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Abstract
A long-standing issue in theoretical physics has been the difficulty of uniting Quantum Field Theory
(QFT) and general relativity into a single theory of everything. There is ample evidence that reality
is fundamentally quantum mechanical, and as such there should exist a quantum theory of gravity.
Emergent spacetime is a novel approach to quantum gravity, wherein the usual method of starting
with a classical theory and applying some kind of quantization recipe is reversed. Instead one
begins with an abstract quantum theory and ’geometrizes’ it using recently discovered relationships
between entanglement and geometry.

This thesis is divided into three parts. The first part provides a comprehensive review of QFT,
quantum information theory, string theory and how the AdS/CFT correspondence points towards
an equivalence between spacetime connectivity and quantum entanglement. In the second part
modern technical developments regarding the explicit emergence of spacetime from the entangle-
ment structure of quantum states is reviewed. The main discovery that is reviewed is the explicit,
fully controlled, emergence of second-order perturbative gravity with extra standard model fields
from entanglement dynamics in conformal field theory. This result is then extended to include
quantum corrections to the emergent gravitational theory by relating entanglement in the quan-
tum theory to wormholes in the gravitational theory via the ER=EPR conjecture. The review is
finished with an extension of the emergent spacetime program to discretized spacetimes, using the
example of the AdS/MERA correspondence, which relates discretized anti-de Sitter to the MERA
tensor network. In the third part some first steps towards the recovery of perturbative third-order
gravitational dynamics from entanglement are carried out. The results show no inconsistencies, and
the next step towards novel results is the characterization of the OPE between conformal primary
scalars and the stress energy tensor in terms of symplectic forms in an auxiliary AdS space.
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Chapter 1

Introduction
A long-standing issue in theoretical physics has been the difficulty of uniting quantum field theory
(QFT) and general relativity (GR) into a single theory of everything. The problem is that GR
becomes ill-defined after the quantization procedure that is central to QFT, meaning we have no
quantum theory of gravity that may be related to the framework underlying the standard model.

Emergent spacetime is a novel approach to quantum gravity, wherein the usual method of
starting with a classical theory and applying some kind of quantization recipe is reversed. Instead
one begins with an abstract quantum theory and ’geometrizes’ it using recently discovered rela-
tionships between entanglement and geometry. The main idea is that in contrast to the standard
model forces, gravity may not be a theory of fundamental interactions. Instead gravity may be an
emergent property of a priori nongeometric quantum systems.

The connection between entanglement and geometry has its roots in the famous result of Beken-
stein and Hawking that black holes have entropy proportional to their surface area [1]. This entropy
may be interpreted as being due to the exterior spacetime being entangled with the interior of the
black hole. A direct consequence of the black hole entropy discovery was the realization that black
holes had to maximize the entropy per volume to prevent the gravitational collapse of hot clouds
violating the first law of thermodynamics. Based on the area-law entropy bound of gravitational
systems it was conjectured that their physics may be encoded in a theory living on the boundary of
that system, the logic being that entropy should be extensive in the fundamental degrees of freedom
[2]. This holographic principle was given a precise interpretation in string theory in terms of the
Anti de Sitter/Conformal Field Theory (AdS/CFT) duality, relating a string theoretical description
of quantum gravity in spacetime to conformally symmetric QFT living on the boundary of that
spacetime [3]. Although the AdS/CFT duality was discovered in a string theoretical context it has
since been realized that it might hold more generally. These hints of a relation between quantum
physics and gravity were given a much more profound meaning in 2006 with the Ryu-Takayanagi
conjecture [4, 5]. Specifically the Ryu-Takayanagi prescription relates the entanglement entropy
(a quantitative measure of entanglement) between complementary regions on the boundary, as
computed in the boundary QFT, to the area of particular surfaces in bulk.

In 2009 Raamsdonk further realized the significance of this relation in combination with an
AdS/CFT result called the geodesic approximation which, together with an upper bound on corre-
lation functions from a quantity called mutual information, tells us that as entanglement between
a region A and its complement B decreases the geometric distance in the bulk between points in A
and B increases. A picture emerges in which spacetime begins to split as we try to disentangle parts
of the boundary theory, finally resulting in a complete disconnection as entanglement is brought
to zero, as imaged in figure 1.1. The remarkable conclusion is that entanglement in the quantum
theory is necessary for there to be a connected spacetime at all.
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Figure 1.1: Boundary of AdS represented as a sphere divided into two hemispheres. As we try to
decrease the entanglement between these regions, the spacetime starts to pinch off and eventually
splits completely.

The seeming connection between quantum entanglement and spacetime connectivity has in-
spired a new program of quantum first or emergent gravity, in which gravity is taken to emerge
from the entanglement structure of some quantum theory. There are a number of approaches to
such an emergent formulation of gravity, all of which take inspiration from the Ryu-Takayanagi
formula [6, 7, 8, 9, 10]. The collection of all of these is referred to in this text as the field of
’emergent spacetime’. The aim of the present text is to lay out the path to these developments and
then contribute with something new.

Structure and Purpose
The field of emergent spacetime is relatively new, and I find that there is a lack of approachable
literature. My goal is to build a comprehensive text, starting at the end of introductory courses
in gravity and QFT, building all the way up to modern research literature on emergent gravity.
The text is divided into three parts, Preliminaries, Recent Developments and Original Work. All
chapters depend on all preceding chapters with the exception of chapters 4 and 5 which may be
read in any order.

In Part I: Preliminaries the relevant elements of quantum field theory, quantum information
theory, string theory and the AdS/CFT duality are introduced. After this we propose and later
derive the Ryu-Takayanagi relation. Finally it is shown more explicitly that if one tries to disen-
tangle the local degrees of freedom of the boundary spacetime, the bulk- and boundary spacetimes
split apart.

In Part II: Recent Developments the current state of the field of ”emergent gravity” is reviewed.
The three main topics covered are: the emergence of gravitational equations of motion from rel-
ative entropy constraints, the insufficiency of pure entanglement for a complete reconstruction of
spacetime and tensor network models of emergent gravity. Tensor networks and proposals be-
yond entanglement involve more conjecture but also connect more closely to our own seemingly
asymptotically de Sitter universe.

In Part III: Original Work some work towards the derivation of third order gravitational dy-
namics from boundary entanglement dynamics is done.

The aim of this text is first and foremost to be pedagogical. In calculations I make an effort
to not omit any nontrivial steps, and if I do omit anything the idea is to state it clearly. In an
effort to avoid what comes across as elitist practices in the literature, I make a conscious effort to
not refer to things as easy. I also try to avoid the common malpractice of citing results without
translating conventions. A reader that has read Part I: Preliminaries should be ready to understand
contemporary literature relating to holographic entanglement entropy without having to consult
external sources. After reading Part II: Current Developments the reader should be familiar with
the details of some of the most recent developments in the area of emergent spacetime.
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Chapter 2

Quantum Information Theory

Information theory is the quantitative study of the information content of random variables x ∈ X
sampled from some probability distribution p(x), where X is some set of values (an ’alphabet’)
for x. In the case where you wish to communicate information in terms of binary numbers, the
expected information S required to unambiguously represent a microstate (x) of a system in some
macrostate (p(x)) is

S = −
∑
x

p(x) log2 p(x) , (2.1)

where the number 2 in the logarithm is due to the choice of measuring information in units of bits.
To understand why this is the expected information content, let us consider a string aaabbababb . . .
of messages a and b that appear with probabilities p, 1− p. For a large number of messages N , a
appears almost exactly p times. The number of possible messages is then

N !
(pN)!((1− p)N)! ≈

NN

(pN)pN ((1− p)N)(1−p)N = 1
(p)pN ((1− p)N)(1−p) = 2NS (2.2)

where we have used Stirling’s formula and
∑
x x log2 x = −p log2(p) − (1 − p) log2(1 − p). The

number of messages is then equal to the number of possible values that can be represented by NS
bits and dividing by N we get the average length of a message given in bits.

The distribution p(x) is a ”macrostate” since it reflects everything we know for certain about the
system, while the individual values x are the individual microstates that we cannot predict exactly.
In thermodynamics, the probability distribution function p(x) is usually determined entirely in
terms of a few parameters, such as temperature and volume, and we call the values of these
variables the macrostate.

The extension of classical information theory to the quantum case requires the extension of
statistical physics to quantum mechanics. This is the subject matter of section 2.1. In section
2.2 we cover the core tools of classical information theory before generalizing these tools to the
quantum case in section 2.3. We conclude this chapter by using the monotonicity of quantum
relative entropy to derive a form of quantum second law of thermodynamics.

Throughout this chapter we try to note some specific examples of quantum informational con-
nections to gravitational physics via the AdS/CFT correspondence.

2.1 Quantum Theory
Quantum mechanics treats the time evolution of the Schrödinger wavefunction or Heisenberg op-
erators, and perfect knowledge of the state and the form of all operators is usually assumed. In

5



2.1. Quantum Theory

this chapter we develop in a fairly minimal way a theory of noisy quantum mechanics, where we
assume imperfect knowledge of the state and the form of the operators with which we act on the
state. Much like in statistical mechanics, this is done by taking a statistical approach to quantum
mechanics, i.e. by asking ”What if my wavefunctions were randomly sampled from a distribu-
tion?”. More explicitly, we develop the machinery of density operators, entanglement, purification
and Choi/Kraus operators.

2.1.1 Stochastic Quantum States

In quantum mechanics, the only objects we compute are expectation values on the form 〈ψ|A|ψ〉,
where ψ is some normalized wavefunction. If the state we want to measure comes from a probability
distribution σ(x) the expectation value becomes

〈A〉 =
∑
x

σ2(x) 〈ψx|A|ψx〉 . (2.3)

It is in general most convenient to define p = σ2, and the macrostate as the density matrix ρ defined
as

ρ =
∑
x

p(x) |ψ〉x 〈ψ|x , (2.4)

which is to be understood as the quantum generalization of a probability density function. The
sum over x of all p(x) must be equal to one, since the probability of being in a state at all should
be unity. We will show this normalization explicitly in a following paragraph. This reduces to a
classical statistical description if all of the states ψx are orthogonal to each other so that projective
measurements can perfectly distinguish them.

To obtain the expectation value of an operator A with respect to the density operator we
compute

p(x) 〈ψ|xA |ψ〉
x = Tr[Ap(x) |ψ〉x 〈ψ|

x]
= Tr[Aρ] ,

(2.5)

and the probability of a particular eigensolution with eigenvalue aj is obtained by finding the
expectation value of a projection operator Πj that projects onto the eigenspace of A with eigenvalue
aj . The projection operators must satisfy a completeness relation:∑

j

Πj = I , (2.6)

where I is the identity operator. This last example corresponds to a projective quantum measure-
ment. Since we can obtain the probabilities for each of the results of a quantum measurement
directly from the density operator, we say that it fulfills the role of the quantum state in the
statistical description.

It is worth noting that while thinking about projective measurements is very useful for the
operational interpretation of certain quantities and theorems in quantum information theory, they
are in a sense unphysical since they break unitarity. Essentially, an experimenter performing a
projective measurement should themselves be a solution of the equation of motion for the universe,
so nothing non-unitary should ever be able to happen. As a quick check that projective measure-
ments are not unitary, realize that projections are not invertible and therefore do not have unit
determinant.

It is a popular view in quantum cosmology that that the evolution of the universe is always
unitary, and the apparent unitarity breaking property of measurements are a result of the state of
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Chapter 2. Quantum Information Theory

the universe becoming entangled with the measurement outcome [11, 8]. This view inevitably leads
to the conclusion that our classical experience, in which the projective view applies to experiment,
is but one of many terms in an entangled superposed state of the universe wavefunction. The addi-
tional terms (or branches) in the superposition, corresponding to different measurement outcomes,
may be interpreted as additional classical universes. The theory that describes the behaviour of
the wavefunction in such a paradigm as well as how the branches of the wavefunction become in-
dependent of each other is called decoherence theory. At the current time decoherence theory does
not provide a fully rigorous alternative to the projective interpretation of experimental outcomes,
but at least it is compatible with unitary quantum gravity.

Returning to density operators, there are a number of important properties that we should
show. The density operator has unit trace:

Tr[ρ] = Tr[p(x) |ψ〉x 〈ψ|
x]

= p(x)Tr[|ψ〉x 〈ψ|
x]

= p(x) 〈ψ|x |ψ〉x
= p(x)δxx
= 1 ,

(2.7)

where we have used that |ψ〉 is normalized.
The density operator is Hermitian:

ρ† = (p(x) |ψ〉x 〈ψ|
x)†

= p(x)(〈ψ|x)† (|ψ〉x)†

= p(x) |ψ〉x 〈ψ|
x ,

(2.8)

since p(x) is real.
The density operator is positive semi-definite, meaning that for any wavefunction ϕ, we have

〈ϕ| ρ |ϕ〉 ≥ 0, which can be shown as follows:

〈ϕ| ρ |ϕ〉 = 〈ϕ| p(x) |ψ〉x 〈ψ|
x |ϕ〉

= p(x) 〈ϕ| |ψ〉x 〈ψ
x| |ϕ〉

=
∑
x

p(x)| 〈ϕ| |ψ〉x |
2 .

(2.9)

It is clear that the last line here is positive definite since both the probabilities p(x) and the absolute
squares must be either positive or zero.

Another important result is that the time evolution of the density in terms of the unitary time
evolution operator U(t,t0) is given by

ρ(t) = U(t, t0)ρ(t0)U †(t, t0) ,

meaning the density operator evolves in time like a Heisenberg operator. This unitary time evolution
operator is given as usual in terms of the Hamiltonian by

U = e−iHt .

This applies for any other operator that is defined in the Schrödinger picture, under the same
operator the density operator transforms as a Heisenberg operator.

7



2.1. Quantum Theory

The density operator does not uniquely specify the ensemble of states that gave rise to it. For
example, if we have a two-level system with eigenstates |0〉 , |1〉 we can have two distinct ensembles
of states that span the Hilbert space:

pϕ(1) = 1/2 , |ϕ〉1 = |0〉
pϕ(2) = 1/2 , |ϕ〉2 = |1〉

pψ(1) = 1/2 , |ψ〉1 = |0〉+ |1〉√
2

pψ(2) = 1/2 , |ψ〉2 = |0〉 − |1〉√
2

.

These define completely different in-going wavefunctions, but the density operator is the same:

p(x)ψ |ψ〉x 〈ψ|
x = 1

2

( |0〉+ |1〉√
2
〈0|+ 〈1|√

2
+ |0〉 − |1〉√

2
〈0| − 〈1|√

2

)
= 1

4 (|0〉〈0|+ |1〉〈1|+ |1〉〈0|+ |0〉〈1|+ |0〉〈0|+ |1〉〈1| − |1〉〈0| − |0〉〈1|)

= 1
4 (2 |0〉〈0|+ 2 |1〉〈1|)

= 1
2 |0〉〈0|+

1
2 |1〉〈1|

= p(x)ϕ |ϕ〉x 〈ϕ|
x .

(2.10)

This result has interesting implications for quantum information theory, we will see in section 2.3.2.
By the spectral theorem any density operator can be decomposed in terms of eigenvectors

|φx〉x , x ∈ {0,1 . . . , d − 1} where d is the dimension of the Hilbert space. Such a decomposition
is called a Schmidt decomposition. This means that we are always able to define a ”canonical”
ensemble corresponding to the density operator. This decomposition is still not unique if the
spectrum of the Hamiltonian is degenerate, since in this case the eigenvectors of the system are
not uniquely defined. In quantum data compression, which we will not cover in this thesis, any
ensemble that is obtained from the spectral theorem is also ”maximally efficient” for information
storage.

The purity P (ρ) of a density operator is given by

P (ρ) ≡ Tr[ρ†ρ] = Tr[ρ2] ,

and it is a measure of the noisiness of a quantum state. The purity of a pure (completely definite)
state is exactly equal to one, while a mixed state has a purity that is strictly smaller than 1. This
is straightforward to check by just diagonalizing the two factors of ρ with the same basis:

P (ρ) = Tr [p(x)p(y) |ψ〉x δ
x
y 〈ψ|y]

=
∑
x

p(x)2

≤ 1 ,

(2.11)

where we have used that the eigenvalues of ρ are the probabilities p(x). A simple argument for
the inequality is that the sum of the p(x) is equal to 1, and squaring them can only make the sum
smaller since 0 ≤ p(x) ≤ 1 , ∀x.

The purity is minimized by the maximally mixed state, often denoted Π, which is given by
ρ = Diag(1/N) where N is the dimension of the Hilbert space in which the state lives. This is

8



Chapter 2. Quantum Information Theory

quite reminiscent of the entropy, where the highest entropy state for a system with finite degrees of
freedom is given by the uniform distribution, and we will find that purity and entropy are related
in section 2.3.2.

2.1.2 Multipartite Quantum States

Possibly the most important aspect of any quantum theory is the case of two or more quantum
systems that are joined together. Multipartite systems are the source of most strange quantum
effects, all of which have to do with entanglement.

Let us first consider the absolutely simplest case of two independent ensembles. Let us label
them {p(x), |ψ〉x}, |ψ〉 ∈ HA, {p(y), |φ〉y}, |φ〉 ∈ HB, where the H denote two different Hilbert
spaces. The composite density operator ρAB is then given by the tensor product:

ρAB =
(
p(x) |ψ〉x 〈φ|

x
)
⊗
(
p(y) |φ〉y 〈ψ|

y
)

= p(x)p(y)
(
|ψ〉x 〈ψ|

x ⊗ |φ〉y 〈φ|
y
)

= ρA ⊗ ρB

(2.12)

where we in the last line have just indicated that the composite density operator admits a very
simple description in terms of the density operators of the subsystems (ρA, ρB) in the independent
case. A state that can be decomposed in this manner is called a separable state. It can also be
shown that any convex linear combination of separable states is also a separable state. Thus, for∑
x p(x) = 1 we have that a state ρ in the Hilbert space H1 ⊗H2 . . .⊗HN is separable if it can be

written as a tensor product state:

ρ =
N∑
x=1

p(x)ρx1 ⊗ ρx2 . . .⊗ ρxN . (2.13)

If this decomposition is not possible a system is said to be entangled. Note that the amount of
entanglement and even whether there is entanglement at all depends on the choice of subspaces
H1 . . .HN , so entanglement is always defined relative to some choice of subsystem decomposition.
Canonically the decomposition is made into a set of Hilbert spaces that are associated to different
spacelike separated regions in spacetime, typically a set of different labs making measurements of
the entangled state at the same time.

Local Density Operator

When given the global state defined on HA ⊗HB it is often interesting to know what the density
operator looks like for an observer that only has access to part of the system, for example HA.

The method to obtain a local density operator is called a partial trace, which as it sounds is
a trace operation performed only on part of the Hilbert space. The partial trace of the operator
XAB over subsystem B is defined as follows:

TrB[XAB] ≡
∑
l

(
idA ⊗ 〈l|B

)
XAB

(
idA ⊗ |l〉B

)
(2.14)

where |l〉B is any orthonormal basis for HB. This is indeed just a different way to write the trace
operation since the trace is invariant under orthogonal transformations, meaning that

Tr[XB] =
∑
l

Tr[|l〉〈l|XB |l〉〈l|] =
∑
l

〈l| |l〉〈l|XB |l〉 =
∑
l

〈l|XB |l〉 .

9



2.1. Quantum Theory

The partial trace operator is interesting because it reduces a state on a larger Hilbert space to a
smaller space. In addition to this it preserves local measurement outcomes, which is what makes
it a good method for obtaining a local density operator. This follows quite simply, recall that the
expectation of an operator Λ is Tr[Λρ], so let us consider a local measurement on subsystem A,
given by the operator ΛA ⊗ idB. We wish to show that

Tr[(ΛA ⊗ idB)ρAB] = TrA
[
ΛATrB[ρAB]

]
.

A way to show this equality is to introduce the two orthonormal bases |j〉A , |k〉B. We can then
write the RHS as follows:

TrA
[
ΛATrB[ρAB]

]
=
∑
j

〈j|ΛA

(∑
k

(
idA ⊗ 〈k|B

)
ρAB

(
idA ⊗ |k〉B

))
|j〉

=
∑
j

∑
k

((
idA 〈j|ΛA ⊗ 〈k|B

)
ρAB

(
idA |j〉 ⊗ |k〉B

))
=
∑
j

〈j|ΛAρA |j〉

(2.15)

Where we in the last step have used the definition of partial trace. An interesting note to make is
that the local density matrices ρA and ρB do not uniquely specify ρAB, since ρAB has more degrees
of freedom.

2.1.3 Purification

In the following we denote the space of density operators on H by D(D). Purification of a quantum
state ρA ∈ D(HA) is an operation in which you entangle ρA with an environment E such that the
state ρAE ∈ D(HA ⊗HE) is pure. It is always possible to purify a state by entangling it with an
environment. This allows for a universe that is in an overall pure state having impure subsystems.
More specifically, the density operators associated with local regions in a pure universe look like a
thermal ensemble (ρA = e−βH). In fact, we will learn in chapter 4 that thermality is an unavoidable
consequence in any spacetime that contains an event horizon. An event horizon is a surface that
prevents an observer from ever seeing the part of the universe that is behind it, so an observer who
sees an event horizon is the spacetime analog of the observer with access to only subsystem A in
the previous section.

Purification and the process of choosing a purification scheme are important because they may
serve to decouple entanglement and statistical entropy, as is covered in for example [12]. Essentially
if the overall state is pure, then the full entropy of a subsystem may be attributed to entanglement.
If not, then the entropy of a given subsystem is a difficult mix of thermal and entanglement entropy.
The distinction between entanglement and thermal entropies is important for example because only
entanglement entropy is thought to be associated with geometry in the Ryu-Takayanagi conjecture.
The purification of a system is not unique, and we will give two possible purifications now. The
first is a ”simplest possible” approach, the other is called canonical purification.

Simple Purification

Let us suppose that we have a local density operator

ρA = p(x) |ψA〉x 〈ψA|x

10



Chapter 2. Quantum Information Theory

where |x〉 is an orthonormal basis of HA. A purification of this state is then given by

ρAE ≡
∑
x

∑
y

√
p(x)p(y)

(
|ψA〉x ⊗ |ψE〉x

)(
〈ψA|y ⊗ 〈ψE |y

)
,

where |ψE〉x ∈ HE are orthonormal. The only restriction on HE here is that it must be of equal or
higher dimension than HA. To show that this state is indeed a purification we need to check that it
reduces to ρA under the partial trace over E, as well as confirming that it has purity P (ρAE) = 1.

Performing a partial trace over E gives

TrE [ρAE ] =
∑
x

∑
y

∑
l

√
p(x)p(y)

(
|ψA〉x 〈ψA|

y
)
⊗
(
〈l| |ψE〉x 〈ψE |

y |l〉
)

=
∑
x

p(x) |ψA〉x 〈ψA|
x ,

(2.16)
where we have used that we can pick the |l〉 such that 〈l| |ψ〉x = δlx.

We also wish to show that this state is pure by computing the purity:

P (ρAE) =Tr
[(∑

x,y

√
p(x)p(y)(|ψA〉x ⊗ |ψE〉x)(〈ψA|y ⊗ 〈ψE |y)

)
×
(∑
z,v

√
p(z)p(v)(|ψA〉z ⊗ |ψE〉z)(〈ψA|v ⊗ 〈ψE |v)

)]
=

∑
x,y,z,v

√
p(x)p(y)p(z)p(v)

Tr
[
(〈ψA|v ⊗ 〈ψE |v)(|ψA〉

x ⊗ |ψE〉x)(〈ψA|y ⊗ 〈ψE |y)(|ψA〉
z ⊗ |ψE〉z)

]
=
∑
x

p(x)
(∑
y,z

√
p(y)p(z)(〈ψA|y ⊗ 〈ψE |y)(|ψA〉

z ⊗ |ψE〉z)
)

=
∑
y

p(y)

=1 .

(2.17)

Another, more common way to show that the state suggested is pure is to just observe that ρAB
can be written as |ψ〉 〈ψ| where

|ψ〉 ≡
∑
x

√
p(x) |ψA〉x ⊗ |ψE〉x .

Since this |ψ〉 is a definite state ρAB is pure by definition.

Canonical Purification

We let ρA be a general density operator, and we let √ρA be its positive semi definite square
root, such that √ρA

√
ρA = ρA. The canonical purification is defined in terms of the following

wavefunction
|ΨAE〉 = (√ρA ⊗ idE) |Γ〉AE , (2.18)

where |Γ〉AE is the unnormalized maximally entangled wavefunction, given in terms of orthogonal
basis kets by

|Γ〉AE =
∑
i

|i〉A ⊗ |iE〉 . (2.19)

11



2.1. Quantum Theory

The corresponding density operator ρAE is given by

ρAE = |ΨAE〉 〈ΨAE | =
∑
i

∑
j

(√ρA ⊗ idE)(|iA〉 ⊗ |iE〉)(〈iA| ⊗ 〈iE |)(
√
ρA ⊗ idE) , (2.20)

where we have used that ρ is hermitian. Let us confirm that this is actually a purification of ρA.
We first check the partial trace over E

TrE [ρAE ] = TrE [
∑
i

∑
j

(√ρA ⊗ idE)(|iA〉 ⊗ |iE〉)(〈jA| ⊗ 〈jE |)(
√
ρA ⊗ idE)]

=
∑
i

∑
j

TrE
[
(√ρA |iA〉 〈jA|

√
ρA)⊗ (|iE〉 〈jE |)

]
=
∑
i

(√ρA |iA〉 〈iA|
√
ρA)

= ρA ,

where in the final step we used the completeness relation. The state ρAE is pure on account of just
being the outer product of two wavefunctions.

2.1.4 Stochastic Quantum Operators

In addition to having imperfect information about the quantum state, we also have imperfect
information about all of the operators that may act on the state. In the operator case it is not clear
whether we can just sum over probabilities times different density operators and still end up with
sensible operators. Before we think about how to combine a distribution of operators in a consistent
manner, we need to understand what restrictions there are on a general quantum operator. To do
this we will follow the so called axiomatic approach to quantum evolution. All operators, including
projective measurements and time evolution are special cases of the formalism we will develop here.
This section follows quite closely section 4.4 in [13].

The axiomatic approach starts from three axioms that should hold for any quantum process,
and are used to find a set of mathematical constraints that are satisfied by any quantum process.
The resulting constraints are given by the Choi-Kraus theorem, which we will after motivating and
explaining the constraints. Operators that fulfill the Choi-Kraus criteria are colloquially referred
to as Quantum Channels, and we will denote these by N . We will define a quantum channel as a
linear, completely positive and trace preserving map that acts on a Hilbert space HA and takes it
to a Hilbert space HB. The two Hilbert spaces need not be distinct.

The Choi-Kraus Representation Theorem

These axioms are motivated by the reasoning that the state is represented by the density operator,
and that quantum states should evolve into other quantum states. This means that a Quantum
Channel should be a map between density operators. The input density operator can be anything
that fulfills the criteria for being a density operator, including pure states, mixed states or even
one share of an entangled state.

To go from the axioms to the Choi-Kraus theorem we need to introduce some notation. We
denote the space of all density operators on the Hilbert space H as D(H). In addition to this, we
denote the space of linear operators that act on the space H by L(H) and we denote the space of
linear operators that map between the spaces HA,HB as L(HA,HB).

12



Chapter 2. Quantum Information Theory

Our first axiom is that the quantum channel N has the following action: N (ρA) ∈ D(HB) if
ρA ∈ D(HA). To enforce this requirement, we demand that N is convex linear when acting on HA,
meaning that

N (λρA + (1− λ)σA) = λN (ρA) + (1− λ)N (σA) , (2.21)
where ρA, σA ∈ D(HA). We can give this formal requirement a more intuitive interpretation.
Imagine that perform N measurements. We sample the distribution N (ρA) λN times and the
distribution N (σA) (1− λ)N times. If we do not know λ beforehand, we measure the distribution

κB = N (λρA + (1− λ)σA) .

If we are then told which measurements come from what distribution, we learn that the measured
result actually corresponds to

κB = λN (ρA) + (1− λ)N (σA) .

Knowing what distributions we were sampling at what time should not alter the outcome of an
experiment, so the two values of κB must be the same. In principle this is just a form of linearity
relation that we have to normalize to keep the unit trace property of the in-going density matrix
intact. In fact, we go ahead to require that the quantum channel N is linear in all arguments,
not just density operators. By combining this requirement with the convex linearity on density
operators we find that N is a positive map, meaning that N (XA) is positive semi-definite for all
positive semi-definite XA.

If we were dealing with a classical system positivity of the operator N would be a sufficient
requirement on the quantum evolution, but we want the operator N to be positive definite when
acting on only one share of an entangled state as well. This requires a stronger condition called
complete positivity.

A map N : L(HA)→ L(HB) is completely positive if the map idR⊗N is positive for a reference
system R of arbitrary size. That is, if the subsystem A is entangled with an arbitrary system R,
the composite operator acting on HR ⊗HA is positive for all R.

Let us make this slightly more explicit, so it is clear what is going on. Let XRA denote an
arbitrary state in the Hilbert space HR ⊗HA, ad let us act on it with the map idR ⊗N . We can
expand the state XRA in the basis for HR according to∑

i,j

|i〉 〈j| ⊗Xi,j
A ,

and then then write out the action of our operator

(idR ⊗N )(XRA) = (idR ⊗N )

∑
i,j

|i〉 〈j| ⊗Xi,j
A


〈linearity〉 =

∑
i,j

(idR ⊗N )
(
|i〉 〈j| ⊗Xi,j

A

)
=
∑
i,j

(idR) (|i〉 〈j|)⊗N
(
Xi,j
A

)
=
∑
i,j

|i〉 〈j| ⊗ N
(
Xi,j
A

)
(2.22)

In terms of this calculation, the complete positivity criteria asks if positive semi-definiteness of
XRA implies the positive semi-definiteness of

∑
i,j |i〉 〈j| ⊗ N (Xi,j

A ). Writing the criterion on this
more explicit form is sometimes useful.
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Finally, as a tie-in to the fact that N takes density operators to other density operators, we
require that N is trace-preserving. Essentially, this means that N cannot act on an operator that
is not a density and turn it into a density, assuming that the unit trace condition was the only
thing separating the input operator and a density. Mathematically this means that

Tr[XA] = Tr[N (XA)] , ∀XA .

It is worth noting that trace preservation together with linearity implies the convex linearity and
density to density conditions.

With this, we have asserted three axioms that completely specify a valid quantum channel:
linearity, complete positivity and trace preservation. We are now ready to state the Choi-Kraus
theorem as follows:

Theorem 2.1.1 (Choi-Kraus Theorem) A map N : L(HA) → L(HB) is linear, completely
positive and trace preserving if and only if it has a Choi-Kraus decomposition as follows:

N (XA) = V lXAV
†
l (2.23)

where XA ∈ L(HA), V ∈ L(HA,HB) for all l ∈ (0,1..., d− 1),

V lV †l = idA (2.24)

and d ≤ dim(HA)dim(HB).

The statement of the Choi-Kraus theorem is very important because it characterizes a very general
operator in a restrictive manner. In the context of quantum gravity, it finds its application for
example in extracting the degrees of freedom of a quantum causal theory [14]. The actual proof of
the Choi-Kraus theorem does not provide any particularly important insight in the context of this
thesis, and is readily found in [13].

An important observation due to the Choi-Kraus theorem is that the naive way of generating a
stochastic quantum operator by summing according to Atot =

∑
x p(x)Ax, where all Ax are unitary

operators, almost works. If we set
Vx =

√
p(x)Ax

we obtain
V xV †x =

∑
x

p(x)AxA†x =
∑
x

p(x)id = id ,

where we used unitarity and that the probabilities sum to 1. Therefore, by putting a square root
in front of the probabilities we can formulate a simplest possible ensemble of quantum operators.

Properties of Quantum Channels

In this section we list some basic properties of a general quantum channel, which are easily found
by writing them on the Choi-Kraus form.

Consider two quantum channels, NA→B,MB→C where the subscripts denote the Hilbert spaces
between which the channels map. The serial concatenation of these quantum channels is also a
quantum channel:

MB→C
(
NA→B(XA)

)
=
∑
k

∑
l

VM,kVN ,lXAV
†
N ,lV

†
M,k =

∑
k

∑
l

(VM,kVN ,l)XA (VM,kVN ,l)†

14
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where the Choi-Kraus operators are given by summing over one of the indices, and observing that
the object to the left of XA is the Vl in the Choi-Kraus theorem above.

We may also consider a parallel action where we have the quantum channels NA→B ⊗MC→D
that acts on the bipartite state XAB. The action of these channels may be written either as

(NA→B ⊗ idD)
(

(idA ⊗MC→D) (XAB)
)

or (idB ⊗MC→D)
(

(NA→B ⊗ idC) (XAB)
)
.

The point here being that it does not matter for the final result in which order you perform a local
measurement on the A,B subspaces.

Finally, we wish to find and understand the adjoint (generalization of hermitian conjugate) of
the linear operator N . The adjoint of a matrix A is the unique linear operator A† that satisfies the
condition

〈u|Av〉 = 〈A†u|v〉

for any vectors u, v. It is also possible to define an inner product for operators, the so called
Hilbert-Schmidt inner product, defined as

〈A,B〉 = Tr[A†B] .

The definition of the adjoint of the map N : LA → LB can then be defined as the unique map N †
that fulfills

〈A,N (B)〉 = 〈N †(A), B〉 (2.25)

for all X ∈ LA, Y ∈ LB.
Another important definition is a unital map, which is a map that preserves the identity oper-

ator, meaning that
N (idA) = idB .

Now let us investigate the properties of a quantum channel in terms of the adjoint and unital
properties. We know that a quantum channel has a Choi-Kraus decomposition, so the left hand
side of the adjoint condition evaluates as

〈Y,N (X)〉 = 〈Y, V lXV †l 〉

= Tr[Y †V lXV †l ]

= Tr[V †l Y
†V lX]

= Tr[(V †l Y
†V l)†X]

= 〈(V †l Y V
l), X〉

(2.26)

and we can read off the definition
N †(Y ) =

(
N (Y )

)†
.

The only tricks used in this calculation are essentially the cyclicity of the trace and the definition
of the Hilbert-Schmidt inner product in the first and last steps. It follows from the restriction on
the V ′s from the Choi Kraus theorem,

V †l Vl = idA, V †l V
l = idB ,

that the quantum channel N is also a unital map. In conclusion, N is a self-adjoint unital map.
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2.2 Information Theory
The field of classical information theory, or Shannon theory, was founded in 1948 by Claude Shan-
non. Shannon’s great insight was the use of probability theory to define quantitative measures of
something that was at the time rather vague - the ”information content” of a random variable. Let
illustrate Shannon’s definition of information by way of an example.

Suppose we have a random variable X that can take as values the symbols x ∈ {a,b,c,d}, and
we wish to communicate these to someone else by encoding them as binary numbers. The most
obvious way in which we could encode the four possible values of the random variable X is as
follows:

a→ 00 ,
b→ 01 ,
c→ 10 ,
d→ 11 .

In this scheme, each possible value of the random variable X is captured by two binary numbers,
or two bits. In addition, given a sequence of bits it is never ambiguous what it means, since we
know every pair of bits in the sequence uniquely corresponds to a specific value. Let us now specify
an actual distribution for X, assigning the probabilities p as follows:

p(a) = 1/2 ,
p(b) = 1/8 ,
p(c) = 1/4 ,
p(d) = 1/8 .

The insight of Shannon was that because each of the possible values of a random variable do not have
the same probability, there is a sense in which their appearance does not carry as much information
about the underlying distribution. Shannon defined the surprise or information content (i(x)) of
the symbol x as follows:

I(x) = − log2 (p(x))

where the log base 2 is a result of the fact that we have taken as our unit of information the binary
number. This also means that I(x) has the unit of bits. Looking back at the probabilities of each
of the symbols we see that according to this definition we have

I(a) = 1 , I(b) = 3 , I(c) = 2 , I(d) = 3 . (2.27)

So, why is this information measure useful? The results in equation (2.27) tell us that the symbol a
carries one bit of information, c carries two bits, and so forth. The optimal way to uniquely encode
the output of the random variable X is to encode the symbols with the same number of bits as they
”contain” according to Shannon’s information measure. When we say optimal we mean optimal in
the sense that the average number of bits per symbol communicated will be as small as possible.
The following scheme gives such an optimal encoding

a→ 0 ,
b→ 110 ,
c→ 10 ,
d→ 111 .
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The difficulty of finding this particular encoding lies entirely in making sure that a a message
consisting of a long string of bits is never ambiguous. The expected length per symbol of this
coding scheme is the sum of the products of the number of bits required to encode a symbol times
the probability of it appearing:

1
2 · 1 + 1

8 · 3 + 1
4 · 2 + 1

8 · 3 = 7
4 ,

which we see is less than the expected length of 2 bits for the ”most obvious” way in which we
encoded the information at the start of this section. What we have calculated here is actually the
expected information content of the random variable X, and can be written as∑

x

p(x)I(x) = −
∑
x

p(x) log2(p(x)) . (2.28)

This quantity is important enough to have its own name: the entropy or Shannon entropy of the
random variable X. Interestingly, the entropy as defined in statistical mechanics seem very closely
related to a notion of ”information” that has a very intuitive operational interpretation.

2.2.1 Shannon Entropy

There are a number of properties of the entropy

S(X) = −
∑
x

p(x) log(p(x))

that we defined in the previous section. We leave the base 2 implicit here, because the entropy
makes sense for any base in which we wish to measure information. In the quantum case is is
natural to work with dits, which are elementary components that can take d different values -
corresponding to d-level quantum systems. In thermodynamics there is some sense in which we
measure information in terms of ekB , ’Boltzmann units’, instead of base 2.

Some properties of entropy have already been mentioned, such that the entropy is maximized by
the uniform distribution (for finite degrees of freedom). In addition to this the entropy is bounded
below by zero. We will now prove two more properties of the entropy that are invoked when proving
important theorems. In quantum information theory, reference is often made to the classical proofs,
so it is very valuable to spend some effort on this.

Additivity

If we have two ensembles with independent random variables X,Y described by probability distri-
butions p(x), p(y), the Shannon entropy is given by

S(X,Y ) = −
∑
x,y

p(x)p(y) log(p(x)p(y))

= −
∑
x,y

p(x)p(y)
(

log p(x) + log p(y)
)

= −
∑
x,y

p(x)p(y) log p(x)−
∑
x,y

p(x)p(y) log p(y)
)

= S(X) + S(Y ) ,

(2.29)

where we have used
∑
x p(x) = 1 and likewise for y.
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Non-negativity

The entropy S(X) is always positive for any random variable X with probability density p(x). This
follows simply, because log(p(x)) ≤ 0 due to 0 ≤ p(x) ≤ 1. The entropy is then a sum of positive
terms.

Concavity

The entropy S(X) is concave in the probability density p(x). This means that given three random
variables with associated probability densities according to

X1, p1(x)
X2, p2(x)
Xt, pt(x) = qp1(x) + (1− q)p2(x), q ∈ [0,1]

we have that
S(Xt) ≥ qS(X1) + (1− q)S(X2) .

Let us think about this in terms of the individual terms in the sum that makes up H:

−pt(x) log(pt(x)) ≥ −qp1(x) log(p1(x))− (1− q)p2(x) log(p2(x)) ,

Without loss of generality, assume that p2(x) ≥ p1(x). Then we have that p1(x) ≤ pt(x) ≤ p2(x).
The right hand side defines a function that has a constant derivative with respect to q, and we have
equality when q is 0 or 1. If the left hand side has a negative definite second derivative with respect
to the parameter q then the inequality must hold for all values of q ∈ [0,1]. This can be understood
as follows: the LHS is always bending downwards, while the RHS is a straight line. If the LHS
crosses the straight line twice it must be above the RHS at all points between the crossings. Let
us show that the second derivative of the LHS is negative (dropping the explicit x-dependencies):

∂2

∂q2

[
−
(
qp1 + (1− q)p2

)
log

(
qp1 + (1− q)p2

)]
= ∂

∂q

[
−
(
p1 − p2

)
log

(
qp1 + (1− q)p2

)
−
(
qp1 + (1− q)p2

) p1 − p2
qp1 + (1− q)p2

]
= ∂

∂q

[
−
(
p1 − p2

)
log

(
qp1 + (1− q)p2

)
− (p1 − p2)

]
= −(p1 − p2)2

qp1 + (1− q)p2

≤ 0 ,

(2.30)

where the final inequality follows because q ∈ [0,1], p2 ≥ p1 ≥ 0 and from the positivity of the
square. With this, we have shown that the concavity of S(X) holds for each x, and therefore for
the entire quantity.

2.2.2 Joint Entropy

We know that the total entropy of two independent random variables is additive, but what if one
of the random variables is conditioned on the other? The joint entropy S(X,Y ) is defined as

S(X,Y ) = −
∑
x,y

px,y log(px,y) , (2.31)
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where the arbitrary two variable joint distribution may be decomposed as px,y = pxpy|x = pypx|y.
The conditional probability py|x is to be read as ”the probability of getting y given x”.

In addition to the conditional probability we can define a conditional entropy

S(Y |X) = −
∑
x,y

py|x log py|x .

The conditional entropy is positive definite and is the expected information content of the random
variable Y given that you already know X. The conditional entropy is always lesser than or equal
to the Shannon entropy since already having more information can only reduce the information
obtained when you measure Y , meaning

S(Y ) ≥ S(Y |X) .

In terms of the marginal entropies S(X), S(Y ) we can show that

S(X,Y ) = S(X) + S(Y |X) , (2.32)

This is done by just computing explicitly

S(X,Y ) = −
∑
x,y

pxpy|x log
(
pxpy|x

)
= −

∑
x,y

pxpy|x
(

log px + log py|x
)

= −
∑
x

px log px −
∑
x,y

pxpy|x log py|x

= S(X) + S(Y |X)

(2.33)

This can be generalized to a chain rule for the joint entropy

S(X1, X2 . . . Xn) = S(X1) + S(X2|X1) + . . .+ S(Xn|Xn−1 . . . X1) .

The proof of this claim comes down to the decomposition of the joint probability that can be done
as a product of probabilities that become conditioned on all previous probabilities

p(x1,x2 . . . xn) = px1(px2|x1)(px3|x2x1) . . . (pxn|xn−1...x1) .

Finally, we state that the entropy is subadditive, meaning that

S(X1,X2 . . . Xn) ≤
n∑
i=1

S(Xi) .

Perhaps surprisingly, subadditivity (or rather, its quantum counterpart) is one of the most impor-
tant properties of entropy. This is because the subadditivity of entropy in a quantum theory on the
boundary implies nontrivial restrictions on gravitational quantities in the bulk on the other side of
an AdS/CFT duality [8, 15].

2.2.3 Mutual Information

The mutual information is a function of two random variables X,Y , and measures how much
information they have in common. The mutual information is defined according to

I(X;Y ) ≡ S(X)− S(X|Y ) ,
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which is readily interpreted as the information content of X minus the information content of X
given that you know Y . In this sense it is a measure of how much measuring one of the two variables
reduces your uncertainty about the other. The mutual information is symmetric, meaning that

I(X;Y ) = I(Y ;X) = S(Y )− S(Y |X) .

In terms of the joint and marginal probability density functions px, py, px,y we can express the
mutual information as

I(X;Y ) =
∑
x,y

px,y log
(
px,y
pxpy

)
,

which can be shown by using that px|y = px,y
py

and some algebra.
In quantum information theory, the mutual information of factors in a pure state is a measure

of entanglement. The Ryu-Takayanagi conjecture states that the entanglement measured by the
quantum mutual information is related to a surface area in a dual gravitational theory [4], letting
us relate the entanglement structure of a quantum many-body system to an emergent geometry [8].

Conditional Mutual Information

We can also define a conditional mutual information, according to

I(X;Y |Z) = S(Y |Z)− S(Y |X,Z)
= S(X|Z)− S(X|Y,Y )
= S(X|Z) + S(Y |Z)− S(X,Y |Z)

(2.34)

where both X and Y may be conditioned on Z. This definition is symmetric in X,Y , just like the
mutual information. In the context of conditional mutual information we have another theorem
whose quantum version is extremely important, namely strong subadditivity, which is stated as
follows:

I(X;Y |Z) ≥ 0 . (2.35)

This is a direct result of the concavity of the entropy as well as the positivity of mutual information.
In the quantum case we will find the proof significantly more involved.

2.2.4 Relative Entropy

Relative entropy is a quantity that quantifies how distinguishable two probability distributions are.
The relative entropy is defined as

D(p||q) =
∑
x

p(x) log
(
p(x)
q(x)

)

where the sum only goes over the values of x for which both distributions are nonzero and p,q
are probability distribution functions. The relative entropy is not strictly a distance measure,
since it is not symmetric in its arguments. The relative entropy has the operational interpretation
that if you use the wrong probability distribution q to encode an information source that actually
emits information with distribution p, you will require on average S(X) + D(p||q) bits to encode
each microstate. Further, relative entropy is non-negative and the fact that conditioning does not
increase entropy, non-negativity of mutual information and strong subadditivity all follow from the
non-negativity of relative entropy.
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Proof of Non-negativity of Relative Entropy

Intuitively the positivity of relative entropy can be made quite clear, for values of x where q(x) >
p(x), the logarithm is negative, and for p(x) > q(x) the logarithm is positive, but the latter case
is weighted more favorably since they have larger p(x) than q(x). Mathematically this reasoning is
not sufficient.

Let us consider q(x) = p(x) + tδ(x) where
∑
x δ(x) = 0, t ≥ 0, − p(x) ≤ tδ(x) ≤ 1− p(x), where

the limits are chosen such that q(x) is always between 0 and 1. Then,

D(p||q)
∣∣∣
t=0

=
∑
x

p(x) log(1) = 0 . (2.36)

If the derivative with respect to t is positive for all t then non-negativity of relative entropy follows.
We just carry out the derivative

d
dt

[∑
x

p(x) log
(

p(x)
p(x) + tδ(x)

)]
=
∑
x

p(x) d
dt [log(p(x))− log(p(x) + tδ(x))]

= −
∑
x

δ(x)
1 + tδ(x)p(x)

≥ −
∑
x

δ(x) = 0 ,

(2.37)

which is what we wanted to show. In the last step we used that p(x) ≥ 0 and then set p(x) = 0. That
the signs work out to a simple inequality in the last step is not particularly obvious by inspection,
since δ(x) has indeterminate sign. When δ(x) is negative, the overall expression is positive, but
setting p(x) to zero increases the size of the denominator. When δ(x) is positive, the overall sign
is negative, but setting p(x) to zero decreases the size of the denominator. Thus, setting p(x) has
the same effect in both cases.

2.3 Quantum Information Theory
Quantum information theory is the generalization of the classical information theory of probability
distributions to density operators, their quantum counterpart. Initially it will almost seem like we
are just repeating classical information theory, but we will find some very quantum behaviour, such
as negative conditional entropies.

We will begin with a quick look at the relationship between classical information and quantum
systems, and will then move on to the purely quantum theory. In this section we will assume that
the Hilbert spaces involved are at most countably infinite dimensional, so that matrix (or matrix-
like) representations of the density operator ρ make sense, and we assume that the Hilbert space
is in general factorizable. In chapter 4, treating entropy in quantum field theory we will encounter
a wider class of Hilbert spaces, and generalize the quantum relative entropy to be introduced in
section 2.3.6. Since the other information theoretical quantities may be derived from the relative
entropy, this amounts to a generalization of all quantities to the field theory case.

2.3.1 Classical information from quantum systems

We can always encode classical information in quantum systems. Imagine for example that we based
on a classical probability distribution p(x) generate states with the density matrix ρx. From these
quantum states we can obtain classical information by acting with some measurement operator
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that can be decomposed into the projective set of operators Λy. The conditional probability of
outcome y given x is then

py|x = Tr[Λyρx] .

If we try to define the entropy of some quantum state ρ in a naive manner, we need a projective
measurement such as Λx = |x〉〈x| to map it to a classical probability distribution. It is then clear
that

S(X) =
∑
x

px log px

=
∑
x

Tr[Λxρ] log (Tr(Λxρ))
(2.38)

It turns out that the minimum Shannon entropy with respect to all measurements of the density
operator ρ is equal to something called the Von-Neumann entropy or quantum entropy, which will
be the focus of the next section. In the quantum case, the unit of information for a d-dimensional
quantum system is one qudit. A qudit is simply a d−dimensional state in Hilbert space. The qubit
is a two-dimensional qudit, in analogy with the bit being an object that can be in the two states ’0’
and ′1′. In the literature qubit is often sloppily used and may technically refer to a qudit. We will
later show that one qubit may communicate more than one classical bit of information, due to the
superposition property of quantum states that the classical bit does not possess.

2.3.2 Quantum Entropy

The quantum entropy, or von Neumann entropy as it is commonly called, actually predates classical
entropy. One could imagine that it would have a more complex definition than in the classical case
due to the uncertainty principle, but since the density operator already captures all properties of
a quantum state we only need something that is a direct function of the density operator. This
quantity is found to be

S(A)ρ = −Tr[ρ log ρ] ,

where the logarithm acts on the eigenvalues of ρ ∈ D(HA). We denote the von Neumann entropy
by S(. . .)ρ, but it is not unusual to drop the density operator subscript. In these cases it should be
clear from context whether a classical or quantum entropy is being referenced. The advantage of
not having ”ρA” be the argument is that we might have a density operator over several subsystems
ρABC , and we would like the notation for joint, conditional and relative entropies to remain similar
to that of classical information theory.

The interpretation of the von Neumann entropy is almost exactly the same as in the classical
case. That is, a measurement of the state

ρA =
∑
x

px |x〉〈x|

has an expected information content of S(A)ρ qubits. However the quantum and classical quantities
do not behave the same way in terms of the probability distribution px. Let us consider the ensemble
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{px, ρx} with the following distribution:

p1 = 1
4 ρ1 = |0〉〈0| ,

p2 = 1
4 ρ2 = |1〉〈1| ,

p3 = 1
4 ρ3 = 1√

2
(|0〉+ |1〉)(〈0|+ 〈1|) ,

p4 = 1
4 ρ4 = 1√

2
(|0〉 − |1〉)(〈0| − 〈1|) .

To communicate this ensemble classically we require on average − log 1
4 = 2 bits of information,

since we have four outcomes with a uniform distribution. The quantum entropy of ρ =
∑
x pxρx is

then given by
S(A)ρ = −Tr

[1
2(|0〉〈0|+ |1〉〈1|) log

(1
2(|0〉〈0|+ |1〉〈1|)

)]
= Tr[12(|0〉〈0|+ |1〉〈1|)]

= 1 ,

(2.39)

so we see that the above ensemble has an expected information content of only one qubit. This is
maybe not very surprising because we in some sense bloated the quantum ensemble with extra values
ρ3, ρ4 that do not modify the total density operator compared to an ensemble with probabilities 1

2
and state ρ1, ρ2. This is closely related to the discussion about the non-uniqueness relation between
ensembles and density operators around equation (2.10).

The von Neumann entropy is non-negative and takes its minimum value of 0 for a pure state.
The fact that a pure state has zero entropy may seem contrary to our earlier claim that the von
Neumann entropy takes into consideration the uncertainty principle, since entropy is supposed to
be a measure of uncertainty. The resolution is that for every pure state ρ = |ψ〉〈ψ| a projective
measurement that has |ψ〉〈ψ| as one of its projectors will always return the same result - i.e. if we ask
the optimal question we get zero information because the optimal question (choice of measurement)
is also the answer to the question we are trying to ask eg. ”what state is this wavefunction in?”.
A state with quantum entropy is then a state which admits no ”perfect question”, and will have
entropy regardless of what measurements you try to make.

The maximum von Neumann entropy is given by the maximally mixed state, and it is equal to
log d where d is the dimension of the Hilbert space. The von Neumann entropy is additive in the
sense that for a system with density operator ρ = ρA ⊗ ρB we have that

S(AB)ρ = S(A)ρA + S(B)ρB . (2.40)

This is a straightforward consequence of the fact that the logarithm of a product is the sum of
the logarithms. The quantum entropy is concave, meaning that for two density operators ρ1, ρ2 ∈
D(HA) it satisfies

qS(A)ρ1 + (1− q)S(A)ρ2 ≤ S(A)qρ1+(1−q)ρ2 , (2.41)

where q ∈ [0,1]. This follows by carrying out the same exact analysis as in equation (2.30) and
keeping in mind that the logarithms are functions of matrices, defined by their power series. The
first derivative is carried out explicitly in equation (2.46). Just like in the case of classical entropies
we have that the marginal entropies satisfy the subadditivity condition

S(AB)ρ ≤ S(A)ρ + S(B)ρ . (2.42)
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Proving the subadditivity condition is made much simpler by the development of relative entropy,
done in section 2.3.6. In the next section we will properly define both the joint (S(AB)ρ) and
marginal quantum entropies introduced in (2.42).

An interesting corollary

An interesting property is that given a density operator ρA ∈ HA, dropping the off-diagonal ele-
ments will always increase the entropy. This property will be used to show the subadditivity of the
von-Neumann entropy in section 2.3.6. If ρD contains just the diagonal elements of ρA we have

S(A)ρD ≥ S(A)ρA . (2.43)

This follows from concavity by defining ρ(q) = (1− q)ρD + qρA. The first derivative of S(A)ρ(q) is
zero

d
dqS(A)ρ = −Tr

[
ρ̇ log ρ+ ρ

ρ̇

ρ

]
= −Tr [ρ̇ log ρ] , (2.44)

where ρ̇ ≡ dρ
dq , and the final term is zero due to Tr[ρ] ≡ 1⇒ Tr

[
dρ
dq = 0

]
. The first term vanishes at

q = 0 because ρ̇(0) = ρA− ρD has only zeroes on the diagonal, and log ρ(0) is completely diagonal.
This means that ρ̇(0) log ρ(0) only has zeroes on the diagonal, causing the trace to vanish. Since
the function is concave and the first derivative is zero at q = 0 we have that

S(A)ρ(0) ≥ S(A)ρ(1) ⇒ S(A)ρD ≥ S(A)ρA . (2.45)

The expression ” ρ̇ρ” in the above calculation is an abuse of notation since these are matrices and
the definition of log ρ is actually a series expansion. Due to the cyclicity of the trace we can pull
the ρ̇ term out of the series expansion and furthermore treat it as commuting with the density. Let
us explicitly show that we are not wrong by defining ρ′+ 1 = ρ and doing some Taylor expansions:

Tr[ρ d
dq log ρ] = Tr

[
(ρ′ + 1) d

dq log
(
ρ′ + 1

)]
= Tr

[
(ρ′ + 1) d

dq

∞∑
n=1

(−1)n−1

n
ρ′n
]

= Tr
[
(ρ′ + 1)

∞∑
n=1

(−1)n−1

n

(
ρ̇ρ′n−1 + ρρ̇ρn−2 + ...

)]

〈cyclicity of trace, [ρ′, 1] = [ρ′,ρ′] = 0〉 = Tr
[
ρ̇(ρ′ + 1)

∞∑
n=1

(−1)n−1ρ′n−1
]

= Tr
[
ρ̇(ρ′ + 1)

∞∑
n=0

(−1)nρ′n
]

= Tr
[
ρ̇(ρ′ + 1) 1

1 + ρ′

]
= Tr[ρ̇] = 0 .

(2.46)

The Taylor expansions are well defined since we know that the eigenvalues of ρ are between 0 and
1.
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2.3.3 Joint von Neumann Entropy

The joint von Neumann entropy has a straightforward definition, for some multipartite state ρ ∈
D(HA1 ⊗HA2 . . .HAN ) it is simply

S(A1A2 . . . AN )ρ = −TrA1A2...AN

[
ρ log ρ

]
, (2.47)

where we have made explicitly clear that we trace over all subsystems. In general, if we write a
trace without subscripts, we mean a trace over the entire Hilbert space.

The marginal entropies are obtained by tracing out the subsystems you do not want. Given a
state ρ ∈ D(HA ⊗HB ⊗HC) we define

ρAB = TrC [ρ] .

and we find that the marginal entropy is

S(AB)ρ = TrAB
[
TrC [ρ] log (TrC [ρ])

]
= TrAB[ρAB log ρAB] . (2.48)

It is clear that ”S(A)ρ” means different things if the total density operator is defined on ρ ∈
D(HA ⊗ HB) or ρ ∈ D(HA), since in the first case we need to trace out a subsystem. This is an
unavoidable consequence of notation, and good to keep in mind.

We should also know how the marginal entropies relate to the concept of purification. We know
that the maximally mixed state with entropy log d, where d is the dimension of the Hilbert space
can be made into a pure state by entangling it with an environment as in section 2.1.3. A strange
property of quantum marginal entropies is that they can be larger than the joint entropy, which is
strictly forbidden in the classical case! Pure multipartite states enjoy a much more precise relation
than this. Given a multipartite state ρABCDE , defined on subsystems A,B,C,D and E, we have
that for any bipartite cut such as AB|CDE

S(AB)ρABCDE = S(CDE)ρABCDE , (2.49)

where ρAB = TrCDE [ρABCDE ]. That is, the complementary marginal entropies for any bipartite
pure state are equal, and the total entropy is always zero. Let us show this for general bipartite
system, in which the wavefunction admits the Schmidt decomposition

|Ψ〉AB =
∑
i

√
λi |i〉A ⊗ |i〉B , (2.50)

where |i〉A , |i〉B are sets of orthogonal vectors on A and B respectively, i < Dim(HA) · Dim(HB)
and

∑
i λi = 1. The marginal densities are then

ρA =
∑
i

λi |i〉A 〈i|A , ρB =
∑
i

λi |i〉B 〈i|B , (2.51)

which is straightforwardly obtained by using the orthonormality of states as in equation (2.16).
Since the two marginal densities must by definition admit the same spectral decomposition, they
also have the same entropy. Since nothing prevents us from renaming subsystem A to AB and
subsystem B to CDE, the theorem applies to the marginal entropies of any subsystem and its
complement for an unlimited number of parties.

It is common to define the entropy of either subsystem of a pure state as the entropy of en-
tanglement of that subsystem - to indicate that all of the entropy in the subsystem is truly due
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to entanglement with an external system. This result, that a pure state may have subsystems
that do have entropy, is of utmost importance in quantum gravity and warrants a little digression.
In general, the universe is taken to be a pure state. This means that any finite region of space
that has entropy must be entangled with the universe in such a way that it is purified. In the
Ryu-Takayanagi conjecture, this entanglement of a quantum subsystem with its environment is
identified with the area of a boundary cutting off a finite region in space from its surroundings.

In quantum field theory, the entropy of black holes occurs because the spacetime outside the
black hole is entangled with the interior, and since the black hole interior is behind an event horizon
observers in the external spacetime do not have access to the ”black hole interior” subsystem. The
Unruh effect, in which an accelerating observer sees a thermal bath even in a perfect QFT vacuum,
is due to the fact that a constantly accelerating observer is effectively cut off from a part of spacetime
by an event horizon, the entropy is then due to the vacuum on the other side of the event horizon
being entangled with the region accessible to the accelerating observer. These two examples are
covered in detail in 4.2.

2.3.4 Conditional von Neumann Entropy

There is no direct analogue of conditional entropy in the quantum theory, although we could
reasonably construct something along the lines of section 2.3.1 in terms of measurements. Such
constructions unfortunately either depend on what set of projective measurements you select or
require a computationally very difficult optimization over all possible measurements limiting their
usefulness.

The most useful definition of conditional von Neumann entropy is as follows: let ρAB ∈ D(HA⊗
HB), the conditional entropy S(A|B) is then the difference of the joint quantum entropy S(AB)
and the marginal entropy S(B) according to

S(A|B) = S(AB)ρ − S(B)ρ . (2.52)

This definition is inspired by the relation between joint entropy and conditional entropy in equation
(2.32), and due to this it enjoys several of the properties of classical conditional entropy, with the
notable exception of positivity. This conditional entropy has the property that conditioning does
not increase entropy, since

S(A) ≥ S(A|B) , (2.53)

which follows from the fact that S(AB)ρ ≤ S(A)ρ + S(B)ρ, which can be inserted in equation
(2.52).

The conditional entropy can be negative, as is made clear by considering the fact that a pure
state has zero entropy (SAB) while it may have nonzero marginal entropies (SA = SB 6= 0). An
interpretation of this is that for an entangled state one can be more certain about the state of the
entire system than about its parts. We saw this exact property in the previous section, where we
can be completely certain about the overall state of the system, but its parts have entropy.

2.3.5 Quantum Mutual Information

The quantum mutual information is defined analogously to the classical mutual information. Given
a state ρ ∈ D(HA ⊗HB) we have that the mutual information I(A;B)ρ is given by

I(A;B)ρ ≡ S(A)ρ + S(B)ρ − S(AB)ρ (2.54)
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The quantum mutual information can also be rewritten in analogy with the classical case in terms
of conditional entropies

I(A;B)ρ = S(A)ρ − S(A|B)ρ
= S(B)ρ − S(B|A)ρ .

(2.55)

The quantum mutual information is non-negative:

I(A;B) ≥ 0 . (2.56)

The proof of this claim, which is equivalent with the subbadditivity condition in equation (2.42),
is simplified by the introduction of the relative entropy.

2.3.6 Quantum Relative Entropy

The quantum relative entropy is defined as follows

D(ρ||σ) = Tr[ρ(log ρ− log σ)] , (2.57)

where ρ and σ are both in the same space D(H). The quantum relative entropy has the same
operational interpretation as the classical relative entropy, namely that if you use the wrong density
operator σ to encode an information source that actually emits information with density operator
ρ, you will require on average S(A)ρ + D(ρ||σ) qubits to encode each microstate. This claim is
known as the quantum Stein’s lemma.

Next, let us show that the quantum relative entropy is positive. The positivity of the quantum
relative entropy can be used to imply the subadditivity of quantum entropy and the positivity of
the mutual information. These inequalities have been used in the context of AdS/CFT duality to
derive positive energy conditions on the gravitonal dual to any boundary CFT [16].

Our assertion is that
D(ρ||σ) = Tr[ρ(log ρ− log σ)] ≥ 0 . (2.58)

To show this, let us diagonalize σ. In general, this means that we will not have diagonalized ρ. Let
us define AσDA−1 = σ and Aρ′A−1 = ρ, where σD is completely diagonal. Using the cyclicity of
the trace we then have

Tr[ρ(log ρ− log σ)] = Tr[ρ′(log ρ′ − log σD)] (2.59)

Next, we know that when we perform the trace, the completely diagonal matrix log σ will only
interact with the diagonal elements of ρ, so we may replace it with its diagonal. Thus defining ρ′D
as only the diagonal elements of ρ′, we have

Tr[ρ′(log ρ′ − log σD)] = Tr[ρ′ log ρ′ − ρ′D log σD)]. (2.60)

Let us now add and subtract Tr[ρ′D log ρ′D]. This gives us that

Tr[ρ′ log ρ′ − ρ′D log ρ′D + ρ′D log ρ′D − ρ′D log σD)] = D(ρ′D||σD) + S(A)ρD − S(A)ρ . (2.61)

We showed in equation (2.43) that the sum of the last two terms is positive. The relative entropy
between two completely diagonal matrices is equal to a sum over the diagonal according to

D(ρ′D||σD) =
∑
i

ri log ri
si
, (2.62)

where ri, si are the eigenvalues of ρD, σD respectively. Since
∑
i si =

∑
i ri = 1, this quantity is just

the classical relative entropy which we already showed is positive definite in section 2.2.4. Since
D(ρ||σ) is equal to the sum of two positive terms, we have shown equation (2.58).

27



2.3. Quantum Information Theory

Now, let us show the positivity of mutual information. The trick here is to find ρ and σ such that
the relative entropy becomes exactly the mutual information, then positivity of the relative entropy
directly implies the positivity of mutual information. We begin by letting ρAB ∈ D(HA ⊗HB) be
a general density operator for a joint system. We then define σAB = ρA⊗ ρB, where ρA, ρB are the
local density operators obtained by tracing out subsystems in ρAB. Then, using that

log σAB = log(ρA ⊗ ρB)

= log
(
(ρA ⊗ 1B)(1A ⊗ ρB)

)
= log(ρA ⊗ 1B) + log(1A ⊗ ρB)
= log(ρA)⊗ 1B + 1A ⊗ log(ρB) ,

(2.63)

the relative entropy becomes

D(ρAB||σAB) = Tr [ρAB(log ρAB − log σAB)]
= Tr [ρAB(log ρAB − log(ρA)⊗ 1B − 1A ⊗ log(ρB))]
= S(A)ρAB + S(B)ρAB − S(AB)ρAB
= I(A;B)ρAB ,

(2.64)

where the last step is just the definition of the quantum mutual information.
Finally, we will show the strong subadditivity property of the von Neumann entropy. To do this

we need to quote the monotonicity of quantum relative entropy. Showing the monotonicity of quan-
tum relative entropy is very involved, and is done in for example [17] and [18]. The monotonicity
of relative entropy under any quantum channel is stated as follows: given ρAB, σAB ∈ D(HA⊗HB)
we have

D(ρAB||σAB) ≥ D(N (ρAB)||N (σAB)) . (2.65)

The trace-out operation is a quantum channel since the partial trace takes density operators to other
density operators and is linear in its arguments. Thus, the relative entropy decreases monotonically
under the trace-out of subsystems.

Now, let us consider a tripartite system with density operator ρABC . Let us also define σABC =
ρA ⊗ ρBC , where density operators missing subscripts indicate local operators where the rest of
the system has been traced out. The operators obtained by tracing out subsystem C are ρAB and
σAB = ρA ⊗ ρB. The monotonicity of quantum relative entropy then tells us that

D(ρABC ||σABC) ≥ D(ρAB||σAB)
D(ρABC ||ρA ⊗ ρBC) ≥ D(ρAB||ρA ⊗ ρB)

−S(ABC)ρ + S(A)ρ + S(BC)ρ ≥ −S(AB)ρ + S(A)ρ + S(B)ρ
S(BC)ρ + S(AB)ρ ≥ S(ABC)ρ + S(B)ρ ,

(2.66)

where the last line is the strong subadditivity condition.

2.3.7 A Quantum Second Law of Thermodynamics

It is possible to use the monotonicity of relative entropy under any quantum channel in an intuitive
way to obtain something that looks like a quantum version of the Second Law of thermodynamics.
This example is really due to Witten [19], but it is incredibly interesting and relevant to the
gauge/gravity duality so it is worth repeating.
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Chapter 2. Quantum Information Theory

Let us suppose we have a thermal system of temperature T = 1
β described by a density operator

σ according to
σ = 1

Z
e−βH . (2.67)

Here, the eigenstates of the associated Hilbert space are the eigenfunctions of the Hamiltonian H.
The partition function Z is a normalization such that Tr[σ] = 1. The relative entropy between an
arbitrary density operator ρ and σ is then given by

D(ρ||σ) = Tr[ρ(log ρ− log σ)]
= −S(A)ρ + Tr[ρ(βH + logZ)]

= β
(
E(ρ)− TS(A)ρ

)
+ Tσ logZ ,

(2.68)

where we have defined E(ρ) = 〈H〉ρ = Tr[Hρ]. The function E(ρ) is just the expectation value of
the total energy (Hamiltonian) with respect to the state ρ. The quantity in the large brackets is
the Helmholtz free energy, given by

F (ρ) = E(ρ)− TS(A)ρ . (2.69)

For σ, the free energy is given by

F (σ) = Tr
[
σH − Tσ log σ

]
= Tr

[
��σH −XXXXTβσH − logZ

]
.

(2.70)

Substituting these expressions into equation (2.68) we obtain

D(ρ||σ) = β(F (ρ)− F (σ)) . (2.71)

Now, imagine acting with a quantum channel that preserves the thermal state σ on both arguments
in the relative entropy. Thus, we have a quantum channel N acting according to N (ρ) = ρ′,N (σ) =
σ. The monotonicity of quantum relative entropy tells us that

D(ρ||σ) ≥ D(ρ′||σ) . (2.72)

Since σ is unchanged, inserting into equation (2.71) this implies

F (ρ) ≥ F (ρ′) . (2.73)

This states that under any evolution that preserves the thermal state, the free energy decreases.
For a system with a constant total energy (a closed system), where the time evolution operator

that preserves the thermal state also preserves the total energy, this precisely implies the second law
of thermodynamics. This result is a simple illustration of how the second law of thermodynamics
could be seen as a consequence of the deterministic time-evolution of a quantum system.
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Chapter 3

Elements of Quantum Field Theory

The goals of this chapter are several. First the path-integral formulation of quantum field theory
(QFT) is introduced, since it is commonly not included in an introductory course in quantum
field theory despite being an incredibly powerful tool in modern physics. Then, the path integral
machinery is used to understand several important properties of quantum field theory, such as
Ward identities, the renormalization group and quantum field thermodynamics.

Finally, the main ideas of conformal field theory (CFT) are developed for the purpose of prepar-
ing the reader for future chapters. CFT is one half of the AdS/CFT duality which is the main
topic of this text. CFT is thought to describe the very high- and low energy limits of the standard
model. It is also important in our understanding of string theory. The presentation of CFT in
this chapter is somewhat incomplete, but future chapters will successively give a more complete
treatement of how CFT can be applied.

3.1 Path Integral QFT

The path integral approach to quantum field theory is a powerful tool that maintains manifest
Lorentz invariance upon quantization, due to not requiring a Hamiltonian reformulation (singling
out a preferred time direction) to introduce the canonical commutation relations. The downside
is that unitarity is not manifest as it is in the canonical approach. In some sense this makes the
canonical and path integral formulations of quantum field theory complementary in that some
things that obscure in one are obvious in the other. Additionally, in contrast to Hamiltonian
formalism the path integral formulation does not require the existence of a global timelike Killing
vector in its definition making it much better suited for QFT on curved spacetimes.

This section borrows heavily in structure from the parts I consider best about the presentation
of Peskin & Schroeder [20] and Anthony Zee [21]. Some later parts on some formal developments
regarding path integration regions are based on lecture notes by Hartman [22].

3.1.1 Path Integral Formulation of Nonrelativistic Quantum Mechanics

The most illuminating presentation of the path integral is best started with a thought experiment
regarding a generalization of the double slit experiment. This will give us a physical intuition
about a ’sum over paths’ formulation of quantum mechanics. We can then confirm our intuition
via formal manipulation of the usual finite-time transition amplitude.

We will consider the facts that
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3.1. Path Integral QFT

Figure 3.1: To the left, the propagation paths that go into the computation of the result of the
two-slit experiment. To the right the set of paths that should be summed over to predict the result
of a ”two consecutive three-slit experiment” are indicated.

• The transition amplitude in the absence of obstacles1 between an initial state i and a final
state f in the time t is given by 〈f | e−iHt |i〉, where H is the Hamiltonian

• The transition amplitude in the case of an impenetrable screen with two pointlike holes is
given by the sum of the transition amplitudes taking the initial state through each of the
holes to the final state

which will tell us that the object 〈f | e−iHt |i〉 in the absence of obstacles must admit an interpre-
tation as a sum over all possible paths the initial state could possibly take to the final state in the
finite time t. We then show formally that this representation of the transition amplitude exists,
this representation is the so-called path integral representation of quantum mechanics.

In the double slit experiment, a particle is emitted at time t = 0 from some source at a point
S. The particle is then to pass through a screen with two holes, say at points A1 and A2, to then
hit a detector at time t = T located at a position O as in figure 3.1. The amplitude of detection is
then given through the superposition principle of quantum mechanics as the sum of the amplitudes
of the paths S → A1 → O and S → A2 → O.

A more general experiment would then be an N -slit experiment. Denoting the amplitude for
the path through slit i as S → Ai → O as A(S → Ai → O), we can write down the amplitude Atot
for detection at O

Atot =
∑
i

A(S → Ai → O) . (3.1)

Now we ask what happens if we place a second screen between S and the first screen, with holes
labelled by the index j. Once again we sum over all possible paths as in the right of figure 3.1,
giving us a double sum over the holes of the two screens:

Atot =
∑
j

∑
i

A(S → Aj → Bi → O) . (3.2)

So far, nothing seems strange. We are just applying the superposition principle twice. Here, we
may make interesting observation. Since we are free to make an arbitrary number of holes, we may
choose to make a continuously infinite number of holes in the screen labelled by j. Then there
would no longer be a screen present to block the path of our particle.

1In this context, ’obstacles’ are really some difficult-to-write-down infinite square wells that enter into the potential
term of the Hamiltonian. The double slit is such an obstacle, but it is modelled by a superposition principle instead
of adding it to the potential.
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Figure 3.2: In a limit with an infinite number of slits in an infinite stack of screens, our discussion
tells us that we should sum over a continuous set of paths. These paths are not necessarily smooth,
but to take the thought experiment further it is best to continue in a more formal manner.

If there is supposed to be a smooth limit as we take the number of holes in screen j to infinity it
appears that despite the fact that there is no screen, the particle should for consistency take every
straight path it possibly can through the surface the screen used to occupy. This result comes off
as unintuitive, equation (3.2) does not seem mathematically equivalent to equation (3.1) in the
limit of j ∈ R2. If the superposition principle holds, then every imaginable surface in space must
be a candidate for a screen in which we have drilled an infinite number of holes. Thus consistency
demands that we sum the contributions of literally every esoteric path imaginable to compute
the total amplitude of propagation from point S to point O, even through empty space. It is at
this point less confusing to go to formalism than it is to take the thought experiment further,
the important part is the conclusion that there should be some ’sum over paths’ formulation of
quantum mechanics.

Reinterpreting the Transition Amplitude

The takeaway from the previous thought experiment is simply that the usual transition amplitude
in quantum mechanics must admit a representation as a sum over paths to be consistent with the
superposition principle solution to computing the result of the double slit experiment. Let us show
that this is indeed the case.

The transition amplitude AqI→qF from an initial position eigenstate |qI〉 to a final position
eigenstate |qF 〉 is given by

AqI→qF = 〈qF | e−iHt |qI〉 . (3.3)

There is nothing preventing us from splitting the time evolution operator according to

e−iHt =
(
e−iHδt

)N
, δt = t

N
. (3.4)

Next, we insert a completeness relation between each factor of e−iHδt. Remember that the com-
pleteness relation for position eigenstates is given up to normalization by

∫
dq |q〉 〈q| = 1 (in this

section, whenever integration limits are not given, they go from minus to plus infinity). We then
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obtain the expression

AqI→qF = 〈qF | e−iHδt
(∫

dqN−1 |qN−1〉 〈qN−1|
)
e−iHδt

(∫
dqN−2 |qN−2〉 〈qN−2|

)
. . .

(∫
dq1 |q1〉 〈q1|

)
e−iHδt |qI〉

=

N−1∏
j=1

∫
dqj

 〈qF | e−iHδt |qN−1〉 〈qN−1| e−iHδt |qN−2〉 〈qN−2| . . . |q1〉 〈q1| e−iHδt |qI〉 ,

(3.5)
where the Π-term just reminds us to integrate over all of the qj . Let us now pick out and look at
an individual factor 〈qj+1| e−iHδt |q〉. To continue we let δt become small, such that that e−iHδt ≈
1− iHδt is a good approximation. That is, we let

〈qj+1| e−iHδt |q〉 →δt→0 〈qj+1| (1− iHδt) |q〉 . (3.6)

The purpose of equation (3.6) is that we want to disentangle the terms in H that depend on p̂ and q̂,
since the two operators do not commute. If we are dealing with a full expansion, this is in general
very difficult. Although the Hamiltonian as an operator is not bounded from above, equation
(3.6) should be valid as long as we grow the limits of the generalized integral limR→∞

∫ R
−R dq(. . .)

slower than we take the limit δt → 0. Given that the expression converges at all (which it should
nonperturbatively since H is positive definite and thus e−iHt is bounded), it should not matter how
we take the limit.

Since the |qj〉 are eigenstates of q̂ we have

〈qj+1| q̂n |q〉 =
(
qj+1 + qj

2

)n
(3.7)

for even n, obtained by writing q̂ =
(
q̂+q̂

2

)
and acting to the left and the right with half the qs

each. For terms on the form 〈qj+1| f(p) |q〉 we need to introduce a complete set of states in the
momentum basis (

∫
dp |p〉 〈p| ∼ 1), we then get to replace the operator p̂ by the eigenvalue p, and

we obtain
〈qj+1| f(p) |q〉 =

∫
dpf(p) 〈qj+1|p〉 〈p|q〉

=
∫

dpf(p)eip(qj+1−qj) ,
(3.8)

using that 〈p|q〉 = eipx.
Whenever we have terms f(q,p) in the Hamiltonian that are proportional to products of p’s and

q’s we take them to be Weyl ordered, fulfilling 〈qj+1| f(q̂,p̂) |q〉 = h(qj+1 + qj) 〈qj+1| g(p̂) |q〉. An
example is the following:

〈qj+1| (q̂2p̂2 + 2q̂p̂2q̂ + p̂2q̂2) |q〉 = (qj+1 + qj)2 〈qj+1| p̂2 |q〉 , (3.9)

obtained by letting the q̂’s act in whatever direction does not have them acting past a p̂. Any
analytic function of q̂ and p̂ can be Weyl-ordered, though it will generally introduce extra normal
ordering constants that should appear in the potential.

The essence of this discussion is that we consider only Hamiltonians where we are able to express
〈qj+1| (1− iHδt) |q〉 as functions of the relevant eigenvalues in a simple manner, without having to
consider operator ordering in any real sense. As long as we are working at first order, this picture
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is rigorously valid, since operator ordering operations will only appear as a constant in V (q). We
now know that for a general Hamiltonian H(q̂, p̂) we can write

〈qj+1| (1− iδtH(q̂, p̂)) |qj〉 =
∫

dp
[
1− iH

(
qj+1 + qj

2 , p

)
δt

]
eip(qj+1−qj)

=
∫

dp e
−iH

(
qj+1+qj

2 ,p

)
eip(qj+1−qj) ,

(3.10)

where we have reused that e−iHδt = 1− iHδt is a good approximation. Inserting back into the full
transition amplitude we have, naming qF → qN and qI → q0

Aq0→qN =
(
N−1∏
i=1

∫
dqj

)
〈qN | e−iHδt |qN−1〉 〈qN−1| e−iHδt |qN−2〉 〈qN−2| . . . |q1〉 〈q1| e−iHδt |q0〉

=

N−1∏
j=1

∫
dqjdpj

 e−iH
(
qN+qN−1

2 ,pj

)
eip(qN−qN−1)δt . . . e−iH

(
q1+q0

2 ,pj
)
δteip(q1−q0)

=

N−1∏
j=1

∫
dqjdpj

 e∑j
ipj(qj+1−qj)−iH

(
qj+1+qj

2 ,pj

)
δt

=

N−1∏
j=1

∫
dqjdpj

 ei∑j
δt

[
pj

(qj+1−qj)
δt

−H
(
qj+1+qj

2 ,pj

)]
.

(3.11)
Taking the continuum limit, qj+1 − qj → dq, qj+1 → qj and δt→ dt, so we see that

lim
δt→0
Aq0→qN =

(∫
DqDp

)
ei
∫ T

0 dt[pq̇−H(q,p)] . (3.12)

where we have defined q̇ = dq
dt and the integration measure DqDp is defined by

∫
DqDp =

 lim
N→∞

N−1∏
j=1

∫
dqjdpj

 . (3.13)

In words, for every point in time between the initial time t = 0 and the final time t = T , the position
q and the momentum p may take any value, and we sum all of the contributions by integrating
over them. We can also understand this as the claim that we sum over all functions q(t), p(t) such
that q(0) = qI , q(T ) = qF . In this sense, the object in equation (3.13) is a functional integral over
the space of functions q(t), p(t).

In general we may be interested in the transition amplitude between initial and final states that
are not position eigenstates. Calling the initial and final state Ψi,Ψf respectively we write

〈Ψf | e−iHT |Ψi〉 =
∫

dqi
∫

dqf 〈Ψf | |qf 〉〈qf | e−iHT |qi〉〈qi| |Ψi〉

=
∫

dqi
∫

dqfΨf (qf ) 〈qf | e−iHT |qi〉Ψ(qi)

=
(∫
DqDp

)
Ψ∗f (qf )ei

∫ T
0 dt[pq̇−H(q,p)]Ψ(qi) ,

(3.14)

this time with no boundary condition on the endpoints q(0) and q(T ), meaning we integrate over
them too. Equivalently, we may insert the final and initial functions as boundary conditions for φ,
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according to

〈Ψf | e−iHT |Ψi〉 =
(∫ Ψf

Ψi
Dq

∫
Dp
)

de−i
∫ T

0 [pq̇−H(q,p)] , (3.15)

where we have defined the boundary condition wavefunctions to contain the boundary position and
field data.

In general path integrals are difficult to compute, since without some very neat mathematical
tricks you will have to go to the definition of the measures Dq and Dp and compute the integrals
explicitly, then take the limit as N → ∞. Luckily, we will see that there are a number of slick
mathematical tricks available in the following sections.

3.1.2 From Quantum Mechanics to QFT

In the previous section, we found the path integral representation of the propagator corresponding
to one particle in quantum mechanics. We would now like to extend this to a system of multiple
particles, and then take a continuum limit to obtain a field theory. Let us consider the object

Z ≡ 〈0| e−iHt |0〉 =
(∫
DqDp

)
ei
∫ T

0 dt[pq̇−H(q,p)] (3.16)

where the initial and final vacuum states have been absorbed as boundary conditions on the path
integral.

To generalize to multiple particles in a way that does not quickly become mathematically
intractable, we imagine that our quantum system is a two-dimensional lattice of particles in the x−y
plane. The coordinate of the a:th particle qa represents a displacement in the z-direction, and the
potential V contains only terms that mix adjacent points. Zooming out a little, this configuration
looks like an infinite drumskin in the x − y plane, and displacements in the z-direction look like
excitations of the flat ground state of the drum. The tension between atoms of the drum sits as
nearest-neighbour interactions in the potential. Our groundstate-groundstate correlation function
now looks something like

Z =
(∫
DqaDpa

)
e
∑

a
i
∫ T

0 dt[paq̇a−H(qa,pa)] , (3.17)

where we are now integrating over all possible qa and pa. To understand why we get a sum in
the exponential over the index a, and not outside of the entire thing, consider that a completeness
relation for all of the Hilbert spaces of each point a must be the tensor product of the individual
completeness relations, i.e.

1 =
⊗
a

∫
dqa |qa〉 〈qa| , (3.18)

and similarly for the momenta. The product of the terms then enters into the exponential as a
sum.

At this point, we are almost doing field theory. Imagine we space our lattice so densely it looks

continuous. The index a can now instead be labelled by the continuous vector ~x =
(
x
y

)
. Then, the

mass of the a:th particle becomes the mass area density: ma → σ(~x). The positions qa(t) become
the scalar field φ(t,~x), the momenta pa(t) become the momentum density p(t,~x), and the sum over
a becomes the integral

∫
d2x. In this continuum limit we then find that

Z =
(∫
Dφ(t,~x)Dp(t,~x)

)
ei
∫ T

0 dt
∫

d2x[p(t,~x)φ̇(t,~x)−H(φ(t,~x),p(t,~x))] , (3.19)
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where we have put the dependency explicitly in the functional integration measure just to indicate
that something has truly changed. An important thing to note is that the path integral is no
longer a functional integral over all paths through space (all possible choices of q(t)), but rather a
functional integral over all possible configurations of the field φ(t,~x), t ∈ [0,T ]. When we call this a
”path integral” in the future, we really mean an integral over configuration space, despite ’possible
sequences of field configurations’ not coinciding with our usual notion of a ’path’.

For an arbitrary field φ in an arbitrary spatial dimension D, we find that the general correlator
is given by

〈Ψf | e−iHT |Ψi〉 =
∫ Ψf

Ψi
DφDpei

∫ T
0 dt

∫
dDx[pφ̇−H(φ,p)] , (3.20)

where ~x is a vector with D elements, and we have suppressed the (t, ~x) dependence of the fields
in the exponent to clean up the expression. For this functional integral, the field configuration is
restricted to Ψ∗f (T,~x) and Ψi(0,~x) at the end points.

The main takeaway here is that we have shown that the quantum correlation function is equiv-
alent to a classical integral over all paths, and that the construction generalizes readily to fields.
Now, we are free to specify the Hamiltonian to describe some Lorentz invariant dynamics as we
usually do in QFT.

Arguing for a More Fundamental Path-Integral Formulation

We have in the previous sections argued that the quantum mechanical propagator 〈f | eiĤt |i〉 can
be represented as a classical integral over all configurations that the quantum system may take in
the time t between the initial and final states. We then argued that we could generalize this result
from a theory of particles to a theory of fields. Let us now consider the classical Hamiltonian in
1+3 dimensions for a relativistic scalar field φ,

H(φ, π) =
∫

d3x
(1

2π
2 + 1

2(∇φ)2 + V (φ)
)
, (3.21)

where π is the momentum density. Note that the momentum density π can only appear squared
due to Lorentz invariance. Then the correlation function between final and initial states Ψf and
Ψi is given according to equation (3.20) by

〈Ψf | e−iĤT |Ψi〉 =
∫
DφDπ ei

∫ T
0 dt

∫
d3x[πφ̇− 1

2π
2− 1

2 (∇φ)2−V (φ)] , (3.22)

where we do not (and do not have to) determine the quantized Hamiltonian Ĥ. The fact that we
do not have to determine the quantum time evolution operator Ĥ is the very beauty of the path
integral representation. In the canonical approach, we have to introduce commutation relations
and promote the fields and momenta in the Hamiltonian to quantum operators, potentially doing
violence to Lorentz invariance and other classic symmetries. By expressing the propagator in
terms of the classical path integral, we have circumvented this problem. That being said, quantum
anomalies may instead arise in the integration measure Dφ if φ enjoys a nonabelian gauge symmetry.

For the case of the scalar field, we find that we can actually perform the momentum integrals
over π(t,~x), because the object in the exponential is really ”just” a Gaussian integral. Let us show
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this explicitly

〈Ψf | e−iĤT |Ψi〉 =
∫
DφDπ ei

∫ T
0 dt

∫
d3x[πφ̇− 1

2π
2− 1

2 (∇φ)2−V (φ)]

〈
complete the square

〉
=
∫
DφDπ ei

∫ T
0 dt

∫
d3x[− 1

2 (π+φ̇)2+ 1
2 φ̇

2− 1
2 (∇φ)2−V (φ)]

〈
definition of Dπ

〉
=
∫
Dφ

(
lim
N→∞

∏
n

∫
dπn

)
ei
∫ T

0 dt
∫

d3x[− 1
2 (πn+φ̇)2+ 1

2 φ̇
2− 1

2 (∇φ)2−V (φ)]

〈
Gaussian integral

〉
=
∫
Dφ

(
lim
N→∞

√
2πN

)
ei
∫ T

0 dt
∫

d3x[ 1
2 φ̇

2− 1
2 (∇φ)2−V (φ)] .

(3.23)

Rigorously the last step requires that we demand that our Lorentz-signature integral is an analytic
continuation from a Euclidean integral. By Wick-rotating to imaginary time according to t→ −iτ
we get a real exponent to ensure convergence. We then analytically continue the result of the
Gaussian integration back to real time and take this to be the correct answer. This is nearly always
implicitly assumed in QFT since the interaction picture requires the introduction of a complex time
shift.

One might worry additionally that the obtained expression diverges, but really it is just an
artifact of us not having introduced the appropriate factor of 2π into the 1”=”

∫
dp |p〉 〈p| completion

relation, so we can just drop this term. The reason for omitting this is that an overall factor is
physically uninteresting, so we can keep things simple and just drop them. To do perturbation
theory we will have to divide by a factor that contains the same set of normalization errors anyways,
so this will not be an issue. With this, we have that the correlator is

〈Ψf | e−iĤT |Ψi〉 =
∫
Dφei

∫ T
0 dt

∫
d3x[ 1

2 φ̇
2− 1

2 (∇φ)2−V (φ)]

=
∫
Dφei

∫ T
0 dt

∫
d3x[− 1

2 (∂µφ)2−V (φ)]

=
∫
Dφei

∫ T
0 dt

∫
d3xL ,

(3.24)

where we have recognized that we are left with an expression in terms of the Lagrangian density
for the relativistic scalar field L = −1

2(∂µφ)2−V (φ). A nice thing about this expression is that the
quantum Hamiltonian mechanics of our system is described by an object that depends solely on the
classical action S[φ] =

∫ T
0 d4xL. This formulation of the quantum mechanical propagator therefore

manifestly enjoys all of the symmetry properties of the Lagrangian, from Lorentz invariance to any
eventual gauge symmetries. This is contrary to the case of canonical quantization, where we have
to perform gauge fixing and introduce Ward identities to implement Lorentz invariance. While the
Ward identities are not ad-hoc in Hamiltonian formalism, they arise less elegantly than from the
path integral formalism.

The Hamiltonian dynamics that we use to describe canonical quantum theory are arbitrary; in
a relativistic setting the Hamiltonian dynamics depend on the arbitrary choice of a timelike time-
evolution vector, promoting time to something completely separate from the space coordinates.
Because of this, a more fundamental way of looking at the Hamiltonian dynamics of a quantum
theory might be to claim that the Hamiltonian dynamics are in fact defined by the right-hand side
of equation (3.24). For any Lagrangian, the path integral will correspond to some operator Ĥ,
and we can differentiate with respect to T to find the corresponding Schrödinger equation. In this
paradigm, the classical Lagrangian L is the most fundamental specification of the quantum theory.
An important property of this is that Hamiltonian dynamics can now be defined on spacetimes
that do not admit a global timelike Killing vector.
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In general we expect the object

〈Ψf | e−iĤT |Ψi〉 =
∫
Dφ ei

∫ T
0 d4xL =

∫
Dφe−iS[φ] (3.25)

to converge because really extreme field configurations tend to interfere destructively while the
configurations for which S[φ] varies slowly in φ will interfere constructively. Rigorously, to ensure
the convergence of the path integral one wants perform a wick rotation to Euclidean time, sub-
stituting t → iτ . One performs the functional integral in Euclidean time, sees that it converges
and analytically continues the answer in terms of real τ back to Lorentzian time, setting τ = −it.
Analyticity is generally assumed unless there is a very good reason not to, so we will be substituting
back and forth without regard.

Classical Limit

It would be strange if in the classical limit ~ → 0 we did not recover classical mechanics. In the
path integral formalism this turns out to happen in a remarkably simple way. Reinstating ~ in the
correlator we have

〈Ψf | e−
i
~ ĤT |Ψi〉 =

∫
Dφ e

i
~
∫ T

0 d4xS[φ] . (3.26)

In the limit ~ → 0, the integral is given by the stationary phase approximation, in terms of the
stationary points of S[φ]. Since S[φ] is a functional, the stationary points are given by the variation
of the action δφS[φ] = 0, which is precisely the definition of the classical equations of motion. In this
sense, the action principle of Hamilton follows from the path integral formulation being fundamental
plus the assertion that the classical limit is given by ~→ 0.

3.1.3 Applying the Path Integral Formalism

In this section the path integral machinery is applied to write down general two-point correlation
functions. Then higher order correlators are briefly discussed before introducing the generating
functional method to compute example correlation functions. After this the perturbation expansion
that describes interacting theories is described and Noether’s theorem is generalized to the Ward
identities. Finally some formal ways to write down vacuum states and amplitudes using Wick-
rotated path integrals are displayed.

Correlation Functions

The goal of this section is to recover a path integral expression for the Freeman-Dyson correlation
functions. Let us for simplicity work with a Hermitian scalar field φ(x). We then wish to consider
the object

〈φf |T [φ(x1)φ(x2)e−iĤ2T ] |φi〉 =
∫
Dφφ(x1)φ(x2)ei

∫ T
−T d4xL

, (3.27)

where the boundary conditions on the path integral are φ(−T,~x) = φi, φ(T,~x) = φf for some
initial and final states φi, φf , and φS(x1), φS(x2) are two time-independent field fields defined at
times x0

1, x
0
2 respectively. T [. . .] denotes time ordering on the operator side. The goal is to relate

this object to the Freeman-Dyson two-point correlator 〈Ω|T (φ̂(x1)φ̂(x2)) |Ω〉2 (where T is the time
ordering operator and φ̂ is the Heisenberg operator that creates a quantum of the scalar field).

2If this notation is unfamiliar, chapter 4 in Peskin & Schroeder is recommended [20].
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We can then decompose the path integral in the following manner.∫
Dφ =

∫
Dφ1(~x)

∫
Dφ2(~x)

∫
φ(x0

1,~x)=φ1(~x)
φ(x0

2,~x)=φ2(~x)

Dφ(x) (3.28)

Here, we have imposed an additional constraint on the main path integral, so that in addition
to the constraints at ±T , we have a restriction at φ(x0

1) and φ(x0
2). The two path integrals over

φ1(~x) and φ2(~x) are path integrals only over spatial configurations, as indicated by the three-vector
argument. Since we integrate over all possible field configurations of φ1 and φ2 we truly have not
changed the path integral at all.

Because of the imposition of extra boundary conditions, the correlator with the new integration
measure will automatically be time-ordered. To see this consider the example when x0

1 < x0
2, we

have that

〈φf |φ(x1)φ(x2)e−iĤ2T |φi〉 =
∫
Dφ1(~x)

∫
Dφ2(~x) φ1(~x)φ2(~x) 〈φf | e−iH(T−x0

2) |φ2〉

× 〈φ2| e−iH(x0
2−x

0
1) |φ1〉 〈φ1| e−iH(x0

1+T ) |φi〉 .
(3.29)

We can now turn the field φ1(~x) into an operator by observing that φ1 |φ1〉 = φ̂1 |φ1〉 (”inverting”
the eigenvalue relation). The completion relation

∫
Dφ1 |φ1〉〈φ1| that we used to decompose our

path integral can then be evaluated to eliminate the intermediate states and equation (3.29) turns
into

〈φf |φ(x1)φ(x2)e−iĤ2T |φi〉 = 〈φf | e−iH(T−x0
2)φ̂2e

−iH(x0
2−x

0
1)φ̂1e

−iH(x0
1+T ) |φi〉 (3.30)

The exponential containing x0’s then combines with the Schrödinger operators to make Heisenberg
field operators, since [H,H] = 0 eH(A+B) = eHAeHB, and we are left with

〈φf |φ(x1)φ(x2)e−iĤ2T |φi〉 = 〈φf | e−iHTT [φH(x2)φH(x2)] e−iHT |φi〉 , (3.31)

where T [. . .] is the time ordering operator. This is similar to the two-point correlator in the
Freeman-Dyson approach, and really all that is missing is performing the same steps as they did.
We project out the vacuum from the initial and final states by taking T → ∞(1 − iε), assuming
that the initial and final states have any overlap with the vacuum. Let us briefly show how this
comes about; we write φi in terms of the energy eigenstates |n〉 of the Hamiltonian as

|φ〉 =
∑
n

|n〉 〈n|φi〉 . (3.32)

Then we have, keeping only the leading term

e−iHT |φi〉 =
∑
n

e−iEnT |n〉 〈n|φi〉
]−→ T →∞(1− iε)e−∞(i+ε)EΩ |Ω〉 〈Ω|φi〉 . (3.33)

This term contains some difficult to compute factors that depend on the details of the overlap
between the initial state and the vacuum. We deal with this by dividing off equation (3.31) without
the extra Heisenberg operators. Then we find that in terms of path integrals we may express the
two-point correlator in the Freeman-Dyson approach as

〈Ω|T [φ(x1)φ(x2)] |Ω〉
〈Ω|Ω〉 = lim

T→(1−iε)∞

∫
Dφφ(x1)φ(x2)e−

∫ T
−T dt

∫
dxL

∫
Dφ e−

∫ T
−T dt

∫
dxL

. (3.34)
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For the higher order correlators we just insert more fields φ(xi).
At this point it is possible to go on and derive the Feynman rules in without introducing any

new concepts by going to the definition of the integration measures and taking limits. We will not
do this, and will instead the introduce the generating functional method.

Generating Functional Method for Correlation Functions

The generating functional method of computing correlation functions on the form of equation
(3.34) is quite formal, but a lot less work than going to definitions, explicitly evaluating integrals
and taking limits. To introduce the generating functional method we need a little bit of formalism.

The functional derivative δ
δJ(x) is defined by the basic axioms

δ

δJ(x)J(y) = δ(x− y) , δ

δJ(x)

∫
d4yJ(y)φ(y) = φ(x) . (3.35)

This definition can, viewing a function as a continuously infinite dimensional vector, be seen as the
obvious generalization of the rules for discrete vectors

∂

∂xi
xj = δij ,

∂

∂i

∑
j

xjkj = ki . (3.36)

The functional derivative of more complicated functions is just performed using the usual product-
and chain rules of ordinary differentiation. We expect this to function in much the same way as
ordinary differentiation for the simple reason that we see it as a limit n→∞ of ordinary derivatives
on a vector of length n. We do have one additional trick, when the function in question depends
on a derivative of J we may use partial integration. Two examples are

chain rule partial integration
δ

δJ(x)e
∫

d4y J(y)φ(y) = φ(x)e
∫

d4y J(y)φ(y) ,
δ

δJ(x)

∫
d4y ∂µJ(y)φ(y) = −∂µφ(x) .

(3.37)

That is really all we need to start developing the generating functional formalism. In a scalar field
theory, say with a free Klein-Gordon Lagrangian, we define the generating functional Z[J ] in the
following way

Z[J ] =
∫
Dφe−i

∫
d4x [L+J(x)φ(x)] . (3.38)

Then, the correlation functions can be computed by taking derivatives of the generating functional.
Let us consider the two-point correlator for the free Klein-Gordon field:

〈Ω|T [φ(x1)φ(x2)] |Ω〉
〈Ω|Ω〉 = 1

Z0

( −iδ
δJ(x1)

)( −iδ
δJ(x2)

)
Z[J ]

∣∣∣
J=0

, (3.39)

where we have defined Z0 = Z[0]. Each derivative with respect to J just brings out a factor φ
in front of Z[J ], so we have just recovered equation (3.34). This does not give us anything new,
it just shows that we have not defined something fundamentally different from before. The next
realization to make is that Z[J ] can in fact be rewritten in a sneaky way. Let us consider specifically
the case of the massive Klein-Gordon Lagrangian. This method works for any theory whose Green’s
function we can compute without introducing new formalism. We manipulate the exponent of Z[J ]∫

d4x [L+ J(x)φ(x)] =
∫

d4x [−1
2∂µφ∂

µφ− 1
2(m2 − iε)φ2 + J(x)φ(x)]

=
∫

d4x [−1
2φ(∂µ∂µ +m2 − iε)φ+ J(x)φ(x)] ,

(3.40)
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where we have just performed a partial integration and dropped the boundary terms. The iε
term is a convergence factor, and comes from the fact that our integral is integrated in the T →
∞(1− iε) direction, which implicitly shifts the 0−components of the momenta in the Fourier space
representation of (∂2−m2), effectively appearing as a small shift of the mass-squared. This should
be familiar as a necessary part of the derivation of the free Klein Gordon propagator.

We are now ready for the really sneaky step; we perform a shift of the field φ by adding another
term

φ′ = φ− (∂µ∂µ +m2 − iε)−1J(x) . (3.41)
Then we obtain (suppressing the x-dependence of J)∫

d4x [L+ Jφ] =
∫

d4x [−1
2(φ′ + (∂µ∂µ +m2 − iε)−1J)(∂µ∂µ +m2 − iε)(φ′ + (∂µ∂µ +m2 − iε)−1J) + Jφ]

=
∫

d4x [−1
2φ
′(∂µ∂µ +m2 − iε)φ′ −����

��1
2(φJ + Jφ)− 1

2J(∂µ∂µ +m2 − iε)−1J +ZZJφ]

=
∫

d4x [−1
2φ
′(∂µ∂µ +m2 − iε)φ′ − 1

2J(∂µ∂µ +m2 − iε)−1J ] .
(3.42)

Since our change of functions was only a shift by a constant function, the Jacobian of the change of
variables is unity, and we can just exchange Dφ→ Dφ′ in the path integral. We find the expression

Z[J ] =
∫
Dφ′e

∫
d4x [− 1

2φ
′(∂µ∂µ+m2−iε)φ′− 1

2J(∂µ∂µ+m2−iε)−1J ] . (3.43)

But the first term in the exponent is just Z0. Even better, the second term does not depend on φ′
Thus we can decompose according to

Z[J ] = Z0e
− i

2

∫
d4xJ(∂µ∂µ+m2−iε)−1J . (3.44)

Observing that the differential operator (−∂µ∂µ −m2 + iε) has a Green’s function representation
we may write

Z[J ] = Z0 exp
[
−1

2

∫
d4x d4yJ(x)(∂µ∂µ +m2 − iε)−1δ(x− y)J(y)

]
= Z0 exp

[
−1

2

∫
d4x d4y

d4p

(2π)4J(x) ie−ip·(x−y)

p2 +m2 − iε
J(y)

]

= Z0 exp
[
−1

2

∫
d4x d4yJ(x)DF (x− y)J(y)

]
,

(3.45)

where we have defined the Feynman propagator DF . This last form of Z[J ] is the one we wish to
use for practical reasons, and this calculation is intended as a crash reminder of how to get from
differential operator to Feynman propagator. The first step is just using J(x) =

∫
d4yδ(x− y)J(y),

then, going to Fourier space ∂ → p and δ → 1. Performing the p-integral then gives us the
propagator. If this is all wholly unfamiliar, chapter two of [20] is recommended.

We are now ready to find some correlation functions. The two-point function is

〈Ω|T [φ(x1)φ(x2)] |Ω〉 = − δ

δJ(x1)
δ

δJ(x2) exp
[
−1

2

∫
d4x d4yJ(x)DF (x− y)J(y)

]
J=0

= δ

δJ(x1)

(
1
2

∫
d4xJ(x)DF (x− x2)J(x2) + 1

2

∫
d4yJ(x2)DF (x2 − y)

)
Z[J ]
Z[0]

∣∣∣∣∣
J=0

= 1
2DF (x1 − x2) + 1

2DF (x2 − x1)

= DF (x1 − x2) . (3.46)
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The first derivative acting on the exponential brings down two identical terms (since DF (x− y) =
DF (y − x)), and the only terms that survive setting J = 0 are the ones that get hit by a second
derivative with respect to J. This leads to the survival of only the terms outside of the exponential
in the third step.

Let us work out the four-point correlator in a similarly explicit way, introducing only some
cleaner notation. Let us set φ1 ≡ φ(x1), Jx ≡ J(x), Dx1 ≡ D(x − x1) and so on. We then take
the integration over repeated subscripts to be implied (an ”Einstein integration convention” if you
will). We can then start doing algebra

〈Ω|T [φ1φ2φ3φ4] |Ω〉 = δ

δJ1

δ

δJ2

δ

δJ3
[ −JxDx4︸ ︷︷ ︸
=−1

2 (JxDx4+JyD4y)

]e−
1
2JxDxyJy

∣∣∣
J=0

= δ

δJ1

δ

δJ2
[−D34 + JxDx3Dy4]e−

1
2JxDxyJy

∣∣∣
J=0

= δ

δJ1
[D23JyDy4 + JxDx3D24 +D34JxDx2 − JyDy3JzDz2JxDx4]e−

1
2JxDxyJy

∣∣∣
J=0

= D23D14 +D13D24 +D34D12 . (3.47)

The final step follows by the same reasoning as last time - upon setting J = 0, only terms that
were linear in J outside the exponential survive.

We have discovered the beginnings of the general pattern in the canonical approach - the
correlator is given by the sum of all possible contractions (the Wick contraction of two fields equals
the propagator) between the involved fields. The general construction above can be used in the
case of interacting theories as well; the general definition of the correlator in terms of path integrals
is unchanged. In the case of an interacting theory the factor Z0 is nontrivial, corresponding to the
sum of all vacuum bubbles in the Freeman-Dyson approach.

Interacting theory

While we see that we can get a nice, tractable expression for the correlators of a free theory, it is
unclear if we are as lucky when it comes to arbitrary interaction terms in the Lagrangian. Let us
add a general interaction term Lint to the Lagrangian and consider the generating functional:

Z[J ] =
∫
Dφe−i

∫
ddx(Lfree+Lint)+Jφ . (3.48)

The integral is no longer Gaussian and we can no longer shift the exponent of equation (3.48) to
find the exact correlation functions. Instead we need to use perturbation theory, we Taylor expand
Lint around the point where all coupling constants are zero. That is, we write

Z[J ] =
[
e
∫

ddxLint
(
−iδ
δ(J(x)

)]
Dφe−i

∫
ddx(Lfree+Jφ)

=
[
e
∫

ddxLint
(
−iδ
δ(J(x)

)]
Z0[J ] .

(3.49)

Given that we already know Z0[J ] from the previous section (where we can do the shift again since
its a free theory) and we may take Lint as given, there is nothing preventing us from evaluating
the expansion.

An interesting note is that the perturbative expansion in equation (3.49) generally has zero
radius of convergence. An expansion is said to have a radius of convergence R if

∞∑
k

λk(...) =
{

finite if |λ| < R
divergent if |λ| > R

. (3.50)
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Consider for example φ4-theory, with an interaction potential V = λφ4. If λ is positive, the
potential is bounded from below and small values of φ are preferred. If λ is slightly negative
the potential is unbounded from below and φ will want to shoot off to infinity. Such a potential
is clearly unphysical since it would be possible to extract an infinite amount of energy from the
ever growing fields. Therefore the expansion diverges for arbitrarily small negative λ, and it must
have a vanishing radius of convergence. Luckily for the many people trying to describe reality using
perturbation theory, the expansion in equation (3.49) is still numerically accurate to order 1

g , where
g is the dimensionless coupling constant, as is eloquently presented in [23].

Symmetries and Ward Identities

Field transformations φ → φ + δφ that leave the Lagrangian L invariant are called symmetries.
Noether’s theorem tells us that for each infinitesimal symmetry of the Lagrangian there is an
associated conserved current. In the path integral formulation of QFT we see that the symmetries
of the Lagrangian also implyWard identities, identities that the quantum operators of a theory must
satisfy to preserve the symmetry. In the following we assume that symmetry transformations leave
the integration measure Dφ invariant. This is not true in general, and leads to the introduction of
anomalies in non-abelian gauge theories such as quantum chromodynamics and CFT.

Let us start from the generating functional Z[J ] and perform the shift φ→ φ′ = φ+ δφ, letting
δφ be arbitrary. The generating functional is assumed to be invariant under an infinitesimal shift,
and we find by applying the functional derivative with respect to φ that

δφZ[J ] = i

∫
Dφe−i(S[φ]+

∫
ddxJφ)

∫
ddx

(
δS

δφ
+ J

)
δφ = 0 , (3.51)

where we have assumed that the integration measure Dφ = Dφ′ is invariant.
This equation is not very useful by itself, since all physical quantities are obtained by applying

functional derivatives with respect to J and then taking J → 0. For a general correlator, after
applying the functional derivatives and setting J = 0 equation (3.51) implies the Schwinger-Dyson
equations

0 =
〈

δS

δφ(x)φ(x1)φ(x2) . . . φ(xn)
〉
− i

n∑
j=1
〈φ(x1) . . . φ(xj−1)δ(x− xj)φ(xj+1) . . . φ(xn)〉 . (3.52)

In particular, we see that the Schwinger-Dyson equations imply the equations of motion (δφS[φ] =
0) up to contact terms (δ(x− xj))), arising from when the integration variable field φ(x) overlaps
with the field operators φ(xj) in the correlator. In Euclidean signature the factor of i in front of
the sum disappears.

Let us now assume that we perform a symmetry transformation. Then the variation of the
Lagrangian reads

δL = ∂L
∂φ

δφ+ ∂L
∂(∂µφ)∂µδφ = 0〈

add and subtract ∂µ

(
∂L

∂(∂µφ)

)〉
= ∂µ

(
∂L

∂(∂µφ)δφ
)

+ δS

δφ
δφ .

(3.53)

Defining the Noether current

J µ = −
(

∂L
∂(∂µφ)δφ

)
, (3.54)
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we find that
∂µJ µ = δS

δφ
δφ . (3.55)

Inserting into the Schwinger-Dyson equation we find that

0 = ∂µ 〈J µφ(x1)φ(x2) . . . φ(xn)〉 − i
n∑
j=1
〈φ(x1) . . . δφ(xj)δ(x− xj) . . . φ(xn)〉 (3.56)

Then the classical statement ∂µJ µ = 0 is, like the equations of motion, true up to contact terms.
In this case, the form of the contact terms depends on the symmetry through δφ. If δφ does not
involve time derivatives we can generate it on the operator side with the Noether charge Q according
to

[Q̂, φ̂] = iδφ̂ , (3.57)

where
Q =

∫
dd−1~xJ t . (3.58)

In CFTs we will find that the contact terms can be (relatively) easily computed via the residue
theorem due to the large amount of extra symmetry.

Operator Product Expansion (OPE)

The product of two local field operators Oi(x) and Oj(y) can in general be singular if they are
defined in the same point x = y. For example, Poincaré invariance for the free scalar field tells us
that

〈0|φ(x)φ(y) |0〉 ∼ 1
|x− y|2

, (3.59)

which is clearly divergent as x → y. In some cases, it is useful to expand the product of two
operators in a Laurent series, keeping only the most singular terms. Explicitly, we assert that we
can write down the Operator Product Expansion (OPE) on the form

Oi(x)Oi(y) =
∑
k

Fij
k(x− y)Ok(y) , (3.60)

as x approaches y. That we can expect to expand the product of two local operators in terms of
a single local operator is nontrivial because the operators are distribution-valued, and should be
seen either as an axiom or as a result of axiomatic quantum field theory.

It is not readily obvious what information we gain from doing this, we are now only dealing with
one operator but we also have a possibly infinite set of unknown coefficients in Fijk. The reason
why we gain something by doing this is that the Ward identities and the renormalization group
equations3 of a theory may impose severe restrictions on Fij

k. For example, in two dimensional
CFT (section 3.4.4) the full correlation functions are determined only by the residues of the contact
terms as a result of the Ward identities.

3.1.4 Formal Representation of States

In the previous sections, we have only treated the path integral as a method of computing corre-
lators. In this section we discuss how to formally construct states, starting with a path integral
representation of the vacuum ket. This section borrows heavily from the great presentation of

3To be covered in section 3.3.
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Hartman [22]. Thinking about path integrals in this way also turns out to be very useful for field
theory on curved spacetimes, as well as quantum field thermodynamics.

We may consider the object

|Ψ〉 = e−iĤT |φi〉 =
∫
φi

Dφe−i
∫ T

0 d4xL (3.61)

with the boundary condition φ = φi at t = 0, and an undefined upper boundary condition at the
variable time T a fully valid definition of the Schrödinger picture wavefunction. The object |Ψ〉 is
a functional that takes a state 〈φf | represented as the insertion of an upper boundary condition
φ = φf at time T as an argument and translates it to a complex number according to

〈φf |Ψ〉 =
∫ φf

φi

Dφe−i
∫ T

0 d4xL , (3.62)

which is consistent with the operator form of the correlation function. The object

e−iĤT =
∫
Dφe−i

∫ T
0 d4xL , (3.63)

with two unspecified boundary conditions at times 0 and T is then the path integral representation
of the time evolution operator. Inserting operators like we did in the correlation functions of section
3.1.3 it becomes a path integral representation of a time-ordered correlator between the operators
evaluated using the states provided as boundary conditions.

Formally we can take the time evolution to go in the complex direction, i.e. we set T = −iT̃
with T̃ real and we substitute t→ −iτ to find

|Ψ〉 = e−ĤT̃ |φi〉 =
∫
φi

Dφe
∫ −T̃

0 d3xdτL . (3.64)

But the Euclidean time evolution operator will dampen all but the lowest energy state, so we find
that we can compute the vacuum state by considering

|Ω〉 = lim
T̃→∞

∫
φi

Dφe−
∫ T̃

0 d3xdτL , (3.65)

where |φi〉 is some arbitrary initial state with some overlap with the vacuum state, and we do not
specify a boundary condition at infinity. This |Ω〉 is not normalized, and might even have infinite
norm. In general, as has been the case earlier in this text, any correlation function of operators
has to be divided by 〈Ω|Ω〉 to ensure a normalized result. More pictorially, we could represent the
vacuum by

|Ω〉 = , (3.66)

here the dashed line tells us to insert a boundary condition φi(0,x), where x denotes all spatial
coordinates, and the region of integration is bounded with by lines. If we wish to compute states
that are obtained in the Heisenberg picture as

|Ψ〉 = A |Ω〉 , (3.67)
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we can insert the operator as a function at some constant time into the integrand of the path
integral:

|Ψ〉 = lim
T̃→∞

∫
φi

DφA[x1, τ1]e−
∫ T̃

0 d3xdτL = (3.68)

granted that (x1,τ1) is in the integration region of the action. This is of course entirely analogous
to how we introduced field operators into the path integral when computing correlation functions.
In this sense we have already proved that this representation of the operator A in the path integral
formalism is consistent with the operator formalism.

Just like we create the vacuum ket with a path integral to −∞ in Euclidean time, we can
generate a vacuum bra via an integral to plus infinity in Euclidean time. The vacuum to vacuum
correlator 〈Ω|Ω〉 is two path integrals to positive and negative infinity respectively in Euclidean
time, and we should glue them together. To see that we should glue, consider inserting a completion
relation;

〈Ω|Ω〉 =
∑
i

〈Ω|φi〉 〈φi|Ω〉 . (3.69)

The first term is a path integral over the upper half plane, the second is a path integral over the
lower half plane. Summing over all boundary conditions φi ensures continuity across the boundary,
gluing the two halves together. Thus, pictorially we have

〈Ω|Ω〉 = . (3.70)

Expectation values of local operators O1,O2 in the vacuum state |Ω〉 can be represented in the
same manner, just inserting operators in the right place:

〈Ω|O1O2|Ω〉 =
∫
DφO1(x1)O2(x2)e−

∫ T
−T dτ

∫
d3xL = . (3.71)

Importantly, note that the operator ordering is important on the left-hand side, but not on the right.
To understand expectation values of time-ordered operators that are inserted at some Lorentzian
time t, we need to complicate things a bit. Essentially, we need to ’fold’ the path integral at τ = 0,
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integrate in the Lorentzian time direction until we pick up the Lorentzian operators and integrate
back to the Euclidean time axis. Pictorially, assuming t1 > t2 we have

〈Ω|O1(x1)O2(x2)|Ω〉 = .

(3.72)
This construction is analogous to the one carried out in equation (3.29) when we first found the
path integral representation of correlation functions. As indicated, the path integral starts from
t = −i∞ and is evolved to t = 0 to construct the vacuum ket. Then a factor e−iHt2 evolves the
vacuum ket to time t = t2, we insert the operator O2 and continue the evolution with the operator
e−iH(t2−t1) to time t2. The path integral is then evolved back down to t = 0 by eiHt2 and we
complete the path integral by going to t = i∞ to construct the vacuum bra.

Rarely do we need to perform such a folded path integral as in equation (3.72). We have two
simpler options in its place;

• We can compute the Euclidean path integral with the insertion points as arbitrary parameters.
In this case the correlator becomes as in equation (3.71), except it is a function of the insertion
points of the Euclidean operators. We can then analytically continue the correlation function
to Lorentzian time to find the time-ordered correlators. An interesting characteristic of this
approach is that when operators enter each other’s light cones, analyticity might break down.

• We can use an iε-prescription to compute the Lorentzian path integral. The usual iε prescrip-
tion that we used in section 3.1.3 is just a deformation of the integration contour in equation
(3.72) and computes the exact same quantity4.

3.2 Thermal Field Theory
In the section about the path integral formulation of quantum field theory it was claimed that
there is a clear connection between thermodynamics and the path integral. In this section the
basics of of thermal field theory, which is the generalization of thermodynamics to quantum fields
shall be treated. More specifically, the real and imaginary time formalisms as well as thermal
Green’s functions will be introduced.

4Although the operators look to be inserted somewhere not on the Lorentzian time axis in the case of t = (1+ iε)τ,
τ real, remember that at the end we take the limit ε → 0 in the sense that we can insert the operators arbitrarily
close to where they are supposed to be defined.
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The key observation in thermal field theory is that the density operator of the canonical en-
semble5, ρ = e−βĤ can be interpreted as Hamiltonian time evolution by t = −iβ. Moreover, the
expectation of operators O in a state described by a density operator is given by Tr[ρO]. The trace
tells you to glue the strips t = 0 and t = −iβ together, putting the path integral on a circle of
circumference β.

3.2.1 Thermodynamical Ensembles

Remember from statistical mechanics that in a thermal ensemble, that is an ensemble that repre-
sents a state in thermal equilibrium. The probability distribution (p(x)) over microstates x that
maximizes the entropy S = −

∑
x p(x) ln p(x) under the constraint that all known thermodynami-

cal quantities are held constant is defined as thermal. Typical examples of such properties are the
temperature T , the volume V and the total energy E.

In the quantum case where the state of the system is defined by a density operator

ρ =
∑
n

p(n) |n〉 〈n| (3.73)

maximizing the entropy entails picking the p(n) so that S = −Tr[ρ ln ρ] is maximized under the
constraint

∑
n p(n) = 1. For a finite dimensional Hilbert space with no extra restrictions this is just

given by ρ equal to the maximally mixed state, but for infinite dimensional Hilbert spaces we need
some other physical constraint to end up with a finite entropy. In the following a brief reminder of
the various thermal ensembles that come from different physical constraints is given.

Microcanonical Ensemble

The microcanonical ensemble is defined by the restriction that we know the energy E of the mi-
crostate of the system. The distribution that maximizes the entropy is still given by a uniform
distribution, but this time only over the states n for which Ĥ |n〉 = En |n〉. Denoting the number of
different states that have energy E by Ω(E) the entropy is given by S(E) = ln Ω(E). In the case of
QFT the operator Ĥ has a continuous spectrum and we can safely define the inverse temperature

1
T

= dS
dE (3.74)

In section 4.2.3 we use that the energy of a black hole is directly related to its mass to express it
as a microcanonical ensemble and then compute the entropy using equation (3.74).

Canonical Ensemble

Often, it is more convenient to work with the canonical ensemble than the microcanonical. We
do not usually know the exact energy of the system under study. We then consider a system of
fixed particle number Na (where the index a denotes particle species), volume V connected to a
reservoir of temperature T . The probability of finding the system in a state |n〉 with energy En is
proportional to e−βÊn where β ≡ 1/T and T has units of energy since we set kB = 1. The partition
function is the normalization factor for the density operator and is given by

Zcan =
∑
n

e−iβEn = Tr[e−βĤ ] (3.75)

5We set Boltzmann’s constant kB to unity in ρ = e
− 1
kB

βĤ . This convention will be kept for the rest of the text.
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where we can perform the trace by picking the orthonormal basis in definition equation (2.14) to
be the basis of energy eigenstates. The equilibrium state of the system is then described by the
density operator

ρcan = e−βĤ

Zcan
. (3.76)

The expectation value for an operator O is then given by

〈O〉 = Tr[Oρcan] (3.77)

and the expectation value of the energy 〈Ĥ〉 ≡ E for the ensemble is

E = Tr[Ĥρcan] = − ∂

∂β
lnZcan . (3.78)

The entropy S is defined by

Tr[−ρcan ln ρcan] = Tr[ρcan(βĤ + lnZcan)] = βE + lnZcan , (3.79)

since Tr[ρcan] = 1. Defining the free energy F = E − ST we find explicitly that

F = −T lnZcan . (3.80)

The free energy F is a thermodynamic potential of the canonical ensemble. F is a function of the
parameters with which we defined the ensemble, meaning it is a function of the volume V , the
particle number Na and the temperature T , i.e.

F = F (T,V,Na) . (3.81)

The free energy F (T,V,Na) is a potential in the sense that it is a scalar quantity, and the other
interesting thermodynamic quantities can be obtained by considering its derivatives. Specifically,
we have

S = −
(
∂F

∂T

)
V,Na

, p = −
(
∂F

∂V

)
T,Na

, µa =
(
∂F

∂Na

)
V,T

, (3.82)

where S is the entropy, p the pressure and µa the chemical potential of the particle of species a,
and subscripted quantities are held fixed. In terms of exact differentials, we have

dF = −pdV − SdT + µadNa . (3.83)

In quantum field theory, the canonical ensemble is not quite general enough, since particles can be
created and destroyed even in a closed system. Because of this we must introduce the grand conical
ensemble in which particle number is allowed to fluctuate.

Grand Canonical Ensemble

In the grand canonical ensemble, the temperature T , the volume V and chemical potential µa are
taken to be known. The grand canonical ensemble has the density operator

ρgrand = e−β(Ĥ−µaQ̂a)

Zgrand
, (3.84)
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where Q̂a is the quantum operator that counts the number of particles of species a in a state, and
Zgrand is the grand canonical partition function

Zgrand = Tr[e−β(Ĥ−µaQ̂a)] . (3.85)

The operators Q̂a are identified with the conserved Noether charges associated with the specific field
theory in question. In particular, this ensures that spontaneous creation of particle-anti particle
pairs does not contribute to the particle number, only particle exhchange with some external
reservoir is counted. For simplicity we take the Q̂a to commute (thus not considering non-abelian
gauge symmetries) and we refer to Na = 〈Qa〉 as the particle number of species a.

The grand canonical potential Ω(T,V,µa) is defined by

Ω(T,V,µa) = 〈Ĥ〉 − TS − µa〈Q̂a〉 = E − TS + µaNa . (3.86)

The entropy S = Tr[ρgrand ln ρgrand] is given explicitly by

S(T,V,µa) = βE − µaNa + lnZGrand . (3.87)

This implies that the grand canonical potential becomes

Ω(T,V, µa) = −TZgrand . (3.88)

The free energy F = E − TS is given by

F (T,V, µa) = Ω(T,V, µa) + µaNa = −TZgrand + µaNa . (3.89)

3.2.2 Thermal Field theory

The main formal development in this section is the observation that we have to redevelop the concept
of time-ordering when the time is no longer restricted to the real axis, as well as introducing the
path integral representation of Tr[ρ]. After defining time ordering for a curve in the complex t-plane
we can introduce generating functionals to compute thermal correlation functions.

Formally e−βĤ is equal to the Hamiltonian time evolution operator e−iĤt if we allow ourselves
to set t = −iβ. A path integral representation of the density operator is then

e−βĤ =
∫
Dφe−

∫ β
0 dDxL , (3.90)

with unspecified boundary conditions. The trace of the operator is defined via a complete orthonor-
mal basis;

Tr[e−βĤ ] =
∑
i

〈φi| e−βĤ |φi〉 =
∑
i

∫ φi

φi

Dφe−
∫ β

0 dDxL . (3.91)

This actually has a remarkably simple interpretation in terms of the formalism we developed in
section 3.1.4. Let’s say we are completely uninterested in continuing our path integral beyond
Im(t) = −β, so we define the interesting part of the complex plane to lie in the strip 0 ≥ Im(t) > −β.
The completion relation over φi in the integration limit then tells us to glue the integration region
together, leaving us with no boundary conditions, but with the new restriction that the φ must
be periodic in the imaginary time direction, with period β meaning φ(0, ~x) = φ(iβ, ~x). This nice
property of the trace operator is the central observation that lets us do thermal field theory. This
is illustrated graphically in figure 3.3
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Figure 3.3: Path integral representation of Tr[e−βĤ ] via a path integral in imaginary time. Gluing
together the strip 0 ≥ Im(t) > −β using the completion relation

∑
i |φi〉 〈φi| = 1, we see that the

trace is equal to a path integral on the circle. To ensure analyticity of the path integral, the φ in
the path integral must be periodic, meaning φ(0, ~x) = φ(iβ, ~x). This elegant property of the trace
operator is the central observation that lets us do thermal field theory.

In the case where we consider fermionic fields ψ(t, ~x, we obtain an antiperiodicity condition;
ψ(0, ~x) = −ψ(iβ, ~x). This comes about because fermions are represented by anticommuting field
variables, and the upper integration limit of the path integral corresponds to minus the fermion
bra.

The goal is now to analyze thermal Green’s functions defined by

GC(x1 . . . xn) =
〈
TC(φ̂(x1)φ̂(x2) . . . φ̂(xn))

〉
= Tr

[
TC(φ̂(x1)φ̂(x2) . . . φ̂(xn)ρβ)

]
, (3.92)

where TC is the time ordering, and ρβ the density operator of the thermal ensemble under study.
When we allow the time to become imaginary, it is not generally clear what ”time ordering” is
supposed to mean. We can take the time ordering TC to only defined on a curve C. We restrict C
to curves that can be written as a single valued function γ of a single real parameter τ according
to t = γ(τ). We can then define delta- and step functions on the curve according to

θC(t− t′) = θ(τ − τ ′) , δC(t− t′) = δ(τ − τ ′) . (3.93)

We may then define time-ordering on C:

TC(φ̂(x)φ̂(x′)) = θC(t− t′)φ̂(x)φ̂(x′) + θC(t′ − t)φ̂(x′)φ̂(x) . (3.94)

This definition of time ordering ensures that the operator with smallest τ appear on the far right.
Causality then runs in increasing τ . Now we have the necessary tools to construct the path integral
formulation of the thermal Green’s functions, expressing them in terms of a generating functional.
Using that we have defined delta functions on C we can also define a functional derivative

δJ(x′)
δJ(x) = δC(t− t′)δ(~x− ~x′) (3.95)

in analogy with section 3.35. We can then define the generating functional Z[J ] for the thermal
Green’s functions. In analogy with equation (3.34) the generating functional is given by

Z[J ] =
∫
Dφe−i

∫
C dDx[L+J(x)φ(x)] . (3.96)
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The thermal green’s function is then given by

GC(x1 . . . xn) = 1
Z0

(1
i

)n δnZ[J ]
δJ(x1) . . . δJ(xn)

∣∣∣∣∣
J=0

, (3.97)

where Z0 = Z[J = 0]. In the following sections we do not explicitly re-use the curve time-ordering
TC , but we keep in mind its definition to express time ordering in the curve correctly in terms of
ordinary real time-ordering operators.

Let us consider what curves C are allowed. Requiring that all thermal Green’s functions are
analytic with respect to their time arguments x0

i implies in particular

− β ≤ Im(x0
i − x0

j ) ≤ β , ∀i,j . (3.98)

In the following two sections we will discuss two different curves that respect the above condition.
In the first, we choose t = −iτ with τ ∈ [0,β] and real. This imaginary time formalism is interesting
in the sense that all correlators can be computed in a simple manner from the Feynman rules of
the vacuum theory. In principle these solutions can be analytically continued to include Lorentzian
time-separated operators as well, but this is only possible in rare cases where we know the exact
propagators. To cover more general cases, we will then develop the Schwinger-Keldysh formalism,
where mixed signature curves similar to the one in equation 3.72 are allowed.

Real Time Formalism

In the real time formalism, the thermal green’s functions are taken to only be defined for t = −iτ
with τ ∈ [0, β] real. We can see this as a Euclidean time that lives on a circle. This Euclidean time
is often referred to as periodic time or a thermal circle in applications. Bosonic fields satisfy periodic
boundary conditions, and fermionic field satisfy antiperiodic boundary conditions. In particular,
we can Fourier expand bosonic fields φ and fermionic fields ψ according to

φ =
∑
n

ane
iωnτ , ωn = 2πn

β

ψ =
∑
n

bne
iωnτ , ωn = (2n+ 1)π

β
,

(3.99)

where the frequencies ωn are the so-called Matsubara frequencies.
The Green’s functions for the theory are straightforwardly obtained if we know the Feynman

rules of the original theory. This is because we have already generalized the functional derivative
method of computing correlators in such a way that it is structurally exactly the same. Specifically,
the translation from the Feynman rules of the vacuum theory are given by table 3.1.

If we know the Euclidean Green’s function exactly we can analytically continue back to Lorentzian
time to find time-ordered correlators. When doing this, analyticity commonly breaks down once
operator insertions become null separated, a characteristic that we will ues in chapter 4 to iden-
tify thermal correlators. In general we might have only a numerical expression for the Euclidean
Green’s functions. In such a situation it is important to have techniques for computing Lorentzian
time-ordered Green’s functions directly. These techniques are provided by Schwinger-Keldysh for-
malism, in which we consider a path integration region constructed out of segments with different
metric signature.

53



3.2. Thermal Field Theory

Vacuum theory (T = 0) Imaginary Time Formalism (T 6= 0)
Propagator G(k1 . . . kn) →

(
1
i

)n
GE(k1 . . . kn)

Momentum (loop) integrals
∫ ddk

(2π)d f(ω,~k) → −iβ
∑
n

∫ dd−1k
(2π)d−1 f(ωn,~k)

Momentum conservation (2π)dδ(d)(k) → −iβ(2π)d−1δn,0δ
(d−1)(~k)

Table 3.1: Translation of momentum space Feynman rules of the vacuum theory to the thermal
theory at temperature t. In general, this involves a factor of 1

i for every functional derivative
we perform on the generating functional due to the form of the Euclidean action, as well as a
discretization of the energy component of the momentum.

Schwinger-Keldysh Formalism

The Schwinger-Keldysh formalism gives us the tools to directly analyze time-ordered Green’s func-
tion in a thermal state. In particular, we can understand transport processes in which the system
is brought out of equilibrium for a finite time.

In this section, we consider a curve C that runs along the real time axis from ti to tf , then
moves into the lower imaginary half plane to t = tf − iσ, then returns to t = ti − iσ. Finally, the
curve goes out to t = ti − iβ which, due to the trace is identified with t = ti. In this sense, we
have periodic boundary conditions for bosons, and antiperiodic boundary conditions for fermions
along the entire curve. The form of the curve C depends on a free parameter σ which takes values
σ ∈ [0, β].

The action S[φ]6 may be split into four parts, one for each straight piece of C,

S[φ] =
∫
C

dt
∫

dd−1L(φ(t,~x)

=
∫ tf

ti

dt
∫

dd−1L(φ(t,~x))− i
∫ σ

0
dτ
∫

dd−1L(φ(tf − iτ,~x))

−
∫ tf

ti

dt
∫

dd−1L(φ(t− iσ,~x))− i
∫ β

σ
dτ
∫

dd−1L(φ(ti − iτ,~x)) , (3.100)

where we have not explicitly written out the ∂φ dependence of the Lagrangian. Now, we write

φ1(t,~x) ≡ φ(t,~x) , φ2(t,~x) ≡ φ(t− iσ, ~x) . (3.101)

Then, we define the sources for these fields

J1(t,~x) ≡ J(t,~x) , J2(t,~x)J(t− iσ, ~x) . (3.102)

In terms of these fields and sources, the Lorentzian generating functional reads

Z[J1, J2] =
∫
Dφ exp

(
iS[φ] + i

∫ tf

ti

∫
dd−1x(φ1(t,~x)J1(t,~x)− φ2(t,~x)J2(t,~x)

)
, (3.103)

as seen by inspecting the two real-time integral terms in equation (3.100). Since the fields φ1
and φ2 are defined on different lines parallel to the real time axis, they are independent. Varying
the generating functional independently with respect to the two sources we obtain the Schwinger-
Keldysh propagator

iGab(x− y) = i

(
G11(x− y) −G12(x− y)
−G21(x− y) G22(x− y)

)
= 1
i2
δ2 lnZ[J1,J2]
δJa(x)δJb(y)

∣∣∣∣∣
J=0

. (3.104)

6For simplicity of notation we consider only a bosonic field. In what follows, replace commutators by anticommu-
tators for fermions.
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In the operator formalism, we time order along the curve C. This means that the φ2 always come
”later” than the φ1. Additionally, we have to reverse the Lorentzian time ordering for the φ2 since
time runs backwards. We then obtain

iG11(x− y) = 〈T (φ1(x)φ1(y))〉 , iG12 = 〈φ2(y)φ1(x)〉
iG21(x− y) = 〈T (φ2(y)φ1(x))〉 , iG22 = 〈T (φ2(x)φ2(y))〉 ,

(3.105)

where T denotes reverse time ordering. We can relate the components of the Schwinger-Keldysh
propagator to the retarded and advanced Green’s functions GA and GB, defined by

GR(x− y) = −iθ(x0 − y0) 〈[φ(x),φ(y)]〉 (3.106)
GA(x− y) = −iθ(y0 − x0) 〈[φ(y),φ(x)]〉 . (3.107)

To find this relation, let us Fourier transform to momentum space, letting

G(k) =
∫

ddx e−ikxG(x) . (3.108)

Remember that the advanced and retarded Green’s functions are obtained from a momentum
space representation by shifting poles on the real axis either in the positive or negative imaginary
directions. Due to this, we know that in Fourier space GR(k) = G∗A(k). Using this information,
the matrix elements of the Schwinger-Keldysh propagator Gab(k) are given by [24]

G11(k) = Re[GR(k)] + i coth
(
ωβ
2

)
Im[GR(k)] , (3.109)

G12(k) = i
2ie−(β−σ)ω

1− e−βω Im[GR(k)] , (3.110)

G21(k) = i
2ie−σω

1− e−βω Im[GR(k)] , (3.111)

G22(k) = −Re[GR(k)] + i coth
(
ωβ
2

)
Im[GR(k)] . (3.112)

In the AdS/CFT correspondence, black holes are related to thermal states on the gravity side.
Because of this Schwinger-Keldysh contours become important for the holographic study of black
hole physics. We will make the connection between black holes and thermal QFT more clear in
chapter 7.

3.3 The Renormalization Group
In this section the renormalization group is introduced. The renormalization group is an incredibly
powerful tool in studying the high and low energy properties of quantum field theory.

As an example, in quantum field theory we find that in the Lagrangian of quantum electrody-
namics

LQED = ψ(i/∂ + ie /A−m)ψ − 1
4FµνF

µν , (3.113)

the coupling constant e does not represent the electric charge as we know it from experiment. In
general this is due to the fact that some Feynman diagrams of the theory are divergent, meaning
that finite scattering amplitudes are impossible if this e is finite.

To solve the problem of divergent diagrams, we must introduce so-called physical fields ψ0, A0,
setting ψ = Z

1/2
ψ ψ0 where Zψ is some potentially infinite constant. The physical fields and couplings
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correspond to the ones measured in experiment and are finite. In general, the original fields are
called the bare fields, whilst the new ones are called ”physical”. We then make a change of variables
such that the Lagrangian is on the form

LQED =ψ0(i/∂ + ie0 /A0 −m0)ψ0 −
1
4Fµν0F

µν
0

+ ψ0δψ(i/∂ + i /A0)ψ0 − ψ0δmψ0 −
δF
4 Fµν0F

µν
0

=Lphys + Lcounterterms .

(3.114)

The constants δψ, δA, δm and δF are in general infinite, and are chosen via the method of renormal-
ization such that they cancel loop corrections at some energy scale of choice E. In this example we
need four counterterms since we are renormalizing four quantities, the mass, the electric charge, the
electron field ψ and the vector potential A. In general, to make good experimental predictions, we
need to perform an experimental measurement at some controlled energy scale to choose a coun-
terterm that gives the correct physical constants. In renormalizable theories only a finite number
of distinct subdiagrams diverge, meaning that it is possible to fix all of the couplings with a finite
number of experiments.

In this scheme, we only obtain the coupling constant e0 at some particular energy scale E. As
we move away from that scale e0(E) changes in value. As an example: to photons of increasing
energy the electron looks like it has increasing charge. The more general understanding of the
running of the physical coupling constants with energy scale was the work of Kenneth Wilson, with
the introduction of the renormalization group.

The renormalization group bases itself on the idea that the running of the couplings should be
viewed as a dynamical flow in the space of coupling constants as you integrate out high momentum
degrees of freedom. Specifically we compute what happens to the physical coupling g(E) under a
small change of the energy scale E → E + dE, and then we find a differential equation

β(g) = dg
dE , (3.115)

for which we study the behaviour using tools of nonlinear dynamics.
For simplicity of notation, we will do the explicits using a scalar field theory, specifically φ4 as

a simplest possible interacting field theory. The Lagrangian is given by

L = (∂µφ)2 + m2

2 φ2 + g

4!φ
4 , (3.116)

where g is the coupling constant of the interaction. We then introduce an ultraviolet cutoff Λ as our
regularization scheme for the infinities of the theory, meaning we only keep states with some finite
momentum |k| ≤ Λ. Naively it might seem most natural to define the cutoff in Minkowski space,
but the existence of lightlike momenta with |k| = 0 and arbitrarily large components means such a
scheme will not succeed in suppressing divergences. It is therefore best to Wick rotate to Euclidean
time, impose the momentum cutoff on the Euclidean momenta, and analytically continue back to
the Lorentzian case at the end.

Having chosen a regularization, the starting point for Wilson’s renormalization group is the
generating functional

Z[J ] =
∫
Dφe−SE [φ]+

∫
ddxJ(x)φ(x) , (3.117)

where we have Wick rotated to Euclidean signature. We then impose the ultraviolet cutoff Λ on
the Euclidean momentum of the field. After imposing the cutoff the path integral takes the form

Z[J ] =
∫
Dφ|k|<Λe

−SeffE [φ;Λ]+
∫
ddxJ(x)φ(x) (3.118)
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where the path integral measure is given by

Dφ|k|<Λ =
∏
|k|<Λ

dφ(k) , (3.119)

and the Wilsonian effective action SeffE is determined by

eS
eff
E [φ;Λ] =

∫
Dφ|k|>Λe

−SE . (3.120)

In the case of φ4-theory, the effective action is given by the effective Lagrangian on the form

LeffE = Z(Λ)
2 ∂µφ∂

µφ+ m2(Λ)
2 φ2 + g(Λ)

4! φ4 +O
( 1

Λ2

)
, (3.121)

where Z(Λ),m2(Λ), g(Λ) are all finite functions of Λ and the fields φ are the physical (renormalized)
fields. The term O

(
1

Λ2

)
represents higher order terms that arise from loop corrections, compen-

sating for the removal of high k Fourier modes.
Wilson’s approach to the renormalization group then consisted of studying what happens when

we lower the cut-off from Λ to bΛ with b ∈ [0, 1). That is, we integrate out the degrees of freedom
between bΛ < |k| < Λ to obtain a a new effective action

Z[J ] =
∫
Dφ|k|<bΛeS

eff
E [φ;bΛ]+

∫
ddxJ(x)φ(x) , (3.122)

where
Seff
E [φ; bΛ] =

∫
DφΛ>|k|>bΛe

−SeffE [φ,Λ] . (3.123)

In the new effective action at scale bΛ, modes with Euclidean momenta between bλ < |k|Λ
are no longer explicitly present. These degrees of freedom are instead encoded in the coefficients
Z,mg as well as the higher order terms that we suppressed in equation (3.121). It is clear the that
the procedure of integrating out higher momenta is associative, i.e. taking b2 < b1 we can either
first integrate out the momenta Λ and b1Λ, and then between b2Λ and b1Λ or we may simply go
all the way at once, integrating out all the momenta between b2Λ and Λ. This property is why
the renormalization group is called a ”group”. Note that the process of integrating out higher
momentum degrees of freedom is irreversible, so really the renormalization group is only half a
group.

Imposing a cutoff on the momentum roughly corresponds to taking spacetime to be lattice, and
the process of integrating out higher momenta corresponds to increasing the lattice spacing. This
sort of reduction of the degrees of freedom of the theory is called coarse graining, since we are
modelling the continuum spacetime with an increasingly coarse lattice.

The physical idea of the procedure just introduced is to formulate a differential equation in terms
of the parameter b for the evolution of the Λ-dependent couplings. Keeping the finite energy physics
fixed we can then use the differential equation to understand how the Λ-dependent couplings behave
at very high and very low energies. In particular, we talk about the ”flow” induced by the reduction
of the cutoff, as g(Λ) → g(bΛ). The flow of the coupling g is described by the Callan-Symanzik
beta function

β(g(Λ)) = dg(Λ)
db , (3.124)

which describes how the coupling g varies when we integrate out momentum modes. Imagining
that we could instead vary Λ directly, it is clear that

Λdb = dΛ ⇒ db = dΛ
Λ = d(ln Λ) , (3.125)
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letting us write the Callan-Symanzik beta function according to

β(g(Λ)) = dg(Λ)
d ln Λ . (3.126)

Now, without doing anything even remotely explicit we can separate variables and integrate, to
find that

ln Λ− ln Λ0 =
∫ g(Λ)

g0

dg′

β(g′) , (3.127)

where g0 is the coupling constant at the renormalization scale Λ0 that we may obtain from exper-
iment and a subtraction scheme in the usual way. In principle we can (and should) extend this
analysis to the dimensionful couplings of of the theory such as the masses. Usually, we define

γm ≡
1
m

dm
d(ln Λ) , γ ≡ 1

2Z
dZ

d(ln Λ) , (3.128)

where γm and γ are the anomalous dimensions of the mass and field, respectively. The difference
to the case of dimensionless couplings is that the combination m2φ2 is dimensionless when inte-
grated over four dimensions, so the violation of energy scale invariance is measured by how much
the dimensions of φ and m deviate from L−1. The β-functions measure instead how badly the
dimensionless coupling g deviates from having dimension L0.

Generalities of the Renormalization Group Flow

Let us now speak very generally about the renormalization group flow of a single coupling constant
g, and then shortly discuss the case of several couplings gi. Our starting point for the discussion is
the ”master equation”,

ln Λ− ln Λ0 =
∫ g(Λ)

g0

dg′

β(g′) . (3.129)

The behaviour of the coupling constants in its full generality is very complicated, the presence of
β(g) as a nonlinear function of the g’s, makes equation (3.129) a nonlinear integral equation.

In the case where β(g) ∝ gα with α > 1, the RHS of equation (3.129) converges as we take
g(Λ) → ∞. This is called a Landau pole, and means that at some finite energy scale Λmax, the
coupling constant necessarily diverges. This is the case for QED and φ4-theory7. Very interestingly,
the existence of a Landau pole tells us that these theories cannot describe physics in a continuum
spacetime. The standard model contains Landau poles, meaning it cannot describe physics at
arbitrary Λ. This problem of UV incompleteness might be solved by nonperturbative contributions
to the β-functions, a conjecture called asymptotic safety.

For other field theories in which β is positive and β ∝ gα with α ≤ 1, it is clear that Λmax can
go to infinity, although the coupling g does not necessarily stay finite.

Points g∗ in coupling constant space for which the beta function β(g∗) = 0 are referred to as
fixed points. When β(g∗) = 0, and β(g∗ − δ) > 0 with δ positive all lower energy couplings will
flow towards g∗ as Λ→∞. In this case g∗ is called a UV fixed point.

If β(g) is negative for small g then g decreases with increasing Λ, and g = 0 is a UV fixed point.
Such theories are called asymptotically free. Quantum chromodynamics was discovered to have this
property to first order in 1973 by David Gross and Frank Wilczek [25], earning them a Nobel Prize.

As a final note, theories at RG fixed points become scale invariant, since the physical dimen-
sionless couplings become scale independent. It has been shown under some assumptions that this

7At least to first order, which is at risk of being invalid since the couplings blow up.
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necessarily implies full conformal invariance in two and four dimensions. For this reason, it is
believed that the RG flow of for example the Standard Model is a flow between two CFTs, from
the UV fixed point to the IR fixed point of the couplings.

3.4 Conformal Field Theory
The study of conformal field theory (CFT) is motivated on many fronts. It describes condensed
matter systems at criticality8. In addition to this, it is believed that both the low-and high energy
limits of the standard model might be CFTs [26]. Thus, it is clearly very interesting to study CFT
as a possible UV completion of the standard model.

Beyond this older motivation for studying CFT, string theory is described two-dimensional CFT
living on its worldsheet. In addition to this, it was discovered in 1997 that CFT is dual to quantum
gravity via the AdS/CFT correspondence [3].

This section is largely based on section 3.2 in [24]. In this section the Dynkin labels (chiral
spins) of the Lorentz group will be referred to without introduction as these are unimportant for
the rest of the text. There are quick introductions to these ideas in [24].

3.4.1 Conformal Algebra

The conformal group is the set of transformations of space that preserve angles. It is an extension
of the Poincaré group, since rotations and translations are both angle preserving. The additional
structure imposed by the conformal group is local scale-invariance, i.e. invariance under trans-
formations that scale the coordinates xµ → Ω(x)xµ. In a Lorentzian spacetime, the conformal
transformations become the most general possible transformations that locally preserve causality.
In particular, spacelike separated points remains spacelike separated and timelike separated points
remain timelike separated.

Let us now consider a spacetime with a metric gµν(x) given by ds2 = gµν(x)dxµdxν . Then,
conformal transformations can be seen as the transformations that leave the metric invariant up to
a positive function, i.e.

gµν → Ω(x)−2gµν(x) ≡ e2σ(x)gµν(x) . (3.130)
Such a transformation changes the length of the infinitesimal line element by ds′2 = e2σ(x)ds2, but
angles are preserved since we are not mixing any eigenvectors of the metric. Note that picking
Ω = 1 implies the Poincaré group, so the conformal group is a direct extension.

Now, let us determine the conformal transformations for a flat spacetime, with the metric ηµν .
For an infinitesimal transformation xµ → xµ + ηµ(x) we find that

ηµν →
∂x′ρ

∂xµ
∂x′σ

∂xν
ηρσ = ηµν + ∂µεν + ∂νεµ +O(ε2) . (3.131)

Using the definition of a conformal transformation, we find that if we want equality to first order
between equation (3.130) and equation (3.131) we obtain

∂µεν + ∂νεµ = 2σ(x)ηµν . (3.132)

Contacting both sides with ηµν and using ηµνηµν = d we find that

∂µε
µ = d · σ(x) , (3.133)

8When a condensed matter system undergoes a phase transition, the correlation length blows up and the system
becomes scale invariant (reflected by the β-functions of the renormalization group going to zero). It is then well
described by a CFT.
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where d is the spacetime dimension. Combining these equations to cancel σ(x) we find

∂µεν + ∂νεµ = 2
d
ηµν∂ · ε , (3.134)

which is called the conformal Killing equation, since its solutions span the set of Killing vectors of
a conformally symmetric theory.

Conformal Algebra for d = 2

In the case when d = 2 the conformal Killing equation (3.134) is remarkably simple. To find this,
we Wick rotate to Euclidean coordinates, letting t→ −iτ , making the metric positive definite. The
conformal Killing equation then becomes three component equations. Two of these turn out to be
equivalent, and we have

2∂0ε0 = (∂0ε0 + ∂1ε1)
⇒ ∂0ε0 = ∂1ε1

and ∂1ε0 = −∂0ε1

(3.135)

with the equation for the 11 component equivalent to the 00 component of the equation. This is
identified as the Cauchy-Riemann equation of complex analysis if we identify ε0 as the real part and
ε1 as the imaginary part of a complex valued function, and x0, x1 as the real and imaginary parts of
a complex number. It is convenient to introduce the complex coordinates z = x0 +ix1, z = x0−ix1.
Back in the Lorentzian spacetime, z corresponds to the forward lightcone coordinate t + x, and z
corresponds to the backward lightcone coordinate t− x.

With this choice of coordinates ε(z) = ε0 + iε1 is a function of z and holomorphic. We can also
define the antiholomorphic function ε(z) = ε0−iε1, which depends only on z. All (anti)holomorphic
functions admit a Laurent expansion according to

ε(z) = −
∑
n∈Z

εnz
n+1 , ε(z) = −

∑
n∈Z

εnz
z+1 . (3.136)

The infinitesimal transformation is now given by z → z+ ε(z) and z → z+ ε(z). The generators of
a conformal transformation where the coefficients εn, εn are only nonzero for a single value n = k
are given by

lk = −zk+1∂z , l = −zk+1∂z . (3.137)

To see that these are indeed the generators, consider that to first order a translation is proportional
to the first derivative ∂z, we then have to multiply by zk+1 since ∂zε(z) at some particular value of
z is just a number. Lastly, we need a minus sign because the ε are defined as minus the sum over
coefficients.

The commutation relations of the conformal algebra are given by

[ln, lm] = (zn+1∂zz
m+1∂z)− (zm+1∂zz

n+1∂z)
= (m+ 1)(zn+1zm∂z)− (n+ 1)(zm+1zn∂z)
= (m− n)zm+n+1∂z

= (m− n)lm+n

[ln, lm] = (m− n)lm+n

[lm, ln] = 0 .

(3.138)

Notably, the generators {l−1, l0, l1} and their complex conjugates together generate the subalgebra
sl(2,R)⊕sl(2,R) corresponding to global conformal transformations. Analogs of these will reappear
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εµ(x) σ(x) Generator
Translation aµ 0 Pµ

Lorentz transformation ωµνx
ν , ωµν = −ωνµ 0 Jµν

Dilatation λxµ λ D
Special conformal transformation bµx2 − 2(b · x)xµ −2(b · x) Kµ

Table 3.2: Set of conformal transoformations in d > 2 dimensions

in the higher dimensional case. The rest of the conformal generators in two dimensions do not have a
counterpart in higher dimensions, and it is the presence of this large amount of extra symmetry that
makes 2d CFT especially tractable (among field theories). We will further develop two-dimensional
CFT in section 3.4.4.

3.4.2 Conformal Algebra for d > 2
The conformal Killing equation (3.134) in d > 2 dimensions has the general solution

εµ(x) = aµ + ωµνx
ν + λxµ + bµx2 − 2(b · x)xµ (3.139)

where the scalar product denotes the contraction b · x = xµb
µ. All of the parameters in equation

(3.139) have a finite number of components, so we find that in d > 2 dimensions the conformal
algebra is finite dimensional, unlike the d = 2 case. The parameters each have a geometric inter-
pretation, given in table 3.2.

The generators of the translations aµ are given by the momenta Pµ, the generators of the Lorentz
boosts ωµν will be denoted Jµν , the dilatation (scale by λ) generator is D, and the generator of the
special conformal transformations is Kµ. The full commutation relations of the conformal algebra
are then given by

[Jµν , Jρσ] = i
(
ηµρJνσ + ηνσJµρ − ηµσJνρ − ηνρJµσ

)
[Jµν , Pρ] = −i

(
ηµρPν − ηνρPµ

)
[Jµν ,Kρ] = i

(
ηµρKν − ηνρKµ

)
[D,Pµ] = iPµ

[D,Kµ] = −iKµ

[D,Jµν ] = 0
[Kµ,Kν ] = [Pµ, Pν ] = 0

[Kµ, Pν ] = −2i(ηµν − Jµν) .

(3.140)

It turns out that the conformal generators can be grouped in such a way that the conformal algebra
is isomorphic to so(d,2). The generators in so(d,2) are denoted JAB = −JBA, A ∈ [0,1 . . . ,d+1] and
fulfill the same commutation relation as the Jµν with η replaced by η = diag(−1,1, . . . ,1,−1). This
is found by identifying Jµν ≡ Jµν . For the remaining 2d + 1 generators, Jµd, Jµ(d+1) and Jd(d+1)
we need to express them in terms of Pµ,Kµ and D. Incidentally, Pµ,Kµ and D happen to have a
total of 2d + 1 components. The generator Jd,d+1 must be invariant under Lorentz transforms in
the first d indices (µ = 0, . . . , d−1)), i.e. it must commute with Jµν . One of our generators already
fulfills this, so we can identify

Jd,d+1 = −D . (3.141)
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Similarly, Jµd and Jµ(d+1) have one free vector index that transforms as a tensor under d-dimensional
Lorentz boosts, so Jµd and Jµ(d+1) must be linear combinations of Kµ, Pµ. To derive the precise
relation, we just make a linear combination ansatz on the form Jµd = APµ + BKµ and check the
commutation relations to determine the constants. We omit this (rather messy) exercise in algebra
and state the result

Jµd = 1
2(Kµ − Pµ) , Jµ(d+1) = 1

2(Kµ + Pµ) . (3.142)

What we have shown is then that the conformal group in a flat spacetime with signature (d−1, 1)
is described by the symmetry algebra so(d, 2). No step in the previous derivation depends on the
explicit choice of signature for ηµν , so the conformal group in a general spacetime with p spacelike
dimensions and q timelike dimensions is represented by SO(p+ 1, q + 1).

Finite Transformations

We have now fully characterized the infinitesimal properties of the conformal group in d > 2 dimen-
sions. Let us now turn our eyes to finite transformations. Of interest are the scale transformations,
special conformal transformations and the inversion

xµ → λxµ , (3.143)

xµ → xµ + bµx2

1 + 2b · x+ b2x2 , (3.144)

xµ → xµ

x2 . (3.145)

The special conformal transformation and inversions are not globally defined, since they have
singularities at 1 + 2b · x + b2x2 = 0 and x2 = 0 respectively. In order to have globally defined
conformal transformations we need to add ”points at infinity” to our spacetime. In technical terms,
this is called considering the conformal compactification of Rd−1,d, meaning essentially that we
take the infinities to actually be part of our set, such that we are considering a compact (infinite)
manifold. This is a Lorentzian analog of the Riemann sphere of complex analysis.

The inversion is the only finite transformation that is not obtainable by integrating infinitesimal
transforms, since it is not connected to the identity. Any overall transformation that involves two
inversions is connected to the identity, as an example the special conformal transformation can be
written as a combination of two inversions and a translation.

For any conformal transformation we may define

Rµρ(x) = Ω(x)∂x
′µ

∂xρ
. (3.146)

It is straightforward to see that Rµρ(x) is a local Lorentz transform, since

Rµρ(x)Rνσ(x)ηµν = Ω2∂x
′µ

∂xρ
∂x′ν

∂xσ
ηµν = ηρσ , (3.147)

remembering the definition of Ω(x) in terms of the scaling of η under conformal transformations
given by equation (3.130). This will be useful for the construction of the conformal correlation
functions. For the inversion x′µ = xµ/x2 we have

Ω(x) = x2 (3.148)
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and the local Lorentz transformation is given by

Rµν = x2
(
δµν

x2 − 2x
µxν

x4

)
= ηµν − 2x

µxν

x2 ≡ Iµν(x) , (3.149)

where we have defined the inversion matrix Iµν(x). For two-points x, y we have that

Iµν(x′ − y′) = Rµρ(x)Rνσ(y)Iρσ(x− y) (3.150)

since the R are linear and preserve the metric ηµν . In particular this implies that the scalar (x−y)2

must transform in the following fashion

(x′ − y′)2 = (x− y)2

Ω(x)Ω(y) . (3.151)

In addition we can use the inversion to define a vector that transforms nicely under conformal
transformation. The vector Zµ is defined in the point z and is constructed from three points x,y,z
according to

Zµ = xµ − zµ

(x− z)2 −
yµ − zµ

(y − z)2 , (3.152)

and it squares to

Z2 = (x− y)2

(x− z)2(y − z)2 . (3.153)

Under a conformal transformation the vector Zµ transforms covariantly, i.e. it transforms by a
scaling plus times a local boost:

Z ′µ = Ω(z)RµνZν . (3.154)

Similar vectors defined at the points x, y may be obtained via cyclic permutation.

3.4.3 Conformal Field Theory in General Dimension

With the characterization of the conformal algebra out of the way, we can now do field theory. In
order to construct the representation of the conformal group in a field theory of general dimension
we use the method of induced representations. The recipe is as follows; first we determine the
properties of the fields φ(x) at x = 0, then we can use the momentum operator Pµ to translate the
argument to an arbitrary point in spacetime to find the general transformation rule. We consider
fields φ of arbitrary spin.

Fully solving CFTs in d > 2 is in general not possible unless we introduce additional symmetries
to further constrain the theory, such as supersymmetry. The best we can do is use this method of
induced representations to get some restrictions on the form of correlation functions. The greatest
weakness of this approach is that since we are not coming from a canonical quantization, we have no
idea if the quantum operators we specify are compatible with a unitary quantum theory. Despite
this we can still gain enough a great deal of information about the behaviour of general CFTs.
In addition, as we will learn in the next chapter, entanglement entropy can be computed without
reference to the precise field content of the theory.

Let us first remind ourselves of what happens when we promote φ to an operator. Before, in
terms of some generator Ta, the field transformed as

φ→ φ′ = e−iTax
a
φ = φ(x)− iTaxaφ+O(x2) ≡ φ+ δTφ . (3.155)
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But an operator φ̂ transforms under a change of basis according to

φ̂→ φ+ δTφ = e−iTax
a
φ̂eiTax

a
. (3.156)

Thus, to first order in the parameter x we find that

δT φ̂ = xa(−iTaφ̂+ iφ̂Ta) = −ixa[Ta, φ] , (3.157)

but −ixa is just the argument generating the finite transformation, dividing it off, we can write for
infinitesimal transformations

δT φ̂ = [T, φ̂] , (3.158)

meaning that the infinitesimal transformation of φ̂ is proportional to [T,φ]. In proceeding, we drop
the hats on operators, keeping in mind that we should treat all objects as Heisenberg operators.

For the d-dimensional Lorentz transformations we postulate that

[Jµν , φ(0)] = −Jµνφ(0) (3.159)

where Jµν is some finite-dimensional representation of the Lorentz group. In addition we postulate
that

[D,φ(0)] = i∆φ(0) , (3.160)

implying that φ transforms under dilatations as

φ(x)→ φ′(x′) = λ−∆φ(x) . (3.161)

We call ∆ the scaling dimension of φ. Specifically, all fields that transform under an irreducible
representation of the conformal group must be eigenstates of the dilatation operator D. In radial
quantization, which will be introduced in section 3.4.4, this is motivated by the fact that the dilation
operator generates radial (time) translation, meaning it is the Hamiltonian.

By way of gauge fixing, it is sufficient to consider only conformal primary fields φ that are
defined to satisfy the commutation relation

[Kµ, φ(0)] = 0 . (3.162)

We can then show that Pµ increases the scaling dimension of φ by considering the commutator

[D,Pµφ(0)] = Pµ[D,φ(0)] + [D,Pµ]φ(0)
= iPµ∆φ(0) + iPµφ(0)
= i(∆ + 1)Pµφ(0)

(3.163)

In a similar fashion we find that Kµ decreases the scaling dimension of φ. Based on equation (3.162)
we see that the conformal primaries are of lowest possible scaling dimension in a given conformal
multiplet. All other fields are descendants of this multiplet, obtained by acting with Pµ on the
conformal primary.

At this point we have the transformation properties of the field at x = 0. Let us now introduce
the translation operator T (a) = e−iPµa

µ which acts on operators according to

T (a)φ(0)T −1 = φ(a) . (3.164)
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The infinitesimal variation of the field generated by for example Pµ at x is

δPφ = [Pµ, φ(x)]
= [Pµ, e−iPµx

µ
φ(0)eiPµxµ ]

= Pµe
−iPσxσφ(0)eiPρxρ − e−iPσxσφ(0)eiPρxρPµ

= i∂µ(e−iPµxµφ(0)eiPµxµ) .

(3.165)

It is similarly possible to deduce the remaining commutation relations for a conformal primary field
φ(x),

[Pµ, φ(x)] = −i∂µφ(x) ≡ Pµφ(x) ,
[D,φ(x)] = −i∆(x)φ(x)− ixµ∂µφ(x) ≡ Dφ(x)

[Jµν , φ(x)] = −Jµνφ(x) + i(xµ∂ν − xν∂µ)φ(x) ≡ J̃µν ,

[Kµ, φ(x)] =
(
i(−x2∂µ + 2xµxρ∂ρ + 2xµ∆)− 2xνJµν

)
φ(x) ≡ Kµφ(x) .

(3.166)

The new operators Pµ,D, J̃µν ,Kµ can once again be combined to form a representation of so(p +
1,q + 1) i.e. a representation of the conformal algebra in p+ q dimensions.

The general transformation x → x′ = x + ε(x), with ε given as in equation (3.139) now takes
the form

δεφ(x) = −εµ∂µφ(x) = −
(
ε · ∂ + ∆

d
∂ · ε− i

2∂µενJ
µν
)
φ(x) . (3.167)

Unitarity Bound on CFTs

Due to something called the unitarity bound, there is a lower bound on the scaling dimension ∆ of
the field φ. Finding the unitarity bounds is in general not easy, so we will just state them here.

Let us consider the subalgebra so(1,1) ⊕ so(3,1) ∈ so(4,2) of the conformal algebra, corre-
sponding to dilatations and Lorentz transformations9. Additionally consider the decomposition of
so(3,1) = su(2)L ⊕ su(2)R where the subscripts denote chirality.

We may then label the representations in this subalgebra by (∆, jL, jR) where ∆ is the scaling
dimension and jl, jr the spin of the corresponding su(2) representations in which a general field
may transform. In terms of these quantities, the unitarity bounds in 3 + 1 dimensions are given by

∆ ≥ 1 + jL for jR 6= 0
∆ ≥ 1 + jR for jL 6= 0
∆ ≥ 2 + jL + jR for both jR, jL 6= 0

(3.168)

Some specific unitarity bounds are given as follows:

• Scalar fields transform in (∆,0,0) and thus must have ∆ ≥ 1

• A chiral spinor transforms in either (∆,1/2,0) or (∆,0,1/2) and must have ∆ > 3/2.

• A vector transforms in (∆,1/2,1/2) and we find ∆ ≥ 3.

• A symmetric traceless tensor transforms in (∆,1,1) and we have ∆ ≥ 4.

9To see this, consider that so(1,1) has only one element, sitting in the Jd(d+1)
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In general dimension, the unitarity bounds for scalars, spin 1/2 and spin s respectively are10

∆ ≥ d

2 − 1 ,

∆ ≥ d− 1
2 ,

∆ ≥ d+ s− 2 .

Conserved Charges of the CFT

Conformal symmetry is a continuous symmetry, and therefore Noether’s theorem applies. For the
translations the conserved current is the stress-energy tensor Tµν , while for the Lorentz boosts we
have Nµνρ = xνTµρ − xρTµν . The associated charges are the momenta and angular momenta

Pµ =
∫
dd−1xT 0

µ , Mµν =
∫

dd−1x (xµT 0
ν − xνT 0

µ) . (3.169)

The scale and special conformal transformations give rise to the conserved currents

JDµ = xνTµν , JKµν = x2Tµν − 2xνxρTµρ . (3.170)

The charges that generate the symmetries are then

D =
∫

dd−1xxρT 0
ρ ,

Kν =
∫

dd−1x
(
x2T 0

ν − 2xνxρT 0
ρ

)
.

(3.171)

Since all of these charges are conserved, we have some serious restrictions on the stress-energy
tensor Tµν . It should be familiar that the restriction on the stress tensor from the Poincaré charge
conservation is just that it is symmetric. In addition to this, scale invariance requires that the
stress-energy tensor must be traceless. To see this, just impose conservation on JDµ:

0 = ∂µJDµ = ∂µ(xνTµν) = = (∂µxν)︸ ︷︷ ︸
δµν

Tµν + xν(= ∂µTµν︸ ︷︷ ︸
0

) = T ρρ . (3.172)

The restriction due to conservation of Kν is not as elegant, so we do not state it here.

Correlation Functions

Thanks to conformal symmetry, the correlation functions of a conformally symmetric theory may
be found without resorting to perturbation theory. This is due to the fact that the resulting Ward
identities heavily restrict the form of two-, three- and four-point correlators.

The invariance of the action under symmetry transformations leads to the Ward identity (3.52)
for correlation functions. Specifically, we find the dilatation Ward identity

n∑
i

(
xµi

∂

∂xµi
+ ∆i

)
〈φ1(x1) . . . φi(xi) . . . φn(xn)〉 = 0 , (3.173)

with ∆i the scaling dimension of the field φi. We will now consider scalar fields, and then move on
to more general conformal primary operators.

10These are given at the end of section 3 in [27].
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Let us consider the two-point correlator for conformal primary scalar fields, abbreviating φ1(x1) =
φ1. Then the dilatation ward identity implies that

〈φ1φ2〉 −−−−→
x→λx

λ∆1+∆2〈φ1φ2〉 . (3.174)

Poincaré invariance additionally tells us that the two-point correlator can only depend on (x1−x2)2,
so the general two-point correlator is just

〈φ1φ2〉 = Cφ1φ2

(x1 − x2)∆1+∆2
, (3.175)

where here we have abbreviated ((x1−x2)2)(∆1+∆2)/2 = (x1−x2)∆1+∆2 and we will keep doing so.
Additionally, we showed in equation (3.151) using the inversion symmetry that

(x′ − y′)2 = (x− y)2

Ω(x)Ω(y) . (3.176)

For consistency we then see that equation (3.175) can only hold if ∆1 = ∆2. Moreover we expect
the constant Cφ1φ2 to be symmetric under the exchange 1 ↔ 2. We can then diagonalize Cφ1φ2

in the space of conformal primary scalar operators O such that it is only nonzero for conjugated
operators O,O†. Rescaling the operators we can set COO† = 1 and we find that for a scalar
conformal primary operator O of scaling dimension ∆ that

〈O(x1)O†(x2)〉 = 1
(x1 − x2)2∆ . (3.177)

Similarly, the three point function for the conformal primary scalar operators Oi with scaling
dimensions ∆i reads

〈O1O2O3〉 = CO1O2O3

(x1 − x2)∆1+∆2−∆3(x2 − x3)∆2+∆3−∆1(x3 − x1)∆3+∆1−∆2
, (3.178)

where the coefficient CO1O2O3 is nontrivially constrained by the Ward identites.
In the more complicated case of arbitrary conformal primary operators OI where I denotes

indices on which a representation of the orthogonal group O(p,q) acts. Possible examples in d = 4
are the vector current Jµ and the energy-momentum tensor Tµν that transform in the (1/2,1/2)
and (1,1) representations of O(3,1) respectively. It is very tedious to work out, on a case-by-case
basis what the correlators look like for each nonscalar operator. Nonetheless we can once again use
the somewhat high-brow method of induced representations to obtain some useful results.

Remember that we could write anyO(p,q) transformation via the local operatorRµν = Ω(x)∂x′µ∂x′ν .
Let D(R)IJ denote the appropriate representation of the local boost/rotation operator R acting
on OJ . Then a general conformal primary operator transforms as

OI → Ω(x)∆D(R(x))IJOJ . (3.179)

It is now possible to construct conformally covariant two-point correlators. For a field O trans-
forming as in equation (3.179) we can once again diagonalize the two-point constant so that it is
only nonzero when O is paired with its conjugate O that transforms in the conjugate representation
O → Ω∆OI(D(R)−1)IJ . For general O, O living in irreducible representations of O(p,q) we can
write

〈OI(x)OJ(y) = CO
(x− y)2∆D(I(x− y))IJ , (3.180)
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where I(x−y) is the inversion defined in equation (3.150) and CO is an overall constant that like in
the previous case can be set to 1 by redefining the operators. The presence of I(x−y) is essentially
because it has the appropriate transformation properties in the indices I, J while also depending
only on the Poincaré invariant (x− y).

As examples, let us consider the conserved currents JDµ and Tµν , which transform in the
fundamental representation of the O(p,q) group. The conserved currents were defined in equations
equation (3.169) and onward in terms of d-1 dimensional integrals. In order to cancel to cancel
the integration measures and eventual extra factors of x, Pµ, JDµ and Tµν must have conformal
weights d− 1, d− 1 and d respectively. In combination with this, equation (3.180) tells us that for
any conserved vector current,

〈Jµ(x)Jν(y)〉 = CJ
(x− y)2(d−1) Iµν(x− y) , (3.181)

and for the stress tensor
〈Tµν(x)Tρσ(y)〉 = CT

(x− y)2dI
T
µν,ρσ , (3.182)

where
ITµν,ρσ = Iµα(x− y)Iνβ(x− y)

(1
2(δαρ δβσ + δβρ δ

α
σ )− 1

d
ηρση

αβ
)
, (3.183)

in which the last term projects onto tensors symmetric and traceless in ρσ to enforce the symmetric
tracelessness of Tρσ in the LHS. Since the projector is also symmetric traceless in the indices αβ
we find that it also enforces symmetric tracelessness in µν.

By using the conformally covariant vector Z defined in equation (3.152) it is possible to construct
the general three-point correlator for conformal primary fields. The most general form of this
expression reads

〈OI1OJ2OK3 〉 = D1(I(x− z))I I′D2(I(y − z))JJ ′tI
′J ′K(Z)

(x− z)2∆1(y − z)2∆2
(3.184)

where once again D denotes the appropriate representaion of O(p,q) acting on the operators. The
function tI′J ′K(Z) is an arbitrary function that has to satisfy

tI
′J ′K(λZ) = λ∆3−∆1−∆2tI

′J ′K(Z) , (3.185)

as well as
D1(R)I I′D2(R)JJ ′D1(R)KK′tI

′J ′K′(Z) = tIJK(RZ) . (3.186)
These conditions are sufficient to ensure that the three-point correlator satisfies the conformal Ward
identity equation in (3.173). A particularly interesting case is that of three conformal primary scalar
fields, for which

t(Z) = CO1O2O3

((x− z)(y − z)
(x− y)

)∆1+∆2−∆3

(3.187)

is the most general t that satisfies equation (3.185) and equation (3.186). Inserting equation (3.187)
into the three-point-function defined in equation (3.184) it is straightforward to see that it simplifies
to equation (3.178) since the scalars transform in the trivial representation of O(p,q).

The scalar t(Z) is significant because it generically represents the leading order term in the
operator product expansion:

OI1OJ2 ∼
1
CO3

tIJK(x− y)O3K (3.188)

where CO3 is the coefficient of the 〈O3O3〉, two-point function. In addition, reproducing this form
of the three-point function is an important check of the AdS/CFT correspondence as we will see in
section 6.2.1.
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3.4.4 Advanced Topics in 2d CFT

In this section we specialize once again to 2d CFTs. 2d CFTs have an infinite number of symmetries,
and therefore enjoy very severe restrictions under the conformal Ward identities. This means that
two dimensional CFT is especially good for explicit results. We will be using examples in 2d CFT
in a number of cases in the future chapters on entanglement in field theory, string theory and the
AdS/CFT duality.

We found before that the conformal algebra in two dimensions takes the form of two copies of
the Weyl algebra, with generators lm, lm and commutation relations given by

[ln, lm] = (m− n)lm+n

[ln, lm] = (m− n)lm+n

[lm, ln] = 0 .
(3.189)

Upon quantization, the conformal algebra acquires a central charge and turns into the Virasoro
algebra, with commutation relations given by

[Ln, Lm] = (m− n)lm+n + c

12(m3 −m)δm+n,0

[Ln, Lm] = (m− n)lm+n + c̃

12(m3 −m)δm+n,0

[Lm, Ln] = 0 .

(3.190)

We will discover the appearance of the central charge by requiring that the symmetries of the
quantum theory are generated by the quantum conserved charges later in this section.

Holomorphic Stress-Energy Tensor

Remember that the conformal generators in 2d were formulated in terms of the complex coordinates
z = t+ ix and z = t− ix, and that they are related to forward and backward light-cone coordinates
by a Wick rotation. Let us furthermore define holomorphic derivatives

∂z ≡ ∂ = 1
2(∂t − i∂x) , ∂z ≡ ∂ = 1

2(∂t + i∂x) (3.191)

that fulfill ∂z = ∂z = 1 and ∂z = ∂z = 0. The Euclidean metric becomes

gzz = gzz = 0 , gzz = 1
2 , (3.192)

analogously to how the metric becomes off-diagonal in lightcone coordinates in Minkowski space.
Note that lowering a holomorphic index z makes an antiholomorphic index z.

The tracelessness of the stress energy tensor Tµµ = 0 becomes Tzz = 0, since the stress-energy
tensor is symmetric and the trace is defined by gαβTαβ. The conservation equation for the stress-
energy tensor

∂µT
µν = 0 (3.193)

then takes the form
∂T zz = ∂T zz = 0⇒ ∂Tzz = ∂Tzz = 0 . (3.194)

In other words, Tzz can be any holomorphic function, and Tzz can be any antiholomorphic function.
It is sometimes practical to write these simply as Tzz ≡ T (z) and Tzz ≡ T (z).

69



3.4. Conformal Field Theory

Radial Quantization

A remarkably elegant way of quantizing CFTs exists in two dimensions. In fact, this radial quan-
tization can be formulated in any d-dimensional CFT whose manifold can be conformally mapped
to R ⊗ Sd−1 (x ∈ [0,2π) and t ∈ [−∞,∞]), but we will specify to the 2d case. Here, the radial
coordinate plays the role of time, with the infinite past at the center and the infinite future in the
point at infinity.

By performing a conformal transformation, i.e. letting z → f(z) where f is a holomorphic
function we can pick new coordinates, calling them by the same name as before, according to

z = e2(τ+ix) and z = e2(τ−ix) (3.195)

so that the infinite past τ = −∞ is mapped to the origin of the plane, and the point at infinity
becomes the infinite future. In addition, we will find it very practical that the coordinate x becomes
only a phase. Note that e2(τ+ix) is a holomorphic function of the previous coordinate z = τ + ix, so
we only change the metric by a real prefactor. This can be easily removed by a Weyl transformation.

Remember that the stress energy tensor is the conserved charge that arises from Noether’s
theorem due to translation invariance. A general coordinate transformation that leaves a CFT
invariant is of the type

z → z + ε(z) , z → ε(z) , (3.196)
as we found in section 3.4.1, where ε and ε are general holomorphic/antiholomorphic functions,
respectively.

Going to the quantum theory, we require that the symmetry transformations are generated
by their corresponding conserved charges. The classical translation generator is ∂µ and the corre-
sponding conserved charge is

Pµ =
∫

dxT 0
µ . (3.197)

To go to the quantum version of our classical symmetry algebra we would like to take ∂ → Pz and
∂ → Pz. Thanks to our choice of radial coordinates this becomes very elegant, the momentum
operator becomes an integral around a circle of constant radius, where the radius is the Euclidean
time, which we indicate in the integrand by saying the integral around the circle

∮
is centered on

z = 0 according to
Pz = 1

2πi

∮
z=0

dzT (z) , (3.198)

and similarly for Pz. This is nonzero because T (z) is a meromorphic function.
When we go to the quantum theory, the conformal ln generators turn into the Virasoro gener-

ators Ln. Let us first consider the case l−1 = ∂. The corresponding Virasoro generator becomes

l−1 = −∂ → L−1 = − 1
2πi

∮
dz T (z) . (3.199)

For general n, we observe that for any conformal transformation acting as a translation z → z+ε(z),
we get a conserved current ε(z)T (z). The Ln generate the transformations z → z+ εnz

n+1. Setting
εz = εnz

n+1 and dividing off the parameter εn we see that for consistency between the expressions
the correct expression for the Virasoro generators in terms of the stress energy tensor is

Ln = 1
2πi

∮
z=0

dz zn+1T . (3.200)

Note that we have yet to establish any difference between Lm and lm. We will in the following
sections make the difference transparent by considering the general form of the two-point correlator
〈T (y)T (z)〉. This expectation will then be plugged into the definition of the Virasoro generators to
find that there is an extra term in their commutation relation compared to the classical case.
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2D Conformal Ward Identity

The conformal Ward identity in general form reads

∂µ〈Jµ(y)O1(x1) . . .On(xn)〉 =
∑
i

δ(y − xi)〈O1(x1) . . . δOi(xi) . . .On(xn)〉 , (3.201)

however in two dimensions we can rewrite this using Stokes’ theorem (in general dimensions, we may
rewrite in a similar way by singling out ’radial’ and ’time’ coordinates). First, we remember that
this identity should be under an integral, and then we realize that the only nonzero contributions
to the integral comes from when the integration variable y coincides with the xi in the RHS. Then,
we only need to perform our integration over some possibly disconnected region V such that all
xi ∈ V . Stokes theorem then tells us that∫

V
d2y ∂µ〈Jµ(y)O1(x1) . . .On(xn)〉 =

∮
∂V

dy nµ〈Jµ(y)O1(x1) . . .On(xn)〉 (3.202)

where nµ is a unit normal to the boundary of the region. Picking the boundary to be a spatial
slice of the region, adding the point at infinity since we are in a conformal compactification of
Minkowski, this surface is closed, we find that n = (τ,0) and this is just an integral over the x-axis
at some time t.

In radial coordinates equation (3.202) takes the form

i

2π

∮
∂V

dz 〈Jz(z, z)O1(σ1) . . .On(σn)〉 − i

2π

∮
∂V

dz 〈Jz(z, z)O1(σ1) . . .On(σn)〉

=
∑
i

〈O1(σ1) . . . δ(σi − (zi, zi))Oi(σi) . . .On(σn)〉 ,
(3.203)

where the integral over x has become an integral over a circle since the coordinates are related by
z = e2(τ+ix), z = e2(τ−ix). Note that an integral in increasing x results in the z and z contour
integrals running in opposite directions, so upon integration they will contribute with the same
sign.

We can further divide the integration region into disjoint patches around each σi, and get
something like equation (3.203) with no sum on the on the RHS and V a small region around
σi. For currents that are generated by the conformal transformations, Jz is holomorphic and Jz is
antiholomorphic, which means that the contour integral only picks up the residue;

i

2π

∫
δV

dzJz(z)O1(w) = −Resw[JzO1] . (3.204)

As z → w, any pair of CFT operators may be expressed as an operator product expansion. The
result of this integral tells us that the OPE between the two operators is of the form

Jz(z)O1(w,w) = . . .+ Res[JzO1]
z − w

+ . . . , (3.205)

meaning that given the OPE we may compute the residue and given the residue we know a term
in the OPE.

Let us now specify Jz(z) to be the current associated with the infinitesimal conformal transfor-
mations δz = ε(z). The associated conserved charge is ε(z)T (z), and since this charge generates
the translation of an operator, we must have that

δε〈O1(w,w)〉 = 〈ε(z)T (z)O1(w,w)〉 = −Res(ε(z)T (z)O1(w,w)) . (3.206)
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Similarly, for a transformation δz = ε(z) we find

δεO1(σ1, σ1) = −Res(ε(z)T (z)O1(σ1,σ1)) . (3.207)

Equations (3.206)-(3.207) tell us that for any operator O, if we know the OPE between O
and the components T (z), T (z) of the stress tensor this completely determines the transformation
properties of the operator O. This is because we care only about how operators transform inside
correlation functions and the correlations functions are only sensitive to the singular terms of the
OPE. Conversely, if we know how an operator transforms under conformal transformations, i.e.
δεO, we automatically know part of its OPE with T and T .

Let us finish this section with a quick reminder on how to compute residues. The residue of an
expression is found as follows

Res[ f(z)
(z − w)n ] = 1

(n− 1)!
∂n−1

∂zn−1 f(z)
∣∣∣
z=w

. (3.208)

Let us now use these results to explore the operator product expansions between common CFT
field operators.

Operator Product Expansions

All operators transform under translations (δz = ε = constant) as

O(z − ε) = O(z)− ε∂O(z) . . . , (3.209)

telling us that the OPE of any operator O with T is on the form

T (z)O(w,w) = . . .
∂O(w,w)
z − w

+ . . . . (3.210)

In two dimensions, the field φ is called a conformal primary field of conformal dimension (h,h̃) if

φ(z,z)→
(
∂w

∂z

)h (∂w
∂z

)h̃
φ(w,w) (3.211)

under conformal transformations z → w(z). The conformal dimensions h,h̃ are the 2d analog of
the single scaling dimension ∆ of the arbitrary dimensional theory.

Infinitesimally, we see that a primary field transforms under (w,w)→ (w,w) + ε(w,w) as

δεφ(w,w) = h(∂ε(w))φ(w,w) + ε(w)∂φ(w,w) . (3.212)

Equation equation (3.208) then tells us that the OPE of T (z)φ(w,w) as z → w must be

T (z)φ(w,w) = h

(z − w)2φ(w,w) + 1
z − w

∂φ(w,w) (3.213)

so that the residues of the OPE reproduce the transformation δε〈φ(w,w)〉. It is straightforward to
see that an analogous property holds for z → w(z) in terms of h̃. This completely determines the
transformation properties of conformal primary operators.

The stress-energy tensor is not a primary operator, but it has conformal weight 2. To understand
this, realize that the total energy at a given time has conformal dimension 1 since [E] = L−1. In
turn, the total energy is an integral of the stress tensor over a spatial slice. In addition, the stress
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tensor has spin 2 since it is a symmetric tensor. In particular, this means it has eigenvalue 2 under
all of the conformal transformation generators (roughly, rotations11 + scalings), which is equivalent
to the statement that T has conformal weight (2,0) and T has weight (0,2). Thus, the operator
product expansion T (z)T (w) must take the form

T (z)T (w) = . . .+ 2T (w)
(z − w)2 + ∂T (w)

z − w
. . . (3.214)

where the first term is due to h = 2 and the second is universal for all operators. Each term in the
expansion has total dimension ∆ = 4, and all operators that can appear in the expansion must be
on the form

On
(z − w)n , (3.215)

where the conformal dimension of On is 4− n. Unitary CFT’s have no operators of any kind with
conformal dimension ∆ < 0, so the most singular terms that can possibly appear must be of order
(z − w)−4. In addition, we expect the expansion to be symmetric under z ↔ w since we take
these operator equations to hold inside time-ordered correlation functions, ruling out odd powers
of (z − w). The term ∂T/(z − w) manages to be okay since the differential operator also changes
sign under z ↔ w. Finally, the only operators of conformal dimension 0 must be proportional to
the identity operator. With this line of reasoning, we conclude that

T (z)T (w) = c/2
(z − w)4 + 2

(z − w)2T (w) + 1
z − w

∂T (w) + finite terms . (3.216)

Analogously, for the antiholomorphic stress-energy tensor component we have

T (z)T (w) = c̃/2
(z − w)4 + 2

(z − w)2T (w) + 1
z − w

∂T (w) + finite terms . (3.217)

The constants c and c̃ are the central charges of the CFT. These are arbitrary, but in some cases
they need to take a certain value to preserve symmetries of the theory at the quantum level, as we
will see in string theory.

Another important thing to note; the stress-energy tensor tells us how something transforms
under a change of coordinates, which means equation (3.217) tells us how T transforms. It can be
shown by inspecting equation (3.217) for an extended time that under z → z̃ T transforms as

T̃ (z̃) =
(
∂z̃

∂z

)−2 [
T (z)− c

12S(z̃, z)
]

(3.218)

where S(z̃, z) is the Schwarzian, defined by

S(z̃, z) =
(
∂3z̃

∂z3

)(
∂z̃

∂z

)−1
− 3

2

(
∂2z̃

∂z2

)2 (
∂z̃

∂z

)−2
. (3.219)

We will find in string theory, where we are working with an explicit stress tensor in terms
of fields that the central charges corresponding to a single scalar field is c = c̃ = 1, and if we
have D independent scalar fields we obtain the central charge c = c̃ = D. This hints at a deep

11The spin in a 2d CFT is given by h− h̃, relating to the holomorphic and antiholomorphic modes being ’left’ and
’right’ moving sectors on a closed space. Embedding the compact space in a higher dimensional space, this appears
as left- and right-handed spinning modes.
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connection; the central charge c somehow measures the number of degrees of freedom in the CFT.
This connection is made explicit by the Cardy formula

S = 2π
√
c

6

(
L0 −

c

24

)
(3.220)

for the entropy of a CFT living on a circle of radius R = L0/E where E is the total energy of the
state. In section 4.2 we also prove the c theorem which states that c decreases monotonically under
renormalization group flow, further supporting the intuition that it somehow measures degrees of
freedom.

Virasoro Algebra

We can now derive the quantum version of the conformal algebra by requiring that it is generated
by the quantum operators corresponding to the classical symmetries. We will find that it is not
exactly the same as its classical counterpart, the central charge will make an appearance as a central
extension of the conformal algebra. Let us consider the commutator

[Lm, Ln] =
[∮ dz

2πi z
m+1T (z),

∮ dw
2πi w

n+1T (z)
]
. (3.221)

As with all operator equations, we expect this to live inside a time-ordered correlation function. In
particular, this means that terms further to the right are taken to occur at earlier time, which in
our radial coordinates corresponds to a smaller radius. This means that the term Ln,Lm tells us
to take the z-contour to be outside w while the term −LmLn tells us take to the z-contour to be
inside the w-contour and integrate in the opposite direction.

To make sense of this computation is we fix w and perform the z-integration. Since we have a
fixed w we can connect the two z− contours by going back and forth along a line segment in the
radial direction.

[Lm, Ln] =
∮ dw

2πi

∮
γw

dz
2πiz

m+1wn+1T (z)T (w)

=
∮ dw

2πiRes
[
zm+1wn+1

(
c/2

(z − w)4 + 2
(z − w)2T (w) + 1

z − w
∂T (w) + finite

)]
,

(3.222)

where we have used that the curve γw is given by

γw ∼ , (3.223)

where the equality between contours holds because the integrand is holomorphic except in the point
z = w. To pick out the residue we need the 0th, 1st and 3rd order terms in the Taylor expansion
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of zm+1 about z = w;

zm+1 = wm+1+(m+1)wm(z−w)+1
2m(m+1)wm−1(z−w)2+1

6m(m2−1)wm−2(z−w)3+. . . (3.224)

We can then read off the residues, finding that

[Lm, Ln] =
∮ dw

2πiw
n+1

[
wm+1∂T (w) + 2(m+ 1)wmT (w) + c

12(m3 −m)wm−2)
]

=
∮ dw

2πiw
n+1

[
−(n+m+ 2)wmT (w) + 2(m+ 1)wmT (w) + c

12(m3 −m)wm−2)
]

=
∮ dw

2πi

[
(m− n)wm+n+1T (w) + c

12(m3 −m)wm+n−1)
]

= (m− n)Lm+n + c

12(m3 −m)δm+n,0 .

(3.225)
The last step used the definition of the Virasoro generator in terms of T for the first term, and
that the integral around a circle of wk is only nonzero for k = −1, you could see this as the integral
picking out the residue at the origin of wm+n−1.

This is the famous Virasoro algebra, and we see the appearance of a ”central term” due to the
requirement that the symmetry be generated by te quantum conserved charges. The reason the
terms proportional to c is called central is because it commutes with all other terms in the algebra.

Weyl Anomaly

On a flat background spacetime the central charge may be chosen completely freely, but this is not
so for a curved spacetime. Remember that scale invariance is encoded in the tracelessness of the
stress tensor. On a curved background, we will find that

〈Tαα〉 = −c+ c̃

12 R (3.226)

where R is the Ricci scalar. This anomaly goes under the names Weyl anomaly, trace anomaly and
conformal anomaly.

In two dimensions any metric can be made proportional to the flat metric such that gαβ =
e2ωδαβ. In these coordinates we may write the Ricci scalar as

R = −2e−2ω∂2ω , (3.227)

Equation equation (3.226) then tells us that for a CFT with central charge has at least one gauge
invariant observable in 〈Tαα〉.

To prove this, we need some intermediate results, and we want to work in the radial, holomorphic
coordinates. We saw that the vanishing of the trace took the form Tzz at the beginning of this
section, so this is where we will now find our violation. Let us consider the stress-energy conservation
equation

∂Tzz = −∂Tzz . (3.228)

Using this result and the fact that Tzz is a function of z, the OPE of the off-diagonal stress tensor
components may be simply expressed:

∂zTzz∂wTww = ∂zTzz∂wTww = ∂z∂w

[
c/2

(z − w)4 . . .

]
. (3.229)
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Here the RHS looks independent of z, but since it is not holomorphic at the singular points it ceases
to be z-independent. We may then use the identities∫

d2σ∂z
1

z − w
= −

∮
dz 1
z − w

= 2π , (3.230)

as well as ∫
d2σδ(z − w, z − w) = 1 , (3.231)

to claim ∂z
1

z−w = 2πδ(z − w, z − w) under the integral sign. This lets us rewrite

∂z∂w
1

(z − w)4 = 1
6

(
∂2
z∂w

1
z − w

)
= π

3 ∂
2
z∂w∂wδ(z − w,z − w) . (3.232)

Inserting into the correlation function in equation (3.229) and dropping ∂z∂w on both sides we find

TzzTww = cπ

6 ∂z∂wδ(z − w, z − w) . (3.233)

Armed with the OPE between the off-diagonal stress tensor components,corresponding to the
trace components in Cartesian coordinates, we are ready to find the Weyl anomaly. Let us assume
that 〈Tαα〉 = 0 on a flat background. We will then look for an expression for 〈Tαα〉 close to
flat space. We can then use the definition of the stress tensor in terms of the variation of the
metric, combined with the definition of the expectation of the stress-energy tensor in terms of path
integrals.

δg 〈Tαα(σ)〉 = δ

∫
Dφe−STαα(σ)

= 1
4π

∫
Dφe−S

[
Tαα(σ)

∫
d2σ′
√
gδgβγTβγ(σ′)

]
.

(3.234)

We can now restrict to a Weyl transformation, where δgαβ = 2ωδαβ and δgαβ = −2ωδαβ. Then

δg 〈Tαα(σ)〉 = − 1
2π

∫
Dφe−S

[
Tαα(σ)

∫
d2σ′
√
gωT γγ(σ′)

]
. (3.235)

The stress tensors are operators, and we see that the integral over σ′ is determined by the OPE
between the trace terms. We now simply need to switch to holomorphic coordinates, keeping track
of factors of 2 to find

Tαα(σ)T γγ(σ′) = 16TzzTww = 8cπ
3 ∂z∂wδ(z − w, z − w) . (3.236)

The δ lets us replace ∂w → −∂z. We can then recast in Cartesian coordinates by using

− 8∂z∂z = ∂2δ(σ − σ′) . (3.237)

Plugging into equation (3.235) and partial integrating to put derivatives on ω we find

δ 〈Tαα〉 = c

6∂
2ω(σ) . (3.238)

But the variation of δ 〈Tαα〉 about flat space is the entire trace, so by matching to our earlier
expression for R to first order in ω we find

〈Tαα〉 = − c

12R , (3.239)

completing the derivation. An analogous derivation gives the c̃ part of the anomaly.
In general dimension, the Weyl anomaly is not directly proportional to the central charge.

General dimensional CFTs are then characterized instead by two numbers, the Weyl anomaly A
and the value of c as obtained from the two-point function of the stress energy tensor.
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State-Operator Correspondence

In this section we discuss the property of CFTs that lets us do string perturbation theory, namely
the state-operator correspondence. The statement of the correspondence is that there is a one-to-
one correspondence between local operators and states.

To understand how this correspondence comes about, let us remember that formally, we can
define a time dependent state via a path integral with an initial condition φf and an open final
boundary condition (see equation (3.61))

|φ(t)〉 =
∫
φi

Dφe−i
∫ t
t0
L[φ]

. (3.240)

The wavefunction(al) |φ(t)〉 is completely determined by the initial condition φi. In the radial
quantization scheme, time becomes radius, and the initial condition has to be specified on the
entire surface of constant radius. Then, the ket takes the form

|φ(r(t))〉 =
∫
φi

Dφe−
∫ r
r0(t0) drL[φ]

. (3.241)

We can now take the initial condition to the infinite past, collapsing the inner circle of radius r0
to a point. Then, the wavefunction is completely specified by weighting the path integral at the
single point z = 0. This is exactly what we mean by a local operator insertion, meaning that every
inequivalent local operator at z = 0 defines a unique state on the entire spacetime. Therefore, a
general time (radius) dependent state in the CFT is described by

|φ(r)〉 =
∫
Dφe−

∫ r
0 drL[φ]O(z = 0) . (3.242)

Particularly notable is the fact that O = 1 gives the CFT vacuum state. This is because taking
τ → −∞ in Euclidean coordinates is precisely the trick we use in ordinary QFT to project out all
but the vacuum state.

Similarly we can define the bra by defining an initial condition at r =∞, which is a point. The
correlator between two states is then

〈φ2|φ1〉 =
∫
DφO1(0)O2(∞)e−

∫∞
0 drL[φ] , (3.243)

where a completion relation in the middle glues the integration regions together.
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Chapter 4

Entanglement Entropy of Quantum
Fields

The entanglement entropy of a region of space in QFT is a quantity of great interest in modern
fundamental physics. This interest in some sense came to be with the discovery of black hole
thermodynamics by Bekenstein and Hawking [1, 28]. Since then, the entropy of quantum field
theories has found relevance for example in the context of AdS/CFT correspondence [4, 3] and
area-law systems in condensed matter [29].

Entanglement entropy in QFT is fundamentally much more subtle than the version of entangle-
ment entropy that was encountered in section 2.3. In field theory, the entire universe is generally
described by a single wavefunction. The wavefunction is not a local function of the spacetime
coordinates, but rather some integral over the spacetime manifold (or formally constructed as a
path integral over the manifold, depending on formalism). It then becomes very difficult to assign
wavefunctions to only compact regions of spacetime. More in line with the descriptions of section
2.3, it is not possible to write the Hilbert space as HA ⊗ HB and assign the two Hilbert space
factors to two spatially separated labs in a self-consistent way.

This means that it is not obvious how to define the partial trace operation so that we can pass
from the global wavefunction to the local density operator. It is not useful to trace over basis states
of the Hilbert space, since the Hilbert space does not decompose into factors that may be assigned
to local regions. To try and make sense of this, there are two ways to proceed

• Ignore the previous problem, and perform the partial trace in a local region by gluing the
path integral representation of TrA [|Ω〉〈Ω|] only across the region A, without admitting that
there is no such thing as a complete basis of spatially local states to make this operation
defined.

• Take the high road and use axiomatic field theory to find a self-consistent formulation of local
properties of quantum fields, then hope that entanglement entropy is well defined in terms of
these properties.

This chapter will develop both approaches, using the latter to show that despite technically being ill
defined the first approach can produce correct results. In section 4.1 the formalism and important
results of axiomatic QFT are introduced. In section 4.2 the Unruh effect is derived using both
path integral and axiomatic methods and then applied to discover Hawking radiation. In section
4.3 some of the machinery developed is used to understand the entanglement properties of CFTs.
These results tie into chapters 6 and 7 where the focus is on the AdS/CFT correspondence.
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4.1 Entanglement Entropy in Axiomatic QFT

Axiomatic quantum field theory (AQFT) is the attempt to mathematically rigorously formulate
QFT. It fell out of favor for a long time because there was no consistent way to reproduce the
interaction picture used in scattering theory. Recently it has seen a resurgence due to its usefulness
for computing the von Neumann entropy of quantum fields. The initial formulation of AQFT that
is covered here is due to Streater and Wightman [30], while a later formulation in terms of so-called
C∗ algebras of local observables is due to Haag and Kastler [31]. The latter will be discussed in
section 4.1.3.

Axiomatic QFT takes seriously the notion that the right hand side of the canonical commutation
relations,

[φ(0,x), φ̇(0,y)] = δ(x− y) , (4.1)

is a distribution, not a function. The commutation relation implies that we should find an operator-
valued field φ(x) such that its commutator with φ̇ is a Dirac delta, but this does not make sense
unless φ itself is an operator-valued distribution. If φ(x) is a distribution, terms such as λφ3(x) that
appear in the equations of motion of φ4-theory are either infinite or at the very least undefined. It
was concluded that a more indirect definition of the dynamics of QFT was needed for this to make
mathematical sense.

For the commutation relation to make sense, it turns out that it is sufficient1 to consider that φ
is a tempered distribution. For the field operators to be non singular when acting on Hilbert space,
it is then enough to smear with an infinitely differentiable test function f that goes to zero faster
than any power of euclidean distance at infinity according to

φ[f ] =
∫

dxφ(x)f(x) . (4.2)

The smeared operator φ[f ] is finite as long as it is considered as acting on a class of states called
the vacuum sector of Hilbert space, the meaning of which will be made more precise shortly. The
type of smearing function that enters into this definition is said to live in the Schwarz space S of
functions.

The product φ1φ2 of two tempered distributions is not a tempered distribution, meaning that
the smeared operator

(φ1φ2)[f1] =
∫

dxφ1(x)φ2(x)f1(x) (4.3)

might diverge in a complicated manner despite the smearing. The basic example of this is the Dirac
delta,

∫
dxδ(x)δ(x)f(x)”=”∞· f(0). Luckily, Schwarz’s kernel theorem tells us that the product of

two tempered distributions can be arbitrarily closely approximated in the following way

(φ1φ2)[fn] =
∑
i

ciφ1[fi,1]φ2[fi,2] , (4.4)

for each fn ∈ S, where the index i ∈ N. The Schwarz kernel theorem implies the validity of of the
Operator Product Expansion that we mentioned in sections 3.1.3 and 3.4.4. With this context in
mind, let us now state the axioms of algebraic QFT that define the necessary structure on Hilbert
space for the emergence of a relativistic QFT. These axioms are used repeatedly in the following
sections.

1In this case, ’sufficient’ means that if we restrict to the simple class of tempered distributions, the axiomatic
theory can still reproduce nontrivial dynamics for relativistic quantum field theories.
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Axiom 4.1.1 (Definition of State) The states of a quantum theory are normalized vectors in a
separable Hilbert space H, and two vectors that differ by a phase define the same state.

This is just the usual definition of a quantum state, in the same form it has been since introductory
quantum mechanics.

Axiom 4.1.2 (Poincaré Representation) The Hilbert space H of a QFT contains a unitary
representation, (a,Λ) → U(a,Λ) of the restricted, orthocronous Poincaré group P↑+. In H there
exists a unique vector Ω, up to a phase, that is invariant under all U(a,Λ), and for all other vectors
Ψ ∈ H the spectrum of P 0, the self-adjoint generator of the one-parameter time-translation group,
is positive.

The restricted orthochronous Poincaré group is the Lie group of spacetime translations plus Lorentz
transforms: x→ Λx+ a such that det(Λ) = 1 and Λ00 > 0. P 0 generates time translations, and as
the 0 component of the simultaneous four-momentum, it defines the Hamiltonian. The statement
that the spectrum of P 0 is positive for all Ψ and 0 for the vacuum is then the statement that
the ground state has energy zero and all excited states have positive energy. The condition of
positive energy combined with unitary operators U(0,Λ) implementing the Lorentz boosts leads to
the spectral condition; the simultaneous spectrum of Pµ must lie in the closed forward lightcone
(since the restricted orthochronous Lorentz group can only take the timelike vector (E,0,0,0) to
another timelike vector). The simultaneous momentum Pµ is the integral over a spacelike Cauchy
slice of the momentum density.

In equation (4.2) we defined the smeared field φ[f ] =
∫

dxφ(x)f(x). This operator is unbounded
in the general case, and we should see it as living in a correlation function 〈ψ2|φ|ψ1〉. To make
sense of an unbounded operator we must define a domain D of vectors such that if ψ1, ψ2 ∈ D,
then 〈ψ2|φ|ψ1〉 is finite.

A state that we know is in the domain of the field operator φ[f ] is the Fock vacuum |Ω〉. In
addition, we can multiply the state φ[f ] |Ω〉 by another field operator φ[g] to obtain a new state in
the Fock-space of QFT. In general, the Fock space of states that can be created from the vacuum by
field operators is in the domain D of φ[f ]. Since composite operators, such as φ1φ2 can be expanded
via the Schwarz kernel theorem, (φ1φ2)[f ] |Ω〉 is also in D as long as we define the domain D to
be closed under limit sequences. Being closed under limit sequences means exactly that if we have
a sequence |sn〉 ∈ D such that limn |sn〉 converges to |Ψ〉, we consider |Ψ〉 to lie in D. Setting
sn =

∑n
i=1 ciφ1[fi,1]φ2[fi,2] includes any state described by the Schwarz kernel theorem in D.

Axiom 4.1.3 (Vacuum Sector) The vacuum of the QFT, Ω, lies in the domain of any φ[f ],
and for any f1 . . . fn ∈ S we have φ[f1] . . . φ[fn]Ω ∈ D. We take D to be defined by the span of
such vectors as we vary n and the test functions. By definition, D is the vacuum sector Hilbert
space, meaning all states that can be obtained by acting on the vacuum with field operators. In the
later sections we will refer to D as H0, since it is the subspace of the full Hilbert space (H) that is
connected to the vacuum (|0〉 or |Ω〉) by field operators.

Moreover, the smeared fields transform under U(a,Λ) according to

U(a,Λ)φ(f)U−1(a,Λ) = φ(fa,Λ) (4.5)

where the test function transforms as the inverse element of the group:

fa,Λ = f
(
Λ−1(x− a)

)
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This is relying on the known analysis of free field theory in terms of creating many particle states
by acting on a Fock vacuum with creation/annihilation operators. In addition, we have defined
the necessary transformation property of the smearing functions for the smeared field to transform
sensibly under the Poincaré group.

Axiom 4.1.4 (Hermiticity) If φ a is field operator defined on D, then its Hermitian conjugate
φ† is also a field operator defined on D, defined by

〈ψ2|φ†|ψ1〉 = 〈ψ1|φ|ψ2〉 . (4.6)

Relating to the usual form of QFT, we expect creation and annihilation operators to have the same
domain, we expect them both to exist, and we expect them to be related by a Hermitian conjugate.

Axiom 4.1.5 (Tempered Distribution) For any pair of vectors ψ1, ψ2 ∈ D, the map S → C
given by f → 〈ψ2|φ[f ]|ψ1〉 is continuous.

This is the definition of φ being a tempered distribution as long as it acts as an operator on states
in D, and ensures that the smeared fields are finite operators on D.

Axiom 4.1.6 (Causality) Let the support of f , supp(f(x)), be defined as the set of all points for
which f(x) 6= 0. Suppose that we have two test functions f, g ∈ S such that all points in supp(f(x))
are spacelike separated from all points in supp(g(x)) ; then φ[f ]φ[g] = φ[g]φ[f ] for bosons and
φ[f ]φ[g] = −φ[g]φ[f ] for fermions.

This is the Lorentz invariant statement of the equal time canonical commutation relations in ordi-
nary QFT.

4.1.1 The Reeh-Schlieder Theorem

The Reeh-Schlieder theorem is a statement that any field content of a QFT in all of spacetime can
be formulated in terms of boundary conditions supported only on a small, compact subspace. This
is in stark contrast with the initial expectation that to define the QFT at arbitrary time t in all
of space, we need to specify boundary conditions on a noncompact spacelike Cauchy surface such
that all of spacetime is in the causal past or causal future of the surface.

To make the statement more precise and to prove the theorem, we need to make a few definitions.
We assume that we are in Minkowski spacetime of D dimensions with mostly positive signature
and one time dimension.

The initial state of a QFT is given by some state |Ψ〉 ∈ H0 where H0 is the vacuum sector
of the full Hilbert space H. The vacuum sector of the Hilbert space is the set of states that can
be created by acting on the vacuum with local field operators. One might think that H0 should
be the same as H, thinking that creation operators acting on the vacuum should span the entire
Hilbert space. As an example, there is no construction of a state that is in a superposition of states
with different charges (say color charge and electric charge), which is of course very important for
consistency, since such a state would lead to possible projective measurements in which charges are
projected out of the existence, breaking charge conservation. Principles such as charge- and baryon
number conservation that select a part of Hilbert space that is ”physical” are called superselection
principles.

Following [32], we assume for simplicity that the set of local operators in our QFT is given by a
Hermitian scalar field φ(xµ), the generalization is given by additional operators for the additional
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fields, including their commutation relations. We then introduce smeared fields

φ[f ] =
∫

dDx f(x)φ(x) , (4.7)

where f ∈ S. Any state |Ψ〉 in the vacuum sector can be approximated arbitrarily closely by a
linear combination of states on the form

|Ψ~f
〉 = φf1φf2 . . . φfn |Ω〉 (4.8)

where φfi ≡ φ[fi], and we have denoted the vacuum state Ω. That is, we can write

|Ψ〉 (φf1 , φf2 , . . . , φfn) =
∑
k

ck |Ψ~fk
〉 (φf1φf2 . . . φfn) (4.9)

where |Ψ〉 is a multilinear function of the φ[f ], and the RHS is a so called kernel of the product of
the φ′s. The validity of equation (4.9) follows from Schwarz’s kernel theorem as stated in equation
(4.4). The smearing construction is due to the fact that although the individual fields φ(xµ) define
well-behaved distributions, their compositions might not, by introducing smearing we make sure
that we generate finite-norm states in Hilbert space. We can then approximate infinite norm states
as limit sequences of states on the form of equation (4.9).

A Cauchy hypersurface Σ is a complete spacelike surface on which you can define sufficient
boundary conditions for a QFT, the perhaps simplest example is the hypersurface defined by the
constraint t = 0. Classically, the equations of motion then give the field configuration for all
t 6= 0. Usually, sufficient boundary conditions for a theory are the values of φ(xµ) as well as the
time derivative φ̇(xµ) ∀xµ ∈ Σ. To express sufficient boundary conditions in terms of the smearing
functions fi, we require the existence of a time derivative, meaning that the fi need to have have
support in a small neighborhood U of Σ. In the example of the surface t = 0 we can express this
as supp(fi) ∈ |t| < ε where ε is an arbitrarily small parameter and supp(fi) denotes the support of
the function fi.

Let us now formulate the Reeh-Sclieder theorem in terms of the machinery we just introduced

Theorem 4.1.1 (Reeh-Schlieder theorem) Let Σ be a Cauchy hypersurface, let H0 be the vac-
uum sector of Hilbert space, let V ∈ Σ be a small open subset of Σ and UV a corresponding small
neighbourhood of V. Then, for fi : supp(fi) ∈ UV the states

|Ψ〉 [φf1 , φf2 , . . . , φfn ] =
∑
k

ck |Ψ~fk
〉 [φf1φf2 . . . φfn ] , (4.10)

are dense in H0, meaning that any state in H0 may be arbitrarily closely approximated using only
smeared operators with local support.

The implications of this theorem are as follows. The boundary condition for a QFT is a state
|Ψ〉, which can be expressed in terms of the smeared fields φ[f ] acting on the vacuum |Ω〉. The
Reeh-Schlieder theorem then tells us that we may pick f with compact support, meaning φ[f ]
has only compact support. This means that to specify sufficient initial conditions for the full
theory we need only specify the φ[fi] on a finite subset of a Cauchy slice, and the vacuum state
|Ω〉 will take care of extrapolating this initial condition to all of space. This is a first hint at the
interconnectedness (entanglement) of the QFT vacuum. It should be noted that the Reeh-Schlieder
theorem says nothing about causality, since the operators considered are not necessarily unitary,
meaning they need not correspond to the time evolution generated by the Hamiltonian (or a man-
made perturbation thereof), instead it is a statement about the difficulty of defining localized fields
in QFT.
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Proof of the Reeh-Schlieder Theorem

Suppose theorem 4.1.1 is false, then there exists a state |χ〉 ∈ H0 such that

〈χ|ψ~f 〉 = 0 , ∀ |ψ~f 〉 , ∀f : supp(f) ∈ UV . (4.11)

The intuition behind the proof of the Reeh-Schlieder theorem is that we have a complex valued
analytic function, the inner product, that is zero on a finite region in the real (hyper)plane. The
multi-dimensional edge of the wedge theorem of complex calculus then tells us that this function
must be zero on the entire real plane. We will use a slightly less mathematically sophisticated
and more physical proof to show this explicitly. This proof uses axioms 4.1.2, 4.1.3, 4.1.5 that we
defined in the previous section.

In essence, what we will do in this proof is use Hamiltonian time evolution to move points in
the arguments of |ψ〉~f outside of UV to show that if 〈χ |ψ〉~f = 0 inside of UV they are zero on the
lightcone of UV . Then, realizing that we are free to move in any timelike direction, we can zigzag
backwards and forwards in time to move an argument in a spacelike direction (along the Cauchy
surface) and we will see that the inner product must be zero in all of spacetime.

We begin by clarifying how to translate the functional representation of the field operators. Let
xi denote a point in spacetime such that xi ∈ V, and let Uxi denote a small neighbourhood of xi
such that this neighbourhood is contained in UV . We then denote the field operators as

φ(xi) =
∫

dDxfi(x)φ(x) , supp(fi) ∈ Uxi . (4.12)

This way of writing amounts to writing the φs as a functional of the smearing functions fi,
parametrized by a ’center of support coordinate’ xi. In this proof we will treat the inner product
as a complex valued function of the xi. Then, we can write the translated field operators according
to

φ(xi + δ) =
∫

dDxfi(x− δ)φ(x) , supp(fi) ∈ Uxi−δ , (4.13)

noting that if we have translated by a sufficiently large timelike vector δ, Uxi−δ is no longer contained
inside UV .

Let us first show that
〈χ|ψ~f 〉 = 〈χ|φ(x1) . . . φ(xn−1)φ(xn)|Ω〉 (4.14)

still vanishes if xn is moved outside of UV . We denote the timelike vector (1,0,0,0) by t, and translate
xn by ut for some real u. This can be written in terms of the Hamiltonian H as

〈χ|φ(x1) . . . φ(xn−1)φ(xn + ut)|Ω〉 = 〈χ|φ(x1) . . . φ(xn−1)eiHuφ(xn)e−iHu|Ω〉
= 〈χ|φ(x1) . . . φ(xn−1)eiHuφ(xn)|Ω〉 ≡ g(u) ,

(4.15)

where we have used that the Hamiltonian annihilates the vacuum in Minkowski space and defined
the RHS as a function g(u). The definition of the Hamiltonian requires the selection of a preferred
timelike vector t that we use to parametrize time evolution, the point being that the choice of t is
actually arbitrary, and this reasoning can be extended to an arbitrary timelike vector.

It is clear that g(u) is 0 by definition for u ∈ [−εmin, εmax] (rigorously, as long as Uxn+ut ∈ UV),
for some ε’. We analytically extend g(u) to complex values of u. The Hamiltonian as an operator
is bounded below by eigenvalue zero, telling us that g(u) is holomorphic in the upper half plane,
and continuous as one approaches the real axis. We will now use the holomorphicity of g(u) as well
as its value of zero on a finite segment of the real axis to show that it must be zero on the entire
real axis.
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Figure 4.1: Using that g(u) is holomorphic in the upper half plane and zero on a finite segment on the
real axis, we can show that it is holomorphic below the real axis as well. This is done by letting the
Cauchy curve integral representation run along the segment where g(u) is zero, and then exlcuding
the segment from the curve. The Cauchy integral formula remains holomorphic as we move the
point u through the segemnt and into the lower half plane. We conclude that g(u) as represented
by the Cauchy integral formula must be holomorphic on the segment Re(z) ∈ [−εmin, εmax].

If we knew that g(u) was holomorphic on the real axis, then it would admit a convergent Taylor
series around u = 0 which would have to be identically zero since g(u) is zero in a finite segment
of the real axis. Now we are not armed with holomorphicity on the real axis, only continuity as
we approach it, so we instead observe that by the residue theorem g(u) admits a Cauchy integral
representation in the upper half plane

g(u) = 1
2πi

∮
γ

du′ g(u)
u′ − u

, (4.16)

where γ is a closed curve parametrized by u′ that goes counter-clockwise around u. For a fixed
γ, this representation is manifestly holomorphic as long as u remains in the interior of γ. On the
boundary holomorphicity fails since the integrand will hit the singularity as u′ → u. The next step
is to include [−εmin, εmax] (and the lower half-plane). For the intuition of the following argument,
see figure 4.1.

Since we know that g(u) is continuous as we approach the real axis, we can move the curve as
close to the real axis as we want, consequently the curve can be put on the real axis in this segment.
Since g(u) is zero on the segment we can drop this segment from the integration curve, and the
Cauchy integral remains holomorphic even as the argument u is moved onto the real axis. From
this, it follows that g(u) is holomorphic on a finite segment of the real axis because it is represented
by a holomorphic Cauchy integral. Since g(u) therefore admits a convergent Taylor expansion on
the finite segment it must be zero on the entire real axis. Consequently, we can move xn out of
UV without changing g(u). Picking a different timelike vector and translating xn backwards in
time, repeating the previous argument (except in the lower half plane), we can generate spacelike
translation while keeping g(u) = 0.

Now we need to repeat the reasoning for xn−1 and xn simultaneously. Since eiHue−iHu = 1, we
are left only with the expression

g′(u) = 〈χ|φ(x1) . . . φ(xn−1 + ut)φ(xn + ut)|Ω〉 = 〈χ|φ(x1) . . . eiHuφ(xn−1)φ(xn)|Ω〉 . (4.17)

The operator eiHu is still holomorphic in the upper half plane, and g′(u) is still zero on a finite
segment of the real axis in u, and so, repeating the same reasoning as before, we can move the last
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two points simultaneously outside of UV while keeping g(u) = 0. Repeating this for all points lets
us move the entire set of field operators outside UV in succession.

With this, we have shown that if

〈χ|ψ~f 〉 = 0 , ∀ |ψ~f 〉 ,∀f : supp(f) ∈ UV , (4.18)

then
〈χ|ψ~f 〉 = 0 , ∀f ∈ S (4.19)

without the restriction of supp(f) being in UV . Thus, we have proven the Reeh-Schlieder theorem;
there are no nontrivial vectors in the vacuum sector of Hilbert space that are orthogonal to those
generated by field operators with local support.

4.1.2 Reeh-Schlieder Corollary

Theorem 4.1.1 has interesting consequences for the relationship between local observables supported
on spacelike separated spacetime regions, illustrated in this section by an example of negative local
energy density. The more general implication is subtler in nature, and results in the applicability
of so-called Tomita-Takesaki theory to QFT as well as a reformulation of axiomatic field theory in
terms of von Neumann algebras.

Let V ∈ Σ be a subset such that its complement V ′ in Σ is not empty. Since the two sets
are disjoint, they are also spacelike separated. Assume further that they are contained in small,
spacelike separated subsets of spacetime UV ,UV ′ . Note that since these regions are adjacent, they
share a boundary. The spacelike thickenings must then be performed in a lightlike direction. This
is compatible with the previous discussion, the consequence is that some boundary conditions
near this boundary need to be defined using lightcone coordinates so that the thickenings remain
spacelike separated.

Now let A be any operator supported in UV . Since UV is spacelike separated from UV ′ we have
that

[A, φ(xµ)] = 0 , ∀x ∈ UV ′ . (4.20)

Similarly, an operator A′ supported in UV ′ fulfils

[A′, φ(xµ)] = 0 , ∀x ∈ UV . (4.21)

The Reeh-Schlieder theorem 4.1.1 applies to both V and V ′. Suppose now that the operator A
annihilates the vacuum state:

A |Ω〉 = 0 . (4.22)

Since A commutes with any operators φ(xµ) ∀x ∈ UV ′ this implies that

Aφ[f1]φ[f2] . . . φ[fn] |Ω〉 = 0 ∀f : supp(f) ∈ UV ′ , (4.23)

but the Reeh-Schlieder theorem tells us that φ1[f1]φ[f2] . . . φ[fn] |Ω〉 is dense in H0, so the operator
A must be zero acting on any state in the vacuum sector. This means that apart from the trivial
operator A = 0, no locally supported operator can annihilate the vacuum.

To continue, and acquaint the reader with some important terminology, we now interject with
some mathematical definition. First, let us define AU to be the algebra of operators supported
in U . In the previous discussion we have considered the regions U = UV and U ′ = UV ′ , and the
operators A ∈ AU , AU ′ . In mathematical terminology, a vector Ψ in a Hilbert space is called cyclic
for AU if the states A |Ψ〉 , A ∈ AU are dense in H0. In words, if |Ψ〉 is cyclic in AU you can span
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the entire Hilbert space by acting on |Ψ〉 with operators in AU . In this terminology, the statement
of the Reeh-Schlieder theorem is explicitly that the vacuum state is cyclic in the local algebra.

The vector Ψ is said to be separating for AU if A |ψ〉 = 0 implies that A = 0 for all states in H0.
With this terminology, the vacuum is clearly separating for both AU and AU ′ . A more intuitive
restatement is that a separating vector cannot be annihilated by a nontrivial operator in AU . The
separating property of the QFT vacuum is known as the Reeh-Schlieder corollary.

More generally, the Reeh-Schlieder theorem implies that in each superselection sector of Hilbert
space, any vector on which the translation group acts holomorphically is cyclic and separating
for AU and for AU ′ . The restriction of holomorphic action of the translation group is exactly the
requirement that was fulfilled by the vacuum in our proof of the Reeh-Schlieder theorem. While we
used the flatness of Minkowski to make claims about the operator Ĥ, the Reeh-Schlieder theorem
holds for some states in curved spacetimes, though the states in question are not guaranteed to be
physically interesting [33].

Let us now use the fact that the vacuum is separating for the algebraAU to demonstrate the non-
positive-definiteness of the local energy density. The total energy H annihilates only the vacuum
Ω, and can be defined as the integral of the 00-component of the stress tensor T 00 over a Cauchy
surface (such as t = 0). The energy density T 00 can be expressed in terms of smeared operators
Tf =

∫
V dD−1xf(x)T 00(x), where f is any smooth function such that supp(f) ∈ UV . The functionals

Tf are contained in AU . Poincaré invariance and H |Ω〉 together imply that 〈Ω|T 00(x) |Ω〉 = 0.
Since 〈Ψ|T 00(x) |Ψ〉 6= 0 for general states Ψ ∈ H0, the separating property of the vacuum in AU
implies that T 00 |Ω〉 6= 0, unless all states in H0 have zero energy (which may be considered a trivial
exception). Therefore, there must be some state χ ∈ H0, such that 〈χ|Tf |Ψ〉 6= 0. We can now
define W as the two-dimensional subspace of H0 generated by the basis {χ,Ω}. Then the form of
Tf restricted to the subspace W is

Tf =
[

0 〈χ|Tf |Ψ〉
〈Ψ|Tf |χ〉 0

]
. (4.24)

A matrix on the form equation (4.24) is not positive semi-definite, implying that there are states
χ̃ ∈ W ∈ H0 in which the energy density has a negative expectation value.

An Intuitive but Incomplete Connection to Density Operators

A somewhat intuitive connection between the Reeh-Schlieder theorem and the density operator can
be made in the case of a finite-dimensional Hilbert space on the form H = H1 ⊗H2. We will find
explicitly that all degrees of freedom of a reduced density operator on one of the two subspaces are
necessarily entangled.

Now, let A1 and A2 denote the algebras of all operators acting only on H1 and H2 respectively.
A generic state in H can be written in terms of bases for the component spaces as

|Ψ〉 =
∑

j∈[1,dim(H1)], k∈[1,dim(H2)]
cj,k |j〉1 ⊗ |k〉2 , (4.25)

where the |j〉1 are basis vectors that span H1, and the |k〉2 span H2.
The vector Ψ can be cyclic in both A1 and A2 if and only if dim(H1) = dim(H2). To discuss

the analogy with the Reeh-Schlieder theorem we thus have to specify to the case of both Hilbert
spaces being of the same dimension D. In QFT, the issue of different-dimensional Hilbert spaces
does not come up, since elements in both A1 and A2 act on the same space.
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By a change of basis kets, |Ψ〉 can be written

D∑
k=1

ck |k〉1 ⊗ |k〉2 . (4.26)

in terms of bases |k〉1 , |k〉2 for H1,H∈. If Ψ is to be separating in A1, ck can have no nonzero
components. If there exists an index n for which cn = 0, then there exists a nonzero operator
O = |n〉1 〈n|1 ⊗ |n〉2 〈n|2 that is nontrivial but fulfills O |Ψ〉 = 0.

For the reduced density operators ρ1 and ρ2 defined in D(H1) and D(H2) respectively (notation
as in section 2.1), the condition that all ck are nonzero implies that the density operators are
invertible. Since the density operators are invertible, they have only nonzero eigenvalues, implying
that they describe a state in which all degrees of freedom are mixed.

This type of ”universally” entangled state is not particularly interesting in typical applications
of quantum information theory, but if spacetime emerges from entanglement as we are setting
out to show it warrants further discussion. Specifically if entanglement is geometry, this is telling
us that all degrees of freedom contribute to geometry. This seems to point towards universality
of entanglement given a cyclic separating state being related to nothing less than the universal
coupling of matter fields to gravity via the stress-energy tensor [34].

Some care has to be taken in applying this to QFT, since we would be claiming that we can
factorize the Hilbert space in such a way that H = H1 ⊗H2 where H1 has support only in a finite
region of spacetime, H2 in its complement. This factorization is not possible in the literal sense. If
it were there would exist overall pure states in the vacuum sector of the QFT Hilbert space where
the local states ψ, χ are also pure, for example ψ⊗χ, ψ ∈ H1, χ ∈ H2. The Reeh-Schlieder theorem
already tells us that such states do not exist, so we are not allowed to factorize Hilbert space in
this way.

Let us finish this aside by proving the claim about the invertibility of the reduced density
operators by performing a partial trace, considering the case when dim(H1) = dim(H2) = D:

ρ1 =
∑
k≤D

∑
l≤D

ckc
∗
l |k〉1 〈l|1 〈k|2 |l〉2

=
∑
k≤D

∑
l≤D

ckc
∗
l δkl |k〉1 〈k|1

=
∑
k≤D
|ck|2 |k〉1 〈k|1 .

(4.27)

Since the spectrum of ρ1 contains only positive nonzero eigenvalues, it is clearly invertible.

4.1.3 Von Neumann Algebras in QFT

In the previous section we spoke about the algebra AU associated with ’all operators’ supported
in a region UV . In this section we will argue that the correct characterization of this algebra of
observables is as a von Neumann algebra, which is a type of algebra of bounded operators with
friendly closure properties.

In the previous section we restricted only to simple operators, operators that can be expressed
as polynomials in smeared local fields. Simple operators are of course very useful and make up
the basic machinery of regularization and operator product expansions. The problem with such a
restriction is made intuitive by following setup.

Imagine that we have a slight thickening of a finite subset of a Cauchy surface that we call
UV , and an associated algebra AU . Then, we would expect the algebra of observables ÂU in the
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domain of dependence ÛV of the Cauchy surface to fulfill AU = ÂU . The logic is that all operators
with support in ÛV are completely determined by a time evolution operator acting on the operators
in UV . The time evolution of operators in general results in exceedingly complex functions of the
original operators, meaning that ÂU cannot be described using only simple operators. Thus for
the equality AU = ÂU to make sense, we need AU to contain all operators that can be made from
simple ones by any imaginable Hamiltonian that satisfies the Wightman axioms.

The set of operators can be constructed with simple operators has a simple characterization.
If F is any bounded function of a complex variable then F (φf ) is also a bounded operator. More
generally, we can have a bounded complex function of multiple variables, F (φf1 , φf2 . . . φfn), where
f1, f2 . . . fn are n smearing functions.

Considering only bounded operators is nice. Since they are defined on all of Hilbert space they
can be multiplied to make only other bounded operators, naturally forming an algebra. In addition
the function of an operator is in general defined in terms of a Taylor expansion, and if it is a
bounded operator we know that it can be arbitrarily closely approximated by a sequence of simple
operators. A little more formally, Let An, n = 1,2 . . . be a sequence of elements in AU such that
the limit

lim
n→∞

An |Ψ〉 = A |Ψ〉 (4.28)

exists, then we define
lim
n→∞

An ∈ AU . (4.29)

This prescription is called closure under a strong limit sequence2, and it ensures that all bounded
functions of the field operators are included in the algebra (as limit sequences of simple operators).

Another important detail to note, now that we have argued that all bounded operators that can
be made from the field operators can be obtained as limit sequences of simple operators, is that if
A ∈ AU , then A† ∈ AU . This property of closure under Hermitian conjugation is due to the fact
that if φf =

∫
dDfφ is a smeared field in a given region, then φ†f =

∫
dDf∗φ is also a smeared field.

Any operator constructed from the field operators is then also closed under Hermitian conjugation.
An algebra acting on a Hilbert space that is closed under Hermitian conjugation is called a ∗-
algebra. Therefore any reasonable notion of what we mean by the algebra of observables AU must
at the very least be a ∗-algebra.

A ∗-algebra that is closed under strong (or weak) limits is called a von Neumann algebra. This
leads us to conclude that AU must be a von Neumann algebra.

If AU is a von Neumann algebra on H, then we can define its commutant AU ′ as the algebra
of all operators that commute with operators in AU . The commutant AU ′ is also a von Neumann
algebra, seen by A′n ∈ AU ′ realizing that since

lim
n→∞

[A,A′n]Ψ = [A, lim
n→∞

A′] |Ψ〉 = [A,A′] |Ψ〉 = 0 ,∀n (4.30)

both sides of the strong limit prescription exist, letting us consistently define

A′ = lim
n→∞

A′n ∈ AU ′ . (4.31)

Since A′ is closed under strong limits it is a von Neumann algebra. Interestingly, AU ′ is a von
Neumann algebra even if AU is not closed. Any elements that are in both AU ′ and AU are called
centers. These are operators that commute with all operators in both algebras, analogous to the
central charge of the Virasoro algebra.

2Originally, this reasoning was carried out using a weak limit, i.e. demanding that limn→∞ 〈Ψ|An|Ψ〉 = 〈Ψ|A|Ψ〉.
It is a nontrivial result due to to von Neumann that this leads to the same algebra AU .
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When AU is a von Neumann algebra, the commutant relation is reciprocal, meaning that AU ′′ =
(AU ′)′ = AU . If AU is not closed under strong limits, then AU ′′ is called the closure of AU since,
as we saw before, the commutant operator always defines an algebra closed under strong limits.

Relating more concretely to QFT, it was proposed by Haag and Schroeder that if U and U ′ are
causal complements, i.e. U ′ is maximal under the condition of being spacelike separated from U ,
then the corresponding algebras AU and AU ′ are commutants, meaning they are maximal under
the condition of commuting with each other [31]. This condition is often called Haag duality, and
can be written

AU ′ = AU ′ . (4.32)

Haag duality is a postulate of the Haag-Kastler approach to axiomatizing QFT, which is similar to
the Wightman axiomatization from section 4.1, formulated in terms of properties of the algebras
of local observables. Furthermore the postulate says that if U is a union of open sets Uα, then AU
is the smallest von Neumann algebra that contains all of the AUα . The Haag-Kastler framework
is usually referred to as local quantum field theory (LQFT), since it is formulated in terms of the
algebras of local observables. This framework is more amenable to curved spacetimes since it does
not require us to have a neat Hamiltonian understanding of the spacetime in question.

The Haag duality postulate holds for complementary so-called Rindler wedges in Minkowski,
as we will discuss in section 4.2. In addition, it seems to hold in several nontrivial quantum field
theories, among them CFT in 1+1 dimensions [35]. There are however cases on curved backgrounds
and in higher spin theories where Haag duality fails to hold. It is also arguable if Haag duality
should hold in a fully quantum description of geometry.

On a related note, given a quantum description of geometry, the notion that any operators
should commute exactly like the von Neumann algebras and their duals is up for debate [9]. Simply
put, if we act with a gigantic number of creation operators in a region UV , resulting infinite number
of massive particles results in an infinitely large black hole. This stack of operators obviously affects
local operators in the complement of UV , so the commutation of spacelike separated operators can
not be exact in quantum gravity.

4.1.4 Tomita-Takesaki theory

Tomita-Takesaki theory tells us about the properties of an algebra A that has a cyclic separating
vector Ψ. What we have shown with the Reeh-Schlieder theorem is that Tomita-Takesaki theory
may be applied to QFT.

The starting point of Tomita-Takesaki theory is that we have an algebra A of operators A ∈ A,
and there is a cyclic separating vector Ψ for A. We begin by defining the antilinear Tomita operator
SΨ : H → H, defined by its action

SΨA |Ψ〉 = A† |Ψ〉 . (4.33)

This definition of SΨ is only sensible thanks to the separating property (A |Ψ〉 = 0 ⇒ A = 0), so
we have no situations where SΨ exhibits singular behaviour such as if A |Ψ〉 = 0, A† |Ψ〉 6= 0. The
cyclic property ensures that A |Ψ〉 is dense in H, and together with the non-singular behaviour of
S, it must map the dense set spanned by A |Ψ〉 to a dense set in H0.

An antilinear operator A fulfills A[|χ〉+ |ψ〉] = A |χ〉+ A |ψ〉 and cA |ψ〉 = Ac∗ |ψ〉, where c∗ is
the complex conjugate of c. The ”anti” simply refers to the conjugation property of the operator.
In the same sense, an antiunitary operator squares to the identity but complex conjugates scalars.

It is worth noting, that the Schwarz kernel theorem told us that in QFT we can obtain what is
essentially singular operators as a limit n→∞ of some An |Ψ〉. If we want the Tomita operator to
be defined for all states in the vacuum sector, we also have to define its action on these limits as
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follows. Let An, n = 1,2 . . . be a sequence of elements in AU such that the limits

x = lim
n→∞

An |Ψ〉 and y = lim
n→∞

A†n |Ψ〉 (4.34)

both exist. We then define
SΨx = y . (4.35)

By extending the definition of SΨ in this way, we have defined its action on all states in the vacuum
sector of Hilbert space. We also ensure that SΨ is a so-called closed operator, meaning it maps
onto a closed subspace.

A couple of facts about SΨ are that
S2

Ψ = 1 , (4.36)

and if we let the operator A be 1, we see that

SΨ |Ψ〉 = |Ψ〉 . (4.37)

The Tomita operator has an adjoint, S†Ψ. Since it is antilinear the definition of the adjoint operator
is that for all χ, ξ

〈ξ|S |χ〉 = 〈χ|S† |ξ〉 , (4.38)

where the RHS is the complex conjugate of the definition for linear operators.
The Tomita operator for the commutant of AU , i.e. the algebra of observables AU ′ supported

in the complement of U , is given by
S′Ψ = S†Ψ . (4.39)

The action of S′Ψ is given by the action on A′ ∈ AU ′ as

S′ΨA
′ |Ψ〉 = A

′† |ψ〉 .

To show that S′Ψ = S†Ψ we simply turn to the definition of the adjoint operator. Let χ = AΨ and
ξ = A′Ψ. Reeh-Schlieder tells us that both of these states are dense in Hilbert space, so they are
adequate ’test states’ for the definition of adjointedness. Going to the definition equation (4.38) we
have

〈χ|S′Ψ |ξ〉 = 〈Ψ|A†S′ΨA′ |Ψ〉
= 〈Ψ|A†A′† |Ψ〉
= 〈Ψ|A′†A† |Ψ〉
= 〈ξ|SΨA |Ψ〉
= 〈ξ|SΨ |χ〉 ,

(4.40)

Where the first and last lines define S′Ψ = S†Ψ, at least for all |Ψ〉 on which S′Ψ is defined.
Since the Tomita operator is invertible it has a unique polar decomposition:

SΨ = JΨ∆1/2
Ψ . (4.41)

A polar decomposition is analogous to the polar form of complex numbers, in this case JΨ is an
antiunitary matrix (loosely, the ’phase’) and ∆1/2

Ψ is a Hermitian, positive definite matrix (loosely,
the ’absolute value’). These are called the modular conjugation and modular operator, respectively.

The modular operator is defined as
∆Ψ = S†S . (4.42)
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The modular operator is self-adjoint, and it is positive definite due to the invertibility of S. Since
S |Ψ〉 = S† |Ψ〉 = |Ψ〉 we have that

∆Ψ |Ψ〉 = |Ψ〉 . (4.43)

This implies that for any function f ,

f(∆Ψ) |Ψ〉 = f(1) |Ψ〉 . (4.44)

In addition, since S2
Ψ = 1, we have that

JΨ∆1/2
Ψ JΨ∆1/2

Ψ = 1 ⇒ JΨ∆1/2
Ψ JΨ = ∆−1/2

Ψ . (4.45)

Rewriting slightly, we have
J2

Ψ(J−1
Ψ ∆1/2

Ψ JΨ) = 1 ·∆−1/2
Ψ (4.46)

But both (J−1
Ψ ∆1/2

Ψ JΨ) and ∆−1
Ψ must be positive definite, therefore J2

Ψ = 1 (it is unitary and
its square must be real positive). We showed earlier that S′Ψ = S†Ψ where the prime denotes the
Tomita operator of the commutant algebra. Comparing to the polar decomposition S′Ψ = J ′Ψ∆1/2

Ψ
′

we see that
S′Ψ = S†Ψ = ∆1/2

Ψ J†Ψ = ∆1/2
Ψ JΨ = JΨ∆−1/2

Ψ (4.47)

implies that
J ′Ψ = JΨ , ∆′Ψ = ∆−1

Ψ . (4.48)

Finally, since
JΨ∆1/2

Ψ JΨJΨ∆1/2
Ψ JΨ = JΨ∆ΨJΨ = ∆−1

Ψ , (4.49)

we have that
JΨf(∆Ψ)JΨ = f(∆−1

Ψ ) . (4.50)

To understand this, consider that the definition of a function of an operator is a Taylor expansion,
and insert a factor J2

Ψ between each ∆Ψ in the expansion. The conjugation then comes from moving
the leftmost JΨ past any coefficients in the expansion and the antiunitary property.

A function that we will find particularly useful is f(∆Ψ) = ∆is
Ψ with s real, where we find that

JΨ∆is
ΨJΨ = ∆is

Ψ . (4.51)

Relative Tomita- and Modular Operators

The relative Tomita operator SΨ,Φ : H → H is an antilinear operator defined by

SΨ|ΦA |Ψ〉 = A† |Φ〉 , (4.52)

and it is well defined for the same reasons as SΨ. The state Φ is any arbitrary state in the entire
Hilbert space, and need not be cyclic nor separating. When Φ is not cyclic separating, SΨ|Φ is not
generally invertible. It is usual to define the vectors in Hilbert space to be unit vectors,

〈Ψ|Ψ〉 = 〈Φ|Φ〉 = 1 . (4.53)

The definition of the relative Tomita operator is extended to all operators by the use of limiting
sequences, as in the case of the original Tomita operator.

In principle, the Tomita operator can be decomposed as

SΨ|Φ = JΨ|Φ∆1/2
ψ|Φ , (4.54)
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however there are some subtleties. If Φ is not separating, SΨ|Φ has a nontrivial null space. For the
relative modular conjugation JΨ|Φ to be uniquely defined like its nonrelative cousin we define it to
have the same null space as SΨ|Φ. If Φ is not cyclic, then SΨ|Φ is not dense in H. In the non-cyclic
case JΨ|Φ is an antiunitary map from the orthocomplement of the null space of SΨ|Φ to the (not
dense) subspace spanned by SΨ|Φ. In the case where Φ is cyclic and separating, JΨ|Φ is completely
antiunitary, and enjoys all the properties of its nonrelative cousin.

The relative modular operator is given in analogy with equation (4.42) by

∆Ψ|Φ = S†Ψ|ΦSΨ|Φ . (4.55)

The relative modular operator is not necessarily invertible, but it is positive definite just like the
modular operator. The lack of invertibility is due to the lack of the cyclic and separating properties
in Φ, preventing SΨ|Φ from always mapping between dense sets in H of same size. Also, it is clear
by definition that

∆Ψ|Ψ = ∆Ψ , SΨ|Ψ = SΨ .

Another useful property of the relative modular operator is that it is invariant under Φ →
Φ′ = A′Φ, where A′ ∈ A′U and A′†A′ = 1, that is, A′ is a unitary element in the complementary
spacetime algebra, AU ′. Let us check this, letting A ∈ AU :

〈AΨ|∆Ψ,A′Φ |AΨ〉 = 〈AΨ|S†Ψ,A′ΦSΨ,A′Φ |AΨ〉

= 〈A†A′Φ|A†A′Φ〉
= 〈A†Φ|A′†A′|A†Φ〉
= 〈A†Φ|A†Φ〉 , (4.56)

where we have used that the operators A,A′ commute. The last line is precisely the action of
〈AΨ|∆Ψ,Φ |AΨ〉.

As a final note, when it is not obvious, for example when we are working with several spacetime
regions, we will denote the relative operators as

∆Ψ|Φ, A ∈ AU → ∆Ψ|Φ:U . (4.57)

Relative Entropy in QFT

Having developed the Tomita- and modular operators, we are now ready to define the relative
entropy in QFT. Consider an open spacetime region U such that it is spacelike separated from
some other nonempty region in spacetime. There is some algebra AU of operators with support
only in U . Then, letting Ψ be a cyclic separating vector for AU and Φ be any vector in H, the
relative entropy between states Ψ,Φ in the region U is given by

DΨ||Φ(U) = −〈Ψ| log
(
∆Ψ|Φ:U

)
|Ψ〉 . (4.58)

It is by no means obvious that this is the field theoretical generalization of the quantum relative
entropy defined in equation (2.57), but we will show that it reduces to it in the case of the typical
factorizable systems considered in quantum information theory. In analog to the divergence of the
relative entropy in equation (2.57), when the support of Φ is not contained in the support of Ψ,
this version of the quantity may diverge when Φ is not a separating vector in AU .

The relative entropy is zero whenever |Φ〉 = A′ |Ψ〉, where A′ is a unitary element in the
commuting algebra. We already showed that ∆Ψ|Φ = ∆Ψ|A′Φ, so it suffices to show that

DΨ||Ψ(U) = −〈Ψ| log
(
∆Ψ|Ψ:U

)
|Ψ〉 = −〈Ψ| log

(
S†ΨSΨ

)
|Ψ〉 = −〈Ψ| log(1) |Ψ〉 = 0 , (4.59)
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where we used that SΨ|Ψ = SΨ and S |Ψ〉 = |Ψ〉 to observe that the argument to the logarithm is
an identity operator when acting on the states involved.

Let us now show the non-negativity of the relative entropy. The first step is using the inequality
− log λ ≥ 1 − λ for real, positive λ. Since the relative modular operator is positive semi-definite,
it has eigenvalues λ ≥ 0, so the inequality applies. We showed in equation (2.46) the necessary
machinery to claim that log ∆ and ∆ are diagonalized by the same basis, meaning that the inequality
for real numbers translates to the operator inequality

− log ∆Ψ|Φ ≥ 1−∆Ψ|Φ . (4.60)

Let us now insert the LHS of this inequality into the definition of the relative entropy

DΨ||Ψ(U) ≥ 〈Φ|Φ〉 − 〈Ψ| (∆Ψ|Ψ:U ) |Ψ〉

= 1− 〈Ψ|S†Ψ|ΦSΨ|Φ |Ψ〉

= 1− 〈Φ|Φ〉
= 0 , (4.61)

since we assume normalized states. Thus, we have shown the positivity of relative entropy.

Monotonicity of Relative Entropy

In the quantum informational case (section 2.3.6), the relative entropy was monotone under the
tracing out of subsystems in the argument. We would like to show a similar property here, namely
that the relative entropy defined as in equation (4.58) is monotone under the shrinking of the
spacetime region on which it is defined. In other words, we wish to show that for a region Ũ ∈ U ,

DΨ||Φ(U) ≥ DΨ||Φ(Ũ) . (4.62)

The original proof of the monotonicity of relative entropy in the form considered in this section
was given by Araki [36], although we are following the presentation of Witten [32]. For ease of
notation, let us keep Ψ,Φ constant for the rest of this section, and abbreviate

∆Ψ|Φ:U ≡ ∆U , ∆Ψ|Φ:Ũ ≡ ∆Ũ .

The monotonicity of relative entropy is a direct result of the operator inequality

∆Ũ ≥ ∆U . (4.63)

The mathematically sound statement of any operator inequality such as this, for operators that do
not diagonalize simultaneously, is

〈χ|∆Ũ −∆U |χ〉 ≥ 0 , ∀χ ∈ H . (4.64)

The statement equation (4.64) holds as long as the relative modular operators are bounded, so
to include the non-invertible cases we in principle need to extend this inequality with the same
limit sequence prescription as we have used before. Since both ∆Ũ are positive semi-definite, an
equivalent inequality statement is that

1
s+ ∆U

≥ 1
s+ ∆Ũ

, (4.65)
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for all real s > 0. As long as we do not take s = 0, this form of the inequality covers the unbounded
cases of the operators and has the correct limit behavior because when ∆ is unbounded positive
we just get 1

s+∆ = 0.
To see that this implies the same inequality we can consider the operator P (t) = t∆Ũ+(1−t)∆U .

If equation (4.64) holds, then d
dtP (t) ≥ 0. We can check this by explicitly computing the time

derivative:

d
dt

( 1
s+ P (t)

)
= − 1

s+ P (t) Ṗ (t) 1
s+ P (t) . (4.66)

The RHS is negative, because it is of the form −ABA with B a positive operator (implied by
equation (4.64)), and A a self-adjoint operator since it is a linear combination of the self-adjoint
modular operators. Thus, 1

s+P (t) is decreasing in t, meaning 1
s+P (0) ≥

1
s+P (1) , and we have found

that (
∆Ũ ≥ ∆U

)
⇔
( 1
s+ ∆U

≥ 1
s+ ∆Ũ

)
. (4.67)

The arrow from the LHS to the RHS follows by observing that the sign in the LHS of equation
(4.66) is entirely determined by Ṗ , so assuming either equation (4.64) or equation (4.65) implies
the other.

To show that equation (4.65) implies equation (4.62) we now use a nice trick,

logP =
∫ ∞

0
ds
( 1

1 + s
− 1
s+ P

)
=
[
log
( 1 + s

s+ P

)]s=∞
s=0

= − log 1
P
. (4.68)

We showed before that 1
s+P (t) is decreasing in t, and using the convergence of the integral to

exchange derivative with respect to t and integration we see that logP (t) must be increasing in t.
This in turn tells us that equation (4.64) implies

log ∆Ũ ≥ log ∆U . (4.69)

What remains in the proof of monotonicity is now proving the inequality that was used:

〈χ| 1
s+ ∆Ũ

− 1
s+ ∆U

|χ〉 ≥ 0 , ∀χ ∈ H . (4.70)

The essence in this proof is to use the fact that ∆U = S†Ψ|Φ:USΨ|Φ:U , where SU ≡ SΨ|Φ:U is a map
from one Hilbert space H to a possibly different space H′. We can now define Ĥ = H ⊕ H′, and
consider the so-called graph Γ of SU , which is the set of all vectors on the form (χ,SUχ). The graph
Γ is a subspace of Ĥ, and it is a closed subspace since SU is a closed operator. The closed property
just says that if the limits

x = lim
n→∞

xn , y = lim
n→∞

SUxn (4.71)

both exist, they are also part of the subspace Γ. Since the Tomita operator and its relative version
both were extended to act on such limit points, their image also contain them.

For a closed subspace such as Γ ∈ Ĥ it is possible to define an orthogonal projection operator
Π : Ĥ → Γ. An orthogonal projection operator is necessarily bounded since it has only eigenvalues
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that are one or zero, and as such it is defined on all states. The closed property of the subspace is
necessary because of the boundedness of the projector; if Γ were not closed there would be points
in Ĥ that exist as limit points that would be projected outside of Γ.

With Γ the graph of SU we want to find a projector Π that, acts on a column vector (χ, ψ) with
χ ∈ H, ψ ∈ H′ in the following way:

Π
(
χ
ψ

)
=
(

η
SUη

)
. (4.72)

Furthermore, we wish for Π = Π† to ensure orthogonality of the eigenvectors, and Π2 = Π so that it
actually is a projection. It can be straightforwardly checked that (denoting SU ≡ S for cleanliness)

Π =
[

(1 + S†S)−1 (1 + S†S)−1S†

S(1 + S†S)−1 S(1 + S†S)−1S†

]
(4.73)

fulfills the requirements.
Let us verify explicitly that Π acts in the appropriate way on (χ, ψ):

Π
(
χ
ψ

)
=
(

(1 + S†S)−1χ+ (1 + S†S)−1S†ψ
S(1 + S†S)−1χ+ S(1 + S†S)−1S†ψ

)

=
(

(1 + S†S)−1(χ+ S†ψ)
S(1 + S†S)−1(χ+ S†ψ)

)
.

(4.74)

We see that Π has the correct action by letting η = (1 + S†S)−1(χ+ S†ψ).
Having introduced the necessary machinery, we can now prove our operator inequality. We have

two densely defined operators SU , SŨ that map from H to H′ with graphs ΓU ,ΓŨ . Let us further
denote the corresponding projectors ΠU and ΠŨ . We know that since Ũ ∈ U , SU |χ〉 = SŨ |χ〉 for
all |χ〉 for which SŨ is defined. Therefore, ΓŨ must be a subset of ΓU . Since ΓŨ is a subset of
ΓU , we obtain the operator inequality ΠU ≥ ΠŨ , since the eigenvalues of ΠU are equal to 1 for all
nonzero eigenvalues of ΠŨ (and for these eigenvalues, they have the same eigenvectors!), however
ΠU may have additional nonzero eigenvalues. Thus, we have that 〈Ψ|ΠU |Ψ〉 ≥ 〈Ψ|ΠŨ |Ψ〉 for all
Ψ = (χ, ψ). Specializing to ψ = 0 and using the explicit projectors as in equation (4.73) we find
that the projector inequality ΠU ≥ ΠŨ reduces to

〈χ| 1
1 + S†USU

|χ〉 ≥ 〈χ| 1
1 + S†ŨSŨ

|χ〉 . (4.75)

Redefining S → S/
√
s and dividing off an overall factor of s on both sides of the inequality yields

〈χ| 1
s+ S†USU

|χ〉 ≥ 〈χ| 1
s+ S†ŨSŨ

|χ〉 , (4.76)

which is exactly equation (4.65), which we set out to show. With this, we have shown the mono-
tonicity of relative entropy under the reduction of the spacetime region.

4.1.5 Finite-Dimensional Case of Tomita-Takesaki Theory

While we have already observed that QFT is not a theory of finite-dimensional Hilbert spaces, it is
very useful to show Tomita-Takesaki theory in finite dimensions. It both has actual applications,
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and serves as an explicit grounding of the ideas of the previous section. Certain ideas of this section
extend to the infinite dimensional case [32].

In the finite-dimensional case, the existence of a factorization of the full Hilbert space as H =
H1⊗H2 is not fiction. Let us then define A as the algebra of linear operators on H1 and A′ as the
algebra of linear operators on H2. An operator A ∈ A acts on H as A⊗1, and an operator A′ ∈ A′
acts as 1 ⊗ A′. The algebra A′ is maximal under the condition that it commutes with A, so the
algebras are each other’s commutants. If the algebras are to share a cyclic separating vector the
subspaces H1 and H2 need to be of the same dimension, as we saw when studying equation (4.26).
Denoting orthogonal basis elements in H1 by |k〉 and in H2 by |k〉′, a general cyclic separating
vector has the form

Ψ =
∑
k

ck |k〉 ⊗ |k′〉 =
∑
k

ck |k, k〉 , (4.77)

with all ck nonzero.
Let us find the modular operators in this context. The definition of SΨ : H → H is

SΨ(A⊗ 1) |Ψ〉 = (A† ⊗ 1) |Ψ〉 . (4.78)

Let us pick a matrix A by picking a basis |k〉 and defining its action as follows

A |i〉 = |j〉 , A |k〉 = 0 if k 6= i . (4.79)

The action of the adjoint of A is then given by

A† |j〉 = |i〉 , A† |k〉 = 0 if k 6= j . (4.80)

Then, extending to the full Hilbert space we have

(A⊗ 1)
∑
k

|k,k′〉 = ci |j,i〉 , (A† ⊗ 1)
∑
k

ck |k,k′〉 = cj |i,j〉 . (4.81)

The definition of SΨ then implies that

SΨ(ci |j,i〉) = cj |i,j〉 , (4.82)

remembering that SΨ is antilinear we see that

SΨ |j,i〉 = cj
c∗i
|i,j〉 . (4.83)

This actually completely characterizes SΨ, since the states |i,j〉 give a complete basis of H (we just
repeat the analysis for each choice of i,j in the operator A). The adjoint operator S†Ψ acts as

S†Ψ |i,j〉 = cj
c∗i
|j,i〉 . (4.84)

where the antilinear property has complex conjugated the prefactor relative to the linear definition
of an adjoint operator. The modular operator is now straightforwardly computed, and its action is

∆Ψ |j,i〉 = S†
cj
c∗i
|j,i〉 =

c∗j
ci
S† |i,j〉 = |ci|

2

|cj |2
|j,i〉 . (4.85)

We also wish to know the modular conjugation operator JΨ. Since

∆1/2 |j,i〉 =
√
|ci|2
|cj |2

|j,i〉 (4.86)
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we can obtain JΨ by dividing the forefactor in the RHS off of equation (4.83):

JΨ |j,i〉 =
√
cjci
c∗jc
∗
i

, (4.87)

where choice of conjugation in the square root is determined by the phase of cj
c∗i .

Let us now move on to the relative operators. For this we need to define a second vector

|Φ〉 =
∑
α

dα |φ〉α ⊗ |φ〉
′
α , (4.88)

where the |φ〉 and |φ〉′ are bases for H1,H2 respectively, with coefficients dα. Let us abbreviate like
in the previous case so that |φ〉α⊗|φ〉

′
α ≡ |α, α〉. The state Φ is not necessarily cyclic nor separating

for A and A′ since we do not require dα 6= 0.
In the following, |i,j〉 denotes the basis states for Ψ, and |α,β〉 for Φ. Repeating the method for

the nonrelative operator, we pick A ∈ A such that

A |i〉 = |α〉 , A |k〉 = 0, if |k〉 6= i (4.89)

implying that the adjoint is defined by

A† |α〉 = |i〉 , A† |β〉 = 0, if |β〉 6= α . (4.90)

Extending to the full Hilbert space we have

(A⊗ 1)
∑
k

ck |k,k〉 = ci |α, i〉 (A† ⊗ 1)
∑
β

dβ |β,β〉 = dα |i, α〉 . (4.91)

The definition of SΨ|Φ (equation (4.78)) then gives us that

SΨ|ΦA |j,i〉 = SΨ|Φ |α,i〉
dα
c∗i
|i,α〉 . (4.92)

The adjoint is given (not unlike the case in equation (4.84)) by

S†Ψ|Φ |i,α〉 = dα
c∗i
|α,i〉 , (4.93)

and the relative modular operator by

∆Ψ|Φ |α,i〉 = |dα|
2

|c2
i |
|α,i〉 . (4.94)

Some of the expressions just obtained are expressible in terms of density matrices. Let us assume
in the following that Φ, Ψ are normalized so that

∑
k |ck|2 =

∑
α |dα|2 = 1.

The density operator for Ψ is

ρ12 =
∑
k

∑
l

ckc
∗
l |k,k〉 〈l,l| , (4.95)

and for Φ it is given by
σ12 =

∑
α

∑
β

dαd
∗
β |α,α〉 〈β, β| , (4.96)
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where the 12 subscript indicates that these are density operators in D(H1 ⊗ H2), i.e. density
operators on the full Hilbert space. Performing a partial trace, it is straightforward to show (see
equation (4.27)) that the reduced density operators are

ρ1 =
∑
k

|ck|2 |k〉 〈k| , ρ2 =
∑
k

|ck|2 |k〉′ 〈k|′ (4.97)

and
σ1 =

∑
α

|dα|2 |α〉 〈α| , σ2 =
∑
α

|dα|2 |α〉′ 〈α|′ . (4.98)

Comparing to equation (4.85) and equation (4.94) we see that

∆Ψ = ρ1 ⊗ ρ−1
2 ∆Ψ|Φ = σ1 ⊗ ρ−1

2 , (4.99)

which is well defined since we proved in equation (4.27) that the ρ must be invertible.
The relative entropy in QFT was given in equation (4.58), and in terms of density operators we

see that for the present case it is

DΨ||Φ = −〈Ψ| log
(
σ1 ⊗ ρ−1

2

)
|Ψ〉

= Tr12
[
ρ12 log

(
σ1 ⊗ ρ−1

2

)]
= Tr12

[
ρ12
(
− log(σ1 ⊗ 1) + log(1⊗ ρ2)

)]
= Tr1

[
− ρ1 log(σ1)

]
+ Tr2

[
ρ2 log(ρ2)

)]
.

(4.100)

Since ρ1 and ρ2 have the same dimensions and eigenvalues, Tr2[ρ2 log(ρ2)] = Tr1[ρ1 log(ρ1)], and
we have

DΨ||Φ = Tr[ρ1(log(ρ)− log(σ)] , (4.101)

which is the definition of relative entropy in quantum information theory that we covered in section
2.3.6.

The Modular Conjugation Operator in Finite Dimension

In the previous section, an interesting fact is that since the reduced ρ1 and ρ2 have the same
spectrum, they are dual under the exchange |i〉 ↔ |i〉′. The same of course also goes for σ1 and σ2
in terms of the bases |α〉 , |α〉′. We are free to pick the basis |i〉 relative to |i〉′ such that the phases
of the ci are minus the phases of the cj . In this case, the antiunitary operator JΨ becomes a flip of
basis vectors;

JΨ |i,j〉 =
√
cjci
c∗jc
∗
i

|j,i〉 = |j,i〉 . (4.102)

The existence of a natural antiunitary operator JΨ of this character suggests that we can think of
the state |j,i〉 as a matrix, and Jψ as the Hermitian conjugation operator. Since H1 and H2 are of
the same dimensions, we can identify the spaces as each other’s duals, thinking of H1 as the space
of column vectors and H2 as the space of row vectors.

We can then interpret an element in H as an n× n matrix that maps from H1 to itself, with n
the dimension of H1. The inner product 〈x|y〉 on H (= H1 ⊗H2) can then be interpreted as

TrH1 [x†y] , (4.103)
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where y, x are matrices. Since x is daggered, what is happening is that we are contracting the row
spaces (H2) of x and y in the matrix product, and then the trace performs the column space (H1)
part of the inner product.

The action of operators A ∈ A act on this representation of H as

x→ Ax1T = Ax , (4.104)

and operators A′ in the commutant A′ act as

x→ 1xA′T = xA′T (4.105)

where A′T is the transpose of the matrix A′. The identity in equation (4.104) comes from the
identity piece of A⊗1 acting on H1⊗H2; the transposed matrix to the right acts on the row space
(H2), and the matrix on the right acts on the column space (H1). Having interpreted the states in
this way as matrices, Ψ becomes

Ψ = ρ1/2 , (4.106)

where we have exchanged |i〉 ⊗ |i〉′ → |i〉 〈i|′ in the definition of Ψ equation (4.77), and used that
for ci real positive ci =

√
|ci|2.

We found that the relative modular operator was given by ∆Ψ|Φ = σ1 ⊗ ρ−1
2 . Its action on a

state in this new representation is
∆Ψ|Φx = σ1xρ

−1T
2 , (4.107)

however, since H1 is dual to H2 we have ρT2 = ρ1, and thus

∆Ψ|Φx = σ1xρ
−1
1 . (4.108)

For later use, this implies that

〈Ψ|∆α
Ψ|Φ |Ψ〉 = Tr1

[
ρ1/2∆α

Ψ|Φρ
1/2
]

= Tr1
[
σα1 ρ1ρ

−α
1

]
= Tr1

[
σα1 ρ

1−α
1

] (4.109)

where we have made repeated use of the cyclicity of the trace and the Hermiticity of the density
matrix.

A similarly simple relation between Φ and its density operators is not possible, since the splitting
of H relied on the existence of a natural antiunitary operator JΨ exchanging the bases of the
subspaces. If we are only interested in σ1, we can act on Φ with a unitary element u ∈ A′ without
changing σ1. Once we specify the states in H as matrices acting on H1, the state Φ will correspond
to some such matrix, that admits a polar decomposition Φ = PU where P is positive and U is
unitary. Letting P = σ

1/2
1 we can transform away the unitary part by acting on the row space (H2)

since states are only defined up to a unitary, letting us write Φ = σ1/2.

Modular Automorphism Group in Finite Dimensional Hilbert Space

Let us now state the main theorems of Tomita-Takesaki theory. We will use the representations of
the Tomita and modular operators found in the finite-dimensional case to show these theorems in
a simple setting, however most of them hold true in the infinite-dimensional case(s) as well. We
will then sketch how these properties are generalized to infinite-dimensional Hilbert spaces.
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The interesting properties of the Tomita- and Modular operators regard the Modular automor-
phism group, which is the group of unitary transforms on the form ∆is

Ψ , s ∈ R. We already know
by virtue of the previous section that in the finite-dimensional case ∆is

Ψ = ρis1 ⊗ ρis2 . Using this
explicit formula we see that for A ∈ A

∆is
Ψ(A⊗ 1)∆−siΨ = ρis1 Aρ

−is
1 ⊗ 1 . (4.110)

The important thing to note here is that the RHS of equation (4.110) is on the form B ⊗ 1 and
is therefore in A. What we have observed is that ”conjugation” by the modular group maps A to
itself, and the same holds for A′. Summarizing, we can write this as

∆is
ΨA∆−siΨ = A , ∆is

ΨA′∆−siΨ = A′ . (4.111)
In contrast, the modular conjugation operator exchanges the two algebras A and A′. We saw

this in the previous section when we picked a basis such that all of the ci in Ψ =
∑
i ci |i〉 ⊗ |i〉

′

were real positive, then JΨ |i,j〉 = |j,i〉. A matrix M ∈ A = M ⊗ 1 can be written as its spectral
decomposition

M ⊗ 1 =
∑
i

∑
j

λi(|i〉 ⊗ |j〉)(〈i| ⊗ 〈j|) , (4.112)

where |i〉 , |j〉 are orthonormal bases for H1, H2 respectively. Now, having picked JΨ such that it
flips j,i we see explicitly that

JΨ(M ⊗ 1)JΨ = JΨ

∑
i

∑
j

λi(|i〉 ⊗ |j〉)(〈i| ⊗ 〈j|)

 JΨ

=
∑
i

∑
j

λ∗i JΨ(|i〉 ⊗ |j〉)(〈j| ⊗ 〈i|)

=
∑
i

∑
j

λ∗i (|j〉 ⊗ |i〉)(〈j| ⊗ 〈i|)

=
∑
j

∑
i

λ∗j (|i〉 ⊗ |j〉)(〈i| ⊗ 〈j|)

= 1⊗M∗ ,

(4.113)

where the complex conjugation of the matrix eigenvalues is due to the anti- property of JΨ. Since
A and A′ are closed under complex conjugation, we summarize this property as

JΨAJΨ = A′ , JΨA′JΨ = A . (4.114)
We will see that in QFT, JΨ is related to the CPT operator.

Finally, the relative modular group is, perhaps unsurprisingly, defined by the group of unitary
transformations on the form ∆is

Ψ|Φ, s ∈ R. We saw in the previous section that in the finite
dimensional case it can be represented by ∆is

Ψ|Φ = σis1 ⊗ ρ−is2 , and for (A⊗ 1) ∈ A we have

∆is
Ψ|ΦA∆−isΨ|Φ = σis1 Aσ

−is ⊗ 1 . (4.115)

It is clear that the relative modular group also maps A to itself, and likewise for A′. The relative
modular conjugation does however have an additional interesting property - since no ρ’s appear it
is completely independent of the cyclic separating vector Ψ. Thus, for any other cyclic separating
vector Ψ′ we have

∆is
Ψ|ΦA∆−isΨ|Φ = ∆is

Ψ′|ΦA∆−isΨ′|Φ . (4.116)
The properties of equations (4.111), (4.114) and (4.116) are regarded as the main theorems

of Tomita-Takesaki theory. In the general case of infinite dimensional von Neumann algebra with
cyclic separating vectors they are difficult to prove, although they remain true.
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Extension to the Infinite-Dimensional Case

In this section we will provide a brief overview of the generalization to von Neumann algebras that
are obtainable as a limit sequence of matrix algebras on a product space of an infinite number
of qubits. This picture is thought to hold rigorously in QFT. We will then discuss some of the
essential differences between finite-dimensional and infinite-dimensional Tomita-Takesaki theory,
mainly discussing the analyticity properties of the modular operator, ∆is

Ψ, s ∈ C.
In the case where the infinite dimensional Hilbert space may be obtained as a limit n → ∞

of matrix algebras, it is relatively straightforward to prove the Tomita-Takesaki theorems. It is
believed that the algebra associated to an open spacetime region U in QFT is of this type [32]. The
main idea is that one can think of the degrees of freedom in U as an infinite collection of qubits.
Picking n of these qubits one gets an algebraMn of 2n × 2n matrices acting on the product space
H =

⊗
i≤nHi where the Hi have dimension 2. Beginning with one qubit and adding more one

gets an ascending chain of algebras M1 ⊂ M2 ⊂ . . .Mn ⊂ . . . ⊂ AU with AU as its limit. At
each finite step in the chain one can define the modular operators ∆(n)

Ψ , ∆(n)
Ψ|Φ and the modular

conjugation J (n)
Ψ as approximations of their full counterparts, and show explicitly that they fulfill

equations (4.111), (4.114) and (4.116). One then shows that the sequence of operators converge
in an appropriate sense to the full operators, and since they fulfill equations (4.111), (4.114) and
(4.116) at each step they will also do so in the limit n→∞.

Depending on the details of the construction, one can end up with Type I, Type II, and Type III
von Neumann algebras AU . Type I algebras are obtained by considering a finite Hilbert space, in
this case we have an algebra of bounded operators. An algebra of bounded operators on an infinite
dimensional Hilbert space is said to be of type I∞. The type II and III algebras are constructed by
considering a vector space V where the elements are complex matrices a, b ∈ V . This is made into
a Hilbert space by defining the inner product

〈a, b〉 = Tr[a†b] . (4.117)

A 2x2 complex matrix can be represented as a tensor product W ⊗ W ′ of two two-component
complex vectors W and W ′. In this sense, a and b are entangled qubit pairs. We then define
the algebra M and its commutant M′ as the algebras acting the row- and vector spaces of V
respectively. That is, M acts on W and M′ acts on W ′. The type II algebra is then roughly
obtained by tensoring n copies of V to make the Hilbert space, and then tensoring n copies of
M⊗M′ to make the von Neumann algebra. One obvious consequence as n→∞ is that since we
have n maximally entangled qubits, the entanglement entropy in either factor (W⊗)n or (W ′⊗)n
is infinite. Type III algebras are obtained by allowing for non-maximal entanglement in the qubit
pair. The entanglement entropy of a qubit pair can be parametrized by λ ∈ [0,1]. Generalizations
the basic type III algebras are obtained by letting the entanglement in the qubit pair depend on n,
i.e. λ→ λn. If λn → 1 sufficiently fast, we recover the type I∞ algebra from before. If λn converges
to 0 slowly, we get a new type of algebra called type III0. If λn does not converge we obtain a Type
III1 algebra.

It can be shown [32] that the algebra constructed from factorsM(n) ⊗M′(n) such that λn does
not converge as n → ∞ has the properties of the local algebras of QFT. Thus the local algebras
of QFT are of type III1, this is mostly related to the fact that the modular operators for such
an algebras have as their spectrum the the positive real axis, and we will see that the modular
operator in QFT is related to the the simultaneous momentum operator.

A fundamental fact about these algebras is that they have no irreducible representation. This
is like the fact that the Reeh-Schlieder theorem tells us that the local algebra of an arbitrarily small
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spacetime region is dense in Hilbert space - there is no minimal region below which local operators
stop being dense in Hilbert space.

The infinite-dimensional case of Tomita-Takesaki theory differentiates itself when we consider
operators on the form ∆iz

Ψ , where z is not restricted to the real axis. For a matrix algebra there is
no issue, ∆iz

Ψ = eiz log ∆Ψ has only bounded eigenvalues, meaning eiz log ∆Ψ is an entire holomorphic
function in z. In QFT ∆Ψ may be unbounded when acting on some states, and more care has to
be taken in the analysis.

Restricting to the case of ∆Ψ acting on a vector A |Ψ〉 , A ∈ A we can in a simple way prove
some holomorphicity properties of the modular group. First, we can show that ∆1/2A |Ψ〉 has finite
norm

〈∆1/2AΨ|∆1/2AΨ〉 = 〈AΨ|∆Ψ|AΨ〉
= 〈AΨ|S†S|AΨ〉
= 〈A†Ψ|A†Ψ〉 ,

(4.118)

where the final state is of finite norm since the eigenvalues of A† are conjugate to those of A. We can
then (reminding ourselves that ∆Ψ is Hermitian) use that for 0 ≤ r ≤ 1, the inequality λr < λ+ 1
implies the operator inequality ∆r

Ψ < ∆Ψ + 1. Starting from the previous calculation, we see that

〈AΨ|AΨ〉+ 〈A†Ψ|A†Ψ〉 > 〈∆r/2
Ψ AΨ|∆r/2

Ψ AΨ〉 . (4.119)

Since the lefthand side of the inequality is finite, and ∆is
Ψ , s ∈ R is unitary, we know that

∆is
Ψ∆r

ΨA |Ψ〉 is bounded for all s ∈ R and r ∈ [0, 1/2]. Thus, ∆izA |Ψ〉 is continuous in the strip
0 ≥ Im(z) ≥ −1/2 and holomorphic in its interior. We learned in equation (4.48) that replacing
A with A′ replaces ∆Ψ with ∆−1

Ψ , so we see that ∆iz
ΨA
′ |Ψ〉 , A′ ∈ A′ is continuous in the strip

0 ≤ Im(z) ≤ 1/2.

The Modular Hamiltonian and Time-Ordering from Analytic Continuation

In this section we look at the holomorphicity of the function F (z) = 〈Ψ|B∆iz
ΨA|Ψ〉 where initially,

z ∈ R. We find that the function F (z) can be related to a ”modular Hamiltonian”, and corresponds
to a two-point correlation function, where different operator orderings are obtained via analytic
continuation. This analytic behaviour of correlation functions is the same as for the thermal field
theories we considered in section 3.2.2. We then sketch the extension of this construction to higher
order correlators.

We consider the function

F (z) = 〈Ψ|B∆iz
ΨA|Ψ〉 . (4.120)

If z = s− ir, we have

F (s− ir) = 〈∆1/2rB†Ψ|∆is
ΨA|∆1/2rΨ〉 , (4.121)

and we know that the states |∆1/2rB†Ψ〉 and |∆1/2rΨ〉 are of finite norm for r ∈ [0, 1] from the
previous section. Therefore, the function F (z) is continuous in the strip 0 ≥ Im(z) ≥ −1 and
holomorphic in the interior. Let us determine the appearance of F (z) on the lower end of the strip,

103



4.1. Entanglement Entropy in Axiomatic QFT

defined by z = s− i,

F (s− i) = 〈∆1/2B†Ψ|∆is
ΨA|∆1/2Ψ〉〈

JΨ = J−1
Ψ , JΨ∆1/2 = SΨ

〉
= 〈JΨSΨB

†Ψ|∆is
Ψ|JΨSΨAΨ〉〈

antiunitarity of JΨ
〉

= 〈BΨ|JΨ∆is
ΨJΨ|A†Ψ〉

∗

〈
JΨ∆is

ΨJΨ = ∆is
Ψequation (4.51)

〉
= 〈BΨ|∆is

Ψ|A†Ψ〉
∗

= 〈A†Ψ|∆−isΨ |BΨ〉
= 〈Ψ|A∆−isB|Ψ〉 ,

(4.122)

where what we have obtained is F (s), but with opposite operator ordering.
Let us illustrate what this means using the finite dimensional case. Let H = H1 ⊗ H2 and

let A be the algebra of matrices acting on H1. We consider again the density matrix ρ = |Ψ〉 〈Ψ|
(coming from the cyclic separating state Ψ), and the reduced density matrix ρ1 = Tr2[ρ]. Then,
we can define the modular Hamiltonian H according to ρ1 = e−H . In the definition of F (z) we can
replace ∆iz

ΨA |Ψ〉 by ∆iz
ΨA∆−izΨ since ∆Ψ |Ψ〉 = |Ψ〉. We then have ∆iz

ΨA∆−izΨ |Ψ〉 = ρiz1 Aρ
−iz
1 |Ψ〉 =

e−izHAeizH |Ψ〉 (as in equation (4.110)). For any operator O that acts only on H1, the expectation
value of the operator in the state Ψ is given by 〈O〉Ψ = Tr1[ρ1O] = Tr1[e−HO]. Finally, we can
write down

F (z) = Tr1[e−HBe−izHAeizH ] (4.123)

Using our work in equation (4.122) we can now easily write down the expressions for F (s) and
F (s− i) as

F (s) = Tr1[e−HBe−isHAeisH ] , F (s− i) = Tr1[e−HAe−izHBeizH ] (4.124)

In the physical interpretation, s represents time, Â(s) = e−isHAeisH is a Heisenberg operator at
time −s, and the two functions F (s) and F (s− i) are two-point correlation functions in a thermal
ensemble with Hamiltonian H, as in section 3.2.2.

Let us now consider a slightly more general case of an infinite-dimensional factorizable Hilbert
space H = H1 ⊗H2. Given the definition ρ = e−H , if the trace in equation (4.123) is to be finite,
the eigenvalues of ρ approach zero for some eigenstates, meaning the modular Hamiltonian H is
necessarily unbounded above. In addition, the unit trace property and non-negativity of ρ implies
that H is positive definite. In this case both iz and 1 − iz must have a non-negative real part to
ensure the convergence of the trace, leading to the restriction 0 ≥ Im(z) ≥ −1 that we observed
without assuming a factorization earlier. Extending this reasoning in the factorizable case, we can
easily generalize the two-point correlator F (z) to a three-point correlator (and more). Consider the
function

F (z1, z2) = Tr1
[
e−HAe−iz1HBei(z1−z2)HCeiz2H

]
. (4.125)

It is holomorphic when Im(z1) ≤ 0, Im(z1 − z2) ≥ 0 and 1 + Im(z2) ≥ 0, as this ensures that
all exponents have negative real part, where the cyclicity of the trace pairs up the −H and iz2H
exponents. These holomorphicity statements can be proven without using the assumption of fac-
torization, and we will see an example of this in the next section. We will not see any explicit
example of the case with more than two operators.
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Figure 4.2: A spacetime divided into two Rindler wedges UR, defined by x ≥ |t|, and UL, defined
by x ≤ −|t|. Each Rindler wedge is the domain of dependence of the regions x ≥ 0 and x ≤ 0. It
is readily seen that an exchange x → −x, t → −t exchanges the two regions. This is why in this
decomposition of spacetime, choosing the modular conjugation as JΨ =CRT is a reasonable choice,
where the purpose of the charge conjugation is to implement anti-unitarity .

4.2 Examples in QFT
In this section we describe the application of Tomita-Takesaki theory to some simple cases in QFT,
namely the Rindler decomposition of Minkowski and the case of an accelerating observer in a
Minkowski background. The results of these examples allow for a particularly elegant derivation
of the semiclassical entropy of a black hole in section 4.2.3. These results also prove even more
versatile, and we use them as the basis for a general class of results regarding the entanglement
entropy of ball-shaped regions in CFT. As we will see, a sequence of conformal transformations
may deform a ball into the Rindler geometry. This fact lets us study the entanglement entropy of
conformal balls in section 4.183.

The General Setup

We consider a Minkowski spacetime MD of general dimension D, with one timelike direction and
D − 1 spacelike. We further single out one space coordinate (x) and split the metric such that

ds2 = −dt2 + dx2 + d~y2 , (4.126)

where ~y is a vector of D − 2 spacelike coordinates.
We let the Cauchy surface Σ be defined by t = 0. We let VR be the open half-space in Σ defined

by x > 0, and VL be the open half space defined by x < 0. We will call the domain of dependence of
VR, UR, the right wedge. The right wedge UR is defined by |t| < x. Similarly, the left wedge UL is
the domain of dependence of VL, and it is defined by x ≤ −|t|. These two regions are often referred
to as Rindler spaces. Finally, we let AR and AL denote the algebras of observables supported on
UR and UL respectively. The left and right wedges are depicted in figure 4.2.

Now, let |Ω〉 be the vacuum state of a QFT onMD. Our goal is to use that the vacuum is cyclic
separating for AR and AL to determine the modular operators ∆Ψ and JΨ for observations in the
right wedge UR.
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CPT (charge conjugation, parity, time reversal) is a universal symmetry of QFT (in 4 spacetime
dimensions). The inevitability of CPT invariance is built in if you assume that QFT can be obtained
as the analytic continuation of a theory in euclidean signature3. This is because QFT is constructed
to be rotation(Lorentz) invariant, and a rotation that inverts four axes has positive determinant,
meaning it can be obtained by a sequence of infinitesimal rotations4. Analytic continuation back
to Minkowski then converts this overall parity transform to CPT . This clearly fails to hold in
odd dimensions, since a rotation with determinant −1 is not in the connected component of the
rotation group. A better symmetry that holds in general dimension is obtained by replacing parity
by reflection in one axis, that is, an operator R : R(F (~x)) = F (−~x). In the following sections we
will make use of this charge, reflection, time reversal (CRT) symmetry of QFT in general dimension.

The CRT operator is antiunitary5 and it can be chosen so that it exchanges the regions UR and
UL in the setup we just described, thus exchanging the algebras AR and AL. We will see in the
following example that it becomes natural to identify JΩ with the CRT operator.

4.2.1 Path Integral Approach to Rindler Space

The path integral approach to the determination of ∆Ω and JΩ in right Rindler space is not
mathematically rigorous, but will nonetheless lead to an interesting and correct determination of
the operators. We assume the reader is familiar with everything that was discussed in section 3.1.

In this setup, we continue to Euclidean signature, setting t = −iτ . Remembering that any state
is evolved to the vacuum as we let τ go to infinity, the vacuum state Ω can then be obtained as
the path integral over the half-space τ ≤ 0 as a function of some boundary values at τ = 0. More
explicitly, we saw in equation (3.65) that

|Ω〉 = lim
T̃→∞

∫
Dφe−

∫ T̃
0 dD−1xdτL |φi〉 . (4.127)

In the present context, we can think of |φi〉 as some arbitrary initial state that is some function of
the field operators φL, φR supported on the left and right wedges respectively.

Let us now pretend that we can factorize the full Hilbert space according to H = HR ⊗ HL,
where HR and HL are the degrees of freedom supported in x > 0, x < 0 respectively. Then we
know that AR acts only on HR and the same for the left wedge. We now wish to start with the pure
density operator ρ = |Ω〉 〈Ω| and trace over HL. To do this, we write the vacuum as a functional
of the field operators φL,φR:

|Ω〉 ≡ |Ω〉 [φL,φR] . (4.128)

The field operators can be seen as analogues of the basis vectors in the finite-dimensional case. Then,
the partial trace on the density operator ρ = |Ω〉 (φ′L, φ′R) 〈Ω| (φL,φR) is performed by identifying
φ′L = φL and integrating over φL (formally, the completion relation that defines the trace does not
exist on the operator side, but thinking purely in terms of path integrals the gluing still makes
sense):

ρR =
(∫ φ′R

φR

DφL |Ω〉 (φL, φ′R) 〈Ω| (φL,φR)
)
. (4.129)

where the boundary conditions φR, φ′R are undetermined fields with support only on UR. The bra
in the integrand can be computed, as noted above as an integral over τ < 0, and the ket (since

3The rigorous proof of the CPT theorem depends on the holomorphicity property we found when proving the
Reeh-Schlieder theorem.

4More formally, the inversion of all four axes lies in the connected component of the rotation group
5Specifically, it is the charge conjugation operator that is antiunitary.
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Figure 4.3: The integration regions W2π and Wθ. The density operator is obtained from the path
integral over W2π with boundary conditions φR and φ′R. The density operator can be thought of as
the limit θ → 2π of the spacetime Wθ, that admits the operator interpretation of a rotation of the
initial φR in the τ − x-plane by an angle θ. Formally, we are picking a new ”Rindler time” θ and
identifying the Hamiltonian time evolution with a rotation. This rotation analytically continues to
Lorentzian signature to generate Lorentz boosts.

it is a complex conjugate) can be computed as an integral over τ > 0. We take φR and φ′R to
be arbitrary states with some vacuum overlap, while also viewing them as the starting points for
computing the vacuum state in the sense of equation (4.127). The local states that have overlap
with the vacuum are dense in the vacuum sector of Hilbert space thanks to the separating property
of |Ω〉 for local algebras.

To set φ′L = φL we glue together the time integrals along x < 0. This gluing gives us a path
integral over the two dimensional euclidean space W2π obtained from the τ − x-euclidean space by
making a cut along x > 0. In this path integral we need to specify the boundary states 〈φ′R| and
|φR〉 just above and just below the x > 0 half axis. We display the spacetime with the cut and
boundary conditions in figure 4.3.

Looking at ρR as the path integral defined in equation (4.129) with two unspecified boundary
conditions, it has the operator interpretation of evolving the state |φR〉 by rotating it in the x− τ
plane 2π radians onto the state 〈φ′R|. Let us consider only part of this operator, the path integral
in a Euclidean wedgeWθ with opening angle θ, as displayed to the right in 4.3. The wedge operator
Oθ is a Euclidean rotation of the x− τ system by angle θ, i.e. the wedge operator acts according to

Oθ |φR〉 [φ(x,τ)] = |φR〉 [φ(x′,τ ′)] ,
(
τ ′

x′

)
= Rθ

(
τ
x

)
=
[
cos θ − sin θ
sin θ cos θ

](
τ
x

)
. (4.130)

Working in Lorentzian time t = −iτ , we see that the rotation operator Rθ can be written as a
Lorentz boost:

Rθ

(
t
x

)
=
[

cos θ i sin θ
i sin θ cos θ

](
t
x

)
=
[

cosh(−iθ) − sinh(−iθ)
− sinh(−iθ) cosh(−iθ)

](
t
x

)
. (4.131)
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The RHS is a Lorentz boost by a negative imaginary boost parameter of the t − x-plane. The
generator of a Lorentz boost can be written as an integral over the initial value surface t = 0:

K =
∫
t=0

dxdD−2yxT00(x) . (4.132)

The 00-component of the stress-energy tensor is precisely the energy density, which is the generator
of local time evolution. By weighting the generator of time translation by the distance from the
origin x, we obtain precisely a rotation of the entire x-axis in the t− x-plane. With this definition,
for positive boost angles we are rotating the right wedge backwards in time, and the left wedge
forwards in time as in figure 4.3, where the direction of the rotation comes from e−iHt defining a
positive time translation. Formally we can decompose the boost generator K according to

K = KR −KL (4.133)

where KR and KL are the partial Lorentz boost generators on their respective wedges:

KR =
∫
t=0,x≥0

dxdD−2y xT00(x, ~y) ,

KL = −
∫
t=0,x≥0

dxdD−2y xT00(−x, ~y) ,
(4.134)

where the minus sign in front of KL comes from the substitution x → −x. The minus signs from
the interval, dx and x in the integrand come out to an overall sign.

The unitary operator that implements a Lorentz boost by the real boost parameter η is given
by e−iηK . Setting η = −iθ we find that the path integral on the wedgeWθ must define the operator
e−θK , but KL has only support on the on the left-half space so only KR survives. Thus, setting
θ = 2π to obtain our full path integral we have learned that

〈φ′R| ρR |φR〉 = 〈φ′R| e−2πKR |φR〉 (4.135)

for the right wedge. Similarly by instead tracing out UR, we obtain for UL that

〈φ′L| ρL |φL〉 = 〈φ′L| e−2πKL |φL〉 . (4.136)

More specifically, it is clear the the density operators for the left and right wedges are

ρR = e−2πKR , ρL = e−2πKL . (4.137)

Combining the results for the left- and right wedges for the density operator we can determine the
modular operator ∆Ω. We know that (since the operators KL,KR commute)

∆Ω = ρR ⊗ ρ−1
L = e−2πKRe2πKL = e−2πK . (4.138)

While not very interesting in the present case, we find that the modular Hamiltonian HR is given
by

HR = 2π
∫
t=0,x≥0

dxdD−2yxT00(x, ~y) . (4.139)

The fact that the modular Hamiltonian, which a priori has nothing to do with the Hamiltonian
that determines the time evolution of the state, is a simple function of the field theory Hamiltonian
is a remarkable property of Rindler space. This property will let us understand the entanglement
properties of ball-shaped regions in CFTs, where the modular Hamiltonian is obtained by tracking
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how T00(x) transforms under a pair of conformal transformations from the Rindler wedge to the
ball. In fact, this is the central result that lets us study spacetime emerging from holographic
entanglement entropy in Part II.

Now let us consider a state obtained by acting on the vacuum with an operator in the local
algebra A |Ω〉 , A ∈ AR. Let us assume that well defined operators A can be defined by smearing
a local operator φ(x,τ = 0) such that the smeared operator has support only in UR. In general,
the only point where this might be an issue is at x = 0, where this prohibits any smearing in time,
opening up the possibility of ultraviolet divergence at x = 0 (which does indeed exist, and is related
to the fact that we are not allowed to factorize the Hilbert space in the way that we have done).

Under our assumption that the Hilbert space factorizes, the state A |Ω〉 can be obtained via a
path integral on the lower x− τ half-plane by inserting the operator A into the path integration so
that it is weighted by Ae−iS[φ], on the x > 0 boundary. We now consider the state

∆αA |Ω〉 = e−2παKA |Ω〉 = e−2παKRe2παKLA |Ω〉 . (4.140)

We know that the operator A is in the right wedge algebra, so it must commute with e2παKL .
The picture is that the state |Ω〉 is rotated counterclockwise in the x − τ plane by an angle

2πα, while we are still inserting the operator in the same spot. Rotating the x − τ plane while
keeping the insertion point of the operator A has the effect of rotating the integration domain as
well as the τ = 0 boundary. Once α = 1

2 , the path integral is defined over the upper half plane,
and the boundary that used to lie in the left wedge now coincides with the insertion point of A.
Changing coordinates by rotating, we see that the vacuum state should look the same, and that A
has become A[φ[−x,0]] = Ã through the action of ∆α

Ω. The operator Ã has support on what was
originally the left wedge, so it must lie in AL. Thus, for A ∈ AR we have

∆1/2
Ω A(x) |Ω〉 = Ã(−x) |Ω〉 (4.141)

for some Ã ∈ AL. A similar statement will of course hold for the converse case. In this sense, the
operator ∆1/2 seems to exchange the algebras AR and AL.

We cannot continue increasing α beyond the value of 1
2 since it puts A outside of the integration

region. In terms of operator formalism, this is like trying to determine the action of an operator by
first acting on an arbitrary state with the operator A at some time t = −t0, then defining initial
conditions at a later time t = 0, which obviously makes no sense.

What we have learned is that the operator ∆α
Ω |A〉Ω is well defined in the closed interval

0 ≤ α ≤ 1
2 . In addition, there is no problem acting with a unitary operator ∆is

ΩA |Ω〉, so really the
claim is that ∆iz

Ω is holomorphic in the strip 0 > Im(z) > −1
2 and continuous on the boundary,

precisely the conditions we found in equation (4.119).
For our final exercise, we want to determine the modular conjugation JΩ. We know that SΩ is

supposed to act as
SΩA |Ω〉 = JΩ∆1/2

Ω A |Ω〉 = A† |Ω〉 . (4.142)

Suppose for simplicity that the local algebra is generated by a scalar field. Then, to determine JΩ
it is sufficient to consider the operator φ and ∂φ

∂t = φ̇. Since both φ and its time derivative are
Hermitian, by definition

SΩφ |Ω〉 = φ† |Ω〉 , SΩφ̇ |Ω〉 = φ̇† |Ω〉 . (4.143)

The action of ∆1/2
Ω on general operators was found above, as

∆1/2
Ω φ(0,x,~y) |Ω〉 = φ(0,− x,~y) |Ω〉 ,

∆1/2
Ω φ̇(0,x,~y) |Ω〉 = −φ̇(0,− x,~y) |Ω〉 ,

(4.144)
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where the additional minus sign on the time derivative comes from the fact that the action of ∆1/2

rotates the time direction by π radians as well. This determines the action of JΩ:

JΩφ(0,− x,~y) |Ω〉 = φ†(0,x,~y) |Ω〉
−JΩφ̇(0,− x,~y) |Ω〉 = φ̇†(0,x,~y) |Ω〉 .

(4.145)

Inserting a J2
Ω = 1 and using that JΩ |Ω〉 = |Ω〉 this implies, when comparing equation (4.143) and

equation (4.145) that

JΩφ(0,− x,~y)JΩ = φ†(0,x,~y) , −JΩφ̇(0,− x,~y)JΩ = φ̇†(0,x,~y) (4.146)

We see that JΩ must be an antiunitary operator (since it is supposed to conjugate the field), that
maps x→ −x, t→ −t and ~y → ~y. In other words,

JΨ = CRT , (4.147)

the charge conjugation6-reflection-time reversal operator.
In this simple example of the Rindler spacetime, have explicitly verified that the operators ∆Ω

and JΨ fulfill the Tomita-Takesaki theorems (equations (4.111) and (4.114)). More explicitly, since
∆iz

Ω , z ∈ R generates Lorentz boosts by a real parameter, it maps the left and right wedges to
themselves and therefore also preserves the algebras AR,AL, which is precisely equation (4.111).
The CRT operator JΩ exchanges the left- and right wedges, exchanging AR,AL which is precisely
equation (4.114). The fact that JΩ precisely exchanges the two algebras AR, AL tells us that
they are commutants, meaning they are maximal under the condition of commuting. Explicitly
showing these properties of JΩ and ∆Ω is how Haag duality equation (4.32) was originally proven
for complementary Rindler wedges by Bisogano and Wichmann [37].

4.2.2 Bisogano-Wichmann Approach to the Rindler Wedges

It would be nice to repeat the success of the above result without treating the boundary x = 0
imprecisely, and without claiming a false factorization of Hilbert space. Since JΩ = CRT definitely
exchanges the two wedges as in equation (4.146) we do not need to modify our reasoning on that
point. This means we only need to justify that for A ∈ AR we have

∆1/2
Ω Ã(x) |Ω〉 = A(−x) |Ω〉 (4.148)

for some Ã ∈ AL. Then, must show that ∆is
Ω maps AR to itself while also fulfilling equation (4.148).

What we need to show is

• identifying ∆Ω = e−2πK , where K is the simultaneous Lorentz boost generator given by
equation (4.132) makes the automorphism group ∆is

Ω , s ∈ R map the entire local algebra of
operators supported in the right wedge to itself ,

• analytically continuing the modular automorphism group to complex arguments, ∆iz
Ω , z ∈ C

gives us a domain of holomorphicity 0 > Im(z) > −1/2 when acting on states of the form
A |Ω〉 for all A ∈ AR ,

6Remember that the Hermitian conjugate of the field has opposite charge. More explicitly one could start with a
particular gauge theory, find the conserved charge and confirm that it is odd under JΩ.
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showing these two properties ensures that JΩ and ∆Ω fulfill equation (4.114) and equation (4.111)
respectively (at the same time). Let us define the operator A ∈ AR according to

A = φ(t1, x1. ~y1)φ(t2, x2. ~y2) . . . φ(tn, xn. ~yn) , (4.149)

represented in the path integral by insertion in the right wedge UR at points pi = (ti, xi, ~yi), i =
1,2 . . . n. In addition to this we can take the points pi to be spacelike separated from each other.
Since this makes the field operators commute, we can then order them such that

xj − xi > |tj − ti|, j > i . (4.150)

It is enough to consider operators on this form because the Reeh-Schlieder theorem still holds under
the spacelike separation restriction7.

The statement in equation (4.150) is Lorentz invariant (in the t−x-plane), since a Lorentz boost
can only map spacelike vectors to other spacelike vectors. This ensures that ∆is

Ω precisely maps AR
to itself, since for real s the operator ∆is

Ω is just a Lorentz boost by a real boost parameter. The
action of ∆is

Ω is defined by
∆is

Ω |Ψ〉 [t, x]→ |Ψ〉 [t′, x′] , (4.151)

where (
t′

x′

)
=
[

cosh 2πs − sinh 2πs
− sinh 2πs cosh 2πs

](
t
x

)
. (4.152)

Then, remembering that K |Ω〉 = 0, we insert a factor e−2iπKse2iπKs between between the operator
and vacuum, finding that the Heisenberg picture operator under this transformation is

φ(x′(s)) = e2iπKsφ(x)e−2iπKs , (4.153)

where we have defined x(s) = (t′,x′), x = (t,x) as in equation (4.152). Thus, we find that

e2iπKsφ(x1, ~y1)φ(x2, ~y2) . . . φ(x′n, ~yn) |Ω〉 = φ(x′1(s), ~y1)φ(x′2(s), ~y2) . . . φ(x′n(s), ~yn) |Ω〉
≡ F (s) ,

(4.154)

where we have defined the function F (s) for convenience. We would like to analytically continue to
the complex domain, defining F (z) ∈ C. First we wish to show that the domain of holomorphy for
F (z) is defined the following way. Let x′i = ui+ ivi, then F (z) is holomorphic if v1 and vi+1−vi are
future timelike for all vi. Using the spacetime translation generator P and defining Xi = (x′1(z), ~y1)
(suppressing the explicit z dependence) we may write

F (z) = φ(x′1(z), ~y1)φ(x′2(z), ~y2) . . . φ(x′n(z), ~yn) |Ω〉
= eiP1·X1φ(0)eiP2·(X2−X1)φ(0)eiP2·(X3−X2) . . . eiPn·(XnXn−1)φ(0)e−iPn·Xn |Ω〉 ,

(4.155)

where the · denotes the Lorentz inner product PiXi = −tH+~x ·~p. The vacuum should be invariant
under translation, so the last factor e−iPn·Xn does not matter. For a general vector x′i = ui+ ivi the
generic exponents look like (suppressing the uninteresting ~y direction since it is has no imaginary
part):

iP · (Xi+1 −Xi) = −itH(uti+1 − uti) + iPx(uti+1 − uti) + tH(vti+1 − vti)− Px(vti+1 − vti) . (4.156)
7The Reeh-Schlieder theorem tells us we can translate the field operators in spacelike directions, so we could use

the procedure of the proof of the Reeh-Schlieder theorem to put any set of field operators A on the form equation
(4.149) before successively moving them out of UV .
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But we know that eR where Re(R < 0) is holomorphic, so really we want

Re[iP · (Xi+1 −Xi)] = H(vti+1 − vti)− Px(vti+1 − vti) ≤ 0 , (4.157)

which is precisely the condition that v1 and vi+1− vi are future timelike, based on what exponents
appear in equation (4.155). To see this, remember that the simultaneous momentum of a physical
field, P lies in the closed forward lightcone as defined by the Wightman axioms. We then realize
that the product of two closed forward timelike vectors must be positive. The object in equation
(4.157) is minus the Lorentz product of P and vi+1 − vi, so the condition implies that since P is
timelike, so is vi+1 − vi.

Now, continuing on to F (z), we claim that if the points xi are chosen according to equation
(4.150) then F (z) is holomorphic precisely when 0 > Im(z) > −1/2. Since the statement of
equation (4.150) is Lorentz invariant, it suffices to check that the statement holds for Re(z) = 0.
Even further, because of how we have chosen the points xi we only need to check the condition for
i = 1, since all xi+1 − x are in the wedge x > |t|. Inserting iα as the boost parameter we find

x′ =
(
t′

x′

)
=
[

cosh 2iπα − sinh 2iπα
− sinh 2iπα cosh 2iπα

](
t
x

)
=
(

cos 2παt− ix sin 2πα
cos 2παx− it cos 2πα

)
. (4.158)

Since x > |t| the complex part of x′ is future timelike as long as −x sin 2πα > −t sin 2πα, which is
true for α ∈ (−1/2,0), since in this region − sin(2πα) is positive. With this, we have proved that

• identifying ∆Ω = e−2πK makes the automorphism group ∆is
Ω , s ∈ R map the entire local

algebra of operators supported in the right wedge to itself (this was obvious since Lorentz
boosts map spacelike to spacelike, and cannot exchange the wedges),

• ∆iz
Ω , z ∈ C gives us a domain of holomorphicity 0 > Im(z) > −1/2 when acting on states of

the form A |Ω〉 for all A ∈ AR,

which is what we set out to show.

Accelerating Observer

We have seen that if we split Minkowski into two complementary wedges, and consider an observer
who only has access to the right wedge, the observer will find that their part of spacetime is
described by a thermal density operator ρR = e−2πK . The observer who has access precisely to a
Rindler wedge of Minkowski spacetime is the constantly accelerating observer, and the expectation
value of operators O measured by this observer are therefore given by 〈O〉 = Tr[Oe−2πK ]. The
world line of the constantly accelerating observer is parametrized by(

t(τ)
x(τ)

)
= R

(
sinh

(
τ
R

)
cosh

(
τ
R

)) , (4.159)

where τ is the proper time of the observer, and the proper acceleration is a = 1/R. As before, we

suppress the ~y direction since nothing interesting happens. For simplicity, we abbreviate
(
t(τ)
x(τ)

)
=

x(τ).
We imagine that the observer probes the Minkowski vacuum Ω by measuring a local operator

O and its adjoint O† along the worldline x(τ). For simplicity, we consider only the two-point
functions, 〈Ω| O(x(τ1))O†(x(τ2)) |Ω〉 and 〈Ω| O†(x(τ2))O(x(τ1)) |Ω〉. Due to Lorentz invariance, we
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Figure 4.4: Rindler spacetime with sample trajectories of a constantly accelerating observer. The
right hand trajectory is the physical trajectory, while the downwards-moving trajectory on the left
will be obtained as an analytic continuation of the other. An observer on the physical trajectory
has an event horizon on the region rightwards lightlike separated from the origin, since timelike
geodesics can never pass this surface from the left.

know this correlator depends only on τ1 − τ2 so without loss of generality we can set τ1 = τ and
τ2 = 0. We now write these as two functions

F (τ) = 〈Ω| O(x(τ))O†(x(0) |Ω〉
G(τ) = 〈Ω| O†(x(0))O(x(τ)) |Ω〉 .

(4.160)

The insight of Unruh was that these two functions have the analytic properties of a thermal correla-
tor. The basic properties of thermal correlators is, as we covered in section 3.2.2 are that analyticity
breaks down if any two arguments (in this case τ2 and τ1) are separated by more than β. Slightly
more mathematically, there is a function H(τ) that is holomorphic on a strip in the complex plane
whose boundary values are F (τ) and G(τ) on the two boundaries of the strip that are canonically
given by Im(τ) = 0 and Im(τ) = iβ.

To have the same insight as Unruh, we first analytically continue the observer’s trajectory. We
set τ/R = s+ iθ, with s, θ real, and find that

x(τ) = R

(
sinh(s cos θ) + i cosh(s sin θ)
cosh(s cos θ) + i sinh(s sin θ)

)
. (4.161)

Then, we have for the imaginary part that

Im(x(τ)) = R sin θ
(

cosh(s)
sinh(s)

)
. (4.162)

As we arrived at in equation (4.157), F (τ) is holomorphic when Im(x(τ)) is future timelike and
G(τ) when Im(x(τ)) is past timelike. The vector (cosh s, sinh s) is always future timelike, so F (τ)
is holomorphic in the strip 0 < θ < π and G(τ) in the strip π < θ < 2π8, entirely due to the sign

8Equivalently, we could choose −π < θ < 0 but such a choice is inconvenient later.
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of sin θ. The function F (τ) is equal to the original correlator at θ = 0, and at the boundary θ = π
it is equal to

F (R(s+ iπ)) = 〈Ω| O(−x(Rs))O†(x(0)) |Ω〉 . (4.163)

For G(τ) the situation is similar; for θ = 2π it is clearly just the original correlator. Then, at θ = π
it is given by

G(R(s+ iπ)) = 〈Ω| O†(x(0))O(−x(Rs)) |Ω〉 . (4.164)

The crucial observation is now that x(0) and −x(Rs)) are always spacelike separated, since −x(Rs))
lies in the left wedge of figure 4.4. Therefore, the operators commute and we find that

F (R(s+ iπ)) = G(R(s+ iπ)) . (4.165)

We have thus found two functions: F (τ) that is holomorphic for 0 < θ < π and G(τ) that is
holomorphic for π < θ < 2π. In addition, at θ = π they are equal. We can therefore define a single
function on the combined strip 0 < θ < 2π according to

H(τ) =
{

F (τ) if πR ≥ Im(τ) ≥ 0
G(τ) if 2πR ≥ Im(τ) ≥ πR .

(4.166)

The function H(τ) is holomorphic in the combined strip and continuous on the boundaries, granted
that we can show that it must be holomorphic at Im(τ) = πR. To show holomorphicity at Im(τ) =
πR we realize that we in the strip 0 < θ < π can define H(τ) as a Cauchy integral with a boundary
that runs partly along θ = π (since it is holomorphic inside the strip). In the strip π < θ < 2π we
can do the same, letting part of the contour run along θ = π in the opposite direction. We then
pick the two curves so that the part along θ = π cancels, using that the sum of two holomorphic
functions is another holomorphic function, we find that H must be holomorphic on the line θ = π.

Conclusively, H(τ) is holomorphic on a strip of width β = 2πR and its limits at the boundaries
are given by the two operator orderings F (s), G(s) of the correlation function. The constantly
accelerating observer has proper acceleration a = 1

R , and finds that the vacuum has temperature

T = 1
2πR = a

2π , (4.167)

which indeed is the celebrated expression for the Unruh temperature.

4.2.3 Semiclassical Black Hole Entropy

We found in equation (4.167) that proper acceleration is related to an observed thermal state in
Minkowski spacetime. Finding this result was a long trip through the foundations of axiomatic
QFT, but the result we have found is remarkably powerful thanks to the equivalence principle of
general relativity. In fact, it is now very straightforward to obtain the entropy of a black hole, the
famous result of Bekenstein and Hawking [1, 28].

Let us now turn our eyes to a QFT in a curved spacetime. Consider an observer that is fixed
very close to the horizon of a black hole. Invoking the equivalence principle, there is a locally flat
(Minkowski) spacetime that our observer sees if it is moving along a geodesic. The fact that our
observer is fixed implies that it must be counteracting the acceleration of the black hole with its
own proper acceleration, i.e. we have an accelerating observer in a locally Minkowski spacetime.
We know that the temperature observed by the accelerating observer is

T = a

2π , (4.168)
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where a is the acceleration. Furthermore, we know that the acceleration at the event horizon of a
black hole is given by Newtons law as

a = GNMBH
R2
BH

. (4.169)

We also know that the Schwarzschild radius is given (in four dimensions) by

RBH = 2GNMBH . (4.170)

Therefore, the temperature of the black hole is given by

T = 1
8πGNMBH

. (4.171)

Notably, very massive black holes are cold. Since we know the total energy of the black hole, as
well as its temperature, we can interpret the black hole as a microcanonical ensemble to calculate
its entropy. Remember that for the microcanonical ensemble, we have from equation (3.74) that

1
T

= dS
dE . (4.172)

The total energy of the black hole is simply MBH(c2) since it is completely static. Substituting
dE → dM and inserting our expression for T , we find the integral relation∫ S(M=MBH)

0
dS =

∫ MBH

0
dM8πGNM . (4.173)

Where we have required that the entropy of the black hole goes to zero as the mass goes to zero,
since there should just be a Minkowski vacuum in the zero mass limit. We find by performing the
integration that

SBH = 4πGNM
2 . (4.174)

Expressing the area of the black hole horizon as A = 4π(2GNM)2 we find

SBH = A

4GN
. (4.175)

This computation is a so-called semiclassical approximation of black hole physics. It is not classical
since we are in principle considering particle anti-particle pairs that would usually be Feynman
bubble diagrams, which are one loop. It is not a full quantum derivation since we do not consider
quantum gravitational corrections, and we are not considering the back-action of the particle-
antiparticle pair on the background spacetime.

An incredibly important property of the black hole entropy is that it is completely independent
of the particle content of our effective field theory. It is for this reason that the semiclassical physics
of black holes are thought to hold for all consistent extensions of the standard model. This means
that reproducing the leading area term of the black hole entropy is the first check that any theory
of quantum gravity must pass.

Both string theory and loop quantum gravity (LQG) can manage to find the area law for the
entropy by counting microstates explicitly. Perturbative string theory comes with the caveat that it
is difficult to find Schwarzschild-like black hole solutions in 3+1 large dimensions, but for example
5-dimensional calculations give a quantitative agreement with the semiclassical result. The case
in LQG is that there is a free parameter called the Barbero-Immirzi parameter that is fixed only
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by the black hole entropy computation, and there is a lack of other successful computations with
which the consistency of the black hole value of the Barbero-Immirzi parameter can be checked.

Finally, the black hole entropy result is the first hint at an apparent paradox. Let us imag-
ine that we have a quantum theory of gravity, wherein time evolution is described by a unitary
operator. It is well known that the von Neumann entropy of a system is invariant under unitary
transformations. We can start with a universe that is nearly in the vacuum state, containing only
two very energetic particles that are sent towards each other. This is a completely definite state
with zero entropy. When these particles collide they should form a black hole. The black hole has
nonzero entropy meaning that something non-unitary has happened, violating a central postulate
of quantum mechanics.

This might be okay, maybe the entropy and non-unitarity only exists because we are not de-
scribing the interior of the black hole. The result in equation (4.168) tells us that the black hole
has temperature and should radiate its content back into the universe as thermal radiation. This
means that as some point in the future we will end up with a universe containing no black holes
and lots of thermal radiation. Thermal radiation has entropy, and now we can not use the excuse of
not knowing what happens inside the black hole. This leaves us with a paradox, black hole entropy
seems to violate the unitarity of quantum mechanics. Since entropy is a measure of information,
this is called the information paradox and it is one of the important open questions of quantum
gravity.

A notable ambiguity in the present discussion of black holes is that we have assumed an event
horizon to apply the Unruh effect. If the black hole radiates until it disappears, this indicates that
on the quantum level there was no event horizon to prevent matter in the interior from escaping.
The way in which the analysis of black hole physics has proceeded has then been to try and assume
that the Hawking radiation is secretly pure, by virtue of photons emitted early in the lifespan of
the black hole being entangled with those emitted late. This assumption, which saves quantum
mechanics, will force us to give up on either the smoothness9 of the black hole horizon or the locality
of physics as we will learn in chapter 9.

4.2.4 Ball-Shaped Regions in CFT

The Unruh-Wichmann result is both incredibly general and incredibly useful. Let us now see how
it can be applied to find the modular group for ball-shaped regions in a CFT. This section is based
on an example in chapter 6.1 of [38] that in turn follows [39].

Let us denote the ball-shaped spatial region Bd, and the d + 1-dimensional Minkowski back-
ground Md+1. We furthermore choose coordinates such that the ball is centered at the origin at
time t = 0 and has radius R. The domain of dependence (or causal diamond) DB of the ball is a
double cone, with the two endpoints p± = (±R, 0,0,0). In CFTs conformal transformations are a
symmetry, and such transformations may deform DB. We will now find the modular group for the
ball-shaped regions by using two conformal transformations to turn DB into a Rindler wedge. We
know that the modular Hamiltonian for a Rindler wedge is given by (equation (4.139))

HR = 2πKR = 2π
∫
t=0,x>0

dxdD−2y xT00(x, ~y) , (4.176)

where the local density operator is ρR = eHR . We can then construct the local density operator
ρB by tracking how T transforms as we invert the conformal transformations to go back from the
Rindler wedge to DB. The sequence of geometries is given in figure 4.5.

9In this case, by ’smooth’ we mean that the black hole horizon is not distinguished by curvature, i.e. the geometry
is nonsingular.
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Figure 4.5: The sequence of geometries for the CFT ball modular Hamiltonian computation. The
domain of dependence DB of the ball Bd in polar coordinates is mapped by a conformal transfor-
mation to a hyperbolic space tensored with a timelike coordinate τ . The region filled in with red
lines keeps track of the transformation of Bd and the region in grey follows the transformed DB.
This space is then mapped to the Rindler half-space by another conformal transformation, in which
Bd is mapped to the slice z ≥ 0, X0 = 0. The naming of the coordinates in each step follows the
conventions of equations (4.177), (4.179), (4.180) and (4.181).

Let us begin the sequence of coordinate transformations by looking at polar coordinates in
which the ball takes a simple form

ds2 = −dt2 + dr2 + r2dΩ2
d−2 . (4.177)

We can make a coordinate transformation

t = R
sinh

(
τ
R

)
cosh u+ cosh

(
τ
R

) , r = R
sinh u

cosh u+ cosh
(
τ
R

) , (4.178)

putting the metric on the form

ds2 = 1[
cosh u+ cosh

(
τ
R

)]2 (−dτ +R2
(
du2 + sinh2 udΩ2

d−2

))
. (4.179)

Up to an overall scale factor this metric describes a hyperbolic space (”Euclidean AdS”) tensored
with the time direction. Metrics related by an overall scale factor are conformally equivalent. By
observing that as τ → ±∞, t→ ±R, while as u→∞, r → R, the causal wedge has been mapped
to τ ∈ R and u ≥ 0, i.e our coordinates precisely cover DB.

The metric equation (4.179) can be related to the Rindler spacetime by rewriting the hyperbolic
part in half-plane coordinates (see equation (6.28)). The metric becomes

ds2 = 1[
cosh u+ cosh

(
τ
R

)]2
(
−dτ2 + dz2 + Σd−1

i=2 dXidXi

z2

)

≡ 1
z2 [cosh u+ cosh

(
τ
R

)]2 (−z2dτ2 + dz2 + Σd−1
i=2 dXidXi

)
,

(4.180)

where in the final term, the expression in parentheses is the metric of a Rindler observer, and
the factor outside parentheses can be removed by a conformal scaling. The Rindler metric can be
brought to Cartesian coordinates via

X1 ±X0 = ze±
τ
R . (4.181)
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The entangling surface at r = R in the original coordinates has been mapped to z = 0, which
is the entangling surface of the Rindler spacetime. We know from section 4.2.2 that the modular
Hamiltonian for the Rindler wedge is

HR = 2πKR = 2π
∫
t=0,x>0

dxdD−2y xT00(x, ~y) . (4.182)

It is possible to show by reversing the coordinate changes and finding the Schwarzian of the coor-
dinate change that the modular Hamiltonian on the ball takes the form

HB = 2π
∫
Bd

dd−1x
R2 − r2

2R T00(x) , (4.183)

where r =
√∑

x2
i is a radial coordinate.

4.3 Entanglement Entropy in CFT
In this section some modern results about the entanglement properties of quantum fields are pre-
sented. These derivations do not use the Tomita-Takesaki machinery, but rely on some of the
general properties that we discovered in the previous sections, such as the fact that the entropy
of a subregion is equal to the entropy of the minimal causal diamond containing that subregion.
These examples specifically regard CFTs, and are directly relevant for the AdS/CFT duality, as we
will see in chapters 6 and 7.

4.3.1 UV-divergences in the Entropy

In the previous sections we have skirted around the issue of a divergent UV contribution to the
entanglement entropy very close to the boundary between complementary spacetime regions, as in
the case of the Rindler wedges. In the explicit example of the accelerating observer in Minkowski,
the observer will see an infinitely large surface with temperature T = a/(2π) so the divergence
of the entropy is obvious. In the example of a black hole, the integration constant in equation
(4.173) ate the universal vacuum-vacuum divergence thus regularizing the black hole entropy. Such
a regularized, vacuum-subtracted entropy is known in the literature as the Casini entropy.

The divergent part of the entanglement entropy comes solely from the vacuum due to the fact
that if you zoom in far enough, any finite energy state will look like arbitrarily high-energy random
vacuum fluctuations. This means that to understand the structure of the divergent contributions to
the entanglement entropy we need only consider the vacuum state, ρ = |Ω〉〈Ω|. Since the divergences
come from very high energy physics, we expect them to be very localized. In particular, this means
that the entanglement entropy should be the integral of a local property of the entangling surface
between a region and its complement. Causally complementary regions in a d + 1-dimensional
spacetime have an entangling surface that is d − 1-dimensional. A surface that has two (n) fewer
dimensions than the full spacetime is formally referred to as a ”codimension 2 (n)” surface.

Let us write down the entropy of a region A as the most general local, Lorentz invariant
expression of the surface parameters

Sdiv
A =

∫
∂A

dd−1x
√
hF (Kab(x), hab(x)) , (4.184)

where h is the induced metric on ∂A, K is the spacelike extrinsic curvature ∇an̂a on ∂A constructed
from h and F is an arbitrary analytic function thereof.
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We can expand F as a power series in K. The extrinsic curvature K has dimension of inverse
length since its a directional derivative. The global vacuum is a pure state, so we know that the
complement of A has the same entropy and the same boundary surface, but the intrinsic curvature
K has the opposite sign since the normal points inwards. If the two regions have the same entropy
it is clear that only even powers of K can be included in the expansion. At zeroth order in K the
entropy integral should be proportional to Ld−1 where L is a characteristic length of the surface,
and each factor of K should contribute a factor ∼ 1/L. Thus we have an expansion of the form

Sdiv
A ∼ a1L

d−1 + a2L
d−3 + . . . , (4.185)

where the coefficients ai are theory dependent and depend on the induced metric h, while the
powers of L are universal. The leading contribution to the entanglement entropy is proportional
to the d − 1-dimensional volume of the entangling surface, i.e. ”area”. This should be expected,
the leading entropy contribution is extremely high energy modes coupling at short distance, and
the number of such modes is proportional to the area. The divergences sit in the coefficients ai
as we shall soon see. In theories that are not scale invariant, the divergence sits purely in a1 this
coefficient is associated with the Ld−1 scaling expected of a local quantity integrated over ∂A.

Let us sit back for just a moment and think about this result. We are claiming that in any
quantum theory, the leading term in the entanglement entropy is proportional to the area. In
addition, we recently showed in section 4.2.3 that the black hole entropy may be interpreted in
terms of a Rindler observer in the vacuum that is entangled with degrees of freedom on the other
side of an event horizon. The claim that the entropy of black holes as observed from the outside truly
is due to entanglement with the interior is supported by the above derivation, since entanglement
entropy is precisely the type of entropy with a leading area contribution. It would be strange
for the black hole entropy to be an honest thermal entropy for the simple reason that such an
entropy should be extensive. This realization that the leading black hole entropy is truly due to
entanglement across a horizon is the intuition that led to the holographic principle, which itself
led to the AdS/CFT correspondence and the Ryu-Takayanagi proposal, which we discuss in section
7.2.

Scale Invariant Theories

In the case of a scale invariant theory, the only dimensionful quantities in the problem are the
inverse energy εUV and the characteristic length L. The entropy is supposed to be an observable,
meaning it must be scale invariant. By dimensional analysis, since the ai by definition do not get to
depend on the length scale, we need a1 ∼ ε1−dUV , a2 ∼ ε3−dUV and so forth. Defining new dimensionless
coefficients bi the expansion then reads in even dimension

SCFTA ∼ bd−1

(
L

εUV

)d−1
+ ∼ bd−3

(
L

εUV

)d−3
+ . . .+ b1

L

εUV
+ S̃ +O(εUV /L) (4.186)

and for odd d:

SCFTA ∼ bd−1

(
L

εUV

)d−1
+ bd−3

(
L

εUV

)d−3
+ . . .

+ b2

(
L

εUV

)2
+ S̃ log L

εUV
+ const +O(εUV ) ,

(4.187)

where the log term comes from a ∼
∫

dd−1xx1−d in the K power expansion. The bi and S̃ depend
on the theory but not on the energy- or length scales εUV and L.
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In a theory that is not scale invariant, there are additional dimensionful couplings, so the scale
invariance of SA is broken. We do not prove this, but the terms proportional to S̃ are independent
on the choice of UV regulator, leading to S̃ being referred to as the renormalized entanglement
entropy.

In 1+1-dimensional CFT, the entanglement entropy of a partial strip of length L0 is given by

S2dCFT = c

3 ln L0
εUV

, (4.188)

which matches the expectation of a leading log divergence from equation (4.187). We show that
the leading divergence indeed takes this form in section 4.3.3.

4.3.2 RG-flow of Central Charge in 2d

In section 3.4.4 we encountered the central charge of two-dimensional CFT. We hinted that it
measures the number of degrees of freedom of the theory by claiming that in string theory, each
scalar and spinor give a positive contribution to it. Renormalization involves integrating out high
energy degrees of freedom, which if our intuition is true must mean that the central charge should
decrease. The proof that this is the case in 2d CFT is called the c-theorem and it can be proven quite
simply using the machinery of causal wedges and strong subadditivity of quantum entropy. The
c-theorem was originally proved in the 80s by Zamolodchikov without reference to entanglement
entropy. The version of the proof we are about to consider is much simpler and due to Casini and
Huerta [40], showcasing the power of the quantum information machinery in QFT.

c-theorem

The c-theorem states that the central charge c decreases monotonically under a unitary, Lorentz
invariant RG-flow. This can be show relatively simply by considering the following setup. Consider
two spacelike lines A,B of equal proper length in the τ − σ plane as is in figure 4.6, where we have
also labelled three linez X,Y and Z that are defined in terms of the endpoints of A,B. Here, τ is
the timelike CFT coordinate and σ the spatial coordinate. The shaded region is the causal wedge
belonging to either the line A∪B or X ∪ Y ∪Z. Two regions with the same minimal causal wedge
must have the same entropy since they are completely determined in terms of each other by unitary
time evolution.

By inspecting figure 4.6 and comparing causal wedges, it is clear that

SA = SX∪Y , SB = SY ∪Z

SA∪B = SX∪Y ∪Z , SA∩B = SY ,
(4.189)

where A ∩B denotes the intersection of the causal wedges of A and B respectively. Strong subad-
ditivity (equation (2.66)) implies that

SA + SB ≥ SA∪B + SA∩B , (4.190)

or equivalently
SXY + SY Z ≥ SY + SXY Z (4.191)

where we have left the unions implicit. We can parametrize the length l of the respective regions
by

l(A) = l(B) =
√
rR , l(Y ) = R , (4.192)
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Figure 4.6: Two spacelike lines A and B of equal proper length, together with other the related
lines X,Y and Z, expressed in terms of the time coordinate τ and the spatial coordinate σ. The
shaded region is the causal wedge or domain of dependence of A∪B. Equivalently, it is the domain
of dependence of the line X ∪ Y ∪ Z. The endpoints of A and B lie on the lightcone of the point
P and are thus related to Y via a Lorentz boost about P .
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4.3. Entanglement Entropy in CFT

where R is the proper distance between the outer endpoints of the causal wedge and r is the proper
length of Y . Then, since the entanglement entropy in a 2d CFT on any interval can only depend
on the proper length of the region, strong subadditivity reads

2S(
√
rR) ≥ S(R) + S(r) . (4.193)

Letting R = r + ε, expanding in powers of ε/r for the argument and in powers of the total pertur-
bation for the entropies, equation (4.193) becomes

2S
(
r + r

1
2
ε

r
− r1

8
ε2

r2

)
≥ S(r + ε) + S(r)

2
[
S(r) + S′(r)

(
ε

2 −
1
8r ε

2
)

+ 1
8S
′′(r)ε2 +O(ε3)

]
≥ 2S(r) + S′(r)ε+ 1

2S
′′(r)ε2

(4.194)

Notably the zeroth and first order terms in ε are the same on both sides, and we have dividing by
ε2 and multiplying by r that

− 1
4rS

′(r) + 1
4S
′′ ≥ 1

2S
′′(r)

0 ≥ 1
4
(
S′(r) + rS′′(r)

)
.

(4.195)

We can define the C-function as

C(r) = rS′(r) , C ′(r) ≤ 0 (4.196)

where the inequality is equivalent to strong subadditivity. Notably, the function C is monotonic as
a function of interval size - increasing the size of the strips decreases the value of C.

So far, we have not invoked scale invariance. Let us now consider the case in which we have a
scale invariant theory. At any RG fixed point, a generic QFT is scale invariant and in 2d this nec-
essarily implies the full conformal invariance. We have an explicit expression for the entanglement
entropy under the assumption of scale invariance in equation (4.188):

Scft(r) = c

3 ln r

εUV
, (4.197)

where c is the central charge. Then, the C -function has an explicit expression

Ccft = c

3 . (4.198)

If the QFT in question is not scale invariant, the RG flow describes a transition between an UV
CFT and an infrared CFT. We know at the fixed points that the central C-function must be

CUV = cUV
3 , CIR = cIR

3 . (4.199)

We interpret the physical distance r, that is the length of the strip Y , as the renormalization scale.
Very high energy corresponds to very short distances, so by increasing r we are inducing an RG
flow from the UV to the IR. But we know that C ′(r) ≤ 0 for all r, so∫ rIR

rUV

dr C ′ ≤ 0 . (4.200)
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Then the fundamental theorem of calculus tells us that

cUV ≥ cIR , (4.201)

proving the c-theorem, namely that the central charge decreases under RG flow.
A very interesting fact is that we never had to refer to the explicit field content of the theory.

This behaviour is completely general given any Lorentz invariant QFT with IR and UV fixed points.
This result can also be generalized to some higher dimensions as done in [40].

4.3.3 Replica Method

In section 4.2.1 we used a path integral construction and a claimed Hilbert space factorization to
compute the local density operator in the Rindler half-space. The generalization of this construction
to a finite region of arbitrary shape is horribly complicated. We will in this section outline the so-
called replica construction, as well as the steps to deriving the entanglement entropy of a finite
line segment in a 1 + 1-dimensional CFT. We base the following discussion on the review by
Cardy and Calabrese [41], as well as the presentation by Rangamani and Takayanagi in [42]. The
example here does not let us compute something we could not have computed with the modular
Hamiltonian of section 4.2.4, but the path integral version generalizes to multiple disconnected
regions in a tractable way. In addition the replica construction admits a holographic interpretation
as a gravitational problem using the AdS/CFT correspondence as we will see in section 7.2.2.

Let us in the following consider a general QFT whose Hilbert space we claim we can factorize
according to H = HA ⊗ HB. We take the Hilbert spaces A and B to be belonging to causally
complementary spacetime regions. The full quantum state is assumed to be a pure state.

There is a generalization of the von Neumann entropies called the Renyi entropies S(n)
A , which

we introduce in the following section. The computation of the Renyi entropies has us evaluate the
quantity ρnA, for integer n, and then analytically continue the result to n ∈ R. This leads to a path
integral over several copies of the τ − x-plane glued together in a certain way. In CFT we will
see that we can express this as a path integral over a single plane with so-called twist operators T
inserted. The replica trick is general to d-dimensional balls in d + 1-dimensional spacetimes, but
we will carry out the explicits in 1 + 1 dimensions.

Renyi Entropies

In the case of CFTs, it turns out to be useful to define the Renyi entropies as

S
(n)
A ≡ 1

1− n ln Tr[ρnA] . (4.202)

In the case when ρ is pure we have S(n)
A = S

(n)
B . We know that TrA[ρnA] is finite for all positive

integers n since the eigenvalues of ρ are between 0 and 1. We can then analytically continue the
Renyi entropies to any n, taking its expression in terms of the eigenvalues of ρ to define it. Then,
the Renyi entropies reduce to to the usual entropy in the limit n → 1. To see this we diagonalize
ρ according to ρ =

∑
λj |j〉〈j| and remember that ρ has unit trace. Then,

Trρn =
∑

λnj = 1−
∑
j

(λj − λnj ) ≡ 1− f(n) . (4.203)
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We can then rewrite f(n) in a tricky manner

f(n) =
∑
j

λj(1− λn−1
j )

=
∑
j

λj(1− e(n−1) lnλj )

=
∑
j

λj(1− n) lnλj +O((n− 1)2)

= (1− n)TrρA ln ρA +O((n− 1)2) .

(4.204)

Inserting back into the Renyi entropies we see

S
(n)
A = 1

1− n ln (1− (1− n)Tr[ρA ln ρA])

= −Tr[ρA ln ρA] +O((1− n)2)
(4.205)

and we see that we indeed recover the von Neumann entropy as n→ 1. Another way to write the
limit is

SA = − ∂

∂n
TrρnA

∣∣∣∣∣
n=1

(4.206)

where the single derivative tells us to keep the first coefficient in the n power expansion of Trρn.

The Replica Path Integral

In section 4.2.1 we wrote the general expression for the local density operator on the right Rindler
wedge in terms of a path integral by gluing together the path integral along the left wedge. We then
ended up with a path integral over the spacetime W2π with a cut along the half axis x > 0. The
basic ingredient was that the vacuum could be written as in equation (3.66). If we want to find the
expectation value of time-ordered operators in the state ρA the path integration must be carried
out on a mixed-signature generalization of the Euclidean τ − x-plane using the Schwinger-Keldysh
formalism we introduced in section 3.2.2, but we will here consider only the simplest case. As long
as the global state is time translation symmetric, a pure euclidean time analysis such as the one
we will now carry out is sufficient.

The vacuum |Ω〉 is time tanslation invariant. We would like compute the quantity Tr[ρnA] when
A is a strip of finite length l, i.e. x ∈ [0, l] and ρA is the associated local density operator. We
know that ρA is given in terms of φA ∈ HA by,

〈φfA| ρA |φ
i
A〉 =

(∫ φfA

φiA

DφL |Ω〉 (φB, φ′R) 〈Ω| (φB,φR)
)
, (4.207)

where the trace over B glues together the path integral outside of the region A. Graphically, we
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can write the contour as

〈φfA| ρA |φ
i
A〉 = . (4.208)

Let us think about how we can understand the quantity ρn in the path integral language. The trick
is to insert completion relations between each factor of ρ so we have, denoting the initial and final
states φ0

A and φn, that

〈φnA| ρnA |φ0
A〉 =

n−1∑
j=1

∑
ij

〈φfA| ρA
∣∣∣φin−1
A

〉〈
φ
in−1
A

∣∣∣ ρA . . . ∣∣∣φi1A〉〈φi1A ∣∣∣ ρA |φ0
A〉 . (4.209)

Here, each factor of 〈φij+1
A | ρA |φ

ij
A〉 is a path integral over the τ − x-plane as in equation (4.208).

Therefore, ρnA is clearly a path integral over n replicas of this plane. Furthermore, the completion
relation between each of the factors of ρA instructs us to glue the planes together. Let us label
the planes by j, where the zeroth plane belongs to the factor 〈φi1A | ρA |φ0

A〉. Then, the lefthand
completion relation on each factor tells us to glue the top side of the x ∈ [0,l] cut of the j:th plane
to the j + 1:th plane. Taking the trace of ρnA then instructs us to glue the remaining cuts on the
n− 1:th and zeroth planes together. The integration surface is most understandable by inspecting
a graphical representation:

Tr[ρnA] = (4.210)

where we have replaced the completion relations with an identification of boundary conditions,
denoted by a line connecting the strips on which the boundary fields were previously defined. Note
that the cyclicity of the trace means that the path integral construction is symmetric under a cyclic
symmetry with n distinct elements. This symmetry is generally referred to as the replica symmetry.
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If we want to use the Renyi entropies to find the von Neumann entropy we want to be able
to analytically continue the above construction from n ∈ N to n ∈ R, since the continuous limit
n→ 1 makes no sense if S(n)

A is not defined for noninteger n. In general a function defined only for
integer values does not admit a unique analytic continuation. There is a mathematical result called
Carlson’s theorem that states that functions that are defined on integers z have a unique analytic
continuation to the complex plane if they grow slower than an exponential as z → ±i∞.

This means that if you can compute the Renyi entropies as an analytic function f(n), and we
can argue from physical principles that they are well behaved at imaginary infinity, we should be
able to take the values for non integer n seriously. In general, failure of the replica construction
may imply that there is some interesting physics at play since it invalidates the physical arguments
for the nice behaviour at infinity [38]. We will not in the following encounter a case in which the
analytic continuation behaves poorly.

Single Interval in CFT2

We consider the vacuum of a 1 + 1-dimensional CFT. We let the Lorentzian time be t = 0, without
loss of generality. We define A to be the strip −a ≤ x ≤ a , τ = 0. The replica path integral has us
take n copies of the τ−x-plane with slits along A and glue them as in equation (4.210). We want to
find the entanglement entropy of this finite line, which is equal to the von Neumann entropy since
the global state is pure. The following calculation skips some computational steps, the purpose is
to make the main ideas clear.

We can now use the fact that we are working with a CFT; the glued together planes is a
complicated geometry but it can be mapped to something much simpler. It is in fact possible to
map this to the complex plane, together with the identification under the n-fold replica symmetry
as in figure 4.7. The singular behaviour of the orbifold theory at the fixed points at the origin and
the point at infinity reflect the fact that the geometry of the n-sheeted surface is very sharp at
−a, a. This is captured by so-called twist operators T , inserted at the boundary points −a, a.

By going to holomorphic coordinates z = x + it and z = x − it we can continue the analysis.
The explicit coordinate change to the orbifold plane is given for the k:th plane by w → z(w)

z(w) =
(
w + a

w − a

)1/n+k/n
. (4.211)

The fields that live on single copies of the complex plane φ(z,z)k , k ∈ [0,n − 1] together with
the gluing conditions fuse into a single field ϕ(w,w) obeying so-called twisted boundary conditions.
Figure 4.7 aims to make this relation clear. In this case, the twisted boundary condition states
that ϕ(x,τ) = R(2π

n )ϕ(x, τ) where R(θ) implements a rotation in the τ − x-plane by θ radians.
The stress-energy tensor in any of the original planes has expectation value 〈Tk(w)〉 = 0. Let

us do the following analysis for the zeroth plane and invoke replica symmetry for the generalization
to all planes. This transformation of the coordinates induces a change in the stress-energy tensor
as in equation (3.218), which after some work can be seen to have the expectation value

〈T (w)〉 → 〈T (z)〉 = c

24

(
1− 1

n2

) (2a)2

(w − a)2(w + a)2 , (4.212)

where we used that 〈Tk(w)〉 = 0 and the surviving term is the expectation value of the Schwarzian.
The antiholomorphic stress tensor component transforms in the same manner. We will leave the
computation of the Schwarzian until after the rest of this derivation.

The expectation value on the orbifold 〈T (w)〉 is proportional the three-point function 〈T (w)Tn(−a)T−n(a)〉
in the original zeroth plane. The fields Tn are called the branch-point twist fields and have conformal
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Figure 4.7: To the left, integration regions for each of the replicas, where the lines indicate gluing
boundary conditions. Using conformal symmetry we may label each plane by an index k and
let z(w) =

(
w+a
w−a

)(1+k)/n
taking us from n w-planes to a single orbifold, defined on right. The

geometry on the right is an ”orbifold” because the origin and the point at infinity are fixed points
of the replica symmetry.

weights
hn = hn = c

24

(
1− 1

n2

)
. (4.213)

The two-point correlator is given by 〈Tn(−a)T−n(a)〉 = ε/(2a)2(hn+hn). The constant ε accounts for
the fact that the constant in the two-point function is not fixed by the conformal Ward identities.
It is possible to relate ε to the UV cutoff εUV introduced in section 4.3.1.

Thanks to replica symmetry, by inserting these operators into all of the n planes and computing
the three-point correlation functions as if there were just n independent CFTs on the plane we can
obtain the expectation value of T (z) on the orbifold geometry. We know from chapter 3.4.4 that
the expectation of 〈TO〉 in any state determines the conformal dimension of O. Looking at Tr[Tρ]
term by term in the completion relation that defines the trace, this tells us that ρn living on the
orbifold transforms as if it was the n:th power of the two-point correlator 〈Tn(−a)T−n(a)〉 on a
single sheet. Therefore,

Tr[ρn] = cn〈Tn(−a)T−n(a)〉n = cn

∣∣∣∣ ε2a
∣∣∣∣
c
6 (n−1/n)

, (4.214)

where 2a is the length of the interval A and cn is an undetermined constant (that depends on n).
The function we have obtained looks like it is defined outside of the integers, so we will assume
that the necessary conditions hold and furthermore assume that n ∈ R. We can now recover the
von Neumann entropy

SA = − ∂

∂n
TrAρA

∣∣∣∣∣
n=1

= − ∂

∂n

(
cn

∣∣∣∣ ε2a
∣∣∣∣
c
6 (n−1/n)

) ∣∣∣∣∣
n=1

= −
[
cn ln

(2a
ε

)
c

6

(
−1− 1

n2

)
)(2a−

c
6 (n− 1

n )) + c′n

∣∣∣∣ ε2a
∣∣∣∣
c
6 (n−1/n)

] ∣∣∣∣∣
n=1

= c1
c

3 ln
(2a
ε

)
− c′1 .

(4.215)

This obeys the general form predicted by equation 4.187. It is possible to check that the condition
Tr[ρ] = 1 sets c1 = 1. Denoting the length of the interval by L = 2a we obtain the form of the
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entropy of the line element as given in equation (4.188). The constant term −c′1 is in general
dependent on the operator content of the relevant CFT, while the first term is universal. Keeping
only the universal term we have obtained

SA = c

3 ln
(
L

ε

)
(4.216)

for the finite line element in a 2d CFT.
It is possible to extend the above reasoning to a CFT on a cylinder of circumference R. This

requires a conformal transformation from the plane with complex coordinate w to the cylinder with
complex coordinate w′, taking the form

w = tan πw
′

R
, (4.217)

The Renyi entropy now consists of n copies of a cylinder with the gluing conditions. The idea
is that the stress tensor has zero expectation value on the cylinder, but by considering how it
transforms under the sequence of transformations equation (4.217) followed by equation (4.211)
we can understand once again how ρn should transform in the orbifold picture by looking at the

expectation of T . The additional contribution becomes a factor
[
L
π cos

(
πL
R

)]− c6 (n−1/n)
to multiply

onto equation (4.214).
In the case of a spatial circle, we have

SA = c

3 ln
(
R

πε
sin πL

R

)
. (4.218)

Note that for L << R this reduces to the flat case. In the case where we have a thermal state of
temperature β = R on a non-compact spacetime, the entropy is given by

SA = c

3 ln
(
β

πε
sinh πL

β

)
. (4.219)

The compactification on the thermal circle is related to the cylinder by the change of coordinates

w′′ = e
2π
β w′

. (4.220)

The results on the spatial and thermal circles are simply related by the substitution R→ iβ, which
is related to the fact that they correspond to a compactification either of the real or imaginary
directions in the x− τ plane.

Computing the Schwarzian

Let us compute the Schwarzian of the replica → orbifold change of coordinates. It is defined by

S[z,w] ≡ ∂3
wz

∂wz
− 3

2

(
∂2
wz

∂wz

)2

. (4.221)

Here we consider only the zeroth plane, noting that replica symmetry generalizes the result to all
n planes. That means that we have

z(w) =
(
w + a

w − a

)1/n
. (4.222)
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The first three derivatives of z(w) are given by

∂wz =− 1
n

2a
(w − a)2

(
w + a

w − a

) 1
n−1

, (4.223)

∂2
wz = 1

n

( 1
n
− 1

) 4a2

(w − a)4

(
w + a

w − a

) 1
n−2

+ 2
n

1
n

2a
(w − a)3

(
w + a

w − a

) 1
n−1

, (4.224)

∂3
wz =− 1

n

( 1
n
− 1

)( 1
n
− 2

) 8a3

(w − a)4

(
w + a

w − a

) 1
n−3

(4.225)

− 6
n

( 1
n
− 1

) 4a2

(w − a)5

(
w + a

w − a

) 1
n−2

− 6
n

2a
(w − a)4

(
w + a

w − a

) 1
n−1

.

Now we just need to combine the parts into the terms that feature in the Schwarzian. We have
that

∂3
wz

∂wz
=
( 1
n
− 1

)( 1
n
− 2

) 4a2

(w − a)2(w + a)2 ,

+ 6
n

( 1
n
− 1

) 2a
(w − a)2(w − u) + 6

(w − a)2

(4.226)

and
∂2
wz

∂wz
=−

( 1
n
− 1

) 2a
(w − a)(w + a) −

2
w − a

. (4.227)

We need the square of the latter, given by(
∂2
wz

∂wz

)2

=
( 1
n
− 1

)2 4a2

(w − a)2(w + a)2

+
( 1
n
− 1

) 8a
(w − a)2(w + a) + 4

(w − a)2 .

(4.228)

Now, we are ready to compute the Schwarzian, which becomes

S[z,w] =
( 1
n
− 1

)( 1
n
− 2

) 4a2

(w − a)2(w + a)2

+
((((

(((
((((

(((6
n

( 1
n
− 1

) 2a
(w − a)2(w − u) +

H
HHHH

6
(w − a)2

−
( 1
n
− 1

)2 6a2

(w − a)2(w + a)2

−
���

��
���

���
��( 1

n
− 1

) 12a
(w − a)2(w + a) −

HH
HHH

6
(w − a)2 .

(4.229)

We can rearrange and see that

S[z,w] =
[( 1

n
− 1

)( 1
n
− 2

)
− 3

2

( 1
n
− 1

)2
]

4a2

(w + a)2(w − a)2

=1
2

(
1− 1

n2

) 4a2

(w + a)2(w − a)2 ,

(4.230)

which indeed gives the claimed expression in equation (4.212) since in the present case the stress
tensor is proportional c

12S[z,w].
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Chapter 5

Elements of String Theory

In this chapter the basics elements of string theory are presented. This includes an introduction
to string perturbation theory and the α′-expansion. The low energy effective action for bosonic
strings in a gravitational background is derived as an illustrative example using the nonlinear sigma
approach. The low energy effective action is then formulated in the presence of more complicated
background fields. The extension to superstring theory is made, and the low energy effective action
of superstring theory is given.

String theory is important for the motivation of fully quantum variants of the AdS/CFT du-
ality to be introduced in chapter 6. Specifically, unitary CFTs have been discovered through the
conformal bootstrap program to require the existence of an infinite number of conformal primary
operators of increasing conformal weight. In the AdS/CFT duality this corresponds to a theory in
the bulk containing an infinite number of increasingly massive fields. A quantum theory of gravity
that realizes this constraint is string theory, as will be apparent in this chapter.

5.1 Bosonic String Theory
In this section we sketch the construction of bosonic string theory, since the bosonic sector of
superstring theory is very similar to bosonic string theory. The purpose is to remind the reader
of the main points of the theory while establishing notation, as well as making explicit some
advanced topics, such as string perturbation theory, vertex operators and the α′-expansion. The
reason for introducing these topics in the bosonic theory is that they are similar in principle to the
corresponding superstring constructions, but algebraically much cleaner. This will let us develop
an intuitive understanding for the underlying framework in a tractable example, before just citing
the results in the supersymmetric case.

The basic idea of string theory is to consider the idea that rather than point particles, the
fundamental objects in the world are extended strings. Just as a point particle traces out a (timelike)
worldline in spacetime as it moves, a string will sweep out a 1 + 1-dimensional worldsheet.

For a point particle in a general spacetime, the equations of motion minimize the proper length
of the worldline, described up to a constant by the action

S =
∫ √
−gdλ , (5.1)

where λ parametrizes the geodesic. For the relativistic string, the action is given by the the proper
area of the worldsheet Σ according to

SNG = − 1
2πα′

∫
Σ

d2σ
√
−g , (5.2)
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where gµν is the induced metric on the surface Σ. The square root
√
−g denotes the square root of

minus the determinant of gµν . The proper area functional for the string worldsheet is also called
the Nambu-Goto action.

The string world sheet Σ can be parametrized by the proper time τ and the spacelike coordinate
σ, usually referred to as world sheet coordinates. It is often practical to write these as σα =
(σ0, σ1) = (τ, σ). The coordinate σ lies in [0,σ0], where the best choice of σ0 depends on what type
of string you are considering. The embedding of the string into the target spacetime is given by
the functions XM (τ,σ), where the indices M are indices of the target spacetime. The more explicit
form of the Nambu-Goto action is now given in a target spacetime with metric gMN by

SNG = − 1
2πα′

∫
dτdσ

√
−Det

(
∂XM

∂σα
∂XM

∂σβ
gMN

)
, (5.3)

where the determinant is over the induced metric g̃αβ. The induced metric is obtained in the usual
fashion by

g̃αβ = ∂XM

∂σα
∂XM

∂σβ
gMN , (5.4)

i.e. we have just performed a coordinate change onto the surface described by X(τ, σ). Formally
this operation is the pullback of the target spacetime metric onto the world sheet coordinates.

The constant α′ is related to the string length scale ls by α′ = l2s , and the tension of the string
is given by TF1 = 1

2πα′ . Due to the square root in equation (5.3) it is in general difficult to handle,
especially in a path integral quantization scheme. A canonical quantization of the Nambu-Goto
action is readily found in Zwiebach [43].

To successfully quantize string theory we introduce an auxiliary wordsheet metric hαβ(σ) and
write down the Polyakov action

SP = − 1
4πα′

∫
d2σ
√
−hhαβ∂αXM∂βX

NgMN , (5.5)

where hαβ is the inverse of hαβ. The Polyakov action is dynamically equivalent to the Nambu-Goto
action in the sense that is has the same Hamiltonian and the same equations of motion. The
auxiliary metric hαβ is symmetric and 2× 2 so naively it has three independent components. The
h’s only appear in the combination

√
−hhαβ which is invariant under Weyl rescalings

hαβ → hαβ
′ = Ω2(τ, σ)hαβ , hαβ → hαβ ′ = Ω−2(τ, σ)hαβ ′ , (5.6)

which in two dimensions this leads to the restriction det(
√
−hhαβ) = −1. To recover the Nambu-

Goto action we can vary the action with respect to hαβ to find

0 = δSP
δhαβ

= −
√
−h

4πα′
(
∂αX

M∂βX
NgMN −

1
2hαβh

ρσ∂ρX
M∂σX

NGMN

)
.

(5.7)

Equation equation (5.7) can be used to eliminate the auxiliary metric hαβ from the action and
reobtain the Nambu-Goto acion. In addition, it gives rise to constraints on the fields XM of the
theory known as the Virasoro constraints. When performing a manifestly covariant quantization of
the Nambu-Goto action these have to be put in by hand, but they fall naturally out of the Polyakov
action. In general we will in the following work with the Polyakov action.
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An additional point is that we can define the world-sheet stress energy tensor

Tαβ = −4πα′√
h

δSP
δhαβ

= ∂αX
M∂βX

NgMN −
1
2hαβh

ρσ∂ρX
M∂σX

NGMN , (5.8)

which is implied by equation (5.7) to vanish.
Let us now remind ourselves of all the symmetries of the action SP , now restricting to the case

of a D-dimensional Minkowski target spacetime, setting GMN = ηMN :

• Poincaré invariance in target spacetime. The action SP is manifestly Poincaré invariant since
it is constructed only from Lorentz invariant combinations of derivatives of the coordinates.
The action of Poincaré transformations on the fields in SP is given by

XM → ΛMNX
N + aM , hαβ → hαβ . (5.9)

• Reparametrization Invariance. The parametrization of the worldsheet is arbitrary, and the
invariance of the Nambu-Goto (and therefore also Polyakov) action under reparametrizations
is a central property. Under a reparametrization σα → fα(σ) the fields transform according
to

XM → XM , hαβ(τ, σ)→ ∂fσ

∂σα
∂fσ

∂σβ
hρσ(τ ′, σ′) (5.10)

In the case of the Polyakov action, the cancellation is readily seen since hαβ transforms in
negative powers of ∂f while

√
−h transforms by positive powers.

• Weyl transformations. The Polyakov enjoys one additional symmetry, under Weyl rescalings,
as we defined in equation (5.6).

This set of local symmetries allows us to choose a gauge in which the worldsheet metric hαβ is
proportional to ηαβ = Diag(-1,1). This is called the conformal gauge, where

hαβ = e2ω(τ,σ)ηαβ . (5.11)

The Polyakov action in conformal gauge is

SP = 1
4πα′

∫
d2σ

(
∂tX

M∂tX
N − ∂σXM∂σX

N
)

(5.12)

and the equations of motion reduce to a simple wave equation

(∂2
t − ∂2

σ)XM = 0 . (5.13)

In addition to the equations of motion we need to supply reasonable boundary conditions as well
as the Virasoro constraints in equation (5.7). Introducing lightcone coordinates

σ+ = τ + σ√
2

, σ− = τ − σ√
2

,

the action takes the form
SP = 1

4πα′
∫

d2 σ∂+X
M∂−X

N (5.14)

and the equations of motion as well as the Virasoro constraints take the simple form

∂+∂−X
M = 0 ,

∂+X
M∂+XM = 0 ,

∂−X
M∂−XM = 0 .

(5.15)
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Finally, we need to impose the boundary condition

∂σX
MδXM

∣∣∣σ0

σ=0
(5.16)

to ensure that range of the parameter σ ∈ [0, σ0] is always the same.
Additionally, we can go to holomorphic and antiholomorphic coordinates z = e2(τ+ix) and

ze2(τ−ix) on the string worldsheet, at which point the Polyakov action takes the form

SP = 1
4πα′

∫
d22∂XM∂XM . (5.17)

Imposing Boundary Conditions, Mode Expansions

The equations of motion are solved by Fourier mode expansions of XM in terms of left- and right
moving waves, depending only on σ+, σ− respectively. We write

XM = XM
L (σ+) +XM

R (σ−) (5.18)

and Fourier expand the components as

XM
L (σ+) = x̃M0

2 + α′

2 p̃
Mσ+ + i

√
α′

2
∑
n6=0

α̃Mn
2 e−inσ

+
,

XM
R (σ−) = xM0

2 + α′

2 p
Mσ− + i

√
α′

2
∑
n6=0

αMn
2 e−inσ

−
.

(5.19)

The centre of mass position of the string is given by the sum of the xM0 coordinates, which come
from the zero mode of the Fourier expansion. The constants p̃M and pM are the center of mass
momenta of the the left- and right moving modes, and appear as non-periodic solutions to the
equation of motion. Reality of XM further imposes that αMn † = αM−n.

In the case of closed strings, we set σ0 = 2π. Then, the periodic boundary condition

XM (τ, σ) = XM (τ, σ + 2π) (5.20)

ensures that we automatically satisfy equation (5.16). Moreover the left-and right moving modes
are already periodic by construction, except for the aperiodic terms proportional to σ± which cancel
if we set pM = p̃M . Moreover, there is no reason not to set x0 = x̃0

For open strings it is most convenient to set σ0 = π. To satisfy equation (5.16) we can pick
either Dirichlet (D) or Neumann (N) boundary conditions on each of the endpoints σ = 0 and
σ = π. Explicitly, letting σ denote either endpoint, the possible conditions are:

Neumann ∂σX
M (τ, σ) = 0 ,

Dirichlet δXM (τ, σ) = 0 .
(5.21)

The Neumann condition describes a string with a freely moving endpoint that is always parametrized
by the same range of σ, and it can be shown that the endpoint must always move at the speed of
light. The Dirichlet boundary condition describes a string attached at the endpoint to something.
In principle, we can apply these boundary conditions independently to each coordinate in XM ,
describing a string whose ends can move freely inside some subspace of the full space.

A subspace on which the endpoint of a string is constrained is called a D-brane. D-branes
necessarily decay in bosonic string theory but it turns out they are charged under the fields of
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superstring theory, making them conserved. We require the D-brane to be a physical object because
Dirichlet boundary conditions to not conserve the string center of mass momentum, and the lost
momentum has to be carried by something. The action of D-branes can be formulated as the
pullback of the global metric onto the worldvolume swept out by the D-brane as it moves in time.
The action constructed in this is a part of the so-called Dirac-Born-Infeld action that describes the
dynamics of D-branes.

Since we can impose boundary conditions separately for both ends of the string, we have three
inequivalent choices of boundary conditions, DD,ND and NN . The three possible boundary
conditions couple the left- and right moving waves so that we end up with only one expansion. The
mode expansions are as follows:

NN: XM (τ,σ) = xM0 + 2α′pMτ + i
√

2α′
∑
n 6=0

αMn
n
e−inτ cosnσ (5.22)

DD: XM (τ,σ) = xMi + 1
π

(xMf − xMi )σ + i
√

2α′
∑
n6=0

αMn
n
e−inτ sinnσ (5.23)

ND: XM (τ,σ) = xMf + i
√

2α′
∑
n

αMn
n
e−inτ cos

(
(n+ 1

2)σ
)
, (5.24)

where xi denotes the fixed starting point and xf the fixed ending point defined by the Dirichlet
boundary conditions.

On these mode expansions we still have to impose the Virasoro constraints. These are are
T++ = ∂+X

M∂+XM = 0 and similarly for T−−. We write these down on a compact form by first
introducing the Virasoro modes

L̃m = 1
2
∑
n

α̃Mm α̃m,M , Lm = 1
2
∑
n

αMmαm,M , (5.25)

where αM0 = pM and similarly for α̃M0 In terms of these we can write the worldsheet stress-energy
tensor as

T++ = α′
∑
m

L̃me
−imσ+

, T−− = α′
∑
m

Lme
−imσ− . (5.26)

Then, the Virasoro constraints take the form

L̃m = Lm = 0 ∀m . (5.27)

In the case of the open string the αM and α̃M are proportional, so we only have to implement
Lm = 0.

Quantization of Open Strings

Classical strings have a particle spectrum that is completely nonsensical with respect to observation
since the effective mass of the string may take any value. A theory of reality must thus be a
quantized string theory, which we will now formulate. The starting point is as usual imposing the
canonical commutation relations

[XM (τ, σ),ΠM (τ,σ′)] = iηMNδ(σ − σ′) , (5.28)
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where the canonical momentum Π(τ, σ) is defined by

ΠM (τ,σ) = ∂L
∂(∂tXM ) = ∂tX

M (τ,σ)
2πα′ . (5.29)

We then go to the mode expansions, meaning we have to work through each set of boundary
conditions separately. For example, for open strings with NN boundary conditions we find that in
terms of the modes the only nonzero commutation relations are

[XM
0 , pN ] = iηMN [αMm , αNn ] = mηMNδm,−n . (5.30)

We can then define creation and annihilation operators by

aMm = 1√
m
αMm , αMm

† = 1√
m
αM−m , (5.31)

yielding the relations

[aMm , aNn †] = ηMNδm,n , [aMm , aNn ] = [aMm †, aNn †] = 0 (5.32)

for m,n ≥ 0. For each M,m the creation operator aMm describes the Hilbert space of a harmonic
oscillator, except for the case of M = 0 where we find that [a0

m, a
0
m
†] = −1, describing states of

negative norm. In order to obtain a sensible quantum theory we we need these negative norm states
to be ruled out by the Virasoro constraints, and this indeed turns out to be the case.

From now on, let us work in light-cone coordinates, X± = X0±XD−1. We denote the directions
transverse to the lightcone XI , I ∈ [1, D − 2]. In these coordinates it is straightforward to solve
the Virasoro constraints. We can pick

X+ = x+
0 + 2α′p+τ , (5.33)

and the Virasoro constraints will completely determine X− up to a constant x−0 in terms of X+

and the XI .
This means that the dynamical degrees of freedom are all of the transverse modes xI0, pI , aIm, aIm†,

as well as p+ and x−0 . We can now define the ground states of the quantum string, |0, k〉 by the
action of the transverse oscillators

pM |0,k〉 = kM |0,k〉 , aI |0,k〉 = 0 ∀I ∈ [1,D − 2] . (5.34)

As is apparent the k in |0,k〉 is hiding a vector index.
Note that since the momenta are not described by harmonic oscillators, there is a continuum of

momentum eigenstates that can serve as ground states for the oscillators. A general excited state
is obtained by acting on a ground state with creation operators

|N,k〉 =
[
D−2∏
I=1

∞∏
n=1

(aIn†)NI,n√
NI,n

]
|0,k〉 , (5.35)

where NI,n denotes the number of I direction excitations of oscillator mode n are in the state |N,k〉.
The N in |N,k〉 should, like the k not be understood as a single number but as a collection of all
the NI,n. Despite this, it is convenient to also take the number N to be defined

N = n
∑
I,n

NI,n . (5.36)

136



Chapter 5. Elements of String Theory

where the extra factor n is due to the oscillator mode with index n carries n units of energy.
The state |N,k〉 satisfies

aIn
†aIn |N,k〉 = NI,n |N,k〉 , (5.37)

making aIn†aIn the number operator of the n:th mode of the I-direction oscillator.
We now wish to impose the Virasoro constraints, and begin by expressing the Virasoro modes

in terms of the creation and annihilation operators. Combining equations (5.25) and (5.31) we see
that

L0 = α′pMpM +
D−2∑
I=1

∞∑
n=1

n
1
2(aIn†aIn − aInaIn†)

= α′pMpM +N + 1
2
∑
I

∑
n

n[aIn†, aIn]

= α′pMpM +N + D − 2
2

∑
n

n .

(5.38)

It is customary to name the divergent sum and its forefactor a. Since it is only due to a normal-
ordering ambiguity it could be removed or set to a finite number by redefining the classical expres-
sions so that they are Weyl ordered before quantization as in the discussion around equation (3.9).
In principle the choice of a is arbitrary but only a specific choice will preserve Lorentz invariance.

We then continue to follow custom and redefine L0 ≡ α′pMpM + N so that the Virasoro
constraints read

(L0 + a) |ψ〉 = 0 , Lm |ψ〉 = 0 . (5.39)

where
a = D − 2

2
∑
n

n”=”− D − 2
24 (5.40)

where the final result can be obtained via Riemann-zeta regularization, or more rigorously by
constructing the quantum Lorentz generators and demanding the right commutation relations1.
The latter of these is more a derivation of the right choice of the arbitrary parameter a, but the
result happens to coincide with the Riemann-zeta result for reasons unknown to man.

The L0 Virasoro constraint now tells us how to find the mass of the excited string. The mass
operator M2 = −pMpM must be given by

M2 = −pMpM = 1
α′

(
N + 2−D

24

)
. (5.41)

We are now ready to discuss the mass spectrum of the open string. The first observation to make
is that the vacuum state |0,k〉 has

α′M2 = −D − 2
24 , (5.42)

which is negative for D > 2. Thus, bosonic string theory predicts the existence of tachyons, an
indicator that our supposed vacuum is unstable.

Let us continue in spite of this complication and see what we find at the first excited mass level
of bosonic open string theory. What we find is a state of the form

aI1 |k,0〉 , with α′M2 = −D − 26
24 . (5.43)

This is a field with one vector index and momentum k. In particular, it is a vector boson with
D − 2 degrees of freedom. A vector field in D dimensions with D − 2 degrees of freedom must be

1cf. section 12.5 in [43], in principle this is similar to how we found the central charge in section 3.4.4.
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massless, because massive relativistic fields have D − 1 degrees of freedom. More formally, since
aI has D − 2 independent components and transforms as a D-dimensional vector under Lorentz
boosts in the target spacetime, it must live in a massless (”short”) representation of the Lorentz
group. This tells us that unless string theory lives in D = 26 Lorentz invariance is broken. We can
now write down some of the field content of open NN strings:

N |ψ〉 α′M2 Degrees of freedom
0 |0,k〉 -1 1
1 aI1

† |0,k〉 0 D-2
2 aI1

†aJ1
† |0,k〉 1 (D−2)(D−1)

2
2 aI1

† |0,k〉 1 D-2

Table 5.1: The first few excited states of bosonic open strings with NN boundary conditions. Here
D = 26 but it is more transparent to not insert numbers in the degree of freedom count.

Quantization of Closed Strings

The quantization of closed strings is performed in the same way as for open strings. The main
difference is that the left- and right handed modes are decoupled, so we have two sets of oscillators
aIn and ãIn. This means that the Virasoro modes are now uncoupled as well, and we get two copies
of the Virasoro constraints. In addition the mode expansions are just those in equation (5.19) so
definitions of the creation/annihilation operators differ by a factor of

√
2 from the open string case.

The Virasoro constraints for the closed string read

L̃n |ψ〉 = Ln |ψ〉 = 0 , n 6= 0,
(L̃0 − ã) |ψ〉 = (L0 − a) |ψ〉 = 0 ,

(5.44)

with analogous definitions to the open string case. The normal-ordering constants are now given
by

a = ã = −D − 2
12 . (5.45)

A generic closed string state is now given by |Ñ ,N, k〉, defined by

|Ñ ,N,k〉 =

D−2∏
I=1

∞∏
n=1

(ãIn†)ÑI,n(aIn†)NI,n√
NI,nÑI,n

 |0,0,k〉 , (5.46)

where |0,0,k〉 is the vacuum annihilated by all aIn, ãIn and momentum eigenvalue kM . The mass
of the string is given by solving the L0 and L̃0 restrictions for p2 in terms of the other terms and
adding the solutions. The mass squared operator is then

M2 = 2
α′

(
D−2∑
I=1

∞∑
n=1

n(NI,n + ÑI,n) + 2−D
12

)
. (5.47)

Subtracting the L0- and L̃0-Virasoro conditions we find the level matching condition

0 = (L0 − L̃0 + ã− a) |ψ〉〈
ã = a , p̃M = pM

〉
=

D−2∑
I=1

∞∑
n=1

n(NI,N − ÑI,N )) |ψ〉

= (N − Ñ) |ψ〉

(5.48)

138



Chapter 5. Elements of String Theory

where we have defined N and Ñ analogously to the open string case:

N ≡
D−2∑
I=1

∞∑
n=1

nNI,n , Ñ ≡
D−2∑
I=1

∞∑
n=1

nÑI,n . (5.49)

The lowest energy states of the open string are the vacuum

|0,0,k〉 , with α′M2 = 2−D
6 (5.50)

and the first excited state
aI1
†ãJ1
† |0,0,k〉 , with M2 = 26−D

6α′ . (5.51)

For D = 26 this describes a transverse rank two tensor. Since the tensor is transverse, Lorentz
invariance demands that it is massless. We can decompose this tensor into an antisymmetric tensor
BMN , a symmetric traceless tensor gMN and a scalar φ. The symmetric tensor g may be identified
with a metric perturbation of spacetime, B is the Kalb-Ramond field and φ is called the dilaton. The
choice of this decomposition comes from the requirement that each component should transform as
an irreducible representation of the Lorentz group. We will show in section 5.1.3 how exactly the
dynamical spacetime metric Gµν and gµν are related.

5.1.1 String Perturbation Theory

What we have discussed in the previous section is a theory of free non-interacting strings and it
would be interesting to extend to the interacting case. Our intuition from QFT tells us that the
way to go about this is to add various nonlinear terms to the Polyakov action, but there is no way
to do this without breaking our gauge symmetries. We will in this discussion specialize all the
details to closed string theory since our main interest is quantum gravity.

Instead, it turns out that the Polyakov action of free strings contains all of the information we
need to know about interacting strings. One way to see that this is believable is to consider what
a string Feynman diagram would look like;

This diagram describes two open strings joining for a while and then splitting again. This is the
analogue of a φ4 scattering process in ordinary scalar QFT. In Feynman diagrams information
about interactions is encoded at vertices but the string diagram has no natural place to insert
these.

The question of what to compute arises, as it seems we can not amputate the legs and only
look at vertices. One thing we could try is to compute the probability of a particular configuration
of strings in some particular state propagating into some other configuration in finite time. This
would be a very path integral approach where we would stipulate initial curves for the initial two
strings, and summing over all intermediate states that end on some other two fixed strings. How
to do this is unknown, and and we will argue now that such a quantity would not be an observable
anyways.
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The important observation to make is that all observables of a theory must be gauge invariant,
and due to conformal invariance the string does not know if its worldsheet has traveled far or
not2. Therefore a finite-time scattering diagram does not make sense to compute. We can, however
compute the string S-matrix by pulling all of the external string states out to infinity.

The point at infinity is left invariant by all infinitesimal (gauge) symmetries of the theory, so a
gauge invariant amplitude can be computed. Each of the external string states will map to a point,
and assigned a separate free string state with some spacetime momentum p.

Due to the state operator correspondence of two-dimensional CFT’s as was covered in section
3.4.4 we know that each of the external string states are equivalent to some operator insertion at the
endpoints. Inserting the operators and then using conformal symmetry to map the endpoints back
to a finite distance we end up with a worldsheet with the topology of a sphere, with an operator
insertion for each external string. The operators that correspond to the external string states are
called vertex operators. To compute scattering amplitudes we then need to sum over all conformally
inequivalent sets of operator insertions, a thing we will not discuss in detail.

Let us now consider the path integral of the Polyakov action after Wick rotation to Euclidean
space:

Zp =
∑

all topologies of Σ

∫
Σ
DXMDhαβe−Sp[X,h] , (5.52)

where the sum over topologies is because we allow strings to join and split, meaning we have to
allow any number of intermediate interactions.

For closed strings, the sum over all topologies is a sum over all two-dimensional oriented surfaces
without boundary. For open strings it is a sum over two-dimensional surfaces with a boundary. In
both cases the surface is completely characterized by the number of holes in it, referred to as the
genus g. The sum over topologies then becomes a sum over g, and the only question that remains
is how to weight the contributions from different topologies in the string perturbation expansion.

It turns out that we can augment the Polyakov action with an extra term that classically does
nothing at all, we define

Sstring = Sp − χ , χ = λ
1

4π

∫
Σ

d2σ
√
hR (5.53)

where R is the Ricci scalar of the world sheet. It is possible to check that the new term is
reparametrization and Weyl invariant.

2This would be analogous to off-shell correlation functions in QFT such as 〈φ(x1)φ(x2)〉 ∼ f(|x− y|) for a CFT,
which represents a Feynman diagram where all of the external legs may have arbitrary momenta. Since |x − y| is
not conformally invariant, local off-shell correlators are not observables in a CFT. This is one of the early clues
towards the AdS/CFT duality, any theory of quantum gravity will have symmetries (diffeomorphisms) that render
local observables nonsense, so all off-shell degrees of freedom must live on the boundary of spacetime which is left
invariant under the gravitational symmetries. This is also why we do not know how to handle quantum gravity in de
Sitter space, there is no way to send the endpoints to infinity in de Sitter.
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Someone who has taken a course in general relativity might recognize χ as the Einstein-Hilbert
term describing the dynamics of spacetime. In two dimensions, gravity has no propagating degrees
of freedom3 so it has no dynamics, rendering the additional term trivial at the classical level. When
we have a nontrivial topology however, χ is the Euler number4 and it is related to the genus of σg
by χ = 2− 2g.

The path integral now has the form∑
g

∫
Σ
DXMDh e−Sstring[X,h] =

∑
g

e−2λ(1−g)
∫

Σ
DXMDh e−Sp[X,h] . (5.54)

We see that e−λ takes the role of the string coupling constant. Note that although we have made
no approximation in writing this down, the expansion is still an asymptotic expansion, meaning

As long as eλ(2g) << 1 we have a good perturbative expansion. If this condition does not
hold, we really have no way of analyzing string theory, since we do not have a nonperturbative
formulation.

It is customary to define the string coupling constant as

gs ≡ gclosed = g2
open = eλ , (5.55)

where the relation between the open and closed string couplings are due to the fact that the Euler
number of a plane with boundaries goes as χ = 2− g, since when we add a hole to the open string
worldsheet we add a boundary and no handles. We are in general not interested in the specifics
of high-energy string scattering and will now set up the necessary tools to treat the low-energy
approximation of strings where only the massless modes are excited.

5.1.2 String Theory Vertex Operators

We said in the previous section that there are operators that create external string states via
insertion at a point. In this section we derive the form of these vertex operators, which represent
the absorption or emission of a physical string mode |N,k〉 on some point on the worldsheet. The
notation in this section may differ from other sources since we are working in lightcone gauge.

In the case of an open string, the vertex operator must act on the boundary of the worldsheet,
while for a closed string it may act somewhere on the interior. The quantum operator on Hilbert
space V̂φ has no explicit coordinate dependence, so as usual it must be constructed via an integral
over all possible insertion points of some Vφ(σ) that has coordinate dependence.

For closed and open strings respectively, the vertex operator is then on the form

V̂closed = gs

∫
Σ

d2z Vφ(z,z) , V̂open
√
gs

∮
δΣ

ds Vφ(s) , (5.56)

where φ labels the specific state being emitted or absorbed at the vertex and Σ denotes the string
worldsheet. We will in this section focus on the closed string due to our interest in gravity.

The vertex operator must be invariant under the Weyl+diffeomorphism symmetry of the string
worldsheet. The integration measure d2z has conformal dimension (−1,− 1), so Vφ(z,z) must have
conformal weight (1,1). In addition we know from section 3.4.4 that the vacuum is obtained by
letting V̂ = 1. Then, the excited string states must be produced by some appropriate representation
of the Fock-space operators of section 5.1.

3We saw this when we were able to pick the conformal gauge.
4The Euler numbers of the closed- and open string surfaces are given by the Gauss-Bonnet theorem as 2− 2h− b

where h is the number of handles and b the number of boundaries.
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The bosonic string vacuum with momentum k is generated by

|0,0,k〉 = eik·X |0,0,0〉 , (5.57)

so the vertex operator should contain a factor : eik·X :. This exponential has to be normal-ordered,
since the vertex operator should be defined in a normal-ordered string correlation function. In the
following we will leave the normal-ordering implicit. The operator eik·X has conformal dimension
α′k for open strings and (α′k2/4, α′k2/4) for closed strings5.

The tachyon is the ground state for the bosonic string theory, and therefore has the vertex
operator

V̂tachyon ∼
∫

d2σ eikX . (5.58)

Weyl invariance requires the integral to have weight (0,0), but the operator eikX has weight
(α′k2/4, α′k2/4). Since the integration measure has weight (−1,− 1) this is only consistent if

α′k2/4 = 1⇒ α′M2
tachyon = −4 , (5.59)

using that k2 = −M2. This is exactly the mass of the closed string tachyon in D = 26 dimensions
as we saw in equation (5.50), so our definitions so far seem self-consistent.

For general excited states we know that we will obtain on-shell string states by acting on the
ground state with creation operators, according to

|Ñ ,N,k〉 =

D−2∏
I=1

∞∏
n=1

(ãIn†)ÑI,n(aIn†)NI,n√
NI,nÑI,n

 |0,0,k〉 , (5.60)

where the level matching condition requires Ñ = N . Since the creation operators are the Fourier
modes of X, we have the identity

αI†n = 1
π

∮
z−n∂XIdz , (5.61)

which suggests that we can simply replace αM†n with the residue

αI†n →
2i

(m− 1)!∂
mXI , n > 0 . (5.62)

According to this proposal a closed string vertex operator is then given up to normalization by

V̂φ =
∫

d2σ :
∏
i

∂
miXIi(z)

∏
i

∂njXJj (z)eikX(z,z) : ξIJ , (5.63)

where the ∂ on the first X is due to the fact that it comes from the antiholomorphic set of oscillators
ã in equation (5.60). The contraction with the constant two component tensor ξIJ is necessary since
the operator V̂φ is supposed to be an invariant. The excited states should fulfill the level matching
condition, and the ground state has to fulfill the Virasoro constraints to ensure that the vertex
operator has conformal dimension (0,0).

5We prove this claim for closed strings in the next subsection.
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Let us now explicitly write out the vertex operators of the massless excited states of the bosonic
closed string, that is, the Kalb-Ramond, metric and dilaton fields. We have

V̂h =
∫

d2σ : ∂XI(z)∂XJ(z)eikX(z,z) : hIJ , (5.64)

V̂B =
∫

d2σ : ∂XI(z)∂XJ(z)eikX(z,z) : BIJ , (5.65)

V̂φ =
∫

d2σ : ∂XI(z)∂XI(z)eikX(z,z) : φ , (5.66)

where hIJ is a symmetric traceless constant tensor, and BIJ is an antisymmetric constant tensor.
These are written in the conformal gauge, as well as in light-cone coordinates. Since the massless
states have α′k2 = 0, the term : eikX : has conformal dimension (0,0). The restrictions on the p−
component of the spacetime momentum ensures that the normal-ordered operator is a conformal
primary with only transverse degrees of freedom. Note that the trace in the dilaton vertex operator
is only over transverse coordinates. In section 5.4.1 in [44] there is an analysis of vertex operators
in covariant quantization.

Proof that eikX has conformal weight (α′k2/4, α′k2/4)

In the preceding section, we claimed that that eikX has conformal weight (α′k2/4, α′k2/4). We will
now show this in complex coordinates z, z.

We need to build a fair bit of machinery to show this, which is why it gets its own section. The
stress energy in the quantum theory is

T (z) = − 1
α′

: ∂X∂X : (5.67)

where the : denote normal-ordering. Usually, we would define normal-ordering by putting all
annihilation operators to the right, but if we wish to not make any reference to creation and
annihilation operators, an equivalent definition is

: ∂X∂X :≡ − lim
z→w

(∂X(z)∂X(w)− 〈∂X(z)∂X(w)〉 (5.68)

guaranteeing that the VEV is 〈: ∂X∂X :〉 = 0. We can then show that ∂X is a primary field of
weight 1. We consider the OPE of T (z)∂X(w)

T (z)∂X(w) = − 1
α′

: ∂zX∂zX : ∂wX . (5.69)

The lefthand side lives inside a correlation function so it is time-ordered, while the righthand side
is just a product of normal-ordered objects. For the definition in equation (5.69) to make sense we
need to make a time-ordered expression of the LHS. The way to make a time-ordered expression out
of a normal-ordered one is given by Wick’s theorem, we should sum over all possible pairwise Wick-
contractions of the operators in question. This means that we replace the pair by the appropriate
propagator

∂X(z)∂X(w) = −α
′

2
1

(z − w)2 , (5.70)

coming from the fact that X(z)X(y) = ln(z − y) in two dimensions6, and hitting twice with deriva-
tives. Then, we have

T (z)∂X(w) = − 2
α′
∂X(z)

(
α′

2
1

(z − w)2 + finite term
)
. (5.71)

6The Xs have the equation of motion ∂2X = δ(x), which is solved in Fourier space by the Green’s function
GF ∼

∫
d2k e

ikx

k2 .
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Here, the finite term is the totally normal-ordered part : T (z)∂X(w) : that has VEV 0. In general,
the Ward identities ensure that all correlators with T depend only on the residues of the OPE,
meaning also that these also fully determine the transformation properties.

Now, we can Taylor expand ∂X(z) about z = w and we obtain

T (z)∂X(w) = ∂X

(z − w)2 + ∂2X(w)
(z − w) + finite terms (5.72)

which is the OPE expected of a primary operator of weight 1. Let us now consider the OPE of
∂X(z) with : eikX :

∂X(z) : eikX(w) : =
∞∑
n=0

(ik)n

n! ∂X : X(w)n :

=
∞∑
n=1

(ik)n

(n− 1)! : X(w)n−1 :
(
−α
′

2
1

z − w

)
+ . . .

= −α
′k

2
: eikX(w) :
z − w

+ . . .

(5.73)

where we have used ∂X(z)X(w) = −
(
α′

2
1

z−w

)
, with n possible contractions, and . . . denotes fully

normal-ordered terms.
Using the result in equation (5.73) we find that

T (z) : eikX : = − 1
α′

: ∂X(z)∂X(z) :: eikX :

= − 1
α′

(
−α
′2k2

4
: eikX :
z − w

− iα′k : ∂X(z)eikX :
z − w

+ finite
)

= α′k2

4
: eikX :
z − w

+ ik
: ∂X(z)eikX :

z − w
+ finite terms .

(5.74)

Here, the finite terms are due to the fully normal-ordered object : T (z)eikx:, the first terms is ob-
tained by two contractions of ∂X with : eipx : and the second term comes from a single contraction,
where we have to keep the normal-ordered remnant because it contributes to the residue. Taylor
expanding ∂X around w and taking ∂z as a derivative with respect to w we can write this as

T (z) : eikX := α′k2

4
: eikX :
z − w

+ ∂w : eikX :
z − w

+ finite terms (5.75)

and we see that this indeed is the OPE for a conformal primary operator of weight (α′k2/4, α′k2/4).
This follows because the analysis for z is exactly the same.

5.1.3 Emergence of Gravity as a Massless Excitation

Let us consider what the Polyakov action would look like on a curved spacetime. This just means
that we should allow for a non-flat GMN in the Polyakov action:

SP = − 1
4πα′

∫
d2σ
√
−hhαβ∂αXM∂βX

NGMN . (5.76)

There are two problems with just writing this expression down. First off, we relied on the flat
spacetime metric to quantize our string theory. In addition to this, the bosonic string theory
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already contains a graviton field, and it would be very strange indeed to have two graviton fields.
Let us now demonstrate (working in Euclidean signature) that these two fields are the same by
expanding GMN around flat space

GMN = ηMN +HMN (X) . (5.77)

The string partition function is then

Z =
∑
topo

∫
DXDh e−SString−V =

∑
topo

∫
DXDh e−SString

(
1− V + 1

2V
2 + . . .

)
(5.78)

where
V = 1

4πα′
∫

d2σ
√
hhαβ∂αX

M∂βX
NHMN (X) , (5.79)

which is just the vertex operator associated to the graviton state of the bosonic string, as we
showed in equation (5.64). The diffeomorphism symmetry in a theory of gravity7 allows us to pick
the traceless transverse gauge for the metric perturbation8 for H, setting HMN = HIJ where IJ
are the transverse indices. We then construct light cone coordinates out of the other two directions,
and go to complex Euclidean coordinates to obtain

V = 1
2πα′

∫
d2z ∂XI∂XJHIJ(X) . (5.80)

Now, idenitfying HIJ = eikxhIJ where hIJ is the constant symmetric traceless tensor in equation
(5.64) we see that V ∼ V̂h, i.e. it is (up to a constant) the graviton vertex operator.

With this, we know that inserting a single factor of V̂h into the path integral generates a a single
graviton state. Inserting e−V corresponds to a coherent state of gravitons, reproducing equation
(5.78). Thus the traceless symmetric massless vertex operator of string theory really is the generator
of gravity.

In a similar way, it can be shown that the dilaton and Kalb-Ramond vertex operators when
exponentiated add to the Polyakov action

eV̂BeV̂φ : SP → SP + SB,φ = SP +
∫

d2σ
√
−h

(
εαβ∂αX

M∂βX
NBMN + α′Rhφ(X)

)
(5.81)

where we have, without proving that this is the right answer, undone the choice of conformal and
lightcone gauge, and the fields BMN and φ are defined to contain the factor eikx. Notably, we see
right away that the dilaton term resembles the χ term which we used to augment the Polyakov
action. It turns out that in fact, the string coupling is given by

gs = e〈φ〉 , (5.82)

where 〈φ〉 is the VEV of the dilaton field.
We see that in general by inserting exponentiated vertex operators in the string path integral,

we are able to able to turn on background fields in the Polyakov action. The V̂h turns on gravity,
V̂B turns on the Kalb-Ramond Field and V̂φ turns on the dilaton field. The fact that these look
like classical additions to the Polyakov action is the very definition of the exponents e−V creating
coherent states.

7By writing the action with a general curved metric, the Polyakov action is manifestly general covariant in target
spacetime coordinates.

8This is usually covered in a lecture about gravitational waves in a GR course c.f. chapter 6 in [45].
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Einstein’s Equations from the α′-Expansion

In the previous section we found that the traceless symmetric part of the massless states of closed
bosonic string theory generate gravity. We still have no reason to believe that this stringy quantum
gravity actually obeys Einstein’s equations in the classical limit. Our tool for finding this result is
the so-called α′-expansion, which let us formalize when we can use perturbation theory to analyze
the worldsheet CFT of string theory. Note that the α′ and gs expansions are two distinct expansions,
due to this it is said that string theory has two expansions. One expansion in the genus of the
worldsheet (gs), and one in the shape of the worldsheet (α′).

The basic recipe is to renormalize the worldsheet CFT in terms of the embedding coordinates
X with the background fields with GMN acting as the coupling constants of the theory. Demanding
that worldsheet conformal symmetry be conserved on the quantum level is equivalent to demanding
the vanishing of the β-functions arising from renormalization. We will then find that the vanishing
of the β-functions in a CFT implies that the target spacetime metric GMN must obey the vacuum
Einstein equations. This demonstrates that quantum string theory contains classical Einstein
gravity in an appropriate limit.

Let us consider the Polyakov action in conformal gauge, on a curved spacetime

S = 1
4πα′

∫
d2σGMN (X)∂αXM∂αXN . (5.83)

We can expand the action about a classical solution, for example a string just sitting at a point
Xµ

0 , letting
XM (σ) = XM

0 +
√
α′YM (σ) , (5.84)

where YM represents a dynamical fluctuation which we assume to be small. To have [Y ] = 0 so
that statements such as Y � 1 make sense we have added a factor α′ to compensate for the fact
that [X] = −1. We can now expand the Lagrangian, finding

GMN (X)∂αXM∂αXN =

α′
[
GMN (X0) + (∇LGMN (X0))

√
α′Y L + (∇K∇LGMN (X0))α

′

2 Y
LY K + . . .

]
∂αY

M∂αY N
(5.85)

where the ∇K are general covariant derivatives. Each of coefficients in the Taylor expansion of
GMN about the classical solution X0 determines the coupling constants for an interaction term
for the fluctuating Y -fields. The theory has an infinite number of terms, and therefore an infinite
number of coupling constants, all of which depend on the function GMN .

We would like to know when the theory is weakly coupled, so that we can do perturbation
theory. This requires the whole infinite set of coupling constants to be small, a seemingly daunting
thing to check, but we can perform a crude analysis. Let us suppose that the target space has a
characteristic radius of curvature, so that

∂G

∂X
∼ 1
rc
. (5.86)

Since [G] = −2 and [X] = −1 we have [rc] = −1. The effective dimensionless coupling in equation
(5.85) is given by

geff ∼
√
α′

rc
, (5.87)

since each derivative on G gives a factor 1/rc and each order in Y gives a factor
√
α′.
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This implies that we can use perturbation theory to study the CFT in equation (5.85) as long
as the target spacetime metric varies only on scales much greater than

√
α′, i.e. when the radius of

curvature is significantly larger than the string length. In particular, this means that on spacetimes
containing a black hole singularity, the world-sheet CFT is strongly coupled and perturbation theory
breaks down, but the theory is perturbative on an AdS background with large radius of curvature.

String Renormalization

The perturbative theory in the dimensionless coupling
√
α′

rc
that we defined in equation (5.85) is

manifestly conformally invariant in the worldsheet coordinates, at least at the classical level. Let
us now renormalize the theory, and see what conformal invariance requires of the β-functions. This
is in analogy with the renormalization group approach we introduced in section 3.3.

In the current theory, we have an infinite number of couplings, but they all depend on the same
function Gµν(X). It is therefore reasonable to speak of a β functional β(G) that schematically
should be of the form

βµν(G) ∼ dGµν(X; Λ)
dΛ , (5.88)

where Λ represents some energy cutoff scale. Conformal invariance is only quantum mechanically
preserved if

βµν(G) = 0 . (5.89)

Let us now compute the β functional for the α′ model at one loop. We will impose a dimensional
regularization scheme to isolate the one-loop divergence and subtract off a counterterm to cancel
it. The β functional vanishes if the counterterm vanishes.

To perform this analysis, we import some knowledge about general relativity. Diffeomorphism
invariance lets us pick Riemann normal coordinates9 such that the expansion in XM = XM

0 +√
α′YM gives

GMN (X) = δMN −
α′

3 RMLNK(X0)Y LY K +O(Y 3) , (5.90)

where RMLNK is the spacetime Riemann curvature tensor. Then, to order Y 4 the α′ action
(equation (5.85)) becomes

S = 1
4π

∫
d2σ ∂αY

M∂αYM −
α′

3 RMLNKY
LY K∂αY

M∂αY N . (5.91)

This is a field theory with a typical kinetic term plus a quartic interaction. The Feynman rule in
Fourier space is

∼ α′RMLNKk
M
α k

αN (5.92)

where kMα is the world-sheet momentum in the α directions for the scalar field YM at index M .
The propagator in momentum space is

〈YM (σ)Y N (σ′)〉 = 2πδMN
∫ d2k

(2π)2
eik(σ−σ′)

k2 . (5.93)

9This is essentially just the equivalence principle. We can always pick coordinates such that the Christoffel symbols
vanish near X0, killing off any first-order variations in the metric as a function of position.
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The divergence in the theory comes from the one-loop snail diagram

=
∫ d2k

(2π)
RMLNKk

M
α k

αN

k2 , (5.94)

where σ, σ′ are the starting-and ending positions of the loop. We see clearly that this diagram is
horribly divergent. To make sense of the divergence let us first renormalize the loop propagator,
then we will fix the divergence due to the vertex by redefining the coupling GMN .

To regularize the divergence we introduce dimensional regularization, working in d = 2 + ε
worldsheet dimensions, where ε is small. Then the propagator becomes

〈YM (σ)Y N (σ′)〉 = 2πδMN
∫ d2+εk

(2π)2+ε
eik(σ−σ′)

k2

→ δMN

ε
as σ → σ′ .

(5.95)

To cancel the divergence in the propagator as well as the loop, we make the replacement

RMLNKY
LY K∂αY

M∂αY N → RMLNKY
LY K∂αY

M∂αY N − 1
ε
RMN∂αY

M∂αY N , (5.96)

where RMN = RMLNKδ
LK + O(Y 5) is the Ricci tensor. It is possible to show that this can be

absorbed by the wavefunction renormalization YM → YM + α′

6εR
M
NY

N together with

GMN → GMN + α′

ε
RMN . (5.97)

If the quantum theory on the worldsheet should retain its conformal invariance, the coupling con-
stant G must be independent of the scale parameter ε, which is only possible if

βMN (G) = α′RMN = 0 . (5.98)

In other words, the requirement for the preservation of conformal invariance of the string worldsheet
theory is that the target spacetime obeys the vacuum Einstein equations with no cosmological
constant.

Turning on all the Background Fields

In the previous section we understood how the string couples to a background metric generated by
a coherent graviton state. We also know that the massless sector of the bosonic string contains two
more background fields, described by the action

Seff = SG +
∫

d2σ
√
−h

(
εαβ∂αX

M∂βX
NBMN + α′Rhφ(X)

)
, (5.99)

where SG is the gravitational action for which we just did perturbation theory. The field BMN is
the string analogue of the Maxwell field AM in that it couples to the string worldsheet in the same
way as the Maxwell field couples to the particle worldline. Just like in the case of Maxwell theory,
the B field has a corresponding field strength

∂[KBMN ] = HKMN or, using differential forms H = dB . (5.100)
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The three form H fulfills the same role as the torsion of general relativity, meaning that string
gravity is not generally torsion free.

The one-loop β function(al)s for this theory are given by

βGMN (G) = α′
(
RMN + 2∇M∇Nφ−

1
4HMLRHN

LR
)

βBMN (G) = α′
(
−1

2∇
LHLMN +∇LφHLMN

)
βφ(G) = α′

(
D − 26

6α′ −
1
2∇

2φ+∇Mφ∇Mφ−
1
24HMNLH

MNL
)
.

(5.101)

Right away we see that if we turn off the Kalb-Ramond field we must have D = 26 and gMN must
satisfy the vacuum Einstein field equations.

Low Energy Effective Action

We can take an alternative viewpoint to this discussion about β-functions; we postulate that ”for
consistency, our string theory must remain conformally invariant even in the quantum case”10.
Then, by definition the background fields must fulfill the requirement that all of the β-functions in
equation (5.101) vanish. We define the vanishing of the β-functions to be the equations of motion
for the background fields in a consistent quantum string theory. The low-energy effective action is
then the action that has the vanishing of the β-functions as its equations of motion. The action is
called low-energy because:

• no higher energy massive string states are in the background,

• we assume that
√
α′/rc is small,

• we work at one loop in perturbation theory to determine the β-functions.

The low-energy effective action of bosonic string theory is given by

S = 1
2κ̃2

∫
dDX

√
−ge−2φ

(
R+ 4∇Mφ∇Mφ−

1
12HMNRH

MNR − 2(D − 26)
3α′ +O(α′)

)
. (5.102)

Note that the kinetic term for the dilaton φ has the wrong sign, and in addition, the term
√
−ge−2φR

is not quite the usual Einstein-Hilbert term. By a field redefinition we can obtain the Einstein-
frame effective action (in contrast to equation (5.102), which is the string frame effective action).
The Einstein-frame action is

S = 1
2κ2

∫
dDX

√
G̃

(
R̃ − 4

D − 2∇M φ̃∇
M φ̃− 1

12e
− 8
D−2 φ̃H2 − 2(D − 26)

3α′ e
4

D−2 φ̃O(α′)
)

(5.103)

and it is obtained by the following substitutions

φ̃ = φ− φ0

G̃MN (X) = e−4φ̃/(D−2)GMN ,
(5.104)

where φ0(= 〈φ〉) is the constant mode of φ, usually taken to be the the asymptotic value at infinity.
Here, κ = κ0e

φ0 = κ0gs.The biggest trouble in checking the substitution is computing the new
Ricci scalar R̃ from G̃MN

10This is sometimes referred to as the Weyl anomaly free method of finding the low energy effective action since
we are demanding that there is no Weyl anomaly breaking the conformal symmetry after renormalization.
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5.2 Superstring Theory

We saw in the previous section that bosonic string theory is a quantum theory that contains gravity
and seems in general not to be divergent. Despite these attractive features two big problems remain;
the theory contains tachyons and it contains no fermions. The real world has no tachyons and lots
of fermions, so something seems to be amiss. In the following we will detail the Ramond-Neveu-
Schwarz (RNS) formalism of superstrings.

Superstring theory is the minimal supersymmetric extension of the bosonic string theory of the
previous section. In conformal gauge the super-Polyakov action reads

S = − 1
4πα′

∫
d2σ ηαβ

(
∂αX

M∂βX
N + iΨM

γα∂βΨN
)
gMN (X) . (5.105)

Just as in the bosonic case, we consider at first a target spacetime that is flat, i.e. gMN = ηMN .
The ΨM are spinors on the worldsheet, and by picking a nice basis of the two-dimensional gamma
matrices, we can pick them to be Majorana spinors, ΨM = (ψM− , ψM+ )T with two real components.
A possible representation of the worldsheet gamma matrices is

γ0 =
[
0 −i
i 0

]
, γ1 =

[
0 i
i 0

]
. (5.106)

The fermionic part of the super Polyakov action can then be written as

SF = i

4πα′
∫

d2σ (ψM− ∂+ψ−,M + ψM+ ∂−ψ+,M ) . (5.107)

The equations of motion then take the same form as in the bosonic sector

∂−ψ
M
+ = ∂+ψ

M
− = 0 , (5.108)

which describes left- and right moving waves. In two dimensions these equations are known as the
Weyl conditions, so the spinors are often referred to as Majorana-Weyl spinors.

The action is invariant under the supersymmetry transformations11

δεX
M = εΨM , δεΨM = γα∂αX

M , (5.109)

where the parameter ε is a constant infinitesimal Majorana spinor and ε = iε†γ0 denotes Dirac
conjugation. In addition to the equations of motion, the variation of the action gives rise to
boundary terms since the variation of the derivative terms requires an integration by parts

δSF = i

4πα′
∫

dτ
(
ψM− δψ−M − ψM+ δψ+M

) ∣∣∣∣∣
σ=π

σ=0

. (5.110)

The analysis of the bosonic part of the string action is exactly the same as in the bosonic case, so
let us now look at the fermionic parts of open and closed superstrings.

11Note that this supersymmetry is only a supersymmetry on the worldsheet. That the worldsheet supersym-
metry implies spacetime supersymmetry is nontrivial, and performing this analysis using the manifestly spacetime
supersymmetric Green-Schwarz action requires the introduction of a lot of machinery which we will not reuse.
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Open Superstrings

For open strings the boundary conditions σ = 0 and σ = π need to vanish separately since they do
not define the same point. The action does not care about the overall sign of the full spinor ΨM ,
so we can without loss of generality set

ψM+ (τ, 0) = ψM− (τ,0) . (5.111)

The choice of the relative sign at the other end of the string then give rise to the Ramond or
Neveu-Schwarz sectors

R: ψM+ (τ, π) = ψM− (τ,π)
NS: ψM+ (τ, π) = −ψM− (τ,π)

(5.112)

The corresponding mode expansions are given by

R: ψM± (τ, σ) = 1√
2
∑
n∈Z

dMn e
−inσ±

NS: ψM± (τ, σ) = 1√
2
∑

r∈Z+ 1
2

bMr e
−irσ±

(5.113)

where the Fourier modes dn, br are Grassman-valued for consistency with the Grassman-valued full
spinor. To quantize the Neveu-Schwarz sector promote the Fourier modes to operators with the
anticommutation relations

{dMm , dNn } = ηMNδm,−n , {bMr , bNs } = ηMNδr,−s . (5.114)

We define positively moded operators to be annihilation operators, and the negatively moded
operators are creation operators. Then, the vacuum |0〉 is defined to be annihilated by all positively
moded operators. There is a complication regarding the Ramond vacuum, since the operator dM0
changes the state without changing its energy, and cannot be defined to annihilate it. The Ramond
vacuum is therefore degenerate. Since {dM0 , dN0 } = ηMN is up to a normalization the Clifford
algebra, and the vacuum remains a vacuum under the action of this algebra, the vacuum state
|0,k〉R of the Ramond sector must be a spacetime spinor with 2D/2 components. In some dimensions
these can be divided left- and right handed components, and we can define a chirality operator Γ11

analogously to γ5 in four dimensions.
Going to lightcone gauge, we find that Ψ+ = 0 and that Ψ− is determined in terms of the

transverse coordinates to impose the Virasoro constraints. Then the mass-squared operators (before
normal-ordering, and including the bosonic creation operators aIn) are given by

R: α′M2 = 1
2

(∑
n∈Z

naI−na
I
n +

∑
m∈Z

mdI−md
I
m

)

NS: α′M2 = 1
2

∑
n∈Z

naI−na
I
n +

∑
r∈Z+ 1

2

rbI−rb
I
r

 ,

(5.115)

where the sum over the transverse index I is left implicit. To normal-order, we obtain for the
bosonic part as in equation (5.38)

1
2
∑
n∈Z

naI−na
I
n =

∞∑
n=1

naI−na
I
n −

D − 2
24 , (5.116)
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for the fermionic sectors

R: 1
2
∑
m∈Z

mdI−md
I
m =

∞∑
m=1

mdI−md
I
m + D − 2

24

NS: 1
2
∑

r∈Z+ 1
2

rbi−rb
i
r =

∞∑
r=1/2

rbI−rb
i
r −

D − 2
48 .

(5.117)

where all of the explicit terms ∼ (D − 2) come from the analytic continuation of divergent sums.
Notably, the normal-ordering constant for the Ramond fermions exactly cancels the bosonic ordering
constant, meaning |0,k〉R is a massless spacetime spinor. This means that the Ramond vacuum
splits into two sets of chiral spinors that do not talk to each other.

For the Neveu-Schwarz sector we have the normal-ordering constant

aNS = −D − 2
48 − D − 2

24 = −D − 2
16 , (5.118)

so the ground state of the NS sector is tachyonic. The lowest energy excitation in the NS sector is
a transverse vector, is obtained by b−1/2 |0,k〉NS and has mass squared

α′M2 = 1
2 −

D − 2
16 . (5.119)

We expect a transverse vector excitation to be massless so we find that the critical dimension for
superstring theory is given by D = 10. Just like in the bosonic case, a more rigorous derivation of
the critical dimension is found by requiring that the Lorentz group is correctly generated by the
appropriate conserved charges of the quantum theory.

We have yet to see the promised absence of the tachyon. This comes about due to the GSO
projection, a necessary truncation of the spectrum to preserve supersymmetry. ’Deriving’ the GSO
projection requires continuing without the truncation, studying the superstring partition function
and demanding that (super)conformal symmetry is intact. To perform the GSO projection, we
introduce the G-parity operator G. In the NS-sector it is given by

GNS = (−1)F+1 , with F =
∞∑

r=1/2
bI−rb

I
r , (5.120)

where F counts the number of world-sheet fermions. As is apparent, the G-parity operator specifies
whether there are an odd or even number of worldsheet fermions, with G = +1 for an odd number
of fermions. In the Ramond sector we have

GR = Γ11(−1)E , with E =
∞∑
n=1

dI−nd
I
n , (5.121)

where Γ11 is the chirality operator as defined as the 10d analog of γ5 in 4d QFT. A spinor that
fulfills Γ11Ψ = ±Ψ has definite chirality, and is called a Weyl spinor.

To perform the GSO projection we keep only states of positive G-parity. This means that
we keep only states with an odd number of b-oscillator excitations in the NS sector, and for the
Ramond sector we project onto an odd number of d-oscillator excitations if the ground state has
negative chirality, and an even number of d-oscillator excitations if the ground state has positive
chirality. Notably, this eliminates the tachyon from the ground state of the NS sector and the NS
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ground state becomes the vector boson bI−1/2 |0,k〉NS . Additionally, this means that all states in
the Ramond sector are spacetime fermions, while all states in the NS sector are spacetime bosons.

Note that the massless bosonic state in the NS sector has 8 independent components. We
said earlier that the Ramond vacuum was a Majorana spacetime spinor with 2D/2 = 32 real
components. Since 8 6= 32 this goes against our earlier claim that RNS string theory has spacetime
supersymmetry. This problem is solved by two things, firstly only the transverse degrees of freedom
are physical, so the physical Ramond ground state is actually a spinor in eight Euclidean dimensions,
with 16 real components. In addition to this, by requiring that the vacuum has definite chirality we
get down to 8 real components. Thus, we have a matching of the spacetime fermionic and bosonic
degrees of freedom for the massless states of the theory12.

Closed Superstrings

The analysis of closed superstrings is now fairly straightforward. In fact, the difference is mainly
that the left-and right moving modes are decoupled and we can pick Ramond or Neveu-Schwarz
boundary conditions separately for left- and right movers. We then get four different sectors for the
closed string: NS-NS, NS-R, R-NS and R-R. In addition, we get an additional degree of freedom
in choosing the relative chirality between the ground states of the two Ramond sectors, leading to
type IIA or IIB string theory.

The R-R and NS-NS sectors give rise to spacetime bosons, while the R-NS and NS-R sectors
give rise to spacetime fermions. This follows since the tensor product of an even number of fermions
is bosonic, while the tensor product of a boson and a fermion is a fermion.

The mass-squared operator in closed string theory is given by

1
2α
′M2 = α′M2

L + α′M2
R (5.122)

where M2
L and M2

R are the mass squared operators of the open string theories that make up the
left-and right moving sectors.

Let us denote a Ramond vacuum of positive chirality |+〉R, then we can write down the massless
spectrum of type IIA string theory as

(R-, R+): |−〉R ⊗ |+〉R ⊗ |p+, pI〉
(NS, R+): bI−1/2 |0〉NS ⊗ |+〉R ⊗ |p+, pI〉

(R-, NS): |−〉R ⊗bI−1/2 |0〉NS ⊗ |p+, pI〉

(NS, NS): bI−1/2 |0〉NS ⊗bJ−1/2 |0〉NS ⊗ |p+, pI〉.

(5.123)

The NS-NS sector ground state transforms as the tensor product of two eight component vectors,
just like the massless state in bosonic string theory. In the same way we can decompose the NS-NS
ground state according to

(NS, NS): bI−1/2 |0〉NS ⊗ b
J
−1/2 |0〉NS ≡ φ⊕ g

IJ ⊕BIJ (5.124)

where the dilaton φ is the trace part of the tensor, gIJ is traceless symmetric and BIJ is antisym-
metric. Turning off all other background fields, these behave exactly as in the bosonic case under
the α′-expansion except now we are in D = 10.

12That spacetime supersymmetry holds for higher excited modes of the string is highly nontrivial, relying on an
obscure identity found by Carl Gustav Jacob Jacobi in 1829. For a more detailed discussion we refer the reader to
section 14.6 in [43].
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From the R-R sector we have the tensor product of two spacetime spinors, with a total of
82 = 64 degrees of freedom. The components of spacetime spinors commute, so we want to write
the R-R sector as a direct sum of antisymmetric tensors. In addition, since the two Ramond sectors
have opposite chiralities, we want the tensors to transform in the (1

2 ,
1
2) of the Lorentz group. We

then find that

(R-,R+): |−〉R ⊗R |+〉 ≡ A
I ⊕AIJK (5.125)

where the three-form AIJK is antisymmetric in its indices and has 56 independent components.
Like the Kalb-Ramond field the three form field has a natural field strength and gauge symmetry.
The field AI corresponds to a photon.

The (NS-R) and (R,NS) fields have one vector and one spinor index and we can decompose the
tensor products as

(NS-R): bI−1/2 |0〉NS ⊗ |+〉− ≡ λ
1 ⊕ ψ1

M

(R-NS): |+〉R⊗b
I
−1/2 |0〉NS ≡ λ

2 ⊕ ψ2
M ,

(5.126)

where the λ are 8-component spinors called dilatinos and the ψM are 56 component vector-spinors
called gravitinos. The NS-R and R-NS sectors are very similar, although they have opposite chi-
ralities.

For type IIB string theory we carry out the same reasoning, letting both Ramond sectors have
the same chirality. We find that the field content is

(R+, R+): A(0) ⊕A(2) ⊕A+
(4)

(NS, R+): λ1 ⊕ ψ1
M

(R+, NS): λ2 ⊕ ψ2
M

(NS, NS): φ⊕ gIJ ⊕BIJ .

(5.127)

The hidden difference in the mixed sectors is that the λ’s and ψ’s have the the same chirality in
IIB theory. The R-R fields are the axion A(0), a second 2-form Kalb-Ramond field A(2) and a self
dual 4-form field A+

(4).

5.2.1 Superstring Low Energy Effective Action

The low-energy effective action of the type IIA and type IIB are obtained in analogy to the low
energy effective action of the bosonic string theory, the main difference being that we have to
introduce superspace formalism, recreate the vertex operators, and redo the α′-expansion with a
superconformal theory on the worldsheet. A main new ingredient is the necessity of superconfor-
mally invariant vertex operators containing a sum of different fields that transform into each other
under the supersymmetry transformations.

The full derivation is well outside the scope of this text, and we will just state the effective
actions, noting that they are determined by the vanishing of the α′-expanded β-functions. They
may also be derived using the more modern pure spinor formalism, which is once again outside the
scope of this text. These actions are taken from Ammon & Erdmenger [24].
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Type IIA Supergravity

In terms of the field content of the massless type IIA superstring the bosonic part of the low energy
effective action is given by

SIIA = 1
2κ2

[ ∫
d10x
√
−g
(
e−2φ(R+ 4∇Mφ∇M −

1
2 |H|

2)− 1
2 |F(2)|2 −

1
2 |F̃(4)|2

)

− 1
2

∫
B ∧ F(4) ∧ F(4)

]
,

(5.128)

where H = dB is a three form, F(2) = dA(1) is a two form and F4 = dA(3) is a four form. These
three quantities are all simply the field strengths corresponding to their respective fields in the the
IIA massless spectrum. Lastly, we have defined F̃(4) = dA(3) −A(1) ∧H.

It can be shown that this action is the same as the action of 11-dimensional supergravity
compactified on a circle of radius R11 = g

2/3
s lp where lp is the Planck length. Eleven dimensional

supergravity is the unique theory in 11d that has local supersymmetry and no massless field of spin
higher than 2. The bosonic part of the 11d supergravity action is given by

S11 = 1
2κ2

11

[∫
d11x
√
−g

(
R− 1

2 |F4|2
)
− 1

6

∫
A(3) ∧ F(4) ∧ F(4)

]
. (5.129)

Type IIB Supergravity

In terms of the field content of the massless type IIB superstring the bosonic part of the low energy
effective action is given by

SIIA = 1
2κ̃2

[ ∫
d10x
√
−g
(
e−2φ(R+ 4∇Mφ∇M −

1
2 |H|

2)

− 1
2 |F(1)|2 −

1
2 |F̃(3)|2 −

1
4 |F̃(5)|2

)

− 1
2

∫
A(4) ∧H ∧ F(3)

]
,

(5.130)

where F̃(3) = dA(2) −A(0)H, ˜F(5) = F(5) − 1
2A(2) ∧H + 1

2B ∧ F(3).
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Chapter 6

Introducing the AdS/CFT Duality

In this chapter the famous Anti de Sitter (AdS)/Conformal Field Theory (CFT) duality is intro-
duced. An unorthodox approach is taken, in which the string theory argument for the duality is
presented last, after the weaker form of the duality due to Witten has been thoroughly explored.
The intent is that this approach is more constructive, we first consider in a fully controlled setting
parts of the duality before ever considering a full realization.

First an introduction to the geometry of AdS is given, with special focus on how a noncompact
space may be said to have a ”boundary”. We show that rotations and translation in the interior
AdS space define conformal transformation of its boundary. A correspondence is then shown
between bulk and boundary physics for one type of field at a time. Specifically, scalar fields,
p-forms and metric deformations of AdS are considered. These partial results only relate some
specific observables, and do not consider a full theory with all of its observables on either side of
the duality. To understand the full duality we consider the original argument of Juan Maldacena
relating supergravity on the spacetime AdS5×S5 to so-called N = 4 Super Yang-Mills theory in 3+1
dimensions as outlined in [3]. Maldacena’s form of the duality relates a full interacting quantum
gravitational theory with additional fields to a QFT in flat space. Quantum gravity is in general
poorly understood, and has no universally successful framework. On the other hand QFT on flat
backgrounds is the most experimentally successful theory to date, and as such the proposed duality
garnered great interest.

The chapter is concluded with a remark on what bulk theories can reasonably be dual to a
boundary CFT, noting that explicit realizations of AdS/CFT have either strings in the bulk or
they are carried out in the case of AdS3/CFT2. In the latter case the CFT has a large amount of
extra symmetry (Virasoro vs. regular conformal group), so the requirements on the bulk theory
are not as steep.

6.1 Introduction to Anti de Sitter and its Conformal Boundary

In this section we try to make clear the connection between anti de Sitter (AdS) space and conformal
field theory. We then explain the connection to the holographic principle by realizing that the
boundary of AdS is the conformal compactification of d-dimensional Minkowski space Md. The
boundary of AdS is only defined up to a conformal transformation, as we will discover.

Thanks to this relation, instead of AdS/CFT duality being a one-to-one map between a CFT in
Md and quantum gravity in AdSd+1 with the two theories living in completely unrelated spacetimes,
we have additional reason to the believe the CFT really lives on the boundary of the AdS spacetime.

In addition, since the boundary of AdS is only defined up to a conformal transformation, if
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a theory that is relativistically invariant on AdS is supposed to be described by a theory on the
boundary of AdS, that theory has to be invariant under conformal transformations. If an operator
or correlator in the bulk of AdS transforms under some element of SO(d,2), then the corresponding
object in the boundary CFT must transform in the same way.

The Boundary of AdS

The simplest way of understanding the symmetries of AdSd+1 is obtained by embedding it into
d+ 2-dimensional Minkowski as the surface satisfying

η̃MNX
MXN = X1

2 +X2
2 + . . . Xd

2 −X0
2 −Xd+1

2 = −L2 (6.1)

where X0, X1 . . . Xd+1 are the coordinates of Md+2 with metric η̃ and signature (d,2). The constant
L is referred to as the AdS radius. The LHS of equation (6.1) is just the definition of XMX

M in the
d+ 2 dimensional Minkowski spacetime, so the AdS surface is obviously invariant under SO(d,2).
This is exactly the same symmetry group as a CFTd in a d dimensional Minkowski spacetime with
signature (d− 1,1).

To find the conformal boundary of AdSd+1 we take the limit when all coordinates XM become
large. That is, we let L2 → 0, in which case AdSd+1 approaches the light-cone in Md+2 described
by

X1
2 +X2

2 + . . . Xd
2 −X0

2 −Xd+1
2 = 0 . (6.2)

We then define the ”boundary” of AdS as the set of all lines on the lightcone originating from the
origin of Rd,2. More formally we can write this as the set of all points on the lightcone, together
with an identification of points that are related by a real scale factor.

∂AdSd+1 =
{
X : X ∈ Rd,2, X 6= 0, η̃MNX

MXN = 0
}

(6.3)

together with the identification
X ∼ λX (6.4)

where λ is some real number. By adding the scale identification, we are saying that all points on the
lightcone in Md+2 are identified with the points at infinity for which L2 = 0 makes sense, meaning
they are identified with points that actually are at the boundary of AdS. This way of saying it
might seem roundabout, but it lets us understand the topology of the AdS boundary in a simple
way. We can represent any element in δAdSd+1 by X that fulfill

d∑
i=1

X2
i = 1 , (6.5)

where we have chosen the scaling λ such that X2
0 +X2

d+1 = 1 in the RHS. In fact, the equation

X2
0 +X2

d+1 = 1 (6.6)

defines a circle S1, and equation (6.5) defines the d − 1 dimensional sphere Sd−1. The points X
and −X are not identified in S1 and Sd−1, but in our definition of δAdSd+1 we said that X ∼ −X.
Therefore the conformal boundary of AdS is has the topology (S1⊗Sd−1)/Z2. Note that this version
of AdS is periodic in the timelike coordinate, and we would like to be able to consider AdS spaces
that are not time-periodic. To do this, we pass to the universal covering of AdS, defined by taking
the time direction to not be periodic. The only subtlety that is raised is that the universal covering
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can not be embedded into flat Md+2, and we end up decompactifying the time direction. This does
not spoil the following analysis showing that the boundary of AdS is a conformal compactification
of Minkowski, as the different choice of λ lets us turn the boundary time aperiodic.

To find the claimed result that the boundary of AdSd+1 is the conformal compactification of
Md let us introduce the coordinates

u = Xd+1 +Xd , v = Xd+1 −Xd (6.7)

and rewrite equation (6.2) according to

uv = ηµνX
µXµ , (6.8)

where µ ∈ [0, d−1] , ηµν is the metric of Md with signature (d−1, 1). We still have the identification
under scalings X ∼ λX. This means that whenever v 6= 0 we can rescale so that v = 1, i.e λ = 1/v.
For given Xµ, u is completely determined so that the set of points that fulfill equation (6.8) are
simply any Xµ ∈ Rd−1,1. There is one caveat however, and that is the case where v = 0. To be
able to scale by λ = 1/v we need to add points at infinity for the Xµ, and by inspecting

0 = ηµνX
µXµ , (6.9)

we see that the set of points we need to add are defined by a lightcone. This is exactly the conformal
compactification of Minkowski we found necessary to include conformal inversions on the lightcone
in chapter 3.4.3.

It is actually possible to see that SO(d, 2) acts on the conformal boundary of AdS as a natural
representation of the conformal group. Let us first consider the one parameter group of Lorentz
boosts between Xd+1 and Xd. It acts as(

X ′d+1
X ′d

)
=
[

cosh θ − sinh θ
− sinh θ cosh θ

](
Xd+1
Xd

)
(6.10)

meaning that u and v transform as(
u′

v′

)
=
[
cosh θ − sinh θ 0

0 cosh θ + sinh θ

](
u
v

)
. (6.11)

We are scaling so that v = 1 to fix the arbitrary λ, so really this transformation implements

u′ = cosh θ − sinh θ
cosh θ + sinh θu = e−2θu , (6.12)

but this means that that we are scaling the line element on the RHS of equation (6.8), so the
boost between u and v with boost parameter θ implements a scaling of the metric by e−2θ on
the conformal boundary of AdS. We have found that that the Lorentz generator Jd,d+1 generates
dilatations, which exactly the embedding of dilatations into SO(d,2) we had in section 3.4.2. All
rotations within the boundary Minkowski space itself trivially just generate the Lorentz group in
d dimensions.

It is now an exercise in algebra to check that general SO(d,2) transformations between Xµ

and Xd, Xd+1 correspond to some combination of special conformal transformations and spacetime
translations in the boundary Minkowski spacetime.

Notice that since the Minkowski space at the boundary is not invariant under the symmetry
transformations of the AdS embedding, the boundary of AdS is only defined up to a conformal
transformation. Thus there is no specific metric induced on the boundary of AdS, only a conformal
structure. A conformal structure refers to an equivalence class of metrics that are related by
conformal transformation. In this example of pure AdS the boundary is in the conformally flat
equivalence class of metrics, i.e. metric on the form e2wηµν .
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Causal Connection Between AdS Boundary and Bulk

Let us now consider the important properties of AdS space itself. The most important property of
AdS is that it is a solution to Einstein’s equation, and for some time it was even thought to describe
the asymptotic behaviour of our observable universe. The second most interesting property of AdS
is that despite it being a noncompact manifold, a light signal can reach the boundary in finite time
(and return again!). In this sense, AdS has the causal structure of a solid cylinder of finite radius
and physics in the interior are causally connected to the physics on the boundary. This means that
physics in AdS must take boundary conditions at infinity into account, in stark contrast to the
usual field theoretical practice of tossing boundary terms in the equations of motion.

A choice of coordinates that solves the constraint in equation (6.1) is

X0 =
√
L2 + r2 cos(t/L)

Xd+1 =
√
L2 + r2 sin(t/L)

XiX
i = r2

(6.13)

leading to the AdS metric

ds2 = −(1 + r2

L2 )dt2 + dr2

1 + r2

L2

+ r2dΩ2
d−1 , (6.14)

where r ∈ [0,∞), t ∈ [−∞,∞] and Ωd−1 is the metric on the unit sphere Sd−1. Note that we
naturally have a periodicity in time so that t ∼ t+ 2π

L , so in choosing t ∈ R we have passed to the
universal covering space.

The metric of AdSd+1 is a solution of Einstein’s equations with a negative cosmological constant

Rµν −
R

2 gµν + Λgµν = 0 , (6.15)

where the cosmological constant Λ is given by

Λ = −d(d− 1)
2L2 . (6.16)

Knowing the metric it is straightforward to compute the time it takes for a photon to travel
to the AdS boundary. For a photon, ds2 = 0, so assuming dΩd−1 = 0 we can easily solve for
coordinate time in terms of r, separate variables and integrate for the elapsed time. It is clear by
inspection of the metric that ds2 = 0 is solved by

dt = L2

L2 + r2 dr .

From here we just integrate both sides to find that

t =
∫ ∞

0

L2

L2 + r2 dr

= [L arctan(r)]∞0
= π

2L .

Then, the coordinate time for a photon to go to infinity and back from the origin again is given
by πL. The main point here is that the bulk of the AdS spacetime can communicate with the
boundary in finite time.
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Figure 6.1: AdS imaged as a cylinder, with the coordinate ρ in the metric equation (6.18) written
out. In grey is the part of AdS covered by the Poincaré patch. In red the geodesic of a photon
travelling between two antipodal boundary points is imaged, with a travel time of ∆t = π. Before
the decompactification of the time direction, the Poincaré patch covers exactly half of AdS.

The causal structure we found for AdS can be made clearer by change of coordinates. In the
following we set L = 1. We define the new coordinate ρ ∈ [0, π/2) via

r = tan ρ (6.17)

and we find that

ds2 = 1
cos2 ρ

(
− dt2 + dρ2 + sin2(ρ)dΩ2

d−1
)
. (6.18)

The geodesics of photons do not see an overall factor on the metric (also called a ”Weyl factor”),
so as far as photons are concerned the metric of AdS is the same as that of a solid cylinder with
metric

ds2 = −dt2 + dρ2 + sin2(ρ)dΩ2
d−1 . (6.19)

At the boundary (r =∞ or ρ = π/2) we see that AdS has the topology of a sphere Sd−1 tensored
with the time direction, that is, the topology is given by R×Sd−1. This representation is illustrated
in figure 6.1.

Poincaré Coordinate Patch

We may pass into another coordinate system in which many calculations simplify. These are called
Poincaré coordinates, and they come with the downside that they do not cover all of AdS. The
Poincaré patch that is covered by the Poincaré coordinates is highlighted in figure 6.1.

The Poincaré coordinates correspond to a different choice of coordinates that solves equation
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(6.1):

X0 = L2

2r

(
1 + r2

L4 [~x2 − t2 + L2]
)

Xd+1 = rt

L

Xi = rxi

L
, ∀i ∈ [1, . . . ,d− 1]

Xd = L2

2r

(
1 + r2

L4 [~x2 − t2 + L2]
)

(6.20)

where r ≥ 0. The metric takes the form

ds2 = L2

r2 dr2 + r2

L2

(
−dt2 + d~x2

)
. (6.21)

Here, the conformal boundary is located at r = ∞. A way to more explicitly see the form of the
conformal boundary is to pass to boundary-appropriate coordinates. Defining z = L2

r the metric
takes the form

ds2 = L2

z2

(
−dt2 + dz2 + d~x2

)
. (6.22)

We see that up to the factor L2/z2 that can be Weyl transformed away, this is just Minkowski.
The conformal boundary is at z = 0 and a particular structure is made very clear, the boundary
of AdS is characterized by a double pole at the boundary. We will expand on this claim the the
following subsection about Euclidean AdS.

Euclidean AdS

In the previous section we worked in a Lorentzian signature, but the identification of the boundary
of AdS and Minkowski also holds in Euclidean signature. In general it may be convenient to do
field theory in Euclidean language, as it is here that we can straightforwardly prove uniqueness
theorems. Standard practice is to assume that Lorentzian field theory is related to Euclidean field
theory by analytic continuation.

To obtain the Euclidean version of AdS we Wick-rotate the time coordinate t→ iτ . It is then
possible to show that Euclidean AdSd+1 can be identified with the unit ball Bd+1 in Rd+1 with
metric

ds2 = 4Σd
i=0dy2

i

(1− |y|2)2 , (6.23)

with coordinates y0 . . . yd and the unit ball is defined by
∑
|y|2 < 1. We can compactify the unit

ball to obtain the closed unit ball Bd+1, whose boundary is Sd. The fact that Sd is the boundary
of Bd+1 is the Euclidean version of the statement that the conformal compactification of Md is the
boundary of AdSd+1. This can be seen by considering that the conformal compactification of Rd is
obtained by adding a single point at infinity, tying Rd together into the sphere Sd.

The metric on Bd+1 does not extend to the boundary, since it is singular for |y| = 1. To obtain
a metric that is defined on the boundary Sd we can pick a function f on Bd+1 that has a first order
zero at |y| = 1, for example f = 1− |y|2, and rescale ds2:

ds̃2 = f2ds2 . (6.24)
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The function f is only defined up to a general function that approaches a constant value at the
boundary. This class of functions can be fully captured by ew where w is any real function on Bd+1
plus an eventual minus sign (that cancels out). In other words, we have the equivalence relation

f ∼ ±few (6.25)

with w any real function on Bd+1, inducing a conformal transformation on the boundary such that

ds̃2 → e2wds̃2 , (6.26)

for the metric of the Sd. Just like we found in the Lorentzian case, Euclidean AdS has a boundary
that is only defined up to a conformal transformation, and it is conformally equivalent to Rd plus
a point at infinity.

A useful choice of coordinates for Euclidean AdS is obtained by the substitution r = tanh(|y|/2),
and introducing angular coordinates, putting the metric on the form

ds2 = dy2 + sinh2 ydΩ2 , (6.27)

where dΩ is the metric on the unit sphere and 0 ≤ y ≤ ∞. In these coordinates, the boundary is
located at y =∞.

Finally, another useful representation of Euclidean AdS is as an upper half plane x0 > 0 with
coordinates x0 . . . xd and metric

ds2 = 1
x2

0

(
d∑
i=0

(dxi)2
)
. (6.28)

In this representation the boundary consists of a space that looks like Rd at x0 → 0 plus a point at
infinity given by x0 =∞. The boundary when x0 =∞ defines a point since the metric vanishes in
this limit. Just as previously, this defines a conformally flat boundary structure.

Asymptotically AdS Spacetimes

If we are interested in gravity we clearly cannot only consider AdS space, since any nontrivial matter
distribution will cause the metric to deviate from equation (6.14). We are therefore interested in
the class of asymptotically AdS spacetimes, meaning any spacetime that have boundary topology
R× Sd−1 and whose metric approaches equation (6.14) at large radii.

The most important asymptotically AdS spacetime is probably the Schwarzschild-AdS black
hole, with metric given by

ds2 = −f(r)dt2 + dr2

f(r) + r2dΩd−1 , (6.29)

where the form function f(r) is

f(r) = 1 + r2 − 16πGM
(d− 1)Ωd−1

1
rd−2 . (6.30)

At large radii, the term proportional to GM in f(r) goes to zero, so the metric obviously approaches
AdS at infinity.

A more general way to consider asymptotically AdS spacetimes is via the Fefferman-Graham
representation of the metric. To define this it is practical to use the boundary-adapted coordinates
equation (6.22) on the form

ds2 = L2

z2

(
dz2 + hµν(z,xµ)dxµdxν

)
(6.31)
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where the index runs over all but the coordinate z. On this form, all asymptotically AdS metrics
are described by a hµν(z, xµ) such that the limit limz→0 hµν(z, xµ) = h0

µν is finite. Multiplying
the metric by z2, h0

µν defines the boundary metric. We see that picking h0
µν = ηµν returns the

boundary coordinates of pure AdS. We will later see examples where the boundary metric is not in
the equivalence class of conformally flat metrics.

The coordinate z may be interpreted as the inverse energy scale of a CFT living on the bound-
ary space. To see this, remember that the boundary of AdS is only defined up to a conformal
transformation. If we let xµ → αxµ, the compensating transformation of z is z → αz to preserve
the metric. In a field theory, the energy E goes as E/α under a rigid scale transformation. The
limit z → 0 thus corresponds to the high energy limit of the boundary theory, with bigger z probing
lower and lower energies of the CFT. In this sense, the radial coordinate r = L2/z of AdS can be
seen as the renormalization scale of the boundary CFT becoming a genuine physical dimension.

6.2 AdS/CFT Duality Piece by Piece

In this section we show the correspondence between operators in a CFT on the boundary of an
AdS spacetime and fields in the bulk by considering some basic examples. We will treat in some
detail all of the pieces that go into the full AdS/CFT duality between stringy quantum gravity in
the bulk and supersymmetric Yang-Mills theory on the boundary.

The essence of the AdS/CFT duality lies in a fairly simple observation. If we solve the classical
equations of motion for some theory in the interior with field values at infinity as boundary con-
ditions we may find that there is a unique field configuration on the interior that can satisfy this
boundary condition. More succinctly, in Euclidean AdS the boundary fields completely determine
the bulk fields.

We then extend this classical correspondence to the quantum level by postulating that a con-
formal field theory on the boundary and whatever theory in the bulk have the same generating
functional in the path integral sense. We test this conjecture by computing the boundary CFT
correlation functions using the bulk theory generating functional and finding that they agree with
the expected correlators found in chapter 3.4.3.

We will formulate the relationship between a CFT on the boundary and the following theories
in the bulk:

• scalar field theory,

• Yang-Mills gauge theory,

• gravity.

The reason for not including spinors is that we will be mainly working with the so-called classical
supergravity approximation, setting all spinor fields to zero. A treatment of the correspondence
between spinors in AdS and quasi-primary conformal spinors in the boundary CFT can be found
in [46].

The following scalar field discussion is based on the presentation by Witten in [47] with some
elements included from Freedman [48]. The discussion of Yang-Mills fields is also based on Witten’s
paper. The discussion about gravity follows a paper by M. Henningson and K. Skendris [49]. Finally,
the string theoretical realization of the duality is based on the presentation by Zwiebach [43].
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6.2.1 Scalar Field/CFT Correspondence

The first, absolutely simplest case to consider is the massless scalar field living in AdSd+1. It
is in the section that we will be most explicit about checking the duality, although the general
machinery applies to p-form and gravitational fields as well. In this section we take AdS to be
a static gravitational background, meaning the scalar field does not couple via the stress-energy
tensor to gravity. In this way we only have to deal with the dynamics of the scalar field.

By a massless scalar field we mean a scalar field obeying the equation of motion

∇M∇MΦ = 0 , (6.32)

where ∇M is the general covariant derivative. We will find that the field in the interior is completely
determined by the field configuration at the boundary. We will then use this finding to conjecture
a correspondence between the dynamics of boundary fields and fields in the interior.

A basic fact about AdS is that given the field φ(Ω),Ω ∈ Sd on the boundary, there is a unique
solution of the Laplace equation in the bulk Φ(y) y ∈ Bd+1 that satisfies the boundary condition
Φ(y) = φ(Ω) ∀y ∈ Sd. The uniqueness depends on the fact that there is no nonzero square-
integrable solution of the Laplace equations. A square integrable solution goes to zero at infinity
and can therefore be added to an existing solution without spoiling the boundary condition. If
there existed a solution where φ(Ω) = 0 then we would have

0 = −
∫
Bd+1

dd+1y
√
gΦ∇M∇MΦ

= −
∫
Bd+1

dd+1yΦ∂M (√g∂MΦ)

=
∫
Bd+1

dd+1y
√
g|dΦ|2

(6.33)

where the first equality is due to the equation of motion setting the integrand to zero, the second
equality uses the definition of the general covariant derivative, and in the third equality we have used
φ(Ω) = 0 to toss the boundary terms. Equation equation (6.33) implies that dΦ(y) = 0 everywhere
since the integral of (dΦ)2 is zero, setting Φ = 0 everywhere if it is zero on the boundary.

Working with the equation (6.27) representation of AdS, the Laplace equation takes the form(
− 1

(sinh y)d
d
dy (sinh y)d d

dy + L2

sinh2 y

)
Φ = 0 , (6.34)

where the operator L2 is the angular part of the Laplacian. If we expand φ in terms of spherical
harmonics fα according to

Φ =
∑
α

Φα(y)fα(Ω) (6.35)

the equations of motion look for large y like

d
dre

dy d
dyΦα = 0 , (6.36)

with solutions Φα ∼ 1 and Φα ∼ e−dy. Only one linear combination of these is smooth at y = 0,
and this solution has a finite value at infinity. If this was not the case there would exist square
integrable solutions relating the non-unique solutions with the same boundary value, but we already
proved that square integrable solutions do not exist.
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Therefore, for every partial wave fα there is a unique solution of the Laplace equation in radial
direction for each constant value at infinity. If we expand φ(Ω) in the boundary in terms of spherical
harmonics as

φ(Ω) =
∑
α

cαfα , (6.37)

we see that any function φ(Ω) on Sd will define a unique solution of the Laplace equation in the
interior by extending cα → Φα(r) and requiring limr→∞Φα(r) = cα.

The conclusion we can draw from this example is that the scalar field in the interior of AdSd+1
is completely determined by its values at infinity due to the nonexistence of square integrable
solutions to the Laplace equation. In addition, this determination holds for all times, so in some
sense the dynamics of the boundary field completely determine what the dynamics of the field on
the interior must be. It is not unreasonable to think that if we quantize the two field theories,
the one on the boundary and the one in the interior, they might be described by the same Hilbert
space and quantum dynamics.

More explicitly, since we have a correspondence for all times we conjecture that

some scalar QFT in AdSd+1
is dynamically equivalent to

some scalar CFT on ∂AdSd+1.

Note that we are not claiming that these theories should somehow supplement each other, but
rather that the two theories are interchangeable.

Ansatz for the Explicit AdS/CFT Duality

Let φ denote values of the bulk field Φ to the boundary of AdSd+1. We assume that the duality
between the the bulk and boundary theories should couple the boundary field φ to some conformal
field O via a a vertex operator on the form

∫
Sd φO. The boundary field φ is conformally invariant,

so for the the vertex operator to have conformal weight zero, the operator O must have weight d.
We would like to compute the correlation functions 〈O(x1)O(x2) . . .O(xn)〉 for xi ∈ Sd. In

addition, we hope that the boundary CFT is so well-behaved that we can have a well defined
generating functional according to

ZCFT [φ] =
∫
DO e

−SCFT+
∫
∂Bd+1

φO
, (6.38)

where the path integration contour is chosen to project out the vacuum at the boundaries and
SCFT is the Euclidean action of the CFT in question. For the bulk theory, we have the partition
function

ZB[φ] =
∫
gB=h

Dg
∫

Φ=φ
DΦ e−SB , (6.39)

where the boundary field configurations enter as boundary conditions on the path integral. By the
boundary equality ”gB = h” we mean that we integrate over the set of metrics in the bulk gB that
induce the conformal structure h at the boundary. We take the Euclidean bulk action SB to be
the action for supergravity or string theory in the interior of (Euclidean) AdS.

The precise ansatz for the relationship between a boundary field theory on the boundary and a
field theory in the bulk is then

ZB = ZCFT . (6.40)
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The bulk partition function ZB is in general not fully known, and is often handled via a classical
approximation wherein we assume the path integral is dominated by the classical solution, letting

ZB[φ]→ Z̃B[φ] = e−SB [Φ] (6.41)

where the Euclidean bulk action is integrated over the field configurations that solve the classical
equations of motion with the desired boundary conditions. In cases where the classical bulk action
is not unique, we should sum over all classical solutions, since none of the classical solutions are
suppressed by Planck’s constant as a quantum effect. In general the bulk theory is a theory
of quantum gravity, and the condition for small quantum corrections is

√
α′

rc
� 1 with rc the

characteristic radius of AdS and
√
α′ the string length. This was covered in section 5.1.3 in the

discussion around equation (5.84) when performing the α′-expansion around a classical solution
of stringy gravity. In the case where we imagine a non stringy bulk theory, there is no stringent
notion of what ”small” quantum corrections mean.

Checking the Proposed Duality for Two-point Functions

Let us now carry out some sample calculations. The idea is to compute the partition functions for
the interior and boundary theories and find that they match. We shall begin with an AdS theory
in classical approximation containing a massless scalar with action

S[Φ] = 1
2

∫
Bd+1

dd+1y
√
g|dΦ|2 . (6.42)

We denote by S[φ] the on shell action obtained by inserting the solution Φ with boundary value φ
as the argument of the action.

We assume that the boundary value φ sources some state O in the boundary CFT. We would
like to compute a two-point correlation by evaluating

〈O(x)O(x′)〉 = 1
Z[0]

δ

δφ(X1)
δ

δφ(X2)ZB[φ]
∣∣∣∣
φ=0

, (6.43)

and show that it is the expected value that we’d obtain from ZCFT [φ].
To solve the Laplace equation in the bulk for some boundary field φ we should first look for

a Green’s function solution K that defines a delta function at some point P on the boundary. A
convenient way to do this is to pick the upper-half plane representation of Euclidean AdS with
metric 6.28

ds2 = 1
x2

0

(
d∑
i=0

(dxi)2
)
, (6.44)

taking the point P to be the point at x0 = ∞. The boundary condition (δ at x0 = ∞) as well
as the metric is translation invariant in the xi, so the solution K will posses this symmetry and
depend only on x0. We can then write down the Laplace equation

d
dx0

x−d+1
0

d
dx0

K(x0) = 0 . (6.45)

We want a solution that vanishes at x0 = 0 and divergent at x0 = ∞. The solution that has this
property is

K = cxd0 , (6.46)
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where c is some constant. This solution diverges at infinity and is zero on the x0 = 0 boundary. To
show that this really defines a delta function, let us make an SO(1,d+ 1) transformation to make
P a finite point. We let

xi →
xi

x2
0 +

∑d
j=1 x

2
j

, i ∈ [0, d] , (6.47)

mapping P to the origin, and transforming K to

K(x) = c
xd0(

x2
0 +

∑d
j=1 x

2
j

)d . (6.48)

The boundary is still defined by x0 = 0 and x0 = ∞, so we want the delta function to be a delta
function in the xj coordinates. By dimensional analysis,

∫
dx1 . . . dxjK(x) is independent of x0.

Also, as x0 → 0 K(x) vanishes unless all of the xj = 0. In addition K is positive. Therefore, as
x0 → 0, K becomes a delta function at xj = 0 which, if c is chosen correctly, has unit coefficient.

Defining x = (x1, x2 . . . xd) we can now write down a solution Φ with an arbitrary boundary
function φ as a convolution of the Green’s function solution with the boundary function in the
usual way

Φ(x0,x) = c

∫
dx′K(x0,x− x′)φ(x′) = c

∫
dx′ xd0(

x2
0 + |x− x′|2

)dφ(x′) . (6.49)

As x0 → 0 it is straightforward to compute the partial derivative

∂Φ
∂x0
∼ dcxd−1

0

∫
dx′ φ(x′)
|x− x′|2d +O(xd+1

0 ) . (6.50)

We now have a classical solution of the equations of motion for any boundary field. We can express
the action as an integral over this solution, letting us write S[Φ] as a boundary integral:

1
2

∫
dd+1x

√
g|dΦ|2 = 1

2

∫
ddx
√
hΦ(n̂ · ∇)Φ− 1

2

∫
Bd+1

dd+1x
√
gΦ∇2Φ (6.51)

where h is the induced metric on the boundary, the last term is zero when we impose the equations
of motion and the boundary integral is performed over the boundary x0 = 0 with normal n̂. In
principle, we explicitly have to take the limit x0 → 0 to get the final result. On the boundary one
has
√
h = x−d0 , (n̂ · ∇) = x0

∂
∂x0

. Then, using Φ(0,x) = φ(x) and inserting equation (6.50) we can
write the on-shell action

S[φ] = cd

2

∫
dxdx′φ(x)φ(x′)

|x− x′|2d , (6.52)

and thus the on-shell partition function is,

ZB[φ] = e
− cd2

∫
dxdx′ φ(x)φ(x′)

|x−x′|2d . (6.53)

The two-point correlator is simple, since only terms with no remaining factors of φ survive we find

〈O(x)O(x′)〉 = cd

|x− x′|2d , (6.54)

which is indeed the expected behaviour of the correlation function between two conformal primary
fields of conformal dimension d according to section 3.4.3. We have explicitly verified that the
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AdS/CFT correspondence correctly relates two-point correlators for massless scalars Φ in the d+ 1
dimensional bulk and conformal primary fields O of scaling dimension d on the boundary.

Despite this success there is a problem glaring at us; by definition our partition function can
not produce a nonzero three-point correlator. Nontrivial three-point functions exist as long as
nontrivial two-point functions do in a CFT, so this tells us that to recover the boundary CFT we
need to write down a more general scalar field theory in AdS that respects the SO(d,2) symmetry.
Before dealing with this, let us first generalize to the case of a massive scalar field.

Massive Scalar Field

Let us now consider the case of a massive scalar field in the interior of AdSd+1 and what sort of
conformal fields it corresponds to on the boundary. We will find that the massive scalar field with
mass m2 in the bulk corresponds to a conformal primary operator O in the boundary with mass
scaling dimension ∆ = 1

2(d+
√
d2 +m2).

We begin by considering the classical bulk action

S[Φ] = 1
2

∫
dd+1y

√
g
(
|dΦ|2 +m2Φ2

)
. (6.55)

Representing Euclidean AdS as a ball according to equation (6.27) we obtain the equations of
motion (

− 1
(sinh y)d

d
dy (sinh y)d d

dy + L2

sinh2 y
+m2

)
Φ = 0 , (6.56)

similarly to the massless case (equation (6.34)). For large y the L2 terms remains irrelevant as it
is suppressed by a factor e−2y. For large y, sinh(y) ∼ ey/2 and the equation motion reduces to(

e−dy
d
dy e

dy d
dy −m

2
)

Φ = 0 . (6.57)

The two linearly independent solutions to the differential equation for large y are eλy where λ is a
solution to the characteristic equation

λ(λ+ d) = m2 . (6.58)

To prevent the problem of physical tachyons and vacuum instability, we consider only m2 such that
the equation has real solutions1. We denote by λ+, λ− the larger and smaller solutions respectively.
Note that this restriction on m2 imposes λ+ ≥ −1

2 and λ− ≤ −d
2 . By uniqueness2, there is only one

linear combination of the two solutions that extends smoothly over the interior of AdS. At infinity,
this solution is dominated by eλ+y. In contrast to the massless case this solution does not have a
constant term at infinity, so we cannot solve this via the spherical harmonics as we did back then.

1This is the analogue of requiringm2 > 0 in flat space. The main idea is that in AdS the scalar field obtains a kinetic
energy contribution from the boundary so that ”true” AdS masslessness does not occur until m2 = −d2/4. In section
two of [50] a loophole to this requirement is found, extending analysis of scalars in AdS to −d2/4− 1 < m2 < −d2/4.
The main difference in this regime is that there are two, instead of one solution in the interior that satisfies the
boundary condition, corresponding to picking either ∆+ or ∆− as the exponent for the boundary behaviour. This is
in principle because we cannot guarantee that one solution dominates over the other when the solutions oscillate.

2Uniqueness for bulk solutions of the massive scalar field in AdS was shown in [51] by Breitenlohner and Freedman.
Uniqueness is obtained by explicitly solving the differential equation with hypergeometric functions in the cylinder
(equation (6.18)) representation of AdS and finding that there is a unique solution that is regular at the origin.
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The closest we can get to such a solution is to pick an arbitrary positive function f with a
simple zero on the boundary. An example function would be f = e−y. We can then hope that
there is a solution to the equations of motion that looks like

Φ ∼ f−λ+φm (6.59)

with an arbitrary boundary function φm (that only depends on the angular coordinates).
It is important to understand what kind of object the field φm is. How φm is defined as a

function depends on the choice of the arbitrary function f with a simple zero on the boundary,
this is the exact same situation as in the case when we wanted to extend the metric on Bd+1 to
the conformal boundary. Transforming f → ewf changes the metric according to ds̃2 → e2wds̃2.
If Φ is to behave as an honest function on the boundary, it must be independent of the choice of
f , and we see that under f−λ+ → e−λ+wf−λ+ the boundary field must transform as φm → eλ+w.
The conclusion we draw is that this boundary field φm must be a conformal primary field of weight
−λ+.

We are now ready for two-point functions. If there is a boundary CFT on ∂AdSd+1 with
a coupling

∫
φmO we have concluded that the operator must have conformal dimension d + λ+

to cancel the dimension of φm and the integration measure. We can verify that the the scalar
field/CFT duality holds by computing the two-point correlator using the classical approximation
of the bulk partition function.

First, let us find the explicit form of a function Φ that obeys the massive wave equation and
behaves as f−λ+φm at infinity. Once again we go to the half-space representation of AdS because
it is comparatively simple to single out a lone point at the boundary. The metric is

ds2 = 1
x2

0

(
d∑
i=0

(dxi)2
)
, (6.60)

where the boundary is given by the hypersurface x0 = 0 as well as a single point x0 =∞.
Repeating the massless argument, we want a solutionK that is zero at all points of the boundary

except for x0 =∞, defining a boundary delta function. Then, since the point at infinity is invariant
under translations we find that K must depend only on x0 and the massive wave equation becomes(

xd+1
0

d
dx0

x−d+1
0

d
dx0
−m2

)
K(x0) = 0 . (6.61)

As before, the ansatz for a solution that vanishes for x0 = 0 and is nonzero at x0 =∞ is K(x0) =
cxN0 . Solving for N we find K = x

d+λ+
0 . We then perform the inversion

xi →
xi

x2
0 + |x|2

, (6.62)

mapping x0 =∞ to the origin, and transforming K to

K(x) = x
d+λ+
0(

x2
0 + |x|2

)d+λ+
. (6.63)

By the same arguments as in the massless case this is proportional to a delta function as x0 → 0.
We can then write down a general solution that gives rise to some boundary field φm at infinity by
convoluting with the Green’s function

Φ(x0,x) = c′
∫

dx′ x
d+λ+
0(

x2
0 + |x− x′|2

)d+λ+
φm(x′) . (6.64)
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As x0 → 0 we see that

∂Φ
∂x0

∣∣∣∣
x0=0

∼ c′(d+ λ+)xd+λ+−1
0

∫
dx′ φm(x′)
|x− x′|2(d+λ+) . (6.65)

The action S[Φ] can then be rewritten as a surface term by using the equations of motion to set
the remaining bulk terms to zero after partial integration, yielding the on-shell action

S[φm] = c′
d+ λ+

2

∫
dxdx′ φm(x)φm(x′)

|x− x′|2(d+λ+) . (6.66)

The two-point function is proportional to |x − x′|−2(d+λ+), as expected for a conformal field O of
weight d+ λ+.

We have thus found a correspondence between massive scalar fields of mass m in AdSd+1 and
conformal primary fields O of conformal weight

∆ = d+ λ+ = 1
2(d+

√
d2 + 4m2) . (6.67)

The lower bound on ∆ is set by m2 = −d2/4, giving us ∆ ≥ d/2. Therefore, in a CFT with a
scalar field dual there are no conformal primary fields with weight less than d/2. We will later find
that the addition of p-form fields in the bulk may give rise to conformal fields of minimum weight
d/2 − p. In addition, [50] extends the analysis of scalar fields down to the unitarity bound of the
boundary CFT at ∆ = d−2

2 .

Two Point-Correlators Are Given By Geodesic Lengths

There is an alternate way of finding the two-point correlators of massive scalar field. The insertion
of conformal operators O on the boundary corresponds to δ-function boundary conditions for the
bulk scalar φ. For the purpose of the two-point function we should therefore be able to replace the
full scalar field action by the relativistic point particle action3. The point particle action in general
relativity is just the length of a geodesic times the energy density of the point particle along the
worldline,

Sm[X] = m

∫ T

0
ds

√
gµν

∂Xµ

∂s

∂Xν

∂s
, (6.68)

where s is the affine parameter. Note that the argument of the square root is nonnegative since we
are in Euclidean signature. In Lorentzian signature, the metric term is

√
−g and this method may

fail for spacelike separated operators O. For any spacetime that can be obtained as an analytic
continuation of a Euclidean spacetime, the geodesic approximation holds. This will be true for
almost every spacetime considered in this text.

In AdS the length of any geodesic that is not exactly lightlike diverges at radial infinity, meaning
we need to put the boundary at a finite radius rb and take a limit rb → ∞ to regulate the
geodesic length. Let us now consider two conformal operators inserted at points (t1, l), (t2, 0) on the
boundary. The corresponding partition function on the gravity side is a path integral over all paths
connecting the boundary points (t1, l, rb), (t2, 0, rb). By going to the semiclassical approximation,
it is a sum over all paths that solve the geodesic equation while ending on the boundary points.
Then we have

〈O(t1, l)O(t2,0)〉 =
∫
DXe−mL[X] ≈ e−mL[x] , (6.69)

3Technically, we should prove that the point particle action and relativistic scalar fields both invert the Klein-
Gordon differential operator with a δ boundary condition.
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where L[x] denotes the length of the bulk geodesic x that solves the classical equations of motion.
The semiclassical approximation corresponds to large m since all L[X] that are not minimal are
strongly damped in the path integral. Restoring the AdS radius L, and using that ∆/L ≈ m for
large m, we can write this as

〈O(t1, l)O(t2,0)〉 ∼ e−
∆L[x]
L . (6.70)

This result provided an important clue towards the Ryu-Takayanagi conjecture to be covered in sec-
tion 7.2, relating the entanglement entropy between subregions on the boundary to d−1-dimensional
”areas” in the bulk. In chapter 4.3.3 we found that the entanglement entropy between complemen-
tary regions in a CFT2 theory was given by the expectation value of so-called twist operators Tn.
This expression, using our newfound geodesic approximation is given by

cn〈Tn(−a)T−n(a)〉n = e−
2n∆L[x]

L , (6.71)

where the factor 2 comes from the fact that the twist operators have both holomorphic and anti-
holomorphic weights ∆n = c

12(1− 1/n2). Then, the von Neumann entropy is

SA = − ∂

∂n
e−

2n∆L[x;−a,a]
L

∣∣∣∣∣
n=1

= 2∂(n∆n)
∂n

L[x;−a, a]
R

e−
2n∆L[x;−a,a]

L

∣∣∣∣∣
n=1

=
[
c

12(1− n−2) + c
6n
−1
] ∣∣∣∣∣
n=1

= c

6
L[x;−a, a]

R
,

(6.72)

where we have added the boundary conditions as extra arguments to the geodesic length L. To
completely translate this result to gravitational language we need to cite a future result from
section 6.2.3, namely that gravity in asymptotically AdS3 space is dual to a CFT with central
charge c = 3R/2G(3)

N where G(3)
N is the 3d gravitational constant. Then the entropy becomes

SA = L[x;−a,a]
4G(3)

N

. (6.73)

Since in two spatial dimensions a length is the analog of an area, equation (6.73) is similar to what
we would expect from the entropy of a black hole in AdS3 with circumference L. We will investigate
this connection more deeply in chapter 7. We have yet to introduce the tools necessary to compute
the length of the geodesic L and check that the obtained result actually matches the CFT result.
This will also be checked in chapter 7.

Interacting Scalar Fields and n-Point Functions

We have now formulated and confirmed scalar field/CFT duality for two-point correlation functions.
To find higher order correlation functions we need to introduce interaction terms. The ”classical
approximation” is then obtained by working only at tree level in a so-called Witten diagram, a
Feynman diagram with the external legs anchored on the boundary of AdS. We will now demonstrate
how this works and present the rules for computing n-point correlation functions, following the
presentation of Freedman and van Proeyen in [48].
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The starting point is now the more general action

S[Φ] =
∫

dd+1y
√
g

(1
2 |dΦ|2 + 1

2m
2Φ2 + 1

3bΦ
3 + 1

4cΦ
4 . . .

)
, (6.74)

where . . . denotes terms of increasing order in Φ. The equations of motion are then

(−∇M∇M +m2)Φ + bΦ2 + cΦ3 + . . . = 0 . (6.75)

We are once again interested in constructing the solution for an arbitrary boundary field by going
the to half-plane coordinates and finding a K that gives a delta on the boundary. Since K depends
only on x0 we we have the equations of motion(

xd+1
0

d
dx0

x−d+1
0

d
dx0
−m2

)
K(x0) + bK2(x0) + cK3(x0) + . . . = 0 . (6.76)

The ansatz K = xd+λ+ is no longer a valid solution to the differential equation. To deal with this
we will consider only a perturbative solution around the solution to the non-interacting theory. We
let K∆ = xd+λ+ be the zeroth order Green’s function which we call the bulk to boundary propagator.
We then write the scalar field as

Φ1(x) = c′
∫

ddx′K∆(x0,x− x′)φ(x′)

Φ = Φ1 + b

∫
dd+1x′

√
gG(x− x′)Φ2

1(x′) + . . . .
(6.77)

The perturbative solution is a perturbation around a solution that is hilariously divergent as z0 → 0.
This is because the zeroth order term defines a δ distribution on the boundary. The square of
the zeroth-order term is then the square of a distribution on the boundary, which we absolutely
cannot expect to converge when integrated over the boundary4. To deal with this we will have
to renormalize the theory by introducing a cutoff in the bulk; we let the boundary be defined by
z0 = ε and renormalize in terms of this cutoff parameter, this is called holographic renormalization
theory, and we will touch upon this later.

At this point, the interaction terms require that we specify the bulk to bulk propagators G(x−x′)
that satisfy √

g(−∇′M∇M
′ +m2)G(x− x′) = δ(x− x′) (6.78)

where ∇′M denotes the general covariant derivative with respect to x′. Defining ∆ = d+ λ+ it can
be shown that this is solved in terms of the hypergeometric function F (a,b; c; z)

G∆(u) = C̃∆(2u−1)∆F

(
∆,∆− d+ 1

2; 2∆− d+ 1;−2u−1
)

C̃∆ =
Γ(∆)Γ(∆− 1

2d+ 1
2)

(4π)(d+1)/2Γ(2∆− d+ 1)Ld−1 u = (x− x′)2

2x0x′0

(6.79)

where the hypergeometric function F (a,b; c; d) is given by

F (a,b; c; z) =
∑
n

(a)n(bn)
(c)n

zn

n!

(q)n =
{

1 , n = 0
q(q + 1) . . . (q + n− 1) , n > 0 .

(6.80)
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Figure 6.2: The perturbative expansion in the scalar field Φ1 that solves the massive wave equation
in AdS can be interpreted in terms of Witten diagrams. The interior of the disk represents AdS
space, the boundary represents the space where the boundary CFT lives.

Inserting the perturbative solution Φ(x) into the classical action in equation (6.74) we find
an expansion of the on shell action S[φ] in powers of φ. The terms in this expansion can be
interpreted as Witten diagrams, like those in figure 6.2. Analogously to the Feynman rules for
Feynman diagrams, we then have computation rules as follows:

• The external points are fixed.

• For each vertex in the bulk with coordinate x, integrate over all possible interaction points,∫
dd+1x

√
g(x) .

• For each n−point vertex, add a coupling factor (such as b for the φ3 vertex) corresponding to
the relevant interaction terms of the Lagrangian. In addition to this, multiply by the same
combinatoric weights as in Feynman diagrams.

• Each bulk to boundary line carries a factor K∆, and each bulk to bulk line carries a factor of
G∆.

• Sum over all diagrams with the same external states.

• In the classical approximation, only include diagrams with no internal loops.

As is the case for the usual QFT, when we generalize this formalism to interacting gauge theories
some diagrams may be anomalous, meaning the diagrams do not have the same symmetries as the
original action. In this case anomaly cancellation may put restrictions on the field content of the
boundary CFT.

As a tractable example, let us compute the three-point function. This diagram contains no
bulk-bulk propagators, and going to the usual half-plane representation of AdS the diagram is
given by

A(x,y,z) =
∫ dd+1w

wd+1
0

(
w0

|w − x|2
)∆ ( w0

|w − y|2
)∆ ( w0

|w − z|2
)∆

. (6.81)

4This is fundamentally the same thing that causes the perturbative expansion in ordinary QFT to diverge.
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where |w− x|2 = w2
0 + |~w− ~x|2 since x,y,z all live on the boundary where the zeroth component is

zero.
We can check that this amplitude transforms in the correct way under an inversion, sending

all coordinates qM = q′M
q′2

. To figure out how A(x,y,z) transforms, we showed in section 3.4.2 using
local Lorentz transforms and an ”inversion matrix”, that under inversion

(x− y)2 = (x′ − y′)2

|x′|2|y′|2
. (6.82)

The transformation of A is then fairly easy to deduce. The integration measure carries d + 1
factors of w in denominator and numerator so it is clearly invariant. The factor 1/|w|2 from the
denominators in the remaining terms cancels to the transformation of w0 and only the 1/|x|2, 1/|y|2,
1/|z|2 factors survive in the denominators. Then, since we do not integrate over the x, y, z we can
move them outside the integral and find

A(x,y,z) = |x′|2∆|y′|2∆|z′|2∆A(x′,y′,z′) . (6.83)

Note that it is very straightforward to generalize this to a coupling bφ1φ2φ3 between three distinct
scalar fields of different masses that are dual to conformal field operators of weights ∆1,∆2,∆3
since the derivation used no ”cross-talk” between the propagators. This means that we can easily
describe a dual CFT containing conformal primary fields of varying conformal weight ∆ by consid-
ering a theory in the bulk wherein scalar fields of different mass couple to each other. With this
generalization we get the scale factor |x′|2∆1 |y′|2∆2 |z′|2∆3 .

To see that this is the transformation property of a three-point function for conformal primary
scalars, remember from section 3.4.3, equation (3.178) that

〈O1O2O3〉 = CO1O2O3

(x− y)∆1+∆2−∆3(y − z)∆2+∆3−∆1(z − x)∆3+∆1−∆2
, (6.84)

with CO1O2O3 a constant that is constrained by Ward identities. It is straightforward to use the
inversion matrix argument here as well, the |x| factor will have exponent

∆1 + ∆2 −∆3 + ∆3 + ∆1 −∆2 = 2∆2 , (6.85)

and similarly for |y| and |z|. Setting ∆1 = ∆2 = ∆3 = ∆ we see that this reduces to the exact same
transformation rule as in equation (6.83). Using the local Lorentz transform formalism of section
3.4.3 it is also straightforward to also show that A(x,y,z) is completely invariant under global SO(d)
transformations as well as translations in the d-dimensional boundary space. This guarantees that
after performing the integral in A(x,y,z) we will obtain an expression that is proportional to the
unique spacetime form of the three-scalar correlator in equation (6.84).

It would be interesting to perform the integral explicitly, to directly determine the constant
CO1O2O3 in the dual CFT. The integral is in general difficult to handle, but we can use translation
symmetry together with inversion on the boundary to simplify. First, we move the point ~z → 0, so
that A(x,y,z)→ A(x− z,y− z,0) ≡ A(u, v, 0). This simplifies the third term in A so that it is just(

w0
|w − z|2

)∆3

→
(
w0
|w|2

)∆3

= w
′∆3
0 , (6.86)

where we have taken the liberty of letting the scalar fields have different mass since it adds no
complication. Performing the inversion of all coordinates, letting q = q′

q2 , we find that

A(u′,v′,0) = |u′|2∆1 |v′|2∆2

∫ dd+1w′

w
′d+1
0

(
w′0

|w′ − x′|2
)∆1 ( w′0

|w′ − y′|2
)∆2

w
′∆3
0 . (6.87)
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This integral can be computed using Feynman parameter methods to find that

A(u′,v′,0) = |u′|2∆1 |v′|2∆2 a(∆1∆2∆3)
|u′ − v′|∆1+∆2−∆3

, (6.88)

where

a(∆1,∆2,∆3) = πd/2

2
Γ
(

1
2(∆1 + ∆2 + ∆3 − d)

)
Γ(∆1)Γ(∆2)Γ(∆3)

× Γ
[

1
2(∆1 + ∆2 −∆3)

]
Γ
[

1
2(∆2 + ∆3 −∆1)

]
Γ
[

1
2(∆3 + ∆1 −∆2)

]
.

By reverting to the old coordinates we can see that equation (6.88) is indeed the CFT three-point
function with a(∆1,∆2,∆3) = CO1O2O3 .

A(u,v,0) = 1
|u|2∆1 |v|2∆2

|u|∆1+∆2−∆3 |v|∆1+∆2−∆3 a(∆1,∆2,∆3)
|u− v|∆1+∆2−∆3

= a(∆1,∆2,∆3)
|u− v|∆1+∆2−∆3 |v|∆2−∆1+∆3 |u|∆1−∆2+∆3

〈u = x− z, v = y − z〉 = a(∆1,∆2,∆3)
|x− z|∆1−∆2+∆3 |x− y|∆1+∆2−∆3 |y − z|∆2−∆1+∆3

.

(6.89)

Thus, we have found more evidence for the scalar field/CFT correspondence by computing the bulk
three-point functions and comparing it to the CFT expectation. In principle, we could now go on
to try and show that all n-point functions match the CFT expectation, but that is beyond the
scope of this text.

For higher n correlators, we need to introduce the cutoff z0 = ε to regularize the correlation
functions. It is then nontrivial to show that the divergent parts of the Witten diagrams can
be cancelled by local counterterms, resulting in holographic renormalization. This is sketched in
more detail in a following section on gravity. Also, without introducing gravity, we will run into
problems of consistency because it turns out that the boundary stress-energy tensor is related to
perturbations of the bulk metric. All CFTs have a stress tensor so a duality that holds to all orders
for all operators is likely impossible to realize without gravity.

6.2.2 Yang-Mills/CFT Correspondence

In a theory containing Yang-Mills fields A with some field strength two-form F = DA, with
D = d + [A∧ ·] the gauge covariant derivative, the free massless equation of motion is usually given
by the minimal Yang-Mills equation

D ∗ F = 0 , (6.90)

or other, more general equations of motion obtained by adding higher order gauge invariant terms
to the Lagrangian. A standard example is the addition of Chern-Simons terms to the action,
proportional to a power of Tr[(F∧)n]. For gauge fields we hope that there is an analog of the
result for scalar fields stating that there is a unique extension (up to gauge transformations) to the
bulk for each boundary field A0. We will find that this can only hold for A0 sufficiently close to
zero. The equations of motion for nonabelian gauge theories reduce to Maxwell to first order in
A0, which we can use to show that there is a unique interior extension of A0 to first order for all
gauge fields by explicitly solving the Maxwell equations in the interior of AdS. This explicit proof
will be carried out in the next section.
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To higher order in A, following Witten [47] we can find a topological reason for why uniqueness
should fail for general A0. Let us carry out this proof while assuming d even, we will then comment
on the odd case. Let us consider a gauge theory on S2 × Sd with nonzero d

2 + 1:th Chern class,
meaning ∫

S2×Sd
Tr
[
(F∧)

d
2 +1

]
=
∫
S2×Sd

Tr [F ∧ F ∧ . . . ∧ F ] 6= 0 . (6.91)

In general we cannot expect the n:th Chern class to be zero for a nontrivial boundary field A0.
If every gauge field on Sd could be extended uniquely up to gauge transformations to the interior
Bd+1, then by making the extension for each point on S2 one could uniquely extend the theory on
S2 × Sd to S2 ×Bd+1. Using the graded Leibniz rule for the exterior derivative d and the fact that
dA is a two-form we know that

dTr[Fn] = nTr[Fn−1 ∧ dF ] = nTr[Fn−1 ∧ (d2A+ dA ∧A−A ∧ dA)] = nTr[Fn−1 ∧ 0] = 0 ,

and we have by partial integration that

0 =
∫
S2×Bd+1

dTr [F ∧ . . . ∧ F ] =
∫
S2×Sd

Tr [F ∧ . . . ∧ F ] , (6.92)

contradicting the supposition that we have a gauge theory with nonvanishing d
2 + 1:th Chern class.

To extend this argument to odd dimensions, replace S2 → S1 and consider a nonvanishing d+1
2 : th

Chern class.
The point that lead to this contradiction was the assertion that every choice of boundary field

uniquely extends to the interior so we have only proven that some care has to be taken. The fact
that we can find a unique solution explicitly to first order implies that the problem arises when
A0 is too large, although we have found no natural reference scale with respect to which ”large”
should be defined.

Uniqueness and Boundary-Boundary Correlation for U (1) Field

Suppose we have a free U(1) gauge theory. We want to find a Green’s function that gives us a
delta on the boundary, which as usual is most easily carried out in the half-plane representation of
Euclidean AdSd+1. Thanks to translation invariance in the boundary coordinates we may consider
as ansatz the one-form A = f(x0)dxi for some fixed i > 0. Then, F = dA = f ′(x0)dx0∧dxi. Then,
we can compute ∗F :

∗ F = 1
xd−3

0
f ′(x0)(−1)idx1 ∧ dx2 . . . d̂xi . . . ∧ dxd (6.93)

where by d̂xi we mean that the differential dxi should be excluded from the d − 1-fold wedge
product. The factor x−(d−3)

0 comes from the factor of √g = x
−(d−1)
0 in the Hodge dual as well as

the two factors of the metric coming from the contraction of the Levi-Civita symbol with the two
lowered indices of dA. The equation of motion d ∗ F = 0 becomes

∂

∂x0

(
1

xd−3
0

f ′(x0)
)

= 0 , (6.94)

which is solved by f(x0) ∝ xd−2
0 (which also happens to diverge at x0 =∞). Picking the constant

for later convenience we can then use as our ansatz

A = d− 1
d− 2x

d−2
0 dxi . (6.95)
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We then perform an inversion to put put our divergence at the origin, setting

A = d− 1
d− 2

(
x0

(x2
0 + |x|2)d

)d−2
d
(

xi

x2
0 + |x|2

)
. (6.96)

We can then use a gauge transformation Aµ → A + dα(x) where α is any 0-form to rewrite this.
With the goal of cancelling the peculiar differential we pick

α(x) = −1
d− 2

xd−2
0 xi

(x2
0 + |x|2)d−1 . (6.97)

We then note that by some clever rewriting and using the product rule, we can cancel the original
A with

xd−2
0 x

−(d−2)
i d

(
−1
d− 2

xd−1
i

(x2
0 + |x|2)d−1

)
= −x

d−2
0 x

−(d−2)
i

d− 2 (d− 1) xd−2
i

(x2
0 + |x|2)d−2 d

(
xi

x2
0 + |x|2

)

= −d− 1
d− 2

xd−2
0

(x2
0 + |x|2)d−2 d

(
xi

x2
0 + |x|2

)
.

(6.98)

After this, we are left only with the terms where the exterior derivative acts on x0 and the decom-
position d

(
x
−(d−2)
i

)
xd−1
i in the numerator, yielding

A = xd−2
0

(x2
0 + |x|2)d−1 dxi − xd−3

0 xi
(x2

0 + |x|2)d−1 dx0 . (6.99)

This solution is a Green’s function for the boundary field at x0 = 0, so for a general boundary field
A0 =

∑
aidxi where i ∈ [1,d] we write

A(x0,x) =
∫

dx′ xd−2
0 ai(x′)

(x2
0 + |x− x′|2)d−1 dxi − xd−3

0 dx0
∫

dx′ (xi − xi′)ai(x′)
(x2

0 + |x− x′|2)d−1 . (6.100)

Then, F = dA is expressed by

F =(d− 1)xd−2
0 dx0 ∧

∫
dx′ ai(x′)dxi

(x2
0 + |x− x′|2)d−1

− 2(d− 1)xd−1
0 dx0 ∧

∫
dx′ ai(x′)dxi

(x2
0 + |x− x′|2)d

− 2(d− 1)xd−3
0 dx0 ∧

∫
dx′ (x

i − xi′)ai(x′)(xk − x′k)dxk

(x2
0 + |x− x′|2)d

+ . . .

(6.101)

where . . . denotes terms that do not contain dx0. To correctly add the terms it is important to
keep track of in which order the differentials appear after acting with the exterior derivative. We
now want to write down the on-shell action. The Maxwell action in the absence of charges is

S = 1
2

∫
Bd+1

F ∧ ∗F = 1
2

∫
Sd
A ∧ ∗F , (6.102)

where in principle we should work with a limit prescription, taking the limit as x0 → 0. Inserting
the above expression for F and using the usual trick of setting A = A0 on the boundary it is
possible to work out that the on-shell action is

S[A0] =
∫

dxdx′ ai(x)aj(x)
(

δij

|x− y|2d−2 −
2(x− x′)i(x− x′)j

|x− x′|2d

)
. (6.103)
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Which is exactly the result we stated for a CFT conserved vector current in equation (3.181),
realized by inserting the definition of the inversion matrix. It is straightforward to see that the first
term should have a δij since after acting with the Hodge on (dx0dxi) the only basis vector that
does not act as in dxk ∧ F ∗ = 0 while also being a boundary coordinate is precisely dxi.

With this we have seen that in addition to there being a unique extension to the interior in the
case of an Abelian gauge field A, we also reproduce a two-point correlation function that matches
the CFT expectation for a (conserved) boundary vector field.

p-Form Gauge Fields

Physically interesting theories in AdS such as supergravity also contain higher form fields, such as
the Kalb-Ramond two-form Bµνdxµ∧dxν and the A-fields introduced in section 5.2. They transform
not only as conformal scalars, as they may have nonzero eigenvalues under transformations other
than dilatations. In general, p-form fields Ap couple to a (d − p)-form conformal field O on the
boundary according to ∫

∂AdSd+1
A ∧ O . (6.104)

We can see a general p-form field as as an object that behaves as a scalar in addition to containing
p differentials. Each of the differentials dxµ carry weight −1 under scaling. In the massless case,
this just means that we require O to be of weight d − p. Note that O is not expected to be a
conformal primary since the boundary field Ap0 is expected to transform under boundary Lorentz
transformations. For p = 1 this means that O transforms like a boundary vector, with conformal
weight d− 1, which is exactly the result we explicitly obtained in equation (6.103).

If instead we consider the case of massive p-form field that behaves as f−λ+Ap0 near the bound-
ary, we expect that O should have weight ∆ = d− p+ λ+, where λ+ is the larger eigenvalue that
solves equation (6.58).

6.2.3 Gravity/CFT Correspondence

The goal of this discussion is to understand a theory that contains both quantum fields and gravity
in the bulk of the AdS spacetime. Let us therefore consider under what spacetime deformations
the argument of the previous sections hold. The proof for the uniqueness of solutions Φ given a
boundary field φ used the following:

• uniqueness of the solution holds as long as the manifold has a boundary on which to define
boundary conditions,

• the existence of nontrivial solutions relied on spherical symmetry for large r.

Based on this, any metric that looks like AdSd+1 for large r should have unique, nontrivial solutions
to the Laplace equation for the scalar field Φ given some boundary field φ.

The dynamics of gravity in this case are described by Einstein’s equations with a negative
cosmological constant

Rµν −
R

2 gµν −
d(d+ 1)

2L2 gµν = 0 , (6.105)

where L is the characteristic radius of curvature for the AdSd+1 space and −d(d−1)
2L2 = Λ. Any

metric Xd+1 on Bd+1 with a double pole on the boundary will induce a conformal structure on
Sd. Furthermore due to a theorem of Graham and Lee, any conformal structure induced on the
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boundary that is sufficiently close to the usual one5 arises by the procedure in equation (6.24) from
a unique6 metric that obeys the Einstein equations and has a double pole at the boundary.

Therefore, to include gravity we simply allow the boundary CFT to exist on a spacetime that
is not conformally flat. We know that a conformal field theory on a nonflat background will have a
Weyl anomaly, and this will indeed appear as a result of the necessity of holographic renormalization.

Holographic Renormalization of the Gravitational On-Shell Action

Let us now study the relationship between the on-shell partition function for gravity in the interior
of AdS and the boundary CFT in some detail. We will follow the discussion of Henningson and
Skendris [49]. This derivation takes a fair bit of input from difficult mathematical results, and a
fully explicit derivation is outside the scope of this text.

Since AdS has a boundary we need to include a boundary term if we want to properly write
down the Einstein Hilbert action. This boundary term contains the so-called second fundamental
form or extrinsic curvature, K = ∇µnµ, where nµ is a unit normal to the boundary. The action
then reads

S = 1
16πG

[∫
Bd+1

√
g

(
−1

2R+ Λ
)
− 2

∫
Sd
√
γ2K

]
, (6.106)

where γ is the induced metric on the boundary. Since we are including gravity, the metric on the
ball may be a nonstatic solution to the Einstein equation inducing a boundary metric that is not
conformally flat. By multiplying the field equations by gµν we find that

R = 2(d+ 1) Λ
d− 1 . (6.107)

This result leads us to conclude that the on-shell action for gravity is badly divergent. The integral
over the ball Bd+1 is proportional to the volume of AdS, which is infinite. There is also the question
of how to interpret the boundary term, since we know that AdS does not actually induce a metric
on the boundary.

To try and get further, we regularize the action by picking a function f on Bd+1 with a simple
zero on the boundary and multiplying the metric. This breaks conformal invariance, but it also
introduces a proper metric on the boundary via equation (6.24). The divergence of the volume
integral is regulated by integrating only over the region B(ε) defined by f > ε. The boundary term
may then be well defined since we just integrate over the boundary of the finite region B(ε) finding
no infinities. The expectation is that divergences will appear as we take the limit ε→ 0.

To pick a good defining function f , the expectation is that we need to know very well how the
metric behaves near the boundary of AdS. For any asymptotically (Euclidean) AdS spacetime, we
can pick near boundary Fefferman-Graham coordinates as in equation (6.31) with z > 0 and metric

ds2 = L2

z2

[
dz2 + hij(x,z)dxidxj

]
(6.108)

where hij is the transverse metric, fulfilling limz→0 hij = γij . To make the divergences on the
boundary local, Fefferman and Graham found that it was convenient to pick the coordinate system

5The ”usual” conformal structure is a boundary metric that is related to the flat metric by a conformal transfor-
mation. ”Sufficiently close” then means that the induced boundary metric is conformally equivalent to a sufficiently
mild deformation of flat space. Quantifying exactly what ”sufficiently small” means is beyond the scope of this thesis
and we refer to [52]. A similar theorem for scalar fields and p-forms when the boundary is almost conformally flat is
called the Fefferman-Graham theorem.

6Here, unique means unique up to diffeomorphisms.
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with ρ = z2 on Bd+1, with the metric

ds2 = L2

4 ρ−2dρ2 + ρ−1hij(ρ, x)dxidxj , (6.109)

These coordinates are special in the sense that they give a natural definition of the defining function
f that makes the divergent part of the action depend locally on the boundary metric γij . When we
have a local γij dependence the addition of counterterms becomes well-defined and renormalization
can succeed.

In the following, let us denote h′ = ∂h
∂ρ . We furthermore treat the metric as a matrix h instead

of a tensor hij to save space. With these conventions and the choice of coordinates in equation
(6.109) the Einstein field equations become

ρ
(
2h′′ − 2h′h−1h′ + Tr[h−1h′]h′

)
+ L2Ric(h)− (d− 2)h′ − Tr[h−1h′]h = 0

∇iTr[γ−1
(0)h

′]−∇jh′ji = 0

Tr[h−1h′′]− 1
2Tr[h

−1h′h−1h′] = 0

(6.110)

where ∇i is the covariant derivative constructed from h, Ric(h) denotes the Ricci tensor corre-
sponding to the metric h, and the indices in the second equality denote the free matrix indices of
the expression.

The method of Fefferman and Graham was to attempt to solve these equations via a formal
power series in ρ. They showed that by picking the defining function according to f = ρ the
boundary metric γ uniquely defines h(ρ, x) on the interior of AdS order by order in ρ. For each
order in ρ, one applies a derivative with respect to ρ and takes the limit ρ → 0. An interesting
note is that a similar ansatz is necessary for near boundary analysis of gravity with extra fields,
and similar problems exist when certain integer powers of ρ have nonzero coefficients. The detailed
solution of the equations and determination of the coefficients can be found in [53].

For odd d one found that the metric may be written as

h(ρ, x) = γ(0) + ργ(2) + ρ2γ(4) . . . (6.111)

where γ(k)(x) is given by some covariant combination of the boundary metric γ, its Riemann tensor
and covariant derivatives constructed from γ. Here and henceforth, a subscript in parentheses
denotes the number of derivatives with respect to xi. Since [ρ] = (length)2 we need two derivatives
per order of ρ for dimensional reasons in the expansion.

For d even the iterative procedure breaks down at order ρd/2 where a logarithmic divergence
appears. To cancel the divergence a logarithmic term is added and the expansion takes the form

h(ρ,x) = γ0 + ργ(2) . . .+ ρd/2γ(d) + γ̃(d)ρ
d/2 ln ρ+O(ρd/2+1) . (6.112)

Here, the γ(k) are covariant up to and including k = d/2, while beyond that covariance will fail.
All terms except the traceless transverse part of γ(d) are local functions of the leading term γ(0).
The trace of γ̃(d) Tr[γ(0)γ̃(d)] = 0 vanishes identically and γ̃(d) is covariantly conserved, meaning
∇iγ̃(d)ij = 0. We will see that the breakdown at d/2 is not too bad, because all terms beyond order
d/2 in the action are finite.

Next, we introduce the regularization in terms of ε, letting B(ε) be defined by ρ > ε and Sε be
the surface at ρ = ε. In the near boundary coordinates, using that the full Ricci scalar is given by
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equation (6.107) it can be checked that the action takes the form

S[h] = 1
16πG

 dL
∫
B(ε)

dρddx ρ−d/2−1√h+
∫
Sε

ddxρ−d/2

−2d
L

√
h+ 4

L
ρ∂ε
√
h︸ ︷︷ ︸

K


 , (6.113)

where the lower limit for the ρ integration is ρ = ε. Formally, it is possible to perform the radial
integration in the first term. We can then define the Lagrangian by S = (16πG)−1 ∫

Sε
ddxL(ε, x)

and write it as an expansion in ρ. We then have, for odd and even d respectively

Lodd =
√
h(0)

(
ε−d/2a(0) + ε−d/2+1a(2) + . . .+ ε−1/2a(d−1)

)
+ finite terms (6.114)

Leven =
√
h(0)

(
εd/2b(0) + ε−d/2+1b(2) + . . .+ ε−1b(d−2) − log εb(d)

)
+ finite terms , (6.115)

where the coefficients a(k), b(k) involve covariant expressions containing k derivatives on h. Note
that the term ρd/2γ(d) in equation (6.112) that was dynamically undetermined for even d is a finite
constant in ρ and so does not enter into the renormalization procedure. This means that all of the
infinities are local, covariant expressions of γ, there is a finite number of them, and their form is
determined by the classical equations of motion. In principle, it is possible to compute all of the
counterterms, subtract them and obtain a renormalized action SR[h].

Holographic Weyl Anomaly

By inducing an actual metric h on the boundary instead of a conformal equivalence class, we cannot
expect the renormalized theory to respect conformal invariance. Let LR denote the corresponding
renormalized boundary Lagrangian, where the integration over ρ in the bulk part of the action has
been carried out.

We want to know what happens when we act with a infinitesimal conformal transformation
δh(0) → 2σ(x)h(0) on the boundary metric. The variation will take the general form

δσSR = −
∫
Sd

ddx
√
h(0)Aδσ (6.116)

where A is called the anomaly, since it encodes how badly conformal invariance is violated. For
odd d, A vanishes while in the even case

A = 1
16πG(−2b(d)) . (6.117)

To see this, consider the case when σ is a constant parameter, representing a uniform scale trans-
formation of the boundary space. Since a scale transformation of the boundary is induced by a
redefinition of the defining function7 δρ = 2σρ the regularized action must be invariant under the
joint transformation δε = ε2σ , δh(0) = h(0)2σ.

The terms that are proportional to a negative power of ε are separately invariant, so the variation
of the ln ε and the finite terms must cancel. Then, since

√
h0b(d) is invariant and δ log ε = 2σ the

finite part of the Lagrangian must transform as −2σb(d). The finite part of the Lagrangian is all
that is left after renormalization, so we find that the anomaly must take the form of equation
(6.116).

7The coordinate ρ is related to the near horizon coordinate z by ρ = z2. In turn the near boundary coordinates z
are the inversion of the Euclidean AdS radial coordinates. Therefore, ρ has conformal dimension 2. More rigorously,
see [53] section 4 where they implement the boundary conformal transformation as a special diffeomorphism that
preserves the form of the metric equation (6.109).
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An AdS3/CFT2 Example

Let us compute explicitly the Weyl anomaly in the case where the bulk theory is AdS3. Since the
Weyl anomaly on the CFT2 side takes the form given by equation (3.239)8

〈Tαα〉 = − c

24πR , (6.118)

we will be able to read off the central charge of a CFT that is dual to an asymptotically AdS3
spacetime. In AdS3 with the conventions of this section the perturbative expansion for the metric
is

h(ρ,x) = γ0 + ργ(2) + γ̃(2)ρ ln ρ+O(ρ2) , (6.119)

taking γ0 as known and as a solution to the Einstein field equations.
For the Einstein field equations we want the derivatives and inverse of h

h′ = γ(2) + γ̃(2)(1 + ln ρ) ,

h′′ =
γ̃(2)
ρ

,

h−1 = γ−1
(0) +O(ρ) .

(6.120)

The iterative procedure is to evaluate the Einstein equations equation (6.110) in the limit ρ → 0,
then take a ρ derivative of the equations and repeat the process for the next order. This is done
d/2− 1 times, so in the AdS3/CFT2 case, everything is determined by the zeroth order equations
in the limit ρ→ 0. Using that limρ→0 ρ ln(ρ) = 0 we find

ρ2h′′ |ρ=0 = 2γ̃(2) ,

−2ρh′h−1h′|ρ=0 = 0 ,
ρTr[h−1h′]h′|ρ=0 = 0 ,

L2Ric(h)|ρ=0 = L2Ric(γ(0)) ,
(d− 2)h′|d=2,ρ=0 = 0 ,
−Tr[h−1h′]h|ρ=0 = − lim

ρ→0
Tr[γ−1

0 (γ(2) + γ̃(2)(1 + ln ρ))]γ(0) .

(6.121)

In the last line, we see clearly why we must define γ̃(2) to be traceless. Inserting this definition we
have

− Tr[h−1h′]h|ρ=0 = −Tr[γ−1
0 γ(2)]γ(0) . (6.122)

The vanishing of the covariant divergence of γ̃ is similarly meant to exclude the logarithmic diver-
gence for the second row of equation (6.110). Using this the Einstein equations become

2γ̃(2) + L2Ric(γ(0)) = Tr[γ−1
0 γ(2)]γ(0) ,

∇iTr[γ−1
0 γ(2)]−∇jγ

(2)
ji = 0 ,

Tr[γ−1
(0) γ̃(2)] = 0 = 1

2Tr[γ
−1
0 γ(2)γ

−1
0 γ(2)] .

(6.123)

8In the string theory chapter we defined the stress tensor as 4πα′
√
h

δS
δG

, while in gravitational contexts it is conven-
tional to define it by 2√

h

δS
δG

, so with the current conventions the Weyl anomaly picks up an extra factor 1
2π . We

implicitly used the latter definition in writing down equation (6.116).
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Taking the trace of the first equation (by contracting the present matrices by γ−1
(0)) we find

L2R(0) = 2Tr[γ−1
0 γ(2)] , (6.124)

where R(0) is the zeroth order Ricci scalar. In two dimensions the Riemann tensor has only one
independent component and it follows that the Ricci tensor is proportional to the metric. This
means that γ(0) is necessarily Einstein and the Ricci tensor is given by R(0)

2 γ(0), which inserted
together with equation (6.124) into the first line of equation (6.123) tells us that

2γ̃(2) =
(
Tr[γ−1

0 γ(2)]−
L2R(0)

2

)
︸ ︷︷ ︸

=0

γ(0) = 0 , (6.125)

eliminating γ̃(2) from all other equations. The most general solution to the second row of equation
(6.123) that respects equation (6.124) is

γ(2) = 1
2
(
R(0)γ(0) + T

)
, (6.126)

where T is some symmetric tensor (essentially an integration constant) satisfying

∇jTji = 0 , Tr[γ−1
0 T ] = 0 . (6.127)

The tensor T has three independent components and equation (6.127) constitutes three equations,
two of them differential. This means that we need to supply additional boundary conditions to
uniquely determine T. The boundary conditions may break covariance or locality of the tensor T
if picked irresponsibly. To compute the Weyl anomaly we do not need the full metric tensor, so
we can just carry on by evaluating the on-shell action equation (6.113) of the gravitational theory
using our derived solution

h = γ(0) + ργ(2) . (6.128)

To perform the computation, we first Taylor expand:
√
h ≈ √γ(0) + ρ

2
√
γ0Tr[γ−1

(0)g(2)] +O(ρ2) , (6.129)

where we have applied the usual identity for the metric variation. Inserting into the on-shell action
and performing the radial integration we find

16πGS[h] = 2
L

∫
S

d2x

∫ ∞
ε

dρ 1
ρ2

(
√
γ(0) + ρ

2Tr[γ
−1
(0)g(2)]

)
+
∫
Sε

d2x
1
ε

(
−2d
L

(
√
γ(0) + ε

2Tr[γ
−1
(0)g(2)]

)
+ 4
L
ε∂ρ

(
√
γ(0) + ε

2Tr[γ
−1
(0)g(2)]

))
+ finite

=
∫
S

d2x
2
L

1
ε

√
γ(0) −

ln(ε)
2 Tr[γ−1

(0)g(2)]−
4
Lε

√
γ(0) + finite .

(6.130)
From here, we can read off the coefficient b(2) as defined in equation (6.115):

b(2) = 1
L
Tr[γ−1

(0)g(2)] = L

2R(0) . (6.131)

The anomaly is then given by

A = 1
16πG(−2b(d)) = −

LR(0)
16πG . (6.132)
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Comparing to the form of the Weyl anomaly in equation (6.118), given by

〈Tαα〉 = − c

24πR , (6.133)

we see that if
c = 3L

2G , (6.134)

the two values agree. We have thus found an explicit relation between the central charge of the
boundary CFT and the AdS radius L of the bulk spacetime.

CFT Dual of the Metric

Like we have previously, to finalize the relationship between the bulk and boundary theories we
want γij to source an operator in the boundary CFT.

The metric transforms as a conformal operator of weight two as well as spin 2. It should source
a boundary operator through the coupling

∫
ddx√γγijOij . The factor √γγij has conformal weight

zero and spin 2, for the same reason as the Polyakov action is Weyl invariant. Therefore, the
operator O should be a spin 2 object with conformal weight d. These are exactly the properties of
the stress energy tensor.

Thus, we can in a simple manner argue that the boundary stress tensor is related to the boundary
metric in AdS/CFT duality. At this point it is possible to compare with the Holographic Weyl
anomaly and conclude that the exact relation is given by [53]

〈Tij〉 = dLd−1

16πGN
g(d)ij +Xij [g(n)] (6.135)

where Xij [g(n)] is a functional of all g(n) with n < d. Xij vanishes in odd boundary dimensions,
because it encodes the conformal anomaly due to the bulk gravity. This is covered in more detail
in section 3 of [53]. When there are no divergent terms as ρ → 0, equation (6.135) can be put on
the form

〈Tij〉 = dLd−1

16πGN
hij(0,x) . (6.136)

6.2.4 Type IIB Supergravity

We found in the previous section under what conditions it is reasonable for scalar field theories,
Yang-Mills fields and gravity in the bulk to be dual to conformal field theories on the boundary
of AdS. Given that all of the ingredients we analyzed, as well as fermions in AdS all have CFT
duals on the boundary, we can anticipate that any sufficiently nice combination of these fields in
the bulk should have a CFT dual. All of the explicit calculations in the previous sections relied on
the validity of a semiclassical approximation in the bulk.

It was the discovery due to Maldacena [3] that there was in fact a correspondence between a
particular CFT in Md and IIB supergravity in AdSd ⊗ S5, including quantum corrections to the
latter. This means that while string theory is not necessary for the AdS/CFT duality, it is presently
our strongest tool for going beyond a semiclassical bulk approximation. Another important property
of the duality is that string theory is finite to at least to genus 5 in the string perturbation expansion
[54]. Finiteness is also enjoyed by the CFT we are about to discuss.

An equivalence between a QFT that was finite to all orders and quantum gravity was big
news, since at the time there was no renormalizable theory of quantum gravity in terms of the
experimentally successful framework of QFT. Said differently, naively quantum gravity does not
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work in QFT due to non-renormalizablity of the Einstein-Hilbert action, but via AdS/CFT there
suddenly exists a renormalizable (or possibly even finite) holographic description of quantum gravity
in terms of QFT. Another very promising property of the duality is that it relates a weakly coupled
string theory to strongly coupled QFT and vice-versa, so we can use the perturbative regime of
either theory to study the poorly understood nonperturbative behaviour of the other.

Let us now get an overview of how the duality could be anticipated, and how it was tested. We
begin by clarifying the context:

• One of our best candidates for quantum gravity is superstring theory. In the low energy limit,
that is at tree level and to first order in the α′-expansion, superstring theory is described by
type IIA or type IIB supergravity as in section 5.2.1.

• Super Yang-Mills theory with gauge group SU(N) and four generations of fermionic super-
partners (i.e. ”N = 4”) is a QFT that is finite to all orders. Notably N = 4 SYM is also
conformally invariant because it can be shown that the β-functions vanish identically to all
orders in perturbation theory [55].

The first statement of the AdS/CFT duality regarded the equivalence between N = 4 SYM on
the boundary of AdS5 and type IIB superstring theory on AdS5 × S5. Here, both the AdS5 and S5

spaces have the same radius L. The SYM theory is specified by two dimensionless parameters, the
gauge group label N and the Yang-Mills coupling gYM. The string theory side is specified by the
the length ratio L/

√
α′ and the string coupling gs.

Aside from both theories having the same number of parameters, they also share symmetries.
The conformal group in d dimensions is SO(d,2), moreover the N = 4 SYM group has a so-
called R-symmetry group given by SU(4). SU(4) is isomorphic to SO(6) (a so-called exceptional
ismorphism). AdS5 and S5 can both be embedded in higher dimensional flat spaces to see that they
have isometry groups SO(4,2) and SO(6). Since the compactified type IIB supergravity is invariant
under global transformations that preserve the background manifold we see that the bosonic part
of SYM and a relativistic theory on AdS5 × S5 share the same symmetries.

That the two theories share the same supersymmetries is a nontrivial check and requires the
introduction of Green-Schwarz formalism, the manifestly spacetime supersymmetric formulation of
string theory.

Explicitly, the statement of the conjectured duality is that

N = 4 Super Yang Mills is dynamically equivalent to
Type IIB Superstring theory on AdS5 × S5 with radii L and N units of F5 flux on S5,

with the parameters N, gYM ,
√
α′, gs related by

g2
YM = 2πgs and 2g2

YMN = L4/α′2 .

Here dynamically equivalent means that the theories are equivalent on the quantum level, i.e. they
have the same partition function9. Often, it is more convenient to speak of the t’Hooft coupling
λ = g2

YMN instead of the Yang-mills coupling gYM .
Explicitly proving the duality for general values of all the parameters has not been done. Instead,

it is possible to take limits and consider weaker forms of the duality. The duality comes in the
following forms

9Sometimes it is easier to show a duality by working with Hamiltonian formalism in both theories and finding
that the theories have the same Hilbert space and dynamics, as in the case of T-duality in string theory c.f. chapter
17 in [43].

186



Chapter 6. Introducing the AdS/CFT Duality

N = 4 SYM side String Theory side
Strongest form N,λ arbitrary Full quantum string theory
Strong form N →∞ , λ arbitrary Classical string theory, gs → 0, α′/L2 6= 0
Weak form N →∞ , λ large Classical supergravity, gs → 0, α′/L2 → 0

The strong form of the duality is well motivated by the fact that in the limit N →∞, λ arbitrary
we obtain a so-called planar limit on the CFT side, in which the Feynman diagrams take on the
appearance of string scattering diagrams.

Showing the Weak Form of the Duality and Motivating the Strongest Form

While it is indeed easier to understand the stringy side in the weak form of the AdS/CFT duality, we
cannot apply the direct method of computing correlation functions using the supergravity partition
function and then comparing to the SYM expectation. Due to this, the following argument will be
completely different from the very direct approach used in the simple cases of the previous sections.

The weak form of the AdS/CFT duality lets us tune the coupling gsN to any finite value. It
was observed that string theory may simplify considerably in both of the limits gsN � 1, gsN � 1.
Let us only give a rough sketch of the original argument, since in the future we will be specializing
to theories that only have gravity in the bulk. We will allow for both open and closed strings and
work in a flat background spacetime. We will find that the open string sector will describe SYM
for gsN � 1 and be hidden begin and event horizon in the latter. The closed string sector will
describe flat 10d supergravity in the first limit. In the second there will be two decoupled closed
superstring sectors, one describing AdS5 ⊗ S5 supergravity in the near-horizon region of the stack
of D-branes, and one describing flat 10d supergravity far from the black hole. Since string theory is
expected to be well defined for all values of the coupling, and the difference between the two limits
is the exchange of N = 4 SYM and supergravity on AdS5 × S5 it is concluded they are equivalent.
This analysis is carried out in significantly more detail in section 5.2 of [24].

We will first state some facts about D-branes that we did not discuss in chapter 5.

• The mass of a single D-brane in string theory is proportional to gs.

• The mass of N coincident D-branes is proportional to the tunable coupling gsN .

• D3 branes are charged under the 4-form field A4, which is present in the IIB superstring
theory, meaning they exist and are stable.

• Open strings ending on a stack of N D3-branes describe massless U(N) Yang-Mills theory
living on the 3 + 1 dimensional worldvolume of the D3 branes in the low energy limit.

• The gravitational constant in superstring theory goes as G(10) ∼ g2(α′)4

Remember that the low energy limit is obtained when α′ � L2 where L is the AdS/S radii, as we
saw when performing the α′-expansion in 5.1.3. In this limit we are allowed to do supergravity,
although the limits gsN � 1, gsN � 1 will corresponds to very different configurations in the
supergravity picture. An interesting note is that the limit N → ∞ corresponds to a limit of big
central charge ceff on the CFT side, since the central charge measures degrees of freedom as we
showed for 2d with the c-theorem in section 4.3.2.

We can begin by considering a configuration of N coincident D3-branes at zero coupling gs = 0.
We have free open superstrings ending on the coincident D-branes, describing a supersymmetric
U(N) gauge theory with only massless fields. We also have free closed strings, but there are no
nontrivial background field configurations since gs = 0. The closed and open strings do not interact,
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so we have two completely decoupled theories. Let us note that in U(N) Yang-Mills theory, the
U(1) part decouples and the dynamics are described by SU(N) Yang-Mills theory.

Let us now allow gs to be nonzero, such that gsN � 1. Since the D-branes are effectively
massless for very small gs, we may treat the D-branes as free meaning their worldvolume is flat.
The coupling between open and closed strings is likewise proportional to gs so they do not interact.
Since α′ → 0 there are only massless modes, and we are still dealing with free theories that are
decoupled from each other living effectively on a flat background. Thus, for gsN � 1 we have
two decoupled theories: Type IIB closed strings in flat 10-dimensinoal space and SYM on the
3 + 1-dimensional worldvolume of the coincident D3 branes.

We now let gsN � 1, the most notable effect of this is to make gravitational effects important.
We are still in a low energy regime (α′ → 0), so we are still dealing only with massless modes. In
addition to the gravitational effect, the D3 branes carry charge under the A(4) field that appears in
the low energy effective action of IIB string theory. What we obtain is some very heavy, charged
configuration i.e. something similar to a charged black hole.

Let us denote the coordinates that are parallel to the D3 brane worldvolume as xµ , µ ∈ [0,3],
and the transverse coordinates by xi , i ∈ [4, 9]. The solution of IIB supergravity that preserves the
supersymmetry (supersymmetry relates geometrical and field degrees of freedom) in the presence
of N D3-branes is given by the ansatz

ds2 = H(r)−1/2ηµνdxµdxν +H(r)1/2δijdxidxj ,
e2φ = g2

s

A(4) =
(
1−H(r)−1

)
dx0 ∧ dx1 ∧ dx2 ∧ dx3 + . . . ,

(6.137)

where r ≡ xixi and the . . . denote terms that ensure self-duality of dA(4). In the present situation,
we are only interested in the geometry described by the metric ds2. The IIB equations of motion
fix

H(r) = 1 +
(
L

r

)4
, (6.138)

where L is undetermined. From string theory, it is known that the flux dA(4), which carries one
differential in the i directions must be quantized and proportional to the number of D-branes. It
can be shown [24] that this restriction sets

L4 = 4πgsNα′2 . (6.139)

The background spacetime separates into two different regions for r � L and r � L respectively.
For r � L we see that H ≈ 1 is a good approximation, describing a flat 10d spacetime. The case
r � L corresponds to the near horizon metric, where the metrics read

ds2 = r2

L2 ηµνdxµdxν + L2

r2 δijdx
idxj

ds2 = L2

z2

(
ηµνdxµdxν + dz2

)
+ L2ds2

S5

(6.140)

where we have split the 6d space into the sphere S5 and a radial coordinate z = L2/r. The
term in parentheses describes AdS5. The D-branes and open strings have disappeared behind an
event horizon. In the low energy limit, we have two separate background on which closed strings
propagate that do not talk to each other. Therefore, in the limit gs � 1 our spacetime is described
by IIB supergravity on AdS5×S5 as well as supergravity on flat 10d spacetime, and the two theories
are decoupled from each other.
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We have mulled over a significant number of details, but the picture is clear. We have two limits
of a single theory, namely string theory. In the limit gs � 1 we have something that describes

N = 4 SYM in 3+1 dimensions + IIB supergravity in flat 10d.

While still working with the exact same theory, having only tuned the parameter gsN � 1 we
obtained something that was described by

IIB supergravity on AdS5 × S5 + IIB supergravity in flat 10d.

The proposal is that since both limits are just the same theory with a different value of the coupling,
we can equate them and subtract the flat supergravity from both sides, meaning we are left with(

N = 4 SYM in 3+1 dimensions
)

=
(
IIB supergravity on AdS5 × S5

)
.

Currently there exists a number of more explicit tests for the duality, and we will see some of these,
relating to entanglement entropy calculations.

6.3 Why the Duality is Only Conjecture
In the previous sections we have seen a number of remarkable results. We have seen that scalar field
theory in the bulk may be used to compute correct correlation functions for conformal primaries on
the boundary. We have seen similarly that some vector fields, p-form gauge fields and even fermions
[46] also have boundary CFT duals. In addition to this, we have even seen that the correspondence
even works for gravity!

It almost seems like all of these results paint a picture of AdS/CFT duality as obviously true,
so it is strange that we need to consider the roundabout string-theoretical argument of the previous
section. If nice Standard Model like theories containing gravity, scalars and fermions already have
all their quantum correlation functions computed by a boundary CFT, did we not already solve
quantum gravity? The answer lies in that we have yet to write down the Lagrangian of a CFT that
has only the listed conformal primary operators of the previous sections in their spectrum. Such
details of d > 2 CFTs are in general poorly understood, although recent progress has been made
via the conformal bootstrap10 equation [56].

In hindsight, failure of the duality is connected to the fact that quantum theories should be
unitary. In addition to the unitarity bounds CFTs actually need to satisfy additional conditions
to be unitary. We would probably have encountered this in section 6.2.1 had we tried to check
the unitarity of the S-matrix or higher order correlation functions. Specifically, a unitary CFT in
d > 2 dimensions needs to have an infinite number of primaries of increasing conformal weight, as
obtained in section 10.3 of [56].

On the gravitational side of the duality, this corresponds to adding an infinite tower of increas-
ingly massive fields. There are two well known types of theory that do this. String theory naturally
has an infinite tower of massive string excitations. The second known possibility is gravity that
contains extra compact dimensions. Gravity that has extra compact dimensions automatically
contains an infinite number of massive particles, because standing wave components of the metric
around the compact space (S5) look like massive particles to the noncompact spacetime (AdS5).
These massive modes are called Kaluza-Klein towers, because the idea of studying gravity with

10The ”bootstrap” refers to the fact that the bootstrap equation in principle lets you compute all n-point correlation
functions of a CFT without ever writing down a Lagrangian, requiring only a set of conformal primary operators to
be specified. The formula obtained however is an infinite sum that has no analytic expression (except in very special
cases), so the sums have to be computed numerically.

189



6.3. Why the Duality is Only Conjecture

extra compact dimensions was first introduced by Oskar Klein and Theodor Kaluza. In addition
to this string theory itself contains an infinite number of massive excitations as we saw in chapter
5.

It is then (once again in hindsight) possible to understand why such a roundabout realization
was necessary. Stringy supergravity in AdS5 ⊗ S5 was the first explicit realization of a higher-
dimensional AdS/CFT duality between two full theories with defined Lagrangians. An interesting
peculiarity of this is that to make the duality hold you need to keep all of the Kaluza-Klein modes
wrapping the S5. This is because these are the fields that posses the SO(6) part of the symmetry
shared by the two theories on each side of the duality. It seems to be a general feature that CFTs
that can be well approximated by bulk supergravity must have a large number of degrees of freedom
’N large’ and admit a 1/N expansion. This expansion looks inherently stringy, as is noted in section
1.7.5 of [24]. Thus while nothing we have seen obviously tells us that the AdS/CFT duality requires
string theory, explicit realizations seem to conspire towards it.

In the remainder of this text, we will generally not specify even what spectrum of operators we
consider in the boundary CFT. This is because we cannot solve CFT’s in general dimension, even
perturbatively (since CFT’s are scale agnostic, ”small” perturbations are not defined). Fortunately
we are able to compute the entanglement entropy, which will be our probe into the general bulk
physics dual to a weakly specified boundary CFT. Even better, as we discovered in chapter 4 the
leading entanglement entropies are field content independent, so if entanglement is enough there
really is no need for further specification. Next we will explore the holographic entanglement
entropy, a modern development that may even imply that the emergence of bulk gravity may be a
universal property of any boundary CFT [34].

190



Chapter 7

Holographic Entanglement

We saw in the previous chapter that a bulk/boundary correspondence that respects the basic
axioms of CFT on the boundary appears for a fairly general class of bulk AdS fields. We also saw
the big picture of how the first explicit realization in terms of physically interesting theories on
both sides of the correspondence was motivated. AdS/CFT is a vast field, and we will now pick a
slim specialization - the relationship between entanglement on the CFT side and geometry on the
gravity side of the correspondence.

In this section we begin by looking at the relationship between AdS spacetimes containing black
holes and boundary CFTs. Then, we motivate the Ryu-Takayanagi proposal and its relativistic
cousin via considerations of black hole physics and the general leading area law divergence of the
entanglement entropy found in section 4.3.1. Finally, we finish with a first look at how geometry
may appear from entanglement information.

The logic roughly goes as follows. The bulk and boundary theories have the same partition
functions implying they have the same entropy. On the gravity side entropies are generally related to
the areas of event horizons. The Ryu-Takayanagi conjecture takes inspiration from this relation and
conjectures that bulk areas are instead the holographic duals of boundary entanglement entropies.
This can be proved by way of a bulk extension of the Replica trick, as can a covariantized version
of the Ryu-Takayanagi relation called the Hubeny-Rangamani-Takayangi (HRT) relation.

7.1 AdS/CFT at Finite Temperature

In this section we consider N = 4 SYM on the boundary and semiclassical1 supergravity in the
bulk AdS5 × S55 spacetime. We will look at the bulk solutions that are dual to a thermal state on
the boundary. This means that the SYM theory in question lives in three spatial dimensions times
a circle, where the Euclidean time direction has been curled up into a circle as in section 3.2.2. We
are required to take a strong coupling limit in which SYM is poorly understood, but we will find
interesting results despite this obstacle.

This section should be seen as a primer to the relationship between entropy in the bulk and
entropy on the boundary, as well as some of the subtleties of the relation. We will find that
while it seems possible to relate entanglement in the boundary theory to the surface areas of
black holes in the bulk, the black hole solution is some times not unique in addition to not being
thermodynamically favored.

The key idea is that the entropy is for a field theory at temperature T is formally given in terms
1Entropy in spacetimes is a quantum effect, as we learned in section 4.2.3. Fortunately the semiclassical entropy

is field content independent, so we need only consider the geometry of the bulk theory.
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of the partition function

S = ∂

∂T
(T lnZ) , (7.1)

and since both theories have the same partition function as stated by AdS/CFT, they must have
the same entropy at the same temperature. We will now proceed in three steps

• We introduce spacetime thermodynamics as obtained by analytic to Euclidean time and
demanding periodicity.

• We consider an AdS black brane solution, compute its entropy and compare to knowledge
about the entropy of thermal SYM

• We consider thermal CFTs living on S51× S5d where S51 is the periodic Euclidean time. We
find that such a configuration has two distinct bulk solutions.

7.1.1 Spacetime Thermodynamics

Chapter 3.2.2 taught us that in field theory, we can think of a thermal state as one that is periodic in
imaginary time. It turns out that this can be extended to spacetimes, where we can create ”thermal
spacetimes” by analytically continuing to Euclidean time and demanding periodicity. Maximally
symmetric spacetimes may be given an arbitrary temperature, but for example the Schwarzschild
black hole admits only a single temperature. This is because unless we pick a particular periodicity
the Euclidean metric gets a conical singularity at the event horizon which is unphysical given the
smoothness of the original spacetime. The following argument is carried out using a black hole in
flat space but it holds in de Sitter and AdS as well, since a conical singularity can never be sourced
by a finite curvature term.

Let us look explicitly at the Schwarzschild black hole, with metric

ds2 = −
(

1− rh
r

)
dt2 +

(
1− rh

r

)−1
dr2 + r2dΩ2 . (7.2)

We can go to near-horizon coordinates by letting r = rh(1 + ε) and keeping only terms that are
first order in ε. We then have the metric

ds2 = −εdt2 + r2
h

ε
dε2 + r2

hdΩ2 . (7.3)

We can then make the change of coordinates ε = ρ2/4r2
h, putting the metric on the form

ds2 = − ρ2

4rh
dt2 + dρ2 + dΩ2 . (7.4)

This is known as the Rindler metric, describing an observer with constant acceleration a = 1/2rh
in a flat background. Let us now analytically continue to iτ = t, obtaining the Euclidean Rindler
metric

ds2 = ρ2

4rh
dτ2 + dρ2 + dΩ2 . (7.5)

The τ − ρ part of this metric looks like polar coordinates for the plane ds2 = dρ2 + ρ2dθ, with
θ = τ/2rh. This only describes a flat plane if θ has exactly the periodicity θ ∼ θ + 2π, otherwise
we are looking at a cone. Cones have curvature at the tip, but we know that Schwarzschild solves
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the vacuum Einstein equations at the horizon meaning there should be no curvature. Therefore,
for consistency we must have τ ∼ τ + 4πrh. The temperature of the black hole is therefore

T = 1
4πrh

. (7.6)

Also, matching a = 1/2rh we see that T = a
2π matching the result of Bisogano and Wichmann for

the Unruh effect that we saw in section 4.2.2.

7.1.2 AdS Black Brane/Thermal SYM Duality

We now have a basic understanding of spacetime thermodynamics, and so we know what kind of
spacetimes could reasonably be dual to thermal SYM. Let us now consider the black-brane solution
to supergravity on AdS5 × S55, that we claim is dual to thermal SYM on the boundary. This
subsection is the last time we will take external input from supergravity/SYM. The following is
based on section 11.2 in Ammon & Erdmenger [24].

This black brane solution is similar to the one we imported in section 6.2.4, except that we
do not require the solution to retain the full supersymmetry. Indeed, SYM on a thermal circle
has supersymmetry explicitly broken because the periodic boundary conditions for fermionic and
bosonic fields differ by a sign. This solution corresponds to so-called non-extremal black branes
with metric given by

ds2 = H(r)−1/2
(
−f(r)dt2 + d~x

)
+H(r)1/2

(
dr2

f(r) + r2dΩ2
5

)
(7.7)

where f(r) is the blackening factor

f(r) = 1−
(
rh
r

)4
(7.8)

and
H(r) = 1 + L4

r4 . (7.9)

If we do not wish to involve string theory, we may see this as just a planar black hole in 4+1
dimensions. In the following analysis, we then drop the S55 part of the metric as well as the
vol(S55) contribution to the entropy.

Here there is an event horizon at r = rh. We can perform the same analysis as for the
Schwarzschild black hole in the previous section to find the temperature. We take a near-horizon
limit by letting r/L << 1 and make a change of coordinates to z = L2/rh to isolate the S55 part
of the metric. We then define zh = L2/rh and find that the metric of equation (7.7) takes the form

ds2 = L2

z2

−(1− z4

z4
h

)
dt2 +

(
1− z4

z4
h

)−1

dz2 + d~x2

+ L2dΩ2
5 . (7.10)

This is vaguely similar to an AdS5 black hole tensored with the sphere S55, with the main difference
being that the horizon is not compact. To analyze the temperature of this spacetime the spherical
part is unimportant, so let us ignore it for now. Going to Euclidean time t = iτ , the remaining
part is

ds2 = L2

z2

(1− z4

z4
h

)
dτ2 +

(
1− z4

z4
h

)−1

dz2 + d~x2

 . (7.11)
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We can now pick near-horizon coordinates, anticipating that we will find something similar to polar
coordinates by expanding the metric to lowest order in ρ defined by

z = zh

(
1− ρ2

L2

)
. (7.12)

The Euclidean metric becomes

ds2 = 4ρ2

z2
h

dτ2 + dρ2 + L2

z2
h

d~x . (7.13)

Once again by identifying θ = 2τ/zh, we see that the ρ− τ coordinates resemble the plane in polar
coordinates ds2 = dρ2 + ρ2dθ2. Requiring the absence of a conical singularity we see that we need
τ ∼ τ + πzh. Therefore the temperature of the non-extremal black-brane solution is

T = 1
πzh

. (7.14)

We find that the AdS black brane should be dual to thermal SYM at temperature T = 1/πzh.
We can compute the entropy of this theory. In the boundary field theory, the physical inter-

pretation is that of a regular entropy since the boundary theory is in a thermal state. In the bulk
theory, the interpretation is that we are computing the entanglement entropy between the interior
of the black brane and the exterior. We will use the semiclassical value for the black hole entropy,
given by

SBH = A

4G (7.15)

where G is the five-dimensional Newton constant, which can be expressed2 as G = πL3/2N2. The
area of the horizon is given by

A = d3~x
√
g3d|z=zhvol(S

55) , (7.16)

where we are integrating over the noncompact ~x coordinates in the Euclidean metric equation
(7.13). The horizon is tensored with S55, so the area in AdS5 must be multiplied by vol(S55). The
~x part of the metric is diagonal, so the determinant is simply L6/z6

h. Then we have that

A = π6L8T 3vol(R3) , (7.17)

i.e. the horizon area is proportional to the volume of three dimensional flat space. Since the entropy
on the field theory side is an honest entropy of a thermal state this is good news as such entropy
is supposed to be extensive. Inserting the value for G we see that

SBH = π2

2 N
2T 3vol(R3) . (7.18)

By AdS/CFT duality this is equal to the entropy of the SYM plasma at temperature T , so we
should identify SSYM = SBH. The field theory side of this calculation is not understood, while the
gravity side calculation is quite simple. This is a case of using the AdS/CFT duality to perform an
impossible computation on the field theory side via a simple computation on the gravity side.

2This comes from dimensional reduction from 10d, i.e. G = G(10)/vol(S55) where G(10) ∼ g2(α′)4 and the
AdS/CFT duality identifications have been used to solve for L and N .
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7.1.3 Gravity Dual of Thermal CFT on a Sphere

Let us now consider a CFT living on R× S5d. If the CFT is in a thermal state, we compactify the
time direction, and we find something that lives on S51 × S5d. There are now two dimensionful
quantities, β = 1/T and β′ = 1/l where l is the radius of the boundary sphere. There are two
metrics that may have S51× S5d as their boundary, namely

• d+2-dimensional thermal AdS with metric

ds2 =
(

1 + r2

L2

)
dτ2 +

(
1 + r2

L2

)−1

dr2 + r2dΩ2
d , (7.19)

where we impose periodicity in the Euclidean time direction τ ∼ τ + β.

• The d+2 dimensional AdS-Schwarzschild solution with Euclidean metric

ds2 = f(r)dτ2 + f−1(r)dr2 + r2dΩ2
d , (7.20)

where
f(r) ≡ 1− µ

rd−1 + r2

L2 , (7.21)

where µ is related to the black hole mass. The black hole event horizon is at radius rh which
is given by the larger root of f(r) = 0.

Thermal AdS may have any temperature and still maintain regularity. For the black hole we may
find the temperature by the usual regularity analysis. Near the horizon, expanding in powers of
r − rh we find

ds2 = f ′(rh)(r − rh)dτ2 + 1
f ′(rh)(r − rh)dr2 + r2

hdΩ2
d , (7.22)

we define ρ2 = f ′(rh)ρ
2

4 to get

ds2 =
(
f ′(rh)

)2 ρ2

4 dτ2 + dρ2 (7.23)

for the τ − ρ part. This looks like polar coordinates with τ = 2θ/|f ′(rh)| and regularity demands
τ ∼ τ + 4π/|f ′(rh)|. Therefore, the black hole has temperature

T = |f
′(rh)|
4π = (d+ 1)r2

h + (d− 1)L2

4φL2rh
. (7.24)

The space of possible black holes is parametrized by rh > 0. Black holes in AdS have the peculiar
property that at small radii, they have the same type of negative specific heat as black holes in
flat space, but at radii larger than rh = L they have positive specific heat. This means that AdS
black holes in d+2-dimensions have a minimum temperature, which can be deduced from equation
(7.24) to be given by

Tmin = 1
2πL

√
(d+ 1)(d− 1) (7.25)

at rh = L. For temperatures below Tmin there is no black hole dual of the boundary spacetime. For
T ≥ Tmin there are two possible solutions, and we must discriminate between them by computing
the free energy of the system. The system with less free energy is then thermodynamically favored3.
The free energy is given by

F (i) = −T lnZ = TS
(i)
on-shell , (7.26)

3In principle, the semiclassical approximation tells us to add up all classical solutions in the partition function,
but the one with larger free energy will dominate the expression exp

[
S

(1)
on-shell + S

(2)
on-shell

]
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where i = 1, 2 labels thermal AdS and the black hole respectively. Here we have used that on the
gravity side we are in a classical approximation. It is possible to show by inserting the solutions
into the Einstein-Hilbert action with the Gibbs-Hawking boundary term that

∆F = F (2) − F (1) = rd−1
h

2κ2
d+2

vol(S5d)
(

1− r2
h

L2

)
. (7.27)

We see that for rh < L, thermal AdS is thermodynamically preferred, meaning that small black
holes in AdS are expected to decay into thermal AdS. For rh > L we have the opposite situation,
meaning large AdS black holes are stable, because they are in equilibrium with their radiation
bouncing off the AdS boundary. Note that black holes take over as thermodynamically favored just
as they gain positive specific heat. This means that the gravity side dual of the boundary always
has positive specific heat, which an important consistency check given that a thermal CFT always
has positive specific heat.

At rh = L there is a phase transition called the Hawking-Page transition, at which point the
temperature is

T = d

2πL . (7.28)

This predicts a phase transition in the dual field theory, from having very few degrees of freedom at
low energy to having a very large number of degrees of freedom above some transition energy. This
essentially means that for a boundary CFT to have a gravity dual, it must be ”gapped” meaning
that most of the field content has finite mass starting at the transition energy.

As a final note, thermal AdS has zero entropy in the semiclassical approximation. Despite this
thermal AdS is thermodynamically favored over small AdS black holes due to their bizarre negative
specific heat. This means that in these examples, the leading gravity side entropy can still be
interpreted in terms of entanglement across a horizon.

7.2 The Ryu-Takayanagi (RT) Formula

In the previous section we saw that the entropies of bulk and boundary theories are related. In
the cases where the boundary CFT was dual to a black hole, the gravitational side of the entropy
calculation admits an interpretation as entropy due to entanglement across the black hole horizon.
In fact, the area of the entangling surface and the entropy are directly proportional.

In section 4.3.1 we saw that the leading term for the entanglement entropy of any finite region
in spacetime is proportional to the area, lending more credence to the claim that the black hole
entropy is directly related to entanglement.

The Ryu-Takayangi proposal in a sense reverses the bulk relation by conjecturing that areas in
the bulk are actually the duals of entanglement entropy on the CFT side. More succinctly, area
and entanglement entropy are not proportional, they are equivalent [4].

Consider a theory in AdSd+1 that is the holographic dual of d-dimensional CFTd. Restrict now
to a finite d − 1-dimensional region A in a constant time slice with boundary ∂A. Let B be the
complement of A, meaning B covers the rest of the constant time slice and shares boundary with
A, i.e. ∂A = ∂B. It is well known from chapters 2.3 and 4 that the entanglement entropy S has a
few basic properties, namely

• complementarity (for bipartitions of pure states), S(A) = S(B),

• subadditivity, S(A) + S(B)− (S(A ∪B) ≥ 0,
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• strong subadditivity, S(A∪B) + S(B ∪C) ≥ S(A∪B ∪C) + S(B) for any regions A,B and
C.

Intuition from black hole physics tells us that the bulk dual of the entanglement entropy in the
boundary theory should be some kind of d − 1-dimensional ’area’ in the bulk. This area should
be completely specified by a well chosen boundary quantity that is the same for the regions A and
B, since this ensures that the dual of entanglement entropy is the same for the regions A and B.
There is exactly one boundary quantity that can determine d − 1 dimensional surface in the bulk
spacetime that is common to A and B, namely the boundary ∂A = ∂B. Since the bulk area is
supposed to be determined by this boundary, we better demand that the bulk area is the area of a
surface that shares boundary with A and B. In addition to this, there should be a unique way of
choosing this area.

We know that the von Neumann entropy in quantum information theory is equivalent to the
optimal choice of measurements that minimizes the entropy SA in the sense that if we used a
particular set of projective measurements to turn the quantum state into a classical probability
distribution, the choice of projective measurement basis that minimizes the classical entropy gives
exactly the von Neumann entropy. Therefore, the natural proposal is that the bulk surface that we
will henceforth call γA should be the surface in the bulk spacetime that has the minimum possible
area under the constraint that ∂γA = ∂A. This is the information we need to really understand
the actual Ryu-Takayanagi proposal.

Ryu and Takayanagi proposed that the entanglement entropy SA of the region A is dual to the
area of a particular d − 1-dimensional surface γA in the bulk spacetime. From black hole physics,
we know that the entropy per unit area is given by 1/4GN and as such we postulate the specific
relation

SA = Area of γA
4Gd+1

N

. (7.29)

Here γA is the d − 1-dimensional static, minimal surface in AdSd+1 that has the same boundary
as A, i.e. ∂γA = ∂A. By static we mean that like the region A, γA is a surface that extends only
in the spatial directions. In general γA has a divergent area, related to the fact that only lightlike
lines see the distance to the AdS boundary as finite. This is in line with the expectation of UV
divergences of the entropy on the field theory side. To uniquely specify the surface in a spacetime
with topological defects (such as a black hole) we must require that γA is homologous to A meaning
it can be continuously deformed into A. Notably this means that if there is a black hole at the
center of the dual spacetime, γA 6= γB, corresponding to the fact that the boundary CFT is not in
a pure state.

Strong (and regular) subadditivity are not manifest in this proposal, but it can be proven by
assuming the null energy condition as we will see in section 7.2.4. This has a particularly interesting
implication on the gravitational side of the AdS/CFT duality. In general relativity, the so-called
null energy conditions postulate a positive local energy density, ruling out for example traversable
wormholes. While these are ”physical postulates” on the gravity side, they become necessary
properties of geometry when the CFT side of the duality is taken as fundamental.

We proceed by an example AdS3 gravitational computation of the entanglement entropy, show-
ing a match with boundary CFT expectation in 1+1 dimensions. We then outline a more general
argument for the correctness of the proposal originally due to Lewkowycz and Maldacena. In ad-
dition to this we derive the bulk extremal surface corresponding to boundary spherical regions and
give a particularly simple holographic proof of strong subadditivity. For more examples where the
Ryu-Takayanagi prescription matches known CFT expectations, the original reference is recom-
mended [4].
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7.2.1 AdS3/CFT2, Entanglement Entropy of Single Interval

We consider a 1+1d CFT on the boundary of AdS3 with curvature radius R. It should be noted
that while the explicits of AdS3 gravity are poorly understood, we expect on very general grounds4
that it should be dual to a boundary CFT with central charge

c = 3R
2G(3)

N

, (7.30)

where GN is the 3d Newton’s constant.
In section 4.3.3 we showed that the entanglement entropy of a finite strip A of length l in a

1+1d CFT on a circle with circumference L is given by

SA = c

3 ln
(
L

πε
sin πl

L

)
. (7.31)

We want to rederive this result by computing the dual bulk property, which in this case is Lγ/4G(3)
N

where Lγ is the length of a bulk geodesic ending on the endpoints of A. Note that since we are
to compute the length of a geodesic that connects two points on the boundary, we are going to
have to introduce a cutoff radius. This necessarily puts the boundary CFT on a circle with some
circumference L, leading to the relevance of the above CFT result. We will work with the global
AdS coordinates given by

ds2 = R2
(
− cosh2(ρ)dt2 + dρ2 + sinh2(ρ)dθ2

)
. (7.32)

For the calculation to make sense we need to introduce a cutoff at a finite radius ρ = ρ0 and
consider the bulk to be the bounded region ρ < ρ0. A cutoff at large radius ρ0 is equivalent to a
short-distance cutoff ε on the CFT side, with the relation [58][47]

eρ0 ∼ L

ε
. (7.33)

Note that the exact O(1) coefficient is ambiguous, because it depends on the specific field content
of the boundary CFT which is in general not known. The region [0,l] on the cylinder may be
identified with θ = [0, 2π l

L ]. We are then looking for the length of the geodesic γA that connects
the points (ρ, θ) = (ρ0, 0) and (ρ, θ) = (ρ0, π

l
L) with t kept constant. The relevant geometry is

illustrated in figure 7.1, where the spatial boundary of AdS is represented as a solid circle.
In AdSd+1, the simplest way to compute the form of a geodesic is to go to the embedding

space Md+2. The geodesics are then defined by the intersection of the embedded AdSd+1 space
and a two-dimensional hyperplane such that the normal of the embedded AdS space as well as the
endpoints of the geodesic are contained in the hyperplane [4, 59]. In the flat embedding space M4

the geodesic turns out to be (parametrized by Rλ ∈ [0, ln
(√

α+1
α−1

)
])

~X = R√
α2 − 1

sinh
(
λ

R

)
· ~x+R

[
cosh

(
λ

R
λ/R

)
− α√

α2 − 1
sinh

(
λ

R

)]
, (7.34)

4Brown and Henneaux originally derived this result based on general requirements on the global charges of the
AdS theory in 1986 [57].. Note that they give the resulting Virasoro algebra in terms of Poisson brackets, so reading
off the correct form is nontrivial. An alternative derivation of the result using holographic renormalization is given
by Henningson and Skenderis in [49] and section 6.2.3
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Figure 7.1: Schematic illustration of the curve γA in relation to A. In a) we look only at a spatial
slice, introducing the coordinates ρ and θ as they appear in equation (7.32). In b) we show the
embedding of the time slice into the full spacetime. The curve γA can be interpreted as the bulk
event horizon enforcing that an observer only has access to subsystem A. The shaded region is
then the region of spacetime accessible to the spacetime observer dual to a CFT observer with only
access to A.

where α = 1 + 2 sinh2 ρ0 sin2(πl/L) and

~x = (cosh ρ0 cos t, cosh ρ0 sin t, sinh ρ0, 0)

~y = (cosh ρ0 cos t, cosh ρ0 sin t, sinh ρ0 cos
(2πl
L

)
, sinh ρ0 sin

(2πl
L

)
) ,

(7.35)

where t is the fixed time of the time slice on which A lives. Note that ~x and ~y point in the two
directions of the endpoints. As Rλ goes from 0 to ln

(√
α+1
α−1

)
we see that ~X goes from pointing

entirely in the ~x direction to pointing entirely in the ~y direction. We can then integrate to find Lγ

Lγ =
∫

dλ

√
∂Xµ

∂λ

∂Xν

∂λ
ηµν (7.36)

where η = Diag(−1,− 1,1,1) is the flat metric of the embedding space. It is possible to show that
the length of the geodesic is given by

cosh
(
Lγ
R

)
= 1 + 2 sinh2(ρ0) sin2

(
πl

L

)
. (7.37)

For large ρ0 we can replace the hyperbolic sines by exponentials on both sides, since Lγ diverges
with ρ0. Then,

Lγ = R ln
(
e2ρ0 sin2 πl

L

)
= 2R ln

(
eρ0 sin πl

L

)
. (7.38)

Inserting into the Ryu-Takayanagi formula in equation (7.29) we find

SA = R

2G(3)
N

ln
(
eρ0 sin πl

L

)
, (7.39)
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and now using the duality relations c = 3R/2G(3)
N and eρ0 ∼ L

ε we obtain

SA ∼
c

3 ln
(
L

ε
sin πl

L

)
. (7.40)

This precisely coincides with the known CFT result on the circle in equation (7.31). Remember that
for the CFT result on the circle we threw away a constant term that depended on the explicit field
content, and as such there is no reason to worry about the approximate equality in this expression.
Thus we see that our natural relationship between entanglement entropy on the boundary and
minimal surfaces in the bulk produces the correct result for a 2d CFT.

7.2.2 Equivalence Between Replica Construction and Minimal Area

Another interesting argument for the validity of the Ryu-Takayanagi proposal (equation (7.29))
was proposed seven years later by Lewkowycz and Maldacena in 2013 [60]. Their result required
only that the spacetime be time-reflection symmetric about the spatial slice of the previous section,
weakening the requirement of a static state. In addition to this proof, the Ryu-Takayangi proposal
was proven in greater generality by Lewkowycz and Parrikar in 2018 using the Iyer Wald formalism
we will introduce in chapter 8 [61].

In the 2013 proof [60] looked at the boundary geometry corresponding to the n-sheeted replica
space of section 4.3.3. According to AdS/CFT the path integral over this space should be equal
to the partition function for bulk gravity with the n-sheeted boundary geometry as its boundary.
Taking the classical limit on the gravity side, the gravitational partition function just becomes
e−Sgrav where Sgrav is integrated over a classical solution satisfying the boundary conditions. This
means that in principle we have a way of computing the Renyi entropies gravitationally without
ever making the Ryu-Takayanagi conjecture. They argue that the classical gravitational problem
reduces to the computation of a minimal area as the limit limn→1 ∂nS

(n)
A is taken. Let us coarsely

sketch how this comes about.
The n:th Renyi entropy on the boundary is a path integral over all of Euclidean time over n

replicas of the boundary surface. This can be conformally mapped to a single manifold that has
simple topology such as the orbifold plane in section 4.3.3.

For a general multi-sheeted surface we can define an angular coordinate θ that takes us to the
next plane as we pass through an angle 2π, as in figure 7.2. In the case of n = 1 this imposes the
periodicity of all fields in θ:

ψB(θ) = ψB(θ + 2π) , (7.41)
since in the case of a single sheet the trace over ρA tells us that the surface A is the same no matter
which direction it is approached from.

As we consider geometries corresponding to the n > 1:th Renyi entropies, the gluing tells us
that θ → θ + 2π should take us to the next sheet. After n sheets we should return to the first,
so the periodicity of the coordinate becomes θ ∼ θ + 2πn. The replica construction also carries
a discrete symmetry, the replica symmetry Zn, so the periodicity of the ψB remains the same.
In principle this replica symmetry may be broken in a particular solution. There is a more in
depth discussion of this in the reference [60], but the essence is that if the bulk AdS spacetime
is allowed to contain bad tachyons that are not given positive kinetic energy by their boundary
terms, the resulting instability breaks replica symmetry. Thus replica symmetry is roughly broken
by the same things that break the bulk-boundary uniqueness relations in AdS/CFT. We continue,
assuming that replica symmetry holds.

The next observation was that the classical solutions in the bulk for n > 1 contain a d − 1-
dimensional surface that is fixed under the action of the replica symmetry. Let us call this surface
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Chapter 7. Holographic Entanglement

Figure 7.2: Illustration of meaning of angular coordinate θ. a) is the case when the boundary is
1 + 1d, and b) illustrates the case of a 2 + 1d boundary. These examples are dual to AdS3 and
AdS4 respectively. Approaching the region A from the future takes us to the next replica and
approaching A from the past takes us to the previous replica. This means that θ → θ+ 2π realizes
the replica symmetry and that the coordinate θ has period 2πn for the n : th Renyi entropy. The
boundary ∂A is fixed under the replica symmetry, and the fixed bulk surface must be either disjoint
or anchored to ∂A.

γA. The surface γA corresponds to points in the bulk where the circle parametrized by θ shrinks to
zero size5. Note that the boundary ∂A as it appears in a single copy of the spacetime is naturally
preserved under the replica symmetry. Due to this, the fixed surface is expected to fulfill ∂γA = ∂A
as n→ 1.

We can write the metric near γA as

ds2 = n2dr2 + r2dθ2 + . . . (7.42)

where r and θ are the coordinates that are transverse to γA and . . . denotes its internal coordinates.
Note that the factor n2 is to prevent a conical singularity appearing in the bulk spacetime, the real
angle around the fixed surface in a single replica is α = θ/n.

The next step is analytic continuation. To do the continuation, we let n be noninteger, and
consider the case n = 1 + ε with ε small. The trick used by the original authors was to let θ ∼ 2π
for the computation of the action. The action is then evaluated by integrating θ from 0 to 2π and
multiplying by 1 + ε, the idea being that you are integrating the same function over a whole period
and it is only the size of the measure dθ that changes. This should introduce a singularity near
r = 0 since we are forcing the metric (and any other potential bulk fields) to have period 2π in a
spacetime that is actually (2 + 2ε)π-periodic. On general grounds, this singularity is integrable and
vanishes smoothly as ε→ 0. This means that the analytically continued solution can be expanded
in terms of ε near n = 1 and the limit

SA = − ∂

∂ε
Trρ1+ε

A

∣∣∣∣∣
ε=0

(7.43)

can be evaluated. Here we have rewritten equation (4.206) letting n = 1 + ε and used that that the
local density operator is Tr[ρA] = eSgrav , where Sgrav the on-shell action.

5Note that if the bulk spacetime has nontrivial topology, such as thermal AdS, the circle may not be contractible
in the bulk. In this case, the lack of fixed points under Zn leads to zero entropy.
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7.2. The Ryu-Takayanagi (RT) Formula

A generic Einstein-Hilbert action in the bulk will give rise to some set of equations of motion.
Demanding that the equations of motion be satisfied to leading order in ε will describe an extremal
surface satisfying ∂γA = ∂A and the action integral will compute the proper area of said surface. To
first order in ε, ρ1+ε

A will be proportional to Sgrav, meaning SA will be proportional to the proper
area of a minimal surface. This shows that the gravitational dual of the Renyi entropy (under
suitable assumptions) reduces to the computation of the area of a minimal surface. This is exactly
the Ryu-Takayanagi proposal.

Let us see how this comes about. We first write down the metric, picking so-called Gaussian
coordinates about the fixed surface of the replica symmetry. Heuristically demanding smoothness
as we go around the θ circle the metric takes the near γA form

ds2 = n2dr2 + r2dθ2 + bidθdyi + gijdyidyj

gij = hij + rn cos(θ)K1
ij + rn sin(θ)K2

ij +O(r2)
R = r +O(r3) , bi = O(r2) ,

(7.44)

where r is the normal to γA, the yi are parallel to γA and Kα
ij , α ∈ {1,2} are the two extrinsic

curvature tensors. The intrinsic metric hij depends only on the yi while the extrinsic curvatures
capture the θ and r-dependence of the metric on the fixed surface. We take the linear combination of
the extrinsic curvatures which is timelike to be zero. This corresponds to a static or time-reflection
symmetric spacetime at the constant time slice of A. Then the equations of motion that follow will
simply serve to set the spatial part to zero as well, defining an extremal surface.

Next we should compute the Einstein field equations for this metric. The Ricci curvature
receives divergent contributions proportional to

Rµν ∼ ε
Kα
ijg

ij

r
. (7.45)

The requirement of smoothness at r = 0 to first order in ε leads to the vanishing of the traces of
the extrinsic curvatures

gijK1
ij = gijK2

ij = 0 , (7.46)

which is the equation of motion of a extremal surface. The next step is to compute the on-
shell action. The on-shell action does not a priori look like a computation of the proper area of
the minimal surface whose equations of motion are equation (7.46). It turns out that by using
diffeomorphism invariance to pick a particular gauge it reduces to an area computation [42].

7.2.3 Extremal Bulk Surface Ending on Spheres

Let us now consider a region on the boundary that is a d − 1-dimensional ball of radius R. We
will find that the extremal surface with the same boundary as the ball is a d− 1-dimensional half-
sphere with radius R extending into the bulk. In this section we settle for just finding the extremal
surface, although the entanglement entropy can technically be computed on both the CFT and
gravity sides of the duality. In chapter 8 we will use this result to prove on general grounds that
spacetimes whose Ryu-Takayanagi areas correctly reproduce the entanglement entropies of CFT
balls necessarily satisfy the Einstein field equations to first and second order in perturbations about
pure AdS. This is another argument for the validity of the Ryu-Takayanagi formula for any CFT
dual to a theory of gravity.

The result we are about to derive comes from notes by Veronika E. Hubeny [62]. Hubeny leaves
out only elementary (if quite gruesome) steps, so her text is a good reference for some extremal
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surface practice. Let us begin by representing our AdS spacetime in Poincaré coordinates:

ds2 = 1
z2

[
−dt2 + dz2 + d~x2

]
(7.47)

where we have set the AdS radius to L = 1. Note that Poincaré coordinates do not cover all of
AdS, so we need to assume that the boundary ball may be contained in a single Poincaré patch.
The boundary region is a ball of radius R centered on ~x = 0, so the the extremal surface problem is
more easily solved picking more appropriate boundary-spherical coordinates such that the metric
becomes

ds2 = 1
z2

[
−dt2 + dr2 + r2dΩ2

d−2 + dz2
]
. (7.48)

The extremal surface Ã minimizes the area functional A[Ã], given by

A(G,Xext) =
∫
Ã

ddσ
√
−g , (7.49)

where g is the induced metric on Ã and G is the bulk metric. The induced metric g is related to
the bulk metric G by a pullback

gab = Gµν
∂Xµ

∂σa
∂Xν

∂σb
. (7.50)

Let us parametrize the bulk surface by picking σ1 equal to r and σi with i ∈ {2 . . . d} to be the
angles of the (d− 2)-sphere. We then solve for z in terms of r by varying the area functional with
respect to the bulk coordinates. By picking the coordinates in this way, the induced metric also
becomes diagonal with the form

gab = 1
z2

(∂z∂r)2
+
(
∂r
∂r

)2
0

0 r2GΩ

 , (7.51)

where GΩ is the metric of the d− 2 dimensional unit sphere, with determinant 1. It is now simple
to evaluate the determinant according to

A =
∫ R

0
dr dn−2Ω

√
−det

(dXµ

dσa
dXν

dσb Gµν
)

= Vd−2

∫ R

0
dr
√

1 + ż2(r)
z(r)d−1 rd−2 , (7.52)

where Vd−2 = 2π(d−1)/2

Γ((d−1)/2) is the volume of the unit n− 2 sphere, obtained by integrating the angle-
independent integrand over the spherical measure. At this point, we find the Euler Lagrange
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equations by varying with respect to z, dropping the explicit r dependence:

δzA = Vd−2

∫ R

0
dr
(

rd−2ż

zd−1
√

1 + ż2
δż − (d− 1)r

d−2√1 + ż2

zd
δz

)

= −Vd−2

∫
dr
(

(d− 2) rd−3ż

zd−1
√

1 + ż2
+ rd−2z̈

zd−1
√

1 + ż2
− (d− 1) rd−2ż2

zd
√

1 + ż2

− rd−2z̈ż2

zd−1(1 + ż2)3/2 + (d− 1)r
d−2√1 + ż2

zd

)
δz + Vd−2

[
rd−2

zd−1
√

1 + ż2
δz

]R
0

= Vd−2

∫
dr rd−2

zd−1
√

1 + ż2

(
(d− 2) ż

r
+ z̈ − (d− 1) ż

2

z

− z̈ż2

1 + ż2 + (d− 1)1 + ż2

z

)
+ Vd−2

[
rd−2

zd−1
√

1 + ż2
δz

]R
0

= Vd−2

∫
dr rd−2

zd−1(1 + ż2)3/2

(
z̈ + (1 + ż2)

[
d− 1
z

+ d− 2
r

ż

])
+ Vd−2

[
rd−2

zd−1
√

1 + ż2
δz

]R
0
(7.53)

To find the equations of motion, we just need the object in parentheses to vanish as well as for the
boundary term at the end to vanish for arbitrary δz. We know that at z = 0, the surface should be
anchored on the circle, so z(0) = R. The equation of motion turns out to be solved by the simple
function

z(r) =
√
R2 − r2 (7.54)

for general d. To verify, observe that

ż = − r√
R2 − r2

,

z̈ = − 1√
R2 − r2

− r2

(R2 − r2)3/2 = − R2

(R2 − r2)3/2 ,

√
1 + ż2 =

√
1 + r2

R2 − r2 = R√
R2 − r2

.

(7.55)

Inserting the last line into the boundary term we see that it vanishes at r = 0. The boundary
term diverges at r = R. This is related to the fact that the area functional also diverges close to
the boundary of AdS. Let us also verify that the proposed expression also solves the equations of
motion:

z̈ + (1 + ż2)
[
d− 1
z

+ d− 2
r

ż

]
= − R2

(R2 − r2)3/2 + R2

R2 − r2

(
d− 1√
R2 − r2

− d− 2
r

r√
R2 − r2

)
= − R2

(R2 − r2)3/2 + R2

(R2 − r2)3/2

= 0 .
(7.56)

Thus, the extremal surface ending on a d− 2-dimensional sphere on the boundary is half a d− 1-
dimensional sphere, defined by

z2 + ~x2 = R , z ≥ 0 , (7.57)
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in the original Poincaré coordinates. With this the area functional is possible to compute although
it is divergent. We impose a lower cutoff z = ε and find

A = 2π(d−1)/2
Γ
(
d−1

2

) ∫ R

ε

R

(R2 − r2)d/2
rd−2 . (7.58)

This correctly computes the entanglement entropy of ball shaped regions via the RT formula if we
set

L =
(

Γ(d2)

π
d
2

8πGNa∗
) 1
d−1

, (7.59)

where L is the AdS radius and a∗ is the trace anomaly of the boundary CFT [63].

7.2.4 Holographic Proof of Strong Subadditivity

The gravitational side of strong subadditivity admits a simple proof. That this can be shown is
important, since if extremal areas and entropies are dual, they must have the same properties. We
can deduce in a simple manner from the following picture that the Ryu-Takayanagi surfaces for
regions A,B and C satisfy strong subadditivity:

.

The horizontal line represents the boundary of AdS. The area of γB is minimal under the condition
of ending at ∂B, and is therefore less than the area of the the part of γAB ∪ γBC in solid grey.
γABC is a minimal area under the condition of ending on ∂(ABC) and therefore has less area than
the part of γAB ∪ γBC in solid black. The area of the union is the sum of the areas. Since entropy
is proportional to area, this implies strong subadditivity. In the case where the regions A,B and
C are disjoint the definition of the minimal surfaces is generally determined from the field theory
side, so strong subadditivity is manifest [4].

Equivalently, by splitting γAB ∪ γBC in a different way we obtain a different formulation of
strong subadditivity

⇒ SAB + SBC > SA + SC .

Allowing for a negative energy density may turn γA or γABC into maximal instead of minimal
surfaces, ruining the validity of the proof. Additionally, this proof relies on the spacetime being
either time independent or A,B and C being defined on the same time slice. This is not always
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the case, and we will consider the consequences of this by looking at the Hubeny-Rangamani-
Takayanagi proposal. Proving strong subadditivity in the time dependent case is due to Aron Wall
[64].

7.3 Hubeny-Rangamani-Takayanagi (HRT) Formula
The Ryu-Takayanagi proposal in equation (7.29) is not Lorentz covariant and it is only defined for
surfaces in constant time slices. A covariant generalization carries with it some difficulties.

A first difficulty is the fact that a minimal area is no longer an intuitive candidate, introducing
timelike deformations of the surface where there previously was none automatically reduces the area
since the timelike direction carries negative signature. To resolve this difficulty, the first suggestion
by Hubeny, Rangamani and Takayanagi [5] was that we should look for any extremal surfacesMA

with boundary ∂A and then pick the one with minimal spacelike area. The covariant holographic
entanglement entropy is then given by

SA = MA

4Gd+1
N

(7.60)

where d is the dimension of the boundary spacetime.

7.3.1 Heuristic Gravitational Derivation of HRT Formula

Just like in the static case, some time after the original proposal it was found that it was possible to
argue its validity by understanding the gravitational dual of time-dependent replica construction.
The original derivation was carried out in 2016 by Dong, Lewkowycz and Rangamani [65].

The essential difference to the static case is that on the CFT side we cannot use the trick of
integrating over n copies of a Euclidean spacetime. Once we have genuine time-dependence we have
to glue together n Schwinger-Keldysh6 contours across A. In addition, now that we have dropped
time independence A does not have to be defined in a constant time slice, although we take it to
be spacelike. The Schwinger-Keldysh contours contain an extra backwards- and forwards segment
in the Lorentzian time direction at some Euclidean time τ = T . This evolution introduces a kink
in the spacetime at the Euclidean time T along some Cauchy slice ΣT such that A ∈ ΣT in the
boundary spacetime.

It is customary to do away with the complex time integration and instead consider any state
|Ψ〉 (t =∞) as a boundary condition. Then, the path integral is performed over two copies of the
causal past J−T of ΣT , glued across A ∈ ΣT . In principle we should add the an iε prescription
to avoid eventual singularities on the real time axis. This involves sending one copy of J−T to
t = −∞(1 + iε) corresponding to preparing the vacuum ket, and the other copy to t = −∞(1 + iε)
to prepare the vacuum bra. The relevant Schwinger-Keldysh countour, as well as a single copy of
the n-fold contour can be found in figure 7.3

To extend this to a bulk spacetime, the trick lies in extending the Cauchy surface on the
boundary into the bulk, yielding the slice Σ̃T . The bulk extension of a boundary Cauchy slice into
the bulk is not unique7, it only requires that all points on the bulk Cauchy surface Σ̃T are spacelike

6We discussed the Scwhinger-Keldysh contour in section 3.2.2. In this example we are not splitting the contour
into a series of straight segments since we, like in section 7.2.2, only need to understand the behaviour of a special
fixed surface under the replica symmetry.

7In the time independent case, there is a unique way of going from one bulk Cauchy surface to the next. In such
a case the curve that extremizes MA is obtained by picking the Σ̃T that has maximal volume (which will be the
constant time slice), and finding theMA ∈ Σ̃T that minimizes the proper area ofMA. When A is a spacelike surface,
this reduces exactly to the RT formula.
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Figure 7.3: Schwinger-Keldysh contour for Tr[ρ] (a)) and a single copy of the integration for the
computation of ρn (b)). In red are the sides of A in the imaginary time direction that take you
to the next or previous replicas depending on whether you pass from the positive or negative τ -
direction respectively. Each sheet expanding backwards in Lorentzian time is a copy of the causal
past J−T of ΣT . The n-fold replica construction involves a path integral over 2n copies of J−T as well
as the gluing across A.

separated as well as ∂Σ̃T = ΣT . This means that Σ̃T may be any spacelike surface in the causal
diamond with ΣT as its boundary. The bulk Scwhinger-Keldysh integration region then looks as
in figure 7.4.

Now that we have constructed the spacetime corresponding to the Schwinger-Keldysh contour,
the rest of the derivation follows analogously to section 7.2.2. There is a replica symmetry where
an angular coordinate θ takes us from one replica to the next. There may be a surface in the bulk
that is fixed under this replica symmetry. The positive energy density requirement is replaced with
a covariant analog, the null convergence condition given by Rabkakb ≥ 0∀ka : kaka = 0. The rest
of the derivation boils down to arguing that the near fixed surface metric takes the general form

ds2 = n2dr2 + r2dθ2 + bidθdyi + gijdyidyj ,
gij = hij + rn cosh(θ)K1

ij + rn sinh(θ)K2
ij +O(r2) ,

R = r +O(r3) , bi = O(r2) ,
(7.61)

which looks like a Lorentzian analog of equation (7.44). Working to first order in ε when n = 1 + ε
once again gives divergent contributions to the Ricci tensor

Rµν ∼ ε
Kα
ijg

ij

r
. (7.62)

The requirement of smoothness at r = 0 to first order in ε leads to the vanishing of the traces of
the extrinsic curvatures

gijK1
ij = gijK2

ij = 0 . (7.63)

The main difference to the previous case is that time independence does not automatically set
the timelike combination of the extrinsic curvatures to zero and we get a spacetime extremal
codimension two surface instead of simply a spatially extremal codimension two surface living in a
constant time slice. The effective action again reduces to the computation of a proper area via a
convenient choice of gauge.
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Figure 7.4: Bulk extenstion of boundary Schwinger-Keldysh contour (figure 7.3). The two legs
are the two copies of the bulk causal past J̃−T of Σ̃T and the boundary space is represented by a
circle. The separation of the legs represents their separation in the imaginary time direction. The
boundary folding surface ΣT is the boundary of Σ̃T and Σ̃T is a spacelike surface. The region A
across which there is gluing is indicated in red. The volume in this image self-intersects.

The HRT proposal was given a more rigorous treatment in 2016 by Aron Wall [64]. Wall also
introduces a new formulation of the HRT proposal in terms of so-called maximin surfaces, defined
by minimizing the area ofMA for some arbitrary choice of Σ̃T while requiringMA ∈ Σ̃T and then
maximizing the area with respect to the choice of Σ̃T . The difference to the original proposal in
the introduction to this section seems minor, but is mathematically essential.

Wall then goes on to prove the existence HRT surfaces for a general class of spacetimes, including
ones containing black holes. In addition to this, the max/min surface formulation is necessary to
extend the proof of strong subadditivity to the time dependent case.

7.4 Entanglement Builds Geometry
An interesting implication of the Ryu-Takayanagi formula is that areas are the bulk duals of en-
tanglement in the boundary CFT. This means that given a CFT we should be able to reconstruct
the bulk geometry. For every inequivalent way of splitting the CFT into two spatial regions, we
can compute the area of the bulk effective event horizon by finding the entanglement entropy on
the CFT side. We then want to find some bulk manifold M that can have these values of the
extremal areas. This problem should be highly overconstrained since the entanglement entropies
are a function on the space of subsets of the boundary spacetime while generally, the bulk geometry
is described by a handful of functions.

Due to this, a boundary field theory that can conceivably have a geometrical dual it must
have a very specific entanglement structure. Given a CFT with this specific type of entanglement
structure we can reconstruct the bulk geometry. An exception to this is spacetimes that contain
regions that are not penetrated by any extremal surface, such as the interior of black holes8. Thus
without adding some sort of bulk quantum correction to the Ryu-Takayanagi prescription we cannot
reconstruct black hole interiors. Such a region is in the literature called an entanglement shadow.

The derivation of Lewkowycz and Maldacena in section 7.2.2 already taught us that the Ryu-
Takayanagi formula corresponds to a classical theory in the bulk, so the inaccessibility of black

8It is shown in [62] that no extremal surfaces may penetrate event horizons, at least in static spacetimes. Due to
this, RT surfaces fail to probe black hole interiors.
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Figure 7.5: To the left, we have divided a field theory living on a sphere into two hemispheres A and
B. As we tune the inverse temperature β towards larger values, the symmetry of the problem fixes
the shape of γA while tuning the area. As we increase β, the RT formula equation (7.29) tells us
that the interfacing area between the hemispheres begins to pinch off. In addition, the monotonous
relationship between entanglement and distance leads us to expect that reducing entanglement
drives the hemispheres apart.

hole interiors is in some sense expected, as we expect quantum gravity to be important in this
regime. Despite this the Ryu-Takayanagi formula can teach us a lot about the relationship between
classical geometry and entanglement. We will see this by considering what happens to the bulk
spacetime when you turn off the entanglement between two complementary regions A and B on
the boundary. The following argument is due to Mark van Raamsdonk [15], and the construction
is carried out explicitly in [66].

Consider a CFT living on a spatial ball. We may arbitrarily split the ball into two hemispheres,
A and B as in figure 7.5. The density operators on A and B will describe two copies of the
same thermal state, an example of a thermofield double. The thermofield double is constructed by
entangling energy eigenstates |ri〉 ∈ HA and |li〉 ∈ HB according to

|TFD〉 = 1√
Z(β)

∑
i

e−
1
2βEi |ri, li〉 . (7.64)

Tracing out either copy leaves a normally weighted thermal state

ρA = 1
Z(β)

∑
i

e−βEi |ri〉〈ri| . (7.65)

Very importantly, the parameter β tunes the entanglement of the left and right hemispheres; β = 0
corresponds to the maximally mixed state, and β =∞ puts both hemispheres in an individual pure
state. Note that only a very specific temperature T = 1/β corresponds to the CFT vacuum, since
in the vacuum the temperature corresponding to a a boundary horizon (∂A) is fixed by the Unruh
effect.

Let us now consider what happens when we tune the inverse temperature β. Note that the
boundary geometry stays fixed under the following procedure, despite how it appears in the pictures,
where we illustrate how the bulk geometry is deformed. The symmetry of the problem as illustrated
in figure 7.5 tells us that the RT surface has to be a flat disk, regardless of what temperature the
local states have. As we increase β, the area of γA must decrease, but reflection symmetry keeps
it in a fixed shape. Therefore, the spacetime must start to pinch off as we increase β. Finally, as
we bring β → ∞ the two spacetimes should disconnect completely as in figure 7.6, since they are
connected across a surface with vanishing area.
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Figure 7.6: The limit as we completely disentangle the two local states in A and B is two separate
spacetimes. This may be taken to imply the necessity of quantum entanglement for classical
geometry to exist at all.

In addition, we can think about the mutual information of the two hemispheres. The mutual
information is defined by

I(A,B) = SA + SB − SA∪B︸ ︷︷ ︸
0

, (7.66)

where the last term is zero since the full state is pure. The mutual information is positive definite
as we showed in chapter 2.3, and represents an upper bound on the maximum correlation between
operators in regions A and B. But we also showed in equation (6.70) that in terms of the geodesic
distance L[X,xA, xB], two-point correlators are described by a geodesic approximation given by

〈OA(xA)OB(xB)〉 = e
−∆L[X;xA,xB ]

LAdS . (7.67)

As we bring β → ∞, SA = SB → 0, so the mutual information becomes upper bounded by a
vanishing number. But the mutual information represents an upper bound on exp

(
−∆L[X;xA,xB ]

LAdS

)
,

so we conclude that the length of the geodesic connecting two points on the hemispheres A and
B increases as β → ∞. This means that in addition to the two halves of the spacetime pinching
off, they are also driven apart as we try to disentangle them. Note that as the mutual information
approaches zero, it is not clear whether there is a geometrical interpretation of the entangling
surface and the geodesic may stop making sense.

The conclusion of this thought experiment is that without entanglement, spacetime seems to
literally disconnect! Entanglement is the crucial ingredient rquired for bulk geometry to emerge
from a boundary field theory. This relates back the the Reeh-Schlieder theorem of section 4.1.1,
where we realized that in a continuum QFT there can be no pure local states. This means that to
have pure ’local’ states, spactime must be discontinuous at the boundary of the local region. This
means that our result is definitely consistent with conventional wisdom coming from axiomatic field
theory.

It is not entirely clear to what extent this conclusion holds, since as we commented some space-
times contain an entanglement shadow that is not described by the Ryu-Takayanagi prescription.
In addition given an honest CFT on the boundary the Hilbert space does not literally factorize
into HR and HL, so the construction should be subjected to a more high-brow algebra of observ-
ables analysis. Despite this, at this point we should be readily convinced that entanglement and
geometry are closely related. In Part II we will set out to explore the explicit mechanisms by which
entanglement builds geometry.
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Introduction to Part II

In this part a number of recent results and conjectures about how entanglement information builds
up spacetime will be treated. This part is a review of the different ideas that have sprung up, and
are to some degree of abstraction inspired by the Ryu-Takayanagi conjecture. We will henceforth
refer to the set of these ideas as the field of emergent spacetime.

Each of the three chapters in Part II aim to follow a handful of authors, trying to point out the
main publications, results and lines of reasoning in a particular branch of ”emergent spacetime”.
These authors are picked as representatives of their branches by me the author, but they are by no
means the only contributors to their fields.

• Chapter 8 follows Mark van Raamsdonk through a number of papers. In this chapter we will
discover how Einstein’s general relativity emerges up to second order in perturbations from
the completely general entanglement first law in the boundary CFT. This chapter involves
no conjectures and very controlled configurations, so the results stand on very firm ground.

• Chapter 9 follows Juan Maldacena and Leonard Susskind through two papers [67, 7] to set the
stage for the ER = EPR, complexity=action and complexity=volume conjectures. Inspired
by this discovery we realize the importance of the microscopic structure of the CFT boundary
states for the interior geometry. Finally a particular form of ’black hole microstate cosmology’
is considered in which an FLRW braneworld cosmology living on the other side of a black
hole is expressed holographically. The simplest version of such a configuration is found to be
unstable.

• Chapter 10 investigates some wilder conjecture, giving the basics of the relation between
tensor networks and cosmological spacetimes. We begin by relating the tensor network view-
point to the approach of chapter 8 by showing that the precise interpretation of the boundary
field theory may not be important for the emergence of classical geometry in the bulk using
controlled machinery. After this, we give an introduction to tensor networks and the specific
network MERA. We demonstrate the AdS/MERA and dS/MERA correspondences and check
some consistency conditions coming from known gravitational physics, mostly following the
PhD thesis of Charles Cao [68].

An alternate classification is that chapters 8, 9 and 10 are respectively the conservative, moderate
and extreme versions of ’emergent gravity’.
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Chapter 8

Universal Gravity from Entanglement
Dynamics

In this chapter we try to understand in detail the precise relationship geometry and entanglement.
This begins with the understanding that the geometry described by Einstein’s field equations is dy-
namical. If entanglement equals geometry this means that we need a way to describe the dynamics
of entanglement. We do this in section 8.1, where we introduce the first law of entanglement dy-
namics. We will see that small variations in entanglement are related to the modular energy of the
CFT, similarly to how geometrical deformations are related to the stress energy in GR. In section
8.2 we show that if there exists a geometry that correctly computes the entanglement entropies for
every ball shaped region in any given CFT, this geometry must be uniquely described by Einstein’s
field equations to first order in perturbations about AdS. In the following sections we extend the
result to second order in perturbations, closely following a string of papers with Raamsdonk as a
common author [69, 63, 15].

The most striking feature about the results of this chapter is that no conjectures are invoked
and the results are very universal. With very minimal assumptions we find that any CFT admits
states that have a dual gravitational description. In the second order calculation of section 8.4 the
essential component is the construction of a very specific class of CFT states that closely resemble
the coherent states of quantum mechanics. In this sense it seems that the existence of a subspace of
gravitational states is a universal property of conformal field theories, at least if you only demand
gravity to second order in perturbations about AdS.

8.1 Entanglement First Law

The entanglement first law relates the first order variation of the entanglement entropy to a variation
of the expectation value of the Hamiltonian in a CFT. This relationship was first derived by Casini
et al. [69] for the special case of spherical regions, and later as a special case of a relationship
between modular Hamiltonians and entropy variations by Raamsdonk et al. [70].

Let us consider a CFT in d+1-dimensional Minkowski space. We choose a spatial region A and
define the local density operator as ρA. Let us further define the complement of A, A. Assuming
that the full CFT is in the pure state |Ψ〉, the local density operator in A is given by

ρA = TrA
[
|Ψ〉〈Ψ|

]
. (8.1)
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8.1. Entanglement First Law

The modular Hamiltonian HA is defined by

ρA = e−HA . (8.2)

In the general case, the modular Hamiltonian is not related to the usual one in a tractable manner.
For well chosen subregions and theories such as spatial balls in a CFT the modular Hamiltonian
may be related to the physical one, as we saw in section 4.2.4.

We now consider the behaviour of the von Neumann entropy under an arbitrary variation of
the state |Ψ〉. It is given by

δSA = δ
(
−Tr

[
ρA ln ρA

])
= −Tr

[
δρA ln ρA +

�
�
��ρA
δρA
ρA

]
= Tr[δρAHA]
= δ 〈HA〉 ,

(8.3)

where in the second step we used that normalization of ρ = ρA + δρ together with linearity of the
trace implies that Tr[δρ] = 0. Therefore, for any spatial region we have that under an arbitrary
perturbation of an arbitrary state,

δSA = δ 〈HA〉 . (8.4)

The Ryu-Takayanagi conjecture gives us a gravitational interpretation of the lefthand side in terms
of extremal surfaces. The righthand side is related to the asymptotic metric as in the Fefferman-
Graham analysis of section 6.2.3. Another interesting property is that the equation equates geom-
etry on the left with an energy on the right, reminiscent of the Einstein field equations.

In section 8.2 we show, specifying |Ψ〉 to be the vacuum state, that equality of both sides of
this expression to first order imply the linearized Einstein field equations around pure AdS.

Hamiltonian-Entropy Relation for Spatial Balls in a CFT

For a CFT living in d + 1 dimensional Minkowski space we may relate the modular Hamiltonian
to the stress energy tensor of the theory. We showed this in section 4.2.4 by using conformal
transformations to relate the ball and the Rindler wedge. We then used the known form of the
Rindler Hamiltonian as well as the transformation of the stress tensor by a Schwarzian under the
inversion of these conformal transformations to obtain equation (4.183)

HA = 2π
∫
A

ddxR
2 − r2

2R T00(x) , (8.5)

where R is the radius of the ball, and r is a radial coordinate with origin at the center of the ball
and T00 is the expectation value of the 00-component of the stress energy tensor. The only quantity
in this expression that depends on the state |Ψ〉 is the stress energy tensor, so we find that

δ 〈HA〉 = 2π
∫
A

ddxR
2 − r2

2R δT00(x) ≡ δEhyp
A , (8.6)

where we have defined the hyperbolic energy Ehyp
A of the region A.
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Chapter 8. Universal Gravity from Entanglement Dynamics

8.2 Einstein Equations From from CFT Entanglement First Law
In the previous section we found the relation

δSA = δEhyp
A . (8.7)

The lefthand side may be interpreted in terms of extremal surfaces via the Ryu-Takayanagi for-
mula. The righthand side may be interpreted in terms of the ”boundary metric” as defined in the
Fefferman-Graham analysis of section 6.2.3. We will now proceed to find the bulk duals of the left-
and righthand sides of equation (8.7). We will discover that equation (8.7) holds for all possible
choices of ball A in all boundary Lorentz frames if and only if the bulk Einstein field equations
are satisfied to first order in perturbations about pure AdS. In the following we will consider a d+1
dimensional CFT dual to AdSd+2.

Gravitational Computation of δS

The Ryu-Takayanagi relation tells us that SA is given by the area of a codimension two surface Ã
in the bulk that fulfills ∂Ã = ∂A. Explicitly, SA is related to area of Ã by

SA = Area[Ã]
4GN

. (8.8)

The surface Ã extremizes the area functional

Area(G,Xext) =
∫
Ã

ddσ
√
−g (8.9)

where g is the induced metric on Ã and Xext describes the embedding of the extremal surface in
the bulk spacetime. The induced metric g is related to the bulk metric G by a pullback

gab = Gµν
∂Xµ

∂σa
∂Xν

∂σb
. (8.10)

We want to consider perturbations about pure bulk AdS, and we will use Poincaré coordinates in
which the metric takes the form

ds2 = G0
µνdxµdxν = 1

z2 (−dt2 + dz2 + d~x2) . (8.11)

Here, the AdS radius L has been set to 1. The boundary ∂A is defined in these coordinates by

~x2 = R2 , z = 0 . (8.12)

We showed in section 7.2.3 that the bulk extremal surface Ã is the half-sphere defined by

z2 + ~x2 = R2 , z ≥ 0 . (8.13)

Let us now consider a small variation of the area functional A, letting Gµν = G0
µν + δGµν and

X = Xext + δX. This changes the extremal surface according to

A[G0, Xext]→ A[G0 + δG,Xext + δX] . (8.14)

The original surface was extremal, so the variation of X doesn’t contribute to first order:

A[G0, Xext + δX] = A[G0, Xext] +O
(
(δX)2

)
. (8.15)

217



8.2. Einstein Equations From from CFT Entanglement First Law

Therefore we may consider a variation only with respect to the metric of the area functional. We
find

δGA =
∫

ddσ1
2
√
−g0g

ab
0 δgab (8.16)

where δgab means ∂Xµ

∂σa
∂Xν

∂σb
δGµν . We have thus shown that the first order perturbation of the

area functional A is just the perturbation of the bulk metric integrated over the extremal surface.
Parametrizing the extremal half-sphere by σi = xi, explicitly performing the pullback and inserting
S = A/4GN one finds that

δS = R

8GN

∫
ddx(δij −

1
R2xixj)H

ij . (8.17)

Gravitational Computation of δEhyp
A

We would now wish to give a gravitational interpretation to the RHS of equation (8.7). Let us
consider the Fefferman-Graham near boundary representation of AdS with L = 1

ds2 = 1
z2 (dz2 + dxµdxµ + hµν(x,z)dxµdxν) . (8.18)

This metric only differs from pure AdS in Poincaré coordinates by the perturbation hµν(x,z). In
section 6.2.3 we defined the boundary metric γµν = hµν(x,0), and argued that it was related to the
boundary stress tensor by equation (6.136):

〈Tµν〉 = d

16πGN
γab . (8.19)

Then, inserting into equation (8.6) we find that

δEhyp
A = d

16GN

∫
A

ddxR
2 − r2

R
δγ00(x) . (8.20)

This is an integral of the boundary metric γ = h(0,x) over the boundary region A.

8.2.1 Linearized Einstein Field Equations from δS = δE

We can now use the results we just derived to prove that δS = δE is equivalent to the perturbed
metric G = G0 +δG obeying the linarized Einstein field equations (EFE). We will specialize to 2+1
boundary dimensions as the simplest nontrivial example, but we will use a method that generalizes
in a straightforward way to arbitrary dimension. In section 4 of [70] a proof is carried out without
assuming analyticity of the metric, but it contains several steps that are specific to 2 + 1 boundary
dimensions1.

In the following we will multiply both sides of δS = δE by 8GNR for tidiness. Since we are in
three boundary dimensions, d = 3. We denote the boundary region by A and the bulk half-sphere
with the same boundary as A by SA. Equations (8.17) and (8.20) then tell us that for a disk of

1Another alternative proof is given by [69], but they only show that δS = δE is satisfied by metrics satisfying the
linearized Einstein equations, i.e. only one direction of the equivalence.
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Chapter 8. Universal Gravity from Entanglement Dynamics

any radius R, centered at any boundary spatial point (x0, y0) the bulk surface integral

8GNRδS ≡ δŜ =
∫
SA

dxdy
[
hxx

(√
R2 − x2 − y2, t, x+ x0, y + y0

)
(R2 − x2)

+hyy
(√

R2 − x2 − y2, t, x+ x0, y + y0

)
(R2 − y2)

−2hxy
(√

R2 − x2 − y2, t, x+ x0, y + y0

)
xy

] (8.21)

is equal to the boundary surface integral

8GNRδEhyp ≡ δÊ = 3
2

∫
A

dxdy (R2 − x2 − y2)htt(0, x+ x0, y + y0) . (8.22)

The linearized Einstein equations about an AdS background are given by

hµ
µ = 0 , ∂µh

µν = 0 , 1
z4∂z

(
z4∂zhµν

)
+ ∂2hµν = 0 . (8.23)

These are the zz, zµ and µν components of the bulk einstein field equations

RMN −
1
2RgMN − 3gMN = 0 (8.24)

for the metric in 8.18. We have used that in our units, the cosmological constant is −3 in four
spacetime dimensions.

EFE ⇒ δS = δE

The key ingredient in this particular proof is to assume that teh entropy SA and hyperbolic energy
Ehyp
A can be Taylor expanded as a function of the radius R of the boundary ball. This gives us an

infinite set of relations, order by order in R relating δSA and δEhyp
A . This implements the balls of

”all radii” condition mentioned before. The goal is to show that given that h solves the linearized
EFE (equation (8.23)), δS = δE is satisfied.

It suffices to expand in powers of z, since z is defined by z =
√
R2 − x2 − y2. We define

hµν(z,x,y) =
∑
n=0

znh(n)
µν (x,y). (8.25)

Note that in this notations hµν(0,x,y) = γµν = h
(0)
µν . It is possible to show that the integrals in

equations (8.21) and (8.22) can be performed explicitly term by term in an expansion. To do this
we expand h(z,x,y) over A in powers of x, y as well. The general result used is∫

A
dxdy(R− x2 − y2)n/2x2mxy2my = Rn+2mx+2my+2In,mx,my (8.26)

where
In,mx,my =

Γ(mx + 1
2)Γ(my + 1

2)Γ(n2 + 1
2)

Γ(n2 +mx +my + 2) . (8.27)

Then, by inserting into equation (8.22) we find that

δÊ = 3
2

∞∑
mx,my=0

R2+2mx+2myI2,mx,my(∂x)2mx(∂y)2myh
(0)
tt (t,x0,y0) (8.28)
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and for equation (8.21)

δŜ =
∑

n,mx,my=0
Rn+2mx+2my+2

[
1

(2mx)!(2my)!
(
In,mx,my − In,mx+1,my

)
(∂x)2mx(∂y)2myh(n)

xx (t,x0,y0)

+ 1
(2mx)!(2my)!

(
In,mx,my − In,mx,my+1

)
(∂x)2mx(∂y)2myh(n)

xx (t,x0,y0)

−2R2 1
(2mx)!(2my)!

In,mx+1,my+1(∂x)2mx+1(∂y)2my+1h(n)
xy (t,x0,y0)

]
.

(8.29)
Note that the mx + 1 type factors in the I’s are there to match the powers of R between terms.
The next step is to use the linearized Einstein equations to eliminate h(n)

xy from equation (8.29).
Inserting the expansion of h the linearized EFE (equation (8.23)) become

h
(n)
tt = h(n)

xx + h(n)
yy (8.30)

∂th
(n)
tt = ∂xh

(n)
tx + ∂yh

(n)
ty (8.31)

∂th
(n)
xt = ∂xh

(n)
xx + ∂yh

(n)
xy (8.32)

∂th
(n)
yt = ∂xh

(n)
yx + ∂yh

(n)
yy (8.33)

h(n)
µν = 1

n(n+ 3)(∂2
t − ∂2

x − ∂2
y)h(n−2)

µν , n ≥ 2 (8.34)

h(1)
µν = 0 . (8.35)

equation (8.30) is just the traceless condition for each order in z with the components written out.
The same can be said about equations (8.31)-(8.33), they are just the order by order divergence-free
condition of the linearized EFE. The last two equations follow straightforwardly by inserting the
expansion into the last of the linearized EFE in equation (8.23).

To solve for h(n)
xy in terms of the other components, let us start by applying two time derivatives

to both sides of equation (8.30). By then inserting equations (8.31)-(8.35) in sequence we find

∂2
t h

(n)
tt = ∂2

t

(
h(n)
xx + h(n)

yy

)
,

∂t
(
∂xh

(n)
tx + ∂yh

(n)
ty

)
= ∂2

t

(
h(n)
xx + h(n)

yy

)
,

∂x
(
∂xh

(n)
xx + ∂yh

(n)
xy

)
+ ∂y

(
∂xh

(n)
yx + ∂yh

(n)
yy

)
= ∂2

t

(
h(n)
xx + h(n)

yy

)
,

∂2
xh

n
xx + ∂2

yh
(n)
yy + 2∂x∂yh(n)

xy = ∂2
t

(
h(n)
xx + h(n)

yy

)
,

∂2
xh

n
xx + ∂2

yh
(n)
yy + 2∂x∂yh(n)

xy = (∂2
x + ∂2

y)(h(n)
xx + h(n)

yy ) + (n+ 2)(n+ 5)
(
hn+2
xx + hn+2

xx

)
,

2∂x∂yh(n)
xy = (∂2

xh
(n)
yy + ∂2

yh
(n)
xx + (n+ 2)(n+ 5)

(
hn+2
xx + hn+2

xx

)
.

Since derivatives commute it is straightforward to use this last equation to eliminate h(n)
xy from

equation (8.29). We find that the variation of the gravitational entropy is

δŜ =
∞∑

n,mx,my=0
Rn+2mx+2my

(
1

(2mx)!(2my)!
∂2mx
x ∂2mx

y Cxxn,mx,myh
(0)
xx (t,x0,y0)

+ 1
(2mx)!(2my)!

∂2mx
x ∂2mx

y Cyyn,mx,myh
(0)
yy (t,x0,y0)

) (8.36)
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where the coefficients C for n ≥ 2 are

Cxxn,mx,my = In,mx,my − In,mx+1,my −
2my

2mx + 1In,mx+1,my −
n(n+ 3)

(2mx + 1)(2my + 1)In−2,mx+1,my+2

= 0 ,

Cyyn,mx,my = In,mx,my − In,mx,my+1 −
2mx

2my + 1In,mx,my+1 −
n(n+ 3)

(2mx + 1)(2my + 1)In−2,mx+1,my+2

= 0 ,

whereas for n = 1 and n = 0 they are

Cxx1,mx,my = I1,mx,my − I1,mx+1,my −
2my

2mx + 1I1,mx+1,my = 4
3I3,mx,my ,

Cyy1,mx,my = I1,mx,my − I1,mx,my+1 −
2mx

2my + 1I1,mx,my+1 = 4
3I3,mx,my ,

Cxx0,mx,my = I0,mx,my − I0,mx+1,my −
2my

2mx + 1I0,mx+1,my = 3
2I2,mx,my ,

Cyy0,mx,my = I0,mx,my − I0,mx,my+1 −
2mx

2my + 1In,mx,my+1 = 3
2I2,mx,my

after simplification by using the definition of I (and the Γ’s inside). Using that h(1)
µν = 0 as well as

the results for the C’s, only the n = 0 term of the sum in equation (8.29) survives and we have

δŜ =
∞∑

mx,my=0
R2mx+2my+2 1

(2mx)!(2my)!
3
2I2,mx,my∂

2mx
x ∂2mx

y

(
h(0)
xx + h(0)

yy

)

=
∞∑

mx,my=0
R2mx+2my+2 1

(2mx)!(2my)!
3
2I2,mx,my∂

2mx
x ∂2mx

y

(
h

(0)
tt

)
= δÊ .

(8.37)

where we have once again used equation (8.33). We may conclude that assuming that h satisfies
the linear Einstein equations implies that δS = δEhyp is satisfied.

δS = δE ⇒ EFE

We just showed that δS = δE is satisfied by solutions to the Einstein field equations. We will now
show that this applies only if h satisfies the linearized EFE. That is, we will prove that the unique
theory compatible with the Ryu-Takayanagi formula for the entanglement entropy of all boundary
spatial balls of all radii in all Lorentz frames to first order is linearized Einstein gravity. If we take
the Ryu-Takayanagi formula as a fundamental relationship between entanglement and geometry,
then this provides us a tool that lets us view Einstein gravity as the unique geometric theory that
emerges from the CFT entanglement structure.

The trick here is to use a proof by contradiction. Let hEFEµν denote the bulk metric perturbation
that satisfies the linearized EFE’s in the bulk as well as hEFEµν (0,x) = (16πGN/3)Tµν . Let hµν
denote a supposed different metric perturbation that satisifies the same boundary condition and
δS = δEhyp, but not the EFE. It follows that ∆ = h− hEFE satisifies

∆µν(z = 0, t,x,y) = 0 . (8.38)
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8.2. Einstein Equations From from CFT Entanglement First Law

The goal is top show that this restriction, as well as the restrictions coming from δS = δEhyp for
all radii and Lorentz frames sets ∆ = 0 in all of the bulk. Explicitly, we have

δŜ = 0 =
∫
A

dxdy
[
∆xx

(√
R2 − x2 − y2, t, x+ x0, y + y0

)
(R2 − x2)

+∆yy

(√
R2 − x2 − y2, t, x+ x0, y + y0

)
(R2 − y2)

−2∆xy

(√
R2 − x2 − y2, t, x+ x0, y + y0

)
xy

]
.

(8.39)

We use the same integral relation as before (equation (8.26)) and expand ∆ in powers of z to solve
it. This means that we assume that ∆ is equal to its multivariate Taylor expansion, i.e. that ∆ is
analytic. We solve order by order in R to implement the all radii condition. By defining

∆µν =
∞∑
n=0

zn∆(n)
µν (0,x,y) , (8.40)

and inserting into equation (8.39), we find that

δŜ =
∑

n,mx,my=0
Rn+2mx+2my+2

[
1

(2mx)!(2my)!
(
In,mx,my − In,mx+1,my

)
(∂x)2mx(∂y)2my∆(n)

xx (t,x0,y0)

+ 1
(2mx)!(2my)!

(
In,mx,my − In,mx,my+1

)
(∂x)2mx(∂y)2my∆(n)

xx (t,x0,y0)

−2R2 1
(2mx)!(2my)!

In,mx+1,my+1(∂x)2mx+1(∂y)2my+1∆(n)
xy (t,x0,y0)

]
.

(8.41)
Using this, vanishing of terms at order RN+2 implies

∆(N)
xx (t,x0,y0) + ∆(N)

yy (t,x0,y0) =
∑

mx,my 6=0
CN,mx,myxx ∂2mx

x ∂2my
y ∆(N−2mx−2my)

xx (t,x0,y0)

CN,mx,myyy ∂2mx
x ∂2my

y ∆(N−2mx−2my)
yy (t,x0,y0)

CN,mx,myxy ∂2mx−1
x ∂2my−1

y ∆(N−2mx−2my)
xy (t,x0,y0) .

(8.42)

The C coefficients can be read off from equation (8.41), for the first few orders they are given by
(suppressing the (t,x0,y0) argument of the ∆(n))

∆(0)
xx + ∆(0)

yy = 0 ,
∆(1)
xx + ∆(1)

yy = 0 ,

∆(2)
xx + ∆(2)

yy = −1
4(∂2

y∆(0)
xx + ∆2

x∆(0)
yy )− 3

20(∂2
x∆(0)

xx + ∆2
y∆(0)

yy ) + 1
5(∂x∂y∆(0)

xy ) ,

∆(3)
xx + ∆(3)

yy = −1
6(∂2

y∆(1)
xx + ∆2

x∆(1)
yy )− 1

6(∂2
x∆(1)

xx + ∆2
y∆(1)

yy ) + 1
9(∂x∂y∆(1)

xy ) .

(8.43)

This set of equations determines the linear combination ∆(n)
xx + ∆(n)

yy to all orders in terms of lower
order terms. Apart from the constraint that ∆µν(0,t,x,y) = 0, implying ∆(0)

µν = 0, the remaining
components of ∆(0)

µν are completely unconstrained.
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To get further we need to demand that equation (8.39) holds in in an arbitrary Lorentz frame
on the boundary. Explicitly we may consider a general Lorentz boost in three dimensions, given by

Λ =


γ γβx γβy

γβx 1 + β2
x
γ2

γ+1 βxβy
γ2

1+γ
γβy βxβy

γ2

1+γ 1 + β2
y
γ2

γ+1

 (8.44)

Then, since ∆µν is supposed to be a tensor, we have

∆xx + ∆yy = ΛxµΛxν∆µν + ΛyµΛyν∆µν , ∆xy = ΛµxΛyν∆µν . (8.45)

Up to a constant this tells us that

∆xx + ∆yy ∼ ∆ii + 2βi∆it + β2(∆tt −
1
2∆ii) + (βiβj −

1
2δijβ

2)∆ij (8.46)

The first equation in (8.43) is still automatically satisfied since the vanishing of a tensor is a Lorentz
invariant statement. For the second equation, we find that

∆(1)
ii + 2βi∆(1)

it + β2(∆(1)
tt −

1
2∆(1)

ii ) + (βiβj −
1
2δ

(1)
ij β

2)∆(1)
ij = 0 . (8.47)

For fixed x0, y0 this is a polynomial equation for βi. Equation equation (8.47) must vanish for an
arbitrary boost, so the polynomial must be zero for all β, rendering it identically zero. At order β0

this implies
∆(1)
ii = 0 . (8.48)

To order β we find
∆(1)
it = 0 . (8.49)

To order β2 we have two equations,

∆(1)
tt = 1

2∆(1)
ii = 0

∆(1)
ij = δij

1
2∆(1)

kk = 0 .
(8.50)

Thus, ∆(1)
µν = 0. In equation (8.43), all terms beyond the third have a nontrivial righthand side.

This righthand side luckily only depends on lower order ∆(n), the two first of which we set to zero.
Thus, we only have to prove that the lefthand side has to vanish at all orders in n given that
the righthand side is zero. This follows trivially by setting 1 → n in the preceding analysis. By
induction we then have that ∆(n)

µν = 0 for all n, proving that the first law of entanglement together
with the Ryu-Takayanagi formula uniquely imply the linear EFE in the bulk as long as we consider
only analytic metrics.

8.3 Quantum Fisher Information
In the previous section we introduced the first law of entanglement for infinitesimal variations
around a reference state. It would be useful to find higher order constraints on the relationship
between the Hamiltonian and the variation of the entropy. This is provided by the positivity of
relative entropy, whose second order variation is called the quantum Fisher information. This
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8.3. Quantum Fisher Information

quantity will let us extend the result of the previous section to second order in perturbation theory,
as well as letting us include bulk matter fields.

The first law of entanglement has a natural generalization to finite perturbations ∆ in the form
of the inequality

∆ 〈HA〉 −∆SA ≥ 0 . (8.51)

To show this, remember the definition of the quantum relative entropy as

S(ρ||ρ0) = Tr [ρ ln ρ− ρ ln ρ0] . (8.52)

The relative entropy is non-negative, as we showed in full generality in section 4.1.4. Let H0 =
− ln ρ0 be the modular Hamiltonian of the reference state. Then,

S(ρ||ρ0) = Tr [ρ ln ρ+ ρ0 ln ρ0 − ρ0 ln ρ0 − ρ ln ρ0]
= Tr [−(ρ− ρ0) ln ρ0 + ρ ln ρ− ρ ln ρ0]
= ∆ 〈H0〉 −∆S

(8.53)

together with positivity of relative entropy automatically implies equation (8.51). In addition,
monotonicity of relative entropy implies that for A ∈ B,

S(ρA||ρ0,A) ≤ S(ρB||ρ0,B) . (8.54)

The modular Hamiltonian is related to the boundary CFT stress tensor by equation (4.183), so for
spatial balls on the boundary we have

2π
∫
A

ddxR
2 − r2

2R T00(x)−∆SA ≥ 0 (8.55)

where the lefthand side must increase monotonically with R due to monotonicity

d
dR

(
2π
∫
A

ddxR
2 − r2

2R T00(x)−∆SA

)
≥ 0 . (8.56)

Positivity of the relative entropy implies that ρ = ρ0 is a minimum of S(ρ||ρ0). This means
that first-order variations away from ρ0 must vanish. Therefore, we have that

S(ρ0 + δρ||ρ0) = δ 〈H0〉 − δSA = 0 , (8.57)

which is just us recovering the first law of entanglement. Let us in the following denote d
dε(. . .) ≡

˙(. . .) and take ρ = ρ0 + εδρ+ ε2δ2ρ . . .. We may now expand to second order and find

δ2S(ρ0 + δρ||ρ0) = 1
2

d
dεTr

[
ρ̇ ln ρ+ ρ ˙(ln ρ)− ρ̇ ln ρ0

] ∣∣∣∣∣
ε=0

= 1
2Tr

[
ρ̈ ln ρ+ 2ρ̇ ˙(ln ρ) + ρ ¨(ln ρ)− ρ̈ ln ρ0

] ∣∣∣∣∣
ε=0

= 1
2Tr

[
ρ̇ ˙(ln ρ)

]
≡ 〈δρ, δρ〉

(8.58)

where we have defined 〈δ, δ〉, the quantum Fisher information. The penultimate step uses the fact
that Tr[ρ ˙(ln ρ)] = Tr[δρ] = 0 ∀ε, meaning ∂nε Tr[ρ ˙(ln ρ)] = 0 for all n. Specifically the identity for
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Chapter 8. Universal Gravity from Entanglement Dynamics

n = 1 was used. The vanishing of the trace of the variation follows as usual because the state
perturbation must conserve the unit trace of the density operator.

The quantum Fisher information can be promoted to an inner product on the tangent of the
manifold defined by the set of states ρ0 according to

〈δρ1, δρ2〉 ≡
1
2 (〈δρ1 + δρ2, δρ1 + δρ2〉 − 〈δρ1, δρ1〉 − 〈δρ2, δρ2〉) . (8.59)

Since the relative entropy is positive definite the Fisher information metric is nondegenerate and
non-negative, meaning it may be treated as a Riemannian metric.

We may obtain an explicit form of the Fisher information that will be of use in the next section.
Let us denote ρ(ε) = ρ0 + εδρ+ ε2δ2ρ . . .. We may then use the identities2

− ln(X) =
∫ ∞

0

ds
s

(
e−sX − e−s

)
, (8.60)

d
dεe

A+εB =
∫ 1

0
dx eAxBe(1−x)A (8.61)

to rewrite the third line of equation(8.58) according to

1
2

d2

dε2S(ρ(ε)||ρ0)
∣∣∣
ε=0

= 1
2

∫ 1

0
dx
∫ ∞

0
dsTr

[
δρe−sxρ0δρe−(1−x)sρ0

]
. (8.62)

Here we have first applied equation (8.60) to the logarithmic term in equation (8.58), keeping only
the zeroth order term in ε. The application of equation (8.61) to obtain equation (8.62) is then
straightforward. By picking a basis in which ρ0 is diagonalized we can express the trace in terms
of the eigenvalues of ρ0, ρa as

(δρ)abe−xρbs(δρ)bae−(1−x)ρas = ex(ρa−ρb)s−ρas(δ2ρ)ba(δρ)ab (8.63)

where sums over a and b are implied. For ρa = ρb the integration over x is trivial, while in the case
ρa 6= ρb it is elementary. We find that

1
2

d2

dε2S(ρ(ε)||ρ0)
∣∣∣
ε=0

= 1
2

∫ ∞
0

ds
[ ∑
ρa=ρb

e−ρas(δρ)ba(δρ)ab +
∑
ρa 6=ρb

e−ρas
1

(ρa − ρb)s
(
e(ρa−ρb)s − 1

)
(δρ)ba(δρ)ab

]

= 1
2

∫ ∞
0

ds
[ ∑
ρa=ρb

e−ρas(δρ)ba(δρ)ab +
∑
ρa 6=ρb

e−ρbs − e−ρas

(ρa − ρb)s
(δρ)ba(δρ)ab

]
(8.64)

The first term is simple to integrate, while for the second we reuse equation (8.60):∫ ∞
0

ds
∑
ρa 6=ρb

e−ρbs − e−s − e−ρas + e−s

(ρa − ρb)s
(δρ)ba(δρ)ab

=
∑
ρa 6=ρb

ln ρa − ln ρb
(ρa − ρb)

(δρ)ba(δρ)ab .
(8.65)

2The first identity is shown by working in a basis that diagonalizes X. One then notes that both sides are zero for
X = 1. By differentiating both sides with respect to X one sees that they have the same derivative at every point,
implying equality of the full functions. The second identity is shown by expanding both sides in powers of ε and
performing the integration explicitly.
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And we see finally that

1
2

d2

dε2S(ρ(ε)||ρ0)
∣∣∣
ε=0

= 1
2
∑ 1

ρa
(δρ)ba(δρ)ab + 1

2
∑
ρa 6=ρb

ln ρa − ln ρb
(ρa − ρb)

(δρ)ba(δρ)ab . (8.66)

There is another representation of the Fischer information available that ends up becoming propor-
tional time-ordered correlations functions in modular time. This representation is the key result
enabling the second order CFT analysis in the next section. It is possible to show that

1
4

∫ ∞
−∞

e
isx
2π

1 + cosh(s) = x

2(ex/2 − e−x/2)
, (8.67)

by performing a contour integral around the upper half plane. Inserting x = ln
(
ρb
ρa

)
we see that

x

2(ex/2 − e−x/2)
= √ρaρb

ln ρb − ln ρa
2(ρb − ρa)

(8.68)

so that the integral representation using equation (8.67) is given by

1
2

d2

dε2S(ρ(ε)||ρ0)
∣∣∣
ε=0

=
∫ ∞
−∞

ds 1
1 + cosh(s)

1
√
ρaρb

(
ρb
ρa

) is
2π

(δρ)ba(δρ)ab (8.69)

Restoring matrix notation (inserting ρa between contracted a’s et cetera), we find

1
2

d2

dε2S(ρ(ε)||ρ0)
∣∣∣
ε=0

= 1
4

∫ ∞
−∞

ds 1
1 + cosh(s)Tr

[
δρρ
−1

2−
is
2π

0 δρρ
−1

2 + is
2π

0

]
. (8.70)

Making the change of variables s→ s± iπ(1− ε) we obtain the alternate representations

1
2

d2

dε2S(ρ(ε)||ρ0)
∣∣∣
ε=0

= −1
2

∫ ∞
−∞

ds 1
4 sinh2( s±iε2 )

Tr
[
ρ−1

0 δρρ
± is

2π
0 δρρ

∓ is
2π

0

]
, (8.71)

where the cyclicity of the trace has been used to summarize both substitutions into one expression.
The relevant hyperbolic identities used are cosh(s+ iπ) = − cosh(s) and cosh(s)−1 = 2 sinh2(s/2).
This form of the Fisher information will be used in the next section to make a connection with a
particular bulk energy density sourced by bulk matter fields, a result first arrived at in [70].

8.4 Nonlinear Gravity from Fisher Information
In [71] it is established that the quantum Fisher information associated to a boundary region A is
equivalent to the gravitational ”canonical energy”, which is associated to a bulk region anchored
to A. We will introduce the canonical energy properly in section 8.4.1. In [63] it is shown that
the equality of canonical energy and Fisher information to second order in perturbations about the
CFT vacuum implies that the EFE must be satisfied to second order in perturbations about pure
AdS. In this section the goal is to follow and recreate this result, originally obtained in [63].

To find the promised result, a particular class of excited CFT states on the boundary are
considered, constructed via a path integral. In addition the two parameters of boundary CFT, a∗
and C̃ must be taken into account. For the explicit calculation the specific relation

C̃ = πd(d− 1)
Γ(d− 2) C = a∗ (8.72)
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Figure 8.1: Near-boundary region of AdS in Fefferman-Graham coordinates. A is the ball shaped
region under consideration on the boundary, with the associated RT surface Ã indicated in red. In
light grey is the domain of dependence of A, D(A). In dark grey is the spacelike region bounded
by A and Ã, ΣA.

is necessary, where C is the central charge as determined by the normalization of the stress tensor
two-point function and a∗ is the universal O(1) term in the CFT entanglement entropy. a∗ is the
trace (or Weyl) anomaly present in CFTs on a background that is not conformally flat.

On the gravitational side, it is first shown that there exists a metric

G = GAdS + εG(1 + ε2G(2) . . . (8.73)

that gives the right Ryu-Takayanagi area for the bulk extremal surfaces corresponding to all bound-
ary balls A. Here, a lot of difficulty is introduced by the fact that we need to consider both varia-
tions in the shape of the extremal surface and the metric perturbation. This is solved by picking
a ”Hollands-Wald” gauge that cancels the deformation of the surface itself, imposing extra gauge
conditions on the metric between the extremal surface Ã and the boundary region A. The geometry
under consideration for all of this section is imaged in figure 8.1

The main gravitational result will be that the gravitational interpretations of 〈H〉σ = EA and
SA, Egrav and Sgrav fulfill the identity

d
dε (δEgrav − δSgrav) =

∫
ΣA

ω(g, dg
dε ,LξAg) +

∫
ΣA
G (8.74)

where the objects in the integrand are to be defined later and ΣA is the spacelike volume enclosed by
SA and A. In contrast to the first-order case Egrav is not just related to the asymptotic Fefferman-
Graham perturbation, but contains contributions from bulk matter. Sgrav is defined by the HRT
formula using the second-order perturbed metric in equation (8.73).

Correspondingly on the CFT side we have the identity

d
dε(EA − SA) = d

dε(S(σ + ερ||σ)) (8.75)

at first order in ε, as is clear from replacing ∆→ ε in equation (8.58). We require the equivalence
of the left hand sides of equations (8.74) and (8.75), and so the goal becomes to show that

d
dε(S(σ + ερ||σ)) =

∫
ΣA

ω(g, dg
dε ,LξAg) +

∫
ΣA
G (8.76)
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implies the Einstein equations to second order. Applying a second d/dε to the equation and letting
ε→ 0 makes the LHS the quantum Fisher information. Explicitly, the second order master equation
becomes

d2

dε2 (S(σ + ερ||σ))
∣∣∣
ε=0

=
∫

ΣA
ω(g(0), δg(1),LξAδg

(1))−
∫

ΣA
2ξqAE

(2)
ab ε

b (8.77)

where E(2) denotes the second order Einstein tensor. The first term on the RHS defines the
canonical energy of the gravitational theory, defined as the quantity that is conserved under the
modular time translation ξA generated by the modular Hamiltonian of the region ΣA.

Relation to Previous First Order Calculation

Setting ε = 0 in equation (8.76) extracts the first order in ε of S(σ + ερ||σ), but we know that the
first derivative of the relative entropy vanishes. It turns out the righthand side becomes∫

ΣA
ξaAE

(1)
ab ε

b = 0 , (8.78)

where εa is a volume form, ξaA is the timelike Killing vector field generated by the bulk modular
Hamiltonian and E(1)

ab is the first order Einstein tensor. In this formalism, it is possible to perform
an analog of the proof of section 8.2 by demanding that equation (8.78) holds for all balls in all
frames showing that E(1)

µν must vanish. The meaning of these gravitational quantities will be made
clear in the following sections.

8.4.1 Gravitational Side of the Derivation

In this subsection we define the Hollands-Wald gauge. We then introduce the covariant phase
space formulation of general relativity that lets us write down the relevant gravitational identities.
We also formulate the gravitational identity away from the Hollands-Wald gauge and include bulk
matter field contributions. This section assumes some familiarity with general relativity beyond
the level of the rest of this text.

Choice of Hollands-Wald Gauge

To make clear what the Hollands-Wald gauge is, we will work in Fefferman Graham coordinates
with

ds2 = 1
z2

[
dz2 + hµν(z,xµ)dxµdxν

]
, (8.79)

and pure AdS given by hµν = ηµν
In a Poincaré patch of AdS, the bulk extremal surface Ã that computes the entanglement

entropy of the boundary ball A is a half-sphere defined by

z2 + (x− x0)2 = R2 . (8.80)

There is a region ΣA that is has Ã∪A as it’s boundary. The domain of dependence of ΣA represents
a Rindler wedge of AdS. There exists a Killing vector ξA that vanishes at Ã given by

ξA = −2π
R

(t− t0)
[
znz + (xi − xi0)ni

]
+ π

R
[R2 − z2 − (t− t0)2 − (~x− ~x0)2]nt , (8.81)

where nµ is the unit covector in the µ direction. This corresponds to the vector pointing tangentially
to the worldline of a Rindler observer with constant acceleration, and may be seen as the vector
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field generated by the bulk modular Hamiltonian of the AdS Rindler wedge defined by the domain
of dependence of ΣA.

Near the boundary of AdS, ξA approaches

ξA = −2π
R

(t− t0)
[
(xi − xi0)ni

]
+ π

R
[R2 − (t− t0)2 − (~x− ~x0)2]nt . (8.82)

defining an asymptotic symmetry of AdS. This has to be a symmetry of the boundary CFT,
so equation (8.82) will impose a relation between the boundary CFT and the bulk gravitational
theory3.

Let us now consider instead the perturbed spacetime

G(ε) = GAdS + εG(1) + ε2G(2) . . . (8.83)

Let us denote by Ã(ε) the extremal surface associated to the boundary ball in this geometry. In
section 7.2.2 the fact that Ã has fixed coordinates to first order in ε is implied by Ã being extremal
in the unperturbed spacetime. It turns out that we can pick a gauge for the metric G such that the
same coordinate embedding X for the extremal surface remains extremal to all orders in ε. The
existence of such a gauge near extremal surfaces was proven by Hollands and Wald in the context of
perturbations about a black hole background [72]. This allows us to put Ã at the same coordinates
to second order for all metrics G(ε). In addition, remaining freedom in the choice of coordinates
makes sure that ξA with the same coordinate description as in the unperturbed AdS continues to
satisfy the Killing equations on Ã.

The explicit gauge conditions become

• that the variation of the area functional vanishes to first order in both X and G. This is
equivalent to the vanishing of the trace of the extrinsic curvature to first order in ε,

• The Killing equation ∇(µ(ξA)ν) = 0 is satisfied on Ã,

where both of the restrictions only need to hold on the surface Ã. The variation of the area func-
tional is proportional to

∫ √
−ggαβδgαβ where g is the induced metric on the extremal surface. Let

us pick coordinates such that the extremal surface is parametrized by σα = Xα, Xα = (constant)
where α and α are tangential and orthogonal coordinates to the surface, respectively. The induced
metric is

gαβ = ∂Xµ

∂σα
∂Xν

∂σβ
Gµν = Gαβ , (8.84)

where we used our choice of coordinates. The variation of the area functional with respect to the
bulk metric is given by:

δGA[G,X] = 1
2

∫ √
−ggαβδgαβ . (8.85)

Note that X does not depend on the metric perturbation because we are not re-solving for the
extremal surface. The vanishing of the trace of the extrinsic curvature to first order in δG is equiv-
alent to δXA[G + δG,X] = 0 for all δX . We need only consider terms proportional to δXδG[G,X]
since it is given that the original surface was extremal. Finally, we may without loss of generality
take the shape variations δXρ to be orthogonal to the extremal surface. We then have

δXδGA[G,X] = 1
2

∫ √
−g
[1

2g
γδδXgγδg

αβδgαβ + δXg
αβδgαβ + gαβδXδgαβ

]
(8.86)

3This is essentially how the Brown-Henneaux paper finds the central charge of the boundary CFT in [57].
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where unsubscripted δ are with respect to G. We will need to know three variations

δXgαβ = 2∂X
µ

∂σα
∂(δXν)
∂σβ

Gµν + ∂Xµ

∂σα
∂Xν

∂σβ
∂Gµν
∂Xρ

δXρ

= 2∂(δXν)
∂σβ

Gαν + ∂Gαβ
∂Xρ

δXρ ≡ 2δXρKρ;αβ ,

δXg
αβ = −gαγgβδδXgγδ ,

δXδgαβ =
[
2∂X

µ

∂σα
∂(δXν)
∂σβ

+ ∂Xµ

∂σα
∂Xν

∂σβ
Xρ ∂

∂Xρ

]
δGµν

= 2∂(δXν)
∂σβ

δGαν + ∂δGαβ
∂Xρ

δXρ ,

(8.87)

where in the first variation we have used that the shape variation defines the extrinsic curvature4.
In the following, let us use the notation ∂ρ for the ρ derivative. We then have

δXδGA[G,X] = 1
2

∫ √
−gδXρGγδKρ;γδg

αβδGαβ −
∫ √
−gδXρKαβ

ρ δGαβ

+ 1
2

∫ √
−gδXρGαβ∂ρδGαβ +

∫ √
−gGαβGρβ∂αδXρ .

(8.88)

The first term is zero because the original surface was extremal, meaning the trace of the extrinsic
curvature vanishes. Knowing that the final expression is to be covariant, the only possible result is

δXδGA[G,X] =
∫ √
−g

(1
2δX

α∇αδGαα +GαβδGαα∇βδXα
)

=
∫ √
−g

(1
2∇αδG

α
α −Gαβ∇βδGαα

)
δXα ,

(8.89)

where in the partial integration we have required that the leading asymptotic of δG vanishes at the
boundary, equivalent to demanding that the spacetime remain asymptotically AdS.

Following the convention of Raamsdonk et al. in [63] the vanishing of the expression in paren-
theses gives us the explicit differential gauge condition(

∇(0)
α δGαα −

1
2∇

(0)
α δGαα

)
Ã

= 0 . (8.90)

The explicit first-order condition to preserve the Killing equation is [63]

δGαα = 0 , (8.91)

δGαβ −
1
2δ

α
βδG

α
β = 0 (8.92)

Gravitational Side of the Derivation Using Covariant Phase Space

We will now derive the gravitational identity in equation (8.74), using the covariant phase space
formalism first introduced by Lee and Wald in [73]. In principle this formalism may be applied
to the linear order case as well, but the proof carried out in section 8.2 serves as an elementary
introduction to the main idea of implying the field equations through the Ryu-Takayanagi relation.

The main point of this formalism is that it guarantees the existence of a differential form χ
such that

∫
ΣA dχ =

∫
A χ−

∫
Ã χ = δε(Egrav − Sgrav). This means that restrictions on the boundary

4This is of course exactly why extremality under shape deformations is equivalent to vanishing of the extrinsic
curvature, clear by inserting the shape variation into equation (8.85).
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integrals over A, Ã that determine Egrav, Sgrav can be transformed via Stokes’ theorem into differ-
ential restrictions in all of ΣA, similarly to the relation between integral and differential forms of
the Maxwell equations. This is important because it translates intractable nonlocal restrictions to
local differential restrictions.

Let us assume that our theory is determined by a generally covariant Lagrangian density, i.e. a
Lagrangian describing gravity plus additional fields. We can write this Lagrangian as the integral
of a differential form L

L = Lε , (8.93)

where ε is the usual volume form

ε = 1
(d+ 1)!

√
−gεa!...ad+1dxa1 ∧ . . . ∧ xad+1 . (8.94)

It will also be useful to define the induced volume form on a hypersurface of codimension k, given
by

εa1...ak = 1
(d+ 1− k)!

√
−gεa!...akbk+1...bd+1dxbk+1 ∧ . . . ∧ xbd+1 (8.95)

where the a’s are normal indices and the b’s are tangential indices of the hypersurface. To compute
the volume of a hypersurface Σ one need only contract with a set of unit vectors in the space
orthogonal to Σ and integrate VΣ =

∫
εa1...akn

a1 . . . nak . Since the free indices of the induced
volume form sum only over directions orthogonal to the hypersurface, it is zero except when fed a
set of linearly independent unit normals.

Here, we take the Lagrangian to depend on the metric G as well as potential matter fields φα,
i.e. L = L(G,φα) The variation of the Lagrangian is the equations of motion plus an eventual
boundary term. More explicitly we may write

δ(Lε) = −EabδGabε− Eαφ δφαε+ dθ(g,δg, φα, δφα) . (8.96)

Here, Eab = 0 defines the equations of motion for the metric G, and Eαφ = 0 define the equations
of motion for the matter fields. The dθ term is the total derivative term that may appear when
integrating by parts to remove the δ∂φ type terms while deriving the equations of motion.

The basic ingredient of the covariant phase space formulation of gravity is a ”symplectic current
two-form”W . In a general classical system, dynamics can be seen as a flow in phase space5 governed
by Hamilton’s equations Ẋ = ξH where ξ is a vector field determined by

ξH ·W = dH . (8.97)

Here by · we mean a contraction, and on the righthand side H is a Hamiltonian function, i.e. a
0-form. Being more explicit, ξH is determined by

ξµHWµνdxν = ∂νHdxν . (8.98)

The symplectic form takes as arguments any two perturbations (δG1, δφ1) and (δG2, δφ2) and
is expressed directly in terms of the form θ as the integral over a Cauchy surface of

ω(G; δG1, δφ1, δG2, δφ2) = δ1θ(G,φ, δG2, δφ2)− δ2θ(G,φ, δG1, δφ1) . (8.99)
5Phase space is constructed by using the fields and their derivatives as an orthogonal basis. A given initial

condition is a point in this space, and it’s time evolution traces out a trajectory. This space can be geometrized
because it admits a natural nondegenerate symplectic two-form to act like a metric.
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We can consider the metric transformation g → g + LXg where LX = ∇aXb + ∇bXa is the Lie
derivative. This transformation induces a particular flow on phase space which can be seen as
generated by a phase space Hamiltonian HX . Specifically we define the phase space Hamiltonian
by demanding that for any other deformation,

δHX = W (δG, δφ,LXG) . (8.100)

The differential form θ is also associated with Noether’s theorem. Since we consider a gravitational
theory we have diffeomorphism invariance. Therefore, the transformation δx = X is a symmetry
for any X. Then there exists a conserved current that can be found by the usual Noether procedure
that in terms of the present notation takes the form

JX = θ(δXG)−X · L , (8.101)

where the conservation equation takes the (on-shell) form

dJX = 0 . (8.102)

Because this holds for all X, JX is an exact form up to terms that vanish on-shell, and can therefore
be written as

JX = dQX +XaCa (8.103)

where Q is some differential form and Ca are quantities that vanish on-shell. By picking X = ξA
and picking the Cauchy surface that we integrate over to be ΣA, the conserved current is related
to the modular Hamiltonian of the AdS-Rindler wedge. Let us now apply this formalism to the
present scenario with gravity and a scalar field.

The main result (equation (8.74)) follows from the fact that for any metric g and vector field
X, ω applied to the first order perturbations δg, δφα as well as the Lie derivatives

(LXG)ab = ∇aXb +∇bXa , LXφ = Xa∇aφ (8.104)

is a total derivative up to a term G that vanishes on shell. That is, we can write

ω(G; δG, δφ,LXG,LXφ) = dχ(G,φ,δG, δφ,X)− G(G,φ,δG, δφ,X) . (8.105)

where χ is related to the previous discussion in that χ(G,φ) = δQX(G) + X · θ(G, δG). This is
true under very general considerations [72], but we will instead explicitly consider gravity with
a cosmological constant coupled only via the stress tensor to matter, meaning the gravitational
equations of motion will be

Eab ≡ Eabgrav(G)− 1
2T

ab(g,φα) . (8.106)

If we assumed Einstein gravity with no stringy higher derivative corrections, Eabgrav(G) would be
the Einstein tensor. Let us assume that we have the equations of motion of a free scalar field plus
Einstein gravity

Eφ =
(
∇a∇a −m2

)
φ ,

Eab = 1
16π

(
Rab −

1
2GabR+GabΛ

)
φ− 1

2Tab(φ) ,

Tab(φ) =
(
∇aφ∇bφ−

1
2gab(∇cφ∇

c +m2φ2)
)
.

(8.107)
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where all of the ∇s here and in the following equations are built from the unperturbed metric.
When deriving these equations of motion from the appropriate Lagrangian, one finds the boundary
terms

θφ(φ, δφ) = εaφ∇aδφ ,

θgrav(G, δG) = 1
16π εa

(
GacGbd −GadGbc

)
∇dδGbc .

(8.108)

where ε is the induced volume form on the boundary. With these definitions we can evaluate

ωφ(φ; δ1φ, δ2φ) = εa (δ1φ∇aδ2φ− δ2φ∇aδ1φ) , (8.109)

where the δ1δ2 terms cancel since variations commute. After considerably more algebra, we have

ωgrav(G, δ1G, δ2G) = 1
16πP

abcdef (δ2Gbc∇dδ1Gef − δ1Gbc∇dδ2Gef ) , (8.110)

where we have defined

P abcdef = GaeGbfGcd − 1
2
(
GadGbeGcf +GabGcdGef +GaeGbcGfd −GadGbcGef

)
. (8.111)

We will now state the form of χ, noting that it is straightforward to check that the following χ and
G satisfy equation (8.105)

χ(G, δG,X) = 1
16π εab

(
δGac∇cXb − 1

2δGc
c∇aXb +Xc∇bδGab −Xb∇c +Xb∇aδGcc + 16πXbδφ∇aφ

)
G(G, δεG) = XcεcE

abδεgab +XcεcE
φδεφ− 2Xaδε

(
Eabε

b
)

(8.112)
To find our geometric identity (equation (8.74)) we apply equation (8.105) to the case where the
metric is our family of perturbed metrics about AdS G(ε) so that δG = ∂εG|ε=0 and X = ξA. We
then integrate over the surface ΣA bounded by A and Ã. It follows from Stokes’ theorem that∫

A
χ−

∫
Ã
χ =

∫
ΣA

ω +
∫

ΣA
G , (8.113)

where the minus sign is bookkeeping the orientation of the surfaces involved. The first integral is
related to the variation of the area functional. Using that the surface is extremal the coordinate
variations vanish and we have

δεArea = δArea

δG
δεG = 1

2

∫
Ã
εabn

[anb]Gcd δεGcd (8.114)

where we have used det(G) = eTr[ln(G)] and that the volume form contains the determinant of the
metric. Since at Ã the Killing vector ξA vanishes, we see that

χ = 1
16π εab

(
δGac∇cξb −

1
2δGc

cGad∇dξb
)
. (8.115)

Using that ξaA = 0 we only need the partial derivative part of the covariant derivative, finding that

∇aξb = ∂aξ
bf = −2π

(
Gacn

(cnb) − δab
)
, (8.116)

where the symmetrization has been normalized. Since the volume form is antisymmetric in a and
b, the second term in equation (8.115) is killed by contraction. What survives is

χ = −1
8εab

(
Gcdn

(dnb)
)
δGac . (8.117)
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Next we combine antisymmetry in a,b and symmetry in the raised a, c indices to exchange a and
d, obtaining

χ = 1
8εabGcdn

[anb]δGcd . (8.118)

Upon integration we find that∫
Ã
χ = 1

8

∫
Ã
εabn

[anb]GcdδG
cd = 1

4δεArea[Ã] ≡ δεSgrav , (8.119)

where the final definition is the assumption of the Ryu-Takayanagi relation.
Just like in the first order case, the gravitational interpretation of the energy variation should

be an integral over A of the boundary metric up to some forefactor. More precisely, using the
holographic stress tensor relation equation (6.136) we wrote down in the first order case equation
(8.6) that

δEgrav = 〈HA〉 = dLd−3

16GN

∫
A

dd−1x
R2 − r2

R
δG00(z = 0) . (8.120)

This can be written in a more covariant form as

dLd−3

16πGN

∫
A
εaξb(z = 0)δGab(z = 0) , (8.121)

where ε is an induced volume form with respect to the boundary space, constructed
√
G(z = 0).

Note that ε 6= ε
This is also given by the integral of χ, but this time over A. Introducing the appropriate

dimensionful constants we have [63]

∫
A
χ = dLd−3

16π δε

(∫
A
ζaAg

(2)
ab ε

b
)
≡ δEgrav , (8.122)

where ζaA is the boundary value of ξaA and g(d−2)
ab is the part of the asymptotic metric h at order z2,

describing the finite part of the boundary metric.
We have thus shown the key gravitational identity, since equation (8.113) now implies

δε (Egrav − Sgrav) =
∫

ΣA
ωgrav(G, δεG,LξAG) + ωφ(φ, δεφ,LξAφ) +

∫
ΣA
G . (8.123)

We also wish to obtain a perturbative identity to second order in ε. Imposing that the first order
perturbations solve the field equations, this is given by

δ(2)
ε (Egrav − Sgrav) =

∫
ΣA

[
ωgrav(δG,LξAδG) + ωφ(δφ,LξAδφ)− 2ξaA

(
δ(2)
ε Eab

)
εb
]
, (8.124)

assuming that the Hollands-Wald gauge conditions are satisfied and given that LξAG(0) = 0. Here
E

(2)
ab is the second order Einstein equations coupled to matter, given by

E
(2)
ab =

(
δ2Eab

δGcdδGef
δGcfδGef + δEab

δGcd
δ2Gcd

)
+ δ2(Eab)φ

δ2φ
δφδφ . (8.125)
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Gravitational Identity Away From Hollands-Wald Gauge

The second order result that we wrote down equation (8.74) should be equal to the Fisher infor-
mation of the region A in the dual field theory. When comparing to the field theory computation
of the Fisher information, it is convenient to write down the second order object away from the
Hollands-Wald gauge. This is because the field theory calculation is best carried out in de Donder
gauge.

The basic ingredient is that a general first order coordinate transformation xa → xa + V a may
transform a general first order metric perturbation h into another perturbation γ that satisfies the
Hollands-Wald gauge conditions. The perturbations are related by

γ = h+ LVG , (8.126)

where G is the full metric. Given h and that γ has to satisfy the Hollands-Wald gauge, the
vector field V is fully constrained. Since diffeomorphisms are symmetries, the results about the
transformation properties of ω still hold. Using linearity of ωgrav(γ,LξAγ) in the listed arguments
we have

ωgrav(γ,LξAγ) = ωgrav(h,LξAh) + ωgrav(h,LξALVG) + ωgrav(LVG,LξA(h+ LVG)) . (8.127)

When one of the arguments of ωgrav is pure gauge (i.e. a Lie derivative of the full metric G), and
the other satisfies the linearized Einstein equations we know that ωgrav(δG,LXG) = dχ(δG,X) is
a total derivative. Then we can reexpress equation (8.127) as

ωgrav(γ,LξAγ) = ωgrav(h,LξAh) + dχ(h, [ξA, V ])− dχ(LξA(h+ LVG), V ) , (8.128)

where we have used that ω is symmetric in it’s arguments and defined

[ξA, V ]a = ξbA∂bV
a − V b∂bξ

a
A , (8.129)

using that LξAG = 0 to write LξALVG = [LξA ,LV ]G = L[ξA,V ]G. Using that the quantity h+LVG
satisfies the Hollands-Wald gauge condition, χ(LξA(h + LVG), V ) vanishes on Ã. To show this,
let us abbreviate γ̇ ≡ LξA(h+ LVG). The perturbation h+ LVG is in Hollands-Wald gauge, so γ̇
vanishes on Ã. Then χ(γ̇, V ) simplifies to (see definition in equation (8.112))

χ(γ̇, V )Ã = εab
(
∇bγ̇acV c −∇cγ̇acV b +∇aγ̇ccV b

)
= 2ε+−

(
∇[−γ̇+]

cV
c −∇cγ̇c[+V −] +∇[+|γ̇c

cV |−]
)
,

(8.130)

where we have used that the unit normals to the RT surface can chosen to be lightcone directions.
The goal is now to split this into indices parallel to the RT surface α and normal indices α. We can
pick the part of V that is parallel to the RT surface to vanish on the surface, so that V µ|Ã = V α.

All of the covariant derivatives are with respect to the unperturbed metric, and are compatible
with the unperturbed metric that raises and lowers indices. We can lower the antisymmetrized ±
indices and rearrange, keeping only the orthogonal components V α

χ(γ̇, V )Ã ∼ ε+−
(
∇[−γ̇+]αV

α −∇cγ̇c[+V−] +∇[+|γ̇c
cV|−]

)
= ε+−

(
∇[−γ̇+]αV

α − (∇αγ̇α[+ +∇αγ̇α[+)V−] +∇[+|(γ̇αα + γ̇α
α)V|−]

)
= ε+−

(
∇[−γ̇+]αV

α −∇αγ̇α[+V−] +∇[+|γ̇α
αV|−]

)
= 0 ,

(8.131)
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where in the penultimate step we used that ∇±γ̇αα|Ã = ∇αγ̇α±|Ã = 0 (coming from the fact that
γ̇ vanishes on Ã by virtue of γ being in Hollands-Wald gauge) and the last step can be checked by
summing over α = {+,−}, explicitly writing out the antisymmetrizations, using the symmetry of
the metric, metric compatibility of the ∇ to simultaneously raise/lower equal indices and explicitly
finding the cancellations6.

Picking V to vanish sufficiently fast as we approach z = 0, χ(LξA(h + LVG), V ) also vanishes
on A and we find that ∫

ΣA
dχ(LξA(h+ LVG), V ) = 0 . (8.132)

Then, the integral over ΣA of ωgrav(γ,LξA , γ) can be written as∫
ΣA

ωgrav(γ,LξA , γ) =
∫

ΣA
ωgrav(h,LξAh) +

∫
Ã
χ(h, [ξA, V ]) . (8.133)

Inserting the definition γ = h + LV g = h + ∇(aVb) into the Hollands-Wald gauge one obtains by
straightforward calculation an explicit condition on the vector field V in terms of h, given by:

(
∇α∇αVα + [∇α,∇α]V α

)
Ã

= −
(
∇αhαα −

1
2∇αh

α
α

)
Ã

LV g(0)|Ã = −LξAh|Ã .
(8.134)

The first of these is an inhomogenous Laplace equation in V , and can be solved by typical Green’s
function methods, while the second equation determines the first derivative of V away from the RT
surface.

With this, the second order gravitational result in a general gauge is

δ2(Egrav
A −Sgrav

A ) =
∫

ΣA
ωgrav(h,LξAh)+ωφ(δεφ,LξAφ)−2ξaA

(
δ(2)
ε Eab

)
εb+

∫
Ã
χ(h, [ξA, V ]) . (8.135)

This is the form of the gravitational identity that is most readily related to the CFT result that
we will now derive.

8.4.2 CFT Side of the Derivation

The CFT side of the derivation is made significantly more complicated than the first order case by
the fact that the Fisher information depends directly on the state perturbation in the field theory.
To accommodate this novel ingredient, this section proceeds in a number of distinct steps:

1. First we construct a class of CFT perturbations that is distinctly ’classical’ in the sense that
they represent coherent states.

2. Given this class of state perturbations, we are able to rewrite the Fisher information as an
integral of a two-point correlation function.

3. By using explicit maps from CFT correlation functions to Witten diagrams similarly to section
6.2.1 we can recast the correlation functions in terms of Hollands-Wald like formalism in an
auxiliary AdS spacetime. We will specifically specifically consider the two-point functions of
scalar fields and the stress energy tensor.

6This computation has been relegated to appendix A.1.
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4. After a long journey of pushing integration contours around and applying the Residue theo-
rem, we arrive at a CFT result that may be written as

δ2
εS(ρA||ρ(0)

A ) = C̃T
a∗

[∫
ΣA

ωgrav(h,LξAh) +
∫
Ã
χ(h,[ξA, V )

]
+
∫

ΣA
ωφ(h,LξAφ) (8.136)

where V is a vector field taking us from de Donder gauge to the Hollands-Wald gauge. The
introduction of a de Donder gauge is required for us to be able to integrate stress-tensor two-
point functions. As can be observed, this only differs from the gravitational result (equation
(8.135)) by the Einstein tensor. This means that demanding equality between the CFT
and gravitational results for boundary balls in all asymptotic Lorentz frames will imply the
vanishing of the EFE to second order.

Sourcing Classical Bulk States

As we mentioned in section 7.4, there should not be a clear one-to-one correspondence between CFT
states and classical geometries. Because of this, to source perturbations to the CFT vacuum that
may conceivably have a classical geometric dual, it turns out that it is good to stick to ’classical-like’
quantum states, i.e. coherent states.

The CFT vacuum can be constructed as an integral over the Euclidean half-space τ < 0, where
τ is the imaginary component of the Lorentzian time. We then consider a one parameter family of
operators λα(ε)Oα inserted into the path integral as such

|ψλ(ε)〉 =
∫
Dφe−

∫ 0
−∞ dτ

∫
dd−1x(LCFT [φ]+λα(x;ε)Oα(x))

, (8.137)

where λα(x; ε) = ελα(x) +O
(
ε2
)
.

This is similar to how background fields were turned on in string theory. Some care has to be
taken so that we do not define perturbations with infinite energy, which is achieved by demanding
that the λα vanish sufficiently fast as we approach τ = 0. In [74] it is shown that under a coherent
perturbation the entanglement entropy of spherical regions may be computed as a perturbative
series in the coupling λ, provided that λ vanishes at τ = 0.

The sources λα can be thought of as boundary conditions for a Euclidean asymptotically AdS
spacetime. Specifically, the correlation function 〈ψλ(ε)|ψλ(ε)〉 may be interpreted as a path integral
over two τ half-planes glued together across τ = 0. The gravitational field equations can be solved
in the bulk asymptotically AdS space that has the full path integration region as its boundary, with
the sources λα determining the asymptotic values of bulk fields. The τ > 0 portion has complex
conjugated sources by virtue of coming from the bra. We can then pick out the τ = 0 slice as the
initial condition for a Lorentzian spacetime, setting τ = 0 and analytically continuing according to
(φα, ∂τφα)→ (φα, i∂tφα).

To obtain the most general Lorentzian spacetimes it is necessary to let the sources be complex.
In [75] an explicit understanding of the map between Euclidean sources and Lorentzian spacetimes
has been found. In fact it seems that at the linear level any Lorentzian spacetime may be arbitrarily
closely approximated by a good choice of Euclidean sources although highly localized states require
large values of the source couplings, invalidating perturbation theory.
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Relative Entropy from Two-Point Functions

The first nonzero contribution to the variation of the relative entropy under a perturbation of the
state is given by the quantum Fisher information. It is given by

δ(2)
ε S(ρA||ρ(0)

A ) = 2F (δρ, δρ)

= −
∫ ∞
−∞

ds
4 sinh2

(
s±iε

2

)Tr((ρ(0)
A )−1δρ(ρ(0)

A )±
is
2π δρ(ρ(0)

A )∓
is
2π
)
,

(8.138)

where F (δρ, δρ) is the quantum Fisher information. By finding an explicit CFT expression for δρ,
we will see that this quantity reduces to an integral of two-point correlation functions for conformal
primary operators Oα.

We want an expression for δρ in terms of ε. First we want to construct the local density operator
ρA by gluing the Euclidean path integration region across A, and demanding that λα(τ, x) ≡
λα(−τ, x) to implement that we are constructing the density operator out of an excited state and
its complex conjugate.

〈φ−|ρA|φ+〉 = 1
Nλ

∫ φ(A+)=φ+

φ(A−)=φ−
Dφe−

∫∞
−∞ dτ

∫
dd−1x(LCFT [φ]+λα(x;ε)Oα(x)) (8.139)

where A+ and A− denotes the region A approached from the euclidean future and past respectively,
the states φ−, φ+ are arbitrary local states that serve as a notational auxiliaries, appearing as
boundary conditions for the path integral.

To construct the perturbation of the density operator ρ we use that the local density operator
can be expanded as a formal series in ελ according to

ρA = ρ
(0)
A + ε

∫
ddxλα(x)ρ(0)

A Oα(x) +O(ε2) . (8.140)

Here, note that we have taken x to also include the time direction and we have turned Oα into a
time-dependent operator. To define the time dependent operator we need to introduce the vacuum
modular Hamiltonian HA = − ln

(
ρ

(0)
A

)
. Euclidean evolution with the operator HA/2π generates

the modular time translation vector field

ζA = − 1
R
τxini + 1

2R (R2 + τ2 − xixi)nτ , (8.141)

where the ns denote unit vectors and the index i runs only over spatial indices. Note that this
differs from the case in equation (8.81) because we have yet to continue to Lorentzian signature,
and we have divided by 2π. We then define the time dependent operator O according to

Oα(x) ≡ Oα(τ, ~x) ≡ eτ
HA
2π Oα(0, ~x)e−τ

HA
2π

Ω∆(τ, ~x)
Ω∆(0, ~x) . (8.142)

Since the modular flow generates a conformal transformation, we must include a conformal factor to
make sure our time dependent conformal primary continues to transform as a primary. Ω(τ, ~x) is the
conformal factor that relates a choice of boundary metric to the flat case according to gµν = Ω2ηµν .

This conformal factor does not do anything when we are working in a Minkowski representation
of the boundary space, but in the present case it is practical to make a conformal transformation
taking the boundary space from Rd to S1×Hd−1. Before making the change of coordinates, let us

238



Chapter 8. Universal Gravity from Entanglement Dynamics

write out the explicit form of the second order metric variation given δρ as read off from equation
(8.140):

δ(2)
ε S(ρA||ρ(0)

A ) = 2F
(∫

ddxaλα(xa)ρ(0)
A Oα(xa),

∫
ddxbλα(xb)ρ

(0)
A Oα(xb)

)
= −

∫
ddxa

∫
ddxbλα(xa)λα(xb)

∫ ds
4 sinh2

(
s±iε

2

)Tr(Oα(xa)ρ(0)
A (ρ(0)

A )±
is
2πOα(τb,~x)(ρ(0)

A )∓
is
2π
)

= −
∫

ddxa
∫

ddxbλα(xa)λα(xb)
∫ ds

4 sinh2
(
s±iε

2

) ( Ω∆(τb, ~xb)
Ω∆(τb ± is, ~xb)

)±1

Tr
(
e−HAOα(xa)Oα(τb ± is,~x)

)
,

(8.143)
where we have used e−HA = ρ

(0)
A . Here it is useful to pick the sign of the ± as positive when

τa > τb and as negative when τb > τa. We can then sum up the two τ integration regions with
their respective choice of sign, yielding a time-ordered two-point function for the Oα in the vacuum
state ρ(0)

A = e−HA . Specifically, when picking the negative sign we use symmetry in the arguments
of F (δρ1, δρ2) to exchange xa ↔ xb. Then we use cyclicity of the trace to move the (ρ(0)

A )
is
2π factor

on the right to the operator O(xb) that now appears first in the trace. This cancels the sign in the
time evolution, and we get equation (8.143) with the opposite ordering of the conformal primaries.
A linear combination of correlation functions that switches ordering depending on whether τa > τb
is the definition of a time-ordered correlator. The obtained expression then becomes

δ(2)
ε S(ρA||ρ(0)

A )

= −
∫

ddxa
∫

ddxbλα(xa)λα(xb)
∫ ds

4 sinh2
(
s+iεsgn(τa−τb)

2

) Ω∆(τb, ~xb)
Ω∆(τb + is, ~xb)

〈T [Oα(xa)Oα(τb + is,~x)]〉

(8.144)
where T indicates time ordering in τ direction. This is the promised result that we can obtain the
relative entropy from two-point functions (and a conformal factor plus some integrals).

Note that we need to time-order the Euclidean times because our correlation function formally
lives on a mixed signature Schwinger-Keldysh contour as in equation (3.72). For correlation func-
tions on this contour to make sense, we need a notion of path time ordering that respects the
causality of the Lorentzian segment with respect to the order of the operators, resulting in the
necessity of ordering the Euclidean times.

Going to Hyperbolic Coordinates

To put the equation (8.144) on a form that is amenable to explicit results we wish to change from
the usual Poincaré coordinates of the bulk AdS space, inducing a conformal transformation of the
boundary from Minkowski to hyperbolic coordinates.

AdSd+1 may be embedded in the embedding space R1,d+1. Let us give the parametrization of
AdS by Poincaré and hyperbolic coordinates.

Poincaré: XA =
(

1 + z2 + x2

2z ,
1− x2 − z2

2z ,
~x

z

)
,

Hyperbolic: XA =
(
rY I ,

√
r2 − 1 cos(τ),

√
r2 − 1 sin(τ), rY m

)
.

(8.145)

Note here that for Poincaré, z is the near coordinate measuring distance from the boundary and x is
the d-dimensional vector of boundary coordinates. For the hyperbolic coordinates, the hyperbolic
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factor is described by

Y ≡ (Y I , Y m) =
(

1 + u2 + ~x2

2u ,
1− ~x2 − u2

2u ,
~x

u

)
∈ Hd−1 , (8.146)

fulfilling the restrictions that Y I > 0 and Y 2 ≡ −(Y I)2 + Y mY m = −1. Here, ~x is a vector with
d− 2 spacelike components.

Points on the boundary of AdS S1 ×Hd−1 are given in the hyperbolic description by

P ≡ (P I , P II , Pµ) =
(
Y I , cos τ, sin τ, Y m

)
∈ S1 ×Hd−1 (8.147)

such that the points P are on the forward lightcone of the origin in the flat embedding space, i.e.
P · P = 0, P I > 0. The hyperbolic description is related to the flat description

P =
(
R2 + x2

2R ,
R2 − x2

2R , xµ
)

(8.148)

via a conformal transformation. This conformal transformation carries the conformal factor

Ω(τ, Y ) = R−1(Y I + cos τ) . (8.149)

The hyperbolic representation of AdS has the induced metric (defining xm = (t = −iτ, t, u, ~x))

g(0) = −(r2 − 1)dt2 + dr2

(r2 − 1) + r2

u2 (du2 + d~x2) . (8.150)

In these coordinates the metric is reminiscent of the Schwarzschild metric, so these coordinates are
referred to as hyperbolic black hole coordinates. The patch r2 > 1 covers exactly the domain of
dependence of σA, i.e. a so-called Rindler wedge. In these coordinates the Killing field ξA is given
by 2πnt. Note that τ was periodic, and the Euclidean Killing vector field generates translations
around the S1. After this continuation to a black-hole like representation this corresponds to the
fact that the black hole has a particular temperature.

In these coordinates, equation (8.144) becomes

δ2
εS(ρA||ρ(0)

A ) = −
∫

dµ
∫ ds

4 sinh2
(
s+iεsgn(τa−τb)

2

) 〈T [Oα(τa, Ya)Oα(τb + is,Yb)]〉 , (8.151)

where we have defined∫
dµ =

∫ 2π

0
dτa

∫
Hd−1

dd−1Ya

∫ 2π

0
dτb

∫
Hd−1

dd−1Yb λα(τa, Ya)λα(τb, Yb)Ω∆−d(τa, Ya)Ω∆−d(τb, Yb) .
(8.152)

The main ingredient now is to use that the Fisher information is determined in terms of time-
ordered two-point functions. We will proceed to specialize to a deformation with only a single
scalar field, and then generalize the method to stress tensor correlators.

Symplectic Formalism for Scalar Deformations

We now specialize equation (8.151) to the case of a single scalar field. This will occur in two steps.
First we show that we can formally compute the two-point function by computing a symplectic
flux ωφ defined in an auxiliary AdS space close to its boundary. The second step is to perform the
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ds integral and half the integrals in dµ. Finally, we are able to reexpress the remaining integrals
in the same form as the gravitational expression.

The main ingredient is that the CFT two-point function may be written in terms of a quantity
in an auxiliary AdS-Rindler wedge that is the domain of dependence D(ΣA) of the region previously
called ΣA, dual to the causal diamond D(A) on the boundary. The ”existence” of this auxiliary
AdS is purely formal. We will make use of only the relations between scalar two-point functions in
the bulk and on the boundary which are rigorously true, as the ones in section 6.2.1. Notably this
means that no conjectures regarding AdS/CFT are invoked, only explicitly proven operator maps
are used.

The quantity in the auxiliary AdS spacetime that computes the two-point functions is an asymp-
totic symplectic flux WD(A) that takes as arguments bulk-to-boundary propagators of the auxiliary
AdS spacetime. To obtain correlators for the boundary theory we take a limit where we evaluate
the symplectic flux close to the boundary. Mathematically, we define

− 〈O(τ, Ya)O(is, Yb)〉 = WDA(KE ,KR)

≡ lim
r0→∞

∫
rB=r0

dtBdYBωφ (KE(rB, itB, YB|τ, Ya),KR(rB, tB|s, Yb)) ,
(8.153)

where ωφ is the symplectic two-form density7 for the bulk scalar φ dual to the operator O on the
boundary, KE is a Euclidean bulk-to-boundary propagator and KR is a retarded bulk-to-boundary
propagator (compensating for the fact that it has to propagate forwards in imaginary euclidean
time, i.e. lorentzian time). Here, we have used time translation invariance to define τ = τa − τb.
The integration region is a constant radial slice in the AdS spacetime at rB = r0 close to the AdS
boundary. We use the hyperbolic black hole coordinates from equation (8.150) in which the induced
metric on the integration region has the form

g(0) = −(r2
B − 1)dt2 + dr2

B

(r2
B − 1)

+ r2
BdY 2

B . (8.154)

To correctly adapt the hyperbolic black hole coordinates to a particular boundary ball, we just pick
rB = 1, tB = 0 to coincide with the Ryu-Takayanagi surface Ã as denoted in the leftmost diagram
of figure 8.2. The region rB ≥ 1 then covers only the interior of the causal wedge imaged in figure
8.1.

Let us now properly define the propagators that we introduced in equation (8.153). We will just
cite the form of the bulk propagators for asymptotically AdS spacetimes, referring to chapter 23.10
of [48] for a derivation. The Euclidean propagator in equation (8.153) KE is sourced at euclidean
time τ but it ends at real time tB so the endpoint argument has to be analytically continued,
yielding

KE(rB, itB, YB|τ, Ya) = D∆(
−2rBYB · Ya −

√
r2
B − 1 cos(τ − itB)

)∆ , (8.155)

where D∆ = π−d/2Γ(∆)/Γ(∆− d/2). The retarded propagator

KR(rB, tB, YB|s,Yb) = iΘ(tB − s)
(
K+(rB, tB, YB|s,Yb)−K−(rB, tB, YB|s,Yb)

)
(8.156)

7This is a the same quantity as in the Hollands-Wald formalism of the gravitational calculation. A review of the
field theoretical variant of this formalism can be found in [76].
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where θ is the Heaviside step function and K± are Wightman propagators defined by

K±(rB, tB, YB|s,Yb) = lim
ε→0+

KE(rB, tB, YB|is∓ ε,Yb)

= lim
ε→0+

D∆(
−2rBYB · Ya −

√
r2
B − 1 cosh(s− tB ± iε)

)∆ .
(8.157)

We can now verify that equation (8.153) is reasonable by using that the propagators represent
solutions that approach delta functions as r0 →∞.

Let us first consider the symplectic flux for general perturbations δ1, δ2 that satisfy the linearized
equations of motion. Keeping the limit r → 0 implicit, we have

WD(A)(δ1φ, δ2φ) =
∫
rB=r0

ωφ(δ1φ, δ2φ)

=
∫
rB=r0

εM (δ1φ∂Mδφ2 − δ2φ∂Mδφ1)

∼=
∫
rB=r0

dtBdYB rdB(δ1φ∂rBδφ2 − δ2φ∂rBδφ1) ,

(8.158)

where we used that the normal to the surface of constant radius is in the radial direction and the
factor rdB comes from the square root of the determinant of the metric. Since the δiφ solve the
linearized equations of motion they asymptotically behave as

δiφ ∼ ai(tB, YB) r−d+∆
B + bi(tB, YB) r−∆

B (i ∈ {1,2} (8.159)

which inserted into equation (8.158) gives

WD(A)(δ1φ, δ2φ) = (2∆− d)
∫

dtBdYB(a1b2 − a2b1) . (8.160)

From equation (8.153) we can use the properties of the propagators to read off the coefficients,
noting that δ1 = KE and δ2 = KR. Let us also denote by GE , GR as the Green’s functions of the
boundary theory. We then have that

lim
r0→∞

KE ∼ r−∆ ⇒
{

a1 = 0
b1 = 1

2∆−dGE(itB|τ, Ya)

lim
r0→∞

KR ∼ δd−1(YB − Yb)δ(tB − s)r−d+∆ + r−∆ ⇒
{
a2 = δd−1(YB − Yb)δ(tB − s)
b2 = 1

2∆−dGR(itB|τ, Ya)
,

(8.161)

where we defer the details of the asymptotic form of the propagators (especially KR) to [63]. The
expressions in terms of Γs for the explicit correlators are well known in the AdS/CFT literature,
and we saw some of this for three-point functions in section 6.2.1. The euclidean two-point function
GE in the boundary space is given by

GE(τ1, Y1|τ2, Y2) ≡ 〈O(τ1, Y1)O(τ2, Y2)〉 = 2∆− d
πd/2

Γ(∆)
Γ(∆− d/2)

1
(−2Y1 · Y2 − 2 cos(τ1 − τ2))∆ ,

(8.162)
in the present case analytically continued to complex τ2 (i.e a Lorentzian bulk point). Inserting
the values for the coefficients into equation (8.160) one can then see that

−GE(τ, Ya|is, Yb) = WD(A)(KE ,KR) (8.163)
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Figure 8.2: Images depicting a slice of the bulk causal wedge corresponding to the boundary region
A. In a), the main boundaries are denoted, with A, Ã as points because they are codimension 2. In
b), the range of tB that is spacelike separated from a boundary point s is shown as a dashed line.
In c) the boundary interval that is spacelike separated from a particular bulk point tB. The dashed
regions may be excluded from the first integral performed, since the Lorentzian propagators vanish
for spacelike separated points. In addition, the retarded propagator is only nonzero when tB > s.

proving that the asymptotic symplectic flux computes the two-point function.
With this, we may write equation (8.151) on the following form

δ2
εS(ρA||ρ(0

A )φ =
∫

dµ
∫ ∞
−∞

ds
4 sinh2( s+iεsgn(τb−τa)

2 )
WD(A)(KE ,KR) (8.164)

The reason that we wished to go this route of symplectic forms is two-fold. Firstly, it relates cleanly
to the Hollands-Wald formalism of the previous section and secondly the integrated symplectic
form is invariant under deformations of the integration surface. This second property is because
we chose deformations that satisfy the equations of motion, making ωφ a closed form on spacetime,
i.e. ωφ = dχ where χ is some one form.

Performing the Integrals

The previous result lets us deform the integration region and evaluate WD(A)(KE ,KR) at the
horizon of the hyperbolic black hole, taking rB → 1. The computation of the desired integrals then
becomes an exercise in Residue calculus with a fairly involved branch-cut and pole structure.

We write

δ2
εS(ρA||ρ(0

A )φ = lim
r0→1

∫
dµ
∫ ∞
−∞

ds
4 sinh2( s+iεsgn(τb−τa)

2 )

∫
rB=r0

dtBdYBωφ(KE ,KR) (8.165)

The retarded propagator KR(rB, tB, YB|s, Yb) is only nonzero when tB > s and by causality it is
also only nonzero when the bulk and boundary points are timelike separated. This means that we
may toss some of the integration region for tB obtaining, as imaged in figure 8.2. The expression
to be evaluated is then

δ2
εS(ρA||ρ(0

A )φ = lim
r0→1

i

∫
dµ
∫ ∞
−∞

ds
4 sinh2( s+iεsgn(τb−τa)

2 )

∫ ∞
t±B,∗

dtB
∫
Hd−1

dYBωφ(KE ,K+ −K−)

(8.166)
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where
t±B,∗ = s− ln

(
α±

√
α2 − 1

)
, α = −r0YB · Yb√

r2
0 − 1

(8.167)

corresponds to the singularities of the retarded propagator that occur at lightlike separation between
the bulk and boundary points8. Note that we may pick either t+B,∗ or t−B,∗, since the propagator
vanishes in between. Similarly we may exchange the s and tB integrals, yielding

δ2
εS(ρA||ρ(0

A )φ = lim
r0→1

∫
dµ
∫ ∞
−∞

dtB
∫ s±∗

−∞

ds
4 sinh2( s+iεsgn(τb−τa)

2 )

∫
Hd−1

dYBωφ(KE ,K+ −K−)

(8.168)
where

s±∗ = tB + ln
(
α∓

√
α2 − 1

)
. (8.169)

With the integral on this form, we are ready to start working on integrating over s. Since KE

does not depend on s we only need to care about the retarded propagator. Therefore our current
objective is to compute the integral

I(rB, tB,YB|Yb) = i

∫ s±∗

−∞

ds
4 sinh2( s+iεsgn(τb−τa)

2 )
(K+(rB, tB,YB|s,Yb)−K−(rB, tB,YB|s,Yb))

= i lim
ε→0+

∫
Cε∪C−ε

ds
4 sinh2( s+iεsgn(τb−τa)

2 )
KE(rB, tB,YB|is,Yb) ,

(8.170)
where we have invoked the definition of the Wightman propagators as limits of the euclidean
propagator and defined the curves

Cε = (−∞+ iε, s−∗ + iε] , C−ε = [s−∗ − iε,−∞− iε) . (8.171)

Using the 2π periodicity in euclidean of the hyperbolic black hole geometry we may move the curve
C−ε to C2π−ε.

To understand the value of this operation we shall consider the analytic structure of the inte-
grand in I(rB, tB,YB|Yb), as imagine in figure 8.3. The function sinh

(
s+iεsgn(τa−τb)

2

)
has a zero at

s = −iεsgn(τa − τb) + N2π where N is any integer, so the integrand has (double) poles separated
by a distance 2π on the imaginary s axis. The Euclidean bulk to boundary propagator has branch
cuts at Re(s) ≤ s−∗ , Im(s) = 2πN and well as Re(s) ≥ s+

∗ , Im(s) = 2πN . This analytic structure
is depicted in figure 8.3. We see that the displacement of C−ε to C2π−ε lets us complete the curve
without including any branch cuts in its interior.

To simplify the analysis, it is good to think about the limit r0 → 1 and the integral over tB right
away. As r0 → 1 the tB integral splits into two contributions, along the past and future horizons
H− and H+ of the hyperbolic black hole.

The contribution from the past horizon may be evaluated by considering the limit rB → 1,
tB → −∞ with

√
r2
B − 1e−tB fixed. In terms of light-cone coordinates

l+B =
√
r2
B − 1etB , l−B =

√
r2
B − 1e−tB (8.172)

we have l+B → 0 and l−B fixed.
8Since our result differs from [63], there is a short derivation in appendix
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Figure 8.3: The analytic structure of the integrand in equation (8.170). The integrand has double
poles on the imaginary s axis at 2πn− ε, and limits for the Cε have to be takens such that ε < ε.
The Euclidean propagator has branch cuts on the real axis for timelike separated points, with the
rest of the cuts due to periodicity of the geometry. Using the 2π periodicity in imaginary time of
the hyperbolic black hole the integral over C−ε is equivalent to the integral over C2π−ε. Notably,
closing the curve with C+ includes a simple pole in the interior. Completing the contour with C−
and C+ is appropriate on H− and H+ respectively.

In this limit we may complete the curve with the vertical piece

C− = [s−∗ + iε, s−∗ i(2π − ε)] . (8.173)

By Cauchy’s theorem the integral around the closed contour is 0 since it encircles no poles and no
branch cuts9. This tells us that I is minus the integral over C−. Let us then consider the integral
over C−, dropping ε and ε (because they contribute no important behaviour) and adding in a single
new regulator ε′ to make sure our integration region doesn’t intersect the branch cut.

I(C−) = i lim
l+B→0

∫ s−∗ +ε′+2πi

s−∗ +ε′

ds
4 sinh2(s/2)

KE(rB, itB, YB|is, Yb) . (8.174)

Here, it is convenient to work in lightcone coordinates. Using translation invariance of KE in
Rindler time10 we can transform the integration variable to w = es−s

−
∗ so that equation (8.174)

becomes

I(C−) = −i lim
l+B→0

∮
Γ

dw es
−
∗

(w − es−∗ )2
KE

(
l+Bw

es
−
∗
,
l−Be

s−∗

w
, YB|0, Yb

)
, (8.175)

where Γ is the curve |w| = 1 + ε and there is some work involved in rewriting sinh2(s) on a good
form. We are interested in the limit of small l+B , so we should make an expansion in powers thereof.
The integral is about a closed curve, so we are also interested in the residues, i.e. terms proportional
to 1/w. Let us first expand in powers of e−s

−
∗

I(C−) = −i lim
l+B→0

∮
Γ

dw
(
es
−
∗

w2 −
2e2s−∗

w3 + . . .

)
KE

(
l+Bw

es
−
∗
,
l−Be

s−∗

w
, YB|0, Yb

)
. (8.176)

9Technically we also need to close the contour at Re(s) = −∞, but the contribution vanishes since sinh ∼ e∞ in
this limit.

10KE(rB , itB , YB |is, Yb) = KE(rB , itBea, YB |is+ ia, Yb), time translation on the boundary is Rindler time transla-
tion in the bulk.
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We see that contributions to the residue must come from powers of l+Bw/es
−
∗ , which looks promising

for eventual convergence. To be completely sure, we should expand es
+
∗ and e−s

−
∗ in powers of l+B .

In terms of the lightcone coordinates we have

r2
0 = 1 + l+Bl

−
B , etB = l+B√

r2
0 − 1

=

√√√√ l+B
l−B

, e−tB =

√√√√ l−B
l+B

. (8.177)

The α appearing in the definition of s−∗ can then be expressed as

α = −
(

1 + 1
l+Bl
−
B

)1/2

YB · Yb

= −YB · Yb√
l+Bl
−
B

(
1 + l+Bl

−
B

2

)
+O(l+B)3/2

(8.178)

as well as √
α2 − 1 =

[(
1 + 1

l+Bl
−
B

)
(YB · Yb)2 − 1

]1
2

= YB · Yb√
l+Bl
−
B

[
1 +

(
1− 1

(YB · Yb)2

)
l+Bl
−
B

]1
2

= YB · Yb√
l+Bl
−
B

[
1 + 1

2

(
1− 1

(YB · Yb)2

)
l+Bl
−
B

]
+O(l+B)3/2 .

(8.179)

Using this we can expand e±s
−
∗

es
−
∗ = etB

(
α+

√
α2 − 1

)
∼=
YB · Yb
l−B

[
−
(

1 + l+Bl
−
B

2

)
+ 1 + 1

2

(
1− 1

(YB · Yb)2

)
l+Bl
−
B

]

= YB · Yb
l−B

[
− 1

2(YB · Yb)2 l
+
Bl
−
B

]
= − l+

−2YB · yb
. (8.180)

Similarly we have
e−s

−
∗ ∼= −

2YB · Yb
l+B

+O(1) . (8.181)

Inserting into equation (8.176) we see that the factors w that can come from the propagator carry
with them a leading O(1) term in l+B . The lowest order term in the rest of the integrand is of
order l+B , and therefore the residue is proportional to l+B +O

(
(l+B)2

)
. Taking the limit l+B → 0 we

conclude that
I(C−) = 0 . (8.182)

This implies directly that liml+0→0 I(rB, tB, YB|Yb) = 0 since the completed contour encircles no
singularities. Note that this integrand would not have vanished in a limit as l−B → 0, which is why
we in the following need to consider a different contour.
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Let us now consider the limit l−B → 0, l+B fixed, i.e. the future horizon H+ of the hyperbolic
black hole. It is now more practical to extend the two horizontal contours up to s+

∗ and close the
contour with the curve

C+ = (s+
∗ + iε, s+

∗ + (2π − iε)) . (8.183)

The simultaneous extension of the horizontal contours does not contribute since they are not sep-
arated by a branch cut, which together with Im(s) periodicity makes them cancel as ε → 0. Let
us now check that C+ vanishes as l−B → 0, telling us that the integral over s on H+ is given by a
residue.

Similarly to before we use Rindler time translation invariance to pick good coordinates. In this
case we want to choose w = es−s

+
∗ putting the integral along the vertical contour on the form

I(C+) = i lim
l−B→0

∮
Γ

dw e−s
+
∗

(w − es+∗ )2
KE

(
t
l+B
wes

+
∗
, l−Bwe

s+∗ , YB|0, Yb

)
. (8.184)

Then, using the partial results of the previous calculation we can write down

es
+
∗ = etB

(
α−

√
α2 − 1

)
∼=
YB · Yb
l−B

[
−
(

1 + l+Bl
−
B

2

)
− 1− 1

2

(
1− 1

(YB · Yb)2

)
l+Bl
−
B

]

= YB · Yb
l−B

[
−1−

(1
2 −

1
(2YB · Yb)2

)
l+Bl
−
B

]
= −YB · Yb

l−B

[
1 +

(1
2 −

1
(2YB · Yb)2

)
l+Bl
−
B

]
(8.185)

and

e−s
+
∗ ∼=

l−B
2YB · Yb

[
1−

(
1
2 −

1
(2YBẎb)2

)
l+Bl
−
B

]
. (8.186)

From here it follows from the same argument as for the C− case that the vertical contour vanishes.
Having proven that the vertical contour gives no contribution, we would now like to evaluate

the full s integral

lim
l−B→0

I(l+B , l
−
B ,YB|Yb) = i lim

l−B→0
lim
ε→0+

∫
Cε∪C−ε

ds
4 sinh2( s+iεsgn(τb−τa)

2 )
KE(l+B , l

−
B ,YB|is,Yb)

= −2π∂sKE(l+B , 0, YB|sgn(τa − τb)ε, Yb) .
(8.187)

Making the substitution −2π∂s → LξA and inserting the result into equation (8.168) we have

δ2
εS(ρA||ρ(0

A )φ =
∫

dµ
∫
H+

dtBdYBωφ(KE(l+B ,0,YB|(τa − τb), Ya),LξAKE(l+B ,0,YB|sgn(τa − τb)ε, Ya)

≡
∫

dµWH+(KE(l+B ,0,YB|(τa − τb), Ya),LξAKE(l+B ,0,YB|sgn(τa − τb)ε, Yb)
(8.188)

where WH+ is the integral of ω over H+, to which the coordinates tB and YB have been re-
stricted. We can make the arguments of the propagators depend only on ta and tb respectively
by rotating the lightcone coordinate l+B → e−itb l+B . The new lightcone coordinate can be rotated
without crossing any branch cuts in the propagator [63], the upshot being that KE(l+B ,0,YB|(τa −
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τb), Ya),LξAKE(l+B ,0,YB|sgn(τa−τb)ε, Ya)→ KE(l+B ,0,YB|τa, Ya),LξAKE(l+B ,0,YB|τb+sgn(τa−τb)ε, Yb).
Remembering the definitions of dµ and δφ we find that

δ2
εS(ρA||ρ(0

A )φ = WH+(δφ,LξAδφ) , (8.189)

where we realized that δφ as defined in equation (8.140) onwards may be written

δφ(l+B , YB) =
∫

dτdY λ(t,Y )Ωd−∆(τ, Y )KE(l+B , YB|τ, Y ) . (8.190)

The field δφ solves the vacuum Lorentzian equations of motion and has boundary behavior consis-
tent with the sources λα. Therefore it is an on-shell scalar field perturbation in the same sense as
the scalar field perturbations in the gravitational calculation.

Stress Tensor Deformations

We are now ready to attack stress tensor deformations, where most of the details of the previous
calculation carry over. The main difference is that the vertical pieces of the contour will not vanish,
giving rise to boundary terms. These boundary terms will be related to the boundary term ∼

∫
dχ

of the gravitational calculation.
The stress energy tensor is a symmetric combination of scalars that transform under the Lorentz

group, so all we need to do is let the source λα = λ(αβ). Then from equation (8.151) we see that

δ2
εS(ρA||ρ(0)

A ) = −
∫

dµαβγδ
∫ ds

4 sinh2
(
s+iεsgn(τa−τb)

2

) 〈T [Tαβ(τa, Ya)T γδ(τb + is,Yb)
]〉

, (8.191)

where we have defined∫
dµ =

∫ 2π

0
dτa

∫
Hd−1

dd−1Ya

∫ 2π

0
dτb

∫
Hd−1

dd−1Yb λαβ(τa, Ya)λγδ(τb, Yb)Ω∆−d(τa, Ya)Ω∆−d(τb, Yb) .
(8.192)

As in the case of scalars, the stress tensor correlation function can be rewritten in terms of a
symplectic flux

−
〈
T
[
Tαβ(τa, Ya)T γδ(τb + is,Yb)

]〉
= C̃T

a∗
W grav
D(A)(K

αβ
E;µν ,K

γδ
R;ρσ) (8.193)

where W grav
D(A) is the integral of the symplectic two form associated with metric perturbations (equa-

tion (8.110)) over the domain of dependence D(A) of the boundary region A. We have here defined
Kαβ
E;µν as the Euclidean bulk to boundary propagator, where µν . . . denote bulk indices and αβ

boundary indices.
The normalization factor C̃T /a∗ is needed because the flux ωgrav computes the stress tensor in

terms of a∗ as determined in terms of the auxiliary AdS radius by equation (7.59)

LAdS =
(

Γ(d2)

π
d
2

8πGNa∗
) 1
d−1

, (8.194)

while C̃T is proportional to the normalization of the two-point function as defined on the CFT side.
One additional issue arises in the case of the graviton propagators; they are not gauge invariant.

Their analytic properties depend strongly on what gauge is chosen, so a good gauge is necessary
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to repeat the scalar field analysis without complication. With this in mind, a convenient gauge is
the generalized de Donder gauge (also known as traceless transverse gauge)

∇(0)
µ hµν = 0 , gµν(0)hµν . (8.195)

In this gauge the propagator can be written in terms of the embedding space of the auxiliary AdS
space as [77]11

KE(XB, ZB|P,Z) = C
(2(ZB · P )(Z ·XB)− 2(P ·XB)(ZB · Z))2

(−2P ·XB)d+2 (8.196)

where the inner products are defined in the flat embedding space, Z,ZB are auxiliary embedding
space coordinates,

XB =
(
rBY

I
B,
√
r2
B − 1 cos(τB),

√
r2
B − 1 sin(τB), rBY m

B

)
(8.197)

is the bulk point in the hyperbolic embedding of AdS (see equation (8.145)) and

P = (Y I , cos τ, sin τ, Y m) (8.198)

is the boundary point.
In this gauge the Wightman propagators have no spacelike branch cuts, and the only poles

are at s±∗ + 2πiN where N is integer. This means that the possibility of performing the contour
deformations of the previous section are left intact. Equation equation (8.193) is gauge invariant
and may be verified in any gauge, but the following analysis depends on the gauge choice.

At this point, we have the expression

δ2
εS(ρA||ρ(0)

A ) = − C̃T
a∗

∫
dµαβγδ

∫ ds
4 sinh2

(
s+iεsgn(τa−τb)

2

)W grav
D(A)(K

αβ
E;µν ,K

γδ
R;ρσ) . (8.199)

We then repeat the scalar field analysis, pushing the integration region onto the horizon of the
hyperbolic black hole. The goal is then to compute the ds integral by repeating the same techniques.
The integral has three potential contributions:

1. The sinh2 double pole.

2. The vertical contour C− at s−∗ near H−.

3. The vertical contour C+ at s+
∗ near H+.

The contribution from the double pole is entirely analogous to the scalar case, with the same ∂s
and Rindler-translation symmetry into LξA resulting in the expression

δ2
εS(ρA||ρ(0)

A )grav
∣∣∣
pole

= C̃T
a∗
W grav
H+ (h,LξAh) ≡ C̃T

a∗

∫
H+

ωgrav(h,LξAh) , (8.200)

where
hµν(l+B , YB) = 1

2

∫
dτdY λαβ(τ, Y )Ω−2(τ, Y )Kαβ

E;µν . (8.201)

11We are using equation 60 of [77], which is written for general spin J using a particularly neat embedding space
formalism.
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Just like in the scalar case this metric perturbation solves the linearized Einstein field equations
about the auxiliary AdS background given a Euclidean solution that matches onto the sources as
boundary condition. Equivalently it can be seen as the vacuum Lorentzian solution with asymptotic
behaviour determined by the expectation value of the boundary CFT stress energy tensor.

This CFT expression together with the scalar field term matches the gravitational result in
Hollands-Wald gauge equation (8.124), given that the gravitational equations of motion are satisfied.
We know that this can not be the whole story, since the de-Donder and Hollands-Wald gauges are
not equivalent. Therefore we hope for the appearance of a boundary term localized on the RT
surface. We will see that exactly such a term comes from the vertical contours.

Vertical Contours

We pick the integral along C+ for explicits, using the same tricks as in the scalar case we write

Iµν(C+) = i lim
l−B→0

∫ s−∗ ε
′+2πi

s−∗ ε′

ds
4 sinh2(s/2)

hρσ(l+Be
−s, l−Be

s,YB)JρµJσν

= i lim
l−B→0

∫
Γ

dw e−s
+
∗

(w − e−s+∗ )2
hρσ

(
l+B
es

+
∗
, l−Bwe

s+∗ ,YB

)
JρµJ

σ
ν

(8.202)

where Γ is defined by |w| = 1 − ε′ and translation invariance in Rindler time has been used to
rewrite the bulk-to-boundary propagator as a bulk graviton. Compared to the scalar case the new
feature is the appearance of a Jacobian Jµν due to the fact that the graviton itself transforms under
a change of coordinates

Jba =

 e−s+−w 0
0 wes

+
∗

 , Jba = δba , (8.203)

where unbarred indices run along Hd−1 while the barred indices run over the lightcone directions
l±B .

Now we should evaluate the w integral component for component. For example, we have

I−−(C+) = i lim l−B

∮
Γ

dw
(
e−s

+
∗

w2 + 2e
−2s+∗

w3 + . . .

)
w2e2s+∗ h−−

(
l+B
es

+
∗
, l−Bwe

s+∗ ,YB

)
, (8.204)

where we should expand

h−−

(
l+B
es

+
∗
, l−Bwe

s+∗ ,YB

)
= h−− (0, 0,YB) + l+B

wes
+
∗
∂+h−− (0, 0,YB) + l−Bw∂−e

s+∗ h−− (0, 0,YB) . . . .

(8.205)
Then, using the residue theorem we find

I−−(C+) = −2π
[
2(h−−)Ã + l+B(∂+h−−)Ã +O(l−B)

]
, (8.206)

where the Ã subscript tells us to evaluate h and it’s derivatives at the undeformed RT surface
l+B = l−B = 0 (see figure 8.2). The reason l+B is close to zero is because because it is suppressed in
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the propagator by a factor e−s
+
∗ . Computing the rest of the components in the same way one finds

I−a(C+) = −2π(h−a)Ã +O(l−B) , (8.207)
Iab(C+) = −2πl−B(h∂−hab)Ã +O((l−B)2) , (8.208)
I+−(C+) = O(l−B) , (8.209)
I+a(C+) = O((l−B)2) , (8.210)
I++(C+) = O((l−B)3) . (8.211)

The integral Iµν(C−) is determined by an analogous computation. We see that in contrast to the
scalar case we now have finite contributions, and these are localized at the RT surface H+ ∩H−

Summarizing, the stress tensor contribution the Fisher information is given by

δ2
εS(ρA||ρ(0)

A ) = C̃T
a∗

[∫
ΣA

ωgrav(h,LξA) +
∫
H−

ωgrav(h,− I(C−)) +
∫
H+

ωgrav(h,− I(C+))
]
.

(8.212)

Matching Boundary Terms to Gravitational Result

In the gravitational result, being away from Hollands-Wald gauge gave rise to to the boundary
term (equation (8.135)) ∫

Ã
χ(h, [ξA, V ]) =

∫
ΣA

ωgrav[h,L[ξA,V ]]g(0) (8.213)

where V is a vector field satisfying equation (8.134), vanishing sufficiently fast at the boundary of
AdS. We will now show that the boundary terms of the CFT calculation can be written on this
form.

The first step is to use the de Donder gauge conditions equation (8.195) as well as ξA =
2π(l+B∂+ − l−B∂−) in lightcone coordinates to rewrite

I−−(C−) = (LξAh−−)Ã + 2π l
+
B

2

(
∇(0)
a ha− −

1
2∇

(0)
− haa

)
Ã

+O(l−B) (8.214)

I−a = (LξAh−a)Ã +O(l−B) . (8.215)

The term in parentheses looks clearly related to the Hollands-Wald condition on V equation (8.134).
This can be made exact, we make the guess that there exists a vector field Va(+) such that∫

H+
ωgrav(h,−I(C+)) =

∫
H+

ωgrav(h,L[ξA,V(+)]g
(0)) . (8.216)

To show that this is true, we make an ansatz for V+ and try to match −Iµν = L[ξA,V(+)]g
(0)
µν .

This turns out to be possible up to a term that vanishes when integrated over H+. The required
conditons on V(+) turn out to be [63]

2
(
∂−V+

(+)

)
Ã

= (LξAh−−)Ã(1
2∂aV

+
(+) + δab

u2 ∂−V
b
(+)

)
Ã

= (LξAh−a)Ã(
∇(0)
a ∇(0),aV(+),− + [∇(0)

a ,∇(0)
− ]Va(+)

)
Ã

=
(
∇(0)
a ha− −

1
2∇

(0)
− haa

)
Ã
.

(8.217)
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These conditions are are exactly the α = + Hollands-Wald gauge conditions, so we conclude that
V+

(+)

∣∣∣
Ã

and ∂−V+
(+)

∣∣∣
Ã

are exactly the +-component of the vector field V . By a similar argument
one can define a vector field Va(−) on H− and make the replacement −I(C−)→ L[ξA,V(−)]g

(0).
At this point, the CFT result reads

δ2
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A ) = C̃T
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[∫
ΣA

ωgrav(h,LξA) +
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H−

ωgrav(h,L[ξA,V(−)]g
(0)) +
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ωgrav(h,L[ξA,V(+)]g
(0))
]

= C̃T
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ΣA

ωgrav(h,LξA) +
∫
Ã
χ(h,[ξA,V(−)]) + χ(h,[ξA,V(+)])

]
(8.218)

where we used that V vanishes at the boundary of AdS and that the past and future horizons share
a boundary at l+B = l−B = 0 which is precisely the RT surface Ã.

Finally, we need only define a vector field V such that

V +∣∣
Ã

= V+
(+)
∣∣
Ã
, ∂−V

+∣∣
Ã

= ∂−V+
(+)
∣∣
Ã

V −
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Ã

= V−(−)
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Ã
, ∂+V

−∣∣
Ã

= ∂+V−(−)
∣∣
Ã

(8.219)

and note that the combination of the conditions equation (8.217) and their V(−) analogs precisely
imply the Hollands-Wald constraints on V . Thus, we can write the CFT result as
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εS(ρA||ρ(0)

A ) = C̃T
a∗
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ΣA

ωgrav(h,LξA) +
∫
Ã
χ(h,[ξA, V )

]
(8.220)

where V generates the gauge transformation from Hollands-Wald gauge to de-Donder gauge.

8.4.3 Combining the Results

We found our main gravitational and CFT results
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χ(h,[ξA, V )
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(8.221)
The CFT result carries through for an arbitrary ball shaped region A, in an arbitrary Lorentz
frame. This is manifestly true of the gravitational result as well. Setting C̃T /a∗ = 1 and using that
the results are supposed to agree we find∫

ΣA
ξaA

(
δ(2)
ε Eab

)
εb = 0 , (8.222)

which is precisely the (integral of) the EFE to second order with stress tensor source terms. By
arbitrariness of the choice of ΣA, choice of the ball-shaped region and Lorentz frame this integral
equation implies the Einstein equations locally to second order (for example this claim can be
proven as we did in the first order case, by induction).

We have thus proven that the unique geometry that correctly computes the CFT ball entan-
glement entropies via the Ryu-Takayanagi formula satisfies the Einstein equations to second order
given that the central charges of the CFT satisfy C̃T = a∗. Since this calculation assumes no
conjectures of the AdS/CFT correspondence it also serves as a check on the conjecture itself.
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In a general CFT we can not expect that C̃T 6= a∗, so a generalization is necessary. Such a
generalization was carried out in [78] by generalizing the gravitiational identities to higher curvature
gravity. In [79] our choice of ’single trace’ Euclidean operators as the CFT states is generalized.
These more general nonlocal multi trace operators are argued to capture more general entanglement
structures, such as entanglement between two-points in the bulk, without spoiling the semiclassical
geometry. We will learn of the importance of such a generalization to capture bulk quantum
corrections in chapter 9.

Another very interesting direction is to take this computation to third order in perturbations.
This will result in the presence of two new ingredients on the CFT side, namely three-point functions
coming from terms proportional to (δρ)3 and operator product expansions coming from contact
terms in the second order variations δ2ρ. Some first steps on the third order problem will be taken
in chapter 11. In principle, matching the gravitational result may put interesting restrictions on
the forms of the OPE and three-point functions of the boundary CFT.
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Chapter 9

Entanglement is Not Enough

In this chapter we will see that just entanglement is not enough to build up spacetime. This was
hinted already by the fact that black hole interiors are not penetrated by any extremal surfaces.
An additional troublesome fact is that entangled particle pairs (so-called EPR pairs) provide a
counterexample to the fact that proximity and entanglement seem related as in the argument with
mutual information and the geodesic approximation of section 7.4.

To resolve both of these at once we will turn our eyes towards black holes. More specifically, we
will consider the holographic dual of the maximally extended AdS-Schwarzschild spacetime [67].
In 2001 Maldacena found that the holographic dual of the maximally extended AdS-Schwarzschild
spacetime consists of two copies of the same CFT, living on the boundaries of each of the exterior
spacetimes on the two sides of the central black hole. Moreover the state is entangled in such a
way that the entropy of each of the two exterior spacetimes is cancelled. This construction relates
to the seeming difference between the nature of the entanglement on the AdS and CFT sides of the
AdS/CFT duality in section 7.1 and it turns out that both entropies were entanglement entropies
the all along.

The significance of Maldacena’s result in relation to the Ryu-Takayanagi formula was realized
in [7]1. Here Maldacena and Susskind point out two facts:

1. Entangled black holes share many properties with entangled particle pairs.

2. The maximally extended AdS-Schwarzschild spacetime is not time-translation symmetric,
the black hole interior (and thus the length of the wormhole connecting the two exterior AdS
spaces) grows. On the CFT side, this is captured by the fact that the relative phases between
energy eigenstates are changing into an increasingly complex combination. In the mean time
the throat area of the wormhole remains constant. While Ryu-Takayanagi accounts for the
throat area, it can not account for the increasing length.

Based on these two points, they conjecture that

1. Entanglement = Wormholes (or ER = EPR)

2. The length of the wormhole is dual to some state-dependent quantity on the CFT side.

Additionally they argue that the uniqueness of the map between spacetimes and entangled states
requires that this state dependent quantity is sensitive to the interior of the black hole. This

1Technically Raamsdonk preceded this, since the disentangling experiment of section 7.4 is inspired precisely by
[67]. The ER=EPR paper [7] can be seen as a continuation of this.
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provides a resolution of both the EPR pair counterexample and the problem of describing black
hole interiors holographically.

The holographic dual of the wormhole length is nowhere near as precisely understood as the
Ryu-Takayanagi relation, but recent evidence points towards computational complexity [80]. Very
recent papers by Raamsdonk et al. [81] and de Boer [82] et al. have also converged towards the
microstate dependent picture, including tests of the complexity conjectures.

In this chapter, we will investigate all these things in some detail with the sections following
essentially the narrative structure of the previous paragraphs.

9.1 Eternal Black Hole Equals Wormhole
Let us consider the Ads-Schwarzschild black hole in d + 1 dimensions. While this text in general
has been very brief about general relativistic input, this particular example is both very important,
remarkably tractable and incredibly interesting. This calculation is a messier AdS analog of the
analysis in chapter 7 of [45].

The AdS-Schwarzschild metric is given by

ds2 = −f(r)dt2 + f−1(r)dr2 + r2dΩ2
d−1 , (9.1)

where
f(r) ≡ 1− µ

r
(9.2)

and µ is related to the black hole mass. The black hole is called eternal because the metric is time
independent, meaning the black hole will (classically) continue to exist for all eternity. The metric
is singular at the center of the black hole, as well as at the roots of f(r) = 0. The larger root rH
of f(r) = 0 is the event horizon.

The black hole solves the vacuum equations of motion, so the curvature should be constant
everywhere (except possibly at isolated points). This means that it is expected that the singularity
of the metric at the horizon of the black hole might just be a coordinate singularity.

The singular behaviour is encoded in the form function f(r). A prototypical attempt at finding
a coordinate system that removes the singularity at the horizon is

ρ = r − rH . (9.3)

Then, we see that

f(ρ) = 1 + (ρ+ rH)2

L2 − µ

ρ+ rH

= 1 + ρ2 + 2rHρ+ r2
H

L2 − rH
ρ+ rH

µ

rH

= �1 + ρ2 + 2rHρ+��r
2
H

L2 + ρ

ρ+ rH

µ

rH
−
�
��
µ

rH

= ρ2 + 2rHρ
L2 + ρ

ρ+ rH

µ

rH
,

(9.4)

where in the last step we used that rH is a root of the original f(r). We see that f(ρ) is regular
for all ρ > −rH including what used to be a singularity at the event horizon at ρ = 0. There is
now only a singularity at ρ = −µ corresponding to r = 0. Note that the coordinate change cannot
have changed how causality works, so if we try to compute timelike geodesics starting at ρ < 0,
they will never pass ρ = 0 and exit the black hole.
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It was observed by Einstein and Rosen in 1935 that there is nothing preventing us from picking
the coordinate

u2 ≡ ρ = r − rH , (9.5)

setting the form function to

f(u) = u4 + 2rHu2

L2 + u2

u2 + rH

µ

rH
. (9.6)

For real u, these coordinates cover only the region outside of the black hole horizon. The metric
under this change of coordinates, since 2udu = dr, is given by

ds2 = −f(u)dt2 + f−1(u)
4u2 du2 + (u2 + µ)2dΩ2

2 . (9.7)

Let us think about the validity of our change of coordinates. It is clear that our coordinate u can
take two values for each value of r− rH in the previous system of coordinates, so for the change of
coordinates to be bijective we should have specified that we take the positive root of u2 = r− µ to
specify the coordinate u. There is nothing preventing us from analytically extending the domain
of u from [0,∞] to [−∞,∞] since the metric is completely regular for all such values. We expect
the analytic continuation to be unique since u < 0 still has to solve the Einstein field equations,
given the metric at the horizon of the black hole as a boundary condition.

This analytic extension could be seen as the opposite operation to the case where we make a
change of coordinates such that the new coordinates do no cover the entire spacetime. Examples
of such coordinate changes are when we went from a spacetime containing a causal diamond to a
hyperbolic cylinder whose coordinates only covered the interior of the diamond in equation (4.183),
as well as the change from ρ to u2 that removed the black hole interior from our coordinate chart.

Since general relativity is supposed to be coordinate invariant, we should try to define what
spacetime we are looking at in a coordinate invariant manner. It seems reasonable that if we
start from some system of coordinates, the ’full’ physical spacetime that we are describing should
correspond to some ’maximal’ analytic extension of the original one. It turns out that the correct
prescription is to demand that the spacetime contains no geodesics that have endpoints except at
curvature singularities. A spacetime that fulfills this can not be analytically extended any further.

Having extended the domain of u to [−∞,∞] we should try to understand what the metric in
equation (9.7) represents. The spacetime is symmetric under u → −u, and we know that u > 0
represents AdS outside a black hole. The parity symmetry in u has a fixed point at u = 0, so we
should investigate this region more closely. The radial part of the metric blows up at u = 0, while
f(u) ∼ u2. For a photon moving in the radial direction we see that trying to approach u = 0 from
some small, positive value u = R will take infinite coordinate time. We use dt2 = f−2(u)

2u2 du2 to
write ∫ T

0
dt =

∫ ε

R
duf

−1(u)
2u ∼

( 1
ε2
− 1
R2

)
. (9.8)

This diverges as ε → 0, so we conclude that crossing takes infinite coordinate time on both sides
of the horizon. In this sense, the two copies of AdS are separated by a two-way event horizon,
meaning nothing can move from one copy to the other in finite time. We will later find that this is
due to the fact that the wormhole connecting the two horizons grows with time.

Finally, we note that for u = 0, the dΩ2
2 term in the metric describes a sphere of radius rH .

In these coordinates, the spacetime thus seems to consist of two copies of the AdS-Schwarzschild
exterior, connected across a spherical two-way event horizon of radius rH . This is an Einstein-Rosen
bridge or wormhole, connecting two asymptotically AdS spacetimes to each other.
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We can bring this construction back to our single universe in the following way: the regions
u > 0 and u < 0 describe two AdS-Schwarzschild solutions containing a black hole. We can make
a bijective coordinate change to the radial coordinates r and r′, corresponding to u > 0 and u < 0,
both with metric as in equation (9.1). Then if we take the two black holes to be so far apart that
we can neglect their attraction to each other, they still solve the equations of motion. Going back
to u and identifying the event horizons, we have a spacetime containing two black holes a large
distance apart that share a horizon. This seems to imply that there is a shortcut through spacetime
across this horizon, but as we saw the horizon cannot be traversed in a time that looks finite to the
exterior universe. Note that this solution is not exactly the same as a solution containing only one
black hole is unstable to a black hole merger.

Let us finish with a comment about entanglement before moving on to the maximally extended
black hole. Remember that in the Rindler spacetime of section 4.2.1 we had two complementary
wedges that were causally disconnected. These wedges lived in a full Minkowski spacetime, and
the local state on the two complementary wedges looked exactly the same, while the overall state
was just the pure Minkowski vacuum. Here we have a similar situation. The parity operator JΨ
that related the two wedges can readily be seen to be identifiable with u → −u, and we know
from section 4.2.3 that by the equivalence principle the near horizon region looks like the Rindler
spacetime for an observer at fixed u.

Using our experience with axiomatic field theory in chapter 4, we can argue for the purity of the
extended spacetime. The method is to make the ansatz that there exists a quantum wavefunction
|Ψ〉 that respects the basic axioms of AQFT and checking that it leads to no inconsistency. We
then consider two points:

• Both exterior spacetimes have Hilbert spaces with the same dimension since they are the
same.

• Both exterior spacetimes are in thermal states, with the same spectrum. Their respective
density operators are invertible, owing to the fact that e−βH > 0.

These are exactly the properties of two entangled subsystems that are obtained by tracing out half
of a cyclic, separating pure state |Ψ〉 〈Ψ|. We found these properties in the discussion following
equation (4.25). Therefore, we conclude that the existence of a pure state |Ψ〉 is consistent with
what we know of the quantum behaviour of the maximally extended Schwarzschild spacetime. The
topic of [67] is determining the exact form of the relevant pure state.

In the case where we have put the two black holes in the same spacetime, we may intuit that the
black holes being connected via a wormhole seems to correspond to the black holes being entangled
with each other. This is the seed that leads to the ER=EPR conjecture, as we will discover soon.

Maximally Extended AdS-Schwarzschild Black Hole

In the previous section, we made a change of coordinates for the eternal AdS black hole and
discovered that there lives a whole new spacetime on the other side of the black hole. The price we
paid was that our coordinate u did not cover the interior of the black hole. We will now proceed
to do two things in parallel, we will find coordinates that include both copies of AdS as well as
the black hole interior, and we will analyze the causal structure of the two-sided black holes by
considering the shape of lightcones according to various observers.

Let us begin by restating f(r):

f(r) ≡ 1− µ

r
+ r2

L2 . (9.9)
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Figure 9.1: The opening angle of the lightcone at various radii, as measured by an observer staying
at some constant radius, with proper time τ . According to an observer in the exterior universe
radial motion becomes impossible at the event horizon. dτ/dr = 1 corresponds to an angle of 90◦,
while dτ/dr =∞ corresponds to a closed up lightcone.

To understand the black hole spacetime it is instructive to consider objects falling radially into a
black hole. Imagine that an observer stays still at some finite radius R and observes this object
falling in. For such an observer, dt is directly proportional to proper time. This observer measures
the shape of the lightcone of the infalling object in terms of their own proper time dτ , which they
know how to relate to to dt.

It is readily checked that equation (9.1) tells us that for light,

dt
dr = ±f−1(r) . (9.10)

The two roots ±f−1(r) tell us the shape of the future pointing lightcone of an object at radius r
as measured by some observer sitting at a constant radius far away. The situation as seen by this
stationary observer is illustrated in figure 9.1. Most importantly, as we approach the event horizon
the lightcone closes up and radial motion becomes impossible.

Let us now consider the experience of an observer falling into the black hole. By the equivalence
principle, there is a coordinate system that is locally flat along the trajectory of this observer. This
means that we can pick coordinates such that the opening angle of the lightcone is always 90◦.
That is, we want a coordinate r∗ such that dt/dr∗ = 1 for all r∗. By inspecting the metric, this is
achieved by an r∗ that fulfills

dr∗ = f−1dr . (9.11)

The inverse form function f−1 makes for a rather unpleasant integrand, but we do not have to
perform the integration explicitly. We note that f−1 diverges at r = rH , so the new coordinates
cannot cover r > rH and r < rH simultaneously. If we are to associate a finite value of r∗ to
coordinates at some finite distance outside the event horizon, we must put the event horizon at
r∗ = −∞. This we can do since r∗ is only defined up to a constant. Note that since there is an r2

in f(r), the upper limit of r∗ is finite. The metric is now of the form

ds2 = f(r(r∗))
(
−dt2 + dr∗

)
+ r(r∗)2 dΩ2

2 . (9.12)

An interesting note is that the metric is completely regular as r∗ → −∞, since we have removed the
divergent factor f−1 via the change of coordinates. Since dt/dr∗ = 1 for lightlike radial trajectories,
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this system of coordinates describes the lightcone of an observer at radius r(r∗) as seen by that
observer themself. We need some more work before these coordinates are useful, since they do not
cover the black hole interior.

The next step is to pick lightcone coordinates2, defined by

u = t+ r∗ , v = t− r∗ , (9.13)

in which metric becomes
ds2 = −f(r(u,v))dudv + r(u,v)2dΩ2

2 . (9.14)

The coordinate u corresponds to outgoing null geodesics, and v corresponds to ingoing null geodesics.
Since the lightcone coordinates are orthogonal, lines of constant u determine the direction of v and
vice versa.

Before continuing, it would be nice to repeat figure 6.2 with the same radial coordinate, but
with a time axis adapted to the infalling observer. This will show us that from the perspective of
an infalling observer, the black hole horizon may be passed in finite time.

Let us define t∗ = u − r. In the coordinate system (t∗, r). The line of constant u will always
point in a 45◦ angle inwards from the line of constant r. The line of constant u determines the
direction of the ingoing null geodesic. To analyze the other side of the lightcone, i.e. the outgoing
null geodesic, we need to relate lines of constant v to the radial coordinate r. We know how the
lightcone behaves in terms of the old coordinate 2t = u+ v. We have

2 dt
dr = ±2f(r)−1 = du

dr + dv
dr = dv

dr + dt∗

dr + 1 . (9.15)

We are looking for curves of constant v, so we can set dv = 0. We see that lines of constant v are
given in these coordinates by

dt̃
dr = 2f−1(r)− 1 , (9.16)

where we have picked the positive sign on f−1 since that is the solution corresponding to the
outgoing null geodesic. It is readily seen that the outgoing null geodesic points straight up near the
horizon since f−1 diverges, and that at very large radii it becomes quite wide, an artifact due to the
asymptotic r2 behaviour of the form function, close to the horizon t∗ behaves more like a proper
time coordinate. This is fine, since we are only interested in the experience of infalling observers
near the horizon.

This all happens while the ingoing null geodesic stays at a constant angle, so in these coordinates,
the lightcone tilts and narrows, but never closes completely. Crucially we see that at the event
horizon, no timelike geodesics point out from the black hole, although they can point inwards. The
new situation is illustrated in figure 9.2. Similarly, we may define a time coordinate t̃ = v + r.
Lines of constant v always point 45◦ outwards. The lines of constant u are determined in the same
way as before, this time picking a negative sign on f−1, so that

dt̃
dr = −2f−1(r) + 1 . (9.17)

By the same reasoning as before, the lightcone behaves as in figure 9.3. Notably, at the horizon,
all future timelike geodesics point away from the singularity. In these coordinates, it seems we are
not approaching the same object as before. In fact, we are approaching a white hole, whose event
horizon cannot be entered, only exited.

2Historically u/v are called ingoing/outgoing Eddington-Finklestein coordinates.
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Figure 9.2: The shape of lightcones at various radii r as measured by an observer falling into the
black hole. The lightcone tilts and closes up, and at the horizon all timelike trajectories point
towards the singularity at r = 0.

Figure 9.3: The shape of lightcones at various radii r as measured by an observer falling towards
the event horizon. The lightcone tilts and closes up, and at the horizon all timelike trajectories
point away the singularity at r = 0. The conclusion is that this cannot be the object that was
approached by the observer using t̃ = u − r as a time coordinate. This object is in fact a white
hole, where all timelike geodesics point away from the singularity.
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9.1. Eternal Black Hole Equals Wormhole

The lightcone coordinates u and v can be put on a form that is readily extended to include the
full spacetime. We can achieve this by picking the coordinates

ũ = eku/2 , ṽ = −e−kv/2 , (9.18)

where k is a constant to be determined later. These coordinates are called the Kruskal-Szekeres
lightcone coordinates. As defined, we have ũ ∈ [0,∞] and ṽ ∈ [−∞, 0]. The metric takes the form

ds2 = −f(r) 1
k2ũṽ

dũdṽ + r2dΩ2
2 , (9.19)

where we let the fact that r is a function of ũ and ṽ remain implicit. Note that while the metric is
singular at the event horizon (r∗ = −∞ → ũ = ṽ = 0), it is well defined for ũ < 0 and ṽ > 0. We
also know that the horizon singularity is just a coordinate singularity, so we can without trouble
analytically extend our solution. The extension cannot continue beyond the curvature singularity
at r = 0, because analyticity breaks down here independent of the choice of coordinates. This turns
out to be the maximal extension of the AdS-Schwarzschild spacetime.

The coordinate r is implicitly defined by

ũṽ = −e2kr∗(r) . (9.20)

After extending the domains of ũ and ṽ we see that the LHS is unchanged under the change
(ũ, ṽ) → −(ũ, ṽ). This means that the tilded coordinates cover the original black hole spacetime
twice. To make the Kruskal-Szekeres coordinates properly extend to the interior of the black hole,
we have to pick k in a specific manner. When the product of ũṽ is positive, equation (9.20) tells
us that r∗ should have an imaginary part iπ/k. It should be possible to check by performing the
integration and solving equation (9.11) explicitly for r∗(r) that

ũṽ = e2kr∗ ∼ (r − rH) , (9.21)

so that we are taken inside the event horizon exactly as the product ũṽ becomes positive. The
constant k must be chosen so that the relation becomes exact to avoid a coordinate singularity at
the horizon. It turns out that r∗ is explicitly given by

r∗ =
∫ 1
f
dr =

(2r2
+ + 4p) arctan

(
rH+2r√
4p−r2

H

)
+ rH

√
4p− r2

H ln
(

(r−rH)2

r2+rHr+p

)
2c2(2r2

+ + p)
√

4p− r2
+

+ C , (9.22)

where p = r2
H + L2 and C is an integration constant. The correct choice of k then end up as

k = 2r2
H + p

rHL2 . (9.23)

Using the known form of r∗ and choosing C appropriately one can then show that

lim
r→0

ũṽ = 1 ,

lim
r→∞

ũṽ = −1 ,

lim
r→rH

ũṽ = 0 .

That is, the horizon(s) lie at ũ = 0 and ṽ = 0, the singularity lies on the curve defined by ũṽ = 1
and the boundary of AdS lies at ũṽ = −1.
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Figure 9.4: Penrose diagram of the maximally extended AdS-Schwarzschild spacetime. The space-
time boundaries are indicated in grey and the event horizon with straight black lines.

The full spacetime can be split into four regions, F,P,L,R according to the signs of ũ and ṽ as in
figure 9.4. Figure 9.4 is a Penrose diagram of the spacetime, and we have denoted the boundaries
at ±∞ of ũ, ṽ as well as at r = 0. Note that r = 0 should correspond to a region where ũṽ = const.
We take the rotated ũ − ṽ axis to cross at zero. Here, R denotes the region corresponding to the
black hole exterior covered by our old lightcone coordinates. This should be clear by considering
that before the extension, the domain was ũ ∈ [0,∞] and ṽ ∈ [−∞, 0].

The region F is the future interior of the eternal black hole, and the line of r = 0 is called the
future timelike singularity. The shape of the r = 0 line is found by the following consideration: r
depends directly on r∗, and r∗ is constant for curves of constant ũṽ.

Positive ṽ and negative ũ cover the region L, and they correspond to the negative u solution of
the wormhole coordinates of the previous section. Indeed, since we have a symmetry of the metric
under (ũ,ṽ)→ −(ũ,ṽ), L and R should describe the same spacetime.

9.1.1 Holographic Dual of the Extended Spacetime

We just found out that the AdS-Schwarzschild solution is actually just an incomplete coordinate
chart for a bigger system. The extended AdS-Schwarzschild spacetime contains two singularities,
at the centers of black- and white holes respectively. In addition, it contains two copies of the
AdS-Schwarzschild exterior. We will now consider the holographic dual of the maximally extended
AdS-Schwarzschild spacetime.

We discovered that the thermodynamical properties of the spacetime matched our expectation
for the behaviour of a bipartite system in a cyclic, separating pure state |Ψ〉. This state can be
written as |Ψ〉L ⊗ |Ψ〉R. The Hilbert space of a QFT living on a connected, continuous spacetime
does not admit such a factorization. This leads us to consider a CFT defined on two disconnected
spacetimes. These spacetimes must be the same to fulfill the cyclic condition for local operators.
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9.1. Eternal Black Hole Equals Wormhole

The CFT dual of the AdSd+1-Schwarschild solution is a CFT on S1⊗Sd−1. For a single copy of the
exterior spacetime this CFT dual is uniquely determined, so we only have one possible candidate
for the dual of the maximally extended AdS-Schwarzschild spacetime. The maximally extended
spacetime must be dual to two copies of the same CFT on S1 ⊗ Sd−1 entangled in such a way that
the overall state is pure.

The purification of a system using another copy of the same system is unique if the spectrum
of the Hamiltonian is non degenerate. The unique state defined on subsystems L,R that gives the
correct local density operator on L and R is given by

|Ψ〉LR = 1√
Z(β)

∑
i

e−
β
2H |Ei〉L ⊗ |Ei〉R , (9.24)

where |Ei〉L are eigenstates of H with energy Ei and Z(β) is the partition function of a single copy
of the system (necessary to normalize the wavefunction). Constructing the density operator we
obtain

ρLR = 1
Z(β)

∑
i,j

e−β(Ei+Ej)/2) |Ei, Ei〉〈Ej , Ej | . (9.25)

If we trace out either subsystem we get the usual form of a thermal density matrix with standard
normalization

TrL[ρLR] = 1
Z(β)

∑
i

e−βEi |Ei〉〈Ei| . (9.26)

The state described by equation (9.24) is called the thermofield double. This state has three
interpretations, all of which we have seen at this point. The second and third interpretations are
the ones of importance for the ER=EPR conjecture. In the following we will refer to the wormhole
coordinates of the previous section.

• equation (9.24) is a representation of a single black hole in thermal equilibrium. Let us take
R to be the single black hole. We then see the second spacetime as nothing but an auxiliary
fictitious addition to simplify calculation. The time evolution of the full system is taken to
be generated by the fictitious thermofield Hamiltonian

Htf = HR −HL. (9.27)

The thermofield Hamiltonian generates forward time translation on the right side of the
Penrose diagram and backwards translation on the left side. This ”thermofield doubling”
of the Hilbert space simplifies the calculation of correlation functions between operators in
the right spacetime. This interpretation is the oldest one, and is the origin of the term
”thermofield double”. Once the maximally extended Schwarzschild solution was understood
in the semiclassical sense, it was realized that this Hamiltonian corresponds to the quotient
space maximally extended AdS-Schwarzschild/Z2 where the Z2 identifies (ũ,ṽ) ∼ −(ũ,ṽ).

• equation (9.24) represents two entangled spacetimes connected at the horizon of a black hole.
Here, there is no quotient so time moves upwards on both sides of the Penrose diagram. In
this interpretation, the Hamiltonian is written as

H = HR +HL (9.28)

and the state described by equation (9.24) represents two black holes at some time t = 0.
The state is not an eigenstate of this Hamiltonian, as its evolution is given by

|Ψ(t)〉LR =
∑
i

e−βEn/2e−2iEnt |n,n〉 , (9.29)
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where |n〉 is related to |n〉 by the exchange ũ↔ ṽ, which is a realization of the CPT symmetry
of the extended spacetime. Since the full spacetime is pure, the two spacetimes must be
entangled. In fact, they are maximally entangled in the sense that the entire entropy of the
local states is due to entanglement with another system. The local density operators are still
time independent, so the amount of entanglement is time translation invariant. The lack of
time translation symmetry in the relative phases of the eigenstates has a counterpart on the
gravitational side; starting with a time slice at t = 0 and evolving it upwards in the spacetime
diagram 9.4 reveals that the interior of the black hole grows with time.

• equation (9.24) represents two far-separated, highly entangled black holes in a single space-
time. These black holes initially have identified event horizons, and are thus connected by a
wormhole. AdS is unstable to black hole formation (in this case the merging of the two black
holes) so the approximation does not hold for infinite time. Since we can place the black holes
arbitrarily far apart, the approximation of two independent black hole can be made to hold
for an arbitrary, large amount of time. Note that if we wish to apply the AdS/CFT duality,
with a regularization capping off the radial coordinate at some finite distance ρ0, we would
like the separation between the black holes dsep to fulfill dsep � ρ0 so that the boundary CFT
is far from both black hole singularities.
We conclude that the construction is sensible on the gravitational side for an arbitrarily
large, finite time. The state also seems to fulfill the basic properties required for AdS/CFT
duality, namely rotational symmetry in the large r limit and asymptotically AdS behaviour
(see section 6.2.3).
On the CFT side we should understand how to handle the fact that the state describing the
two black holes is supposed to factorize despite being defined on a single spacetime, as well as
the finite entanglement of the black holes. Neither of these violate the axioms of local QFT
if the the corresponding boundary states are smeared over the entire boundary spacetime. If
we treat the two black holes independently of eachother, they should both be determined by
a CFT state on the boundary of their past lightcone. Given that we know the Hamiltonian
of the boundary theory, we can relate the two boundary states that determine the two black
holes by a unitary time evolution. The entanglement of the two black holes then corresponds
to entanglement entropy between a region and itself, so it is not subject to the entanglement
divergences of local QFTs. This is illustrated in figure 9.5.
Another potential subtlety is the required periodicity of the Euclidean time circle. Near
horizon analysis is still exactly the same, meaning the Euclidean time periodicity is τ ∼
τ + 4φL2rH

(d+1)r2
H+(d−1)L2 near the two black hole horizons, but it should not be periodic at the

boundary. To resolve this we may think about the fact that these black holes are supposed
to radiate. The radiation they emit must be entangled with the radiation from the other
black hole in such away that their radiation interferes into a pure state for large radii. Since
the entropies are constant, this should correspond to some stationary solution of the Einstein
field equations where the radius of the Euclidean time circle is allowed to vary in space with
a divergent boundary condition at infinity. It should be noted that letting the period of
the Euclidean time circle become dynamic is very tricky and calls into question a number of
uniqueness results from chapter 6.2.3.
A different interpretation of this is that ”thermal equilibrium” does not make sense in this
spacetime and we should not be using the periodicity in Euclidean time prescription. Indeed,
when giving the two CFTs a common time, we observed that the pure entangled state was
not an eigenstate of the Hamiltonian. However, since the state and subsystems keep constant
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9.1. Eternal Black Hole Equals Wormhole

Figure 9.5: Two black holes in AdS, with the boundary of AdS represented as two black lines.
By causality, the bulk black hole is completely determined by a boundary CFT state on its past
lightcone. The dashed greyed lines represent the past lightcones of the black holes wrapping around
the topologically cylindrical boundary of AdS. Since the gravitational state is pure in this construc-
tion, the two regions indicated by the dashed grey lines are related by unitary time evolution. We
conclude that the entanglement of the black hole pair is dual to nonlocal entanglement between a
region and itself on the CFT side.

entropy it is not clear that this is not thermal equilibrium. In addition to this, AdS is unstable
to black hole formation so we might expect that given enough time any two (large)3 black
holes will merge, meaning there was never any equilibrium.

State of the Information Paradox

Way back in section 4.2.3 we encountered the information paradox, the essence of which is that
gravity lets a system with no or little entropy evolve over time into a system with high entropy. This
is in violation of the unitarity of quantum mechanics, since the von Neumann entropy is invariant
under unitary transformations of the density operator.

This double black hole hints at a possible solution to the information paradox. Here, the
radiation coming from the two black holes must be entangled in such a way that they interfere into
a pure state at large radii, otherwise the boundary state cannot be pure. Based on this, we may
speculate about the structure of unitary black hole formation.

For a single, one-sided black hole we might imagine a similar resolution, wherein the black
hole becomes entangled with its own radiation. The problem with such a resolution is that the
spacetime seems to stay impure for at least as long as it takes for the black hole to radiate away
half its entropy. This time is called the Page time. Beyond this point, there is enough radiation in
the exterior spacetime for an observer to determine the microstate of the remaining black hole by
measuring the state of the radiation.

This hints that unitary black hole formation may require the emission of enough radiation for
such an exterior-interior entanglement to be possible right away. This can be given a very interesting
implication. Given the existence of a device that can collect all of this radiation and collapse it into
a second black hole, we can create an entangled pair of black holes. We already know that black

3Small black holes would evaporate into a cloud of radiation before merging.
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holes of this type are connected by a wormhole. If there was no geometrical connection between
the radiated particles and the initial black hole, it interesting to ponder whether it makes sense for
a wormhole to spontaneously form as you collect the entangled radiation. It was the conjecture
of Maldacena and Susskind that this is not sensible, and we should think of each of the radiated
particles as connected to the original black hole via a Planck-scale wormhole. This is the so-called
ER=EPR conjecture.

9.2 Wormhole Equals Entanglement (ER = EPR)
We have in the previous section concluded that both on the AdS and CFT sides, we can put the two
sides of the maximally extended spacetime into the same spacetime to obtain two distant regions
connected by a wormhole. The CFT dual of this setup is some kind of maximally delocalized
entanglement, and is therefore not described by an extremal surface that is connected to the
boundary. When we have two disconnected spacetimes, there is a unique HRT surface not connected
to the boundary, the wormhole event horizon, that computes the entropy of each of the CFTs on
the copies of the AdS boundary. When we put the two wormholes in the same spacetime there is
no obvious way of defining subregions to give boundary input to the HRT formula.

The ER=EPR conjecture of Susskind and Maldacena is that this type of nonlocal entanglement
on the CFT side is actually dual to nontraversible wormholes. The area of the horizon at the throat
of these wormholes is given by the usual entropy-area relationship

S = AWH

4GN
. (9.30)

We actually already outlined an argument for the ER=EPR conjecture in the paragraph preceding
this section. In this section we would like to develop this a little further. This section focuses on a
number of points, all heavily inspired by the original reference [7], with some points included from
[83]:

• formation of maximally entangled black hole pairs,

• uniqueness relationship between wormholes and entangled states,

• further similarities between entanglement and wormholes,

• the AMPSS paradox, and its resolution via ER = EPR

The specific relationship between CFT states and distinct wormholes will be made clearer in section
9.3, where the complexity=volume and complexity=action conjectures are explored.

Formation of Entangled Black Holes in the Same Spacetime

Previously we made the suggestion that the formation of a single black hole requires the emission
of enough radiation to purify the exterior state. This type of construction is not understood in
detail, and not necessarily a correct understanding of what goes on.

One might worry that entangled state of the two black holes is very specific, meaning that
the particular entangled state in equation (9.24) is very hard to reproduce. It is a result due to
Strominger and Garfinkle that black hole pair creation in the presence of an electromagnetic field
produces black holes in precisely these states [84].

Another argument comes from a limit of black hole fission. Black hole fission is a conjectured
process in which a black hole splits into two daughter black holes. There are no classical dynamics
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that describe such a process, but since there are no symmetries preventing the process it is possible
quantum mechanically. This phenomenon is not quantitatively understood, but at least qualita-
tively there is no reason it not possible [83]. In fact a major motivation behind the well known
weak gravity conjecture comes from the fact that we expect that black holes are able to split [85].

As an example a single black hole of mass M may split into two black holes of mass M/2. The
Schwarzschild radius is proportional to the mass, and so the total area of the daughters is half that
of the of the parent black hole. The process involves a decrease of entropy by −S/2 and is therefore
very rare (p(event) ∼ e∆S). In fact the black hole is more likely to evaporate completely in the
time it takes for it to split in half once, but nevertheless the process is possible.

Importantly these black holes before splitting may have a large behind-the-horizon region. This
region exists either because they are part of a two-sided black hole, or because we are considering
the maximal AdS-Schwarzschild/Z2 one-sided black hole which has a bridge to nowhere behind its
horizon [86]. When the black holes horizons split, we have no reason to expect the interior to split.
The general idea of the splitting process is as follows. As a statistical fluctuation, the horizon is
deformed into two almost disconnected lobes. At this point the deformed area is approximately
half that of the original black hole, so the probability of such a fluctuation is roughly eS/2 where
S is the entropy of the original black hole. Classically the probability is zero, since the entropy
carries an inverse power of ~.

We assume that the black hole degrees of freedom are well mixed at the time of this fluctuation,
meaning the two lobes should be highly entangled. At this point a nonperturbative instanton allows
for the complete splitting of the two black holes, after which the process proceeds classically and the
black holes fly off on their merry way given that there is some repulsive force present, for example
the black holes may carry electric charge. After splitting, each daughter black hole has a separate
growing interior region behind the horizon. Due to entanglement the behind-the-horizon regions of
the daughters are connected. More pictorially, the sequence of events (from left to right) is

where we have indicated the behind-the-horizon region as extending downwards.
More interesting is to consider the asymmetric fission of black holes. Consider a parent with

mass M decaying into daughters with masses m and M −m. The entropy change is ∆S = −2m
M S

to first order in m. If m is small this is clearly much more likely then the symmetric fission, since
p ∼ e∆S . In fact remembering the definition of the Hawking temperature TH we see that

e∆S = e−
2m
M
S = e

− m
TH (9.31)

just describes emission spectrum of small black holes via Hawking radiation. Again assuming that
the black hole degrees of freedom were well mixed, the daughters are entangled and the post split
classical evolution has the behind-the-horizons grow. In the limit of very small black holes there is
an expectation that instead elementary particles are emitted due to consistency conditions related
to the weak gravity conjecture. Since the entanglement characterized in the black holes by a
growing behind-the-horizon region remains, it is reasonable view even particles as connected to the
original black hole by some kind of limiting wormhole. Pictorially the situation has the following
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appearance after a few black holes have been radiated:

.

Uniqueness Relationship Between Wormholes and Entangled States

When the two halves of the thermofield double are given a common time, the state is not time-
translation invariant. Time evolution traces out a continuous family of states with the same entan-
glement entropies and energy spectra, but with different relative phases of the energy eigenstates.
These states on the field theory side are distinct, so if there is a duality between entanglement itself
and wormholes, the distinct states must correspond to distinct wormholes (with constant horizon
area). We shall argue that time translation indeed takes us between distinct wormholes.

Consider the Penrose diagram of the maximally extended AdS-Schwarzschild solution in figure
9.4. To define a quantum state, we pick a spacelike slice such as t = 0. Hamiltonian formalism is
only well defined in the boundary region, since the full spacetime has no forward timelike global
translation symmetry. To translate the choice of boundary region on the CFT side to the bulk
we may pick any spacelike surface that is anchored to the boundary spatial slice. The freedom of
choice is due to a simple reason; two surfaces with the same domain of dependence have the same
algebra of observables.

In figure 9.6 we indicate in grey the domains of dependence of various pairs of boundary times
tR, tL on the boundary CFTs. These domains of dependence correspond to states at particular
boundary times on the CFT side. The quantum algebra of observables in the bulk is determined by
the causal structure of the domain of dependence of these boundary time slices. The claim is then
that the boundary state at boundary times tR, tL is dual to some generally covariant functional
of their domains of dependence. This region is referred to in the literature as a Wheeler-deWitt
(WdW) patch.

The first two images are related by simultaneous time translation of both CFTs, while in the
righthand image we have considered the case of only translating the left time forward by acting
only with the unitary operator eiHLt. The different regions illustrated are cut differently by the
singularity4, so they are not related to each other by a change of coordinates. We conclude that a
covariant functional of the WdW patch can distinguish between patches corresponding to different
boundary states, giving a uniqueness relation between spacetime quantities and boundary states.

”Nonlocality” of Wormholes and Quantum Entanglement

Wormholes and entanglement share an important fundamental feature, namely a causality-preserving
notion of nonlocality. For entanglement we realize that it does not enable superluminal commu-
nication because observers on two ends of an entanglement experiment need to exchange classical
information to realize their states were entangled to begin with. In the case of wormholes, positive

4Notably the domain of dependence of the initial state at tL = tR = 0 is not cut by the singularity at all.
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Figure 9.6: Bulk regions corresponding to Cauchy slices of the boundary spacetime. These regions
are cut off by the singularity at the center of the black hole, represented by a thin curved line.
The spacetime regions are cut differently by the singularity, ensuring that they are not related by
a choice of gravitational gauge. We conclude that the wormhole described in each of these regions
is distinguishable from wormholes described by the other regions. Similarly, on the CFT side the
states corresponding to different choices of boundary time correspond to different entangled states,
since the energy eigenfunctions have different relative phases.

energy conditions, which follow from demanding a CFT dual [16], imply that the wormhole neces-
sarily has an event horizon that prevents causality violating shortcuts through spacetime. In this
sense the two objects circumvent the problem of broken causality.

In chapter 7 we learned that the bulk dual of entanglement is area. Wormholes are by definition
the only type of geometric object that both respects causality and is nonlocal. Thus, the only
spacetime object that could conceivably be dual to an entangled particle pair in the bulk is a
wormhole. This is a separate argument that this should hold for any EPR pair. As far as the
boundary CFT is concerned, entangled black holes and entangled particle pairs in the bulk have a
very similar type of nonlocal entanglement. It is therefore reasonable that the geometric dual of
pair entanglement is a wormhole, even for individual particles. Note that the horizon area of the
wormholes connecting an entangled pair with an entanglement entropy of one qubit is given by

AWH = 4Gn~
c3 , (9.32)

i.e. only four Planck areas. As such, the conjectured geometrical dual of individual entangled pairs
is a highly quantum wormhole. It is possible that this wormhole can not be rigorously interpreted
as a classical geometry unless there is a very large amount of entanglement, as in the case of a large
black hole.

Neither wormholes nor entangled particle pairs can be created by so-called LOCC, standing for
”Local Operations and Classical Communication”. This means that two labs at spacelike separated
locations A and B cannot use a combination of local operators on the form OA⊗OB to create this
particular type of state.

On the quantum side this is well known. In fact, when defining a general quantum channel
we demanded that classical communication cannot retroactively change the result of any quantum
measurement. This directly implies that it cannot affect quantum entanglement. Local operators in
A commute with any measurements performed on B, so they also cannot change the entanglement.
This was one of the fundamental properties we proved about quantum channels.

On the gravitational side, we have suggested several for the production of wormholes. All of the
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mechanisms we have proposed begin with a single black hole that goes on to radiate matter with
which it is entangled. This is ”nonlocal” in the sense that particles that are entangled must at one
point have been part of the same black hole. Thus an operator that creates wormholes must create
both systems ’A’ (the black hole) and ’B’ (the radiation) together. Such an operator is ’nonlocal’
in the very specific sense that it has to act on both system A and B at the same time, but there
is nothing preventing these systems from being in the same location at some point in time so that
the relevant operator may be spacetime local.

Additional recent results are the equivalence between the no-cloning theorem on the CFT side
and no-go theorems for topology change on the gravity side, as well as a conservation theorem for
the throat area of the wormhole (corresponding to conservation of entanglement) [87].

To summarize, both entangled pairs and wormholes need to be created in a single place and then
spatially separated. Neither of the two may be created without an operator that acts simultaneously
on subsystems ’A’ and ’B’ in the preceding discussion. We conclude that both wormholes and
entangled pairs are states that cannot be created by LOCC that violate locality but not causality. In
essence, together with the Ryu-Takayanagi formula this is the basic motivation for the ER = EPR
conjecture. A final argument comes from the resolution of the AMPSS paradox, as we will now
detail.

AMPSS paradox and its resolution

The AMPSS paradox is named after the authors Almheiri, Marolf, Polchinski, Stanford and Sully
[88, 89]. It details the tension between the following three axioms of black hole physics

1. Hawking radiation is in a pure state

2. The information carried by the radiation is emitted from the region near the horizon, and
low energy effective field theory is valid beyond some microscopic distance from the horizon.

3. The geometry is smooth at the horizon, and nothing in particular happens to an infalling
point observer.

Before AMPSS, these axioms were supposedly reconciled by ”black hole complementarity” [90].
We shall give a bare-bones account of complementarity, AMPSS and its resolution by ER=EPR.
Arguments that here seem a little thin are expanded in [90, 88, 89].

The basis of the axioms are (1) unitarity of quantum mechanics, (2) locality of physics and (3)
the classical fact that the horizon is not distinguished by curvature. We can already anticipate that
ER=EPR does away with (2) while we will see that AMPSS argued that the most elegant way to
conserve quantum mechanics is by discarding (3). The most basic contradiction that arises from
the axioms is that if the geometry is smooth, an infalling observer experiences nothing in particular
and goes on to exist inside the horizon. This observer is then somehow also encoded in the later
pure Hawking radiation, violating the no-cloning theorem. To arrive at black hole complementarity
one notes that such a comparison is not consistent since an observer that can measure the Hawking
radiation in the exterior does not have the black hole interior in its past lightcone. This means
that no single observer is able to observe any cloning.

The case of an infalling observer is more difficult to reconcile with no cloning. We imagine an
experiment as in figure 9.7 where an observer comes from O, and at A creates an entangled pair of
particles b− c. particle b is sent together with a timed measuring device straight into the horizon.
The measuring device measures the state of b at B and sends a signal in the outgoing lightcone
direction. In the meantime the observer brings with them the other half of the entangled pair a and
waits outside the horizon for a while before entering. At C the exterior observer measures Hawking
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Figure 9.7: Observer etangling two spins b and c at A, one of which is sent together with a timed
measurement apparatus to B at which point the result of a spin measurement is sent. The observer
waits outside the horizon until the information about b is Hawking radiated. The observer intercepts
the Hawking radiation at C before going into the black hole to intercept the message from B at D.
In gray, we have illustrated what happens if the signal is sent too late from B.

radiation until information about the spin of b has been radiated. This observer then enters the
black hole to receive a message from B. According to postulate (1) the Hawking radiation may (and
eventually will) carry the same information as the message in the interior. This means that the
spin c will appear entangled with both the message from B and the Hawking radiation, violating
monogamy of entanglement. Looking more closely, one realizes that the exterior observer has to
wait for a long time to measure the spin in the Hawking radiation. This means that the apparatus
at B must send its message about the spin B very quickly after going through the horizon, or the
message will hit the singularity before it can reach the infalling observer. It turns out that the
required timescale demands that B send a signal (photon) with energy well above the Planck scale
[90]. The conclusion is that pending a contradiction coming from a model that describes physics
above the Planck scale, black hole complementarity resolves the information paradox.

AMPSS argues that even in the absence of trans-Planckian physics, complementarity is not
enough. To illustrate the issue of AMPSS, we consider a black hole older than the Page time, with
modes decomposed as

|Ψ〉 = |ψ〉interior ⊗ |ψ〉radiation . (9.33)

Let us call the interior Hilbert space A and the radiation Hilbert space R. Let us also divide the
radiation into modes RA far away from the horizon and RB very close to the horizon. Well after
the Page time, the black hole degrees of freedom should be mostly entangled with the far away
radiation RA. This follows because at the Page time, all interior degrees of freedom are entangled
with a finitely thick shell of radiation that is now moving away from the black hole.

This leads to a conflict. According to axiom 2, low energy effective field theory is valid near the
horizon and the horizon geometry is also smooth. It follows from LQFT on a smooth background
that there is UV (short range) entanglement across the horizon. This can only work if either
RA = RB, which is extremely nonlocal, or if the horizon is not smooth. AMPSS argue that the
latter is the only reasonable alternative, since the identification of early and late radiation implies
that what happens to an observer jumping into the black hole depends strongly on what an eventual
observer does to RB very far away, violating locality. The conclusion of AMPSS was that they had
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proved that the horizon of black holes can not be smooth as seen by any infalling observer. To
salvage the smoothness axiom, AMPSS suggested that the infalling observer would disentangle the
interior with the far radiation causing the release of a large amount of energy, resulting in the
infalling observer being greeted by a ’firewall’ of high energy modes as they entered the black hole.

Maldacena and Susskind in [7] instead took the position that AMPSS had proved that there
must be some kind of short-cut between the far radiation and the interior of the black hole. Based
on this clue that there should be a geometric shortcut between entangled radiation and the black
hole, ER=EPR was formulated. In doing so they also illuminated some ambiguity regarding the
description of black hole interiors in the geometry from entanglement program of Raamsdonk et al.

9.3 From Entanglement and Areas to Complexity and Volumes
In the previous section we discovered that the interior of black holes seems to be described holo-
graphically by the details of the boundary microstate. We will now make this relationship between
the boundary CFT microstate and the bulk theory more precise via the complexity=volume (CV)
and complexity=action (CA) conjectures. To do this we first need to define what we mean by
complexity, volume and action. Complexity is a measure of how complicated a state is to con-
struct using only ”simple” operators and a reference state. By action we mean the gravitational
Lagrangian integrated over a WdW patch, but it is not completely clear what gravitational action
to pick. The volume in this scenario is the volume of a spacelike ”nice slice” anchored at the
boundaries of the spacetime. In making the relation more precise, we will specialize to the eternal
AdS-Schwarzschild spacetime and consider the time evolution of the wormhole connecting the two
black hole horizons. We will find that the growing length of the wormhole will have the behaviour
expected of the complexity of a chaotic quantum state.

The material covered in this section is highly conjectural. This is because complexity is barely
under control in the discrete case, and so far has no natural continuum definition. This means that
the most sophisticated checks of the conjectures we will resort to theories of gravity that are dual
to discrete matrix models on the boundary, such as the Sachdev-Ye-Kitaev (SYK) model.

It seems that complexity specifically may not be the ultimate answer, but it may point in the
right direction by putting the focus on microstate dependence of the behind-the-horizon region of
black holes.

This section follows closely the lecture notes by Susskind titled ”Entanglement is Not Enough”
[83] with some extra details harvested mainly from [91] and [92].

9.3.1 Computational Complexity

Computational complexity is a candidate dual of the length of the wormhole or behind-the-horizon
regions of black holes. To make this relation believable we better define computational complexity.
We will being by making clear the classical notion of complexity before moving on to the quantum
case.

Computational complexity is a computer science tool that quantifies the difficulty of carrying
out a task. To define computational complexity we need a number of basic ingredients: a system,
a space of states, a definition of a ”simple state”, a definition of a ”simple operator”, and a task.
Generally the task is to transform a simple state into some arbitrary state, using a sequence of
simple operators. The complexity of an arbitrary state is then defined as the minimum number of
simple operators required to compose the general operator taking a simple state to the arbitrary
state.

Let us consider a system of K classical bits whose space of states can be represented by K
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binary numbers (11010110 . . .). Let us also make an identification under the Z2 operation that flips
all bits. An obvious candidate for a simple state is (00000...), which is equivalent to the state with
all ones. The simplest imaginable operation is the flip of a single bit 0↔ 1.

The maximum complexity C of a state is clearlyK/2 due to the identification under Z2. Another
fact is that almost all states have nearly maximal complexity, straightforwardly understood by
realizing that that a state with complexity C is built by acting with C simple operators on the
simple state. When building a state of complexity C one can make

N(C) = K!
(K − C)! (9.34)

distinct choices of what bit to act on. Like the maximum complexity the maximum entropy is also
proportional to K as S = K log 2. Notably complexity and entropy are very similar in the classical
case.

There are two characteristic timescales related to complexity, the thermalization time and the
Poincaré recurrence time. The thermalization time is approximately equal to the time it takes to
reach maximum complexity. By the thermilization time ttherm ∼ tcomp, we mean the time it takes
for some dynamical rule to bring a simple state into a nearly maximally entropic/complex state.
Typically ttherm is polynomial bounded in K. The Poincaré recurrence time is the time it takes for
a generic state to evolve into the simple state via some dynamical rule. Since the simple state is
unique among 2K states, this time is of order 2K .

To summarize the quantities of classical complexity, we have:

Cmax = K/2 maximum complexity
Smax = K log 2 maximum entropy

ttherm ∼ tcomp < Kp time to thermalize or get maximally complex
trec = 2K Poincaré recurrence time.

We can now turn to the quantum case. The analogous system is K qubits with states of the form

|ψ〉 =
2K∑
i

αi |i〉 . (9.35)

The main difference to the classical case is that now we require 2K numbers to specify the state.
The quantum definition of a simple state is a state with no entanglement. Further the simplest

state should be a tensor product with all qubits in the same state. Identifying states under a global
SU(2) rotation on all qubits, there is a unique simplest state

|0〉 = |000 . . .〉 . (9.36)

Simple operators are more subtle than in the classical case. We want operators that are unitary
and can create entanglement. The latter is not possible unless our ”simple operators” act on at
least two qubits at a time. In computing simple unitary two-qubit operators are called gates, and
a sequence of gates is called a quantum circuit.

The task is then to build an arbitrary unitary K-qubit operator u by acting with a sequence
of gates gi, i.e. u = gn . . . g2g1. The complexity of the operator u is the minimum number of gates
required to construct it.

In the AdS/CFT case it is better to define each step as containing K/2 gates. This means that
all qubits are involved in a gate at each step, more closely representing the parallel computing of
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Hamiltonian time evolution. The complexity is then defined as the number of steps including K/2
gates are required to construct u. We can also define the complexity of a state |ψ〉 by noting that
any state can be written as

|ψ〉 = u |0〉 (9.37)

for some unitary operator u. The complexity of |ψ〉 is the minimum complexity of any u that fulfills
equation (9.37). One can also define the relative complexity between between two states |A〉 and
|B〉 as the minimum complexity of the operator u that takes one to the other.

Because of the significantly larger state space the complexification and recurrence times are
significantly longer, while the thermalization time is unchanged. The new list of characteristic
quantities is

Cmax = eK maximum complexity
Smax = K log 2 maximum entropy
ttherm < Kp time to thermalize
tcomp = eK time to get maximally complex

trec = ee
K Poincaré recurrence time.

Just like in the classical case almost all states are nearly maximally complex, i.e. exponentially
complex. The given thermalization-, complexification- and recurrence times assume that the evo-
lution of the system is given by a Hamiltonian that is a sum of simple Hermitian operators. Simple
Hermitian operators involve only one or two qubits, so a simple Hamiltonian implements time
evolution by quantum gates.

Note that ”simple” operators involving only a few qubits are notoriously hard to define in field
theory. To check proposed gravitational duals against field theory results we therefore need to
resort to cases where the CFT side may be described by a discrete matrix model, such as the SYK
model [92].

Here we see the key property of quantum chaotic systems, the complexification time is much
longer than the thermalization time. This means that there is a quantum informational property
that grow long after the system has reached thermal equilibrium. This is precisely the situation of
the black hole, after creation the black hole has a behind-the-horizon region that grows with time (in
fact, classically it grows forever). Apart from complexity no good properties of a quantum chaotic
system grow after the thermalization time, so complexity provides a unique quantum mechanical
dual to the length of the wormhole.

We can also motivate the time dependence of complexity, assuming that at every time step
we act with some finite number of quantum gates on random qubits. The key points are that
at each timestep, the space of more complex (entropic) states is much larger than that of less
complex (entropic) states, so complexity should increase in time. Additionally there is a maximum
of complexity that can be gained per iteration since we act with a finite number of gates. Together
these imply that complexity will grow as fast as it can roughly in a linear fashion until maximum
complexity is almost saturated. At a linear rate the complexification time is clearly of order the
complexity which is why tcomp = eK .

We can also guess the rate of growth of complexity by noting that it is extensive, meaning it
depends on the number of active degrees of freedom in a system. Another extensive measure of the
size of a system is the entropy S. The derivative of complexity with respect to time should have
units of inverse time. To take into account the fact that extremal black holes are not expected to
have a growing behind-the-horizon region the correct quantity with the desired dimension is the
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temperature T , so we end up with
dC
dt ∼ TS . (9.38)

Finally note that due to the quantum recurrence theorem the state will quasiperiodically return
arbitrarily close to the original state on timescales doubly exponential in K. The resulting picture
is that of complexity growing linearly until saturation, with quasiperiodic dips whose sharpness is
limited by TS being the maximum rate of complexification and decomplexification.

Geometrized Complexity

It is possible to recast complexity in the language of Riemannian geometry as was done by Nielsen
et al. in [93]. The geometrized version of complexity gives the most natural argument for the time
dependence of complexity, and makes clearer just how complicated the relationship between mi-
crostates and interior geometries may be. We comment on complexity as if it is dual to a geometrical
quantity here, although we have not yet demonstrated the credibility of such a conjecture.

The principal observation is that the space of special unitary operators acting on K qubits is
SU(2K). The special unitary group is a Lie Algebra, meaning it is associated with a manifold
whose connection is related to the generators of the group. The action of a sequence of gates
traces out a trajectory in SU(2K) consisting of discrete line segments, and the complexity is the
minimum number of such intervals that connects the simple element to the arbitrary one. With
suitable definitions, it is clear that the complexity corresponds to the length of some kind of shortest
trajectory connecting the point I and u on the manifold SU(2K).

To bring this to Riemannian form, we need to do away with the requirement of straight line
segments, so we define a continuous version of the quantum circuit that replaces the discrete
trajectories by smooth curves. We then have to define an appropriate Riemannian metric such that
the minimal geodesic connecting two points has approximately the same length as the corresponding
set of adjoined straight line segments. Additionally the geometry is usually taken to be translation
invariant due to the arbitrariness in the choice of reference state.

The sequence of gates is replaced by the Hamiltonian evolution

u = P
[
e−i

∫
h(s)ds

]
(9.39)

where P is the path ordering operator and s parametrizes a path.
We define a Hamiltonian to be k-local if it is a sum of terms involving at most k qubits. The

metric is defined in such a way that path segments built from k-local Hamiltonians are short while
segments are long if built from hard Hamiltonians that contain terms involving more than k qubits.
More explicitly, a cost parameter q is introduced that multiplies the metric in directions which
are not generated by k-local Hamiltonians. Nielsen shows that if q > 4k, the complexity becomes
insensitive to the precise value of q. This is a general property of complexity, it is very strongly
dependent on K but has a weak dependence on any regulator parameters.

In the following we assume that the Hamiltonian that performs time evolution is k-local. For
t small compared to the inverse cost parameter 1/q and the eigenvalues of h(s), the growth of
complexity is linear. In this case, the trajectory generated by e−iHt is a geodesic since it generates
straight motion in a k-local direction. For some period of time this remains the shortest geodesic,
but it can not hold forever since complexity has an upper bound. We can see this explicitly by
considering the case k = 2. In this case each gate is an element of SU(4) requiring the specification
of 15 real parameters, while a general unitary in SU(2K) requires the specification of 4K − 1
parameters. This implies that there are states that can only be obtained by acting with a minimum
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of 4K−1
15 gates, but it also implies that the maximum number of gates required to get to any state

is approximately 4K−1
15 . We conclude that the maximum complexity is of order 4K .

Next we may consider the shortest geodesic between the identity operator and some operator
u in the complexity geometry. If we set q = 1, any point in the geometry is at a distance of order
one (since we can move using a K-local operator at no additional cost). It is clear that for general
q < 4K the upper bound on the length of the geodesic is exactly q. By setting q = 4K we ensure
that the shortest geodesic is precisely upper bounded by 4K .

Finally we may consider a geodesic swept out by a k-local Hamiltonian U(t) = e−iHt. Assuming
that the Hamiltonian is chaotic the geodesic never closes so it is always increasing in length, but
at some point it ceases to be the shortest possibility. This happens when the geodesic intersects a
point on the cut-locus5 of the geometry, at a distance of at most 4K . The reason this particular
point is interesting is that it signals the breakdown of classical general relativity on the gravitational
side.

The important property of note is the case of evolution by a bounded N -local operator h with
u = eihε where N > k and ε small. This leads to a situation in which the states |0〉 and |φ〉 = u |0〉
are nearly parallel but have completely different complexity. Equivalently, the classical geometry
behind the horizon may be vastly different for two quantum states that are indistinguishable from
the perspective of expectations of Hermitian operators.

9.3.2 The Geometric Dual of Complexity

There are, roughly speaking, two conjectured duals of complexity in the CFT. These are the volume
of the interior wormhole measured in a particular covariant and spacelike way, and the Einstein-
Hilbert action integrated over a WdW patch. To compute any of these quantities, it is best to keep
things simple. In the case of black hole pair creation and radiation of particles we can not use a
classical approximation in the bulk because topology is classically conserved. Instead we consider
the simpler, completely classical case of the two sided AdS-Schwarzschild black hole which has the
crucial property of a growing wormhole which we may compare to the boundary state complexity.

Gravitational Preliminaries

To associate the time evolution of the bulk spacetime to time evolution on the boundary we need
to pick an appropriate foliation of the spacetime in terms of codimension 1 spacelike surfaces. A
good foliation needs to obey a set of conditions

1. The slices should be Cauchy surfaces. Formally all geodesically complete light- and timelike
curves must intersect each slice exactly once.

2. The slices must stay way from singularities and high-curvature regions. Such slices are referred
to as ”nice slices”.

3. The slices should have a coordinate invariant definition, up to a global Lorentz transformation.

4. On the boundary, the slices should be ordinary constant-time surfaces.

5. The entire black hole exterior should be foliated by these slices. By virtue of condition 2. the
far interior of the black hole can not be foliated.

5A cut locus is the set of points are connected by several minimal geodesics to a reference point. An archetypal
example is the antipodal point on the sphere.
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To pick a surface that satisfies the above conditions, we first pick an asymptotic Lorentz frame.
For a given time t on the boundary in this frame we consider the set of spacelike surfaces anchored
on a spatial sphere of very large radius. Among the possible slices there exists one that has
maximal volume and as r → ∞ this maximal slice defines a unique global spacelike surface for
each asymptotic time t. Letting t vary between ±∞ foliates the entire exterior spacetime by these
maximal slices. This particular prescription is good because the existence of the maximal slice is
guaranteed [91].

Two-Sided AdS Black Hole

Let us for simplicity study the simplest wormhole spacetime: the maximally extended AdS-Schwarzschild
solution. The metric is given by

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩD−2 . (9.40)

For the BTZ 2+1d case the function f(r) is given by

f(r) = 1
L2 (r2 − µ2) , (9.41)

where L is the AdS radius and µ is related to the black hole mass by

µ2 = 8GNML2 . (9.42)

For D > 3 the form factor is instead given by

f(r) = r2

L2 + 1− µ2

rD−3 (9.43)

and µ is related to the black hole mass by

µ2 = GNML2

ωD−2
, (9.44)

where ωD−2 is the volume of a D − 2-sphere. The maximally extended spacetime, as we saw
in section 9.1, contains strange objects such as white holes. In addition it is very unstable to
perturbations in the lower half of the Penrose diagram of figure 9.4. In the present case it is fine
to throw away the lower half and just imagine that the two sided spacetime was created at t = 0
by some unspecified event. Thus we start with a wormhole of vanishing length that continuously
grows.

The quantity of interest in the maximal slice is the volume. Since it is attached to a spherically
symmetric shell at infinite radius it should have spherical symmetry. In the bulk this tells us that
it should be parametrized as the radius as a function of the bulk time s. The volume is then

V = ωD−2

∫
ds
√
|f(r)|rD−2 =

∫
ds
√
g(s) , (9.45)

where the object in the square root is the induced metric on the spacelike slice and the determinant
of the metric g(r) ≡ |f(r)|r2(D−2). To determine the maximal slice we need to specify boundary
conditions and solve a variational equation with respect to r(t)

δrV = 0 . (9.46)
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Figure 9.8: Nice slices for different choices of boundary times. The portion of the nice slice inside
the black hole horizons grows with time, approaching the final slice at r = rf .

There is a final slice at t = ∞ that stays at a finite radius rf from the central singularity. This
is found by taking the limit t → ∞, where time translation invariance and rotational invariance
together imply a surface of constant radius. The value of rf is found by maximizing g(r) (solving
∂rg(r)|r=rf = 0). The function g(r) vanishes at the horizon and r = 0 and increases monotonically
for r > µ. This is because of the usual zero at the horizon as well as the suppression of the central
singularity by r2(D−2), corresponding to the fact that the volume of the D − 2-sphere shrinks at
zero faster than the singularity grows. Note that we ignore the divergent part as r →∞, so we are
looking for a local maximum of a regulated expression for the volume somewhere inside the black
hole horizon.

In the BTZ case the final radius is straightforwardly obtained as

rf = µ√
2
. (9.47)

The volume of the final slice is given by Vf = ωD−2r
D−2
f

√
|f(rf )|.

The maximal slices for finite t are more difficult since we lose the time translation invariance.
These are obtained by solving the equation with boundary condition:

δr

∫
ds
√
|f(r(s))|r(s)D−2 = 0 , lim

s→t
r(s) =∞ . (9.48)

To solve this, we can note that codimension one surfaces with D − 2-spherical symmetry are
geodesics with respect to the metric ds2 = −r2(D−2)f(r)ds2 + r2(D−2)f−1dr2. To find the volume
we integrate the length element times the volume of the D-2 sphere along this geodesic. In the
following, let us parametrize the curves by r(λ), s(λ) and denote derivatives with respect to λ by
ṙ,ṡ.

The metric has a time-translation symmetry with a corresponding conserved quantity given
by E = r2(D−2)f(r)ṡ and the geodesic equation gives the parametrization constraint r2(D−2)ṙ2 =
f(r) + E2r(−2(D−2)). We pick the asymptotic Lorentz frame in which the two boundary times
tL = tR. The volume of a slice is then given by the integral

V (E) = 2
∫ R

rturn(R)

dr
ṙ

= 2
∫ R

rturn(R)

r2(D−2)dr√
E2 + r2(D−2)f(r)

(9.49)
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where rturn is the turning point at which ṙ vanishes and R is a regulator for the AdS boundary.
The factor of two comes from the tR ↔ tL symmetry of the problem in the chosen frame. It turns
out that for for large R one finds [91]

V (tL, tR) ∼ Vf
|tL + tR|

L
+O(1) = ωD−2r

D−2
f

√
|f(rf )||tL + tR| (9.50)

whereO(1) represents terms that do not scale with the volume of the slice. Equation equation (9.50)
is dimensionally sound because the form factor has the form of distance2/L2. Slices corresponding
to different boundary times, with the final slice r = rf and rturn denoted are illustrated in figure
9.8.

Complexity=Volume (CV) Conjecture

Let us compare the expressions for the complexity of the thermofield double and the volume of
the nice slice in the maximally extended AdS-Schwarzschild spacetime. In the complexity case we
found in equation (9.38) that

Ċ ∼ TS
(

= aA

8πGN

)
, (9.51)

where on the gravitational side the temperature T is the Hawking temperature determined by
T = a/2π and S is the entropy A/4GN . We should relate this expression the volume of the nice
slice to find the conjectured relation between complexity and volume.

First let us note that the quantity ωD−2r
D−2
f is not quite equal to the horizon area of the black

hole, in fact in the 2+1-dimensional case they differ by a factor of two. In more general dimension,
we may specify to large black holes so that the intractable constant term can be ignored. Then the
determinant g(r) takes the form

g(r) = 1
L2 (µ2Z − Z2) , Z ≡ rD−1 . (9.52)

The values of the black hole and final slice radii are given by g(rH) = 0, g′(rf ) = 0 respectively,
and we find

Zh = µ2 , Zf = µ2/2 , (9.53)

so that

rH =
(
µ2
)1/(D−1)

, rf =
(
µ2

2

)1/(D−1)

. (9.54)

The areas of the two surfaces are related by

Ah
Af

= 2(D−2)/(D−1) , (9.55)

which interestingly is very weakly dependent on the dimension D and of order 1. The surface
gravity a of the black hole is given by

a = f ′(rH)
2 = D − 1

2L2 µ
2

D−1 . (9.56)

The volume of the nice slice in terms of these quantities grows according to equation (9.50) as

V̇ = 2ωD−2r
D−2
f

√
|f(rf )| = ωD−2

µ2

2L = 1
D − 1Aha (9.57)
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where the preceding equations were used. Comparing to equation (9.51) we see that

C ∼ (D − 1) V

GNL
, (9.58)

given that both the complexity and the volume of the wormhole are zero at t = 0. This is a basis
for the complexity=volume (CV) conjecture.

Let us note that the relation between complexity and volume is not universal, as can be seen
by considering the two-sided asymptotically Minkowski-Schwarzschild spacetime. In this case [83],

f(r) = 1− µ

rD−3 ,

g(r) = µrD−1 − r2D−4 ,

rH = µ1/(d−3) ,

rf =
(1

2
D − 1
D − 2

)1/D−3
µ1/(d−3) ,

Ah
Af

=
[1

2
D − 2
D − 1

](D−2)/(D−3)
,

κ = 1
2f
′
h = D − 3

2µ1/(D−3) .

Doing the same algebra as in the AdS-Schwarzschild case, identifying Ċ ∼ TS one finds

C ∼ D − 3
GrH

V

 1
21/(D−3)

√
D − 3
D − 1

(
D − 1
D − 2

)(D−2)/(D−3)
 . (9.59)

The D dependence in the square brackets looks complicated but in the span 4 ≤ D ≤ ∞ it only
changes by a factor of 9

√
3/24 ≈ 0.65. Ignoring this factor the complexity takes the form

C ∼ (D − 3) V

GrH
. (9.60)

Note that the inverse AdS radius has been replaced by the mass dependent Schwarzschild radius.
To see that this implies that the CV conjecture is not universal consider the case of two black holes
in Minkowski space and interior volumes V1, V2. The total complexity becomes proportional not to
V1 + V2 as it would in the AdS case, but rather V1

µ1
+ V2

µ2
.

Note that non-universality does not just tell us that we have a problem in Minkowski. There is
also trouble for small black holes in AdS, as these will behave approximately as regular Schwarzschild
black holes.

Complexity=Action (CA) Conjecture

We see that while the CV conjecture points us in a productive direction, it is only valid for very
large AdS black holes. In addition the conjecture has a degree of arbitrariness built into the choice
of foliation and does not describe the deep interior of the black hole. To remedy these problems a
more general conjecture has been proposed, that the complexity equals the bulk action of a WdW
patch [92]. We will now follow the argument of [92] in formulating the complexity=action (CA)
conjecture.
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To motivate the generalized duality the first thing to note is that the worldvolume W of the
behind the horizon region is a tube of average length 1

2 |tR+ tL| that exists for a time ∼ L. In terms
of the worldvolume the CA duality can be thus be expressed as

Ċ ∼ V

GNL
∼ |W|
GNL2 . (9.61)

The cosmological constant Λ is proportional to −1/L2, so the latter expression is roughly the
classical gravitational action of the worldvolume W. This is a clue that the CV conjecture may be
a special case of a more general CA conjecture.

In the eternal black hole geometry, we define the WdW patch W(tL, tR) as the union of all
spacelike surfaces anchored at at tL, tR as in figure 9.6. Note that the WdW patch is not a causal
patch, and thus cannot be monitored by a single observer. This is perfectly consistent with the
fact that complexity is not a quantum observable.

Next we define AW as the action obtained by integrating the bulk (gravitational) Lagrangian
over W, including suitable boundary terms on ∂W . The CA conjecture is then

C(|ψ(tL, tR)〉) = AW
π~

. (9.62)

The factor of π is arbitrarily chosen so that eiAW~ changes by a sign as one unit of complexity
is added. [92] do not assign any physical meaning to this factor, noting that hopefully a more
universal continuum version of complexity in field theory may exist such that the prefactor can be
unambiguously defined.

Test of CA Duality with Static Uncharged Black Holes

To check that the proposed CA duality applies to AdS black holes we want to find out what the
growth rate of the WdW action is in time, hopefully finding a leading contribution constant in time.
To simplify the problem somewhat, we will only compute the tL derivative of the bulk action since
this leaves us with half as many integrals to compute. The setup under consideration is shown in
figure 9.9. Let us also state the Einstein-Hilbert action plus Hawking-Gibbons boundary term:

A = 1
16πGN

∫
M

√
|g|(R− 2Λ) + 1

8πG

∫
∂M

√
|h|K . (9.63)

The action (and volume) of the WdW patch is divergent due to the usual infinite distance
to the AdS boundary. This should be related to a UV divergence due to a large number of UV
modes contributing to the complexity on the CFT side. The time derivative of the WdW action
depends on the difference in the action of the two grey patches in figure 9.9. When computing
the time derivative, the boundary divergences should cancel because the asymptotic AdS geometry
is time translation invariant. In fact due to time translation symmetry of the exterior the entire
contribution of the exterior region cancels.

The past interior region is important at early times, but at late times tL+ tR � β the contribu-
tion to the action vanishes exponentially. At late times the SD−2 component of the past interior has
constant radius in the region still covered by the WdW patch (up to exponentially vanishing terms).
At this point we may apply the Gauss-Bonnet theorem to the remaining two dimensions, concluding
that the past interior only contributes a topological term which remains constant because topology
is classically conserved.

What remains is to understand the future interior. We will refer to right side of figure 9.9. The
contributions on the lightsheet B′ and the removed lightsheet B cancel because they are related by
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Figure 9.9: To the left: Penrose diagram for AdS black hole, as well as two WdW patches for two
different left boundary times. As tL increases the WdW patch loses a region in the past and gains a
region in the future of tL, both are light gray. To the right: future interior region of the black hole
covered by the difference of the two WdW patches, with the boundary A at the horizon r = rH .

time translation symmetry. Similarly the corner contribution at AB′ is cancelled by the removed
corner at AB and B′C cancels BC. The remaining contributions to the derivative of the action is
given by boundary terms at A(r = rH) and C(r = 0) as well was the bulk of the region.

From the Einstein equations we know that the cosmological constant and the curvature scalars
are given by

Λ = −(D − 1)(D − 2)
2L2 , R = 2D

D − 2Λ . (9.64)

Inserting these solutions and evaluating the Einstein-Hilbert term in equation (9.63) on the bulk
of the future interior patch we get the contribution

dAEH
dtL

= −ωD−2r
D−1
H

8πGL2 . (9.65)

To compute the GH boundary term we use that the trace of the extrinsic curvature of a constant
r surface is

K = 1
2n

r ∂r(r2(D−2)f)
r2(D−2) (9.66)

where f(r) is the relevant form factor present in the metric. The boundary contributions are then

dA∂M
dtL

=
[
−D − 1
D − 2M + ωD−2r

D−3

8πG

(
(D − 2)(D − 1) r

2

L2

)]rH
0

. (9.67)

Adding the two terms and using that f(rH) = 0 we obtain the result

dA
dtL

= 2M . (9.68)

If we set
C = A

π~
(9.69)

we find that
Ċ = 2M

π~
∼ TS . (9.70)
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Where the last approximate equality comes from equations (4.171) and (4.174). In contrast to the
CV calculation this one does not at all depend on the size of the black hole, and the duality seems
universal. The specific factor and proper equality is based on the expectation [94] that the static
black hole saturates a particular bound on the rate of change of complexity (equation (2.12) in
[95]).

Further motivation by charged and spinning black holes computations are provided in [92], and
in [95] the relationship between the SYK model and Jackiw-Teitelbom gravity provides further
insight into the relation. Most importantly [95] finds that for the CA duality to hold, boundary
terms that were previously thought to be physically meaningless have to be taken into account.
This is put in a larger context of new physics fixing previous ambiguities in the action. Examples
are:

• gravity depending on the VEV of the potential while non graviational physics does not,

• quantum corrections being proportional to the overall factor in front of the action, since the
loop expansion carries powers of the action,

• the dynamics of quantum gravity depending on topological terms in the action through genus
expansions.

This is in no way a proof of the CA conjecture, but it is a compelling parallel to previous extensions
of theoretical physics.

9.4 Black Hole Microstates
The prior results in this chapter point towards the importance of the microscopic structure of the
CFT state in a holographic understanding of the interior of black holes. Up until now we have
studied the possibility of complexity encoding the interior geometry, but the description is not
precise. There are two recent papers that provide different constructions of the behind-the-horizon
region of the black hole spacetimes [82, 81]. We will in this chapter follow [81], but note that [82]
find closely related results using a completely different approach.

We will see that in addition to an exploration of the physics of black hole interiors, one of
the asymptotic AdS spaces is cut off by a sharp boundary: an end-of-the-world (ETW) brane
or Randall-Sundrum II brane. It is conjectured that some CFT states correspond to a localized
gravitational theory on these branes. These branes have in this scenario an inflating FLRW ge-
ometry, possibly described holographically by a CFT. In this way holography may describe the
experimentally relevant asymptotically de Sitter FLRW cosmology.

For the obtained geometries it is possible to compute the volume and WdW actions of the
bulk spacetime, testing the conjectures of the previous section on a significantly more interesting
spacetime than just the maximally extended AdS-Schwarzschild solution. While this is interesting
we will refer these results to the original papers [82, 81], and instead focus on the novel prospect
of FLRW cosmology.

9.4.1 Boundary CFT (BCFT) Microstate Geometries

To consider black hole microstates containing the interior, we start with the maximally extended
Schwarzschild spacetime, and therefore the thermofield double on the field theory side:

|Ψβ
TFD〉 = 1

Zβ

∑
i

e
−βEi

2 |Ei〉L ⊗ |Ei〉R . (9.71)
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We then consider projecting this state on a pure state |B〉 of the left CFT, resulting in the state

|Ψβ
B〉 = 1

Zβ
e
βEi

2 〈B|Ei〉 |Ei〉R . (9.72)

We can see this state as the result of measuring the state of the left CFT. If the measurement
corresponds to looking at high energy degrees of freedom, we expect that the geometry is only
affected close to the boundary. This effect then propagates causally into the interior of the left
asymptotic region. Importantly, this lets us keep a significant portion of the left side of the extended
spacetime without a second CFT to populate the thermofield double. Based on this we should
specifically consider states |B〉 that have no long-range entanglement.

By considering the state obtained by complex conjugating the coefficients, we obtain a state
that we know how to construct via a path integral. To see this, let us compute

|Ψ̂β
B〉 = 1

Zβ

∑
i

e
−βEi

2 〈Ei|B〉 |Ei〉

= 1
Zβ

∑
i

e
−βEi

2 |Ei〉 〈Ei|B〉

= 1
Zβ

e
−βH

2 |B〉

(9.73)

which indeed looks the operator expression for a path integral on a strip in Euclidean time of width
β/2. We can relate this back to our original state by remembering that the complex conjugation
of the coefficients is the antilinear, antiunitary operator corresponding to time reversal. Thus we
know that |Ψ̂β

B〉 (t) = |Ψβ
B〉 (−t) and for a time-reversal symmetric state the two are equivalent.

Since we have a neat representation of this via a Euclidean path integral on a finite Euclidean
time interval of length β/2, we can translate this state into a geometry by a method similar to
the one we used in section 8.4.2. Note that the strip is a manifold with a boundary so we need to
supply boundary conditions for |B〉 (±β

2 ). In general we get a family of distinct CFTs depending
on the choice of boundary condition. Some boundary conditions are particularly nice because they
preserve some of the conformal symmetry. In general the boundary states may have infinite energy,
but Euclidean evolution to τ = 0 kills off high-energy modes resulting in a state of finite energy.

The proposed AdS dual to a CFT with a boundary (BCFT) is a bulk spacetime that is cut off
deep into the bulk by a brane anchored on the boundary of the CFT [96]. For simplicity, one may
model this brane by a constant tension ETW-brane plus a Neumann boundary condition ensuring
that no momentum/energy flows out of the universe. The difference between the usual and BCFT
cases is illustrated in figure 9.10.

It turns out that several expected properties of the boundary CFT (such as entropy) are captured
in the bulk by considering the relatively simple gravitational action

Ibulk + IETW = 1
16πG

∫
MAdS

dd+1x
√
−g(R− 2Λ) + 1

8πG

∫
QETW

dd
√
−h(K − (d− 1)T ) , (9.74)

where we have defined the dimensionless tension parameter T of the ETW-brane such that the
stress energy tensor on the brane is given by

8πGTab = (1− d)Tgab/L (9.75)

where L is the AdS radius. For a stronger argument for the sensibility of this construction we refer
to [96, 81].
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Figure 9.10: To the left, the usual AdS/CFT setup where the CFT lives on the r → ∞ boundary
of AdS. To the right we have a finite boundary spacetime, and the spacetime is cut off by the
ETW-brane QETW. The ETW-brane can be seen as the holographic image of the CFT boundary
on the boundary of AdS.

We are now ready to figure out the geometries associated to the Euclidean time-evolved states

|Ψ〉 = e−
β
2H |B〉 . (9.76)

The first step to note is that t = 0 correlation functions may be interpreted as a path integral on
the Euclidean time interval τ

∫ [
−β

2 ,
β
2

]
(times the spatial Sd−1) with operator insertions at τ = 0.

To find a Lorentzian geometry that is dual to the state in question, we use the τ = 0 slice to define
a Cauchy surface for the Lorentzian solution, which will inherit time-reversal symmetry from the
Euclidean geometry.

There will be two possible Lorentzian solutions corresponding to the desired initial conditions,
but depending on the values of T and β one of them will have a smaller action and dominate the path
integral. For some value of β(T ) > β∗(T ) there will be a phase transition between the two modes
analogous to the Hawking-Page transition of section 7.1.3. Specifically for β(T ) above some critical
value the Euclidean geometry with the lower action is a portion of pure Euclidean AdS and the
Lorentzian solution will be thermal AdS at low temperature 1/β. When β(T ) < β∗(T ) we instead
find that the Lorentzian initial condition is one full exterior of the AdS-Schwarzschild solution plus
a behind-the-horizon region terminating on the ETW-brane. The size of the behind-the-horizon
region is not constant, and the ETW-brane geometry has an FLRW character.

Euclidean Geometries

The class of CFT states that we have chosen preserve the spherical symmetry of the AdS-Schwarzschild
spacetime since they are created by a measurement on a single asymptotic boundary of the CFT
which is (conformally) a sphere. The most general spherically symmetric metric in the present case
is the Euclidean AdSd+1-Schwarzschild metric given by

ds2 = f(r)dτ2 + dr2

f(r) + r2dΩ2
d−1 , (9.77)

where

f(r) = r2

L2 + 1− rd−2
H

rd−2

(
r2
H

L2 + 1
)
, (9.78)

and rH is the Schwarzschild radius. As usual the absence of a conical singularity determines the
periodicity of the Euclidean time direction. In terms of the Schwarzschild radius the periodicity is
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τ ∼ τ + βH where

βH = 4πrHL2

(d− 2)L2 + dr2
H

. (9.79)

Note that the Euclidean periodicity of the black hole is not necessarily related to the width of the
CFT. Essentially the CFT with a boundary and its ETW-brane projected into the bulk can be
superimposed on any spacetime with βH > β. The boundary CFT will depend implicitly on βH
because the equations of motion will relate β and βH .

To discern between the two geometries we have to explicitly compute the actions and compare
them. Comparing the results is an exercise in numerics (that was done in [81]), but there are some
enlightening details that we should sort out before using the Euclidean solutions to determine the
Lorentzian ones. Let us consider again our bulk and boundary actions and find some equations of
motion. The bulk action together with the Gibbons-Hawking term on the asymptotic boundary is
given by

Ibulk = 1
16πG

∫
MAdS

dd+1x
√
−g(R− 2Λ) + Imatter

bulk + IGH . (9.80)

The equations of motion are the usual Einstein field equations

Rµν −
1
2Rgµν = 8πGT bulk

µν − Λgµν . (9.81)

The ETW-brane action is a Gibbons-Hawking term with a dynamical boundary metric

IETW = 1
8πG

∫
MAdS

ddy
√
−hK + Imatter

ETW , (9.82)

where ya are coordinates intrinsic to the ETW-brane and Kab is the extrinsic curvature formally
given by

Kab = eµae
ν
b∇µn̂ν , (9.83)

where the eµa = ∂xµ

∂ya are a pullback onto the brane of the bulk coordinates. The equations of motion
obtained by varying with respect to h are

Kab −Khab = 8πGTETW
ab , (9.84)

where the stress energy tensor of the ETW-brane is defined in the usual way with respect to the
metric

TETW
ab = 2√

−h
δImatter

ETW
δhab

. (9.85)

Following [81] we will focus on ETW-branes with constant tension, defining

8πGTETW
ab = (1− d)Thab , (9.86)

where the prefactor (1− d) is a matter of later convenience. The bulk stress tensor is set to zero as
we are considering a vacuum solution. Contracting the equations of motion with the appropriate
inverse metrics we find

R− 2Λ = −2d ,
K = dT .

(9.87)

Since we are considering spherically symmetric geometries, we also expect a spherically symmetric
ETW-brane, so its embedding will be parametrized by r(τ) where r is the radial coordinate in the
bulk and the AdS boundary is r =∞.
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Combining equations (9.87) and (9.84) we see that

Kab = Thab . (9.88)

To compute hab we make the spherically symmetric ansatz that the ETW-brane has the coordinates
xµ = (τ, r(τ),Ωd−1), so that the induced line element is

ds2 = ∂xµ

∂ya
∂xν

∂yb
gµνdyadya =

[
ṙ2 1
f(r) + f(r)

]
dτ2 + r2(τ)dΩ2 , (9.89)

where we have denoted ṙ = ∂r
∂τ Since the embedding function is just a function of one variable, the

unit normal is nµ = (ṙ, 1, 0)/(1 + ṙ2) which when projected onto Q retains only the τ component.
Going to the definition (equation (9.83)) of Kab and looking at the ττ component of equation (9.84)
we have

∇τ
ṙ√

1 + ṙ2
= T

[(
∂r

∂τ

)2 1
f(r) + f(r)

]
(9.90)

Based on the results of [81] it is possible to find that Kττ = f2(r)
Tr2

6, which after rearranging implies
that the embedding is determined by

∂r

∂τ
= f(r)

Tr

√
f(r)− T 2r2 . (9.91)

Assuming symmetry about τ = 0 (motivated by the expected Lorentzian time reversal symmetry)
we are looking for solutions with dr

dτ |τ=0 = 0. We see that this tells us that

f(r0) = T 2r2
0 . (9.92)

Together with the condition that r is infinite for τ = ±β/2, this means that r0 > rH for all nonzero
T . We can now separate differentials and integrate equation (9.91) with r(τ = 0) = r0 fixing the
integration constant, obtaining∫ β/2

τ0
dτ =

∫ r

r0
dr̂ T r̂

f(r)
√
f(r̂)− T 2r̂2 . (9.93)

Given rH , T and β there are two choices of τ0 that respect time reversal symmetry, namely τ0 =
βH/2 and τ0 = 0. For the choice of τ0 = βH/2 we need to pick the negative sign of the square root
in the radial integral to respect β < βH . Thus, we have{

τ0 = βH
2

}
β

2 = βH
2 −

∫ ∞
r0

dr Tr

f(r)
√
f(r)− T 2r2 , (9.94)

{τ0 = 0} β

2 =
∫ ∞
r0

dr Tr

f(r)
√
f(r)− T 2r2 . (9.95)

The general shape of the solutions is shown in figure 9.11. The most important feature is that
the τ = 0 slice which will serve as initial conditions for the Lorentzian spacetime solution contains
regions on both sides of the black hole horizon, with the second region cut off by the ETW-brane
at the finite radius r0.

6I would like to find this result myself, but at the current time I do not know how the given information can give
an expression with the right powers of T . My main guess is that we should use the traced equation of motion and
the fact that ∇τnτ = gττ∇τnτ in some way. I have some other problems, such as the induced metric given after
equation (145) in [81] not matching mine.

288



Chapter 9. Entanglement is Not Enough

Figure 9.11: a) Schematic appearance of QETW embedded in the full AdS space with Euclidean
periodicity βH . The slice at τ = 0 is indicated in blue. Particularly interesting is the spacelike
slice when we pick τ0 = βH/2, as the inside of the ETW-brane contains spacetime regions on two
sides of the event horizon but only has one asymptotic boundary on which there is a CFT. This
spacelike slice (with the circle fulfilling the role of Sd−1 is imaged in b). We see that the initial
condition for our Lorentzian spacetime contains one full black hole exterior and part of the second,
with the second exterior cut off by the ETW-brane. To see that the Euclidean AdS-Schwarzschild
truncates at r = rH , realize that r = rH is a single point in the τ − r plane by the fact that we can
pick cylindrical coordinates about r = rH .

Note that in requiring that dr
dτ = 0 at a time reflection fixed point we have thrown away some

solutions, namely the ones where the ETW-brane does not connect the boundaries at ±β/2 to each
other7. Depending on the parameter values rH , T we find that τ0 is completely determined. For a
bit of solid footing, we shall cite the numerical results of [81] for various dimensions.

• For d = 2 one finds (i.e. a bulk AdS3 background)

r0
rH

= 1√
1− T 2

, (9.96)

and the ETW-brane always reaches the boundary at antipodal points, meaning that β =
βH/2. This occurs regardless of the values of T and rH , so there exist solutions with arbitrarily
large regions on the other side of the horizon (r0 goes to infinity as the tension goes to 1).

• For d=3 there is a maximum value of the tension beyond which no solutions exist with a
connected ETW-brane, it is found to be at Tmax ≈ .95635. This implies that the maximum
value of r0

rH
≈ 2.2708, so the region on the other side of the horizon is of a size comparable to

the black hole itself.

• For d=4 there is a maximum of T ∗max ≈ 0.79765 obtained in a limit of large rH , leading to a
maximum ratio r0

rH
≈ 1.2876. The maximum T ∗ is set by the fact that β is sent to negative

values, corresponding to a self intersecting ETW-brane.
7The disconnected solutions are treated in [81], but are omitted for brevity here.

289



9.4. Black Hole Microstates

In the pure AdS case, f(r) = r2 + L2 and the brane embedding is best parametrized by τ(r)
with τ(∞) = ±β/2. This time the symmetry of the problem tells us that ∂τ

∂r = 0 at r = 0. In
this case the geometry is cut off in the τ direction rather than the r direction, leaving nothing
interesting in the τ = 0 slice. The background geometry has the same form and we have the same
equation relating τ to r

τ(r)− β/2 = −
∫ ∞
r

Tr

(r2 + L2)
√

(1− T 2)r2 + L2 , (9.97)

where we inserted f(r). This can be integrated to find

τ(r)− β/2 = −arcsinh
(

T√
r2 + 1

√
1− T 2

)
. (9.98)

The surface that starts from the negative β/2 boundary is found by multiply by an overall −1. We
have a similar to the black hole here where if arcsinh

(
T√

r2+1
√

1−T 2

)
> β/2 we have two intersecting

ETW branes.

Lorentzian Microstate Geometries

In figure 9.11 we have to the right the initial condition for our Lorentzian solutions, containing
a behind-the-horizon region cut off at r0 by the ETW-brane. For our purposes we are satisfied
to know that there technically exist solutions for the ETW on a black hole background such that
the cut-off action is smaller than the pure AdS phase. For a discussion on the conditions on the
parameters for a black hole spacetime as well as the domain of validity of the constant tension
brane model, see [81]. We will now look at the trajectory of the ETW-brane with its initial (t = 0
position determined by the above Euclidean analysis.

To find the Lorentzian trajectory, we analytically continue the trajectory to find

t(r) =
∫ r

r0
dr̂ T r̂

f(r̂)
√
T 2r̂2 − f(r̂)

. (9.99)

In d = 2 by inserting f(r) = L2 + r2 one sees

cosh(trH)
√
r2

r2
H

− 1 = T√
1− T 2

, (9.100)

while in general dimension some more work is necessary. A convenient first step is to write the
equation for t(r) in terms of the proper time λ on the brane, related to the usual time coordinate
by

dt
dλ = γ =

√
f(r)

f2(r)− ṙ2 , (9.101)

where ṙ is the derivative with respect to λ. The equation of motion then takes the form

ṙ2 + [f(r)− T 2r2] = 0 . (9.102)

This can be reexpressed in terms of L = log(r) as

L̇2 + V (L) = T 2 , (9.103)
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where
V (L) = f(r)

r2 = 1 + e−2L − e−d(L−LH)(1 + e−2LH ) . (9.104)

We see that the the ETW-brane trajectory is that of a particle with total energy T 2 in the potential
V (L). W are interested in the d > 2 case, for which the trajectories are classified in figure 9.12.
Note that most of the values of T in the figure do not correspond to the black hole phase, which
ceases to exist for T > T∗. The trajectories labelled by a and b correspond to ETW-branes that
start at r = 0 and expand to a maximum radius (r = r0) at time t = 0 to then shrink to r = 0
again. Thus these solutions represent an ETW-brane coming out of the past singularity, going
outside the event horizon and then crashing into the future singularity. The infinitely expanding
trajectories d, e and the trajectories for 1 < T < Tcrit are uninteresting because they correspond to
values of T for which the black hole phase is not favored. We do not give an explicit value for Tcrit,
but it is clear by inspection of the potential that it has a global maximum that will be exceeded for
sufficiently large T . In d = 2 the form function is simple and there are only trajectories of types a
and e.

We can also write down the worldvolume metric for the ETW-brane, where since dλ is the
proper time we get an FLRW-like metric

ds2 = −dλ2 + r2(λ)dΩ2 , (9.105)

with r(λ) acting as the scale factor. The proper time that elapses along the entire trajectory is

λtot = 2
∫ r0

0

dr√
T 2r2 − f(r)

. (9.106)

Computing the integral for variable r it is possible to solve for the scale factor r(λ) in terms of the
proper time λ. In [81] it is found that for d = 2

r(λ) = rH
1− T 2 cos

(
λ
√

1− T 2
)

(9.107)

while for d = 4,

r(λ) = 1√
2(1− T 2)

[
cos
(
2λ
√

1− T 2
)√

1 + 4(1− T 2)r2
H(1 + r2

H)− 1
]1/2

. (9.108)

The d = 3 result is expressed in terms of elliptic integrals.

9.4.2 Microstate Cosmology

We saw in the previous section that the ETW-brane worldvolume looks like a d−dimensional
FLRW spacetime, with a specific potential coming from the higher dimensional (or CFT) physics.
In general the physics on a d-dimensional brane embedded in a higher dimensional does not include
d-dimensional gravity, since closed strings propagate in the extra direction. Despite this braneworld
cosmology is extensively studied, and there are in fact mechanisms for effectively localizing gravity
to the surface of a brane [97]. The localization mechanism which we will review now was introduced
in [97] and is called the Randall-Sundrum II (RSII) brane-world scenario. It is obtained for a brane
which cuts off the UV region of an AdS spacetime. While this is not exactly the same as for our
AdS-Schwarzschild space, one can expect that for well chosen values of L, rH and trajectory the
physics should be sufficiently close to pure AdS for localization to occur. The following discussion
closely follows [81].
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Figure 9.12: Image of potential V (L(r)) as well as schematic trajectories for r(t) depending on the
tension T .

The RSII model we have a d = 4-dimensional brane embedded in a 5d AdS space. The bulk
metric takes the form

ds2
5 = dz2 + e−2A(z)gµνdxµdxν , (9.109)

with a 3-brane at z = 0 and a Z2 symmetry imposed about z = 0 (so that the spacetime is cut off at
the brane, we have a reflective boundary condition). Choosing A(z) ∼ |z|/L the bulk spacetime is
a slice of AdS5 that is cut off by a 3-brane. By tuning the brane tension relative to the cosmological
constant of the bulk AdS space one can obtain a flat induced metric gµν = ηµν on the brane. Within
this setup, linearized Einstein gravity is reproduced on the 3-brane for distances much larger than
the AdS radius. Specifically, the gravitational potential on the brane becomes

V (r) ≈ GM

r

(
1 + 2L2

3r2

)
. (9.110)

The formal reason for the localization of gravity is that the warp factor e−2|z|/L quickly kills off
perturbations away from the brane, trapping gravitational energy on the brane. The ansatz for
the linearized field equations is on the form hµν = εµνψ(z)φ(xµ) where φ(xµ) solves the massive
(4d) Laplace equation. The Einstein equation reduces to a Schrödinger equation for φ(z), and the
solution turns out to give a massless zero mode that is localized to the brane and reproduces the
4d Newtonian potential.

In spacetimes that are only approximately AdS cut off by a brane that is only approximately
Minkowski, it is interesting to ask if the above construction survives. A detailed analysis is carried
out for a brane at constant radius rb in a bulk AdS black hole background in [98], with the key
difference being the absence of a stable zero mode. This means that there is no stable 4d graviton
in the nearly AdS case. By the expectation that gravitational localization depends locally on the
bulk metric, there should be an effective Einstein gravity far away from the black hole where the
spacetime looks sufficiently AdS and the brane looks sufficiently Minkowski, with corrections going
as rH/rb. Note that while the ETW-brane in our holographic construction is does not exist at
constant rb the picture should be valid when ṙ/r << 1/L, i.e. when the brane is static on the AdS
timescale.

In summary, the existing knowledge about braneworld (RSII) cosmology gives us two restrictions
for gravity localized to the ETW-brane:

1. We need rb >> rh, which implies that we must have r0 >> rH . In all of our scenarios this
means that T ∼ 1
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2. We need ṙ/r << 1/L, which should be achievable as long as the total proper time λmax >> L.

To satisfy the first requirement we in all cases require T > Tcrit or at least T ≥ 1. Similarly the
condition that λmax is large is only realized for T ≈ 1, since the f(r) in 1/

√
f(r)− T 2r2 asymptotes

to ∼ r2.
While the Lorentzian solutions make sense for these values of T , consistency of the Euclidean

solution that defines the setup only holds for T < T∗ < 1 in d ≥ 3 and the largest realizable r0 are of
the same order as the black hole radius. We see that the naive construction with a constant tension
brane is not enough to realize localized braneworld gravity in a holographic setting. Despite this it
is interesting that a brane with an FLRW type geometry is realizable at all, and it is very interesting
to see if a more sophisticated holographic setup could actually realize the FLRW cosmology.
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Chapter 10

Beyond Holography, de Sitter

In the previous chapters we have discussed the reconstruction of the bulk spacetime from entangle-
ment information via the AdS/CFT duality. Such an approach has one main weakness: according
to observation the universe is de Sitter. This has been a big problem for all proposed theories of
quantum gravity so far. For example string theory at times seems to conspire against de Sitter
vacua after compactification from 10d down to 4d. Recently, it was even conjectured that de Sitter
vacua are impossible in string theory [99], although the validity of this ”swampland conjecture” is
heavily disputed [100].

Some hints towards holographic constructions of non-AdS cosmologies were produced in chapter
9.4, but we saw that to realize a 4d FLRW cosmology with 4d gravity we need complicated ETW
brane dynamics. Having to add complicated dynamics is a problem encountered in de Sitter con-
structions in string theory and is under poor control. This motivates a departure from holography
in an attempt to formulate quantum gravity in a way that in a controlled manner may produce
asymptotically de Sitter cosmology.

There is a question of what we should keep if we try to make such a departure, and given
the contents of the rest of this text it should be no surprise that we suggest the Ryu-Takayanagi
relation. The structure of this chapter will be as follows:

• We follow [10], arguing that any asymptotically AdS spacetime can be approximated arbitrar-
ily closely by entangling a large number of BCFTs. Arguing from string theory that effective
spacetime dimensionality does not need to be constant everywhere we loosen the constraints
on the individual BCFTs. We conjecture that the boundary theory might not need to have a
geometrical interpretation at all.

• Based on this conjecture, we consider a discrete realization of AdS/CFT in the form of the
MERA tensor network. This necessitates an introduction to tensor networks. We find that
some modification to MERA is necessary to accommodate the Bousso bound, bulk-boundary
correspondence and the Ryu-Takayanagi formula simultaneously.

• We consider a de Sitter/MERA correspondence, noting compatibility with de Sitter causality,
cosmic no-hair theorems and the CV/CA conjectures.

This chapter will be of lesser depth than the previous two, because Part III will focus on the
continuation of the results in chapter 8.
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Figure 10.1: Path integration region preparing an entangled state between two disconnected CFT’s
living on the manifolds M̃i and M̃j . To the right, we have denoted the geometry that computes
correslation functions in the prepared state. Notably the complex conjugation in the bra acts as
time reflection making the geometry symmetric under a reflection in Euclidean time. This time
reflection symmetry is inherited by the Lorentzian geometry defined with ∪iM̃i as initial condition
for the Einstein equations. The boundary CFT geometries are connected in the bulk by the ETW
brane associated with the BCFTs.

10.1 It From BC Bit

There have been numerous attempts at emerging spacetime from quantum many body systems [8,
101], in which the full system is represented in terms of ”tensor networks”. Our objective in this
section is justify tensor network constructions from the AdS/CFT direction by arguing that we can
in a consistent manner divide the CFT on the boundary of AdS into finite subregions while keeping
the interior geometry largely unchanged. This section follows an essay by Raamsdonk [10].

Tensor network constructions rely on factorizability of the Hilbert space on which the dynamics
are defined, so we need to consider bulk theories with many disconnected boundaries of finite extent.
We will refer to these disconnected boundary-CFTs (BCFTs) as BC-bits in analogy with the basic
unit of quantum information, the qubit.

We have already introduced the holographic machinery of BCFTs in section 9.4. Also in this
case it is sufficient to set Neumann conditions on the boundary and terminate the bulk spacetime
on an ETW brane of constant tension. In contrast to the previous case we have boundaries in the
spatial directions. The natural way to prepare the disconnected CFTs in an entangled state at t = 0
is to connect them in Euclidean time, and then relate correlators to a path integral over two copies
of the euclidean geometry glued together at τ = 0 as in figure 10.1. We then use the τ = 0 slice
as initial conditions for the Lorentzian gravitational action, obtaining a solution for the spacetime
geometry (which inherits a time reflection symmetry from the path integral construction).

There is nothing preventing the extension of this construction to many boundaries, and by
entangling the many BC bits we can expect a connected bulk. What remains is to make sure that
we obtain a bulk spacetime that closely approximates the holographic dual of a single CFT on the
full boundary of the spacetime. To carry out this construction it is useful to make some definitions.

Let us call the spacetime that we are seeking to approximate X and its boundary M . We want
to divide M into a set of simply connected pieces {M̃i} ∈ M . The union ∪iM̃i should be a large
subset ofM , and we take all of the boundaries of the M̃i to be smooth (which will require that some
small patches of M can not be covered). [10] refers to the smoothing of the edges as ’sanding’ the
edges. Furthermore let us call the Euclidean path integral that defines the entangled state H and
its mirror image H. The mirror image is necessary in the construction of the correlation function
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Figure 10.2: In a) we define a disconnected set of boundaries at τ = 0. In b) we denote the
Euclidean boundary geometry that prepares a state in which the CFTs living on each disjoint piece
are entangled. In c) we have the geometry that is used to compute correlation functions. In red
are the boundaries that will extend as ETW branes into the bulk, cutting off parts of the interior
AdS spacetime. If the separation between boundary regions is taken to be small compared to the
size of the regions, the resulting geometry of the τ = 0 slice is given by d). As time passes the
rough boundary features propagate inwards causally as in e), so the resulting Lorentzian spacetime
is only smooth inside a WdW patch corresponding t = 0 slice of the boundary.

as in the right of figure 10.1.
The prescription to pick the boundaries turns out to be quite simple, we want the M̃i be sepa-

rated by a distance that is small compared to the size of the individual regions. This requirement is
related to the Hawking-Page type transition of section 9.4, when the boundaries are far separated
the action of the ETW brane that connects the boundary to itself is smaller and a disconnected
bulk extension is preferred over the ETW brane stretching between multiple boundaries. If we
instead pick the M̃i to be very close, we get an ETW extending only a short distance into the
bulk before turning back to another region M̃j on the boundary, thus barely modifying the defining
euclidean geometry H. The steps of this construction are illustrated in figure 10.2.

Despite the small modification of the Euclidean geometry, the Lorentzian geometry receives
some nonvanishing modifications. This is due to the fact that the defects near the boundary,
however small, will propagate inwards causally as in figure 10.2 e). This means that the Lorentzian
geometry only remains smooth in the interior of the WdW patch associated to the boundary at
t = 0 and cannot be (analytically) continued outside it.

In the limit of very many BC bits we can expect many small modifications to the original bound-
ary M , so the geometry is well described inside the WdW patch by {M̃i}. When the individual
bits are very small compared to M , they should individually carry almost no information about
the geometry represented by the full set. In this sense the spacetime is almost completely charac-
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terized by only the entanglement information and it manifestly disconnects if we try to disentangle
the individual bits. Another important point is that from the (Lorentzian) CFT perspective the
individual bits have no intrinsic position relative to eachother, so it is all dimensions of the bulk
that emerge purely from entanglement.

An interesting point to focus on is the fact that the individual bits carry almost no information
about the interior geometry. This implies that if we replace a BC bit with something radically
different while preserving the entanglement structure, we might encode the same gravitational
physics. Naively this is too optimistic, if we replace the CFT on one BC bit with a different CFT
of another dimensionality we clearly are not describing the same theory of gravity at least in the
vicinity of the replaced BCFT. If the bulk is to be unaffected we must be describing a bulk theory in
which things like the dimension and dynamics of spacetime change as we move around in the bulk.
Such behaviour is included in string theory, in which different stable (or metastable) low energy
theories of gravity can exist separated by a transition region1. Therefore if we are optimistic,
it is possible to replace the boundary BC bits with different objects while only preserving the
entanglement structure without straying from known physics.

In the same sense we might consider replacing all of the boundary BC bits by a different type
of object while only retaining the entanglement structure (i.e. the Ryu-Takayanagi formula plus
some eventual subleading correction). Close to the boundaries of the WdW patch this drastically
changes the geometry and may even result in a completely nongeometric description, but in the deep
interior we have a transition towards a spacetime that very closely resembles the case of the usual
holographic CFT. This is of course wildly speculative, but it is interesting that the relation between
entanglement and geometry might not depend very much on what systems you are entangling.
Being extremely optimistic this may point us towards a completely universal relationship between
entanglement and geometry. It might event be that geometry emerges from an a priori completely
nongeometric theory.

10.2 Cosmology/MERA correspondence

The AdS/MERA correspondence is a relation between discretized Anti-de Sitter and a specific
tensor network called MERA, short for multi-scale entanglement renormalization ansatz. This
tensor network is used as an ansatz for finding the ground state of many body systems in condensed
matter theory, but with the Ryu-Takayanagi formula it has been related to AdS and more recently
dS cosmology.

We will now proceed to introduce tensor networks in general and the specific network named
MERA. We show that the general properties of MERA match CFT expectations under some condi-
tions. We then demonstrate the basic elements of the AdS/MERA and dS/MERA correspondences.
This entire section follows structurally chapter 2 of the PhD thesis of Chunjun Cao [68]. The de Sit-
ter/MERA correspondence is a boundary-free correspondence between gravitational and quantum
physics and inspires the non-holographic program of bulk entanglement gravity [8].

1This is most often described in the context of compactifications of string theory. The parameters describing the
internal compactification manifold in string theory are dynamical and may change values as a function of position (and
time). Even more interestingly the extensively studied Calabi-Yau manifolds on which compactification is usually
studied can even transition smoothly between topologies, resulting in radically different effective theories in different
regions. The difficulty of finding de Sitter in string theory is related to the difficulty of finding solutions for which
the exterior geometry has positive curvature with a stable interior geometry.
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10.2.1 Tensor Networks and Their Relation To Quantum States

This short introduction to tensor networks and MERA is based on [102] and [68]. The first of these
has lots of examples using basic tensor networks, and the second is the source for the AdS/MERA
and dS/MERA sections. Tensor networks are a useful graphical representation of tensors and their
contraction. The most useful feature of a tensor network is that it scales very well with the number
of tensors involved and it can make symmetries obfuscated by index notation graphically obvious.

The basic idea is to represent a rank (a,b) tensor as a geometric shape with a + b legs that
are somehow differentiated, usually by which direction they extend in. For example we rewrite the
rank four tensor R according to

Rµνρσ −→ . (10.1)

If the tensors have indices of more than one type, such as spinor indices, group indices, spacetime
indices or transverse indices, this is indicated by having several types of leg. For example we could
have drawn lines for spacetime indices, dashed lines for spinor indices and squiggly lines for adjoint
indices.

Tensor operations can also be translated into the graphical language in a simple way. For
example, we represent contraction by joining two external legs

Rµµρσ = (10.2)

which generalizes in an obvious way to the contraction of two tensors

AµνρB
νρ = (10.3)

where we have taken the liberty of representing A and B as a circle and a square with nothing
inscribed. Note that whether the contracted legs are raised or lowered on either component is
conventionally unimportant since raised and lowered indices are usually related by a metric or
its inverse, and you always contract raised indices with lowered indices or vice versa. In most
applications of tensor networks the metric is flat Euclidean, although raised and lowered indices
may carry a conjugation in a complex vector space.

We can also write down the tensor product

AµνρB
σλ = ≡ Rµνρσλ = (10.4)

where we have represented the new rank five tensor Rµνρσλ by an oval. Note that the ordering of
the external legs may matter, it is often good for notation if this ordering is somehow reflected by
the geometric representation of the tensor. For example an antisymmetric rank 3 tensor may be
best represented by a triangle with the legs coming out of the corners.

A particular symmetry that is especially apparent in the tensor network notation is the cyclicity
of the trace, proven as follows:

= = = (10.5)
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where we in the intermediate and final steps have noted that by exchanging the raised and lowered
indices of a matrix we obtain the transpose, indicated with a T . Note that if we contract the indices
in a complex vector space, we should replace the transpose with a dagger. This is because the inner
product on complex vector spaces usually includes an equivalence under phase transformations
meaning that in addition to being related by a flat metric to covariant components, contravariant
components also need to be complex conjugated. We only considered the example of three distinct
matrices, but the proof generalizes to any number by the fact that the multiplication of two matrices
is a matrix.

MERA

Having established the basic notation we can now introduce the MERA tensor network. The MERA
tensor network is an especially good ansatz for ground states in quantum critical systems, which are
described by CFTs. We will demonstrate that the MERA wavefunction possesses basic properties
expected of conformal field theories.

The MERA tensor network has three basic constituents. The first is the unitary disentangler

U j1j2 i1i2 = (10.6)

that take input states i1, i2 ∈ V ⊗ V and produces unentangled states (i.e. living in the V ⊕ V
subspace). U is defined so that U j1j2i1i2

(U †)i1i2k1k2
= δj1k1

δj2k2
. The second basic constituent is the coarse

graining tensor

W j
i1i2 = (10.7)

which takes states from the space V ⊗V to |0〉⊗V . W is taken to be an isometry (in the quantum
channel sense) so we have W j

i1i2
(W †)i1i2k = δjk where we have performed an implied inner product

of the |0〉’s. Note that by their definitions, W and U are quantum channels as can be checked by
looking to equation (2.24).

Finally, we have the top tensor tµν defined by

∑
µν

tµνt
∗
µν . (10.8)

The top tensor serves to truncate the network at the top. The top tensor can have any number of
legs, which will significantly affect the near-center geometry of the dual AdS to the MERA network.

By combining two W j
i1i2

we can map the output of two disentanglers to the input of a single
one. The idea is then to have a physical lattice (the ’boundary’) at the bottom of a tensor network,
and the tensor network itself is constructed as many layers of increasing coarse-graining of the
boundary state. Going back to the name, we apply multiple scales of renormalization as the ansatz

300



Chapter 10. Beyond Holography, de Sitter

for the state of a quantum system. Let us write this down more explicitly

|ψ〉 = , (10.9)

where we should extend the pattern to infinity or until we hit a periodic boundary condition [103].
In the case of periodic boundary conditions, the network is truncated at the top by the top tensor.

In principle we could generalize this to a MERA of degree k, in which case the coarse graining
tensor W would take k inputs to one. Additionally we could have lattices that are more connected,
corresponding to more legs on the disentangler U . We will stick to the 1d lattice and k = 2 for our
examples. With periodic boundary conditions the network truncates with a top tensor at depth
O(logk(β)).

We can also think about the entanglement entropy between the physical sites at the bottom of
this tensor network. We know that the von Neumann entropy is upper bounded by log(Dim(H))
for a system with Hilbert space H. We know here that each leg represents an index living in
a Hilbert space of some dimension X , which we call the bond dimension. In principle we could
construct systems in which this is not constant, but we abstain from such complications here. The
entanglement entropy between N physical sites and the rest of the MERA is thus upper bounded
by the minimum number of legs n in the tensor network that you have to cut to separate the the
N sites and their complement in the following way

Smax = n log(χ) , (10.10)

using the additivity of entropy under the tensor product of subsystems. We can illustrate the cut
as follows

(10.11)

By inspecting the diagram at different scales it is possible to deduce that the number of cuts scales
as n ∼ log(N) [102]. Therefore the maximum entanglement entropy scales as

Smax ∼ log(N) log(χ) (10.12)

for subsystems of size N . Note that this matches the CFT expectation for 1 + 1-dimensional
systems (equation (4.188), corroborating the claim that MERA captures the behaviour of systems
at criticality.

We can also compute correlation functions. Local operators are inserted at a single site on the
lattice, contracted with a |0〉 on the end of the closest entangler. The bra 〈ψ| is transposed, which
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means it is upside down in the tensor network notation, and the |0〉s are replaced by 〈0|s. We can
then compute a correlator between two sites as follows (truncating the contracted |0〉s)

〈ψ|O(xj)O(xj+N )|ψ〉 =

=

=

= .

(10.13)

We see the beginnings of a particularly interesting pattern here, the two point function seems to
(nearly) factorize. Note that the two operator insertions in equations (10.13) are connected by a
coarse-grainer one layer up from what is displayed. If we were to separate the two insertions by
a distance that is 2p times larger, they would be connected by a coarse-grainer p layers deeper.
Below this scale the correlators factors into O(p) applications of the same superoperator

S = , (10.14)

where we have denoted the argument of S by a grey, upright rectangle. We can decompose S into
Choi-Kraus operators according to

S(O(xi)) =
∑
k

V kO(xi)V †k . (10.15)
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S is a completely positive and unital map by virtue of the properties of U and W , meaning that
the matrices Vk in the decomposition have eigenvalues λ < 1. The correlation function between
two operators separated by N sites is given by logN applications of S. Considering O1, O2 as
eigenoperators of S we see that the two point function goes as

〈ψ|O1(xj)O2(xj+N )|ψ〉 ∼ 〈ψ|O1(xj)O2(xj+1)|ψ〉
|N |∆1+∆2

, (10.16)

where ∆i = log λi, the ∆i are known as the scaling dimensions of the operators Oi and the λi are
the corresponding eigenvalues of S. The factor 〈ψ|O1(xj)O2(xj+1)|ψ〉 comes from the last coarse-
grainer connecting the two correlators at depth logN . This is reminiscent of the behaviour of CFT
two-point functions that go as 〈O(x)O(y)〉 ∼ 1/|x− y|2∆ where ∆ is the conformal weight

10.2.2 AdS/MERA Correspondence

We have seen that the MERA ansatz for the wavefunction reproduces expected CFT results for
correlation functions and entanglement entropies on the lower boundary. We will now demonstrate
that the ’bulk’ of the MERA network, i.e. all the deeper layers can be mapped to a discretized
anti-de Sitter geometry by assigning a geometric meaning to the contractions in the graph. This cor-
respondence was first noted by Swingle in [104]. The section closely follows the presentation of Cao
in [68], however I use less sophisticated inequalities, resulting in weaker bounds that nevertheless
reflect the same conclusions.

Let us begin with a very general reason for why MERA realizes the correspondence. In Ad-
S/CFT we can see the distance into the bulk as the renormalization scale of the CFT becoming a
physical dimension. In the MERA ansatz we do the exact same thing, we have the physical lattice
at the bottom ”boundary”, and we then organize correlations into layers of increasing length scale.
Thus the MERA ansatz also naturally ”grows an extra dimension” that can be associated to the
energy scale, where increasing depth corresponds to deeper IR physics in the boundary theory. The
top tensor naturally corresponds to r = 0 in AdS, while the boundary is located at r ∼ 1/ε where
ε is the lattice spacing that in QFT would correspond to a UV cutoff.

Geometrizing MERA

We can begin by endowing the graph with a geometry. To do this we impose a graph metric on
the MERA network, and show that the discretized geometry reproduces AdS on large scales. To
prepare for the introduction of a graph metric, we should pick equivalent reference points on the
MERA. We mark these reference points as follows, adding some horizontal lines for reference
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Next we realize that translation invariance on the boundary (by the lattice spacing) fixes the
distance L1 between any two boundary points. Each of the layers corresponding to a red horizontal
line is also separated by a single distance scale L2, since they are separated by the same exact
intermediate tensor. We implement this with the following translation from tensor component to
a weighted graph

.

Thus the MERA can be represented as the following graph with two inequivalent distance scales
L1 and L2.

Here we have noted that to each point on the graph we assign a Hilbert space V with dim(V ) = χ̃,
where χ̃ is not necessarily equal to the bond dimension.

Geodesic Between Boundary Points

From equation (7.38) we expect the minimal geodesic between two boundary points of AdS to be
separated by

Lγ = 2L ln
(
R

ε
sin l

R

)
. (10.17)

where R is the radius of the boundary CFT and and L is the AdS radius and we have redefined
l→ πl relative to section 7.2. In the case of R large, i.e. a nonperiodic boundary CFT we have

Lγ = 2L ln
(
l

ε

)
. (10.18)

We would also like to consider a geodesic in AdS that stays at constant radius and goes between
points on the boundary separated by a distance l. In terms of Fefferman-Graham coordinates we
can express this condition as z = z0, where z0 is small. Such a geodesic can straightforwardly be
be shown to have length

Lz0 = L

z0
l . (10.19)

We would like to show that our invented MERA graph geometry reproduces equations (10.18)
and (10.19). Since the boundary of the MERA has a definite lattice spacing, it should in the AdS
picture be defined at a finite distance from the boundary z = ε, where ε is the holographic UV
cutoff. In them:th layer of the MERA, the number of sites separating two points that are separated

304



Chapter 10. Beyond Holography, de Sitter

by distance l on the boundary scales as Nsites ∼ l
2mε . The graph distance at constant z is L1 times

the number of separating nodes, so we find that

Lz0 = L1
l

z0

∣∣∣∣∣
z0=2mε

. (10.20)

Upon comparing with equation (10.19) we see that L1 is to be identified with the AdS radius L.
Note that for a MERA of degree k we replace 2→ k.

Next we should perform the computation corresponding to the minimal geodesic of the Ryu-
Takayanagi chapter. We consider two sites on the boundary lattice of the MERA. If we take the two
sites to be separated by l >> ε, the shortest distance will be given by a path that is dominated by
vertical segments. The depth at which the two points are connected is located at depth m = log2

l
ε .

The vertical distance has to be travelled twice (up from one endpoint and down to the second), so
we find

Lγ = 2L2 log2
l
ε . (10.21)

To match with the AdS result in equation (10.18) we see that we should set L2 = L ln 2. Notably,
MERA only approximates AdS on distances larger than the AdS scale.

It is difficult say something about sub-AdS scale physics due to the fact that the MERA only
contains super-AdS length scales. One is forced to conclude that localized physics must be encoded
in the individual tensor factors2.

Boundary Entanglement Entropies

In addition to recreating the large scale geometric features of AdS, we would like to replicate the
entanglement structure. More specifically, we will demand that MERA correctly computes the
CFT entanglement entropy of a line element, given by equation (4.188) as

SCFT = c

3 ln
(
l

ε

)
, (10.22)

where the central charge is related to the AdS3 scale by c = 3L/2G. This will give us a restriction
on the bond dimension χ.

We have two expressions relating to the MERA entanglement entropy, namely the upper bound
coming from the minimum number of bonds cut to separate a segment of the MERA from its
complement as well as the Ryu-Takayanagi prescription applied to the MERA bulk geodesic. From
these we get

SRT = Lγ
4G = L

2G ln
(
l

a

)
(10.23)

SMeraCuts ≤ log(N) log(χ) = log(χ) ln(2) ln
(
l

a

)
. (10.24)

Both of these can only be true if
χ > e

L
2G = ec/3 , (10.25)

i.e. if χ is exponentially large in the central charge. We also know that semiclassical bulk gravity
is associated with large c, so a holographic MERA must have large bond dimension χ.

2One might think that by writing the MERA coordinates as some function of the AdS coordinates instead of just
equating them, one can bypass this problem. This apparent freedom turns out to be unphysical and you end up with
the same MERA length scales in the end [68].
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Bulk Entanglement Entropy

If the correspondence between AdS and MERA is real then it should also be possible to realize the
holographic principle, namely that black holes maximize the entropy per volume. We assume that
the black hole is well scrambled, so that the entropy of a black hole is proportional to the logarithm
of the dimension of the bulk Hilbert space of its interior ln(dimHB) = A

4G .
In this section, we will leave the degree k arbitrary, but all images will be drawn with k = 2

for simplicity. To realize the Bousso bound in the MERA geometry, we need the dimension of the
Hilbert space inside a ball with surface area A to satisfy

ln(dimHB) ≤ A

4G . (10.26)

To realize a good definition of a ball we should map the MERA from a half-plane representation
of AdS (x, z), x ∈ [−∞,∞], z ∈ [0,∞] to a radial one (ρ, θ) with ρ ∈ [0,1], θ ∈ [0, 2π). This requires
us to truncate the MERA at a finite depth M with a top tensor and impose periodic boundary
conditions. The metric becomes

ds2 = L2

(1− ρ)2

[
dρ2 +

(dθ
2π

)2]
. (10.27)

To adapt the MERA to these coordinates we first remember that the first layer of the MERA lies at
z = ε. We can then pick a site, label it site number 0 and define its position as x = 0. The UV-most
lattice is then situated at (x,z) = (nε, ε) where n = 0, 1, . . . (kM −1) where we have identified x = 0
and x = kM ε. We obtain a consistent embedding of the MERA graph by defining the coordinates
ρ, θ in the following way

ρ = kM ε− z
kM ε

(10.28)

θ = 2π x

kM ε
. (10.29)

If the top tensor is allowed to have an arbitrary number of legs T , the periodicity at the UV-
most level becomes TkM−1ε. This means that we should redefine the angular variable so that
θ = 2πx/(TkM−1ε). In this case the metric becomes

ds2 = L2

(1− ρ)2

[
dρ2 + T 2

k2

(dθ
2π

)]
. (10.30)

In the radial coordinates, the MERA with T = k = 2 can be graphically represented as in figure
10.3. where the thick lines are of length L2 and the circular, thinner lines are of length L1 between
each node indicated by a grey dot. The grey diamond at the center is the top tensor. Note that
the circles should be at radii 1− 1/kn where n is the n:th layer from the top tensor. The four radii
in this image are thus ρ = {1

2 ,
3
4 ,

7
8 ,

15
16}.

We are now ready to interpret (10.26) in terms of the MERA. Let us pick the ball B to be
centered on ρ = 0. We take the ball to contain the top tensor, the sites at the top tensor’s legs and
the first nB layers that come after. This region is indicated for nB = 1, T = 2, k = 2 in figure 10.4.
The boundary of the ball is a surface at constant ρ and the area (circumference) of its boundary is
given by

A = TknBL1 (10.31)
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Figure 10.3: MERA network superimposed on ball representation of Euclidean AdS space. The
grey diamond in the center is the top tensor. The four circles denoted in the image are at ρ ={

1
2 ,

3
4 ,

7
8 ,

15
16

}
. The boundary at ρ = 1 is the boundary of AdS.

which using that L1 = L and c = 3R
2G tells us that

A

4G = TknBc

6 . (10.32)

We now need a prescription for assigning a dimension to the bulk Hilbert space of the region
inside the ball. The simplest construction is to assign a Hilbert space factor Vbulk to each bulk
vertex and a Hilbert space VT to the top tensor3. The dimension of the Vbulk factors must be the
same due to the symmetries of the MERA network, while the dimension of the top tensor Hilbert
space is a free choice. The number of sites contained by B in addition to the top tensor is

NB = T
nB∑
i=0

ki = T

(
knB−1

k − 1

)
. (10.33)

The Hilbert space inside the ball is therefore HB = (Vbulk)⊗NB⊗VT . To the spaces Vbulk and VT we
assign the dimensions χ̃, χ̃T respectively. It follows that ln(dim(HB)) = NB ln(χ̃) + ln(χ̃T ), which
when used together with equations (10.26) and (10.32) tells us that

T

(
knB−1

k − 1

)
ln(χ̃) + ln(χ̃T ) ≤ TknBc

6 . (10.34)

If we can pick χ̃ and χ̃T to be anything, we can clearly satisfy this bound, but we have another
property of AdS/CFT to reconcile, namely the dimensions of the bulk and boundary Hilbert spaces.
The boundary Hilbert space has dimension χNboundary = χTk

M determined by the bond dimensions.
The number of bulk sites (apart from the top tensor) is given by TkNM−1 . By equating the
dimensions of boundary and bulk we find

T

(
kM−2

k − 1

)
ln(χ̃) + ln(χ̃T ) = kM ln(χ) . (10.35)

3This is a dangerous prescription since if we expect local QFT to hold in a weak gravity limit, a bulk-local
factorization of Hilbert space is not expected to exist.
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Figure 10.4: MERA network superimposed on ball representation of Euclidean AdS space. The
region in red is the interior of an eventual black hole with event horizon denoted by the red circle.
The gravitational analogy only makes sense when the black hole is close in size to the largest MERA
layer it contains.

For the MERA to reproduce the Ryu-Takayanagi formula we saw that that χ must satisfy (10.25)

lnχ > c

3 . (10.36)

We can now combine the Bousso bound (equation (10.34)), the holography condition (equation
(10.35)) and the Ryu-Takayanagi bound (equation (10.36)) to arrive at a contradiction in this
simplest construction. We begin by inserting equation (10.36) into equation (10.34) to obtain

T

(
knB−1

k − 1

)
ln(χ̃) + 1

T
ln(χ̃T ) ≤ knB

2 ln(χ) . (10.37)

We then rearrange (10.35) to the following form

T

(
kM−2

k − 1

)
ln(χ̃) = kM ln(χ)− ln(χ̃T ) , (10.38)

to see that (10.37) becomes

knB−1

kM−2

(
kM ln(χ)− ln χ̃T

)
+ 1
T

ln(χ̃T ) ≤ knB

2 ln(χ) , (10.39)

knB+1 ln(χ) +
(

1
T
− knB−1

kM−2

)
ln(χ̃T ) ≤ knB

2 ln(χ) , (10.40)( 1
TknB

− 1
kM−1

) ln(χ̃T )
ln(χ) + 2k ≤ 1 . (10.41)

Since k, T, χ, χ̃ are positive integers, the following is true:

• If nB is nearly M − 1 (the maximum size), the inequality can be satisfied. The inequality
should hold independently of nB, so this is not helpful.
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• The bound can be satisfied for any nB < M if T ≥ kM−2 by tuning χ̃T . This is not sensible,
since this means that the MERA network truncates with a top tensor after the first layer (or
sooner).

Therefore, we conclude that the MERA without additional structure can not accommodate Ryu-
Takayanagi, bulk-boundary correspondence and the Bousso bound. Since AdS does accommodate
these there can be no self consistent AdS/MERA correspondence without additional structure.

As noted by Cao [68], a minimal generalization of the MERA would be a version in which
the boundary state is a highly entangled state. This means that we may have non maximal
entanglement in the bonds connecting to the boundary, and the holographic condition weakens
to

T

(
kM−2

k − 1

)
ln(χ̃) + ln(χ̃T ) = ηkM ln(χ) , η ∈ [0,1] , (10.42)

where η measures the average entanglement across the UV-most bonds. Then the bound in equation
(10.41) is weakened to ( 1

TknB
− 1
kM−1

) ln(χ̃T )
ln(χ) + η2k ≤ 1 (10.43)

Notably for η ≤ 1
4 the part in parentheses no longer has to be negative for k = 2, and it is

in principle possible to reconcile holography, Ryu-Takayanagi and the Bousso bound4. This is
interesting, and motivates further investigation of the possible correspondence between AdS and
MERA-like tensor networks. This is outside the scope of this text, and we will instead proceed to
consider the possibility of a de Sitter/MERA correspondence.

10.2.3 dS/MERA Correspondence

In addition to the AdS/MERA correspondence there is a proposed correspondence between de Sitter
space and MERA, i.e. a dS/MERA correspondence. In this correspondence we make a completely
different interpretation of the MERA, in which the fine graining direction (or UV direction) is taken
to be the direction of increasing time. Thus taking the k = 2 MERA of the previous section, we are
considering a dS2/MERA2 correspondence instead of an AdS3/MERA2 correspondence. Viewed in
this way, we will see that the MERA captures the causal structure of de Sitter spacetime, where
the UV direction represents time evolution away from the de Sitter throat. This section also follows
the thesis of Cao [68] as well as the original paper upon which Cao bases his section [105]. The
most notable property of this correspondence is the fact that it is not holographic.

Geometry of de Sitter and MERA

The de Sitter spacetime has constant, positive curvature. Its most notable property is the presence
of a cosmological horizon for any given observer, which is consistent with the accelerating expansion
of the universe. We will focus on dS1+1, which has the standard representation

ds2 = L2
dS(−dt2 + cosh2 tdθ) (10.44)

where t is non-periodic and θ has period 2π. It is instructive to think of de Sitter as an expanding
ball that has radius LdS at t = 0 and then expands for all time (in either direction from t = 0).

4One may interpret this subset of sufficiently entangled boundary states as a kind of ”geometric subspace” of the
full boundary theory. This is in line with the intuition we built about coherent CFT states in section 8.4.
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Figure 10.5: The MERA tensor network, seen as a quantum circuit in which each layer performs
a step of time evolution, admits a notion of causality. In the image we have illustrated the causal
past (of well chosen points) at the bottom of the MERA, and the causal future of a point at the
top. The past (future) domain of dependence of a set of points S is the set of all nodes such that
they are connected to S by a set of future (past) directed edges. The causal past of a set of point
in the UV-most layer of the MERA is known in the literature as a causal cone.

Setting cosh t = secα, we end up with the particularly convenient conformally flat representation
of dS

ds2 = L2
dS

cosα
(
−dα2 + dθ2

)
(10.45)

where α is restricted to −π/2,π/2. Because of this the Penrose diagram of de Sitter is best repre-
sented by a rectangle in the θ − α plane on the following form

. (10.46)

Where we have drawn out the causal diamonds of line elements at α = 0. Note that these two
causal patches are completely disjoint, and signals from either can never reach the other.

There is a consistent way to geometrically embed the MERA in the top half (t ≥ 0) of this
diagram. To understand and anticipate this embedding we should first note that MERA admits a
form of causal structure for flows in the IR direction. The basic elements of this causal structure is
illustrated in figure 10.5, and in figure 10.6 complementary causal regions are chosen so that they
match the Penrose diagram of de Sitter.

Noting the similarity in the causal structure we may think more closely about the correspon-
dence. Starting at a time t = 0, the length of the constant time slice has doubled n times at
the time tn = arccosh(2n). If we as in the AdS/MERA correspondence associate the bulk sites
of MERA to local spacetime regions with the same dimension Hilbert space, it is natural to set
the n + 1:th layer from the top of the MERA at time tn. In figure 10.7 the first few layers of the
identification is illustrated. The angles are chosen as

θ
(n)
j = π

2n+1

(
j + 1

2 j = 0, . . . ,2n+2 − 1
)
. (10.47)
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Figure 10.6: We set the MERA network to be periodic, with a period of four sites in the IR-most
layer. Next we sort the MERA into complementary causal pasts and causal futures. Remembering
that time runs upwards in (10.46), this matches the causal structure of the top half of the de Sitter
Penrose diagram, with the UV-most sites close to α = π/2 and the IR-most sites at α = 0.

Figure 10.7: MERA imposed on the upper half of the de Sitter Penrose diagram. Two of four
choices of causal patch are highlighted in grey. The toher two possible choices are related to the
indicated patches via a translation by π/2 in the θ direction.

This particular angular alignment of the MERA is related to the so-called static patch of dS.
Let us consider the upper half of the de Sitter Penrose diagram. The cosmological horizon of a
static dS observer has constant proper radius, and the region of spacetime that can be in the causal
past of this observer is given by the static patch. If we as in the AdS case identify a proper distance
L1 between nodes in the same layer, we see that the proposed imposition of MERA in figure
10.7 captures the constant proper radius property of the cosmological horizon for static observers
at θ = π

2 ,
3π
2 . By inspecting the α = 0 time slice, the proper size of the static patch is πLdS.

Consistency between the MERA graph and de Sitter then tells us to identify L1 = π
2LdS. The

conclusion is that each static patch of de Sitter coincides with a causal cone of the MERA network.

This description of dS is very coarse grained, we have only two sites per horizon volume with each
layer separated by cosmological time scales. Like in the AdS case, the small scale physics must be
somehow embedded in the individual sites. To have consistency with the Gibbons-Hawking entropy
of the cosmological horizon SdS, the Hilbert space corresponding to a spatial slice of the static
patch must satisfy ln [(dim(Hstatic)] ∼ SdS. For our asymptotically de Sitter universe consistency
sets SdS ∼ 10122.
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Cosmic No Hair

In the gravitational literature, cosmic no-hair theorems say that spacetimes with a positive cosmo-
logical constant (with reasonable matter content) always asymptote to de Sitter [106]. Quantum
versions of the no-hair theorems assert that the states of quantum field tend to the vacuum con-
figuration at late times. If the dS/MERA correspondence is a good correspondence, there should
be a MERA analog of the no-hair theorems. More explicitly this means that when flowing towards
the UV in the MERA, the state should become closer and closer to some asymptotic state ρ∗, given
any input state ρ0.

In section 2.3.7 we showed that given that there is a state ρ∗ that is left invariant by a quantum
channel N , monotonicity of relative entropy implies that all other states approach ρ∗ under the
repeated application of N .

To get at the character of the fixed state ρ∗, let us look more closely at the quantum channel that
takes us from one cosmic horizon interior to the next. Each layer comes down to the application
of the same operator represented by the following tensor network

. (10.48)

The legs leaving the static patch exit the observable universe, so they should be traced over. By
raising and lowering some indices we can rewrite the tensor network according to

N (ρ)cd = . (10.49)

We can write this out algebraically using the definitions in equations (10.6) and (10.7) as

(N (ρ))cd = Uab
c
dW

j
ak(W †)ibkρij . (10.50)

By decomposing Uabcd and W j
ak(W †)ibk = Wj

a
b
i into Choi-Kraus form equation (10.50) may be

rewritten in matrix form
N (ρ) =

∑
i

∑
j

UiWjρW
†
j U
†
i . (10.51)

In this form, using that ∑
i

UiU
†
i = 1 ,

∑
j

WjW
†
j = 1 (10.52)

it is clear that the identity operator is an eigenoperator of N with eigenvalue 1. This tells us that
N necessarily has the eigenvalue 1 in its spectrum, meaning there exist states that are preserved
by N . This proves that MERA admits a cosmic no-hair theorem in which the end state is the
maximally mixed state ρ∗ ∼ 1

eSdS
1.

It is interesting to ask what other states ρ∗ are possible, but it turns out that the general
problem is unsolved [68]. Here we are satisfied just saying that MERA admits a no-hair theorem,
consistent with our knowledge of de Sitter cosmology.
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Circuit Complexity, CV/CA Conjectures

We saw in the previous chapter two conjectures relating computational complexity to geometrical
quantities. These were the Complexity=Volume (CV) and Complexity=Action (CA) conjectures.
We will here focus on a possible relation to the CA conjecture, but with a pure de Sitter spacetime
there is no way to differentiate the two. The CA conjecture says explicitly that the computational
complexity C is related to the Einstein-Hilbert action SEH evaluated on a Wheeler-de Witt patch
by

C = qSEH , (10.53)

where in the black hole example of section 9.3.2 we picked q = 1/~π. The relation we test in this
section is fundamentally different to 9.3.2 since it is not holographic, we have only a de Sitter bulk.

In the MERA there is a straightforward way to provide a lower and upper bound for the
complexity of the state at time t. For the definition of complexity we choose the reference state
to be the initial state of the MERA. We choose the set of simple gates to be the set {U,W} of
disentanglers and coarse-grainers from which we construct the MERA. The first observation is that
since our time direction moves in the UV direction of the MERA, the disentanglers in fact entangle
factors of the input state with extra |0〉s that should be seen as part of the initial reference state.
For a k-nary MERA each coarse-grainer generates a k times as many entangled factors as it takes
inputs. In the j:th layer there are kj−1 coarse-grainers acting on kj−1 inputs, meaning that at time
t the number of entangled factors is

N(t) =
t∑
j

kj (10.54)

where we take the time to be discretized into MERA time steps. To entangle N(t) states with
k-local operators you need to act at least N(t)/k times, giving a lower bound on the complexity of
the state at time t. An upper bound is trivially provided by the MERA itself, in which we at time
t have acted with 2N(t) operators. Thus we have

1
k
N(t) ≤ C(t) ≤ 2N(t) . (10.55)

The only important feature of the complexity of the MERA is that equation (10.54) is a geometric
sum meaning it will be exponential in time. Changing the reference state or gates will change the
prefactors in equation (10.55), but not the time dependence.

The Einstein Hilbert action evaluated on the patch 0 ≤ t′ ≤ t for D-dimensional de Sitter is
given in the coordinates of equation (10.45) by [68]

SEH = 1
16πG

∫ t

0
dt′
∫

dΩD−1
√
−gR

= RlDdSVD−1
16πG

∫ T

0
coshD−1(t′)

= RlDdSVD−1
16πG

1
(D − 1)2D−1 e

(D−1)t + subleading terms ,

(10.56)

where R = D(D − 1)/l2dS is the Ricci scalar and VD−1 is the volume of the unit D − 1 sphere.
This indeed matches the scaling behaviour of the MERA if we pick D = 2, so the dS/MERA
correspondence is consistent with the CA conjecture. Note that in the MERA, we already know
that the volume of the k:th layer goes as N(k), so MERA is also consistent with he CV conjecture.
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Chapter 11

Gravity Emerging to Third Order

In this chapter we will try to generalize the emergence of EFE to second order in perturbations
as found in section 8.4 to third order in perturbations. This should necessitate a plethora of new
physics input such as the form of three point functions and operator product expansions in the CFT
and potential derivative and quantum corrections to the gravitational theory, a second Hollands-
Wald gauge condition and higher order terms in the gravitational analysis. What we have time to
accomplish in this section is the explicit form of the correlation functions that are to be understood
on the CFT side.

11.1 Gravitational Side

The only generalization necessary on the graviational side is the details of the second order Hollands-
Wald gauge condition. This also includes the necessity of generalizing the condition on the vector
field V that lets us understand metric perturbations that are not in Hollands-Wald gauge.

We extend the calculation of equation (8.89) by adding a second order metric perturbation,
which will give us a second Hollands-Wald (HW) gauge condition. This should be implemented
together with the first Hollands-Wald gauge. Terms of order δX2 do not contribute because the
extrinsic curvature vanishes to first order in metric perturbations by the first gauge condition. The
starting point is then

δG(δXδGA[G,X]) = δG

(∫ √
−g

(1
2∇αδG

α
α −Gαβ∇βδGαα

)
δXα

)
, (11.1)

where we use that the variations commute. Here, we are once again remembering that the barred
indices are orthogonal to the extremal surface, while unbarred indices are parallel. Note that to
this order the ∇α are not invariant under perturbations so we get three nontrivial variations to
consider

δGαβ = −GαδGβγδGδγ ,

δΓαβγ = Gαδ
(
∇(βδGγ)δ −

1
2∇δδGβγ

)
,

δG
√
−g = 1

2
√
−gGαβδGαβ ≡

√
−gδGαα .

The variation of
√
−g results only in multiplying the original Hollands-Wald gauge by the trace of

the metric perturbation, so it is zero by imposing the first HW gauge. The ∇αGαα term thankfully
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gives no Christoffels. The variation of the first term is then

δG(∇αδGαα) =δG(∇αGαβδGαβ)

=∇α
(
−GαδGβγδGδγδGαβ

)
+∇αδ2Gαα

=− 2δGαβ∇αδGαβ +∇αδ2Gαα .

(11.2)

Let us now turn to the variation of the second term:

δG(Gαβ∇βδGαα) =−GαγGβδδGγδ∇βδGαα +Gαβ∇βδ2Gαα

−Gαβ [δΓγβαδGγα + δΓγβαδGαγ ]
=−GαγGβδδGγδ∇βδGαα +Gαβ∇βδ2Gαα

−GαβGγδ
[(
∇(βδGα)δ −

1
2∇δδGβα

)
δGγα +

(
∇(βδGα)δ −

1
2∇δδGβα

)
δGαγ

]
.

Using metric compatibility of the unperturbed ∇β with the unperturbed metric we can make some
simplifications by contracting indices:

δG(Gαβ∇βδGαα) =− δGαβ∇βδGαα +∇αδ2Gα
α

−∇(αδGα)
δδGδ

α + 1
2∇δδG

α
αδG

δ
α −∇αδGαδδGαδ + 1

2∇δδG
α
αδGα

δ .
(11.3)

Writing everything out at once, we have

δG(δXδGA[G,X]) =
∫ √
−g
[
−∇αδGαβδGαβ + 1

2∇αδ
2Gαα + δGα

β∇βδGαα −∇αδ2Gα
α

+∇(αδGα)
δδGδ

α − 1
2∇δδG

α
αδG

δ
α +∇αδGαδδGαδ −

1
2∇δδG

α
αδGα

δ

]
δXα

=
∫ √
−g
[
− 1

2∇αδG
αβδGαβ + 1

2∇αδ
2Gαα + 1

2δGα
β∇βδGαα −∇αδ2Gα

α

+ 1
2∇αδGα

δδGδ
α +∇αδGαδδGαδ −

1
2∇δδG

α
αδGα

δ

]
δXα

=
∫ √
−g
[

1
2∇αδ

2Gαα −∇αδ2Gα
α

+ δGα
β∇βδGαα +∇αδGαδδGαδ −

1
2∇δδG

α
αδGα

δ − 1
2∇αδG

αβδGαβ

]
δXα .

(11.4)
Pending further simplifications, the vanishing of the expression in parentheses is the new Hollands-
Wald gauge condition.

Graviational Constraints away from Hollands-Wald Gauge

In the Hollands-Wald analysis of section 8.4.1, the nonperturbative gravitational identity is given
by equation (8.123) as

δε (δEgrav − δSgrav) =
∫

ΣA
ωgrav(G, δεG,LξAG) + ωφ(φ, δεφ,LξAφ) +

∫
ΣA
G , (11.5)
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and the perturbative metric ansatz by

G(ε) = GAdS + εG(1) + ε2G(2) + ε3G(3) + . . . . (11.6)

It is straightforward to write down the third order perturbative identity, which is given by

δ(3)(Egrav − Sgrav) =
∫
σA

[
ωgrav(G(2),LξAG

(1)) + ωgrav(G(1),LξAG
(2)) + ωφ(δφ(2),LξAφ

(1))

+ ωφ(δφ(2),LξAφ
(1))− 2ξaE(3)

ab ε
b

]
,

(11.7)

where we have used LξAG(0) = 0 and that the first- and second order equations of motion are
satisfied and denoted the third order Einstein equations sourced by the scalar field stress tensor by
E

(3)
ab . We do not need to know the explicit form of this, since the point is to show that the CFT

expression reproduces everything but the equations of motion term.
The last thing we need from the gravitational side of things is the expression away from Hollands-

Wald gauge as well as the equations of motion for the vector field V . To generalize the reasoning
from equation (8.126) onwards, it seems sufficient to consider

γ = h+ LVG(ε) , (11.8)

where we let γ be an (up to) second order perturbation that satisfies the second order Hollands-
Wald gauge and h a general (up) second order perturbation. In this case, assuming that the first-
and second order Einstein equations are satisfied the rest of the argument is unmodified up to and
including the final result in equation (8.133)∫

ΣA
ωgrav(γ,LξA , γ) =

∫
ΣA

ωgrav(h,LξAh) +
∫
Ã
χ(h, [ξA, V ]) , (11.9)

and all that is really needed is the addition of the term localized to the Ryu-Takayanagi surface.
To obtain the constraints on the vector field V we require that G = h+LVG satisfies equation

(11.4). This means that we should split γ into

γ(1) = h
(1)
ab + 2∇(0)

(a V
(1)
b) (11.10)

and
γ(2) = h(2) + 2∇(0)

(a V
(2)
b) + 2Γcab;(1)V

(1)
c .

The first order variation of the Christoffel is

δΓcab = Gcd(0)

(
∇(aγ

(1)
b)d −

1
2∇dγ

(1)
ab

)
which means that

γ(2) = h(2) + 2∇(0)
(a V

(2)
b) + 2∇(aγ

(1)
b)cV

c
(1) −∇

(0
c γ

(1)
ab V

c
(1)

= h(2) + 2∇(0)
(a V

(2)
b) + 2∇(ah

(1)
b)cV

c
(1) + 6∇(0)

(a ∇
(0)
b V

(1)
c) V c

(1)

−∇vc(0)h(1)
ab V

c
(1) − 2∇vc(0)∇(0)

(a V
(1)
b) V c

(1) .

(11.11)

We should insert these objects instead of δG and δ2G in equation (11.4), an exercise that we shall
leave for future work.
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11.2 CFT Side
Here we perform the first few steps of a third-order CFT computation. We begin by finding the third
order relative entropy, and use results due to Lashkari et al. [107] to rewrite the relative entropy
in terms of correlation functions. We conclude with some remarks on how to reinterpret these
correlation functions as time-ordered to prepare for a future explicit computation using symplectic
forms in an auxiliary AdS spacetime.

Relative Entropy to Third Order

The relative entropy is
S(ρ||ρ0) = Tr[ρ ln ρ− ρ ln ρ0] . (11.12)

For perturbations, we take ρ(ε) = ρ0+εδρ+ε2δ2ρ+ε3δ3ρ+O(ε4). The last terms will not contribute,
since the second order perturbation to the relative entropy is proportional only to the square of the
first order state perturbation.

The third order relative entropy is given by

δ3S(ρ||ρ0) = d3

dε3Tr [ρ(ε) ln ρ(ε)− ρ(ε) ln ρ0]
∣∣∣∣∣
ε=0

. (11.13)

Let us leave the ε = 0 implicit, denote d
dερ ≡ ρ̇ and in the following computation:

δ3S(ρ||ρ0) = 1
6

d2

dε2Tr
[
ρ̇ ln ρ+��

��
ρ ˙(ln ρ)− ρ̇ ln ρ0

]
= 1

6
d
dεTr

[
ρ̈ ln ρ+ ρ̇ ˙(ln ρ)− ρ̈ ln ρ0

]
= 1

6Tr
[...
ρ ln ρ+ 2ρ̈ ˙(ln ρ) + ρ̇ ¨(ln ρ)−

...
ρ ln ρ0

]
= 1

6Tr
[
2ρ̈ ˙(ln ρ) + ρ̇ ¨(ln ρ)

]
(11.14)

where in the first line we used that Tr[ρ ˙(ln ρ)] = Tr[ρ̇] vanishes to all orders in ε and in the last step
we took the limit ε→ 0 for the first term. To make sense of the logarithmic terms, we consider the
identity from equation 8.60:

− ln(ρ) =
∫ ∞

0

ds
s

(
e−sρ − e−s

)
. (11.15)

We can combine this with the Baker-Campbell-Hausdorff related identity

d
dεe

ρ(ε) =
∫ 1

0
dye(1−y)ρdρ

dε e
yρ . (11.16)

Notably, to zeroth order in ε this tells us that

˙(ln ρ) =
∫ ∞

0
ds
∫ 1

0
dye−(1−y)ρ0sδρe−yρ0s (11.17)

related to the prior result in equation (8.61) by the change of variables x = 1− y. For the second
order perturbation of the logarithm, ρ̈, one can reuse the BCH related identity and evaluate the
resulting double integrals. The result is rather messy as shown in Appendix A.3, but it possesses
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interesting cyclic symmetry. The presence of this symmetry is the observation that is at the center
of a more sophisticated analysis carried out in [107], in which they find that

¨(ln ρ)|ε=0 = Q1 +Q2

= −π2

∫ ∞
−∞

dt
cosh2(πt)

δ(t)− π

4 lim
ε→0

∫ ∞
−∞

dt1dt2
cosh(πt1) cosh(πt2)gε(t2 − t1)[δ(t1), δ(t2)]

(11.18)
where δ(t) = (ρ0)−itδ(ρ0)it and

gε(t) = i

4

[ 1
sinh(π(t− iε)) + 1

sinh(π(t+ iε))

]
, (11.19)

δ = α

1−α/2 , (11.20)

α = 1− (ρ0)−
1
2 ρ(ε)(ρ0)−

1
2 . (11.21)

Here the Qi are coefficients in a series representation of a finite difference ρ0 − ρ(ε) defined in
equation (1.1) of [107]. Something noteworthy about the expansion is that is not an expansion in
powers of ε, but the lowest power of ε present in Qj is εj since α is zero at zeroth order. Since we
are only interested of terms up to second order in ε, we can truncate the series with coefficient Qj
at j = 2.

We can rewrite the first order perturbation of the logarithm in terms of the same expansion,
and it is simply

˙(ln ρ)|ε=0 = Q1 = −π2

∫ ∞
−∞

dt
cosh2(πt)

δ(t) , (11.22)

where we will keep only the first order in ε part of δ(t), which is in contrast to the corresponding
term in equation (11.18) where we keep only the second order part of δ(t). This is exactly the type
of structural connection found between these terms in Appendix A.3.

It would be nice to express δ to first and second order in ε. First we realize that

α = −ρ
−1

2
0 εδρρ

−1
2

0 − ρ
−1

2
0 ε2δ2ρρ

−1
2

0 . (11.23)

Inserting into the definition of δ we find

δ = −
(
ρ
−1

2
0 εδρρ

−1
2

0 + ρ
−1

2
0 ε2δ2ρρ

−1
2

0

)
(1− 1

2ρ
−1

2
0 εδρρ

−1
2

0 ) +O(ε3)

= −ε
(
ρ
−1

2
0 δρρ

−1
2

0

)
+ ε2

(
1
2ρ
−1

2
0 δρρ−1

0 δρρ
−1

2
0 − ρ

−1
2

0 δ2ρρ
−1

2
0

)
+O(ε3) .

(11.24)

We see that keeping only the first order part of δ in equation (11.22) we recover the usual Fisher
information as represented in equation (8.71) by substituting s → s − iπ. At this point we know
the essentials about the relative entropy perturbation, so we should move on to the state.

Adding second order state perturbations

We are specifically considering the perturbation of a local density operator associated with the
boundary ball-shaped region A. In section 8.4.2 we wrote down the first order state perturbation
around the CFT vacuum local density operator on a ball shaped region (equation (8.140))

δρ =
∫

ddxλα(x)ρ(0)
A Oα(x) . (11.25)
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Sticking to the ”coherent” CFT state, the second order state perturbation is given by

δ2ρ = 1
2

∫
ddx1ddx2λα(x1)λβ(x2)ρ(0)

A Oα(x1)Oβ(x2) , (11.26)

where ρ(0)
A is the unperturbed local state. The operators O(x) are time dependent, and are defined

by modular time evolution as

Oα(x) ≡ Oα(τ, ~x) ≡ eτHAOα(0, ~x)e−τHA Ω∆(τ, ~x)
Ω∆(0, ~x) , (11.27)

with Ω a necessary conformal factor. The next step is to classify the set of distinct terms that
appear in Tr

[
2ρ̈ ˙(ln(ρ)) + ρ̇ ¨(ln(ρ))

]
written as correlation functions. The first step is writing out all

of the terms that are to be rewritten explicitly. For cleanliness, let us drop the zero superscript on
the zeroth order density operator, denoting it ρA:

Tr[2ρ̈ ˙(ln(ρ))|ε=0 = π

2

∫
ddx1ddx2ddx3λα(x1)λβ(x2)λγ(x3) (11.28)

×
∫ ∞
−∞

ds 1
cosh2(πs)

Tr
[
ρAOα(x1)Oβ(x2)ρ−isA ρ

−1
2

A ρAOγ(x3)ρ
−1

2
A ρisA

]

Tr[ρ̇ ¨(ln(ρ))|ε=0 = π

4

∫
ddx1ddx2ddx3λα(x1)λβ(x2)λγ(x3) (11.29)(∫

Q1

)
:×

{
− 1

2

∫ ∞
−∞

ds 1
cosh2(πs)

Tr
[
ρAOα(x1)ρ−isA ρ

−1
2

A ρAOβ(x2)Oγ(x3)ρ
−1

2
A ρisA

]

+
∫ ∞
−∞

ds 1
cosh2(πs)

Tr
[
ρAOα(x1)ρ−isA ρ

−1
2

A ρAOβ(x2)Oγ(x3)ρ
−1

2
A ρisA

]
(∫

Q2

)
: + 1

2

∫ ∞
−∞

ds1ds2 gε(s2 − s1)
cosh(πs1) cosh(πs2)Tr

[
ρAOα(x1)

[
ρ−is1ρ−

1
2 ρAOβρ−

1
2 ρis1 , ρ−is2ρ−

1
2 ρAOγρ−

1
2 ρis2

]]}

This leaves us with four terms that should be rewritten as time-ordered correlation functions.
This entails the substitutions si → si ± ( i2 − ε), ρA = e−HA and inserting the definition of the
time dependent conformal operators resulting in some conformal factors. The shift results in
cosh(πs) → sinh(π(s− ε)) by using the imaginary periodicity of the hyperbolic functions. The
resulting correlation functions are

Tr[2ρ̈ ˙(ln(ρ))|ε=0 = π

2

∫
ddx1ddx2ddx3λα(x1)λβ(x2)λγ(x3)A (11.30)

A =
∫ ∞
−∞

ds 1
sinh2(π(s− ε))

Tr
[
e−HAOα(x1)Oβ(x2)eiHse( 1

2∓
1
2 )HAe−HAOγ(x3)e( 1

2±
1
2 )HAe−iHs

]
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as well as

Tr[ρ̇ ¨(ln(ρ))|ε=0 = π

4

∫
ddx1ddx2ddx3λα(x1)λβ(x2)λγ(x3)× (B + C +D) (11.31)

B = −1
2

∫ ∞
−∞

ds 1
sinh2(π(s− ε))

Tr
[
e−HAOα(x1)eiHse( 1

2∓
1
2 )HAe−HAOβ(x2)Oγ(x3)e( 1

2±
1
2 )HAe−iHs

]
C =

∫ ∞
−∞

ds 1
sinh2(π(s− ε))

Tr
[
e−HAOα(x1)eiHse( 1

2∓
1
2 )HAe−HAOβ(x2)Oγ(x3)e( 1

2±
1
2 )HAe−iHs

]
D = 1

2

∫ ∞
−∞

ds1ds2 gε(s2 − s1)
sinh(π(s1 − ε1)) sinh(π(s2 − ε)2)

Tr
[
e−HAOα(x1)

[
e−iHAs1e( 1

2∓
1
2 )HAe−HAOβe( 1

2±
1
2 )HAeiHAs1 , e−iHAs2e( 1

2∓
1
2 )HAe−HAOγe( 1

2±
1
2 )HAeiHAs2

]]

where we have taken the liberty of labelling the terms for later reference and kept the limit ε→ 0+

implicit. In the following, let us define∫
dµ =

∫
ddx1ddx2ddx3λα(x1)λβ(x2)λγ(x3) . (11.32)

We will now proceed to give the + and − versions of each of the terms A,B,C,D. In anticipation
of time-ordering we expect the sign choices to correspond to different operator orderings. We then
hope to be able to pick ± and integration intervals such that the correlation functions are always
ordered with the rightmost operator inserted at the earliest times. This is supposed to result in
correlation functions that are time-ordered with respect to the integrands ti ⊂ xi, at which point we
can apply the conventional CFT machinery to extract some information about the relative entropy
to third order:

(A)+ = π

2

∫
dµ
∫ ds

sinh2(π(s− ε))
Ω(x3)

Ω(x3 − is)
Tr
[
e−HAOγ(x3 − is)Oα(x1)Oβ(x2)

]
,

(A)− = π

2

∫
dµ
∫ ds

sinh2(π(s− ε))
Ω(x3)

Ω(x3 − is)
Tr
[
e−HAOα(x1)Oβ(x2)Oγ(x3 − is)

]
,

(11.33)

(B)+ = −1
2(C)+ = π

8

∫
dµ
∫ ds

sinh2(π(s− ε))
Ω(x1)

Ω(x1 + is)Tr
[
e−HAOβ(x2)Oγ(x3)Oα(x1 + is)

]
,

(B)− = −1
2(C)− = π

4

∫
dµ
∫ ds

sinh2(π(s− ε))
Ω(x1)

Ω(x1 + is)Tr
[
e−HAOα(x1 + is)Oβ(x2)Oγ(x3)

]
,

(11.34)
The D term has four possible sign structures coming from the four different ways of choosing ε1
and ε2. We will use ++ to denote the positive sign for the substitution with both, and +− to
denote a positive sign for ε1 and negative for ε2. We then have

(D)++ = π

8

∫
dµ
∫

dsTr
[
e−HAOα(x1)

[
e−HAOβ(x2 − is1)eHA , e−HAOγ(x3 − is2)eHA

]]
,

= π

8

∫
dµ
∫

dsTr
[
e−HA [Oβ(x2 − is1),Oγ(x3 − is2)]Oα(x1)

]
(D)−− = π

8

∫
dµ
∫

dsTr
[
e−HAOα(x1) [Oβ(x2 − is1),Oγ(x3 − is2)]

]
,

(D)+− = π

8

∫
dµ
∫

dsTr
[
e−HAOα(x1)

[
e−HAOβ(x2 − is1)eHA ,Oγ(x3 − is2)

]]
,

(D)−+ = π

8

∫
dµ
∫

dsTr
[
e−HAOα(x1)

[
Oβ(x2 − is1), e−HAOγ(x3 − is2)eHA

]]
,

(11.35)
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where we defined∫
ds =

∫ ds1ds2gε
cosh(π(s1 − ε1)) cosh(π(s2 − ε2))

Ω(x2)
Ω(x2 − is1)

Ω(x3)
Ω(x3 − is1) . (11.36)

Something to note is that the commutators are especially unpleasant to handle for the +− and −+
cases, as we will get several occurrences of the operator e±HA that are not easily removed.

Incomplete Time-Ordering and Operator Product Expansions

Partial time-ordering for equation (11.33) is simply obtained by picking the +-labelled substitution
when t3 > t2 > t1 and the −-labelled substitution when t2 > t1 > t3. The question is then to
understand whether the time-orderings

t1 > t2

t1 > t3 > t2

t2 > t3 > t1

can or need to naturally appear with the associated operators correspondingly shuffled around. To
complete the time ordering it seems that the only solution is to turn the pair of operators that
is kept fixed under the choice +− in the s substitution into a single operator or a sum of single
operators. That is, we reexpress the two operators as an operator product expansion

Oα(x1)Oβ(x2) =
∞∑

i=−k
ciOiαβ(x2)(x1 − x2)i ≡ Ξαβ(x2) , (11.37)

where k is chosen such that Ok respects the relevant unitarity bounds of the CFT given the Lorentz
structure of the indices α, β. Validity of the equality between the unordered operators O and the
OPE on the operator level is guaranteed in Euclidean field theory, and since the fused operators
are purely Euclidean this should not be a complication.

Given the OPE, equations (11.33), (11.34), (11.35) describe time-ordered correlation functions
between Ξ and a third operator Oγ for appropriate choices of when to use the + and − prescriptions.
That is, we are considering correlation functions in the integrand on the form 〈T (Oγ(x3)Ξ(x2))〉.
Note that there is no guarantee that the integration over

∫
dµ depends only on the residues of the

OPE, so we may need the entire expansion.
For the case of O chosen as conformal primary real scalar fields of weight ∆, the only part of

the OPE that is nonzero in the correlation function is

〈φ(x3)Ξφ(x2)〉 ∼ c∆
(x1 − x2)∆ 〈φ(x3)φ(x2)〉 (11.38)

due to the fact that scalar field correlators are only nonzero when both scalars have the same
conformal weight as we saw in section 3.4.3. This should in principle reduce to the second order
case plus an extra singular term 1

(x2−x3)∆ that needs to be dealt with when integrating the dµ part.
To further this analysis, the next step is to understand stress-tensor and scala field three-point
OPEs, so that the relevant correlators may be evaluated.
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Chapter 12

Summary & Conclusions

In this chapter, we conclude this thesis part by part. We summarize what was discovered, and
whether the parts did what they set out to do. We detail some possible continuations of each part.

Preliminaries

In Part I: Preliminaries we set out to give a comprehensive review of the fundamental theory
necessary to understand the material covered in Part II. A main consideration was the attempt to
give a very detailed account of every step along the way, with the aim of making the material more
accessible to early graduate students.

Part I started from elementary quantummechanics, defining and developing the density operator
formalism and its relation to Shannon’s theory of information. Most importantly we learned that
all entropy can be explained as entropy of entanglement with a purifying system. We then derived
the path integral formulation of quantum mechanics, which we then generalized to quantum fields.
Our principal discovery was the path integral generalization of Noether’s theorem in the Ward
identities, which allowed us to understand conformal field theory without ever writing down a
Lagrangian. We went on to generalize the density operator formalism to the case of quantum fields,
discovering the divergent entanglement of the QFT vacuum with itself. With the help of string
theory we then discovered the AdS/CFT correspondence, a deep connection between D-dimensional
non-gravitational physics and D+1-dimensional gravitational physics. We generalized the idea of
the entanglement entropy of fields to the entanglement entropy of gravity via this correspondence,
discovering that the very presence of entanglement is the glue that builds geometry.

Some things were not done in quite as much detail as everything else, most notably the
Lewkowycz-Parrikar proofs of the RT and HRT formulas. This was because the necessary machin-
ery of general relativity and hypersurfaces had not been introduced. As such an obvious extension
of Part I would be the addition of a chapter on specialized topics in general relativity focusing
on hypersurfaces and Iyer-Wald formalism. This would also be of benefit for Part II, where some
sections require the introduction of this machinery on the fly.

For the purpose of extending the analysis in chapter 11 it would also be useful to add to the
CFT section a passage about the conformal bootstrap and higher point functions.

Another interesting thing to add would be the theory of covariant phase space methods for
computing correlation functions to the end of the AdS/CFT chapter. This theory would put the
second order CFT analysis of section 8.4.2 on much more solid footing. As it is now the covariant
phase space formalism was introduced ad-hoc and is just verified to reproduce the usual correlation
functions.

In principle, another interesting extension would be the addition of an entire ”Quantum correc-
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tions to Ryu-Takayanagi” track. Such a track would include an introduction to supergravity, some
details about higher derivative gravity and how the HRT formula is affected by such a modification.
One could then explore quantum corrected variants of the material in chapter 8. In contrast to
other suggestions this would entail a genuine expansion of the scope of the thesis, rather than an
addition for the sake of completion.

Recent Developments

The objective of Part II: Recent Developments was to give a comprehensive review of the current
state of emergent gravity, with a focus on the entanglement=geometry viewpoint. The intention
was for this presentation to be significantly more digestible than the original papers (even if many
of these were very high in detail!).

In chapter 8 we began by realizing that in wanting to recover a dynamical notion of geometry, we
should first understand the dynamics of entanglement. This was characterized by the entanglement
first law and the perturbative relative entropy identities between entanglement entropy and the CFT
modular energy. These two quantities were related holographically to the areas of HRT surfaces
and the gravitational modular energy, respectively. We showed that the consistency of the relation
required that the gravitational theory was uniquely described by the Einstein field equations up to
second order in perturbations about pure AdS.

In chapter 9 we discovered that the interior of black holes, which was not described by entan-
glement, could be described by the microscopic structure of the CFT state. This was achievable
via the CV/CA conjectures as well as by preparation of very particular states as in section 9.4.

In chapter 10 we discovered that the geometrical interpretation of the boundary was not neces-
sarily important to the geometry of the bulk spacetime. This allowed us to play with non-geometric
ideas such as tensor network cosmology, which we showed to satisfy several consistency conditions.

Like in the case of Part I, the level of depth and detail was not as constant as desired. Chapter
8 concludes with a detailed analysis of results as recent as 2017, referring to 2019 papers for some
generalization of the end result. In contrast, chapter 9 does not bring the CA and CV dualities to
the present day in the same level of detail. For chapter 9 to match chapter 8 in detail, I think a
concluding section explaining the details of Complexity of Jackiw-Teitelboim gravity [95] would be
a very good extension. Similarly a section on Bulk Entanglement Gravity [8] to finish off chapter
10 would go a long way towards consistency of depth.

Original Work

The goal of Part II: Original Work was to find interesting results that exist nowhere else in the
literature. The problem that was approached was the extension of section 8.4 to third order
in perturbations. What we concluded was that the third order analysis may as expected probe
requirements on the operator product expansion imposed by holography. In addition we found
that for primary scalars the conformal dimension of the operators becomes relevant, indicating
that we should consider quantum effects on the gravity side. Progress towards quantum corrected
variants of the Iyer-Wald formalism has been made very recently in [79].

To continue the analysis, one should write down the vector field that interpolates between
general and Hollands-Wald gauges, understand the field theory correlators for the A±,B±, D±-terms
in terms of symplectic forms in an auxiliary AdS space and carry out the necessary residue/branch
cut analysis as in section 8.4.1.

In conclusion we have made some progress on the third order problem, and both the gravitational
and CFT sides have some clear avenues of development. With a clearer understanding of the
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higher order conformal operators and quantum corrected Iyer-Wald formalism, verification of the
emergence of gravity from entanglement to third order in perturbations seems to be within reach.
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Appendix A

Miscellaneous Proofs and Calculations

A.1 Vanishing of equation (8.131)
Let us write out explicitly the proof that equation (8.131) vanishes:

χ(γ̇, V )Ã ∼ ε+−
(
∇[−γ̇+]αV

α −∇αγ̇α[+V−] +∇[+|γ̇α
αV|−]

)
= 1

2ε+−

(
���

���∇−γ̇++V
+ +
XXXXXX∇−γ̇+−V

+ −���
���XXXXXX∇+γ̇−+V

+ −∇+γ̇−−V
−

−∇+γ̇
+

+V− −
XXXXXX∇−γ̇−+V− +����

��XXXXXX∇+γ̇
+
−V+ +∇−γ̇−−V+

+∇+γ̇+
+V− +∇+γ̇−

+V− −���
���∇−γ̇+
+V+ −∇−γ̇−−V+

)

= 1
2ε+−

(
−���

���∇+γ̇−−V
−

−
XXXXXX∇+γ̇

+
+V− +����

��XXXXXX∇−γ̇−−V+

+XXXXXX∇+γ̇+
+V− +����

��∇+γ̇−
+V− −���

���XXXXXX∇−γ̇−−V+

)
= 0 .

A.2 Derivation of Null Singularities of Wightman Propagators
In section 8.4.2 we consider the null singularities of the propagator

K± ∼ lim
ε→0+

1(
−2rYB · Yb − 2

√
r2 − 1 cosh(s− tB ± iε)

)∆ .

For example, we may look for singularities in sB given s. This means we are looking to solve
rYB · Yb√
r2 − 1

+ cosh(s− tB) = 0 .

This is solved by tB = s− arccosh
(
−rYB Ẏb√
r2−1

)
. Defining the argument of the arccosh to be α, we use

that
arccosh(α) = ln

(
α±

√
α2 − 1

)
.
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A.3. Naive Third Order Perturbation of Relative Entropy

Note that we are close to the negative real axis in α, so in principle we may want to be careful
of branch cuts in the logarithm. This should not be an issue, as we will exponentiate α in all
applications. It now follows that the singularities are at

tB = s− ln
(
α±

√
α2 − 1

)
.

Notably this is not the same as [63], although our sign on the logarithmic term is necessary to
replicate their expansions.

A.3 Naive Third Order Perturbation of Relative Entropy

Here I present the naive approach to the computation of the logarithm to second order. While
the calculation itself is not soluble, it exhibits some of the symmetry noted in [107], so it remains
interesting. The second derivative of the logarithm of an operator, denoted ρ̈ has us compute

¨(ln ρ) =
∫ ∞

0
ds
∫ 1

0
dy
(

d
dεe
−(1−y)ρsdρ

dε e
−yρs + e−(1−y)ρsd2ρ

dε2 e
−yρs + e−(1−y)ρsdρ

dε
d
dεe
−yρs

)

=
∫ ∞

0
ds
∫ 1

0
dy
(
− (1− y)s

∫ 1

0
dze−(1−z)(1−y)ρsdρ

dε e
−z(1−y)ρsdρ

dε e
−yρs

+ e−(1−y)ρsd2ρ

dε2 e
−yρs

− ys
∫ 1

0
dze−(1−y)ρsdρ

dε e
−(1−z)yρsdρ

dε e
−zyρs

)
.

(A.1)

The zeroth order in ε term is read off to be

¨(ln ρ) =
∫ ∞

0
ds
∫ 1

0
dy
(
− (1− y)s

∫ 1

0
dze−(1−z)(1−y)ρ0sδρe−z(1−y)ρ0sδρe−yρ0s

+ 2e−(1−y)ρ0sδ2ρe−yρ0s

− ys
∫ 1

0
dze−(1−y)ρ0sδρe−(1−z)yρ0sδρe−zyρ0s

)
.

(A.2)

Evaluating Tr[2ρ̈ ˙(ln ρ)]

We now have integrals we wish to compute. This is simplified by picking a basis in which ρ0 is
diagonalized and writing the integrand in component form. Let us start with the term that requires
only two integrals:

Tr[2ρ̈ ˙(ln ρ)]
∣∣∣∣
ε=0

= 4
∫ ∞

0
ds
∫ 1

0
dyTr

[
δ2ρe−(1−y)ρ0sδρe−yρ0s

]
. (A.3)

By picking a basis in which ρ0 is diagonalized we can express the trace in terms of the eigenvalues
of ρ0, ρa as

(δ2ρ)bae−(1−y)ρas(δρ)abe−yρbs = ey(ρa−ρb)s−ρas(δ2ρ)ba(δρ)ab , (A.4)
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where sums over a and b are implied. For ρa = ρb the integration over y is trivial, while in the case
ρa 6= ρb it is elementary. We find that

Tr[2ρ̈ ˙(ln ρ)]
∣∣∣∣
ε=0

= 4
∫ ∞

0
ds
[ ∑
ρa=ρb

e−ρas(δ2ρ)ba(δρ)ab +
∑
ρa 6=ρb

e−ρas
1

(ρa − ρb)s
(
e(ρa−ρb)s − 1

)
(δ2ρ)ba(δρ)ab

]

= 4
∫ ∞

0
ds
[ ∑
ρa=ρb

e−ρas(δ2ρ)ba(δρ)ab +
∑
ρa 6=ρb

e−ρbs − e−ρas

(ρa − ρb)s
(δ2ρ)ba(δρ)ab

]
(A.5)

The first term is simple to integrate, while for the second we reuse equation (11.15):∫ ∞
0

ds
∑
ρa 6=ρb

e−ρbs − e−s − e−ρas + e−s

(ρa − ρb)s
(δ2ρ)ba(δρ)ab

=
∑
ρa 6=ρb

ln ρa − ln ρb
(ρa − ρb)

(δ2ρ)ba(δρ)ab .
(A.6)

And we see finally that

1
4Tr[2ρ̈

˙(ln ρ)] =
∑ 1

ρa
(δ2ρ)ba(δρ)ab +

∑
ρa 6=ρb

ln ρa − ln ρb
(ρa − ρb)

(δ2ρ)ba(δρ)ab . (A.7)

Finally, we put (A.7) on a form that is related to time-ordered correlators by using equation (8.67)

1
4

∫
ds e

isx
2π

1 + cosh(s) = x

2(e
x
2 − e−

x
2 )

, (A.8)

with x = ln
(
ρa
ρb

)
. The result is

Tr[2ρ̈ ˙(ln ρ)] = 2
∫ ∞
−

ds 1
1 + cosh(s)

1
√
ρaρb

(
ρa
ρb

) is
2π

(δ2ρ)ba(δρ)ab

= 2
∫ ∞
−∞

ds 1
1 + cosh(s)Tr

[
δ2ρρ

− 1
2 + is

2π
0 δρρ

− 1
2−

is
2π

0

]
,

(A.9)

which by substituting s → s ± iπ(1 − ε) and using cosh(s+ iπ) = − cosh(s) and cosh(s) − 1 =
2 sinh2(s/2) gives us

(+) : Tr[2ρ̈ ˙(ln ρ)] = −2
∫ ∞
−∞

ds 1
2 sinh2( s+iε2 )

Tr
[
ρ−1

0 ρ
is
2π
0 δρρ

− is
2π

0 δ2ρ

]
, (A.10)

(−) : Tr[2ρ̈ ˙(ln ρ)] = −2
∫ ∞
−∞

ds 1
2 sinh2( s−iε2 )

Tr
[
ρ−1

0 δ2ρρ
is
2π
0 δρρ

− is
2π

0

]
. (A.11)

Then, by introducing the modular Hamiltonian H ≡ − ln(ρ0) we see that depending on the choice
of sign we get two operator orderings of the correlation function between δρ(s/2π) ≡ e−

is
2πHδρe

is
2πH

and δ2ρ(0) evaluated in a thermal ensemble with respect to H.

Evaluating the second row of Tr[ρ̇ ¨(ln ρ)] in equation (A.2)

We will now turn to a second term with only two integrals to perform. We consider

Tr[ρ̇ ¨(ln ρ)] ⊃ 2
∫ ∞

0
ds
∫ 1

0
dyTr[δρe−(1−y)ρ0sδ2ρe−yρ0s] . (A.12)
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This is just 1
2 times equation (A.3) with δρ and δ2ρ exchanged, so we know how to write down the

correct result:

(+) : Tr[ρ̇ ¨(ln ρ)] ⊃ −
∫ ∞
−∞

ds 1
2 sinh2( s+iε2 )

Tr
[
ρ−1

0 ρ
− is

2π
0 δ2ρρ

is
2π
0 δρ

]
, (A.13)

(−) : Tr[ρ̇ ¨(ln ρ)] ⊃ −
∫ ∞
−∞

ds 1
2 sinh2( s−iε2 )

Tr
[
ρ−1

0 δρρ
− is

2π
0 δ2ρρ

is
2π
0

]
. (A.14)

By introducing the modular Hamiltonian H ≡ ln(ρ0) we realize that the essential difference to the
previous case is that δ2ρ(s/2π) ≡ e−

is
2πHδ2ρe

is
2πH is the operator that undergoes Lorentzian time

evolution by the modular Hamiltonian.

Evaluating the first row of Tr[ρ̇ ¨(ln ρ)] (equation (A.2))

We consider

Tr[ρ̇ ¨(ln ρ)] ⊃ −2
∫ ∞

0
ds
∫ 1

0
dy(1− y)s

∫ 1

0
dzTr[δρe−(1−z)(1−y)ρ0sδρe−z(1−y)ρ0sδρe−yρ0s] . (A.15)

Let us diagonalize ρ0, calling the eigenvalues ρa and passing to tensor notation

Tr[. . .] = δρabe
−(1−z)(1−y)ρbsδρbce

−z(1−y)ρcsδρcae
−yρas

= e−s(y(ρa−ρb)+zy(ρb−ρc)+z(ρc−ρb)+ρb)δρabδρ
b
cδρ

c
a

(A.16)

Beginning with the z integration, we find

−s
∫ 1

0
dzTr[. . .] = −se−ρbs

∑
ρb=ρc

e−sy(ρa−ρb)δρabδρ
b
cδρ

c
a

+ e−ρbs
∑
ρb 6=ρc

e−s(y(ρa−ρb)+(1−y)(ρc−ρb)) − e−sy(ρa−ρb)

(1− y)(ρc − ρb)
δρabδρ

b
cδρ

c
a .

(A.17)

We see that the factor of (1−y) cancels the one present in the integrand of (A.15) in the last term.
Let us now turn to the integration of these sums one at a time∫ 1

0
dy(1− y)[〈ρb = ρc〉] =

∑
ρa=ρb=ρc

1
2se
−ρbsδρabδρ

b
cδρ

c
a

+ e−ρbs
∑

ρa 6=ρb=ρc

e−(ρa−ρb)s − 1
ρa − ρb

δρabδρ
b
cδρ

c
a

− e−ρbs
∑

ρa 6=ρb=ρc

[ye−(ρa−ρb)ys

(ρa − ρb)

]1

0
+
[
e−(ρa−ρb)ys

s(ρa − ρb)2

]1

0

 δρabδρbcδρca .
(A.18)

The first term in the last row of equation (A.18) evaluates to 0 for x = 0 and cancels the e(ρa−ρb)

term of the preceding row for x = 1. Explicitly, we end up with (remembering that we have yet to
include the factor 2)

Tr[ρ̇ ¨(ln ρ)] ⊃
∫ ∞

0
ds

∑
ρa=ρb=ρc

se−ρbsδρabδρ
b
cδρ

c
a

− 2
∑

ρa 6=ρb=ρc

(
1
s

e−ρas − e−ρbs

(ρa − ρb)2 − e−ρbs

ρa − ρb

)
δρabδρ

b
cδρ

c
a .

(A.19)
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The first line cancels to a similar term coming from the third row of equation (A.2), so we ignore
it. The second row is evaluated by applying equation (11.15) plus elementary integration and we
have

Tr[ρ̇ ¨(ln ρ)] ⊃ −2
∑

ρa 6=ρb=ρc

(
ln ρb − ln ρa
(ρa − ρb)2 −

ρ−1
b

(ρa − ρb)

)
δρabδρ

b
cδρ

c
a . (A.20)

Having arrived at an algebraic expression, let us now consider the y integration in the case when
ρb 6= ρc:

1
2

∫ 1

0
dy(1− y)[〈ρb 6= ρc〉] =

∫ 1

0
dye−ρbs

∑
ρb 6=ρc

e−s(y(ρa−ρb)+(1−y)(ρc−ρb)) − e−sy(ρa−ρb)

(ρc − ρb)
δρabδρ

b
cδρ

c
a

=
∫ 1

0
dy

∑
ρb 6=ρc

e−s(y(ρa−ρc)+ρc) − e−s(y(ρa−ρb)+ρb)

(ρc − ρb)
δρabδρ

b
cδρ

c
a

=
∑

ρb 6=ρa=ρc

(
e−sρc

ρc − ρb
+ e−sρa − e−sρb
s(ρa − ρb)(ρc − ρb)

)
δρabδρ

b
cδρ

c
a

−
∑

ρa=ρb 6=ρc

(
e−sρa − e−sρc

s(ρa − ρc)(ρc − ρb)
+ e−sρb

ρc − ρb

)
δρabδρ

b
cδρ

c
a

+
∑

ρa 6=ρb 6=ρc

(
e−sρa − e−sρb

s(ρa − ρb)(ρc − ρb)
− e−sρa − e−sρc
s(ρa − ρc)(ρc − ρb)

)
δρabδρ

b
cδρ

c
a

(A.21)
We here have three distinct cases, with slightly different s integration. Note that we have no terms
that (naively) diverge faster than 1/s, so direct application of (11.15) will give all the algebraic
answers. We have after the s integration

Tr[ρ̇ ¨(ln ρ)] ⊃2
∑

ρb 6=ρa=ρc

(
ρ−1
c

ρc − ρb
+ ln ρb − ln ρa

(ρa − ρb)(ρc − ρb)

)
δρabδρ

b
cδρ

c
a

− 2
∑

ρa=ρb 6=ρc

(
ln ρc − ln ρa

(ρa − ρc)(ρc − ρb)
+ ρ−1

b

ρc − ρb

)
δρabδρ

b
cδρ

c
a

+ 2
∑

ρa 6=ρb 6=ρc

( ln ρb − ln ρa
(ρa − ρb)(ρc − ρb)

− ln ρc − ln ρa
(ρa − ρc)(ρc − ρb)

)
δρabδρ

b
cδρ

c
a .

(A.22)

This, together with equation (A.20) constitutes the nonzero terms of the first row of equation (A.2).

Evaluating the third row of Tr[ρ̇ ¨(ln ρ)] (equation (A.2))

We consider

Tr[ρ̇ ¨(ln ρ)] ⊃ −2
∫ ∞

0
ds
∫ 1

0
dy ys

∫ 1

0
dzTr[δρe−(1−y)ρ0sδρe−(1−z)yρ0sδρe−zyρ0s] . (A.23)

We pass to eigenvalues and tensor notation for the trace

Tr[. . .] = δρabe
−(1−y)ρbsδρbce

−(1−z)yρcsδρcae
−zyρas

= e−s(y(ρc−ρb)+yz(ρa−ρc)+ρb)δρabδρ
b
cδρ

c
a .

(A.24)
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We then perform the z integration, noting that only ρa = ρc needs to be treated as a special case.
In the following, we have suppressed the δρabδρbcδρca that should be present in every sum.

−ys
∫ 1

0
dzTr[. . .] = −yse−ρbs

[ ∑
ρa=ρc

e−sy(ρc−ρb) +
∑
ρa 6=ρc

e−sy(ρc−ρb) e
−sy(ρa−ρc) − 1
−sy(ρa − ρc)

]

= e−ρbs
[ ∑
ρa=ρc

−yse−y(ρc−ρb)s +
∑
ρa 6=ρc

e−sy(ρc−ρb) e
−sy(ρa−ρc) − 1

(ρa − ρc)

]
.

(A.25)

Let us begin with the y integration of the ρa = ρc term

2
∫ 1

0
dy[ρa = ρc] =

[ ∑
ρa=ρb=ρc

−se−ρbsδρabδρbcδρca

+ 2
∑

ρa=ρc 6=ρb

e−ρbs

[ye−y(ρc−ρb)s

ρc − ρb

]1

0
+
[
e−y(ρc−ρb)s

s(ρc − ρb)2

]1

0

 δρabδρbcδρca
]
.

(A.26)

Notably the ρa = ρb = ρc part of the integrand exactly cancels the corresponding term in equation
(A.19). We are left to integrate

Tr[ρ̇ ¨(ln ρ)] ⊃
∫ ∞

0
ds 2

∑
ρa=ρc 6=ρb

(
e−ρcs

ρc − ρb
+ e−ρcs − e−ρbs

s(ρc − ρb)2

)
δρabδρ

b
cδρ

c
a

= 2
∑

ρa=ρc 6=ρb

(
ρ−1
c

ρc − ρb
− ln ρc − ln ρb

(ρc − ρb)2

)
δρabδρ

b
cδρ

c
a .

(A.27)

Now we turn to the ρa 6= ρc term

2
∫ 1

0
dy[ρa 6= ρc] = 2

∫ 1

0
dye−ρbs

∑
ρa 6=ρc

e−sy(ρa−ρb) − e−sy(ρc−ρb)

(ρa − ρc)
δρabδρ

b
cδρ

c
a

= 2
∑

ρa=ρb 6=ρc

(
e−ρbs

ρa − ρc
+ e−ρcs − e−ρbs

s(ρa − ρc)(ρc − ρb)

)
δρabδρ

b
cδρ

c
a

− 2
∑

ρa 6=ρb=ρc

(
e−ρas − e−ρbs

(ρa − ρb)(ρa − ρc)
+ e−ρbs

ρa − ρc

)
δρabδρ

b
cδρ

c
a

+ 2
∑

ρa 6=ρb 6=ρc

(
e−ρcs − e−ρbs

s(ρa − ρc)(ρc − ρb)
− e−ρas − e−ρbs

(ρa − ρb)(ρa − ρc)

)
δρabδρ

b
cδρ

c
a .

(A.28)

By applying the usual identity from equation (11.15) evaluating the s integral is straightforward
and one finds

Tr[ρ̇ ¨(ln ρ)] ⊃ 2
∑

ρa=ρb 6=ρc

(
ρ−1
b

ρa − ρc
+ ln ρb − ln ρc

(ρa − ρc)(ρc − ρb)

)
δρabδρ

b
cδρ

c
a

− 2
∑

ρa 6=ρb=ρc

(
ln ρb − ln ρa

(ρa − ρb)(ρa − ρc)
+ ρ−1

b

ρa − ρc

)
δρabδρ

b
cδρ

c
a

+ 2
∑

ρa 6=ρb 6=ρc

( ln ρb − ln ρc
(ρa − ρc)(ρc − ρb)

− ln ρb − ln ρa
(ρa − ρb)(ρa − ρc)

)
δρabδρ

b
cδρ

c
a .

(A.29)

viii



Appendix A. Miscellaneous Proofs and Calculations

Collecting terms and going to correlation functions

Let us write out the first and third rows of Tr[ρ̇ ¨(ln ρ)] to zeroth order in epsilon in one place. Adding
together equations (A.20), (A.22), (A.27) and (A.29) we find no cancellations, and the end result
is

Tr[ρ̇ ¨(ln ρ)] ⊃=− 4
∑

ρa=ρb 6=ρc

(
ln ρa − ln ρc
(ρa − ρc)2 −

ρ−1
a

(ρa − ρc)

)
δρabδρ

b
cδρ

c
a

− 4
∑

ρa 6=ρb=ρc

(
ln ρb − ln ρa
(ρb − ρa)2 −

ρ−1
b

(ρb − ρa)

)
δρabδρ

b
cδρ

c
a

− 4
∑

ρa=ρc 6=ρb

(
ln ρc − ln ρb
(ρc − ρb)2 −

ρ−1
c

(ρc − ρb)

)
δρabδρ

b
cδρ

c
a

+ 2
∑

ρa 6=ρb 6=ρc

( ln ρa + ln ρb − 2 ln ρc
(ρa − ρc)(ρc − ρb)

+ ln ρb − ln ρa
ρa − ρb

( 1
ρc − ρb

+ 1
ρc − ρa

))
δρabδρ

b
cδρ

c
a ,

(A.30)
where we have used the equalities in the sums to make apparent a cyclic symmetry in the first
three terms. More specifically, if you let a→ b, b→ c and c =→ a the first row in (A.30) becomes
the second, the second becomes the third and the third becomes the first.

To bring this into the form of integrals of correlation functions one would like to make use of

1
2

∫
ds e

isx
2π

1 + cosh(s) = x

ex/2 − e−x/2
=
〈

ln
(
ρi
ρj

)〉
= √ρiρj

ln ρi − ln ρj
ρi − ρj

(A.31)

together with an identity of the form

1
ρi − ρj

=
∑
a

fa(ρi)gb(ρj) (A.32)

to return the expression to the form of a trace of linear operators. I am unable to find an identity
of the desired type, and I suspect that a better approach is that of [107] in which the (hidden)
symmetries of ¨(ln ρ) are used to find a result on the desired form.
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