

x. (2.71)

The electric potential across the sample can then be determined by inserting equa-
tion (2.71) in equation (2.68).

U = 2
3

Û
2j

‘µ

L

3/2 (2.72)

By squaring and solving for the current density j, the well known Mott-Gurney law
is obtained.
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Figure 2.13: (a) Current-voltage relation in case of space charge limited current and
(b) the corresponding harmonic contributions.

j = 9
8‘µ

|U |U
L

3 (2.73)

This current-voltage relation and the corresponding harmonic contributions for an
applied voltage U = U0 cos(Êt) can be seen in figure 2.13. Since the voltage depen-
dence in equation (2.73) seems to be quadratic one could make the mistake to think
that the second harmonic would contribute to the total current. However, this is not
the case since the current is still an odd function of the voltage (note the di�erence
between |U |U and U

2).

Note that the quasi-steady state assumption means that the injection transient is
fast compared to the frequency, i.e. Ê·

tof

π 1, with the time of flight [18]

·

tof

≥=
L

v

= L

2

µU

. (2.74)

This is the same as saying that the displacement current is negligible.

2.3 Dielectric spectroscopy and di�erential con-
ductivity

In this section the principle of a IS measurement with AC voltage superimposed
to a DC voltage will be described. This method provides information about the
di�erential conductivity and will be used in this work to determine the current-field
characteristics. In this type of measurements the applied voltage is a sum of a DC
voltage and an AC voltage, resulting in a field of the form E = E0 + E1 cos(Êt).
Here E0 is a DC component and E1 is the amplitude of the AC component, normally
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E1 π E0. An illustration of how the applied field oscillates around a certain DC
o�set can be seen in figure 2.14.

Figure 2.14: Illustration of the working principle of an IS measurement with applied AC
voltage superimposed to a DC voltage, resulting in a field of the form E = E0 +E1 cos(Êt).
The field will oscillate around E0, within the dashed lines, along the steady-state current-
voltage characteristics (black, solid curve).

Due to the superimposed DC field these measurements can be done in the non-
linear region and it is possible to probe material properties along the steady-state
current-field characteristics. Therefore, this technique provides an additional way to
characterize the response at high fields. We now define the di�erential conductivity
and the di�erential permittivity:

‡

D

= dj(E)
dE

(2.75)

‘

D

= 1
‘0

dD(E)
dE

. (2.76)

The di�erential conductivity is defined as the slope of the current-field characteristics
at a certain field value. Analogously, the di�erential permittivity is proportional to
the slope of the curve of the displacement field as a function of the electric field. Note
that this definition is done for the limit Ê æ 0. This restriction can be relaxed but
that goes beyond the purpose of this work. Although measurements are performed
at finite frequency Ê, we are mainly interested in the limit Ê æ 0:

‡

D

= ‡

Õ(E, Ê æ 0) (2.77)

‘

D

= ‘

Õ(E, Ê æ 0) (2.78)

where the prime symbol indicates measured (real) quantities.
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By making several measurements with di�erent DC fields the di�erential proper-
ties can be determined as functions of the electric field. From these functions the
conduction current and displacement field can be found by integration:

j(E) =
⁄

E

0
‡

D

(Ê) dÊ (2.79)

D(E) = ‘0

⁄
E

0
‘

D

(Ê) dÊ. (2.80)

For illustration we consider the following example, which shows how the conduction
current and the displacement field can be constructed from the di�erential conduc-
tivity and the di�erential permittivity. Assume that ‡

Õ(E, Ê æ 0) and ‘

Õ(E, Ê æ 0)
can be fitted by

‡

D

= ‡0(1 + 3c1E
2) (2.81)

‘

D

= k(1 + 3c2E
2) (2.82)

where ‡0, c1, k and c2 are constants. Using these expressions together with equation
(2.79) and (2.80), the conduction current and displacement field can be determined:

J(E) = ‡0(1 + c1E
2)E (2.83)

D(E) = ‘0k(1 + c2E
2)E (2.84)

The results are shown for a certain choice of parameters ‡0, c1, k and c2 in figure
2.15. This method will later be used to reconstruct the I-V characteristics.
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Figure 2.15: Example of how the conduction current and the displacement field can
be constructed from (a) the di�erential conductivity and (b) the di�erential permittivity.
Results are shown in (c) respectively (d).
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3
Equipment and experiments

In this chapter di�erent experimental equipment are described. Results from IS
measurements are compared to results from two other setups, in this report referred
to as IV-setup 1 and IV-setup 2, in order to check consistency of the methods and
validate the nonlinear IS approach in praxis. All experiments were performed at
ABB Corporate Research in Baden-Dättwil, by the author herself and by Roman
Kochetov (ABB).

3.1 Impedance spectroscopy

The IS experiments were performed with a dielectric spectroscopy equipment pro-
vided by Novocontrol Technologies [19]. The working principle of a measurement is
shown in figure 3.1.

Figure 3.1: Principle of IS measurements.

The setup consists of:

• A frequency response analyzer (Alpha Analyzer), with a sine wave and DC-
bias generator and two AC voltage input channels [20]. Each input channel
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measures the AC voltage amplitude of an applied sine wave. Additionally the
phase shift between the input waves is detected.

• A HV interface (HVB4000) enabling investigations at high AC voltages up to
Urms = 1414 V corresponding to amplitude peaks of 2 kV [21]. This interface
also allows measurements of higher harmonics and measurements with applied
AC voltage superimposed to DC voltage.

• A temperature controller (Quatro Cryosystem).

• Two di�erent sample cells, one used for low voltage measurements and one
for high voltage measurements. The sample capacitor is mounted between the
upper and lower electrodes of the sample cell.

• A vaccum-isolated cryostat. The sample cell is placed inside the cryostat
during measurements.

• A liquid nitrogen Dewar vessel.

• The software WinDETA, for control and evaluation of measurements [13].

Before starting any measurements the sample thickness was measured with the thick-
ness gauge LE 1000-2, operated with the software ProWedge. It is important that
these measurements are done accurately and that the sample thickness is homoge-
neous since uncertainties in the thickness are directly reflected in the results (see
equation (2.15)-(2.18)) [22]. The sample was thereafter placed between external
gold plated cylindrical electrodes. The sample capacitor was then mounted between
the (fixed) upper and lower electrodes of the sample cell, which was then placed in
the cryostat. The temperature of the system could be controlled between -160 ¶C ≠
400 ¶C.

To assure good contact between the sample and the external electrodes all non-
elastic samples were evaporated with Cr and Au on both sides. Cr was used to
improve the adhesion of Au with the sample. If the contact is bad and only parts
of the sample are in contact with the external electrodes the contact area cannot be
determined correctly, which leads to errors.

Three di�erent types of measurements were performed with the IS setup:

1. Small signal IS: Linear response measurements in a wide frequency range
(10≠4 ≠ 106 Hz) at low AC voltage (Urms = 1 V).

2. High-Voltage IS: Measurements of higher harmonics, up to the fifth har-
monic or higher. These measurements were performed at rather high AC
voltage amplitudes (up to Urms = 1414 V) for frequencies 1 mHz - 1 Hz.

3. Superimposed DC-AC IS: Measurements of the linear response to an AC
voltage with superimposed DC voltage.

All IS measurements were fully automated and controlled by the WinDETA software
[13]. When setting up a measurement up to four free variables can be chosen.
Within this thesis work the following variable parameters were used (in di�erent
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combinations): frequency, temperature, AC voltage, harmonics and DC voltage. For
each variable parameter chosen, value lists of desired data points were defined. After
each measurement the data was saved in ASCII files and analyzed with MATLAB.

From the high-voltage IS measurements the output data consists of voltage and
current amplitudes for each harmonic considered. The output data is normalized in
such a way that the start time of an experiment t = 0 corresponds to a real positive
cosine voltage (with zero phase angle). Throughout this report the current and
its superharmonics will be defined according to equation (2.33), (2.34) and (2.35).
However, Novocontrol uses a slightly di�erent notation (which a�ects the sign of the
sine coe�cients) and therefore one needs to be careful when interpreting the output
data from the equipment.

With the total current defined as in equation (2.33) the total current density equals

j

tot

=
Œÿ

k=0
{j

Õ

k

cos(kÊt) + j

ÕÕ

k

sin(kÊt)} (3.1)

where the amplitudes j

Õ
k

(E0, Ê) and j

ÕÕ
k

(E0, Ê) depend on the field amplitude and
the frequency. Due to symmetry reasons all amplitudes for even k vanish for the
systems we consider (symmetric electrodes etc.) and the steady state conduction
current j(E) was calculated by letting Ê æ 0, resulting in

j(E) =
Nÿ

k odd

j

Õ

k

(3.2)

where N corresponds to the highest superharmonic measured.

The HV interface, which is used for measurement types 2 and 3 above, is internally
connected to a current limiting resistor with R0 = 750 k� which protects the equip-
ment. If the sample resistance is low, or comparable, to this resistance the voltage
applied across the sample will be lower than the selected voltage. This internal
resistance will only be considered if necessary. Necessity occurs if the voltage drop
at R0 is not negligible as compared to the applied voltage, R0Itot

≥ U0, or if the
sample impedance Z becomes so small that R0/Z is no longer π 1.

3.2 IV-setup 1

This equipment from Novocontrol Technologies is made for thermally stimulated
current (TSC) measurements and was used to check the consistency of steady state
conduction current curves from high-voltage IS and superimposed AC-DC IS. The
principle of an experiment is shown in figure 3.2 [23].
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Figure 3.2: Principle of a TSC experiment.

With this setup several types of experiments can be performed. For our purpose
measurements of isothermal polarization/depolarization currents were performed. A
Keithley 6517B electrometer/high voltage source was used, which includes a built-in
±1 kV voltage source and allows a broad current measurement range of 1 fA - 20 mA
(noise level of 20 - 30 fA). The sample under investigation was placed between two
electrodes to form a parallel plate capacitor. The sample capacitor was thereafter
mounted in a sample cell, which was subsequently placed in a cryostat. A temper-
ature control system was used that allows isothermal measurements (temperature
stability of 0.01 ¶C) over a broad temperature range (-160 ¶C to 400 ¶C).

The principle of the experiment involves the following steps. First the temperature
was set to a desirable value and the material was allowed to depolarize by applying a
zero voltage to the electrodes (short circuit state). Then a polarization voltage was
applied and the resulting current was measured over time. In theory, after some time
the polarization current will settle down and a steady state current will be reached
which corresponds to the conduction current. However, one has to be aware that a
“DC-current” is always a point on a transient of a polarization current curve at a
given time where equilibrium is often not yet established. This is because the equi-
libration times can be several days, or even weeks. Nevertheless, this setup allows
for rather long waiting times (> 104 s), as compared to the next setup described.

3.3 IV-setup 2

This setup was developed at ABB for material characterization and was used within
this work as an additional consistency check. A stepwise increasing DC voltage
was applied to a sample and the resulting current was measured for each voltage
value after a desired waiting time (≥ 5 s). These measurements were performed
at room temperature without temperature control. This lack of cooling needs to
be taken into account when choosing the waiting time, in order to avoid heating
of the sample. The setup allows the user to choose between two di�erent voltage
sources with maximum voltages of 3 kV respectively 20 kV. The stepwise increase of
the voltage and the measurements were automatically controlled via a LabVIEW
program.
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This setup requires a di�erent sample area than the IS setup and IV-setup 1. Hence,
the very same samples were never tested with this setup as for the other two setups.
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4
Material systems

An essential part of the work done within this thesis has been to find material sys-
tems which are insulating and appropriate for the investigation of nonlinearities.
Materials or material systems with expected significant nonlinear response can, as
previously explained, be divided into di�erent categories depending on the reason
of the nonlinear behaviour. Figure 4.1 shows a simple, but for our purpose su�-
cient, way to classify electrical nonlinear behaviour of insulation materials. First a
separation is done between homogeneous materials (with intrinsic nonlinear prop-
erties, e.g. a field dependent mobility or a field dependent carrier density) and
heterogeneous materials. Within this thesis focus has been on heterogeneous ma-
terials, that can be divided into two groups depending on whether their behaviour
is governed by micro-interfaces (filled materials) or macro-interfaces. The latter in-
clude all sorts of interfaces between materials, e.g. between two insulators or at an
electrode contact. Also the electrode contacts can be divided into sub-classes, like
blocking electrodes and ohmic electrodes. For all cases the physical mechanism can
have di�erent origins, for instance direct electrical reasons or indirectly via thermal
losses or temperature dependence.

Figure 4.1: Classification of material systems with electric nonlinear behaviour.

In the following sections two classes of materials, namely materials with micro-
interfaces and materials with macro-interfaces, are further explained and specific
material systems that have been studied are introduced. Besides the material sys-
tems presented here a few other systems were also studied (e.g. silicone rubber
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with di�erent fillers, an insulating oil and series of polypropylene films) but without
results useful for this thesis.

4.1 Materials with micro-interfaces: Nonlinear filled
materials

This group of material systems are intrinsically nonlinear by their nature, like field
grading materials and varistors. Electric field grading [14, 24, 25] is a technique
that is used to avoid electric stress enhancements in high voltage devices by locally
reducing the electric field. One way to control the field distribution is by using
nonlinear field grading materials with appropriate current-field characteristics. A
good field grading material is very resistive up to a certain field value where it
drastically changes and becomes conductive. Desired nonlinear characteristics can
be obtained with compounds of materials, such as an insulating polymer mixed with
a semiconducting filler.

A varistor is a component with a nonlinear voltage dependent resistance. Varistors
are used in surge arrestors. At low voltages the electrical resistance is high, but as the
voltage is raised the resistance decreases. Two common filler particles are zinc oxide
(ZnO) varistor micro-particles and silicon carbide (SiC). Using varistor particles as
fillers in compounds is one way to achieve desired field grading properties. Figure
4.2 illustrates the interfaces appearing in two di�erent polymer based materials,
one filled with SiC particles and one filled with ZnO micro-varistor particles. The
conduction is influenced by the particle-particle contact and, for the ZnO micro-
varistor, also grain-boundary interface-physics.

Figure 4.2: Sketches of two polymer volumes filled with SiC particles (left) and ZnO
micro-varistor particles (right) [25]. Arrow: current path crossing micro-interfaces.

Three di�erent nonlinear filled model material systems were studied:

• Material A: Silicone rubber filled with ZnO micro-varistor particles. The
samples considered had thicknesses in the range 650-830 µm.

• Material B: ZnO varistor ceramics. The samples considered had thicknesses
in the range 2.63-3.80 mm.
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• Material C: Silicone rubber filled with SiC and carbon black. The samples
considered had thicknesses in the range 295-435 µm.

These material systems were chosen since they were known to have a significant
nonlinear behaviour. A more detailed description of the materials and their prepa-
ration is not provided, as the focus is on the characterization concept rather than
on the properties of the specific materials.

4.2 Materials with macro-interfaces

This category comprises material systems where the nonlinearity is caused by macro-
interfaces, like ion-blocking interfaces or charge injecting contacts. Within this cat-
egory one system was studied:

• Material D: Sandwich system consisting of three material layers in series;
polypropylene, Nafion (a proton conducting polymer), polypropylene. The
systems considered had total thicknesses in the range 276-292 µm, of which
each polypropylene film constituted about 9 µm.

This material system was studied with hope to achieve a nonlinear e�ect due to
the ion-blocking interfaces between the insulating polypropylene and the proton
conducting Nafion.

When studying systems that are assembled of a series of materials there are some
relations that can be of use. It is well known that the total impedance Z

tot

of a
system with n components in series is given by

Z

tot

=
ÿ

n

Z

n

(4.1)

where Z

n

is the impedance of the nth component. In the case of large contact (or
interface) impedance, one also has to include the corresponding impedance in the
sum in equation (4.1). Furthermore, the impedance is the inverse of the admittance
G, which can sometimes be expressed in terms of the real permittivity and the real
conductivity,

G = A

L

(‡Õ + iÊ‘0‘
Õ). (4.2)

However, note that the conductivity or permittivity of an assebled system can in gen-
eral not be determined from knowing the properties of its components. Particularly
at low frequencies or DC the electric behaviour is a system behaviour. There can
be synergetic e�ects, where the system shows properties that can not be described
as a sum of its components. For instance, the perfect insulator without intrinsic
carriers (see section 2.2.5) which exhibits space charge limited currents with finite
conductance, although the bulk conductivity of the material alone is ‡ = 0.

39



4. Material systems

40



5
Experimental results

This chapter contains experimental results from the di�erent IS measurements. To
study the consistency, some IS results are compared to results from IV-setup 1 and
IV-setup 2. The material systems are presented one after another in separate sec-
tions, starting with Material A. Note that the experiments were carried out with the
aim to investigate the potential of the nonlinear IS methods, and not to thoroughly
characterize the considered material systems.

5.1 Material A

This material has a relatively high conductivity (in the context of insulation systems)
and shows good reproducibility. Small-amplitude IS measures the complex dielectric
constant ‘

ú (or equivalently the complex conductivity ‡

ú). Figure 5.1 shows the
frequency behaviour of the real permittivity and the real conductivity for Material
A. Results of the dielectric loss (‘ÕÕ) and tangent delta (tan(”) = ‘

ÕÕ
/‘

Õ) can be found
in Appendix B.
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Figure 5.1: The frequency behaviour of the real permittivity (‘Õ) and the real electrical
conductivity (‡Õ) for Material A measured at a voltage of 1 V rms for temperatures T =
30 ¶C (blue), 40 ¶C (red), 50 ¶C (yellow), 60 ¶C (purple).

As can be seen in figure 5.1a, ‘

Õ has a plateau at high frequencies. Furthermore,
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5. Experimental results

according to figure 5.1b, the conductivity ‡

Õ reaches a plateau for frequencies below
f ¥ 10≠2 Hz. From this “DC plateau” one obtains the value of the zero-frequency
small-field conductivity, or the “DC-conductivity” value. To investigate the tem-
perature dependence of the DC conductivity, the data was fitted to the Arrhenius
law,

‡ = ‡0e
≠W/kT (5.1)

and the Vogel-Fulcher-Tammann (VFT) law,

‡ = ‡0e
≠A/(kT ≠kT0) (5.2)

where ‡0 is a constant, W the activation energy, k the Boltzmann constant, T the
absolute temperature, T0 the Vogel temperature [26] and A a material parameter
that is related to the activation energy (for T0 = 0 the VFT law is simply the
Arrhenius law and A = W ). Figure 5.2 shows the data fitted to the two laws and
here it is obvious that a VFT law fits the data much better. The VFT law resulted
in A = 1.6 meV and a Vogel temperature T0 = 285.4 K, while the Arrhenius fit would
yield an activation energy of W = 0.21 ± 0.11 eV. The good fit of the data to the
VFT law may indicate that the material experience a glass transition. However, the
Vogel temperature T0 is a fitting parameter and does not necessarily have the same
value as the glass transition temperature. It is di�cult to draw any conclusions
about the temperature dependence of the DC conductivity for this material without
further investigations, but since this is not the main focus of this work it will not
be discussed in more detail here.
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Figure 5.2: Temperature dependence of the DC conductivity fitted to (a) an Arrhenius
law and (b) a Vogel-Fulcher-Tammann law.

Next, the consistency of the HV IS and current-voltage (I-V) measurements was
studied. Because of the strong dependence of DC current measurements on the spe-
cific details of the experimental setup and its environment, two di�erent equipments
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5. Experimental results

(IV-setup 1 and IV-setup 2, see chapter 3 for details) were used in addition to the
IS.

In figure 5.3 we show a typical final summarizing result for two di�erent temperature
values. The values obtained from setup 1 are indicated by the star symbols. The
time dependent current results from setup 1 are shown in figure 5.4 (or Appendix B
for separate graphs including more details). The I-V characteristics from IV-setup
2 is shown by the grey curve. The black curve is reconstructed from the di�erential
conductivity. During some of the current measurements with IV-setup 1 at 60 ¶C the
current increased unexpectedly with time (see figure B.3). Therefore both minimum
values (red stars) and the last measured values (green stars) are plotted. The reason
of this increase is unclear, it might have to do with thermal e�ects.

Current Density [A/m2]

10-6 10-4 10-2 100

F
ie

ld
 S

tr
en

g
th

 [
V

/m
]

104

105

106

(a)
Current Density [A/m2]

10-6 10-4 10-2 100

F
ie

ld
 S

tr
en

g
th

 [
V

/m
]

104

105

106

(b)

Figure 5.3: Overview of the material characteristics for Material A determined with
the di�erent methods at (a) 30 ¶C and (b) 60 ¶C. Circles: IS (blue: 1 Hz, red: 100 mHz,
yellow: 10 mHz, purple: 1 mHz); stars: IV-setup 1; grey curve: IV-setup 2; black curve:
reconstruction from AC-DC superposition. The red stars in (b) are explained in the text
and the dashed curve corresponds to the black curve at 30 ¶C in (a).

In total, three di�erent samples were tested with IV-setup 2 for this material and the
results were reproducible. Higher harmonics measurements with the IS setup and
measurements with IV-setup 1 were however only performed on one sample each.

Overall, the results in figure 5.3 from the di�erent measuring techniques are in close
agreement with each other. As one expects, there is a temperature dependence with
positive dj/dT at low fields (i.e. in the insulating region where thermal activation
may dominate) while it seems to become negative at high fields (in the conductive
region where material expansion and separation of filler particles may play a role).
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Figure 5.4: Polarization current measurements over time with IV-setup 1 at (a) 30 ¶C
for fields 0.05, 0.25, 0.375, 0.50, 0.75, 1 kV/mm and (b) 60 ¶C for fields 0.15, 0.375, 0.625,
0.875 kV/mm.

The di�erential conductivity ‡

D

= dj/dE (used to reconstruct the black curves in
figure 5.3a and 5.3b) was determined from the low-frequency linear response and
can be seen as a function of the field stength in figure 5.5 for 30 ¶C and 60 ¶C. The
circles in figure 5.3a show measured values for two di�erent AC fields at f = 10 mHz,
where the plateau was already reached (see figure 5.1b). The circles corresponding
to the superimposed AC-DC measurement and one additional point measured with
the small signal IS at 1.7 V/mm (without superimposed DC field) were interpolated
using a smoothing spline function (black curve in figure 5.5).
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Figure 5.5: Di�erential conductivity as a function of the DC field strength for Material
A at (a) 30 ¶C and (b) 60 ¶C. Circles: IS measurements with small-signal AC voltage su-
perimposed to a DC voltage (AC voltage: 1.7 ·10≠3 kV/mm (green), 0.021 kV/mm (black),
0.21 kV/mm (red)). Solid line: spline fit.

The total current from the HV IS measurements of the higher harmonics was cal-
culated from the sum of the first, third and fifth harmonic for di�erent voltage
amplitudes (in accordance with equation 3.2 for highest harmonic N = 5). Figure
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5. Experimental results

5.6 shows, for four di�erent field values on the characteristics, the first few super-
harmonic amplitudes normalized to the value of the fundamental frequency. Since
the frequencies were normalized individually, the harmonic corrensponding to k = 1
equals one for all frequencies and therefore only one bar is shown for k = 1 in the
figure. The harmonic contributions will be presented in the same way for the other
material systems as well. All these superharmonic amplitudes correspond to the
in-phase current response and hence (in the DC limit) the conduction current. The
absolute current amplitudes for the fundamental frequency can be found in table
B.1 in Appendix B. As can be seen in figure 5.6 the higher harmonics constitute a
significant part of the total current.
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Figure 5.6: Material A: conduction currents (I Õ
k

) of each harmonic (normalized with
respect to the first harmonic) for four di�erent field values; (a) 0.4 kV/mm (b) 0.7 kV/mm
(c) 1.1 kV/mm and (d) 1.2 kV/mm. Absolute values of the amplitudes corresponding to
the fundamental frequencies can be found in section B.1 in appendix B.

From figure 5.3a it is clear that for smaller (angular) frequencies Ê the HV IS circles
shift to smaller currents. As can be seen, the current densities show a stronger fre-
quency dependence for lower field amplitudes while above E0 ¥ 106 V/m they are
more or less frequency independent. Furthermore, the resulting current is not chang-
ing significantly between 1 mHz and 10 mHz anywhere in the field region considered,
indicating that the DC plateau is reached.

45



5. Experimental results

In summary, we may say that the di�erent methods are in close agreement with
each other and the nonlinear IS reproduce well the current field characteristics of
the field grading material.

5.2 Material B

The analogous results as presented for Material A are now shown for Material B.
The small signal response (U = 1 V rms) of the real permittivity (‘Õ) and the real
electrical conductivity (‡Õ) are given in figure 5.7 for temperatures T = 30 ¶C -
200 ¶C. As one expects, the conductivity value of the DC plateau and the frequency
value until which the plateau extends increase with temperature. Again, results of
the dielectric loss (‘ÕÕ) and tangent delta (tan(”) = ‘

ÕÕ
/‘

Õ) can be found in Appendix
B (figure B.4).
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Figure 5.7: The frequency behavior of the real permittivity (‘Õ) and the real electrical
conductivity (‡Õ) for Material B measured at a voltage of 1 V rms for temperatures T =
30 ¶C - 200 ¶C.

In contrast to Material A, here an Arrhenius law seems to hold (see figure 5.8) with
an activation energy of W = 0.69 eV. This seems reasonable since Material A is
based on a rubber, where glass transition like behaviour is often observed, while
Material B is a ceramic. The conductivity values were taken at f = 1 mHz where
the plateau was reached for all temperatures (see figure 5.7b).

The current-field characteristics calculated from nonlinear HV IS measurements in-
cluding higher harmonics at 30 ¶C and frequencies f = 1 mHz, 10 mHz, 100 mHz and
1 Hz and AC-DC superimposed IS, together with measurements from the two IV
setups is shown in figure 5.9a. This figure is analogous to figure 5.3a for Material A.
Again, the experiments were performed at the temperature 30 ¶C for the IV-setup
1 and the IS measurements, and at room temperature for IV-setup 2. The current
measurements as a function of time from IV-setup 1 can be found in figure 5.10a
(for more details see Appendix B, figure B.5).
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Figure 5.8: Arrhenius fit for Material B with activation energy 0.69 eV.

Material B shows a much stronger frequency dependence than Material A. The IS
measurements at the lowest frequency, 1 mHz, are in impressively close agreement
with the results from AC-DC superimposed IS and the results from IV-setup 1. The
higher current from setup 2 is probably due to the limited time step between the
measurements.

Equivalent results of current-field characteristics at 100 ¶C are shown in figure 5.9b.
Again, measurements with IV-setup 1 can be found in figure 5.10b (or more detailed
in Appendix B, figure B.6). Also at this temperature the IS measurements of higher
harmonics at the lowest frequency are in close agreement with both the results from
superimposed AC-DC IS as well as the results from IV-setup 1.

As well as for Material A, three di�erent samples were tested with IV-setup 2 and
the results were reproducible. Measurements of higher harmonics with the IS setup
and measurements with IV-setup 1 were only performed on one sample each.
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Figure 5.9: Comparison of the current-field characteristics for Material B at (a) 30 ¶C
and (b) 100 ¶C. Circles: IS (blue: 1 Hz, red: 100 mHz, yellow: 10 mHz, purple: 1 mHz);
stars: IV-setup 1; grey curve: IV-setup 2; black curve: reconstruction from AC-DC su-
perposition. Dashed lines in (b) reconstructed from ‡

D

at 30 ¶C (black) and 60 ¶C (red).

47



5. Experimental results

Time [s]
100 101 102 103 104 105

C
u

rr
en

t 
d

en
si

ty
 [

A
/m

2
]

10-5

10-4

10-3

10-2

10-1

(a)
Time [s]

100 101 102 103 104 105

C
u

rr
en

t 
d

en
si

ty
 [

A
/m

2
]

10-3

10-2

10-1

(b)

Figure 5.10: Current measurements over time with IV-setup 1 at (a) 30 ¶C and (b)
100 ¶C for fields 0.03, 0.05, 0.075, 0.1, 0.15, 0.2 kV/mm.

The di�erential conductivity as a function of the DC field strength at 30 ¶C and
100 ¶C is shown in figure 5.11 (results for 60 ¶C can be found in figure B.7 in Ap-
pendix). These results were obtained from AC-DC superimposed IS and used to
reconstruct the I-V characteristics shown in figure 5.9, in the same way as for Ma-
terial A.
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Figure 5.11: Di�erential conductivity as a function of the DC field strength for Material
B at (a) 30 ¶C and (b) 100 ¶C. Circles: IS measurements with small-signal AC voltage
superimposed to a DC voltage (AC voltage: 0.38 ·10≠3 kV/mm (green), 3.8 ·10≠3 kV/mm
(black)).

Figure 5.12 shows the normalized current contributions I

Õ
k

of the superharmonics for
four di�erent field values. As well as for Material A, the current contributions from
the third and fifth harmonics are significant. The absolute current amplitudes for
the fundamental frequency can be found in table B.2 in Appendix B.
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Figure 5.12: Material B: conduction currents (I Õ
k

) of each harmonic (normalized with re-
spect to the first harmonic) for four di�erent field values; (a) 0.11 kV/mm (b) 0.14 kV/mm
(c) 0.21 kV/mm and (d) 0.24 kV/mm. Absolute values of the amplitudes corresponding to
the fundamental frequencies can be found in section B.2 in appendix B.

5.3 Material C

This material turned out to be inappropriate for a characterization with the present
methods, at least for reasonable experiment times and frequencies. However, from
this one can learn about the applicability of the electrical characterization methods,
which is not always possible e.g. if the insulation material behaviour is not robust.
Figure 5.13 shows the frequency behaviour of the real permittivity (‘Õ) and the real
electrical conductivity (‡Õ) (for ‘

ÕÕ and tan(”) see Appendix B). The permittivity is
slightly decreasing with increasing temperature, which is in general not obvious for a
field grading material. The physical origin to this negative temperature dependence
is not clear, but similar behaviour has been observed before in polymers [27, 28].
One possible explanation could be thermal expansion of the material. However,
the coe�cient of thermal expansion for silicone rubber is 2.5-3·10≠4 K≠1 [29], which
is not high enough to cause a change of the sample thickness that would explain
this di�erence. Nevertheless, an expansion of the silicone rubber could result in
the material being "squeezed". This could lead to changes in the material structure
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on a microscopic level, such as separation/reorientation of SiC and carbon black
particles, which governs the permittivity. Note also that the expansion mechanics
is not so simple since the sample is kept between two electrodes.

Another noticeable di�erence between this material system and the previously con-
sidered systems is that the conductivity is considerably lower. The conductivity
of Material C is around 2-4 orders of magnitude lower than of Material A and of
Material B. Furthermore, this system behaves qualitatively like an insulator and
exhibits, particularly at low temperatures (< 60-70 ¶C), a long equilibration time.
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Figure 5.13: The frequency behavior of the real permittivity (‘Õ) and the real electrical
conductivity (‡Õ) for Material C measured at a voltage of 1 V rms for temperatures T =
30 ¶C - 70 ¶C.

The 30 ¶C current-field dependence from the various measurements is shown in figure
5.14. The polarization current measurements, as well as the di�erential conductivity,
can be found in the Appendix B. It is clear from figure 5.14 that consistency between
the measurements cannot be expected because a reasonable DC steady state was
not reached yet. Particularly the time duration of setup 2 is inappropriate and leads
to much too high current prediction for a DC measurement.

For this material, five di�erent samples were tested with IV-setup 2 and the devi-
ation between the results was significant (in figure 5.14 only one of these curves is
shown). This could be caused by variations between the samples or by the lack of
robustness of this material. Measurements of higher harmonics with the IS setup
were performed for two di�erent samples with similar results. With IV-setup 1 two
samples were measured with large deviations of the results. However, the deviations
were not systematic and it is di�cult to say whether the reason is sample variations
or the generally non-robust nature of the material.

The conductivity values for the di�erential conductivity from the AC/DC super-
position were taken at f = 1 mHz, the lowest frequency measured; the DC plateau
was not reached. The reconstructed I-V (solid black curve in figure 5.14) also di�ers
strongly from the other results. The actual di�erential conductivity is in fact smaller
than the one used to reconstruct the current-voltage characteristics, which leads to
this instability to predict steady state values.
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Figure 5.14: Overview of the current-voltage characteristics for Material C at 30 ¶C.
Circles: IS (blue: 1 Hz, red: 100 mHz, yellow: 10 mHz, purple: 1 mHz); stars: IV-setup 1;
grey curve: IV-setup 2; black curve: reconstruction from AC-DC superposition.

In figure 5.15 the normalized current contributions for the first, third and fifth har-
monics are shown for two di�erent field strengths. Even for this material system
the higher harmonics play an important role, especially at small frequencies. The
amount of the current contained in the higher harmonics depends strongly on fre-
quency.
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Figure 5.15: Material C: conduction currents (I Õ
k

) of each harmonic (normalized with
respect to the first harmonic) for two di�erent field values; (a) 1.4 kV/mm and (b)
2.8 kV/mm. Absolute values of the amplitudes corresponding to the fundamental fre-
quencies can be found in section B.3 in appendix B.

One may conclude that a characterization of this material requires much longer
measurement times/lower frequencies which is inconvenient for the purpose of this
study.
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5.4 Material D

This material system consists of a Nafion sample "sandwiched" between two thin
polypropylene films and was investigated with the hope to observe nonlinearities
due to the interfaces between the Nafion and the polypropylene films. However, the
system turned out to be inappropriate for this study. The measurement results are
not reproducible and the data can not be trusted. For completeness the results are
presented in a similar manner as for the previously considered systems.

Figure 5.16 shows the frequency behavior of the real permittivity (‘Õ) and the real
electrical conductivity (‡Õ) of the complete material system and its components; a
Nafion sample and two layers of polypropylene films. Results of ‘

ÕÕ and tan(”) can
again be found in Appendix B. As can be seen, a DC plateau was never reached for
the considered frequencies.
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Figure 5.16: The frequency behavior of the real permittivity (‘Õ) and the real electrical
conductivity (‡Õ) for the complete material system (blue), a Nafion sample (red) and two
layers of polypropylene films (yellow), measured at a voltage of 1 V rms at 30 ¶C.

The current-field dependence from IS measurements of higher harmonics is shown
in figure 5.17a together with results from two measurements with IV-setup 1. The
IS measurements were performed twice for the same material system at frequencies
10 mHz and 1 Hz, and the results are clearly not reproducible. Material systems
consisting of other samples were also measured but non of the results are consistent
with each other. Results from the polarization current measurements can be found
in figure 5.17b. These measurements were performed on two di�erent samples, and
non of them are the same sample as was used for the HV IS in figure 5.17a. Since a
reasonable DC steady state was never reached for the measurements with setup 1,
consistency with the IS measurement cannot be expected.

For this material system three di�erent "sandwiches" were measured with the IS
setup, without consistency between any of the results. The results shown in figure
5.17a are from two di�erent measurements on the same system of samples.
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Figure 5.17: Material D: (a) Current-voltage characteristics at 30 ¶C. Circles: IS (blue:
1 Hz, red: 10 mHz, yellow: 1 Hz, purple: 10 mHz); stars: IV-setup 1. (b) Current mea-
surements over time with IV-setup 1 at 30 ¶C for fields 3 kV/mm and 3.5 kV/mm.

The behaviour of the superharmonic amplitudes varies a lot between the di�erent
field strengths. In figure 5.18 the normalized current contributions for the odd
harmonics up to the ninth superharmonic are shown for two di�erent field strengths
as an example. The absolute values of the current density amplitudes corresponding
to the fundamental frequencies can be found in section B.4 in appendix B.
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Figure 5.18: Material D: conduction currents (I Õ
k

) of each harmonic (normalized with
respect to the first harmonic) for two di�erent field values; (a) 0.49 kV/mm and (b)
2.1 kV/mm.

Despite that the superharmonics appear to vary randomly, the time dependent cur-
rent behaviour (reconstructed from the measured superharmonics) seems rather sys-
tematic. In figure 5.19 the time dependent behaviour is shown for the total current
density and the in-phase current density for the six highest fields applied at the
frequency 10 mHz. The corresponding time dependent applied field can be seen in
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figure B.12 in Appendix B. The location of the peak of the periodic current is shift-
ing with the field strength. This behaviour has not been observed for any of the
other material systems.
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Figure 5.19: Time dependent current density reconstructed from measurements of
higher harmonics at 10 mHz for Material D. (a) The total current density. (b) Current
density calculated as a sum of the in-phase contributions j

Õ
k

.

To summerize, this material system is also not appropriate for the purpose of this
work. One possible explanation for the inconsistency in the results is variations in
humidity, which leads to di�erences in the amount of water contained in the Nafion.
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6
Discussion and conclusions

This thesis aims to elaborate the potential of nonlinear IS for characterizing DC
insulation materials. The steady state current-field relation was determined with
di�erent measurement methods for a few material systems. Overall, nonlinear IS
techniques seem to be very useful for characterization of robust field grading mate-
rials.

If measurements of higher harmonics are performed at di�erent fundamental fre-
quencies and the results converge in the low frequency limit, this characterization
method can most likely be used to determine the steady state current-field char-
acteristics. Analogously, results from small amplitude AC spectroscopy at large
superimposed DC seem to be trustworthy if the di�erential conductivity reaches the
DC plateau in the considered frequency region.

The results for Material A and Material B show that the two nonlinear IS methods,
higher harmonics measurement with high field impedance spectroscopy and di�er-
ential conductivity measurement with small amplitude AC spectroscopy at large
superimposed DC, work in principle with the given equipment (provided by Novo-
control Technologies). The results are reproducible and in good agreement with
each other, and with IV-setup 1 (see figures 5.3 and 5.9). These two materials are
robust and show nonlinear behaviour due to micro-interfaces.

For non-robust material systems, electrical characterization in general, and appli-
cation of nonlinear IS in particular, is limited or even meaningless. Non-robust
behaviour can for example occur for strongly sensitive materials and for systems
that require very long times for relaxation to a steady state (i.e. strongly insulating
systems). Sometimes insulation materials show electric behaviour that seems not to
converge to a steady state at all within a reasonable measurement time. This was
the case for Material C, which could not be uniquely characterized on the given time
and/or frequency scales (see figure 5.14). A reason for the lack of robustness can
be imperfect percolation of the filler particles. The lack of robustness is reflected in
the missing convergence of the results in the limit Ê æ 0.

The attempt to observe nonlinearities due to the macroscopic interfaces in Material
D was not successful. The results are not reproducible and the data can not be
trusted (see figure 5.17a). One reason to that the system behaviour is not robust
could be due to the properties of Nafion. It is known that this material is sensitive to
variations in humidity and easily absorbs water [30, 31]. Its water content could not
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6. Discussion and conclusions

be controlled during the measurements and this could have a�ected the electrical
properties as well as the sample thickness (due to potential expansion related to
the water uptake). Another reason of the instability in the results is likely that
the highly insulating polypropylene films inhibit the possibility of reaching a steady
state for the considered frequencies.

To further understand feasibility and limitations related to nonlinear IS it would be
interesting to study a system where nonlinearity due to blocking macro-interfaces
can be observed. Investigations of other kind of nonlinear material systems would
also be useful, such as macro-interfaces where charge injection appear.

To summarize, we conclude that the two nonlinear IS techniques investigated are
useful for electrical characterization of nonlinear materials under the condition that
the studied systems are robust, and the frequency considered is so low that the
insulation behaves quasi-static.
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A
Appendix: Theory

This appendix contains calculations that complements the theory presented in chap-
ter 2.

A.1 Example: Piecewise constant conductivity

In this section calculations of the current density amplitudes j

Õ
1 and j

Õ
3 are provided

from the example with a piecewise constant conductivity presented in section 2.2.2.

j
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s 2fi/Ê

0 j(t) cos(Êt) dt = 4Ê
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A.2 Example: Blocking electrodes

In this section Poisson’s equation is solved for the example provided in section 2.2.4
with blocking electrodes. Thereafter it is shown that the average field is given by
Ē = U/L.

First we make an ansatz for the the electric potential field � in two di�erent regions
of the cross section area in figure 2.11a. Region I is located to the left of the charge
sheet and region II to the right of the charge sheet, see equation A.3.
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A. Appendix: Theory

Region I x œ [0, x0[ �I(x) = ≠ q

‘

1
≠ x

2

2L

+ C1x + D1
2

Region II x œ ]x0, L] �II(x) = ≠ q
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≠ x
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2L

+ C2x + D2
2 (A.3)

From the continuity of the potential at x0 (�|
x0+ = �|

x0≠), the discontinuity of the
electric field at x0 (�Õ|

x0+ ≠ �Õ|
x0≠ = q/‘) and the boundary conditions �(0) = U

and �(L) = 0 one finds the following relations between the coe�cients defined in
equation A.3.

C1x0 + D1 = C2x0 + D2
C1 ≠ C2 = 1
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L

2 ≠ C2L ≠ D2 = 0
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From these four equations the four coe�cients can be determined.
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Now the mean electric field can be calculated from the following equation.

Ē = ≠ 1
L

C⁄
x0

0
�Õ

I(x) +
⁄

L

x0
�Õ

II(x)
D

(A.6)

Inserting �Õ
I(x) and �Õ

II(x) into this equation gives the intuitive result Ē = U/L.
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B
Appendix: Experimental results

This appendix contains measurement results that complements the experimental
results presented in chapter 5. The results are ordered by material system and
presented one after another.

B.1 Material A
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Figure B.1: The frequency behavior of the dielectric loss (‘ÕÕ) and tangent delta
(tan(”) = ‘

ÕÕ
/‘

Õ) for Material A measured at a voltage of 1 V rms for temperatures T
= 30 ¶C (blue), 40 ¶C (red), 50 ¶C (yellow), 60 ¶C (purple).
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Figure B.2: Polarization currents of Material A measured with IV-setup 1 at 30 ¶C for
di�erent electric field values. The stars correspond to the stars in figure 5.3a. An increase
of current density with time may be due to (local) Joule heating; however, the variations
here are rather small.

Time [s]

101 102 103 104

C
u
rr

en
t 

d
en

si
ty

 [
A

/m
2
]

×10-4

1.55

1.6

1.65

1.7

1.75

150 kV/m

Time [s]

101 102 103 104

C
u
rr

en
t 

d
en

si
ty

 [
A

/m
2
]

×10-4

9

9.5

10

375 kV/m

Time [s]

101 102 103 104

C
u
rr

en
t 

d
en

si
ty

 [
A

/m
2
]

×10-3

4

4.2

4.4

4.6

4.8

625 kV/m

Time [s]

101 102 103 104

C
u
rr

en
t 

d
en

si
ty

 [
A

/m
2
]

0.09

0.095

0.1

0.105

0.11

0.115

875 kV/m

Figure B.3: Polarization currents of Material A measured with IV-setup 1 at 60 ¶C for
di�erent electric field values. The stars correspond to the stars in figure 5.3b.
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Table B.1: Material A: Current density amplitudes of the fundamental frequency (jÕ
1)

in A/m2 for di�erent frequencies and field strengths.

Field Strength [V/m] 1 Hz 100 mHz 10 mHz 1 mHz

0.1697e06 9.5829e-05 4.3181e-05 3.2174e-05 3.0922e-05

0.2122e06 1.2601e-04 5.8985e-05 4.5762e-05 4.5056e-05

0.4226e06 4.0118e-04 2.1867e-04 1.9398e-04 1.9501e-04

0.7041e06 1.5816e-03 1.1767e-03 1.1587e-03 1.1850e-03

1.0777e06 7.9416e-02 8.6160e-02 9.2451e-02 9.5487e-02

1.2147e06 3.0489e-01 3.1463e-01 3.2334e-01 3.2625e-01

1.3020e06 6.1155e-01 6.3120e-01 6.5323e-01 6.5934e-01

B.2 Material B
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Figure B.4: The frequency behavior of the dielectric loss (‘ÕÕ) and tangent delta
(tan(”) = ‘
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Õ) for Material B measured at a voltage of 1 V rms for temperatures T
= 30 ¶C - 200 ¶C.
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Figure B.5: Polarization currents of Material B measured with IV-setup 1 at 30 ¶C at
di�erent field values.
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Figure B.6: Polarization current measurements from IV-setup 1 at 100 ¶C for Material
B.

Field strength (DC) [V/m]×105
0 1 2

σ
D

 [
S

/m
]

10-8

10-7

10-6

10-5

Figure B.7: Di�erential conductivity as a function of the DC field strength for Material
B at 60 ¶C. Circles: IS measurements with small-signal AC voltage superimposed to a DC
voltage (AC voltage: 0.38 V/mm (green), 3.8 V/mm (black)).
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Table B.2: Material B: Current density amplitudes of the fundamental frequency (jÕ
1)

in A/m2 for di�erent frequencies and field strengths.

Field Strength [V/m] 1 Hz 100 mHz 10 mHz 1 mHz

0.4233e05 8.1909e-04 1.5769e-04 4.2288e-05 2.4764e-05

0.7053e05 1.4745e-03 2.9853e-04 9.0633e-05 5.9254e-05

1.0546e05 2.5429e-03 5.8961e-04 2.3619e-04 1.8277e-04

1.4038e05 4.4348e-03 1.3815e-03 8.1083e-04 7.2101e-04

2.0643e05 3.1240e-02 2.7376e-02 2.6747e-02 2.6714e-02

2.4195e05 2.8016e-01 2.7748e-01 2.7801e-01 2.7844e-01

2.5038e05 4.3468e-01 4.3470e-01 4.3589e-01 4.3682e-01

B.3 Material C
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Figure B.8: The frequency behavior of the dielectric loss (‘ÕÕ) and tan(”) for Material
C measured at a voltage of 1 V rms for temperatures T = 30 ¶C - 70 ¶C.
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B. Appendix: Experimental results
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Figure B.9: Polarization currents of Material C measured with IV-setup 1 at 30 ¶C at
di�erent field values.
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Figure B.10: Material C at 30 ¶C: (a) Polarization current measurements and (b) di�er-
ential conductivity as a function of the DC field strength. Circles: IS measurements with
small-signal AC voltage superimposed to a DC voltage (AC voltage: 3.3 V/mm (green),
23.6 V/mm (black))
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B. Appendix: Experimental results

Table B.3: Material C: Current density amplitudes of the fundamental frequency (jÕ
1)

in A/m2 for di�erent frequencies and field strengths.

Field Strength [V/m] 1 Hz 100 mHz 10 mHz 1 mHz

0.3532e06 4.2247e-06 5.8858e-07 9.1921e-08 2.1451e-08

0.7070e06 1.3154e-05 1.9371e-06 2.9359e-07 5.3387e-08

1.0565e06 3.0133e-05 4.5600e-06 7.0546e-07 1.2242e-07

1.4099e06 5.8408e-05 9.0751e-06 1.4581e-06 2.6958e-07

2.8206e06 3.6101e-04 6.7722e-05 1.6768e-05 7.4152e-06

4.2307e06 1.2610e-03 3.3652e-04 1.2658e-04 7.5316e-05

B.4 Material D
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Figure B.11: The frequency behavior of the dielectric loss (‘ÕÕ) and tan(”) for the
complete material system (blue), a Nafion sample (red) and two layers of polypropylene
films (yellow) measured at a voltage of 1 V rms at 30 ¶C.
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Figure B.12: Material D: Time dependent field behaviour for six di�erent field
strengths.

Table B.4: Material D: Current density amplitudes of the fundamental frequency (jÕ
1) in

A/m2 for di�erent frequencies and field strengths. The colours indicate the corresponding
measurement in figure 5.17a.

Field Strength [V/m] 1 Hz (blue) 10 mHz (red) 1 Hz (yellow) 10 mHz (purple)

0.4928e06 9.3990e-06 5.8675e-08 2.8715e-07 6.0711e-08

0.7056e06 1.1303e-05 6.9180e-08 6.0480e-07 6.5398e-08

1.0572e06 1.4999e-05 1.6649e-07 8.7610e-07 8.7097e-08

1.4106e06 1.7388e-05 2.2200e-07 1.5028e-06 1.5549e-07

2.1144e06 4.5425e-05 6.4730e-07 3.5820e-06 7.1841e-07

2.8202e06 1.2576e-04 9.4021e-07 5.7084e-06 5.7275e-07

3.5250e06 1.5899e-04 6.0761e-06 2.7192e-04 9.6675e-06

4.2296e06 6.8692e-04 1.4948e-05 1.3547e-03 1.7373e-05

4.9331e06 1.6563e-03 2.3602e-05 2.3392e-03 2.4722e-05

5.6385e06 2.5651e-03 3.1096e-05 3.1945e-03 3.1505e-05

XI


	List of Figures
	List of Tables
	Introduction
	Modern broadband impedance spectroscopy
	Aim of this study
	Structure of the thesis

	Theory
	Brief overview on linear dielectric spectroscopy
	Example: Drude-Debye model

	Nonlinearities and superharmonics
	Example: Modelling of nonlinear I-V characteristics
	Example: Piecewise constant conductivity
	Example: Schottky barrier
	Example: Blocking contacts
	Space charge limited current

	Dielectric spectroscopy and differential conductivity

	Equipment and experiments
	Impedance spectroscopy
	IV-setup 1
	IV-setup 2

	Material systems
	Materials with micro-interfaces: Nonlinear filled materials
	Materials with macro-interfaces

	Experimental results
	Material A
	Material B
	Material C
	Material D

	Discussion and conclusions
	Bibliography
	Appendix: Theory
	Example: Piecewise constant conductivity
	Example: Blocking electrodes

	Appendix: Experimental results
	Material A
	Material B
	Material C
	Material D


