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Abstract

It is hard and error-prone to prove that a given concurrent program has a given property. To
help develop such proofs, a modern implementation of dependent type theory, the proof checking
tool Agda [Nor09], is used. The methods are based on the semi-formal theory of the semantics
of concurrent programming from [OL82] (Owicki and Lamport, 1981);. The formalisation and
implementation in Agda is done with two different approaches, which we call Proof by Construction
and Proof by Control Flow. The first uses the dependent data types of Agda to create proofs in the
form of type elements. The second uses recursive functions to check proofs written down as a tree of
steps. With each method, how to prove liveness properties for concurrent programs is shown. For
safety properties, time constraints restricted the work to proofs for sequential programs. The Agda
implementations of these methods work well, but like formal and manually constructed proofs our
machine checked proofs are still long and tedious. The implementations have potential for further
development.

i



Sammandrag

Det är sv̊art och invecklat att bevisa att ett visst parallellt program har en viss egenskap. För att
underlätta skapandet av s̊adana bevis s̊a har vi utvecklat en modern metod, som är byggd p̊a type-
checking, med hjälp av bevisassistenten Agda. Denna implementation bygger p̊a en semi-formell
logisk grund som lades av Owicki och Lamport 1982, [OL82]. Tv̊a olika metoder för att formalisera
och implementera denna logiska grund programmerades i Agda. De kallas för ”Proof by Construc-
tion” respektive ”Proof by Control Flow”. Den senare använder sig av rekursiva funktioner för att
verifiera ett bevis med hjälp av generella regler för ett kontrollflöde. Den första utnyttjar Agdas
strikta typsystem och använder typkonstruktorer för att skapa hela bevis. B̊ada metoderna kan
visa livlighetsegenskaper för parallella program, medan bevis för säkerhetsegenskaper endast har
p̊abärjats och kan ännu bara bevisas för sekventiella program. Den utvecklade bevismetodeerna
i Agda fungerar bra, men precis som alla formella och maskinverifierade bevis är det l̊anga och
krävande. Det kan fungera som en grund för vidare utbyggnad.
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“There are two ways of constructing a software design: One way is to make it so simple that there
are obviously no deficiencies, and the other way is to make it so complicated that there are no
obvious deficiencies. The first method is far more difficult.”

C.A.R. Hoare
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Carl Söderpalm for taking the initiative, being the first student saying that the proposal of this
project was interesting, making this project possible.

iv



CONTENTS CONTENTS

Contents

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Concurrent Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2.1 Safety and Liveness Requirements . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Problem Description and Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Technical Background 3
2.1 Concurrenct Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Modelling Concurrent Programs . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 More Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.3 Reasoning by Counterexamples . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Agda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2.1 Interactive Construction using Agda . . . . . . . . . . . . . . . . . . . . . . 4

2.3 A Small Concurrent Programming Language (CPL) . . . . . . . . . . . . . . . . . 5
2.3.1 Examples of Nondeterminism . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3.2 Remainder of CPL Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.4 Linear Temporal Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4.1 Execution Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4.2 Extended LTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.5 Reasoning about Concurrent Programs . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5.1 A Basis for Reasoning about Concurrent Liveness . . . . . . . . . . . . . . . 8

2.6 Hoare Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6.1 Hoare Triple Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6.2 Application of Hoare Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Formalising Informal Arguments 11
3.1 Example of Excluded Formality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Result 12
4.1 Program and Logic Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.1.1 Proof by Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.1.2 Proof by Control Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.2 Sequential Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2.1 Implementation of Hoare Logic in Agda . . . . . . . . . . . . . . . . . . . . 15
4.2.2 Proof for Simple Sequential Program . . . . . . . . . . . . . . . . . . . . . . 16

4.3 Proof by Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3.1 Syntactic Satisfaction Relation . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3.2 Semantic Satisfaction Relation . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.4 Proof by Control Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4.1 Connecting the Representations - Actions and Triples . . . . . . . . . . . . 21
4.4.2 Translating a Program Into Triples . . . . . . . . . . . . . . . . . . . . . . . 22
4.4.3 Rule Set and Truths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.4.4 Constructing Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.4.5 Verifying the Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.4.6 Verifying Safety Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Discussion 25
5.1 Proof by Construction vs Proof by Control Flow . . . . . . . . . . . . . . . . . . . 25

5.1.1 Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.1.2 Similarities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.1.3 External Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2.1 Program Representation and Reasoning . . . . . . . . . . . . . . . . . . . . 25
5.2.2 Operational Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.3 Safety for Concurrent Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

v



CONTENTS CONTENTS

5.3.1 Mutual Exclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.3.2 Visual Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6 Future Work 27
6.1 Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.1.1 More Old Theory into Agda . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.1.2 Verifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.2 Proof Construction Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.2.1 Library of Subproofs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.2.2 Independent Development of the Rule Set . . . . . . . . . . . . . . . . . . . 27

6.3 Proof by Control Flow Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.3.1 Proof by Control Flow as a Teaching Tool . . . . . . . . . . . . . . . . . . . 27

6.4 Ongoing Work Based on Proof by Control Flow . . . . . . . . . . . . . . . . . . . . 28

7 Conclusion 29
7.1 Formal proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7.1.1 Formal proofs are long . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.2 LTL as a Basis for Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

References 31

A Agda Code 33
A.1 Hoare Triple Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
A.2 Proof of  -introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

B Proof by Control Flow Definitions 34
B.1 Assisting functions for ”translate” . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
B.2 Assisting Functions for ”proofCheck” . . . . . . . . . . . . . . . . . . . . . . . . . . 35
B.3 Definitions of Safety Verifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

B.3.1 Evaluation of Safety Properties . . . . . . . . . . . . . . . . . . . . . . . . . 36

vi



1 INTRODUCTION

1 Introduction

This report presents results on formalising methods to use Agda to prove safety and liveness
properties of Concurrent Programs.

1.1 Background

Computers are now ubiquitous in many safety-critical applications, for example embedded in ve-
hicular and medical systems. Other systems might not be safety-critical, but could still be mission-
critical: errors in hardware design, for example, can result in ruinously expensive recalls (hardware
cannot be patched like software). In all such systems, a whole range of formal verification (FV)
tools and techniques are now used to ensure design correctness [Har10, SSK15, Sel16, KGN+09].

Among such tools are model checkers and proof checkers. A model checker takes a program
p and a property φ, and says whether p satisfies φ (written p � φ). Also, if p fails φ, a model
checker will display a run (execution) of p where the failure shows up. Thus model checkers are
very useful to catch bugs during development. But they do not tell you why p � φ holds, if it
does. Such information, a proof, is useful not only to improve confidence in the design of p, but
also to give insight useful during further development or modification. Because such proofs are
long, delicate, and tedious, and also demand modelling and mathematical skills, it is very useful to
get them mechanically checked (or even partially mechanically developed). The idea of machine-
checked proofs has been widely explored, and proof checking programs have been available since
the 1970’s [GMW79]. The Agda [Nor09] proof checker is the product of many years of development
at Chalmers [Coq92], and very modern in approach. It is the tool used in this project, which is
about formal methods for proving properties of concurrent programs.

1.2 Concurrent Programs

Concurrent systems too are now ubiquitous: hotel and airline reservation systems and banking
systems both connect servers to large numbers of users acting independently and yet sharing
a database. It is obviously harder to coordinate and synchronise independent activities, and
to prevent interference between them, than to organise one sequential workflow. Among other
problems, concurrent systems are inherently nondeterministic—over a communication medium
shared between independent users, we cannot say who will speak first, and the answer may change
each time the program runs. Concurrent programs cannot therefore be debugged in the traditional
way, by re-running the program with breakpoints.

The way out is to look at all possible runs, either with a model checker or with a proof
checker. Agda has been only little used for concurrent systems [O’C16, DSNB16]. A predecessor
of Agda, ALF, was used in 1996 [AHP96] to not only prove a whole concurrent program correct,
but also to prove its implementation correct. It was pioneering work in its time, but [AHP96] was
not followed up because of illness of one of the authors. The present project is a fresh look at
concurrent programs in Agda. But our scope is more narrow than that of [AHP96]; we look only
at the properties of the concurrent program text, and do not consider data dependent behaviour or
implementation. It is also different in that we characterise the behaviour of our programs logically,
as in [Hoa69, OL82], while [AHP96] uses operational semantics as in [Mil89, Pra95].

1.2.1 Safety and Liveness Requirements

A classic example of a safety requirement is that a railway signalling system should prevent colli-
sions, while the liveness requirement is that each train should be allowed, eventually, to proceed.
Turning all signals red meets the safety requirement but breaks liveness.

We show how to prove liveness properties for concurrent programs. For safety properties, we
only had the time to do proofs for sequential programs. We could only do a few toy proofs, but
are able to say clearly what the next steps are, and how they can be carried out.

1



1 INTRODUCTION 1.3 Problem Description and Purpose

1.3 Problem Description and Purpose

As already mentioned, proving concurrent safety and liveness properties is nothing new, and ma-
chine checking these properties is also well established. The purpose of the thesis is to present
methods of how to formally prove properties of concurrent programs using Agda, a less explored
subject.

The main work has been to formalise existing methods and implement them in Agda. Our
main source is [OL82], from whom we borrow CPL, the toy programming language we use, and
ELTL, in which we formulate program properties. ELTL is an extension of Linear Temporal Logic
(LTL), itself an extension of propositional calculus.

The results presented consist of several methods, all used for formal verification. The meth-
ods have been divided into two categories abbreviated as: Proof by Control Flow and Proof by
Construction. The first is used to prove concurrent liveness properties and the latter to prove
sequential safety as well as concurrent liveness.

2



2 TECHNICAL BACKGROUND

2 Technical Background

This section covers the prerequisites for understanding the results presented. It explains the tools
used and some of the most important theoretical concepts of historic work in the area. To fully
comprehend the content the reader is expected to have quintessential knowledge of concurrent
programs. The most essential being how to reason about termination and contention. This cor-
responds to an introductory course to Concurrent Program on university level. For an in depth
explanation see for example [BA06]. In addition intermediate knowledge of propositional logic and
proving by natural deduction is assumed, see for example [HR04].

2.1 Concurrenct Programs

Concurrent programs have been analysed since the 1960’s—a very few example papers are: [Dij65,
Hoa69, Lam80, OL82, Lam84, LS84, Mil89, Sti91, MPW92, BA06]. Below is a theoretical model
that captures their essential aspects and permits reasoning about them.

2.1.1 Modelling Concurrent Programs

Concurrent programs consist of processes communicating by messages or via shared variables.
Think of a process as an independent computing agent, which, once spawned, cycles between
running and waiting states until it terminates.

A process waits, like a train waiting for a green signal, for a specific event or condition, which
can only be triggered by another, running, process. So a system is deadlocked if all process are
waiting; no one can release any of the waiting processes.

Processes run at an unknown and possibly varying speeds—it could happen that a “running”
process is not scheduled onto a CPU. Such a process is not waiting, but is not progressing either.

What happens if a process is never scheduled when it can run? To rule out such silly cases, we
usually impose a fairness requirement on the system scheduler, which says that a process that is
continually ready to run will actually eventually run.

2.1.2 More Terminology

Safety of railway signalling can be ensured by mutual exclusion (”mutex”), which says, here, that
at most one train may use any given section of track. The sections of program code which use the
mutex are called critical sections.

2.1.3 Reasoning by Counterexamples

Because of the indeterminate speeds, and because contention for shared resources (variables or
communication media) is resolved arbitrarily, concurrent programs are inherently nondeterministic,
nothing can be said about which process will execute first. Hence, a concurrent program may
show different behaviour when re-run, traditional debugging fails, and the general behaviour of all
possible runs of a program must be considered.

To show that a safety condition has been failed, a counterexample is merely a single program
state where the condition does not hold. But the counterexample that shows the failure of a
liveness (or progress) requirement is an execution path, often a loop, where a particular process is
never released from its waiting state.

2.2 Agda

In contrast to conventional programming languages Agda programs are seldom run. Instead it is
often enough to make sure that a program type checks. This is done by loading a program, which
means that Agda checks the type of all statements and declarations.

Presented in figure 1 is some Agda code. The data type Nat represents the set of natural
numbers. The elements of this set are either zero or a successor of another natural number. This
is encoded in Agda by the constructors zero and suc. By recursively calling the suc constructor

3



2 TECHNICAL BACKGROUND 2.2 Agda

1 data Nat : Set where
2 zero : Nat
3 suc : Nat -> Nat

Figure 1: Small Agda data type representing the natural numbers, here defined as either zero or
a successor of another natural number. This is represented in Agda by the constructors zero and
suc.

we can create new natural numbers, e.g. 1 is written as suc (zero). The value is therefore defined
as the combination of constructors used to construct it.

Thus Nat is both a type and a set; we do not distinguish between the two in Agda. Further,
we can only claim that an object is an element of Nat by producing it using the constructors zero
and suc. Thus, claims (or propositions) too are identified with sets or types.

A clearer application of this idea of propositions as sets can be seen in figure 2. Here a new
type is declared, the set even, which takes a natural number as a parameter and returns a proof
that it is even. Its constructors ZERO and STEP say respectively that zero is even, and that if n is
even, then so is n+2. So the proof that zero even is simply ZERO, but to show 4 even, we need
STEP (2 even). That is, to prove that 4 is even, we need first to prove that 2 is even.

To clarify the notion of propositions as sets, note that the set (3 even) is empty (we cannot
construct any elements of it), but the set (4 even) has the element STEP (2 even). Thus a
proposition is true if we can construct an element of its set representation.

STEP also provides our first example of a dependent type. The type returned by the constructor
STEP depends on the actual type of the first parameter. Note also that {n : Nat} specifies that n
must be a of the type Nat. This has to be explicitly declared as Agda would otherwise complain
that the type of n is not known.

Finally, since types are seen as propositions, with proofs as elements, it follows that constructors
in Agda can be treated as rules in a proof system.

1 data _even : Nat -> Set where
2 ZERO : zero even
3 STEP : {n : Nat} -> n even -> suc (suc n) even

Figure 2: A data type representing the set of even numbers. They are defined as the base case
zero, ZERO in Agda, or another even number plus two, STEP. These constructors can be considered
rules, compare to natural deduction. Note that on line three is an example of a dependent type.

As a last step we might want to use these types to prove that 4 is even. The proof for this can
be seen implemented in figure 3. The proof is the application of the constructors ZERO and STEP,
this can be seen on line two. We can express this in text as: 0 is even, (0 + 2) is even, ((0 + 2) + 2)
is even, i.e 4 is even. Compare to natural deduction style of proving by applying rules.

1 foureven : suc (suc (suc (suc zero ))) even
2 foureven = STEP (STEP ZERO)

Figure 3: A function in Agda that represents a theorem proving that four is even. This is done by
calling the constructors of the even type. This is analogous to using rules.

2.2.1 Interactive Construction using Agda

In addition to using Agda [Wik17] as a type checking language there exists interactive ways of
using it. This can at the moment be done using either Emacs[GNU] or Atom[Ato].

One example of this is using something called holes. If a ? is typed as a placeholder for an
expression, Agda will replace it with {! !}0, when loading. This is called a hole. See figure 4
where the code in the editor can be seen before and after loading.

4



2 TECHNICAL BACKGROUND 2.3 A Small Concurrent Programming Language (CPL)

1 fun : (a : A) -> (b : B) -> C
2 fun a b = ?

1 fun : (a : A) -> (b : B) -> C
2 fun a b = {! !}0

Figure 4: Demonstration of how Agda treats ? when loading. As can be seen on the bottom two
lines it is replaced by what is called a hole. Note that the actual text in the editor changes upon
loading.

After generating a hole Agda will treat the hole as a goal, something to be filled in later with the
data type that should go in the hole. It is then possible to place the cursor in the hole and execute
a selection of commands. Two of them are case split and auto fill. With case split it is possible to
enter one of the input variables in the hole, and then have Agda auto generate all cases for that
type. With auto fill Agda will try to find constructors that can construct the desired type the hole
should have.

Apart from using holes there exists a normal form. This is a command that when executed lets
the user input commands in a dialog and then have Agda evaluate them. One can for example call
functions specified and check the value of variables.

2.3 A Small Concurrent Programming Language (CPL)

We introduce CPL first through examples.

2.3.1 Examples of Nondeterminism

Say we have a process b and a process c, as in the program represented in figure 5. Both processes
tries to assign a value to x and then terminates. If we run both processes, b and c, simultaneously,
what will x:s value be after termination? The answer is 5 or 6 depending on whether b or c
is executed last. Even though the program is rather simple it illustrates the nondeterministic
properties of concurrent programs.

integer x;
a: cobegin

b: x := 5;
[]
c: x := 6;

coend

Figure 5: A simple program consisting of two processes, b and c, both which assign a value to the
global variable x. Depending on the execution order of the processes the final value of x can be
either 5 or 6.

The next example program can be seen in figure 6. The program just consists of two processes
who each tries to increment the value of x by 1. We may think that the final value of x would be
2, always. But if the processes executes in the order

b→ d→ c→ e ...

the final value of x is 1. If we think of b, c and d, e as being critical sections, we see that the
program does not ensure mutual exclusion. Both processes can enter their critical sections at the
same time. For further examples of principles and problems of concurrent programs see [BA06].

2.3.2 Remainder of CPL Syntax

Note that variable declarations are made at the beginning of the program, and that each statement
of code is labeled to simplify referencing in proofs. See figure 7 for a larger example program in
the CPL.
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integer x, temp1 , temp2;
a: cobegin

b: temp1 := x;
c: x := temp + 1;

[]
d: temp2 := x;
e: x := temp2 + 1;
coend

Figure 6: A program consisting of two processes and a global variable x. At a first glance it
seems like the program should increment the value of x twice resulting in 2 but depending on the
execution order the final value of x can vary.

integer x, y;
a: < x := 0 >;
b: cobegin

c: < y := 0 >;
d: cobegin

e: < y := 2*y >; [] f: < y := y+3 >;
coend

[]
g: while < y = 0 > do h: < x := x+1 >;

coend;
i: < x := 2*y >;

Figure 7: A concurrent program demonstrating CPL.

As the smaller examples already showed, the parallel processes in a cobegin/coend statement
are separated by a []. Finally, note that < and > enclose atomic actions, which execute as if
the whole enclosed sequence were a single action. All assignments throughout this report are
considered atomic.

2.4 Linear Temporal Logic

Linear Temporal Logic (LTL) is an extension of propositional logic. It allows us to express logic
regarding future events. This is done by introducing two new operators: � and ♦, always and
eventually. The definition for the two operators is as follows,

�ψ : ψ holds now and forever

♦ψ : ψ holds now or sometime in the future

where ψ is a proposition in propositional logic or LTL, called an immediate assertion.

2.4.1 Execution Paths

To be able to interpret this correctly for a computer program we have to be specific about what
we mean by always and eventually. For a concurrent program we can define an execution path
to be a string of executions by different processes. Because of the nondeterminism of concurrent
programs we may possibly have an infinite number of execution paths.

We can now define the operators � and ♦ using paths instead as

�ψ : ψ holds at the current state and on all subsequent paths.

♦ψ : ψ holds at the current state or at some state along all subsequent paths.

The two introduced operators are actually dual and can be related to each other by equation (1).
The interpretation is straight forward: if ψ does not hold forever it must eventually be that ψ does
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Figure 8: A tree representing possible execution paths of a concurrent program. The tree only
shows some paths subsequent to s0. ψ has to hold for all states in the tree for �ψ to hold at s0.

not hold.

¬�ψ ≡ ♦¬ψ (1)

This can be compared with the duality of ∧ and ∨, which is quite similar in nature.

2.4.2 Extended LTL

When proving statements regarding programs in the CPL, [OL82] use an extension of LTL (ELTL).
This version adds the propositions

• at a

• in a

• after a

Here a is a program label. The proposition at a holds for all states where control is at the beginning
of a. in a is true at a and at any statement in a block contained by a and after a is at the next
sequential statement that is not in a. For more formal definitions of the extensions, see [OL82].
The point of ELTL is that it permits purely logical reasoning without referring to a computation
stepping through the program.

Another common notation is a b, read leads to, defined as �(a→ ♦b). This means that any
state of the computation that satisfies a will lead after zero or more steps to a state that satisfies
b.

2.5 Reasoning about Concurrent Programs

integer x; boolean p;
a: cobegin

b: p:=false;
[]
c: while p do

d: x:=x+1;
coend;

Figure 9: A terminating program with infinitely many possible execution paths.

The first example requires the use of many types of rules to prove termination. It is shown in
9. Proving termination for this program informally, yet thoroughly, is done in the proof lattice in
figure 10, where the nodes are labelled by assertions, and the arrows are “leads to” connectives.
Branching happens when one assertion or another is shown true. The proof can be explained with
the following steps:

7
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at b ∧ at c

after b ∧ ¬p

�(after b ∧ ¬p)

in c

at d

at c

after c

after c ∧ after b

�(after b ∧ ¬p)

Figure 10: A proof lattice for proving termination of the program in 9. Each node is the immediate
assertion that is true after applying a hypothetical satisfaction rule from the former node. The
arrows are the leads to operator, and branching is done when the rule proves one assertion or
another being true.

1. The assertion at b will by the fairness assumption mean that b will eventually execute, proving
that after b ∧¬p will eventually be true.

2. Looking at the program reveals that there are no other assignments to p, which will therefore
remain false.

3. We assume that expression evaluations terminate, e.g. p will evaluate to true or false in finite
time. This assumption ensures while statements terminates if executed, and by fairness it
will eventually execute. Executing c has two possible outcomes either it enters the loop or
continues after it. at c in c ∨ after c.

4. in c means by definition either at d or at c

5. at d will eventually execute by fairness and proves at c

6. The step from at c to after c is true under the assertion of �¬p. The � is essential since it
rules out interference. An assertion of a program eventually being at the boolean evaluation
of the while loop with the boolean set to false does not imply anything, since another process
might set it to true before the evaluation gets executed.

2.5.1 A Basis for Reasoning about Concurrent Liveness

From [OL82], here is a set of rules for reasoning about liveness properties. An example rule is
presented below in equation 2.

Atomic Assignment Axiom
a : 〈x := f〉

at a after a
aaa (2)

The rule states that any atomic assignment will progress. Fairness is incorporated into this rule
(if the process that executes the assignment is never scheduled, progress cannot happen).

8



2 TECHNICAL BACKGROUND 2.6 Hoare Logic

[OL82] does not deal with how to show safety properties, but these properties are sometimes
needed to show liveness. These are instead informally motivated. In [Lam80], the notation for
concurrent safety is used and looks like this:

{P}Q {R} (3)

This notation is very similar to Hoare triples [Hoa69], but the meaning here is subtly different:
given �(in Q ⊃ P ) we will have R, when Q terminates.

The graphical proof method using proof lattices, already introduced, is based upon splitting
cases and a rule:

P  (R1 ∨R2), R1  S, R2  S

P  S
(4)

By writing graphs with lines that split at nodes we emulate the ∨-cases. By then showing that all
paths lead to the same property S we conclude that what what was true at the node leads to S.

2.6 Hoare Logic

Hoare Logic, introduced in [Hoa69], is a logical framework for reasoning about sequential programs.
It is used mostly to establish safety properties for sequential programs.

The basic idea is to have triples in the form (5).

P{Q}R (5)

These are called Hoare triples. P and R are logical propositions and Q is a sequential program.
P and R are called pre- and postconditions respectively. The meaning is that if we have P upon
execution of Q we have R after. We can use these triples to reason logically about computer
programs, using the rules below.

2.6.1 Hoare Triple Rules

There is one axiom D0, and 3 basic rules D1 - D3. For a more in-depth explanation of the rule
set, see [Hoa69]. But we show the basics here.

The axioms can be seen in (6) - (8).

D0 Axiom of Assignment:

P (a) {x := a}P (x)
D0 (6)

The axiom says that any proposition P that holds for a will also hold for x after assigning x := a.
Many find this rule strangely “backwards” at first sight. That is because our assignment notation
is backward. The information flow of the assignment is from a to x; hence the rule.

Another rule is the rule of sequential composition, presented in (7).

D2 Rule of Composition

P {Q1}R1, R1 {Q2}R
P {Q1;Q2}R

D2 (7)

The rule of composition states that given a program Q1 whose postcondition is the precondition of
Q2, the two programs can be sequentially composed. The conclusion of the rule makes no mention
of the intermediate condition R1.

D3 Rule of Iteration
(P ∧B) {S}P

P {while B do S}¬B ∧ P
D3 (8)

Here, the proposition P is called the invariant of the loop. As the premise of the rule says, if P
holds before S runs, it also holds afterwards. So the iteration rule seems to say that nothing much
happens with a loop, except that the condition B will not hold after the loop. An example will
dispel this misconception, and illustrate the power of invariants.
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2.6.2 Application of Hoare Logic

As an application of Hoare Logic consider the program in figure 11. This program is taken from
[Hoa69] and finds the quotient and remainder of x/y.

integer x, y, r, q;
a: r := x;
b: q := 0;
c: while y <= r do

d: r := r-y;
e: q := q+1

Figure 11: Simple sequential program that finds the quotient and remainder of x
y .

Intuitively it is easily verified that after termination r < y and that we can recover x by the
formula x = r + y × q. Indeed, the latter is an invariant for the loop. It holds at c; and every
iteration of the loop preserves it. Simply putting r < y into the invariant now gives the result.

Following the proof in [Hoa69], we prove this formally using the Hoare rules, as shown in table
1. The programs in the Hoare Triples refer to the labels in figure 11. Lines 4 and 10 of the proof

Proof Steps Rule

1 true ⊃ x = x+ y × 0 Basic arithmetic

2 (x = x+ y × 0) {a} (x = x+ y × 0) D0

3 (x = x+ y × 0) {b} (x = x+ y × q) D0

4 true {a} (x = r + y × 0) D1(1, 2)

5 true {a; b} (x = r + y × q) D2(4, 3)

6 (x = r + y × q) ∧ (y ≤ r) ⊃ x = (r − y) + y × (1 + q) Basic arithmetic

7 x = (r − y) + y × (1 + q) {d}x = r + y × (1 + q) D0

8 x = r + y × (1 + q) {e}x = r + y × q D0

9 x = (r − y) + y × (1 + q) {d; e}x = r + y × q D2(7, 8)

10 (x = r + y × q) ∧ (y ≤ r) {d; e}x = r + y × q D1(6, 9)

11 x = r + y × q {c}¬(y ≤ r) ∧ (x = r + y × q) D3(10)

12 true {a; b; c}¬(y ≤ r) ∧ (x = r + y × q) D2(5, 11)

Table 1: A formal proof that the sequential program in figure 11 satisfies the properties r < y and
x = r + y × q after termination.

also used the formal logical rules in equation 9

D1 Rules of Consequence:

P {Q}R, R ⊃ S
P {Q}S

D1
P {Q}R, S ⊃ P

S {Q}R
D1 (9)
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3 Formalising Informal Arguments

The Owicki-Lamport formalism [OL82], OL, is the basis for our Agda proof implementations.
Though very convenient for human reasoning, several applications in OL are not formal enough
for type checking. Much of our work therefore consisted of formalising the OL proof methods.

3.1 Example of Excluded Formality

To illustrate the problem of formality consider the program in figure 12. Say that for the program
the safety property �¬p holds. We want to apply the formal While Exit Rule (WER), see
equation (10), in order to prove the liveness property

at b after b.

The problem is that given (at b∧�¬p), direct application of WER is not allowed. The rule clearly
states that �(at b ⊃ ¬p) is needed. In a completely formal system we need several rules to first
show that (at w ∧�(at w ⊃ ¬B)) also holds. Then we can apply (10).

While Exit Rule

(at w ∧�(at w ⊃ ¬B)) after w (10)

Intuitively easy steps like these are often left out. Note that in [OL82] only deals with liveness.
All safety properties used are assumed or proven by inspection of program code, i.e informally.

In contrast to the semi formal proofs of [OL82], rules of Natural Deduction and Hoare Logic
are easily used in completely formal proofs. Because of this they are more easily implemented in
Agda.

boolean p;
a: cobegin

b: while p do c: ...
[]

d: ...

Figure 12: An incomplete program symbolising something arbitrary running concurrently with a
while loop.
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4 Result

This section presents the methods developed for proving safety and liveness properties of concur-
rent programs. The actual result lies in the methods themselves and not the exact implementations
presented here. Two conceptually and practically different methods are described, and are abbrevi-
ated by Proof by Construction and Proof by Control Flow. Both methods use implementations of
CPL and ELTL in Agda though slightly different. These are presented in section 4.1. In addition
to this a direct implementation of Hoare Logic in Agda is presented in section 4.2, which has an
approach very similar to Proof by Construction. In section 4.3 Proof by Construction is presented
and in section 4.4 Proof by Control Flow.

4.1 Program and Logic Representation

This section presents two implementations of CPL and ELTL in Agda. Both represent the same
program language and logic but differ slightly practically.

4.1.1 Proof by Construction

This the representaton used in the Proof by Construction method.

Program Representation A CPL program is represented in Agda by the type Statement.
Conceptually a statement is a piece of code in CPL that does something, for example a while
statement or assigning a value. In figure 13 this data type and its constructors are presented.

1 data Statement : Set where
2 assignN : Label -> NVar -> NExpr -> Statement
3 assignB : Label -> BVar -> BExpr -> Statement
4 composition : Statement -> Statement -> Statement
5 while : Label -> BExpr -> Statement -> Statement
6 cobegin : Label -> Statement -> Statement -> Statement

Figure 13: The type Statement which represents a CPL program.

A small declaration of a computer program using the Statement type can be seen in figure 14.
This is the same program as presented in 9.

1 a = l zero
2 b = l (suc zero)
3 c = l (suc (suc zero))
4 d = l (suc (suc (suc zero )))
5 e = l (suc (suc (suc (suc zero ))))
6
7 p = bvar zero
8 x = nvar zero
9

10 prog = cobegin a
11 (assignB b p (constB false))
12 (while c (rvarB p)
13 (assignN d x ((rvarN x) N+ (constN (suc zero )))))

Figure 14: The type Statement which represents a CPL program.

Among the arguments to the constructor are also expressions and variables, denoted by NExpr,
BExpr, BVar and Nvar. Part of the NExpr type can be seen in figure 15. The constructors represent
different expressions that evaluate to a NExpr; the same goes for the boolean expressions. Note
that the constructors represent natural expressions such as plus and minus as well as evaluating a
constant and a variable, constN and rvarN. The variables are merely a wrapper type for explicit
use of variables.
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1 data NExpr : Set where
2 _N+_ : NExpr -> NExpr -> NExpr
3 _N-_ : NExpr -> NExpr -> NExpr
4 _N*_ : NExpr -> NExpr -> NExpr
5 constN : N -> NExpr
6 rvarN : NVar -> NExpr

Figure 15: The type representing expressions evaluating to natural numbers.

Logic Representation The data type Props in figure 16 is a representation of the ELTL propo-
sitions in Agda. The constructors are mostly direct implementations of ELTL syntax with some
exceptions. var for example allows reasoning about boolean variables as Props.

1 data Props : Set where
2 patom : N -> Props
3 var : BVar -> Props
4 _<=>_ : Props -> Props -> Props
5 at inside after : Label -> Props
6 _˜>_ : Props -> Props -> Props

Figure 16: A type in Agda representing ELTL formulae

As an example we can express the formula p  q ∧ r, where p, q and r are propositional atoms.
This can be seen in figure 17.

1 p = patom zero
2 r = patom (suc zero)
3 q = patom (suc (suc zero))
4 formula = p ˜> (q ˆ r)

Figure 17: An example of how to declare ELTL formulae using the Props type.

4.1.2 Proof by Control Flow

The Proof by Control Flow uses a representation of ELTL and CPL that differs from the one used
in Proof by Construction. It is briefly presented here.

Program Representation The representation for the Proof by Control Flow method is very
similar to the Proof by Construction representation. The difference is that the data type Statement
has been divided into two data types, one also called Stm (short for statement) and one called Seg
(short for segment). These data types are defined in figure 18. Note that Stm constructs the actual
assignments and Seg includes the constructors for building a program with labels. We separate
statements from segments in order to avoid having to reason about actual assignment when talking
about control being at a certain location in the program. The reasoning about whole blocks of
code, i.e concatenated segments, are called blocks.
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1 data Stm : Set where
2 <_:=n_> : NVar -> N -> Stm
3 <_:=b_> : BVar -> ExpB -> Stm
4
5 data Seg : Set where
6 seg : Label -> Stm -> Seg
7 block : Label -> List Seg -> Seg
8 par : Label -> List Seg -> Seg
9 while if : Label -> ExpB -> Seg -> Seg

Figure 18: The data types for statements and segments

As an example, the program in figure 9 using this representation can be seen in figure 19.

1 program = prog
2 (block (s 0)
3 (
4 seg (s 1) < vB "x" :=b bool true >::
5 par (s 2)
6 (
7 seg (s 3) < vB "x" :=b bool false >::
8 while (s 4) (bVar (vB "x"))
9 (

10 seg (s 3) < vN "y" :=n nat 1 >::
11 )::
12 []
13 )::
14 []
15 )
16 )

Figure 19: The representation of the program in figure 9 for the implementation in Proof by
Control Flow.

Logic Representation Since there are differences in the implementations of CPL, naturally
there will be differences in the implementation of ELTL as well. The data type for Proof by
Control Flow’s implementation of ELTL, simply called LTL, can be seen in figure 20.

1 data LTL : Set where
2 _ˆ’_ _v’_ : LTL -> LTL -> LTL
3 _=>_ : LTL -> LTL -> LTL
4 _˜>_ : LTL -> LTL -> LTL
5 at in after : Label -> LTL
6 _==n_ : NVar -> Nat -> LTL
7 _==b_ : BVar -> BVar -> LTL
8 isTrue : BVar -> LTL

Figure 20: The definition of the type LTL in the implementation Proof by Control Flow with all
its constructors.
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4.2 Sequential Safety

A convenient basis for reasoning about sequential safety properties is Hoare Logic as discussed in
2.6. In this section we show how this has been encoded in Agda and how it can be used to prove
sequential safety properties. For simplicity’s sake the Label type used in the program structure
has been left out; it is not needed for the Hoare Logic rules used.

4.2.1 Implementation of Hoare Logic in Agda

To represent Hoare Logic in Agda the Hoare triple has been implemented as a data type. The
constructors to this type are the Hoare Rules discussed in section 2.6. In figure 21 the declaration
of the Hoare triple data type can be seen.

1 data _[_]_ : Props -> Statement -> Props -> Set where

Figure 21: The declaration of the data type representing a Hoare Triple in Agda.

An instance of this type has the same meaning as the Hoare Triple P {Q}R. The pre- and
postconditions are LTL formulae and the program here is represented by the data type used for
the program representations in the Proof by Construction.

To reason about Hoare triples, we need the associated rules. We saw earlier that constructors
of data types in Agda can be seen as rules. When applying rules we create new Hoare triples; by
chaining the rules together by calling the different constructors we create proofs that these triples
hold. Some of the constructors are presented below.

The Rules The first rule of Hoare Logic, axiom of assignment D0, can be seen as a constructor
to a dependent type in figure 22. Note that the rule implemented here only deals with assignment
of natural numbers, as denoted by the n in D0-n. The constructor takes three arguments: an LTL
formula p, a variable n and a natural number expression e. The constructor then returns a type
which states that: with the precondition p, the postcondition p with all occurrences of e replaced
by n will hold after assignment of e to n. The only special remark of this data type is the function
replace p e n used in the post condition on line 5. This function replaces all occurrences of e
with n in p. A further explanation of this function is presented in section 4.2.1.

1 D0-n : (p : Props) ->
2 (n : NVar) ->
3 (e : NExpr) ->
4 --------------
5 p [ assignN n e ] (replacePN p e n)

Figure 22: A constructor to the Hoare Triple data type representing the Axiom of Assignment.

Another rule, the rule of composition D2, is presented in figure 23. This implementation is
very straightforward. The constructor takes two other elements of the Hoare Triple type where
the post condition of the first matches the precondition of the second. In accordance with the
associated Hoare Triple rule the constructor returns a new Hoare Triple where the program is the
composition of q1 and q2.

1 D2 : {p r1 r : Props} -> {q1 q2 : Statement} ->
2 p [ q1 ] r1 ->
3 r1 [ q2 ] r ->
4 --------------
5 p [ composition q1 q2 ] r

Figure 23: The Rule of Composition implemented as a constructor to the Hoare Triple type.

For a full set of the rules and the entire Hoare Triple data type and module see Appendix A.1
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Replace Functions In order for the Axiom of Assignment to be encoded we have implemented
functions that replace the occurrences of expressions in LTL formulae. These functions recursively
replace these expressions. In figure 24 the definitions of the functions can be seen.

1 replaceEqualN : NExpr -> N -> N -> NVar -> NExpr
2 replaceNN : NExpr -> NExpr -> NVar -> NExpr
3 replaceBN : BExpr -> NExpr -> NVar -> BExpr
4 replacePN : Props -> NExpr -> NVar -> Props

Figure 24: These are the replace functions used in the Hoare Triple data type.

The different functions replace expressions in different types. Because these types are nested
and some depend on other the different functions call each other. For example if a NExpr is found
in a Props the replaceBN function will be called.

4.2.2 Proof for Simple Sequential Program

As an example of the application of Hoare Triples consider the small sequential program of figure
25 [Hoa69]. This program finds the quotient, q, and remainder, r, of x/y. Inspection of the code
verifies that upon termination

r < y (11)

holds. From arithmetics it is known that the nominator x of x/y can be recovered from the quotient
and remainder by the formula

x = r + yq. (12)

Expressed in Hoare Triples these safety properties are

true {Q} y > r

true {Q} x = r + yq

The formal proof of these properties presented by Hoare in [Hoa69], is done in Agda using the
implemented rules. Arithmetic parts of the proof are considered as assumptions. Steps 1–5 in
the formal proof can be seen in figure 26. Included are also variable declarations to simplify the
arguments.

The first step is an arithmetic assumption, namely that x = x+ y · 0 On line 8 we can see that
the constructor D0-n has been called. The arguments are the previous assumption, the expression
r and variable x. On line 9 we see a similar procedure. Then rule D1-b is used to change the
precondition so that we then can apply D2 to step 4 and 3. So far we have created the Hoare Triple
of step 5 in the formal proof.

The remainder of the proof is done in a similar manner to finally arrive at step 12 and our
sought after Hoare Triple. Observe that the applications of the rules are identical to their formal
textual counterpart.

integer x, y, r, q;
a: r := x;
b: q := 0;
c: while y <= r do

d: r := r-y;
e: q := q+1

Figure 25: An example program in CPL calculating the quotient and remainder of x
y .
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1 -- Variables and constants
2 x = (nvar N0)
3 X = rvarN (nvar N0)
4 n0 = constN zero
5 n1 = constN (s zero)
6
7 -- Proof
8 L1 = axiom (true -> (beval (static X N= (X N+ (Y N* n0)))))
9 L2 = D0-n (beval (static X N= (X N+ (Y N* n0)))) r X

10 L3 = D0-n (beval (static X N= (R N+ (Y N* n0)))) q n0
11 L4 = D1-b L1 L2
12 L5 = D2 L4 L3

Figure 26: A proof of the values of the variables in the program 25 using an implementation of
Hoare Logic in Agda. Step 1-5 can be found on lines 8-12.
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4.3 Proof by Construction

As an application and explanation of Proof by Construction we consider the previously discussed
program in figure 9. A proof that this program terminates was presented in the form of a lattice
in figure 10. In this section we will show how Proof by Construction can be used to prove the first
step in that lattice; which is shown in equation (13).

at b ∧ at c after b ∧ ¬p (13)

To show this we formally express that the program satisfies the proposition

at b (after b ∧ ¬p). (14)

As discussed this follows from the Atomic Assignment Rule and we express this in Agda. We
also show that

at b (after b ∧ ¬p) ` (at b ∧ at c) (after b ∧ ¬p)) (15)

holds. Notice that the sequent is the same property our program satisfies by AAR. Furthermore
the right hand side is the property in equation (13); the one we want to prove. If we prove that
(15) holds we can conclude that since our program satisfies the sequent it must satisfy what the
sequent entails. We start by showing the syntactic satisfaction relation of equation (15).

4.3.1 Syntactic Satisfaction Relation

The Syntactic Satisfaction Relation is implemented as a type in Agda and denoted by `. In figure
27 the definition and a selection of the constructors are shown. The first step in proving equation
(15) is to show that equation (16) holds.

at b ∧ at c ` at b. (16)

This is done in Agda using the type `; the proof can be seen in 28. It is the usual way of
constructing proofs in agda.

1 data _|-_ : Props -> Props -> Set where
2 refl : (p : Props) ->
3 --------------
4 p |- p
5
6 ˆ-e1 : {p q r : Props} -> p |- (q ˆ r) ->
7 p |- q
8
9 nd : {p q : Props} -> p |- q ->

10 --------
11 T |- (p => q)
12
13 hs : {p q r s : Props} -> p |- (q => r) ->
14 p |- (r => s) ->
15 ---------------
16 p |- (q => s)
17
18 T-i : {q : Props} -> T |- q ->
19 (p : Props) ->
20 --------------
21 p |- q
22
23 ˜>-i : {p q : Props} -> p |- q ->
24 --------------
25 T |- (p ˜> q)

Figure 27: The definition of our Syntactical Satisfaction Relation, denoted by the the single turn-
stile, taken from the LTL module.
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First the rule refl is applied to at b ∧ at c, which returns the relation that this syntactically
entails itself. The second step is applying ∧-e1, and the proof is finished.

1 S1 : (at b ˆ at c) |- at b
2 S1 = ˆ-e1 (refl (at b ˆ at c))

Figure 28: Sample usage of and-elimination.

The rest of the steps can be seen i figure 29. The only unusual step is S2 were the rule  -i
is applied. The rule states that if we can show that a proposition implies something, it also leads
to it. This is intuitively verified rather easily but a formal proof is shown in appendix A.2, but
has been left out for the sake of simplicity. The other steps are regular propositional calculus rules
and can all be seen implemented in figure 27.

1 S2 : T |- (at b ˆ at c) ˜> at b
2 S2 = ˜>-i S1
3
4 S3 : at b ˜> (after b ˆ not p) |- at b ˜> (after b ˆ not p)
5 S3 = refl at b ˜> (after b ˆ not p)
6
7 S4 : at b ˜> (after b ˆ not p) |- (at b ˆ at c) ˜> at b
8 S4 = T-i S2 S3

Figure 29: The rest of the proof for (15).

We have now proven that equation (15) holds and the next step is proving that our program
satisfies (14).

4.3.2 Semantic Satisfaction Relation

Showing that a program satisfies the sequent of a syntactic entailment is not done by construction,
but with functions. The function that does this is presented in its entirety in 30. Its arguments
are a program and a syntactical satisfaction relation. It checks if the program satisfies the sequent
by calling a recursive search algorithm: verify. The function can be seen as the mapping of a
program and a proposition to the set of all programs that satisfy this proposition.

1 |= : {p q : Props} -> Statement -> (p |- q) -> Bool
2 |= {p} {q} prog _ = verify p prog

Figure 30: The declaration of the semantic satisfaction relation function.

The function verify and all its cases are presented in figure 31. Note that the sequent in an
element of the type ` is not represented by a list of propositions, but conjugations of proposi-
tions. The verify function therefore pattern matches on ∧ statements, not on a list. To verify the
individual statements we call the helper function verify’.

Some of the cases and the definition of this function can be seen in figure 32. These cases
represent the rules introduced in OL regarding programs. For example we have the Atomic
Assigment Axiom and Atomic Assigment Rule. Each is rule has another helper function
which searches the program and makes sure that the statements match. In our program we have
assignB b p (constB false). This has the label b. If we in equation (14) would swap b with
for example c the function verify-aar would return false. This would also be the case if we used
another program where b was not the atomic assignment of false to p. Note that each rule in OL
that explicitly refer to a program have their own help function and the the meaning of the rule is
encoded in the pattern matching.

We have now presented a way of checking if the program in figure 9 satisfies the sequent in
equation (15). The last step of the proof, using the function and the proof of (15), can be seen in
figure 33. The proof is complete because the function returns true.
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1 verify : Props -> Statement -> Bool
2 verify (p ˆ q) prog = (verify p prog) and (verify q prog)
3 verify p prog = verify ’ p prog

Figure 31: The verify function splits a sequent into its composite propositions.

1 verify ’ : Props -> Statement -> Bool
2 verify ’ T _ = true
3 verify ’ ((at (l a)) ˜> (after (l a’))) prog =
4 if (a == a’) then
5 (verify -aaa (Label a) prog)
6 else
7 false
8 verify ’ ((at (l a)) ˜> ((after (l a’)) ˆ (b = e)) prog =
9 if (a == a’) then

10 (verify -aar (Label a) prog)
11 else
12 false
13 verify ’ _ _ = false

Figure 32: The helper function for verify. The different cases mainly represent different rules
regarding programs, taken from OL.

1 proof -valid = (prog |= prog S4)

Figure 33: The final step in proving that the program in figure 9 satisfies the property in equation
15.
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4.4 Proof by Control Flow

This section will explain how one would go about performing the method of Proof by Control Flow
with the program in figure 19 in mind, i.e. the program that the proof lattice is about. All code
can be found on our GitHub [Git]

integer x; boolean p;
a: cobegin

b: p:=false;
[]
c: while p do

d: x:=x+1;
coend;

Figure 34: Figure repeated for ease of access. Originally figure 9.

4.4.1 Connecting the Representations - Actions and Triples

Since the representations of CPL and ELTL have been defined in section 4.1.2, a connection
between them has to be established. The ELTL representation already has constructors which are
tied to the control of the program, but an even stronger connection between the program and the
logic is defined in the module ”Translator”. This module translates a program into a list of logical
statements. These statements consists of Triple, which are based on Action and ELTL formulae.
There is also a function, translate, that can transform whole programs into a list of such triples.

Action The definition of this type is a reference to what happened when the control of a program
was moved. E.g. if control was moved from being at a segment that assigns a value to a variable,
to being after the segment. Then the constructor of Action that would be used as the reference
for this assignment would be assign. The rest of the constructors are defined in figure 35 and are
used analogously.

1 data Action : Set where
2 assign : Action
3 seq : Action
4 par : Action
5 while : Action
6 if : Action
7 flowA : Action

Figure 35: Data type for Action.

Triple With Actions defined, the data type Triple can also be defined. The constructor is built
up as a Hoare Triple by having a pre- and postcondition as input in the form of ELTL formulae
as well as an Action to tie them together:

< LTL1 > action < LTL2 >

The definition of the triple is: let pre and post be ELTL formulae and a be an Action, then if
pre is satisfied as being a true state of the program and control is about to move in a way defined
by a, then post will be the resulting state.

E.g. if we look at the segment s 1 in the program:

seg (s 1) <(vB ’’x’’) :=b (bool true) >, (17)

i.e assigning true to the variable x, then the resulting Triple that the assignment can be trans-
formed into is:

<at (s 1) >assign <(after (s 1)) ∧ (’’x’’ ==b true) >. (18)
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1 < at (s 0) > seq < at (s 1) > ::
2 < at (s 2) > par < at (s 3) ˆ’ at (s 4) > ::
3 < at (s 3) > assign < after (s 3) ˆ’ ˜ (isTrue (vB "x")) > ::
4 < at (s 4) ˆ’ [] (isTrue (vB "x")) > while < [] (in’ (s 5)) > ::
5 < at (s 4) ˆ’ [] (˜ (isTrue (vB "x"))) > while <
6 after (s 4) ˆ’ [] (˜ (isTrue (vB "x"))) >
7 ::
8 < at (s 4) > while <
9 (at (s 5) ˆ’ isTrue (vB "x")) v’

10 (after (s 4) ˆ’ ˜ (isTrue (vB "x")))
11 >
12 ::
13 < at (s 5) > assign < after (s 5) ˆ’ (vN "y" ==n 1) > ::
14 < at (s 1) > assign < after (s 1) ˆ’ isTrue (vB "x") > ::
15 < after (s 1) > flowA < at (s 2) > ::
16 < after (s 2) > flowA < after (s 0) > ::
17 < after (s 3) ˆ’ after (s 4) > flowA < after (s 2) > ::
18 < after (s 5) > flowA < at (s 4) > :: [ ]

Figure 36: A translation of the program in figure 19 into triples.

Note that the triple describes an assignment in segment 1 that moved control to after segment 1
and set the value of x to true.

4.4.2 Translating a Program Into Triples

The main idea is to use the function

translate : Program→ (List× triple) (19)

which is the function that takes a program and returns a list of triples. E.g. passing the program
from figure 19 would translate the program into a the list of triples seen in figure 36.

For more technical details of how translate and its assisting functions work, see Appendix
B.1.

4.4.3 Rule Set and Truths

Now that a program, logic and a connection between them, in the form of triples, has been defined.
What is left to define is the actual construction of proofs before verifying them is possible. A proof
constructed with this method does not have to be correct, since the verification will be made later
by a function.

The Rules Set consists of three different rule types that will be defined here: program rules
(progR), LTL rules (LTLR) and custom rules (customR).

Program rules (progR) are associated with an Action. These rules together with an ELTL
formula as a precondition work as a key to unlock the postcondition, a new ELTL formula, of a
triple.

E.g. observe the triple (first presented in (18)):

<at (s 1) >assign <(after (s 1)) ∧ (’’x’’ ==b true) >.

Here, if we have at (s 1) and the rule assRule would be applied to it, then (after (s 1)) ∧
(’’x’’ ==b true) would be guaranteed. This postcondition can now be used as a precondition
together with another rule, in order to unlock the next postcondition. This is how you chain the
rules together to conduct a proof.

LTL rules (LTLR) are rules describing what modifications that can be made to ELTL formulae.
All of these are variations of introduction and elimination rules.
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1 data ProgRule : LTL -> Action -> Set where
2 assRule : (l : LTL) -> ProgRule l assign

Figure 37: The definition of the data type ProgRule, which relates how control moves through the
program by using the type Action, together with the first rule, the atomic assignment rule.

Custom rules (customR) are used when the other rules are not enough and work as user
supplied axioms. A situations where one would need such an axiom, would be when a safety
property has to be proven in order to proceed. For example, the while loop in the program in
figure 19 requires a safety property stating that at some point the boolean variable will always
remain false in order to exit it.

True ELTL formulae are the postconditions that rules are applied to which are represented as
a data type that contains List ×ELTL, called Truths. Since this data type only should contain
ELTL formulae that are true in the current state, we have to make sure that no contradicting pairs
of ELTL formulae can exist in Truths. This is managed by updating the list after every time a
rule is applied, which causes the state to change. This update works according to:

1. Before adding the new truths, remove all previously true ELTL formulae except those the
form ”� . . . ”, ”at. . . ”, ”in. . . ” or ”after. . . ” since these are guaranteed to still be true after
application of a rule.

2. Append the list of new truths to the updated list of previous truths.

Therefore, if an element in the truth is (20)

vB ’’x’’ ==b true (20)

we can assure that (21) is not, through the rules above.

vB ’’x’’ ==b false (21)

4.4.4 Constructing Proofs

All that is left in order to constuct proofs is to tie the above defined types together. The rep-
resentation of an actual proof is very similar the proof latices mentioned in section 2.5.1. There
are two data types used for construction of the proofs, Proof and ProofStep. Proof is built
as List×ProofStep, and a ProofStep is either the application of a rule or the construction of
branches. Branches are, in simple terms, sub-proofs, i.e. List×ProofStep, that represents the
branching in the proof lattice [OL82]. In order for a branch to be correct, both sub-proofs have to
contain the same truths in their final states.

In 38 we will show a small example of how to take a few steps towards constructing a proof
of termination. This small example displays the first steps from the example program from figure
19. Each proof step, pStep, in the example takes a rule (LTL rule or program rule), which in turn
is applied to an ELTL formula said to be in the Truth. Since we are trying to prove termination,
i.e. at (s 0) ⇒ ♦ after (s 0), the initial truth will be at (s 0).

4.4.5 Verifying the Proofs

With the data type for proofs implemented, the only thing that remains is the actual verification,
to find out whether the proof is valid or not. This is done by a proof checking function. The
function is defined in figure 39 and might be quite hard to grasp at a first glance.
The function itself takes a program, list of custom transition relations, a proof, a goal (ELTL)
and an initial truth as input. Running the function with a set of input then yields a result, called
ValidProof, that is either yes or no, accompanied with a brief message telling the user where the
proof was incorrect. For a more technical presentation of the proofcheck function see appendix B.2
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1 termProof : Proof
2 termProof = proof prf
3 where
4 step1 = pStep (progR (seqRule (at (s 0))))
5 step2 = pStep (progR (assRule (at (s 1))))
6 step3 = pStep (ltlR (ˆ-e1 ((after (s 1)) ˆ’ (isTrue (vB "x")))))
7 step4 = pStep (progR (atomLive (after (s 1))))
8 step5 = pStep (progR (parRule (at (s 2))))
9 step6 = pStep (ltlR (exp -ˆ ((at (s 3)) ˆ’ (at (s 4)))))

10 step7 = pStep (progR (assRule (at (s 3))))
11 ...

Figure 38: The definition of the data type ProgRule, which relates to how control moves through
the program by using the type Action, together with the first rule, the atomic assignment rule.

1 proofCheck : Prog -> List TransRel -> Proof -> LTL -> Truths ->
2 ValidProof
3 proofCheck pr rels prf g tr = proofCheck ’ (( translate pr) List .++
4 rels) prf g tr

Figure 39: The definition of the proof checking function.

In our case, the program would be program from figure 19, the list of custom transition relations
would be empty, the proof would be the entire proof of which a part can be seen in figure 38, the
goal would be at (s 0) ⇒ ♦ after (s 0) and the initial truth would be an empty list (since the
actual initial truth is given in the goal).

4.4.6 Verifying Safety Properties

Safety properties are used in order to, among other things, prove that it is possible to exit a while
loop. It is necessary to know that a boolean expression will always remain false after some point
in time in order to ensure exiting. As mentioned in the article by Owicki and Lamport [OL82],
such properties are usually proven by observing the actual structure, or code, of the program and
realising that it can easily be deducted by reasoning about the possible states of the program.

In the case of the program in figure 9 it is easy to see that once the boolean p has been set
to false it will not be changed by any other subsequent assignment, which implies that it will
always be false after that point. Since the implemented set of rules lack any introduction of the �
operator, these properties cannot be generated from the program by translation. Instead custom
rules must be created for these properties and a function is used to verify that the program never
breaks this property. To read more about what the safety verifier can do, and also see some more
technical aspects of it, see appendix B.3.

Note that the safety verifier is not completely functional with the rest of the implementation.
It is possible to abuse a combination of custom rules and the safety verifier in order to construct
an incorrect proof that will still type check as correct.
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5 Discussion

In this section the difference between the two implemented methods are discussed. Furthermore
the chosen limitations of these methods are presented. Discussion about future work follows in
section 10.

5.1 Proof by Construction vs Proof by Control Flow

The two methods that have been developed are quite different both in implementation and usage.
This section discusses their differences and advantages.

5.1.1 Differences

Constructing a proof with the proof by construction method is quite similar to doing the proofs
with pen and paper. However a strict formality and a lot of massaging of ELTL-formulae is needed
to make the constructors match. This makes the proof by construction method very tedious and
time consuming.

With the proof by control flow method the rules are used to follow the flow of control through
the program. This leads to shorter more concise and often intuitive proofs. However, since the
proof has a state and requires the repeated application of a step function to traverse the flow you
need to keep track of this state mentally. Learning this new system can be a big step from just
doing formal pen and paper logic.

5.1.2 Similarities

Both systems use a function to verify the satisfaction relation. The proof by control flow method
uses it to verify the applications of rules to ensure that they coincide with the actual program.
The construction method however only uses it as a look-up function to see that the statements
referred to in the sequent are in the program.

5.1.3 External Verification

Constructive proving using Agda has the advantage that given correct rules the proofs presented
are also correct. When using functions on the other hand it can be difficult to prove that the
functions work as intended. The code presented has not been verified externally. Since all proof
methods use some sort of functions it is not possible to guarantee their correctness. This is a
major flaw and further development to create completely constructive proofs is a future prospect,
see section 6 for further discussion.

5.2 Limitations

Here we present some of the limitations to the proof methods and the reason for this.

5.2.1 Program Representation and Reasoning

The CPL programming language from section 2.3 that we implemented in Agda is very small, and
lacks some common programming constructs, notably:

• if statements

• atomic blocks

If statements are very convenient but are not needed for the programs we have reasoned about,
using our presented methods. Thus they have not been implemented. They could possibly be
implemented easily in CPL, and use special cases of the rules presented in [OL82]. We already
reason about while statements, and if statements are very similar in structure.

Atomic blocks such as a swap would be quite interesting to reason about. They especially
become handy when discussing liveness in conjunction with mutex. The main reason for not
implementing either of these structures were time constraints.
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5.2.2 Operational Semantics

The implementation of CPL or ELTL allows the use of operational semantics. Programs are
never executed and logical statements are not actually evaluated. This does not imply that it is
not possible to reason about expressions and logical formulae. For example the types NExpr and
BExpr can be used to express and reason about properties such as (y + 1) × (z + 3) > 2. For the
implemented methods this is fine because safety properties are only postulated, not proven. The
liveness properties discussed can still be proven without the operational semantics; and thus they
were not needed.

5.3 Safety for Concurrent Programs

A constructive method for proofs of safety properties of concurrent programs was never imple-
mented. Usually proving safety properties is done by finding an invariant property i which guar-
antees the desired safety property. If you prove that the (i ⊃ � i) holds, i.e. that if it holds at
some point it will always hold, you have proven the safety property.

5.3.1 Mutual Exclusion

Many important properties of concurrent programs are safety properties, most commonly men-
tioned is mutex. The inability to formally prove these limits the usefulness of our methods. Often
proving mutex involves finding some invariant property i which guarantees mutex and then proving
that our program will at some point satisfy i.

5.3.2 Visual Verification

The invariance claims in OL were ”proven” by looking at the program and each statement indi-
vidually. No formal rules were ever introduced. The claim were often the invariance of the value
of a variable, which holds when the program never assigns the variable to another value. This is
obviously informal and cannot easily be extended to a formal system or to more complex invariants.
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6 Future Work

The time schedule limited the generality of our method. This section brings up areas were continued
work is needed and what possible extensions could be implemented.

6.1 Safety

Safety is one of the most important extensions for both the methods, and is probably among the
first that would be tested.

6.1.1 More Old Theory into Agda

Based on the systems we have constructed one natural extension is the implementation of some
other logical systems in Agda. The papers [Lam80] and [LS84] respectively present such systems
for proving safety properties. Formalising these could possible allow both methods to implement a
way to prove safety properties into the libraries as an extension. This could lead to a more robust
system able to prove both liveness and safety properties.

6.1.2 Verifier

The safety verifier is in its current implementation very specific. It proves the invariant needed
for proof of termination for some very simple programs, e.g. 9. However some proofs need more
complex invariant propositions, such as the mutex proof presented in [OL82] that includes more
than a single variable. It isn’t obvious how the current method could be extended to work in these
cases so a different method, such as the formalisation of [Lam80] or [LS84], might be required.

6.2 Proof Construction Improvements

The proof construction is in its early stages still and there are still work to be done before it
becomes efficient to use.

6.2.1 Library of Subproofs.

Constructing a proof for even a small thing, like our  -introduction rule from appendix A.2,
requires the application of many constructors. Many patterns used in proof construction are
frequently occurring and could be written as reusable proofs, like the  -introduction rule. A
library of sub proofs like these would make the construction of proofs a lot easier.

6.2.2 Independent Development of the Rule Set

A large part of developing the proof by construction method was translating the ELTL rules and
propositions of OL to the domain of propositional calculus. These rules are usable outside of Agda
and it might be interesting to develop this rule set independently. The pen and paper proving
method presented by OL is using lattices and making assumptions. With our rules you can do it
in the same manner as a normal proof in propositional calculus.

6.3 Proof by Control Flow Improvements

While the implementation of the Proof by Control Flow method is in a usable state, improvements
can still be made.

6.3.1 Proof by Control Flow as a Teaching Tool

Since the structure of the method Proof by Control Flow is not as formally tied to the actual
logic as the Proof by Construction method, but tries to be more intuitive in its implementation,
one possibility is to turn the method more into a tool that can be used to teach students how
to construct formal proofs. The idea of how take the method in that direction is to implement a
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better way to manage truths by having to state what ELTL formulae that will be true after the
application of a rule.

Another improvement that can be made is to make better error messages when an incorrect
proof is passed to the proofCheck function. This would help in improving the logical reasoning of
a user with lacking logical knowledge.

6.4 Ongoing Work Based on Proof by Control Flow

The upcoming master thesis [Hä] concerns the implementation of yet another method for proving
concurrent liveness and safety properties using Agda. The author Johan Häggström is also partly
responsible for the Proof by Control Flow method, presented in this thesis. At present this new
method is intended be completely constructional, but is based on Proof by Control Flow.

The thesis also explores the possibility to automate proof construction, using the auto complete
functionality in Agda. This already works for simple proofs, e.g that 4 is even, but for bigger types
the complexity grows rapidly. This results in it taking too long time but it is theoretically possible.
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7 Conclusion

This thesis shows that it is possible to implement methods in Agda to verify formal proofs of
concurrent liveness properties as well as sequential safety properties. The proofs concern a small
programming language, CPL. The proof mechanisms for the concurrent liveness properties are
based on [OL82] and for sequential safety [Hoa69].

7.1 Formal proofs

The formal systems of Hoare Logic and propositional calculus were easily implemented in Agda.
Manually constructed proofs can be directly translated using Agda types; with constructors com-
pletely analogous to the formal rules. The resulting proofs can be completely constructional.

However as soon as interference is taken into consideration the situation becomes complicated.
The proof system presented in [OL82] are not formal enough to express in Agda. As a result,
formalisation of this was done. See for example the formal proof of ˜>-i in Appendix A.2 and the
discussion on the WER in section 3.1. Even with our modern tool set (Agda) the same difficulties
with proving concurrent properties as back in the 80’s remain. In [Mis17], for example, a discussion
on the subject can be found. This thesis takes no claim in having solved any of the problems with
interference and concurrency.

7.1.1 Formal proofs are long

The methods implemented in Agda does not permit formal proofs to become any less tedious.
Formal proofs are even when machine constructed very long. This is by their nature, formality
requires precision.

7.2 LTL as a Basis for Logic

Introduced to the subject of properties of concurrent programs, LTL is not trivially expressive
enough. The work in this paper however reveals that a rule system can be built around the close
relative ELTL, presented in section 2.4.2, to formally prove liveness.
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Bibliographic Notes

[OL82] This paper presents a convinient logic for reasoning about concurrent programs. Many of
the rules and concepts presented here have been utilised by us, which helped much in our work.
[Hoa69] The logic in this famous paper by Tony Hoare has been implemented as types in Agda.
These types have then been used to construct proofs for safety properties of sequential programs.
[Cai15] In this bachelor thesis by Leran Cai we found a structure for proving things in Agda. The
topic of this report is Propositional Calculus which means that the topic itself was not relevant to
us but we found a lot of value in reading this report anyway.

Slightly Newer Works

The topic of this report is still a widely researched topic. Some recent works on the topics are
e.g. [DSNB16] handling correctness of concurrent data structures, an overview of the formal
methods at Intel [Har10]. We encourage any reader that have any doubt to look into any of these
[Mis17, KGN+09, RS13, NLWSD14, Neu14, Sel16].

Historical Importance

[AHP96] This paper is the reason to why this project came to be. Therefore, it is of great historical
importance to the project.

Agda Theory

Here are papers for the interested, handling theory of - and Agda itself [Nor09, Nor07]. See also
the Agda wiki [Wik17]. An undocumented implementation of Hoare Logic in Agda can be found
here [Ike11], it was not used by us.
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[Hä] Johan Häggström. Proof Checker for Extended Linear Time Temporal Logic Proofs
About Small Concurrent Programs. Master’s Thesis, Department of Computer Sci-
ence, Chalmers University of Technology.

[Ike11] Daisuke Ikegami. Implementation of Hoare Logic using Agda. https://github.com/
IKEGAMIDaisuke/HoareLogic, 2011. Github Repo, accessed; May 9th-2017.

[KGN+09] Roope Kaivola, Rajnish Ghughal, Naren Narasimhan, Amber Telfer, Jesse Whitte-
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A AGDA CODE

A Agda Code

In this appendix selected bits of code can be found. The entire library can be found on the [Git].

A.1 Hoare Triple Type

1 data _[_]_ : Props -> Statement -> Props -> Set where
2 D0-n : (p : Props) ->
3 (n : NVar) ->
4 (e : NExpr) ->
5 --------------
6 p [ assignN n e ] (replacePN p e n)
7
8 D1-a : {p r s t : Props} -> {q : Statement} ->
9 t |- (r > s) ->

10 p [ q ] r ->
11 ------------
12 p [ q ] s
13
14 D1-b : {p r s t : Props} -> {q : Statement} ->
15 t |- (s > p) ->
16 p [ q ] r ->
17 --------------
18 s [ q ] r
19
20 D2 : {p r1 r : Props} -> {q1 q2 : Statement} ->
21 p [ q1 ] r1 ->
22 r1 [ q2 ] r ->
23 --------------
24 p [ composition q1 q2 ] r
25
26 D3 : {p : Props} -> {b : BExpr} ->
27 {s : Statement} ->
28 ((beval b) ˆ p) [ s ] p ->
29 --------------------
30 p [ while b s ] ((˜ (beval b)) ˆ p)

Figure 40: The data type representing the rules of Hoare logic.

A.2 Proof of  -introduction

In section 7.1 we used that:
(` p ⊃ q) ` (T ` p q) (22)

here we formally prove this in agda. The function takes a proof that p ` q and use this to prove

1 ˜>-i-proof : {p q : Props} -> p |- q -> T |- [] (p -> (<> q))
2 ˜>-i-proof {p} {q} r = ([]-i (hs (nd r) (nd (<>-i (refl q)))))

Figure 41: Proof of  -introduction

T ` p  q. We start by weakening the statement

(q ` q) ⊃ (q ` �q). (23)

We then use the natural deduction rule to create two implications.

(` p ⊃ q) ∧ (` q ⊃ �q)) (24)

We chain them using the hypothetical syllogism (hs). We then have a proof that

` p ⊃ �q (25)
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translate

translate’

label transStm head extractLabels

label

flatten

transFlow

seqFlow

label

parFlow

label

label

Figure 42: Function dependency for translate, note that label is located in the module Label.

at which point we can introduce a �, Since anything that is tautologically true is always true. At
this point we have constructed

(` �(p ⊃ �q)) ≡ (` p q) (26)

B Proof by Control Flow Definitions

B.1 Assisting functions for ”translate”

The function translate calls upon other functions that assist it with the actual translation. A
dependency graph for the translate function can be seen in figure 42. These functions will be
explained in the order in which they show up layer by layer, also see Appendix ?? for code.

• translate’ : Seg→ (List× triple) - this function helps translator to transform segments
into triples and pattern matches on the different constructors of Seg (see ??) and transforms
the input into their corresponding triples. If the segment given as input would contain more
segments, recursive calls are made on each occurrence. E.g. if the passed segment is a block
this would be the case.

• transFlow : Seg→ (List× Seg) - this function works similarly to translate’ except that
depending on input it might call parFlow or seqFlow. Note that this function transforms the
transitions between segments into triples. E.g. if a is a block and b the first segment in the
block, then transFlow will would transform a as follows: <at a> flowA <at b>.

• label : Label → N (see Label module) - takes a Label as input and returns the natural
number used as the reference.

• transStm : Label × Stm → triple - transforms a statement into the corresponding triple
(see (17) and (18)).

• head : (List ×A) → (Maybe ×A), where A is an arbitrary data type - returns the first
element in a list as a Maybe type. I.e. if a list is passed with the element a ∈ A as the first
element, just a is returned. If head is passed an empty list, it returns nothing.

• extractLabels : (List× Seg) → LTL - used by translate’ in order to find all labels in a
list of segments in case the segment to transform is a par. This way we can make sure that
control ends up being at all the processes that are to be run concurrently.

• flatten : (List× (List×A))→ (List×A) - takes a list of lists and appends those lists into
a single list.

• seqFlow : Label × (List × Seg) → (List × triple) - used to describe how control flows
through a block. Let B be a block. If there are two or more segments left in the list of B
at any call, let the first two elements be s1 and s2. Then if control is after s1 and control
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moves according to flowA it will end up at s2. If there is only one element, s, left in B and
control is after s and moves according to flowA it will end up after B.

• parFlow : (List×Seg)→ LTL - works like extractLabels, except it describes how control
moves out of a par, P . I.e. control has to be after all processes in P before it can move to
after P .

B.2 Assisting Functions for ”proofCheck”

• proofCheck’ : (List×TransRel)×Proof× LTL×Truths→ ValidProof ,

• takeStep : (List×TransRel)×ProofStep×ValidProof→ ValidProof,

• applyRule : (List×TransRel)×Truths×Rule→ ValidProof,

• applyLTL-R : Truths× LTLRule→ ValidProof

• legalApplication : {φ ∈ LTL, a ∈ Action}, (List×TransRel)×Truths×ProgRuleφ,a →
ValidProof

proofCheck’ uses pattern matching on the goal that is passed to it form the original proof check-
ing function. Depending on the goal it might send the information further or give an immediate
return to proofCheck. If the goal would be true (>′) nothing has to be done since every program
given a proof satisfies true. On the contrary, if the passed goal would be false (⊥) there would be
an immediate return of no since the goal is always false.

If φ is an LTL formula and the goal would happen to be of the form �φ the return depends
on whether or not the proof would reach the conclusion φ as one of the final truths after applying
the takeStep function on each proof step. Similarly, if φ and ψ are LTL formulae and the goal is
of the form ψ ⇒ φ, it is equivalent to call proofCheck’ with the goal �φ and the initial truth ψ.
That case is therefore handled as the (� . . .) case.

The other cases are simply that the goal could happen to be satisfied in the initial state of the
proof, else there is a catch all case that states that the goal is not true from the start. Since safety
properties cannot be proved using this method, goals of the form (� . . .) are not handled.

takeStep mainly pattern matches on the two different types of proof steps that can be used.
If the step would be a pStep, the fuction passes on to applyRule to check if the rule is applied
in a legal way. If the passed step is a branch, then the two branches are checked individually
by applying takeStep to each element in the branches and checks if the two reaches the same
conclusions in their final steps. The other cases are error messages depending on what went wrong
(see code in for details).

applyRule is the function that ties the application of rules into the proof checking. This function
simply pattern matches on the different kinds of rules (progR, LTLR and customR) and calls the corre-
sponding functions. E.g. if the rule would be a progR, then the function calls for legalApplication.
If the rule would be an LTLR, then the function calls for applyLTL-R. On the other hand, if the rule
is a customR all that has to be done is to check whether or not an element in the truths satisfies
the pre condition of the custom rule. If it is satisfied, then the step is valid and the new truth will
contain the post condition of the custom rule.

applyLTL-R handles the application of ELTL (elimination and insertion) rules. The function
simply checks if the passed rule can be applied to the current truths. If the application is legal,
the return is yes and the result of the applied rule is added to the new truth and if not an error
message is returned with the no.
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legalApplication handles program rules, i.e rules regarding control flow, and just like applyLTL-r
is simple in its execution, so is legalApplication. The function simply checks if the given truths
together with the action associated with the rule to be applied matches any of the transition rela-
tions given by the translation of the given program. If a match would be found, the step is valid
and the post condition would be added to the new truths. If not, then no is returned with en error
message.

B.3 Definitions of Safety Verifier

The implementation works by applying the strategy mentioned in section 4.4.6 by overlooking the
translation of the program in order to find contradictions.

B.3.1 Evaluation of Safety Properties

In the module ”Safety Verifier” is where the implementation is located. The main function of the
module,

⇒ , : LTL× LTL×Prog→ Bool,

can be seen in detail in our GitHub [Git]. The idea of this function is that it will take a safety
property of the form

{l ∈ Label}, (after l)⇒ (� . . .),

i.e. that after a certain segment of the code, an LTL formula will always hold.
As mentioned, the method is to look for a single state that might be reached that contradicts

the LTL formula. This check is different depending on the location of the segment l. If l is in a par
segment, then all processes run in parallel with the process that l is located in have to be checked
as well as all other subsequent segments. If l is in a while loop (while segment), then all segments
appearing before l in the while loop have to be checked as well as all other subsequent segments.
Also if l would be located in both a par and a while, then both methods are called. The simplest
case is when l is not located in either a par or a while, then only the segments after l have to be
checked.

The function ⇒ , that handles this simple concept unfortunately has to call many assisting
functions that would take up to much space to mention here. All these functions are located in
our GitHub [Git], where the comments explain them.
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