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Evaluation of a new recursion induction principle for automated induction
ANDREAS WAHLSTRÖM
LINNÉA ANDERSSON
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract

Structural induction is a powerful tool for proving properties of functions with
recursive structure, but it is useless when the functions do not preserve the
structure of the input. Many of today’s cutting-edge automated theorem provers
use structural induction, which makes it impossible for them to prove proper-
ties about non-structurally recursive functions. We introduce a new induction
principle, where the induction is done over a function application. This prin-
ciple makes it possible to prove properties about non-structurally recursive
functions automatically. We compare structural and application induction and
the result indicates that application induction is the more powerful induction
method, proving more properties, even though structural induction tends to
be faster.

Keywords: Computer science, Automatic theorem proving, Application induc-
tion, Structural induction, Induction, Master’s thesis.
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Chapter 1

Introduction

Induction is a principle used in mathematics and computer science to formally
prove theorems or specifications. There are multiple methods to apply induc-
tion, such as structural induction, recursion induction and induction by size.

There are different reasons for why we would like to be able to formally
prove specifications (properties) of a program. It could for example be used for
testing and verifying the expected behaviour of the code or for proving whether
a property holds [1].

Today, structural induction is a commonly used method when proving
properties of structurally recursive functions, functions which, in their re-
cursive call, use a substructure of their input. For an arbitrary variable n,
structural induction tries to prove the correctness of a property over n, given
that the property holds for all substructures of n. Let us look at the following
example, written in Haskell [2], of proving the correctness of the sorting algo-
rithm insertion sort.

prop_insertionSort ys = ordered (insertionSort ys)

insertionSort :: [Nat] -> [Nat]
insertionSort [] = []
insertionSort (x:xs) = insert x (insertionSort xs)

insert :: Nat -> [Nat] -> [Nat]
insert x [] = [x]
insert x (y:xs) | x <= y = x : y : xs

| otherwise = y : insert x xs

Listing 1.1: The property representing that insertion sort correctly sorts the input,
with relevant functions

In listing 1.1 above, we have defined a property, prop_insertionSort. By
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doing structural induction over the list ys we need to prove two cases, see list-
ing 1.2 below. The first case is when ys==[] and it is called the base case. The
second case is called the induction case and occurs when ys==(x:xs).

Base case: ordered (insertionSort [])
Induction case: ordered (insertionSort (x:xs))

Listing 1.2: The base and induction case for proving prop_inseritionSort

The base case can be trivially proven by looking at the function definition.
In the induction case we can assume that the property holds for xs, since xs
is a substructure of ys. This gives us:

Hypothesis: ordered (insertionSort xs)
Goal: ordered (insertionSort (x:xs))

The goal can be proven given the lemma: ordered as == ordered (insert
a as).

Now, consider another sorting method: quick sort, with the following defi-
nition:

quickSort :: [Nat] -> [Nat]
quickSort [] = []
quickSort (x:xs) = quickSort (filter (x >=) xs)

++ [x]
++ quickSort (filter (x <) xs)

Listing 1.3: Quick sort for natural numbers

In the definition of quickSort, the function filter takes a predicate func-
tion and a list and then filters away all elements which does not fulfill the
predicate.

If we would like to prove ordered (quickSort ys) using structural induc-
tion, we have the same base and induction case as insertionSort. Again, the
base case is trivial to prove, while the induction case leads us to the following
hypothesis and goal:

Hypothesis: ordered (quickSort xs)
Goal: ordered (quickSort (x:xs))
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As can be seen in the definition of quickSort, we do not keep the structure
of the input variable, (x:xs). Instead we create two lists: (filter (x >=)
xs) containing all elements in xs less than or equal to x, and (filter (x
<) xs) containing all elements in xs greater than x. Therefore, the hypoth-
esis cannot be used to prove the property and hence it cannot be proven by
structural induction.

It would be more convenient to prove ordered (quickSort (x:xs)) given
the following:

Hypothesis: ordered (quickSort filter (x>=) xs)
&& ordered (quickSort filter (x>=) xs)

Goal: ordered (quickSort (x:xs))

This might remind you of recursion induction, see section 3.1.2, a method
not used often today. In this project we will examine and implement a modi-
fied version of recursion induction, hereafter called application induction. Re-
cursion induction creates induction rules from the definition of a function,
whereas application induction does induction over every application in the
property. This is done by proving so called sub-properties, which are equiva-
lent to the original property.

1.1 Aim

The aim of this project is to implement an automatic theorem prover, based
on the new induction method application induction. We will not implement
the logical reasoning, but use existing prover back-ends. This means we will
prepare and modify the property, according to the induction method, but not
derive the actual proof. We will examine how well application induction per-
forms with respect to the research questions defined in the following section.

1.1.1 Research Questions

During the course of this project we would like to answer the following ques-
tions. They tie in closely to the performance of the new induction method but
also touch upon the effect different prover back-ends provide.

• Structural versus application induction:

– How much time does it take to prove properties?

– Can structural induction prove any property that application induc-
tion cannot?
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– Can application induction prove some property that structural in-
duction cannot?

– Which kind of properties are proven?

• Performance of application induction:

– Variants of application induction It is possible to prove multiple
properties concurrently using application induction (see section 2.1.3)
or to do deep application induction (see section 2.1.2), but what effect
does this have on the general performance?

– Natural and conditional sub-properties. One of the first steps in
application induction is splitting a property into many sub-properties.
These sub-properties can be divided into two categories: natural and
conditional, see section 2.1.1. The conditional ones are more compli-
cated, and the question arises whether they are actually necessary,
or if the natural ones are enough.

• Does the performance of application induction change depending on which
prover back-end that is used?

1.2 Scope

We only consider monomorphic functions in first-order-logic. We also as-
sume the functions we apply induction on always terminate. Since our focus
is on the induction itself we do not consider the completeness of the theory
exploration tool, i.e., its ability to find the most relevant lemmas for the theory.
This means that it in some cases might be relevant to introduce properties and
lemmas by hand, when they are not discovered automatically.

To evaluate the induction methods with regards to the different provers, we
create a benchmark suite. Due to the limitation of time and the fact that the
files needs to be completely monomorphised (See section 5.1.1), the number of
files is small. It is also difficult to find examples where the structure of the
variables and functions differed from other examples.

1.3 Outline

In this thesis we will first, in chapter 2, give a more detailed problem for-
mulation. Then, in chapter 3, we present the technical background necessary
to understand the subsequent chapters. The next part, chapter 4, describes
the method and the design choices made during the implementation. We then,
in chapter 5, describe our benchmark suite. After that, we present our result
in chapter 6, followed by chapter 7 where we conclude our work and discuss
possible further research and work in the field.



Chapter 2

Problem formulation

In this chapter we will explain: the details of application induction via an
example, what happens with properties over mutually recursive function, and
the correctness of the new induction method.

2.1 Application Induction

In this section we will explain how application induction works by an exam-
ple. We will show how it works when proving that quick sort returns a sorted
list, that is:

ϕ xs = ordered (quickSort xs)

Listing 2.1: Property describing that quickSort returns a sorted list

Let us look at the function definition for ordered and recall the function
definition for quickSort:

quickSort :: [Nat] -> [Nat]
quickSort [] = []
quickSort (x:xs) = quickSort (filter (x >=) xs)

++ [x]
++ quickSort (filter (x <) xs)

ordered :: [Nat] -> Bool
ordered [] = True
ordered (x:[]) = True
ordered (x:y:xs) = x <= y && ordered (y:xs)

Listing 2.2: Quick sort for natural numbers
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By looking at the function definitions of quickSort and ordered, we derive
the following axioms:

Axioms for quickSort:
Axiom 1.1: ∀ xs . xs == [] => quickSort xs == []
Axiom 1.2: ∀ xs,y,ys . xs == (y:ys) =>

quickSort xs ==
quickSort (filter (y >=) ys)
++ [y]
++ quickSort (filter (y <) ys)

Axioms for ordered:
Axiom 2.1: ∀ xs . xs == [] => ordered xs == True
Axiom 2.2: ∀ xs y . xs == [y] => ordered xs == True
Axiom 2.3: ∀ xs,x,y,zs . xs == (x:y:zs) =>

ordered xs == x <= y && ordered (y:zs)

We now create one property for each function application in ϕ, such that
if one of these properties hold, we have proven the original property. In this
case we have two different function applications, and thus two ’sub’-properties:

p1quickSort xs = ordered (quickSort xs)
p2ordered xs = ∀ ys . xs == quickSort ys => ordered xs

If we have a proof for either p1quickSort or p2ordered, we have a proof for the
original property, ϕ. Let us look at p1quickSort, where we are doing induction
over the application quickSort. By instantiating the definition of quickSort
with as, we get the following axioms:

Axiom 1.3: as == [] => quickSort as == []
Axiom 1.4: ∀ x,xs . as == (x:xs) =>

quickSort as ==
quickSort (filter (x >=) xs)
++ [x]
++ quickSort (filter (x <) xs)

We want to prove ordered (quickSort as) by induction over quickSort.
From the definition of quickSort, this gives us two different cases, as=[] and
as=(x:xs). The first case is trivial, but in the second case we have to introduce
an induction hypothesis. Figure 2.1 illustrates how properties are split, first
into sub-properties and then into cases.
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Application induction makes induction over an application, on the num-
ber of function calls until termination. Given that a program terminates,
this means we can assume that a property holds for all arguments of the re-
cursive function calls. Therefore, application induction allows us to assume
that p1quickSort holds for (filter (x >=) xs) and (filter (x <) xs), since
they are the arguments to the two recursive function calls of quickSort as,
see the function definition in listings 2.2. In the case of as=(x:xs) this gives
us the following hypotheses and goal:

Hypothesis: ordered (quickSort (filter (x >=) xs))
&& ordered (quickSort (filter (x <) xs))

Goal: ordered (quickSort (x:xs))

Just as in many other cases of proving properties, this property cannot be
proven without help-lemmas. Although, contrary to structural induction, we
have some additional axioms we can make use of.

Later, in section 2.1.4, we present an informal argument to why application
induction works.

Figure 2.1: Illustration of how the property is split
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2.1.1 Natural and conditional properties

As briefly mentioned in the introduction (chapter 1), splitting the original prop-
erty may result in two kind of sub-properties. We call these natural and con-
ditional properties. As an example we will use ordered (quickSort xs), the
same property as in the previous section.

In simple terms, a natural property occurs when we induct on an applica-
tion with pure independent arguments. That is, when the arguments to the
application are variables, which are independent of each other, and not an-
other function application. An example of a natural property can be seen in
listing 2.3, where the induction is done over quickSort. We call these proper-
ties natural since they retain the shape of the original property.

ordered (quickSort xs)

Listing 2.3: Example of a natural property

When the application chosen for induction has one or more applications
as arguments, we end up with a conditional property, as shown in listing 2.4,
where the induction is done over ordered. We call such a property conditional
since it is of the shape: condition => property.

∀ xs . ys == quickSort xs => ordered ys

Listing 2.4: Example of a conditional property

2.1.2 Deep application induction

Suppose we are trying to prove ordered (quickSort as) over the function
application ordered. The cases where quickSort as returns an empty list
or a list with exactly one element are trivial. In the case where quickSort
as=(x:y:zs), we would get the following hypothesis and goal (with the previ-
ous definition of ordered):

Hypothesis: ∀ xs . (y:zs) == quickSort xs => ordered (y:zs)
Goal: ∀ xs . as == quickSort xs => ordered as

Assuming quickSort as == [a,b,c] would, by unfolding it, give us the
following:
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ordered [a,b,c] =
(a ≤ b && ordered [b,c]) =
(a ≤ b && b ≤ c && ordered [c]) =
(a ≤ b && b ≤ c && True)

As can be seen, even though we only have one induction hypothesis, we
have more than one call to the function ordered. A deep application induc-
tion creates hypotheses for all arguments to all calls to ordered, even though
they are not on the right hand side of the function definition for the input ar-
gument. In the case of proving ordered (quickSort [a,b,c]), this gives us:

Hypothesis: ∀ xs. [b,c] == quickSort xs => ordered [b,c]
Hypothesis: ∀ xs. [c] == quickSort xs => ordered [c]
Goal: ∀ xs. [a,b,c] == quickSort xs

=> ordered [a,b,c]

2.1.3 Dependent application induction

In listing 2.5 two functions, evens and odds, are defined. The function evens
returns all even indexed element in a list, whereas the function odds returns
all odd indexed elements in a list.

evens :: [Nat] -> [Nat]
evens (x:xs) = x : odds xs
evens [] = []

odds :: [Nat] -> [Nat]
odds (x:xs) = evens xs
odds [] = []

Listing 2.5: The definitions of the two functions, evens and odds

Suppose we are trying to prove p1evens and p2odds, shown in listing 2.6. As
seen in the definitions of evens and odds, we do not have any recursive calls,
instead, evens uses the function odds and vice versa. Hence, when proving
p1evens or p2odds no induction hypotheses are created with application induc-
tion. Even though deep application induction would give hypotheses, we will
here explore another method which we call dependent application induction.
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p1 = ordered as => ordered (evens as)
p1ord1 = ordered as => ordered (evens as)
p1ord2 = ∀ bs . as = evens bs => (ordered bs => ordered as)
p1evens = ordered as => ordered (evens as)

p2 = ordered as => ordered (odds as)
p2ord1 = ordered as => ordered (odds as)
p2ord2 = ∀ bs . as = odds bs => (ordered bs => ordered as)
p2odds = ordered as => ordered (odds as)

Listing 2.6: The properties p1 and p2 with all their sub-properties

If we would like to prove p1evens, it would probably be beneficial if we could
assume that the related property p2odds holds and the other way around when
proving p2odds. In application induction we can assume the sub-property we
are currently proving holds for the input to all recursive calls. In dependent
application induction we remove the limitation of only being able to make as-
sumptions over the current sub-property. We also look at all function calls
in the definition of the function we induct on, not only the recursive ones. If
as=a’:as’ this means that when trying to prove p1evens, we are allowed to use
all sub-properties over odds for the argument as’, hence we could assume
ordered as’ => ordered (odds as’).

If both p1evens and p2odds are proven we know that both original properties
are valid. This since we, when trying to prove the properties, only assume
that sub-properties hold for arguments to function calls with less steps until
termination. Since we have assumed that the program terminates, we know
that we will reach a base case and thus both properties must be valid.

More generally, if we find a set of properties such that they do not require
any property outside the set to be valid, then we know that all properties in
that set are valid.

2.1.4 Correctness of Application Induction

We will not give a proof of the correctness of application induction, but following
we will provide an informal argument to why it is correct.

We know that if a function f(x,y) calls another function g(z), then g(z)
requires fewer calls than f(x,y) to terminate. Since everything terminates, we
know we will always reach the case when there are no more function calls. If
the property is valid for this case and for the case when the function application
requires n+1 calls, given that the property is valid for all function application
with fewer than n+1 calls, then the property is valid for all n.



Chapter 3

Background

This chapter aims to provide the theoretical background that may be necessary
to fully understand further chapters. The background will provide information
about: related work in induction, auxiliary libraries and tools, theory explo-
ration, automated theorem proving, as well as existing theorem provers.

3.1 Related work

Induction is often used in mathematics, where it is used as a method for
proving statements in an arranged order. It could for example be to prove
equality of equations with natural numbers [3].

When it comes to proofs for properties about recursively defined structures,
induction is a powerful tool, since there are many similarities between recur-
sive definitions and the way induction approaches a proof attempt. In this sec-
tion three induction methods, useful for proving properties about programs,
will be explained.

3.1.1 Structural Induction

As mentioned in the introduction, structural induction is a method that can be
used for proving properties about recursively defined structures. This method
does induction over a variable, using the structure of the variable’s data type
[4] (for example a list). Given the structure of the induction variable, struc-
tural induction allows us to assume the property holds for any subset of the
structure. Let us look at the following implementation of a list type and a list
reverse function:
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data [a] = []
| a : [a]

Listing 3.1: The list data type

rev :: [a] -> [a]
rev as =

case as of
[] -> []
(c : cs) -> rev cs ++ (c : [])

Listing 3.2: The list reverse function

Proving the property ∀ as. as == rev (rev as) with structural induc-
tion yields a base case and an induction case. The base case is as == [],
which is trivial to solve. The induction step is as == (a:as’). Since as’ is a
subset of as, the induction hypothesis becomes as’ == rev (rev as’). Here
parallels to mathematical induction over natural numbers can be found, where
a theorem for n+1 should be proven given the hypothesis that it holds for n.

If the base case and the induction step is proven with help of the induc-
tion hypothesis, then as == rev (rev as) has been successfully proven with
structural induction.

3.1.2 Recursion Induction

Application induction is, as mentioned in chapter 1, a modified version of re-
cursion induction. Recursion induction makes use of the recursive structure
of the functions instead of the recursive structure of the variables, which struc-
tural induction does. Therefore, everything proven by recursion induction, as
well as application induction, must terminate.

The difference between application induction and recursion induction is
that recursive induction does not create sub-properties, instead it looks at the
definition of the functions and create induction rules [5]. Therefore, the condi-
tional properties (see section 2.1.1) are never proven by recursion induction.

In the example described in section 2.1, ordered (quickSort xs), recur-
sion induction only tries to prove the sub-property ordered (quickSort xs),
due to its unconstrained variables.

3.1.3 Induction by size

Induction by size, uses the size of the data structure to create its hypothesis.
Assume property p(x) is to be proven and let n be the size of x. If the size of
the data structure of x is defined in the range [a,b), the base case would be
to prove p(x), where n=a, and the induction step would be to prove p(x) given
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the hypothesis p(x’) with size of x’ less than n.

Induction by size can be used for different data structures, for example the
size could be defined as the length of a list or a tree. When used with natural
number it could be equal to the natural number it uses. Induction by size
needs the size definition of each data structure, which might not always be as
obvious as in the case of natural numbers or lists. How to define the size might
be different depending on what property should be proven. Considering a tree,
the size can be described by the number of nodes, the number of leaves, or the
depth of the tree.

Application induction can also be considered as a variation of induction by
size, with size being the number of steps until termination.

3.2 TIP - benchmarks & tools

To create a common benchmark-suite, Claessen et al. introduced Tons of
Inductive Problems, or TIP [6]. TIP is a collection of benchmarks, which are
more or less challenging, that aims to serve as a test-suite for inductive theo-
rem provers. TIP also introduces a common format, extending and combining
currently available formats, for specifying these benchmarks.

Beside the benchmark suit there is also a programming library and mul-
tiple executables, available at GitHub [7]. These executable mainly deal with
translating theory between various existing formats. It supports Haskell, SMT
and more. There is also support for modifying the existing theory (containing
information about for example definitions, conjectures etc.), which sometimes
is a prerequisite before translating the theory. The library specifies an API, in
Haskell, for using the functionality directly from inside a program.

3.3 Theory Exploration

Theory Exploration is the practice of extending a mathematical theory from
a set of basic concepts by progressively computing more and more complex the-
orems from the initial building blocks. Buchberger, a proponent of computer-
supported theory exploration, argued that this was how a mathematician would
normally begin their work [8].

3.3.1 TipSpec & QuickSpec

QuickSpec [9] is a program finding properties, or specifications, about a Haskell
program. QuickSpec does not prove the properties it finds, but it does test
them using a large amount of data. [10]

Among the tools provided by TIP there is one for theory exploration, called
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TipSpec. TipSpec is based on QuickSpec and, given a theory, attempts to find
as many relevant lemmas from the theory as possible. Of course, to avoid
bloating the theory with too many speculated lemmas, it removes lemmas
which it deem to be too similar to each other.

3.4 Automated theorem proving

Automated theorem proving (ATP) is a sub-field in automated mathematical
reasoning. The main goal of ATP is to develop computer programs for proving
mathematical theorems. Various techniques are used in this field, for example,
mathematical induction, satisfiability modulo theory (SMT), and lean theorem
proving.

There are multiple automatic theorem provers available today, among them
we find Zeno, IsaPlanner, HipSpec and ACL2. Our version of application in-
duction and HipSpec, which uses structural induction, have a very similar
structure, which we will discuss more in the coming section.

3.4.1 HipSpec

HipSpec [11] is a program for proving properties of Haskell programs using
first-order logic and structural induction. It automatically derives new prop-
erties and proves their correctness. HipSpec is built upon the automated in-
duction prover, Hip, and conjecture generator, QuickSpec. A conjecture in this
case refers to the equivalence of two terms.

HipSpec works by reading a Haskell program and, using QuickSpec, gen-
erates thousands of conjectures that Hip then attempts to prove or disprove.
Proved conjectures can be used as lemmas which can then be used to prove
more conjectures. If a conjectures has not been proved or disproved within a
set timeout, it is considered as a failed conjecture. HipSpec also support user-
written properties, which are tested after the conjectures from QuickSpec have
been processed.

3.4.2 Zeno

Beside HipSpec, Zeno [12] might be the automatic theorem prover most similar
to our application, but there are some differences. Zeno uses a top-down
approach and hence finds auxiliary lemmas, but no additional help-lemmas
can be given [13]. This can be a weakness when larger, more readable proofs
should be created.
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3.4.3 Approaches to Lemma Discovery

Many automatic theorem provers support some kind of lemmas discovery tech-
nique, for example Zeno, uses something called lemma calculation. This tech-
nique is used to replace goals or common sub terms in goals with a variable,
which can be tested separately. This approach can be called a top-down ap-
proach. In contrast, HipSpec utilizes a bottom-up approach called theory ex-
ploration, as described in section 3.3.

3.5 Prover back-ends

As mentioned in the introduction (section 1.1) our application will by itself
not derive any proofs. This task is instead given to dedicated theorem provers.
Such theorem provers work by proving given conjectures in a theory. Given
a theory, that includes axioms and definitions, it uses some strategy to find
out whether one or more conjectures are true (to disprove a conjecture is a
completely different problem). In the two following sections the provers used
in this work will be described.

3.5.1 E - Theorem Prover

The E theorem prover (E-prover) tries to prove equality of a full first-order logic
formula. E-prover first parses the problem and creates clauses and formulas.
After the problem has been parsed, E-prover optionally prunes the clauses and
formulas that will most likely not lead to a proof. E-prover then translate each
formula into clausal form, which it afterwards pre-processes, to, for example,
remove redundant clauses. After pre-processing, E-prover tries to solve the
problem, possibly within a given timeout, stopping after it either deem the
problem unsolvable or computes a proof. [14]

3.5.2 Z3 - Theorem prover

The Z3 [15] solver is an SMT theorem prover developed by Microsoft. Z3 is im-
plemented in C and it is built upon, and combines, a number of other theorem
provers. It also contains an E-matching engine to handle quantifiers. [16]



Chapter 4

Designing the theorem prover

We have implemented a program [17] for proving properties of SMT-LIB (ver-
sion 1 & 2) and Haskell programs using either structural or application in-
duction. In the input files the user can supply properties to be proven, which
we call user-specified properties. Many non-trivial properties cannot be proven
straight away using induction; instead their proofs require one or more aux-
iliary lemmas. Therefore, our program supports a type of lemma discovery,
called theory exploration, described in section 3.3.

Some theorem provers, like IsaPlanner [18] and Zeno [13], use a top-down
approach, as described in 3.4.3, while our prover, just as in HipSpec, is built
with a bottom-up approach, i.e., we explore the theory for auxiliary lemmas
before attempting any proofs. The theory exploration is done using TipSpec,
which finds lemmas based on the function definitions in the source file (see
section 3.3.1 for more details).

In the following sections we describe the design of our prover, which com-
prises: the induction methods and additional features.

4.1 General structure

We will now describe how our prover processes a given set of properties.
From the theory with all properties we select one conjecture, which we try to
prove with the specified induction method. If we succeed in proving a conjec-
ture, we create a lemma and include it in the set of available help-lemmas. We
can now use this lemma to prove other properties.

During one iteration we try to prove all properties, if none of them are
proven we stop. Otherwise, some properties were proven and thus we have
new lemmas. This means that we can attempt another iteration on the un-
proven properties.

Figure 4.1 illustrates the flow of proving a conjecture. First, the program
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attempts to prove the property without induction. If this does not work then
induction is applied to prove the property. No matter which induction method,
we split the property into multiple sub-properties (for structural induction it
depends on the variables in the property), each with multiple cases, and also
create the hypotheses. The sub-properties are then tested until either, one has
been proved, or all have unsuccessfully been attempted. A sub-property is said
to have been proved when all its cases have been verified to be true.

Figure 4.1: The program flow when trying to prove a property.

4.2 Structural Induction

While structural induction is not the focus of our theorem prover, it is still
a very important benchmark for our own induction method. Here is a short
summary of how structural induction was implemented.
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When trying to prove a property with structural induction, we do induc-
tion over all variables, one at a time, in the goal we are trying to prove. It is
possible to specify induction over multiple variables. In that case, all possible
combinations of the specified number of variables will be tried.

4.3 Application Induction

Now, we will detail how application induction has been implemented. Let
us assume that we have one property we would like to prove with application
induction. We create one sub-property for each function application in the
property. We will describe this step more carefully in the next section. After
creating all sub-properties, we use a specified prover to try to prove these sub-
properties until either, one is proven (we then have a proof of the property), or
none of them are provable. In our prover we do not consider == to be a function
to do induction over, because we used the predefined version and hence we did
not have access to the definition.

4.3.1 Sub-properties

As mentioned earlier in chapter 2, one sub-property is created for each func-
tion application in the original property. Recall the example in chapter 1, where
the goal is to prove that insertion sort returns an ordered list.

insertionSort :: [Nat] -> [Nat]
insertionSort [] = []
insertionSort (x:xs) = insert x (insertionSort xs)

Listing 4.1: Insertion sort for natural numbers

ordered :: [Nat] -> Bool
ordered [] = True
ordered (x:[]) = True
ordered (x:y:xs) = x <= y && ordered (y:xs)

Listing 4.2: The function that checks whether a list is ordered

As can be seen, the function insertionSort calls another function insert.
As for now, we will not give a definition the insert function, since it is not part
of the property. We can use proven lemmas for insert, but we do not need to
know the definition of the function.

The original property, which we want to prove, is defined as follows:
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prop xs = ordered (insertionSort xs)

Listing 4.3: The property that insertionSort properly sorts the input

We split the property into two sub goals as seen in listing 4.4:

prop_ordered xs =
∀ ys . xs == insertionSort ys => ordered xs

prop_sort xs = ordered (insertionSort xs)

Listing 4.4: The sub properties to prop

As described in chapter 2, we create the sub-properties by looking at the
functions’ definitions. We can assume that our property hold for all recursive
function calls on the right hand side of the pattern matching cases.

To verify the property for all different cases, we create one conjecture for
each case and declare that all of them should hold. In listing 4.5 and 4.6, we
show the hypotheses implied by the different possible cases, for insertionsSort
and ordered respectively. In both listings we have instantiated the argument
to the function application we do induction over with as.

as == [] : No hypothesis
as == (x:xs) : ordered (insertionSort xs)

Listing 4.5: The different cases, with hypotheses, for insertionSort

as == [] : No hypothesis
as == [x] : No hypothesis
as == (x1:x2:xs) :
∀ ys . (x2:xs) == insertionSort ys => ordered (x2:xs)

Listing 4.6: The different cases, with hypotheses, for ordered

If we succeed in proving all the cases in either one of these two sub-
properties, we have proved the original property.

4.3.2 Proving the cases

There are two different approaches in attempting to prove all cases. Either we
prove the cases one by one (we call this approach split cases), or we join the
cases together.

Listing 4.7 shows the hypotheses for the split-case approach, for induction
on ordered.
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Case 1: as == []
Case 2: as == [x]
Case 3: as == (x1:x2:xs) &&
∀ ys . (x2:xs) == insertionSort ys => ordered (x2:xs)

Listing 4.7: Split cases for ordered

Listing 4.8 shows how the sub property’s hypothesis would be if we joined
the different cases. As can be seen we are using the disjunction between the
cases when we join them. The reason for this is because we are creating a
global constant ys that the property should hold for, but since we do not know
what ys is, we need to prove it for all different cases.

as == []
| as == [x]
| as == (x1:x2:xs) &&
∀ ys . (x2:xs) == insertionSort ys => ordered (x2:xs)

Listing 4.8: Joined cases for ordered

4.4 Back-ends and other functionality

We have decided to let the user decide whether the cases should be split
into multiple hypotheses or be joined into one. This because the result of the
two approaches varies depending on the prover back-end used.

The time taken while proving a conjecture can be very long. In order to
test the performance of the different induction methods with the provers, it is
possible to specify one or multiple timeouts. The timeout specifies the total
time the prover back-end can use in a proof attempt. As long as at least one
conjectures is proven during one iteration, over all conjectures, we keep the
same timeout; otherwise the next timeout is used. We try all timeouts given to
the program and return when all of them are tried.

The tool used for lemma discovery, TipSpec (see section 3.3.1), can at times
be rather slow, much depending on the number of functions and definitions
in the input file. Because of this we implemented a storing procedure for the
generated files.

Now, if there is no existing TipSpec file for the current job, we create one,
unless the user explicitly commands not to. This file is persistently stored
and is used for any subsequent runs for the same job. This is to ensure that
TipSpec does not run unnecessarily and also makes it possible to run the
program (with different options) on the exact same file. Of course, if the original
file has been modified, it is also possible, and necessary, to force an update of
the TipSpec file.
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Benchmark suite

To evaluate application induction, using the two different provers, a bench-
mark suite has been created. All benchmark files are based on files from the
TIP benchmark suite, see section 3.2. To better understand the results of this
work, this chapter will first describe how the testing was performed and then
the files used in the benchmark.

5.1 Evaluation

All files in the benchmark suite was run with four different configurations.
All configuration were run with the split cases option since structural induction
employed that approach:

• Structural induction using E-prover

• Structural induction using Z3

• Application induction using E-prover

• Application induction using Z3

The provers were first given one second to prove each case of each sub-
property, then the properties which could not be proven within one second
were tried with a five second timeout.

In the introduction it was mentioned that this project would not consider
polymorphic function. TIP contains functionality to make a file monomorphic,
which in the beginning was considered to be the method to handle polymorphic
benchmark files. Unfortunately, this functionality turned out to be incomplete,
thus we monomorphised the benchmarks by hand. The following section will
describe this in more detailed.
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5.1.1 Monomorphisation

The greatest problem with the monomorphisation has without a doubt been
that we lost both lemmas and axioms. Without even an error message, some
logic simply disappeared, probably due to TIP not being able to infer the types
properly.

A requirement for monomorphisation is that is it possible to infer the types
of the variables. In 5.1 we can deduce that both x and y are lists of natural
numbers, since ordered takes a list of natural numbers as input. Whereas in
listing 5.2 (++) has an input variable with polymorphic type and hence it can-
not be deduced to a single type (or even multiple types).

prop_ord_concat x y =
ordered (x ++ y) => (ordered x && ordered y)

Listing 5.1: Due to ordered taking a list of natural numbers as input, we know that
both x and y has that type

prop_concat y = ([] ++ y == y ++ [])

Listing 5.2: y can be any type of list

5.1.2 Prover back-ends

The Z3 prover can handle polymorphism, hence, to make the benchmarks
work for Z3, we could have solved the problem by handling polymorphism in
our induction. E prover, on the other hand, does not support any polymor-
phism and thus, to be able to use E-prover, we required the benchmarks to be
monomorphic.

Another problem related to polymorphism was that since Z3 contained
built-in lemmas about certain function, it performed better than E-prover for
properties about these functions. All such functions, +,-,≤ etc., were what
TIP also considered as built-in functions. The different in treatment for these
functions made it so that TipSpec did not derive lemmas about them, thus
E-prover had fewer lemmas than Z3 for certain proofs. Implementing all such
built-in functions from scratch solved this problem since it allowed TipSpec to
speculate lemmas for the functions, ensuring that the provers had access to
the same lemmas.
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5.2 Test cases

The benchmark suite consists of four files, which TipSpec generates more
than 200 conjectures from. Each file contains both data structures as well
as functions. As mentioned, due to problem with TIP and monomorphisation,
all functions and data types were implemented by us (even the functionality
existing in prelude, the base functionality in Haskell). The files used in the
benchmark suite is included in appendix A.

All files contain different functions and data structures. The only exception
are quickSort and insertionSort, this due to the reason that both structural
induction and application induction was believed to prove that insertion sort
returned a sorted list, whereas only application induction was believed to be
able to prove that quick sort returned a sorted list.

The first file, interleave, contains two mutually recursive functions: evens
and odds. The function evens takes a list with natural numbers and returns
a list containing all even-indexed elements. The function does not have any
recursive calls, it instead calls the function odds. Similarly, odds returns the
list containing all odd-indexed elements of a given list, with help of the evens
function. Interleave’s last function, interleave, takes two lists, x and y, as
input and output a list where it alternates the elements from x and y. This
function is recursively defined, but swaps the arguments.

The second and third file, quickSort and insertionSort, contain implementa-
tions of the sorting methods quick sort respectively insertion sort. Both files
contains functions such as concatenation of lists, less than or equal for natu-
ral numbers, and the sorting method itself. They also contain help-functions
to check the order of the sorted list, filter all elements greater than (or, less or
equal to) a given number, and counting the times a given number appears in a
list.

The fourth file, flatten, contains tree and list data structures. It also con-
tains functions to flatten a tree in four different ways, as well as a function to
concatenate a list. Some of the functions to flatten the tree are structurally
recursive, whereas some are not.
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Results

This chapter presents the results of this work. The chapter starts with an
overview of the results from the benchmark suite, together with a comparison
of the two induction methods over the whole suite. Then, the results are pre-
sented again but divided by benchmark file, along with explanations for those
particular results.

6.1 Overall results

From table 6.1, it can be noticed that the results, from the benchmark files,
differ quite a bit from file to file. There were also noticeable differences in what
type of properties were provable by the different configurations, something
discussed more deeply in section 6.2.

Table 6.1: Table showing the result of the benchmarks

Application-E Application-Z3 Structural-E Structural-Z3
Flatten
—time taken (s) 56.0 33.4 69.1 62.1
—solved 28 28 19 19
QSort
—time taken (s) 5435.2 3223.3 3554.9 2327.1
—solved 116 78 123 59
ISort
—time taken (s) 3636.7 1192.9 419.7 704.5
—solved 63 55 64 47
Interleave
—time taken (s) 92.3 85.7 16.3 14.4
—solved 8 8 7 7

Total solved 215 169 213 132

The number of conjectures proved by structural and application induction,
varies quite a bit between the two provers. In plot 6.2 and 6.1 each dot is one
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conjecture that was proven.

Structural induction often proves a conjecture using its first sub-property,
due to the fact that most functions pattern matches on their first variable.
Therefore it was decided to only count the time for proving a sub-property,
instead of also including the time for all failed sub-properties. Using a heuris-
tic, application induction would likely also be able to pick the most probable
sub-property.

The plots does not display conjectures which remain unproven by both
induction methods. Furthermore, all conjectures were proven using induction,
even though some might be provable without it. This decision was made due to
the fact that some of the conjectures might need induction by one prover but,
due to differences in previously proven conjectures, not by the other, which
would not be a fair result.

Figure 6.1: Scatter plot for all lemmas proven when using Z3 as back-end
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Figure 6.2: Scatter plot for all lemmas proven when using E-prover as back-end

The following list shows three interesting results derived from the informa-
tion in the two plots:

1. Application induction solved more lemmas then structural induction. It
might be hard to see in the plots, but in table 6.1 it can be seen that
application induction solved more lemmas both using E-prover and Z3.

2. Structural induction was overall faster than application induction.

3. E-prover proved more lemmas than Z3, although Z3 proved the conjec-
tures much faster than E-prover. The reason for Z3 being faster than
E-prover might be due to greater preprocessing time.

Another thing noticed was that, sometimes, properties that are proven
quickly when supplied with the required help-lemmas cannot be proven (or
proven slowly) if further lemmas are provided. This behaviour could depend
on how the prover chooses the strategy for the proof attempt, i.e., if the prover
receives more information, in this case an extra lemma, it may decide upon
another proving strategy. Still, in many cases the prover can still find a proof,
just much more slowly. This was the case when proving that quick sort re-
turned an ordered list. In appendix B, all lemmas required to prove quick sort
are listed (and can be proved with application induction). If the order in which



CHAPTER 6. RESULTS 27

we try to prove the lemmas is changed, it might not be possible to prove all
properties.

To get a clearer image of what kind of properties the different methods can
prove, the following section presents and examines results from the different
benchmark files, one at the time.

6.2 Evaluation by file

The result for the number of conjectures solved by the different provers vary
a lot depending on the structure of the functions in the property.

6.2.1 Insertion sort

Figure 6.3 shows the number of conjectures solved over time from the conjec-
tures in the insertionSort benchmark. As can be seen, structural and applica-
tion induction using E-prover solved almost the same number of conjectures,
but structural induction was quite a bit faster.

Figure 6.3: The insertion sort benchmark

Before testing application induction, our hypothesis was that the perfor-
mance of the two different methods would be equivalent when proving proper-
ties about the functions in insertionSort. This due to the fact that all functions
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in insertionSort are structurally recursive. The results varied greatly between
the two provers while between the induction methods, there was only one con-
jecture provable only by structural induction.

6.2.1.1 Theory exploration gone wrong

The conjecture shown in listing 6.1 is the property which was only proved by
structural induction, but not by application induction. The reason that the
property could not be proved by application induction relates to the theory ex-
ploration by TipSpec, which in this case produced an unsatisfactory result.

Given:
x + Zero == x
(Succ x) + y == x + (Succ y)
Succ (x + y) == x + (Succ y)
x + y == y + x

Show:
((y + x) <= (z + x)) == (y <= z)

Listing 6.1: Property provable by structural but not application induction

Structural induction solved the conjecture in listing 6.1 by induction over
x. Application induction could solve this property, but in the case of using
E-prover it took longer time. Although, E-prover could solve the very similar
one in listing 6.2 quickly. Using the lemma in listing 6.2, application induction
could also directly solve the original property.

((x + y) <= (x + z)) == (y <= z)

Listing 6.2: Alternative version of lemma in listing 6.1

This indicate that the theory exploration unfortunately discovered a conjec-
ture more suited for proof by structural induction. If the theory exploration
instead discovered the conjecture in listing 6.2, then the situation might in-
stead have been reversed. Possibly, the second property might actually have
been discovered, but was then immediately discarded since it was too similar
to the first one.

6.2.2 Quick sort

Figure 6.4 shows the number of conjectures solved over time for properties
generated from the quickSort file. Although the result seems weak for appli-
cation induction, it should be mentioned that none of the properties proven
by structural induction and not by application induction were related to the
sorting algorithm itself.
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Figure 6.4: The quick sort benchmark

Our hypothesis was that only application induction would be able to prove
that quick sort returned an ordered list, but while using TipSpec, none of the
methods were able to do so. In the following section we will provide the results
for proving the order of the sorted list using only user-specified lemmas.

6.2.2.1 Without lemma discovery

As mentioned in chapter 1.2, we decided that, if relevant, we were allowed to
add help-lemmas if TipSpec did not generate them. In the case of proving that
quick sort returns a sorted list, we decided to not use TipSpec at all, but only
use user-specified lemmas. Given the lemmas in listing 6.3, application induc-
tion was able to prove that quick sort returns an ordered list. Some of these
help-lemmas required other lemmas to be proven. For the full list of lemmas
and definitions, see appendix B
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lemma1 xs x = smallerEq xs x == smallerEq (qsort xs) x
lemma2 xs ys z = smallerEq xs z && bigger ys z =>

ordered (xs ++ [z] ++ ys) == ((ordered xs) && (ordered ys))
lemma3 xs x = bigger (filterGT x xs) x
lemma4 xs x = smallerEq (filterLEq x xs) x
lemma5 xs x = bigger xs x == bigger (qsort xs) x

Listing 6.3: The help-lemmas necessary for proving ordered (quickSort xs)

The function smallerEq takes two argument, a list of natural number and
a natural number. It returns true if all elements in the list is smaller or equal
to the second argument. The function bigger takes two arguments, a list
of natural number and a natural number. It returns true if all elements in
the list is greater than the second argument. The filter functions, filterGT
and filterLEq, both takes two arguments, a list and a natural number. The
function filterGT returns a list with all number greater than the second ar-
gument, whereas filterLEq returns a list containing all elements less than or
equal to the second argument.

Due to the fact that the provers took much longer time if many help-lemmas
were given and Z3 already has some of the required functionality, we decided
to do this proof using Z3 (with polymorphic functions). Application induction
proved all 21 properties (20 help-lemmas and one conjecture), whereas struc-
tural induction was only able to prove 9 of 21.

6.2.3 Interleave

In figure 6.5 we see the results, number of conjectures solved over time, from
the interleave benchmark. We can see that application induction has a minor
lead compared to structural induction but there was also one property provable
only by structural induction.
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Figure 6.5: The interleave benchmark

The interleave benchmark was mainly used to test application induction
on mutually recursive functions. Even though we did not implement any of
the variants of application induction, which would work for mutually recursive
functions, sections 2.1.2 and 2.1.3, an interesting result was discovered. This
will be explored further in the next section.

6.2.3.1 Mutually recursive functions

Application induction depends on the recursive structure of the function and if
there are no recursive calls then there are no hypotheses. Structural induction,
on the other hand, makes induction over the variables and hence, as long as
the variable contains recursive substructures, there will be hypotheses when
using structural induction.

The following example shows the function evens and a related property. It
is not possible to prove the property over interleave, but structural induction
can prove it over the variable x. Since evens is not directly recursively defined,
standard application induction is not able to prove this property. The same
would apply when proving properties over the odds function.
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property x = evens (interleave x x) == x

evens :: [Nat] -> [Nat]
evens (x:xs) = x : odds xs
evens [] = []

odds :: [Nat] -> [Nat]
odds (x:xs) = evens xs
odds [] = []

Although this property could not be proven using application induction, it
was possible to prove it using deep application induction, see section 2.1.2.
This example was solved by creating the hypotheses by hand and then use
the back-ends to prove it. This shows us that deep application induction can
improve the performance, but at the cost of more time. The longer time is
due to the fact that the deep application induction add extra axioms when
proving and, as mentioned in section 6.1, adding more axioms can make a big
difference in the time taken to prove a property.

6.2.3.2 Recursion and application induction

One of our research question was if application induction can prove something
recursion induction cannot.

As described in the example in section 6.2.3.1, evens and odds does not
give any hypotheses when using application induction. The example below
can therefore not be proven using recursive or application induction on the
evens and odds functions. Although, it can be proven by induction with the
conditional sub-property over the function application interleave. Hence, it
is only possible to prove the property with application induction, and using a
conditional sub-property.

interleave (evens xs) (odds xs) == xs

6.2.4 Flatten

In the benchmark file flatten, application induction was able to solve more
conjectures than structural induction, see figure 6.6.
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Figure 6.6: The flatten benchmark

Our hypothesis was that application induction would be able to solve more
properties, due to the fact that some of the functions defined in the file are not
structurally recursive. In listing 6.4, the functions flatten0 and flatten2
are two examples of structurally recursive functions, whereas flatten3 is a
non-structurally recursive function.

flatten0 :: Tree -> [Nat]
flatten0 Nil = []
flatten0 (Node p x q) = flatten0 p ++ [x] ++ flatten0 q

flatten2 :: Tree -> [Nat] -> [Nat]
flatten2 Nil ys = ys
flatten2 (Node p x q) ys = flatten2 p (x : flatten2 q ys)

flatten3 :: Tree -> [Nat]
flatten3 Nil = []
flatten3 (Node (Node p x q) y r) =

flatten3 (Node p x (Node q y r))
flatten3 (Node Nil x q) = x : flatten3 q

Listing 6.4: Three functions from flatten

The result turned out to be as expected, only application induction was able
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to prove properties about the non-structurally recursive functions. One such
property, prop03, is listed in listing 6.5. The property prop02, on the other
hand, can be solved by both structural and application induction.

prop03 x = flatten0 x == flatten3 x
prop02 x = flatten0 x == flatten2 x []

Listing 6.5: Two properties about the functions in listing 6.4
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Conclusion

In general, application induction has given us some promising results and
does solve more properties than structural induction, especially for properties
of non-structurally recursive functions. Disregarding bloated theories with too
many lemmas, we see an encouraging future ahead for application induction.
Considering our results we believe that using a top-down approach could alle-
viate many of the problems we encountered during this work.

In this chapter we condense our experience and results into answer to the
research questions introduced in section 1.1.1. Afterward we also speculate
about the directions further research should take when it comes to application
induction.

7.1 Research Questions

In this section we aim to present our answers to all research questions
proposed in this thesis.

7.1.1 Structural vs. application induction

In the beginning our hypothesis was that application induction could prove
at least all properties provable by structural induction. Unfortunately, this
was not the case, as can be observed from the results. Another hypothesis
was that application induction could prove properties about non-structurally
recursive functions. This hypothesis was confirmed as seen in, for example,
section 6.2.4. Let us now look at the questions about the comparison of the
two induction methods.

• How much time does it take to prove properties?

As seen in chapter 6, structural induction is generally faster than ap-
plication induction. Most likely, this depends on the structure of the
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hypothesis. This is also one of the reasons why structural induction is
able to prove properties which application induction cannot prove in a
reasonable time limit.

• Can structural induction prove any conjecture that application can-
not?

Yes, but all properties that were investigated could be solved by applica-
tion induction if one of the following actions were taken:

– Longer time was given, since application induction in general is slower.

– Fewer help-lemmas were in the file, see section 6.1 for more info.

– Manually introduce help-lemmas, since the theory exploration some-
times pruned necessary lemmas, see section 6.2.1.1.

– Use deep application induction. This is necessary if there are no
direct recursive calls, see section 6.2.3.1.

• Can application induction prove some conjecture that structural in-
duction cannot?

Yes, in cases where the functions are non-structurally recursive, this was
often the case. For an example see section 6.2.4.

• Which kind of properties are proven?

For the structurally recursive functions, structural induction is to be pre-
ferred, mostly due to the time it takes to prove the properties. When it
comes to non-structurally recursive functions, application induction is
necessary to be able to prove the properties using induction.

7.1.2 Performance of application induction

• What effect does the variants of application induction have on the
performance?

Due to the time limit of this project, the implementation of proving prop-
erties concurrently was postponed. The reason was also due to the fact
that the back-end provers struggled when the number of help-lemmas
increased, see chapter 6 for examples.

We did not have the time to implement deep application induction but,
as shown in section 6.2.3.1, deep application was tested on one of the
benchmark files. There it was shown that deep application induction
could prove a property which normal application induction could not.
This, we believe, is a result worth further consideration.
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• Are conditional properties necessary?

The biggest difference between recursive induction and application in-
duction, as mentioned in chapter 3.1.2, is that application induction can
handle conditional properties. In section 6.2.3.2 it was shown that condi-
tional properties are sometimes necessary to prove a property. This result
tells us that application induction is, at least in some cases, better than
recursion induction.

7.1.3 Prover back-ends

The difference in performance for the two prover back-ends is clear. E-prover
seems to prove more properties than Z3, but when Z3 proved a property it
did it faster. It was noted that the provers were very sensitive and given more
lemmas, they often proved less. When given more lemmas they seemed to
not use the hypotheses, since they were given as normal axioms. It would be
interesting to somehow promote the hypothesis to the prover, hinting that it
should be prioritized.

7.2 Future research

The conclusions in this report, lead us to believe there is a bright future for
application induction. We have recorded our thoughts and opinions about the
future of application induction, as well as for any theorem prover implementing
it. We hope that this text may inspire and guide any who is interested in
continuing our research.

As we have repeatedly mentioned, the provers are sensitive to the number
of help-lemmas provided, and thus more help-lemmas are not always to be
preferred. This makes us believe that a good heuristic, for choosing relevant
help-lemmas, might grant huge improvements.

For our prover we decided on the bottom up approach using theory explo-
ration. In hindsight, this might actually not have been the optimal choice,
since it, to some extent, gives rise to the problems described above. Using
the top down approach instead, would help in reducing the amount of extra
lemmas. To keep using the bottom up approach we would need to somehow
change the theory exploration to ensure that the lemmas discovered are the
ones we want, as illustrated in section 6.2.2.

As seen from the results, structural induction tends to be faster, while ap-
plication induction is able to prove properties that structural induction is not
able to. Thus, at the current stage of implementation, we would recommend
a mix of application and structural induction, to receive the benefits of both.
Such a mix should probably focus on structural induction but use applica-
tion induction when unable to prove a property. Alternatively, by developing a
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heuristic, one could perhaps decide upon one of the methods before attempting
the proof. By having access to the function definition, it would be possible to
observe 1) whether the function preserves the structures, and 2) whether there
are any recursive calls available. These points should be enough to create a
simple heuristic for choosing which induction method to use.
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Appendix A

The benchmark files

A.1 Utils.Types

A file which defines different types.

module Uti ls . Types where

data Nat = Zero | Succ Nat

data TreeList = TNil | TCons Tree TreeList
data NatList = NNil | NCons Nat NatList

data Tree = Node ( Tree ) Nat ( Tree ) | N i i l

A.2 quick sort

{−# LANGUAGE ScopedTypeVariables #−}
module Sort where

import Tip
import Ut i ls . Types

( <=∗ ) : : Nat −> Nat −> Bool
Zero <=∗ b = True
a <=∗ Zero = False
(Succ a ) <=∗ ( Succ b ) = a <=∗ b

(++∗ ) : : NatList −> NatList −> NatList
NNil ++∗ bs = bs
(NCons a as ) ++∗ bs = NCons a $ as ++∗ bs
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( +∗ ) : : Nat −> Nat −> Nat
Zero +∗ b = b
(Succ a ) +∗ b =Succ $ a +∗ b

qsort : : NatList −> NatList
qsort NNil = NNil
qsort (NCons x xs ) = qsort ( f i l terLEq x xs ) ++∗

(NCons x NNil ) ++∗ qsort ( f i l terGT x xs )

f i l terLEq , f i l terGT : : Nat −> NatList −> NatList
f i l terLEq a NNil = NNil
f i l terLEq a (NCons b bs )

| b <=∗ a = NCons b $ f i l terLEq a bs
| otherwise = f i l terLEq a bs

f i l terGT a NNil = NNil
f i l terGT a (NCons b bs )

| not (b <=∗ a ) = NCons b $ f i l terGT a bs
| otherwise = f i l terGT a bs

smallerEq : : NatList −> Nat −> Bool
smallerEq NNil _ = True
smallerEq (NCons x xs ) y = x <=∗ y && smallerEq xs y

bigger : : NatList −> Nat −> Bool
bigger NNil _ = True
bigger (NCons x xs ) y = ( not ( x <=∗ y ) ) && bigger xs y

ordered : : NatList −> Bool
ordered NNil = True
ordered (NCons x NNil ) = True
ordered (NCons x (NCons y xs ) ) = x <=∗ y && ordered (NCons y xs )

count : : Nat −> NatList −> Nat
count x NNil = Zero
count x (NCons y ys )

| x == y = (Succ Zero ) +∗ count x ys
| otherwise = count x ys

prop_count x xs = count x xs === count x ( qsort xs )
prop_QSortSorts xs = bool $ ordered ( qsort xs )
prop_FALSE xs = ordered ( qsort xs ) === ordered xs
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A.3 Insertion sort

module ISort where
import Tip
import Ut i ls . Types

(++∗ ) : : NatList −> NatList −> NatList
NNil ++∗ bs = bs
(NCons a as ) ++∗ bs = NCons a $ as ++∗ bs

(+∗ ) : : Nat −> Nat −> Nat
Zero +∗ b = b
(Succ a ) +∗ b =Succ $ a +∗ b

( <=∗ ) : : Nat −> Nat −> Bool
Zero <=∗ b = True
a <=∗ Zero = False
(Succ a ) <=∗ ( Succ b ) = a <=∗ b

sort : : NatList −> NatList
sort = isor t

i sor t : : NatList −> NatList
i sor t NNil = NNil
i sor t (NCons x xs ) = insert x ( i sor t xs )

insert : : Nat −> NatList −> NatList
insert x NNil = (NCons x NNil )
insert x (NCons y xs ) | x <=∗ y = NCons x $ NCons y xs

| otherwise = NCons y $ insert x xs

prop_countCount x ys zs = count x ( ys ++∗ zs ) ===
count x ys +∗ count x zs

prop_ISortSorts xs = ordered ( i sor t xs ) === True
prop_ISortCount x xs = count x ( i sor t xs ) === count x xs
prop_FALSE xs = ordered ( i sor t xs ) === ordered xs

ordered : : NatList −> Bool
ordered NNil = True
ordered (NCons x NNil ) = True
ordered (NCons x (NCons y xs ) ) = x <=∗ y && ordered (NCons y xs )

count : : Nat −> NatList −> Nat
count x NNil = Zero
count x (NCons y ys )

| x == y = (Succ Zero ) +∗ count x ys
| otherwise = count x ys
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A.4 Interleave

{−# LANGUAGE ScopedTypeVariables #−}
module Interleave where

import Tip
import Ut i ls . Types

{−# NOINLINE evens #−}
evens : : NatList −> NatList
evens (NCons x xs ) = NCons x $ odds xs
evens NNil = NNil

{−# NOINLINE odds #−}
odds : : NatList −> NatList
odds (NCons x xs ) = evens xs
odds NNil = NNil

inter leave : : NatList −> NatList −> NatList
inter leave (NCons x xs ) ys = NCons x $ interleave ys xs
inter leave NNil ys = ys

prop_Interleave xs =
inter leave ( evens xs ) ( odds xs ) === xs
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A.5 Flatten

module Tree where

import Tip
import Ut i ls . Types ( Tree ( . . ) , NatList ( . . ) , TreeList ( . . ) , Nat ( . . ) )

(++∗ ) : : NatList −> NatList −> NatList
NNil ++∗ bs = bs
(NCons a as ) ++∗ bs = NCons a $ as ++∗ bs

concatMapF0 : : TreeList −> NatList
concatMapF0 TNil = NNil
concatMapF0 (TCons a as ) = ( f latten0 a ) ++∗ ( concatMapF0 as )

f latten0 : : Tree −> NatList
f latten0 N i i l = NNil
f latten0 (Node p x q ) = f latten0 p ++∗ (NCons x NNil ) ++∗ f latten0 q

f latten1 : : TreeList −> NatList
f latten1 TNil = NNil
f latten1 (TCons N i i l ps ) = f latten1 ps
f latten1 (TCons (Node N i i l x q ) ps ) = NCons x $ f latten1 (TCons q ps )
f latten1 (TCons (Node p x q ) ps ) =

f latten1 (TCons p $ TCons (Node N i i l x q ) ps )

f latten2 : : Tree −> NatList −> NatList
f latten2 N i i l ys = ys
f latten2 (Node p x q ) ys = f latten2 p (NCons x $ f latten2 q ys )

f latten3 : : Tree −> NatList
f latten3 N i i l = NNil
f latten3 (Node (Node p x q ) y r ) = f latten3 (Node p x (Node q y r ) )
f latten3 (Node N i i l x q ) = NCons x $ f latten3 q

prop_Flatten1 p =
f latten1 (TCons p TNil ) === f latten0 p

prop_Flatten1List ps =
f latten1 ps === concatMapF0 ps

prop_Flatten2 p =
f latten2 p NNil === f latten0 p

prop_PROVE_FALSE p a =
f latten3 (Node p a p ) === f latten0 p

prop_Flatten3 p =
f latten3 p === f latten0 p
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Quicksort with user specified
properties

{−# LANGUAGE ScopedTypeVariables #−}
module Sort where
import Tip

qsort : : [ Int ] −> [ Int ]
qsort [ ] = [ ]
qsort ( x : xs ) = qsort ( f i l terLEq x xs ) ++ [ x ] ++ qsort ( f i l terGT x xs )

f i l terLEq , f i l terGT : : Int −> [ Int ] −> [ Int ]
f i l terLEq a [ ] = [ ]
f i l terLEq a (b : bs )

| b<=a = b: f i l terLEq a bs
| otherwise = f i l terLEq a bs

f i l terGT a [ ] = [ ]
f i l terGT a (b : bs )

| b>a = b: f i l terGT a bs
| otherwise = f i l terGT a bs

smallerEq : : [ Int ] −> Int −> Bool
smallerEq [ ] _ = True
smallerEq ( x : xs ) y = x <= y && smallerEq xs y

bigger : : [ Int ] −> Int −> Bool
bigger [ ] _ = True
bigger ( x : xs ) y = x > y && bigger xs y

ordered : : [ Int ] −> Bool
ordered [ ] = True
ordered [ x ] = True
ordered ( x : y : xs ) = x <= y && ordered ( y : xs )
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count : : Int −> [ Int ] −> Int
count x [ ] = 0
count x ( y : ys )

| x == y = 1 + count x ys
| otherwise = count x ys

property xs = bool $ ordered ( qsort xs )

lemma1 a b c = a++(b++c ) === ( a++b)++c
lemma2 x as bs = count x as + count x bs === count x ( as ++ bs )
lemma3 y = count y [ ] === count y ( qsort [ ] )
lemma4 y x xs = count y ( x : xs ) ===

count y ( f i l terLEq x xs ) +
count y [ x ] + count y ( f i l terGT x xs )

lemma5 x xs = count x ( qsort xs ) === count x xs
lemma6 a b x = bigger ( a++b ) x === ( ( bigger a x ) && ( bigger b x ) )
lemma7 a b x = smallerEq ( a++b ) x ===

( ( smallerEq a x ) && ( smallerEq b x ) )
lemma8 ys x = ( smallerEq ys x ) === ( f i l terGT x ys == [ ] )
lemma9 ys x = ( bigger ys x ) === ( f i l terLEq x ys == [ ] )
lemma10 y ys x = smallerEq ( y : ys ) x ===

smallerEq ( f i l terLEq y ys ++ [ y ] ++ f i l terGT y ys ) x
lemma11 y ys x = bigger ( y : ys ) x ===

bigger ( f i l terLEq y ys ++ [ y ] ++ f i l terGT y ys ) x
lemma12 xs x = smallerEq xs x === smallerEq ( qsort xs ) x
lemma13 xs x = bigger xs x === bigger ( qsort xs ) x
lemma14 x xs = ( ordered xs && smallerEq xs x ) ==> ordered ( xs++[x ] )
lemma15 x xs = ordered ( xs++[x ] ) ==> ( ordered xs && smallerEq xs x )
lemma16 x xs = ( ordered xs && bigger xs x ) ==> ordered ( x : xs )
lemma17 a b = ordered ( a ++ b ) ==> ( ( ordered a ) && ( ordered b ) )
lemma18 x xs = bool $ smallerEq ( f i l terLEq x xs ) x
lemma19 x xs = bool $ bigger ( f i l terGT x xs ) x
lemma20 xs ys z = smallerEq xs z && bigger ys z ==>

ordered ( xs ++ [ z ] ++ ys ) ===
( ( ordered xs ) && ( ordered ys ) )
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