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Abstract 

In modern telecommunication systems, a constant group delay is necessary in 
order to avoid signal distortion. Unfortunately, a group delay variation is 
unavoidable. For example, a band-pass filter in microwave systems will create a 
group delay variation near the edge of pass band, i.e., in transition areas of the 
filter. According to simulations of ideal filter components (Q is infinite) in ADS, it 
shows a 5th-order Elliptic band-pass filter with stopband rejection of 20 dB and 
pass-band frequency from 7.5 GHz to 12.5 GHz would introduce a maximum group 
delay variation of 3.4 ns. System simulations in MATLAB show that it would cost 
extra power of 0.8 dB and 1.6 dB for 4QAM and 16QAM modulation respectively, 
to achieve the same performance (bit-error-rate) as the system without any group 
delay variation. Therefore, it is necessary to develop so-called group delay 
equalizers to compensate the variation of the group delay. 

Analog group delay equalizers are realized based on two methodologies: 1) all-
pass networks, which are used to generate a positive group delay with desired 
features; 2) a negative group delay circuit, which is used to compensate group 
delay variation originating from filters. Unfortunately, the existing negative group 
delay circuit suffers from a large attenuation in the frequency range where negative 
group delay occurs. In this thesis, a novel group delay equalizer circuit topology is 
proposed, to overcome the drawback of large attenuation. It is demonstrated that 
the proposed negative group delay circuit has a flat amplitude response with a 
variation less than 0.6 dB, keeping a feature of negative group delay. As example, 
the proposed equalizer is used to compensate the group delay variation originating 
from a low-pass filter with the pass-band from DC to 15 GHz. The simulation result 
exhibits that the group delay variation of the filter is reduced from 0.6 ns to 0.2 ns 
while the amplitude response is reduced less than 0.53 dB due to losses of the 
equalizer. For band-pass filters, one more stage of the proposed equalizer is 
needed in order to compensate the group delay variation in both sides of filters. 

 

 

Keywords: Group delay variation, group delay equalization, all-pass network, 
negative group delay, band-pass filter. 
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Chapter 1  

Introduction 

 

In high speed telecommunication systems, undesired dispersion effects are 
problematic and could degrade overall system performance. The group delay 
variation would distort the waveform of signals, resulting in the inter-symbol 
interference (ISI), which introduces errors in communication systems. 

In optical communications, compensating for the group delay variation, also called 
chromatic dispersion (CD), has been one of the main challenges in the design of 
optical transceivers. The reason causing the group delay variation in standard 
fibers is that different spectral components of the transmitted optical signal travel at 
different velocities, resulting in different time delay to reach the end of fibers. A 
group delay variation might severely distort the optical waveform which contains 
information and even cause the failure of whole systems. Similarly, in microwave 
communications, some microwave devices may cause group delay variations, such 
as amplifiers, filters and mixers. For ultra-wide band (UWB) applications [1], the 
data information is based on impulse signals; in the presence of group delay 
variation, received impulse signals might be reshaped and fatal error occurs. As a 
consequence, equalization for group delay variation becomes indispensible.  

To compensate the effect of group delay variation in systems, digital techniques 
based on infinite impulse response (IIR) filters or finite impulse response (FIR) 
filters are widely used in digital signal processing (DSP) domain [2]. Normally 
digital devices are attractive due to their high flexibility and reliability, but they are 
limited by the performance of analog-to-digital (AD) / digital-to-analog (DA) 
converters which generally suffer from excessive cost as well as large power 
consumption for high speed applications [3].  

Instead, the analog equalization could be a good alternative to deal with the group 
delay variation. An equalizer based on analog all-pass filters, which has a flat 
amplitude response and group delay response with a specified characteristic, has 
been developed since 1970s [4] [5]. During recent years, dispersive delay lines 
(DDLs) has become a hot topic not only for analog signal processing but also for 
group delay compensation [6]. Several DDL solutions have been proposed and 
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investigated, e.g., utilizing surface acoustic wave (SAW) [7] and magneto-static 
wave (MSW) [8]. A SAW DDL presents some advantages such as compact size 
but it is limited to operation at low frequency (< 2 GHz), while a MSW DDL can 
operate at high frequency but suffers from complex fabrication and high loss [9]. 
The chirped delay line is also a good solution. A good performance can be 
achieved, but it usually consumes a large substrate size [10] [11] [12]. In addition, 
composite right and left hand (CRLH) techniques [13] are also used to construct 
the DDL and several applications have been proposed [6] [14] [15]. The analog 
equalizers mentioned above would generate a positive group delay with desired 
features. In contrast, negative group delay (NGD) circuits have opened up 
prospects for group delay compensation [16], which could compensate the group 
delay variation without increasing total group delay time [17] [18] [19]. However, it 
suffers from a large attenuation within the frequency range where the negative 
group delay occurs. 

 

The effect of group delay variation is difficult to calculate analytically for complex 
modulations in practical communication systems, but relatively simple by 
simulation with the help of MATLAB software. In this thesis, the effect of group 
delay variation from band-pass filters for 4QAM and 16QAM modulation will be 
simulated and evaluated based on the bit error rate. In the simulations, group delay 
variation is added in the receiver front end, while other components in the 
transceiver are assumed to be perfect. Furthermore, group delay equalization for 
filters will be investigated and discussed. Some methodologies based on 
microwave circuits will be presented, as well as the corresponding simulation 
results in Agilent Advance Design System (ADS) software. Eventually, a novel 
group delay equalization method is proposed, which is based on reflection-type 
negative group delay circuits with negative resistance. 

The thesis is organized as follows. In Chapter 2 background knowledge about the 
definition of group delay as well as group delay equalization is presented. Chapter 
3 is dedicated to evaluate the effect of the group delay variation on communication 
systems by both theoretical analysis and simulations. The simulations are focused 
on the effect of group delay variation from band-pass filters and the results are 
presented in terms of the bit error rate and penalty power. Chapter 4 is concerned 
with several methodologies for group delay equalization based on microwave 
circuits. The chapter starts with all-pass networks, followed by negative group 
delay circuits. They are implemented by using lumped components and distributed 
transmission lines. Then, a novel group delay equalization method based on 
negative group delay circuits is proposed, which has a feature of a flat amplitude 
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response. Finally, conclusions of the thesis and the future work are presented in 
Chapter 5.   
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Chapter 2  

Background 

 

This chapter presents background knowledge that is related to this thesis. In 
Section 2.1, fundamental concepts of phase velocity, group velocity and group 
delay are presented. In Section 2.2, group delay variations in microwave 
components are investigated; while group delay equalization is introduced in 
Section 2.3. 

 
2.1 Concepts  

2.1.1 Phase velocity 

A plane wave travelling along the z-direction can be expressed as 

 ( , ) = ( )  
 

(2.1)  

where U0 is the peak amplitude;  is the angular frequency and k is the wave 
number which is a function of  . 

Then, the phase velocity can be defined as   

 = ( ) (2.2)   

For an electromagnetic wave travelling in the non-dispersive media, ( ) is 
independent with the angular frequency; in this case, ( ) is constant and the 
phase velocity is proportional to the angular frequency . 

 

2.1.2 Group velocity 
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According to the Fourier theorem, any real electromagnetic signal can be 
expressed as a superposition of one or several single plane waves and each wave 
would travel with corresponding phase velocity ( ). The entire signal can be 
written in an integral form as 

 ( , ) =
1
2

( ) [ ( ) ] , (2.3)  

where ( ) is the Fourier transform of the signal at t = 0 : 

 ( ) =
1
2

( , 0)  (2.4)  

In order to understand the group velocity, let us consider a simple case with only 
two waves ( ,  and , ), which is close to each other 
(i.e., and ) and has the same amplitude ( ); thus, the group of 
waves is the summation of two single waves:  

 
( , ) =

1
2

( )[ ( )

+ ( )] 
(2.5)  

Using a trigonometric identity 

 cos( ) = , (2.6)  

(2.5) can be rewrote as 

 ( , ) =
1
2

( )[2cos ( ) ( )] (2.7)  

From (2.7) it is clear to see that the term 2cos ) is the envelope of the 
signal and it would travel along the z-axis with a speed of  

 =  (2.8)  

In the limit of 0, (2.8) can be expressed as  

 =  , (2.9)  

which is the definition of the group delay velocity. 

Since the information is only contained in the group of waves, the group velocity 
represents the speed of information propagation. For non-dispersive media, ( ) 
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is independent with , resulting in the constant of the group velocity. This means 
the signal having different frequencies would travel with the same speed. However, 
for dispersive media, the group velocity depends on the frequency, so that the 
information in different frequencies would travel with different speeds and the 
whole signal would be distorted. Normally a constant group velocity is a critical 
requirement for communication systems especially for data transmission based on 
impulses (e.g., UWB).  

 

2.1.3 Group delay 

For a wave travelling a certain distance L in a certain time , the velocity is defined 
by 

 =  (2.10) 

 

Substituting the group velocity  into above equation, the group delay can be 
related as 

 =  (2.11) 

However, for many electronic circuits, such as lumped components and amplifiers, 
the spatial extent or size of the device under study is negligible compared with the 
wavelength of the desired signal; thus, the concept of group delay has to be 
defined by the transfer function of a network ( ). The transfer function for a 
certain network can be expressed by a magnitude response | ( )| and a phase 
response ( ): 

 ( ) = | ( )| ( ) (2.12) 

Then, the group delay is given by the negative derivative of the phase response 
with the respect of the angular frequency as 

 =
( )

 (2.13) 

In microwave circuits, the transfer function of a network can also be expressed as 
the scattering parameter (S-parameter) S21; thus, the group delay can also be 
related by 
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 =
( )

 (2.14) 

The definition of group delay in (2.14) will be used during the rest of this work, 
since most content would be discussed in microwave range. 

 

2.2 Group delay in microwave components 
In microwave communications, the group delay variation mainly originates from 
frequency-dependent devices, e.g. amplifiers, filters and mixers, where inductors 
and capacitors are widely used.  

In order to analyze the phase response, let us rewrite the phase response as a 
Taylor series expansion around the centre frequency : 

 

( ) = ( ) + ( ) +
1
2!

( )

+
1
3!

( ) +  
(2.15) 

Then, the group delay can be obtained according to (2.13): 

 =
( )

= + ( ) + ( ) +  (2.16) 

where ,
!

,
!

 and high-order terms 

are omitted. 

For systems with linear phase responses, only first term  exists, which is 
constant and is called the zeroth-order group delay. For systems with non-linear 
phase responses, there are other terms:  is the first-order group delay (linear 
group delay) and  is the second-order group delay (parabolic group delay) as 
shown in Fig. 2. 1(a). 
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(a) 

 

(b) 

Fig. 2. 1: (a) The first-order and (b) second-order group delay variation 

Typically, group delay variation (GDV) within the pass-band of microwave circuits 
is made up of the first-order (linear) and the second-order (parabolic) group delay, 
while the high-order group delay are negligible on account of slight affection to 
distortion.    

The linear group delay is very general in optical communication, which is also 
called chromatic dispersion (CD) [20]. The reason for that is different spectral 
components of the transmitted optical signal would travel at different velocities in 
optical fibers, resulting in the group delay variation and normally it can be modeled 
as linear one. A typical group delay variation in standard single-mode fibers is 
shown in Fig. 2. 2. Recently, more and more optical fiber communications systems 
operate around 15- m range due to lower losses. Thus, so-called dispersion-
shifted fibers have been developed to shift the zero dispersion wavelength into the 
1.5- m region as shown in Fig. 2. 2 [21]. It also shows dispersion-flattened fibers 
which has a relatively constant group delay over some wavelength range. 
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Fig. 2. 2: Group delay dispersion in standard, dispersion-shifted and dispersion-
flattened single-mode fibers 

In addition, the group delay variation in a band-pass filter contains the parabolic 
property as shown in Fig. 2. 3. The group delay characteristic depends on the type 
of filter; while for filters with same type, group delay increases as the order of a 
filter increases or as the bandwidth is reduced. The effect of filters with different 
types will be simulated and discussed further in chapter 3. 

  

(a)       (b) 

Fig. 2. 3: (a) Amplitude response and (b) group delay of a Chebyshev filter with 
passband from 10GHz to 15GHz, stopband from 9.5GHz to 15.5GHz and stopband 

rejection of 20 dB (simulation results from the ideal filter components in ADS) 
 

Similarly, for a low-pass filter, the group delay variation occurs near the edge of 
pass band, i.e., in transition areas of filters. The magnitude response and group 
delay performance of a typical low-pass filter are shown in Fig. 2. 4. 
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(a)       (b) 

Fig. 2. 4: (a) Amplitude response and (b) group delay of a Chebyshev low-pass 
filter with pass band from DC to 15Ghz (simulation results from the ideal filter 

components in ADS) 

Another type of group delay variation is sinusoidal ripple, which is often caused by 
impedance mismatches in the system, such the discontinuity in the transmission 
line [22]. Normally it is also associated with amplitude ripple in the pass-band as 
shown in Fig. 2. 5. Since the GDV caused by reflection are sinusoidal with several 
cycles, it would be complicated to compensate them by GDV equalizers. However, 
it can be reduced or minimized by decreasing the dielectric constant, proper 
matching networks or well-placed attenuators, which reduce the power of reflection 
waves [23].  

 

(a)       (b) 

Fig. 2. 5: (a) Magnitude response and (b) group delay of cascaded transmission 
lines with impedance mismatch (simulation results from the ideal transmission lines 

in ADS) 
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2.3 Group delay equalization 
In communication systems, flat amplitude response and linear phase response 
(consistent group delay) are necessary in order to maintain the waveform of 
transmitted signals. Otherwise, the inter-symbol interference (ISI) would occur [24].  

However, for most communication systems, the flat amplitude and linear phase 
response cannot be achieved due to impairments in the system, such as band-
limited or frequency-selective properties; thus, the equalization is needed to 
compensate for those impairments in systems. In a broad sense, equalization 
defines any signal processing techniques used at the receiver or transmitter to 
alleviate the ISI problem caused by imperfect propertied of systems [25]. 

A simplest equalization is a zero-forcing (ZF) equalizer following the channel with 
non-linear phase response as shown in Fig. 2. 6. 

 

Fig. 2. 6: Block diagram of zero-forcing equalizer 

The equalizer transfer function is inverse form of the channel: 

 ( ) =
1

( ) =
1

| ( )|
( ) (2.17) 

Thus, the original signal s(t) can be recovered at the output of the equalizer, i.e., 
( ) = ( ). 

In group delay equalization, only phase response is of interest, but normally it is 
impractical to construct  an equalizer with inverse phase response of the channel. 
Instead, a group delay equalizer would be designed to make the total phase 
response, combined group delay equalizer with the channel to be linear, i.e., 

( )=   ( ) + ( ) is proportional to the angular frequency . Generally 
the analog group delay equalizer can be realized by all-pass networks or negative 
group delay networks. 

 

2.3.1 All-pass networks 
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An all-pass network (APN) exhibits unit magnitude response over all frequencies, 
while the associated phase response has a specified feature; thus, all-pass 
networks are frequently called group delay equalizers. 

In order to obtain an all-pass network, the absolute magnitudes of the numerator 
and denominator of the transfer function must be related by a fixed constant 
throughout all desired frequencies. It can be achieved by accompanying each pole 
in the left half plane (for stability) with a mirrored zero in the right half plane as 
shown in Fig. 2. 7 [26].  

 

(a) 

 

(b) 

Fig. 2. 7: All-pass pole-zero patterns on S-plane of (a) a first-order all-pass network; 
and (b) a second-order all-pass network 

The transfer function of nth-order AP network can be expressed as 
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 ( ) =
+ + +
+ + +  (2.18) 

Since H(s) is all-pass, the poles and zeros must occur in mirror-image pairs, and a 
polynomial with real coefficients has roots that must be real or must occur in 
complex-conjugate pairs. Suppose all poles and zeros of H(s) are complex except 
for one real pole and one real zero. After factoring numerator and denominator, 
H(s) can be expressed as [5] 

 ( ) = + ×
( ) +
( + ) +

× × ( )/ + ( )/

+ ( )/ + ( )/

 (2.19) 

which is a product of only first- and second-order all-pass functions. 

Normally, H(s) can be realized by cascading several first-order or second-order all-
pass sections. As a consequence, the total delay is the summation of each section 
delay. Sections with order higher than two are seldom used, since the number of 
components is not saved while sensitivity and tuning difficulty are all increased [5]. 

 

First-order all-pass networks  

The first-order all-pass network, as shown in Fig. 2. 7(a), has one real pole at 
 and one real zero at + . The transfer function can be expressed as 

 ( ) = +  (2.20) 

where = . 

Checking the absolute value of ( ), 

 | ( )| =
| |
| + | =

+
+

= 1 (2.21) 

For any value of frequency, the numerator of Equation (2.20) is equal to the 
denominator, resulting in an absolute magnitude of unity at all frequencies. 

The phase response is given by 

 ( ) = 2tan  (2.22) 
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The phase response versus the ratio  is plotted in Fig. 2. 8, where the x-axis is a 

logarithmic scale. The phase is zero at DC and approaches 180° with increasing 
frequency. 

 

Fig. 2. 8: Phase response of first-order all-pass networks 

Then, the group delay can be derived by the definition as 

 =
( )

=
2

+  (2.23) 

Plotting the group delay with respect to frequency at different values of  as 
shown in Fig. 2. 9, it exhibits maximum delay at DC and decreasing delay with  
increasing frequency. For small values of , the delay becomes large at low 
frequencies and decreases quite rapidly above this range. 
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Fig. 2. 9: Group delay of first-order all-pass networks with small  and large  

Second-order all-pass networks 

The second-order all-pass network, as shown in Fig. 2. 7(b), contains a pair of 
complex poles ±  and mirror-image zeros ± . The transfer function is 

 ( ) =
( ) +
( + ) +

=
+

+ +
 (2.24) 

where  is the pole resonant frequency with value of = + ;  is the 

quality factor with value of = . 

It is also a all-pass network, 

 | ( )| =
( ) +

( ) +
= 1 (2.25) 

The phase response is 

 ( ) = 2tan ( ) (2.26) 

and the group delay is  
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 =
( )

=
2 ( + )

( ) +  (2.27) 

The typical group delay of second-order all-pass networks is shown in Fig. 2. 10. 

 

Fig. 2. 10: Group delay of second-order all-pass networks with small  and large  

The peak of group delay occurs at the resonant frequency . As the Q increases, 
the peak delay also increases and the delay response becomes sharper.  

 

2.3.2 Negative group delay 

Instead of increasing over-all group delay, negative group delay (NGD) circuits can 
be used to suppress the group delay increasing within the desired range. However, 
recalling the definition of group velocity and group delay, a negative group delay 
must imply negative velocity. Then, the question might arise as to how a negative 
group delay or velocity is possible at all. Does it violate the principle of causality? 

According to the definition of group delay (Equation (2.13)), negative group delay 
means that waves of increasing frequency have increasing phase response, i.e., 
higher frequency wave has less phase change than lower frequency wave [27], as 
shown in Fig. 2. 11. 
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(a)      (b) 

Fig. 2. 11: (a) Phase response and (b) group delay of a negative group delay circuit 

As a consequence of negative group delay, it implies that the peak of output pulse 
emerges from the media before the peak of input pulse enters as shown in Fig. 2. 
12 [28]. 

 

Fig. 2. 12: The traces of output and input pulse transmitted through a NGD circuit 

From the above figure, it seems that the output pulse is advanced than the input 
pulse. However, it does not violate the principle of causality, since the peak in the 
voltage waveform is not causally related to the one of input pulse. Instead, the 
causality is solely connected with the occurrence of discontinuities in a signal, e.g., 
''fronts'' and ''backs'' [29] [30]. Thus, the front of signal must reach the output not 
earlier than it goes into the input and no signal can precede its front as shown in 
Fig. 2. 12 where the front of the pulse is marked. 
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In summary, the negative group delay circuit would only reshape the pulse without 
violation of the causality. More details about all-pass networks as well as NGD 
circuits realization would be discussed in chapter 4. 
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Chapter 3   

Effects of group delay variation in filters 
for communication systems 

 

3.1 Theoretical effects of group delay variation on digital 
phase modulation 

As mentioned in the chapter 2, group delay variation (GDV) will distort the pulse 
shape for each symbol, resulting the inter-symbol interference (ISI), which would 
cause serious degradation of the transmission. First, let us analyze the effect of 
GDV on digital modulations theoretically. 

Assuming a pulse shape g(t) with duration in [0, Ts], it is allowed to pass through a 
system with impulse response ( ) = ( )  which has the constant amplitude. 
Then the output pulse ( ) can be expressed as 

 

( ) = ( ) ( ) = ( ) ( )

= ( ) ( )  
(3.1)  

where ( )  and ( )  are the Fourier transforms of ( )  and ( )  respectively. 
When ( ) is linear respect of the angular frequency , i.e., ( ) , where 

 is a constant, it is easy to obtain that the output pulse ( ) is delayed waveform 
of ( ), i.e., ( ) = ( ). As shown in Fig. 3. 1(a), the output pulse is exactly 
the same as the input pulse except the delay. 
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(a) 

 
(b) 

Fig. 3. 1: Input and output pulse in time domain going through channels with (a) 
linear phase response and (b) non-linear phase response 

However, if the phase response in non-linear, it contains higher order terms (i.e., 
,  ). As a consequence, the output pulse is not only delayed but also 

distorted and normally it would be broadened comparing with the original one as 
show in Fig. 3. 1(b). It can be seen that the duration of the output pulse for one 
symbol exceeds the symbol interval Ts, which would make neighboring pulse 
overlapped resulting in the  inter-symbol interference. 
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In general, it can be concluded that ISI is one of the effect of GDV on digital 
communications, which can be easily observed through eye diagrams as well as 
the constellation. 

 

3.1.1 Eye diagram 

Eye diagram is a useful graphical illustration to evaluate the degradation of the 
signal, so called because its shape is similar to one of human eyes [31]. An eye 
diagram can be generated by an oscilloscope to observe the output signal and 
overlap traces of a signal within a certain period (normally it is chosen to be 2Ts, 
i.e.,  two  symbol  intervals  )  as  shown  in  Fig.  3.  2.  If  the  data  symbols  are  
independent and long enough, it can present all possible degradation of signal due 
to the impairment of channels. 

 

(a)        (b) 

Fig. 3. 2: (a) Data sequence wave form and one detailed circle of length 2Ts with 
raised-cosine pulses; (b) typical eye diagram with salient features 

As shown in Fig. 3. 2(b),  indicates the vertical eye opening, which also 
represents the immunity to the noise. The optimum sampling point is at the instant 
when the vertical eye opening is maximum. However, it is can never be achieved 
due to the imperfection of timing recovery circuit. Thus, the horizontal eye opening 
is also important representing the immunity to errors in the timing phase which is 
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marked by . The slope  between them indicates the sensitivity to jitter in the 
timing phase [31]. 

According to the Nyquist criterion, if data is shaped by Nyquist pulse, there is no 
inter-symbol interference in the transmission. However, if the systme contains 
group delay variation, the pulse would be reshaped and the Nyquist criterion is no 
longer satisfied, resulting in the ISI, which can reduce both the vertical and 
horizontal eye opening. In cases of severe ISI, the eye would even close 
completely as shown in Fig. 3. 3. 

 

   

(a) (b) (c) 

Fig. 3. 3: Eye diagrams (a) without GDV, (b) with small GDV ( 2.5Ts ) and (c) with 
large GDV ( 8Ts) in absence of noise where GD is modeled as linear 

 

3.1.2 Constellation  

Constellation diagrams are used to visualize the received signal with modulation 
formats, which provide information about both the amplitude and the phase. In 
QPSK, also known as 4QAM, the base band signal can be written as 

 s (t) = ( ) , = 2
1
2 , = 1,2,3,4 (3.2)  

Thus, each symbol can be expressed as a vector: 

 s = [s , s ] = [ E cos , E sin ] (3.3)  

where E  is the average energy of the symbol and  indicates one of 4 possible 
phases [24]. Plotting all possible symbols on the complex plane, the constellation is 
produced as Fig. 3. 4. 
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Fig. 3. 4: Constellation plot for QPSK (4-QAM) 

As shown in Fig. 3. 4, the real and imaginary axis divide the complex plane into 4 
areas, each of which represents a certain symbol. Hence, if one received symbol 
locates in a certain area,  it would be judged to be the corresponding symbol. Due 
to the existence of noise, the received symbol has chance to locate in other areas, 
which would cause the error after the decision.  

When transmitting the signal through a channel with group delay variation, the 
received symbol can be modified by a displacement in the constellation [32]. 
Hence, the received symbol can be expressed as 

 r = [s + a, s + b] (3.4)  
where a and b is characterized parameter depending on both the type and the 
value of GDV. 

As shown in Fig. 3. 5, the received symbol is shifted from the original one due to 
the group delay variation. As a consequence, the received symbol is closer to other 
possible symbols and the noise tolerance is reduced, which would degrade the 
performance of the transmission especially for the high modulation format, e.g., 
64QAM and 256QAM. 
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Fig. 3. 5: Displacement of received symbol and transmitted symbol 
 

3.2 Simulation platform 
An exact analysis of GDV effects in practical systems is rather difficult while it is 
simpler to simulate it in MATLAB. Since the effect of the linear group delay (also 
called chromatic dispersion) in optical fibers has been widely investigated and 
discussed in optical communications, this work will mainly focus on the effect of 
GDV in different types of band-pass filters, such as Chebyshev, Elliptic, 
Butterworth, etc.. 

 

3.2.1 Block diagram 

The block diagram of simulation platform is shown in Fig. 3. 6. 
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Fig. 3. 6: The block diagram of simulation platform 

As the discussion in section 3.1, the eye-diagram as well as the constellation can 
be used to evaluate the effect of GDV. However, in order to compare the 
degradation of different GDVs quantitatively, the figure of bit error rate (BER) 
versus signal to noise ratio (SNR) would be used. 

A random bit sequence (  and ) is sent from the transmitter through the channel 
and compared with the detected sequence (  and ) in the receiver (BER counter). 
The incorrectly identified bits are regarded as bit errors, then the BER can be 
defined as 

 =  (3.5)  

Due to the stochastic nature of channel, the BER is usually related to the bit error 
probability. When measuring the BER for a sufficiently long sequence, the value of 
BER would approach to the bit error probability, which represents the expected 
value for a certain signal to noise (SNR). Thus, in order to obtain the bit error 
probability with acceptable accuracy, normally at least 100 errors are required to 
evaluate the BER, e.g., for measuring BER with expectation of 10 , = 10  bits 
should be transmitted and compared. 

Additive white Gaussian noise (AWGN) channel model is used in the simulation, 
which means the only impairment is a linear addition of white noise with a constant 
spectral density and a Gaussian distribution of amplitude [33], i.e., ~ 0,  for 
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real and imaginary domain respectively, so that the total power spectral density of 
noise is N0 . Then the signal to noise (SNR) ratio can be defined as [31] 

 =  (3.6)  

where  is the average energy of one symbol. 

Hence, by changing the symbol energy with fixed power density of noise, the SNR 
can also be changed correspondingly, and consequently different BERs (normally 
higher SNR results in lower BER) are obtained. 

All data is shaped by root-raised-cosine pulse with the roll-off factor of 0.25 
accompanying by a matched filter (also is root-raised-cosine pulse) in the receiver, 
so that the output waveform satisfies the Nyquist criterion in the absence of GDV 
[24]. Also, it can make the transmitter signal band-limited within certain range, 
which would eliminate the effect of the selectivity of filters.  

The GDV in filters is added in the front of the receiver. As the discussion in Section 
3.1, the GDV would increase the bit error rate. It can also be understood by setting 
a target of BER, and measuring how much SNR is needed to achieve that target. 
Thus, the GDV would increase the requirement of SNR (increasing transmit power 
if the noise is stable). Comparing with the case without GDV, the extra power can 
be defined as the penalty power caused by GDVs in order to achieve the same 
performance in terms of BER.   

 

3.2.2 Group delay of filters under test 

As mentioned in chapter 2, GDV in pass-band filters would only occur at the edge 
of the pass band. In the simulation, the carrier frequency is set to be 10 GHz with 
the bandwidth of 5 GHz. Thus, in order to evaluate the effect of GDV, the 
transmitted signal needs to occupy the whole passband (7.5 - 12.5 GHz). 

The amplitude response and GDV of filters with different types are present in Fig. 
3. 7. 
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(a) (b) 

Fig. 3. 7: (a) Amplitude response and (b) group delay response of filters with same 
order of 5 but different type (simulation results from the ideal filter components in 

ADS, stopband rejection for Elliptic is 20dB) 

It can be seen that the elliptic filter has best selectivity when the filter order is kept 
as the same, while its GDV is also maximum at around 3.4 ns. The Chebyshev 
filter has the second largest GDV with the peak of 1 ns and good selectivity while 
the Butterworth filter has both moderate GDV and selectivity. In addition, the 
Bessel-Thomson filter, also called maximally flat group delay filter, has the worst 
performance on the selectivity, but its GDV can be ignored comparing with ones of 
other filters.  

Above all, it can be concluded that normally a steep filter edge would cause a large 
group delay variation. It would be a trade-off between the GDV and the selectivity 
when designing filters for communication systems.  

The effect of GDV with different filters will be evaluated based on 4QAM and 
16QAM modulation respectively. 
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3.3 Simulation results 
The BER versus SNR with different filters for 4QAM is shown as Fig. 3. 8. 

  

 

(a) 

 

(b) 

Fig. 3. 8: (a) Bit error rate versus SNR with different filters for 4QAM and (b) the 
zoom-in plot 
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It can be seen that the Bessel-Thomson filter has the best performance in terms of 
the bit error rate. That is reasonable since it has almost a flat group delay which 
means a linear phase response. As the discussion in section 3.1, the output pulse 
would be kept as exactly same as the original one, so that its performance is 
similar to the case with AWGN channel only, which could be a reference to 
evaluate other types of filters. 

It also shows that larger GDV has a worse performance. Setting a target of BER to 
10-4 as shown in Fig. 3. 8(b), it can be see that for Bessel-Thomson filter 11.3 dB 
SNR is required to achieve the target while for Elliptic filter 12.1dB is needed which 
means extra 0.7 dB power has to be paid for the GDV. The penalty power for  
Chebyshev and Butterworth filter is 0.3 dB and 0.5 dB respectively. It can be found 
that the GDV of filters has little effect on the performance with maximum penalty 
power of 0.7 dB. The reason for is that for 4QAM modulation, the spectral 
efficiency is still low and the effect of GDV can be ignored compared to that of 
Gaussian noise.  

Similarly, The BER versus SNR with different filters for 16QAM is plotted in Fig. 3. 
9.
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(a) 

 

(b) 

Fig. 3. 9: (a) Bit error rate versus SNR with different filters for 16QAM and (b) the 
zoom-in plot 
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It can be seen that the effect of GDV on 16QAM is similar to the one on 4QAM. 
However, the penalty power is increased. In order to achieve the BER of 10-4, 18.2 
dB SNR is needed for Bessel-Thomson filter while Elliptic filter requires 19.8 dB. 
More details about the performance of filters are summarized in Table 3.1.  

 

Type of filter AWGN Bessel-Thomson Butterworth Chebyshev Elliptic 

Peak of GDV (ns) / Almost 0 0.4 1.1 3.4 

4QAM 
SNR for BER of 

10-4 (dB) 11.3 11.3 11.6 11.8 12.1 
Penalty power  

(dB) / Almost 0 0.3 0.5 0.8 

16QAM 

SNR for BER of 
10-4 (dB) 18.2 18.2 18.6 18.9 19.8 

Penalty power  
(dB) / Almost 0 0.4 0.7 1.6 

 Table 3.1: Summary of performance of filters for 4QAM and 16QAM 

 

It can be concluded that the GDV in band-pass filters has less effect on the 
performance of communication system with low-order modulation, since the 
bandwidth efficiency is low and only a little signal locates in the transition area. In 
4QAM case, the Elliptic filter with maximum group delay variation, which has the 
best selectivity, can only cause the penalty power 0.7 dB. Thus, group delay 
equalization is of no need. 

On the other hand, for systems using high-order modulation with high power 
spectral efficiency, such as 16QAM, the GDV would cause the penalty power with 
several dB, so that the effect of GDV needs to be taken into consideration. In 
addition, for some special cases, such as satellite communication and audio signal 
processing, the requirement for preservation of the waveform is highly restricted. 
As a consequence, the group delay equalization is necessary. 
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Chapter 4   

Group delay equalization methodologies 
for filters 

 
In this chapter, several methodologies of group delay equalization based on 
electronic circuits will be discussed and compared. Generally, group delay 
equalization for filters can be implemented by two methods: second-order all-pass 
networks and negative group delay circuits. As shown in Fig. 4. 1, the second-
order all-pass network generates a positive group delay variation with a convex 
feature (Fig. 4. 1(b)), which is opposite to the one of band-pass filters. 
Consequently, the overall circuit contains an almost flat group delay response in 
the desired frequency range while the total group delay time is increased. 

+ = 

(a)  (b)  (c) 

  Fig. 4. 1: Group delay response of (a) a band-pass filter, (b) a second-order all-
pass network and (c) the overall circuit 

Instead of increasing total group delay time, negative group delay circuits can be 
used for group delay equalization as shown in Fig. 4. 2. It can be seen that two 
peaks of group delay variation in the band-pass filter are reduced owing to the 
negative group delay circuit, while the total group delay time is just slightly 
increased. 
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= 

 

(a)  (b)  (c) 

Fig. 4. 2: Group delay response of (a) a band-pass filter, (b) a negative group delay 
circuit and (c) the overall circuit 

Section 4.1 and 4.2 show all-pass networks implemented by lumped elements and 
distributed elements respectively. Section 4.3 shows negative group delay circuits; 
while a novel equalization method is proposed in Section 4.4, which is based on 
reflection-type negative group delay circuits with negative resistance. 

   

4.1 All-pass networks with lumped elements 
In chapter 2, two types of all-pass networks (APNs) are described, namely, those 
of first and second order. However, only the second-order type of APN could be a 
suitable building block for group delay equalization [34]. In analog circuits, the 
basic section of the second-order APN can be implemented by lumped-elements, 
i.e., inductors and capacitors, as shown in Fig. 4. 3 [5] [26].  

 

Fig. 4. 3:  Second-order all-pass section 

The design equations are given in [26] and [5] as follows: 
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 L = 2  (4.1)  

 C =
1

 (4.2)  

 L = 2  (4.3)  

 C =
2

[(1 )]
 

(4.4)  

where R is the value of terminating impedance (normally 50 Ohm) and k is a factor 
in the range of 0 to 1 that determines the peak group delay  at the resonant 
frequency  according to 

 =
4

 (4.5)  

Theoretically, the second-order all-pass section has an all-pass property, which 
means its amplitude response is a unit over all frequencies. Unfortunately, real 
lumped components have not only imaginary reactive impedances the but also a 
small amount of real resistive ones, which would cause the loss, especially at the 
resonant frequency. 

The performance of several all-pass sections consisting of lumped elements with 
different inductor quality factors (Q) are shown in Fig. 4. 4. It is clear to see that 
lower Q value would cause larger attenuation. A typical quality factor for inductors 
implemented in the monolithic microwave integrated circuit (MMIC) is smaller than 
30 at frequency larger than 10 GHz, which would cause more than 6 dB loss at the 
resonant frequency 15 GHz. The all-pass section with Q=300 can achieve the loss 
around 0.6 dB. However, the quality factor has less effect on the peak of group 
delay, which is 0.42ns and 0.48ns in cases Q=300 and Q=30, respectively. 
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(a) (b) 

Fig. 4. 4: The amplitude response (a) and group delay response (b) of the second-
order all-pass section with different quality factor (Q: 30-300) 

In addition, the conventional APN has another problem which is related to the 
manufacture and selection for lumped components. According to the equations 
(4.1)-(4.4), the ratio of inductors and capacitors can be obtained as [34] 

 =
1

4  (4.6)  

 =
1

2  (4.7)  

From the equation (4.5), it can be seen that lower k would cause higher peak delay. 
In majority cases, k is chosen to be less 0.1, which means the inductor ratio is 
larger than 25 while the capacitor ratio is more than 50. Such large ratios would 
cause the difficulty to select or manufacture  such passive components. In [34], an 
improved topology for second-order APNs is proposed, overcoming these 
disadvantages. However, the loss is still a remaining issue. 

As the conclusion, the performance of the all-pass network is limited by the quality 
factor of lumped components, Normally the quality factor more than 300 is required, 
which can be satisfied by discrete lumped components mounted on printed circuit 
board (PCB). For MMIC implementation, the compensation for the loss of the all-
pass network has to be taken into consideration [35]. 
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4.2 All-pass networks with distributed implementation 
Unlike the lumped elements, distributed elements are more flexible to design the 
all-pass network, but they consumes much more chip/motherboard area. The all-
pass network based on distributed elements was first proposed in 1970s [36] and 
demonstrated for narrowband phase-shifting applications. In 2010, group delay 
networks are proposed based on noncommensurate (different lengths of lines) 
transmission lines [3]. The basic section, which is also called C-section, is the 
shorted coupled-line pair as shown in Fig. 4. 5. 

 

Fig. 4. 5: Coupled transmission line all-pass networks with port 3 and 4 shorted 

The length of two transmissions are the same and they are equal to a quarter 
wavelength at the center frequency. Port 3 and port 4 are shorted/connected. 
Thus, it can be regarded as a two-port network. Its transfer function can be 
expressed as [3] 

 ( ) =
1 + 1
1 + + 1

 (4.8)  

where  is the propagation constant of the transmission line and  is the length.  is 
the coupling coefficient with value between 0 and 1. 

It would be easy to verify that it is an all-pass section due to | ( )| = 1. Also the 
group delay can be obtained by the equation (2.13) as 

 = =
2

+ (1 )  (4.9)  

where =  and the  is the electrical length with value of  [3]. 

A typical group delay response is as shown in Fig. 4. 6. 
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Fig. 4. 6: Group delay of distributed APNs versus the electrical length and the 
coupling factor k. 

It can be found that the characteristic of group delay variation is same as that of 
the second-order all-pass network with a peak at the resonant frequency ( = ). 
As k increases, which means stronger coupling, the peak of group delay would 
also increase while the bandwidth decreases.   By cascading several stages of 
such all-pass sections with different resonant frequencies, the bandwidth can be 
increased and even quasi-arbitrary group delay response might be synthesized [3]. 

However, for edge-coupled transmission lines the coupling strength is limited by 
the PCB layout, since the minimum distance between two lines is restricted. Thus, 
an APN based on edge-coupled lines usually suffers from a large size and limited 
group delay variation. Consequently, an all-pass network based on broadside-
coupled striplines is proposed [37] , in order to enhance the coupling as well as 
increase the group delay swing. However, due to the loss in the transmission line, 
a large attenuation would occur at the resonant frequency as shown in Fig. 4. 7, 
which is similar to the case in all-pass networks with lumped elements.  
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(a) (b) 

Fig. 4. 7: The amplitude response (a) and group delay response (b) of the APN 
consisting of  coupled microstrip lines on substrate with = 2.3, TanD=0.001; 

varied by the coupling factor k (0.16, 0.22, 0.35) 

Comparing with Fig. 4. 5, it is clear to find that the distributed all-pass network has 
a larger bandwidth than that of lumped all-pass network while the peak of the 
group delay is much smaller at around 0.085 ns for the case with coupling factor  
0.35. Normally all-pass networks with stronger coupling would cause larger 
attenuation. Thus, in realistic implementation of distributed APNs, the coupling 
factor is limited to be a low number while the value of group delay variation is also 
limited. Furthermore, a substrate with low loss can be chosen to implement 
transmission lines to decrease the loss and improve the performance of APNs. 

 

 

4.3 Negative group delay circuits 
As the discussion in section 2.3.3, negative group delay (NGD) circuit would not 
violate the principle of causality; instead, it only reshapes the waveform of the 
pulse. Two typical topologies for NGD circuits are shown in Fig. 4. 8. 
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(a) (b) 

Fig. 4. 8: Typical NGD circuits with (a) shunt-series resonance (SSR); and (b) 
series-parallel resonance (SPR) [18] 

In Fig. 4. 8, both NGD circuits are two-port network: one is using shunt-series 
resonance (SSR) and the other is using series-parallel resonance (SPR) [38] [18]. 
By terminating both ports with load Z0, the transmission coefficient (S21) for both 
circuits can be calculated  as [39]: 

 , =
2 + 2( + 1 )

+ 2 + 2( + 1 )
 (4.10) 

 , =
2 (1 + 1 + )

2 1 + 1 + + 1 (4.11) 

where  is equal to   at the resonance frequency and  is the load impedance 
with normal value of 50 Ohm. 

The minimum valley of the group delay also occurs at the resonance frequency. 
Thus, based on the group delay definition and the equation  =  , the minimum 
group delay for SSR circuits can be obtained: 

 , = , =
2

(2 + ) (4.12) 

and for SPR circuits:  
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 , = , =
2

2 +  (4.13) 

It is simple to prove that the group delay for both circuits are negative when R, C 
and L are positive. Fig. 4. 9 shows the typical amplitude response and group delay 
for the SPR circuit plotted in Fig. 4. 8(b), where inductance and capacitance are 
0.23 nH and 0.49 pF, respectively, and the resistance is 150, 250 and 350 Ohm.   

(a) (b) 

Fig. 4. 9: (a) The amplitude response of S21 and (b) group delay for the SPR circuit 
shown in Fig. 4. 8(b) (L=0.23 nH, C=0.49 pF, R=150, 250, 350 Ohm) 

It can be seen that within the frequency from 13.5 GHz to 15.5 GHz the circuits 
have negative group delay with minimum value at 15 GHz. However, it also can be 
seen that the gain drop at 15 GHz is a companion to negative group delay. 
Normally, a larger resistance (e.g., 350 Ohm) would cause a larger group delay 
variation (with minimum NGD around -0.26 ns) while it also cause a larger 
attenuation (13 dB). Thus, in order to make use of NGD circuits, the amplitude 
compensation is necessary. 

In [40], an active negative group delay (ANGD) circuit is proposed, where the 
amplifier is used to increase the gain, as shown in Fig. 4. 10. However, this 
amplifier increases gain over a broad frequency range, as shown in Fig. 4. 11(a);  
in other words, the gain increase caused by using amplifier is not limited to the 
frequency range where the negative group delay occurs. In this example, the 
negative group delay occurs at frequency around 1 GHz, but the amplitude of S21 
has also a minimum point at this frequency with value of 4 dB. The variation of the 
amplitude of S21 is an undesired feature [41]. In next section, a novel negative 
group delay circuit with reflection amplifier will be proposed, in order to achieve a 
flat gain within a wide frequency range.   
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Fig. 4. 10: Active negative group delay (ANGD) circuits 

  

(a) (b) 

Fig. 4. 11: (a) The amplitude response of S21 and (b) group delay response of 
active negative group delay (ANGD) circuits [40] 

 

4.4 NGD circuits with negative resistance 
NGD circuits discussed in section 4.3 can be called transmission-type NGD 
circuits, since the transmission signal (S21) is used. Normally they would have 
some problems in broadband matching, resulting in the narrow bandwidth. Instead, 
the reflection-type NGD (RNGD) circuits, which means the reflected signal S11 
would be used, can be designed to overcome the bandwidth limitation [42]. 

4.4.1 Reflection-type NGD circuits 
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The topology for reflection-type NGD circuits is plotted in Fig. 4. 12. 

 

Fig. 4. 12: The reflection-type negative group delay circuit with a parallel resonator 

Basically it is a parallel RLC resonator and its input admittance can be represented 
as  

 , =
1

,
=

1
+ +

1
 (4.14) 

Then, the reflection coefficient  can be derived as follows [42]: 

 

, = =
Y ,

Y + ,
 

=
Y 1

R + j( 1 )

Y + 1
R + j( 1 )

 
(4.15) 

where Y  is the load admittance, usually, its value is 20 mS corresponding to 50 . 

The phase response of S11 can be expressed as 

 , = tan
(1 )
(Y 1) tan

( 1)
(Y + 1)  (4.16) 

Equation for group delay can be derived by partial differentiation  and 
substituting the resonance condition =  . 

 , = , =
4 Y

( Y ) 1 (4.17) 

 , =
1

+ 1 (4.18) 
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It can be see that when | | is smaller than 1, i.e., R is smaller than 50 Ohm, the 
negative group delay would be achieved. The value of the group delay is 
determined by the resistance and load admittance/impedance, as well as the 
capacitance/inductance. As | Y |   approaching to 1, the group delay variation 
becomes larger as shown in Fig. 4. 13. 

(a) (b) 

Fig. 4. 13: (a) The amplitude response of S11 and (b) group delay for reflection-type 
NGD circuits (L=0.23 nH, C=0.49 pF, R=20, 30, 40 Ohm and Z0=50 Ohm) 

The reflection-type NGD (RNGD) circuit has a similar property as that of 
transmission-type NGD circuits which is shown in Fig. 4. 11, in terms of the 
amplitude response and group delay variation; the larger group delay variation is 
accompanied by the larger attenuation. However, comparing them to each other, it 
can be found that RNGD circuits have a larger bandwidth while smaller group 
delay variation when the capacitance and inductance are kept as the same for two 
cases. In next section, the resistance in the RNGD circuit will be replaced by a 
negative resistance, which would cause an opposite property in the amplitude 
response. 

 

4.4.2 Reflection-type NGD circuits with negative resistance 
 

Recalling Equation (4.17) and (4.18) , it can be found that if the resistance is 
negative, ,  could be more than 1, which means a positive gain is obtained, 
while the group delay is still negative when the condition  | Y | < 1 is satisfied, i.e., 

50 Ohm < < 0 Ohm when Z0 is equal to 50 Ohm. The corresponding amplitude 
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response of S11 and group delay with different values of negative resistances are 
plotted in Fig. 4. 14. 

(a) (b) 

Fig. 4. 14: (a) The amplitude response of S11 and (b) group delay for RNGD circuits 
with parallel resonator (L=0.23 nH, C=0.49 pF, R=-20, -30, -40 Ohm and Z0=50 

Ohm) 

It is obvious that the amplitude response of RNGD circuit with negative resistance 
shows a convex property which is opposite to the one of previous NGD circuits, 
while the group delay is still kept to be negative. In the case, the larger group delay 
variation would be accompanied  by larger gain at the resonant frequency. Thus, 
the RNGD circuit with negative resistance can be used to compensate the 
attenuation of the conventional NGD circuit. The implementation of negative 
resistance will be presented in the next section. 

In addition, a series LC resonator loaded by negative resistance could also 
generate the negative group delay as shown in Fig. 4. 15. 

 

Fig. 4. 15: The reflection-type negative group delay circuit with series resonator 
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Similar to the case of RNGD with parallel resonator, the reflection coefficient and 
group delay can be derived as follows. 

 , = + +
1

 (4.19) 

 

, = = ,

, +

=
+ ( 1 )

+ + ( 1 )

(4.20) 

 , =
( 1)
( )

( 1)
( + ) (4.21) 

 , = , =
4

( + )( ) (4.22) 

 , = + (4.23) 

From Equation (4.22), it can be found that when , the negative group delay 
would be obtained, and the gain shows up “convex”. The typical amplitude 
response of S11 and corresponding group delay are plotted in Fig. 4. 16, as the 
resistance varies from -20 Ohm to -30 Ohm. 

  

(a) (b) 

Fig. 4. 16: (a) The amplitude response of S11 and (b) group delay for RNGD circuits 
with series resonator (L=0.23 nH, C=0.49 pF, R=-20, -25, -30 Ohm and Z0=15 

Ohm) 
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Note that, here the load impedance Z0 is chosen to be 15 Ohm. In order to 
generate NGD, the negative resistance has to be smaller than -Z0. However, for 
the case with standard load impedance, i.e., 50 Ohm, a negative resistance with 
value smaller than -50 is difficult to be obtained (since smaller negative resistance 
means larger gain) while it would be easier when loading the impedance Z0 of 15 
Ohm. From Fig. 4. 16, it can be seen that three negative resistance (-20, -25, -30 
Ohm) can all generate negative group delay and when the negative resistance 
approaches - Z0, larger group delay variation would be obtained as well as a larger 
gain. The performance of RNGD circuits is also determined by the capacitor and 
inductor, since they not only determine the resonance frequency, where a 
minimum negative group delay would occur, but also determine the quality factor 
(Q) of the resonator, which would affect the bandwidth and delay time. The rule of 
thumb shows that the bandwidth is inversely proportional to the minimum value of 
NGD, i.e., larger group delay variation would cause smaller bandwidth and vice 
versa. 

 

4.4.3 Negative resistance implementation - Reflection amplifier 

The negative resistance can be realized by using a reflection amplifier. If ignoring 
reflection amplifier’s parasitic capacitances, it can be equivalently modeled as a 
resistor with negative impedance. The circuit of a single-ended reflection amplifier 
based on a pHEMT transistor is shown in Fig. 4. 17 [43]. 

 

Fig. 4. 17: The schematic of a single-ended reflection amplifier 
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The gate and drain are biased through inductor ac chokes. The resistor at source 
is used to limit drain current and control the gate-source bias while the capacitor at 
the source helps to bring the amplifier into the unstable region [43]. An open-stub 
transmission line is connected to the drain in order to select the frequency band 
yielding the negative input resistance at the desired frequency [44].  

By choosing appropriate values for the capacitor and the resistance as well as the 
bias point, the input impedance could be negative. More details about the 
derivation are described in [45]. 

  

(a) (b) 

  

(c) (d) 

Fig. 4. 18: (a) The equivalent input resistance and (b) the input reactance; (c) the 
amplitude response of S11 and (d) equivalent input parasitic capacitance for the 

reflection amplifier varied by the capacitor in the source (C = 2, 3, 4, 5 pF). 

The equivalent input resistance and reactance of the reflection amplifier varied by 
the capacitor at the source are shown in Fig. 4. 18(a) and (b), where the gate bias 
Vg and the drain bias Vd is 0 V and 1 V respectively; the resistance R at the source 
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is fixed to be 14 Ohm while the capacitor C is varied form 2 pF to 5 pF with the 
step of 1 pF. Also, Fig. 4. 18(c) and (d) present the amplitude of reflection 
coefficient of the reflection amplifier and the equivalent input capacitance which is 
derived from Fig. 4. 18(d).  

It can be seen that as the capacitance increases from 2 pF to 5 pF, the maximum 
value of reflection coefficient decreases from 10.9 dB to 6.8 dB; and the minimum 
value of the negative resistance changes from -44 to -28 Ohm. The imaginary part 
of the input impedance (Fig. 4. 18(b)) are all negative throughout all frequencies 
which means the input impedance of the reflection amplifier can be equivalently 
modeled as the series of a negative resistor and a parasitic capacitor which is 
shown in Fig. 4. 18(d). At the frequency of 15 GHz, the value of the equivalent 
input capacitance is approximately 2 pF for all cases. 

 

(a) (b) 

 

(c) (d) 

Fig. 4. 19: (a) The equivalent input resistance and (b) the input reactance; (c) the 
amplitude response of S11 and (d) equivalent input parasitic capacitance for the 

reflection amplifier varied by the drain bias (Vd = 1, 2, 3 V). 
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In addition, the performance of the reflection amplifier can be varied by the drain 
bias Vd as shown in Fig. 4. 19, where the gate bias Vg and the resistance R at the 
source are still 0 V and 14 Ohm respectively; the capacitor C is fixed to 3 pF while 
Vd is varied form 1 V to 3 V. 

As drain bias voltage changes from 1 V to 3V, the maximum value of | | 
decreases from 8.9 dB to 6.1 dB, correspondingly, the minimum value of the 
negative resistance increases from -36 Ohm to -22 Ohm. The input reactance also 
shows the capacitive property and the input capacitance achieves 2 pF at 15 GHz 
for all cases. 

Above all, it can be concluded that a reflection amplifier could be implemented as a 
negative resistance and its performance is determined by the bias point as well as 
the selection of the lumped components. However, the negative resistance is 
usually accompanied by a parasitic capacitance, which needs to be taken into the 
consideration when designing the resonator in the RNGD circuit.  

 

4.4.4 Group delay equalizer based on NGD circuits 

As the discussion in the section 4.4.2, the reflection-type negative group delay 
(RNGD) circuit with negative resistance can be used to compensate the 
attenuation of the conventional NGD circuits. Due to the reflective character of 
RNGD circuits, a circulator has to be used to transmit the reflected signal of RNGD 
into the output ( port 2) as shown in Fig. 4. 20. The RNGD circuit consists of a 
negative resistance (reflection amplifier) and a resonator which could be either 
parallel or series L,C, R circuit. 

 

Fig. 4. 20: The topology for group delay equalizer based on NGD circuits 



50 

 

The amplitude response of S11 for RNGD circuit with negative resistance as well as 
the amplitude response of S21 for NGD circuit and overall circuit are shown in Fig. 
4. 21(a), followed by their group delay response in Fig. 4. 21(b). The circulator’s 
loss is ignored. 

(a) (b) 

Fig. 4. 21: (a) The amplitude response of S11 for RNGD circuit with negative 
resistance and S21 for NGD circuit and overall circuit; and (b) group delay response 

of RNGD, NGD and overall circuit 

It can be seen that the group delay variation of RNGD circuit with negative 
resistance is comparable with that of the passive negative group delay circuit. After 
cascading two circuits, the negative group delay is a sum of that for two circuits. 
The convex gain in RNGD circuit is utilized to compensate attenuation of the 
conventional NGD circuit, resulting in an almost flat amplitude response of the 
overall circuit with the amplitude variation less than 0.6 dB. Thus, the proposed 
topology demonstrates a quasi all-pass characteristic. Furthermore, the minimum 
negative group delay time of overall circuit is -0.48 ns, which is a sum of the group 
delay of a conventional NGD circuit and RNGD circuit. It is almost 2 times of that 
for a conventional NGD circuit. Therefore, the proposed circuit can be used as a 
group delay equalizer without affecting the amplitude response.  

For example, the proposed NGD equalizer is used to compensate the group delay 
variation of a low-pass filter, and the results are shown in Fig. 4. 22. It can be found 
that the group delay variation in the edge of pass band is reduced significantly 
while the amplitude response is affected only marginally. Within pass band of the 
low-pass filter, i.e. 0-15GHz, the group delay variation is reduced from 0.6 ns to 0.2 
ns; corresponding 21S  reduction is less than 0.53 dB. Similarly, a band-pass filter 
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has group delay variations in two sides of  passband. As a consequence, two NGD 
equalizers with different resonance frequencies are required to compensate each 
side of GDVs respectively. 

(a) (b) 

Fig. 4. 22: (a) The amplitude response and (b) the group delay response of a low-
pass filter and a low-pass filter with the equalizer 

 

It is difficult to design circulators in MMIC technology. An alternative approach is to 
use 900 hybrid coupler which is easily implemented in planar technology. An 
example of a reflection-type negative group delay (RNGD) circuits connected to a 
hybrid coupler is presented in [42]. In this case, two identical RNGD circuits with 
negative resistance are needed, as shown in Fig. 4. 23.  

 

Fig. 4. 23: The alternative topology for group delay equalizer based on NGD 
circuits 
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Due to the property of the 900 hybrid coupler, two reflected signal would cancel 
each other in the input ( port 1') while sum up together in the output (port 2). The 
900 hybrid coupler [46] is implemented as shown in Fig. 4. 24  and the simulation 
result is shown in Fig. 4. 25. 

 

Fig. 4. 24: The quadrature (900) hybrid coupler with two identical RNGD circuits 

  

(a) (b) 

Fig. 4. 25: (a) The amplitude response of S21' and (b) the group delay response 
corresponding to the topology in Fig. 4. 24 

It can be seen that the reflected signal of RNGD circuits is transmitted to the output 
port (Port 2). Cascading the hybrid with conventional NGD circuits as shown in Fig. 
4. 23, the total amplitude response and the group delay response is presented in 
Fig. 4. 26.  
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(a) (b) 

Fig. 4. 26: (a) The amplitude response of S21 and (b) the group delay response 
corresponding to the topology in Fig. 4. 24 

It can be seen that the negative group delay is achieved with the minimum value of 
-0.15 ns, while the total amplitude response is kept as almost flat between 11 GHz 
an 19 GHz (amplitude variation is smaller than 1dB). Thus, the proposed planar 
topology can be used for group delay equalization. However, its operation 
bandwidth is limited by the bandwidth of the 900 hybrid coupler, since the quarter-
wave length is required in the hybrid coupler. In order to increase the bandwidth, 
the hybrid with multiple sections can be used.   
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Chapter 5  

Conclusions and future work  

 

Several microwave components can introduce group delay variation, which would 
distort the signal and degrade the system performance. A band-pass filter is one 
example, which creates a group delay variation near the edge of pass band, i.e., in 
transition areas of filters. According to simulations of ideal filter components (Q is 
infinite) in ADS, it shows that the Elliptic band-pass filter has the largest group 
delay variation compared with other types of filters (with same order), e.g., 
Chebyshev, Butterworth and Bessel-Thomson filters. For example, a 5th-order 
Elliptic band-pass filter with stopband rejection of 20 dB and pass-band frequency 
from 7.5 GHz to 12.5 GHz would introduce a maximum group delay variation of 3.4 
ns, while a Chebyshev band-pass filter with the same parameters would only 
introduce group delay variation of 1.1 ns. However, the Elliptic band-pass filter has 
the steepest slope amplitude response at the edge the pass-band. 

With the help of MATLAB, effects of group delay variations from band-pass filters 
for 4QAM and 16QAM modulation are investigated in terms of the bit error rate and 
penalty power. In the simulations, group delay variation is added in the receiver 
front end, while other components in the transceiver are assumed to be perfect. 
The results show that group delay variation with the peak of 3.4 ns, which is 
introduced by the 5th-order Elliptic band-pass filter, would cost extra power of 0.8 
dB and 1.6 dB for 4QAM and 16QAM modulation respectively, in order to achieve 
the same performance ( BER = 10-4) as the system without any group delay 
variation. In contrast, the Bessel-Thomson filter has smallest group delay variations 
and costs almost 0 dB penalty power to achieve the same performance. Based on 
simulation results, it can be inferred that for systems using high-order modulation 
with high power spectral efficiency, such as 64QAM or 256QAM, the group delay 
variation would cause the penalty power with several dB, so that the effect of group 
delay variations need to be taken into consideration and group delay equalizers are 
necessitated.  

Also, analog group delay equalizers are investigated, which are realized based on 
two methodologies: 1) all-pass networks; 2) negative group delay circuits. Second-
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order all-pass networks based on lumped and distributed elements are 
implemented. The simulation result shows that an all-pass network with distributed 
elements has a larger bandwidth while a smaller group delay variation comparing 
with its lumped elements counterpart. However, the performance of both networks 
is limited by the quality factor (Q) of elements; smaller Q values would cause larger 
attenuation at the frequency where the maximum group delay occurs. The 
''convex'' group delay of all-pass networks can be used to compensate ''concave'' 
group delay of band-pass filters, but unavoidably the total group delay time of the 
system will increase. 

In contrast, a negative group delay circuit is able to suppress the group delay 
increasing in transition areas of filters without increasing the total group delay time. 
Unfortunately, a negative group delay circuit suffers a large attenuation, e.g., 8 dB 
loss to achieve group delay with the value of -0.09 ns at 15GHz. In this work, a 
novel group delay equalizer circuit topology is proposed to reduce the attenuation, 
which consists of a reflection-type negative group delay circuit with negative 
resistance and a circulator, as well as a traditional NGD circuit. The proposed 
equalizer has a flat amplitude response with a variation less than 0.6 dB, keeping a 
feature of negative group delay. For example, the proposed equalizer is used to 
compensate the group delay variation from a low-pass filter with passband from 
DC to 15 GHz. The simulation result presents that the group delay variation of the 
filter is reduced from 0.6 ns to 0.2 ns while the amplitude response is reduced less 
than 0.53 dB. Those results demonstrate that the proposed group delay equalizer 
has potential to be applied in microwave communication systems.   

 

Future work can be divided into two parts. First, effects of group delay variation on 
communication systems need to be analyzed and investigated more systematically, 
for instance, in the case of higher-order modulation format signals, such as 1024 
QAM. Furthermore, it is necessary to investigate the effect of different types of 
group delay variations, such as linear, rippled and higher-order group delay 
variations. 

Second, the proposed equalization topology needs to be validated by experiments. 
Since the load impedance highly affects the performance of the negative group 
delay circuit, the impedance matching networks might be included in the reality 
circuit. Furthermore, the proposed RNGD circuit with negative resistance can be 
used individually as a NGD generator with gain. More applications related to the 
proposed NGD generator need to be investigated further. 
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