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Sebastian Norlin
Department of Computer Science and Engineering
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Abstract
Pathogens such as viruses and bacteria are a major health concern today. To effec-
tively treat these it is important to identify known pathogens and potential new ones
from DNA samples. Modern methods are however not good enough at classifying
rare, previously undocumented pathogens.
This thesis explores nearest neighbor classification using variable length Markov
chains (VLMC) as a possible solution. A vantage point tree is used to store the
database of VLMC being queried against. This gives promising results when clas-
sifying VLMC from complete genomes or chromosomes. Multiple techniques, both
greedy approximations and new lower bounds are explored. This results in order of
magnitude faster classification than previous research. However the technique ulti-
mately fails at classifying shorter DNA sequences of lengths typically found when
sequencing DNA. Multiple reasons for this are given with a possible way forward if
further research is deemed relevant.

Keywords: Computer science, Bioinformatics, Master’s thesis, vantage point tree,
metric space, Variable length Markov chains, Markov Models, DNA, Classification
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1
Introduction

Various pathogens such as viruses, bacteria and fungi are a major health problem
for humans today. This is especially true for immunocompromised patients where
otherwise fairly harmless pathogens can cause major health problems [16]. To ef-
fectively treat these pathogens an exact and quick identification of the pathogen is
needed. However existing methods fail to classify many rare pathogens because they
require observed pathogens to search for [16, 23]. Because of this approximately 30%
of all samples from immunocompromised patients at Sahlgrenska University hospital
(SU) remain unclassified [16]. This makes treating these patients very hard because
correct antibiotics, antivirals or fungicides cannot be administered [16]. A fast and
accurate method that can also classify rare pathogens is therefore needed.
One promising method of classifying DNA sequences proposed by Dalevi et al. relies
on genomic signatures as variable length markov chains(VLMC, section 2.2.2) [7].
To classify DNA sequences using this method the sequence must first be turned into
a VLMC. This can be done efficiently by the algorithm created by Schultz et al.
[20]. The genomic signature must then be compared to a large database of genomic
signatures of known pathogens to find matches. Dalevi et al. perform an exhaustive
search minimizing KL-divergence [7] (section 2.3.2.3) to find matches but this is too
slow even for moderate collections of pathogens. For the classification algorithm to
be feasible, an efficient data structure is needed. This data structure should allow
for rapidly finding the nearest neighbours of any genomic signature and the goal of
this thesis is to create such a data structure.

1.1 Delimitations
The thesis will focus on adapting existing data structures and methods to efficiently
store VLMC rather than creating new ones. Another delimitation is that only VLMC
are considered. There are other ways to represent genomic signatures but they are
not considered in this thesis. String based or deep learning based methods will also
not be considered.
The thesis will use existing datasets and is not focused on expanding these.
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2
Background

2.1 Biological background
This section will give a brief introduction to the relevant biological background.

2.1.1 DNA
Deoxyribonucleic acid (DNA) is a long sequence of nucleobases (guanine [G], cytosine
[C], adenine [A] or thymine [T]) used to store the genetic information needed for
any cell to function, grow or reproduce. It is found in every organism except for
some viruses that use RNA instead. DNA is generally stored in two strands running
anti-parallel in a double helix, see figure 2.1. These two strands are connected such
that A binds to T and G binds to C. Because of the pair-wise bindings the length
of a DNA sequence is often described by the number of base pairs (bp) it contains.
A base pair is either a pair of G and C or A and T. If a length of a DNA sequence
is given without a unit, it can be assumed to be in bp.
The DNA is extracted from an organism through a process called sequencing. Cur-
rent sequencing techniques split the DNA and extract many short sequences between
100-1000bp long, called reads. These reads can then be combined, by finding over-
lapping regions, to form a complete genome or chromosome.
DNA contains both coding and non-coding parts. The coding parts are used to
code for amino acids that are used to construct proteins. The non coding parts are
less understood, yet shown to be important for example for regulatory purposes or
in embryotic development [14]. The non-coding parts also contain viral DNA from
retroviruses and, especially in bacteria, DNA from horizontal gene transfers. These
foreign DNA fragments can sometimes be problematic during classification.

2.1.2 Taxonomy
Taxonomy is the science of naming and arranging organisms into specific groups
based on evolutionary relationships. These groups form a hierarchical system where
the most commonly used ranks, or levels, in this system are: Domain, Kingdom,
Phylum, class, order, family, genus and species. For example the swedish elk (or
moose) is in the domain Eukaryote (such as animals and plats), phylum Chordata
(mostly vertebrates), class Mammalia (mammals), order Artiodactyla (even-toed
ungulates), family Cervidae (Deer), genus Alces (only species in genus) and species
Alces.

3



2. Background

Figure 2.1: Image showing the double helix structure of the DNA sequence. Note
how A binds to T and G binds to C. By Zephyris - Own work, CC BY-SA 3.0,
unmodified, https://commons.wikimedia.org/w/index.php?curid=15027555

Organism is a term often used in taxonomy and biology to refer to anything ex-
hibiting signs of life. For the purpose of this thesis however, the term organism will
include viruses and other forms of "life" that may lack metabolism or the ability
to replicate or evolve without exterior mechanisms. Instead anything that contains
DNA or RNA will be referred to as an organism. As such organisms are anything
that can be taxonomically classified using its DNA or RNA.

2.1.3 Genomic signatures

A genomic signature is a representation of an organism’s genome by finding fre-
quently repeating patterns. This was first proposed by Kariin et al. by recording
the frequency of length 2 substrings called dinucleotides or 2-mers [13]. This has
evolved over the years as more data and more powerful computers become available.
Today the practise of recording the frequency of all substrings of length k is referred
to as k-mer counting and the k long substrings are called k-mers.

The goal of calculating genomic signatures is to speed up algorithms, such as clas-
sification, that may be performed on the genome. This can be performed with
methods such as k-mer counting, k-mer lookup tables [23] or statistical models such
as Markov models [7]. The simplest form of genomic signature is calculating the GC
content. The GC content is the proportion of all neucleobases being either guanine
or cytosine.

4
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Figure 2.2: A markov chain with states A,T,C, and G. The arrows are the transi-
tions and the numbers the transition probabilities. Only the transition probabilities
for when the markov chain is in state C is written out for clarity. If the markov
chain is in state C then it has transition probabilities p(T |C) = 33%, p(A|C) =
25%, p(G|C) = 25%, p(C|C) = 17%.

2.2 Markov models

2.2.1 Fixed order Markov models

A Markov model is a statistical model with a set of states Σ and knowledge of some
finite part of the history. Given this history the Markov model returns a distribution
over the probabilities of transitioning to the different states. A Markov model with
history of just the current state, also called a Markov chain, is given in Figure
2.2. That Markov model has the states Σ = {A, T,G,C} corresponding to the four
nucleobases of DNA.
The length of the history is called the order of that Markov model. If instead an
order two Markov model was used to model the DNA sequence it would have 16 · 4
transition probabilities p(A|AA), p(T |AA), p(G|AA), p(C|AA) and so on for each
possible history of length 2. If T is generated then it is said to be emitted by the
model. This probability is either called the transition, or the emission probability.
Generating a T in state AA will also transition the model to state AT.
One way to store Markov models is by storing their emission matrix. This is a |Σ|·N
matrix for a Markov model of N states that stores the emission probabilities of each
character in Σ for every state.
Sometimes the shorthand p(Σ|AA) will be used to denote the vector of emission
probabilities from state (AA). In general an order α Markov model will have |Σ|α
states and |Σ|α+1 transition (or emission) probabilities.
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2. Background

2.2.2 Variable length Markov chains
A variable length Markov chain (VLMC) [4] is a Markov model that allows the his-
tory, called the context, to vary between different states. They are sometimes also re-
ferred to as variable order Markov models, because the order of the model is different
for different states. Consider for example a VLMC with Σ = {A, T,G,C}. A VLMC
could store transition probabilities p(Σ|ATTG), p(Σ|ATTGG) and p(Σ|GCTG) but
no other transition probabilities for states with context of length 4 or 5. The rea-
son for not storing the other states could be that they do not contain enough new
information. An example of a small VLMC with Σ = {A,B} is shown in figure 2.3.
The benefit of VLMC becomes apparent when modeling an organism that has some
long, important sequences. Consider an organism with a sequence of length 15 that
occurs fairly frequently and this sequence might be needed to differentiate between
two different species. It would then be important that the whole sequence is captured
by the model. However to capture this information in a fixed order Markov model
415 states and a total of 416 = 232 transition probabilities have to be stored. A
VLMC on the other hand can store this information in fewer than 1000 states by
pruning noise or less important states. Note however that the VLMC always stores
an emission probability for every character in Σ for every state. As such a VLMC
has N states and N ∗ |Σ| transition emission probabilities.
The main benefit of VLMC is therefore a more compact, but comparatively ex-
pressive, model compared to fixed order Markov models. VLMC have been shown
to extract relevant information from whole genomes and can be used to perform
taxonomic classification [7].
When constructing VLMCs the algorithm by Schulz et al. [20] can be used. Describ-
ing this algorithm is out of scope for this thesis but it takes three parameters. These
are: mincount, maximum length and a pruning value. The mincount specifies the
minimum number of times a specific sequence has to be found in the original string
to be considered. Maximum length is the maximum length the context, or history,
a state may have. The pruning value is either a floating point value used to prune
the number of states or a fixed maximum number of states.
As an example, we can construct a VLMC from the string ATGATGACC with
mincount 2, maximum length 2 and no pruning value. The sub strings {A, T, G,
C, AT, TG, GA, ATG} all occur at least twice. However, because ATG is longer
than the maximum length it will be removed. A root node is also added resulting
in a VLMC with 8 states and the emission probabilities of state A is: p(A|A) = 0,
p(T |A) = 0.66, p(G|A) = 0, p(C|A) = 0.33.

6
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Figure 2.3: Example VLMC. Compared to a fixed order Markov model of order
three it has five states instead of eight. The fixed order model would not have states
{A,B,BA,AA} and instead all possible order three states. The benefit of VLMCs is
mostly apparent for large models however.

2.3 Distances

2.3.1 Metric distances
Most functions that one thinks of as distance functions are metric distances. Because
of this there exists many data structures and algorithms that depend on metric
distances. This is problematic when working with VLMC as there are few metric
distances for VLMCs. For a distance function d to be metric it must fulfill the
following four properties:

d(x, y) ≥ 0 Non negative (2.1)
d(x, y) = 0⇒ x = y Identity of indiscernibles (2.2)
d(x, y) = d(y, x) Symmetry (2.3)
d(x, y) ≤ d(x, z) + d(z, y) Triangle inequality (2.4)

Equation (2.2) means that if the distance between two points is 0 then these two
points must be equal. Equation (2.4) means that the distance between two points
x, y is equal to, or less than the distance between x, y via some third point z.

2.3.2 Distance functions on VLMCs
To be able to perform a nearest neighbor search a distance function is required.
There is no single optimal distance function for VLMCs instead they have various
pros and cons. In general the more accurate distance functions are slower and
the fast distance functions are less accurate. The Kullback–Leibler divergence will
give the true difference between two VLMCs and can be seen as a ground truth
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in distance between two VLMC. The following section describe the best distance
functions found by [10].

2.3.2.1 GC

The simplest, and fastest distance function one can use for DNA sequences, or ge-
nomic signatures, is the so called GC distance. This distance calculates the difference
in GC content between two sequences. The GC content can easily be stored as a
constant and therefore retrieved with a single look-up.
The trade off is that GC distance discards a lot of the information in the genome.
This means two very taxonomically different genomes can have low GC distance.
GC distance is therefore not enough to make correct classifications [7].
The GC distance obeys non-negativity, symmetry and triangle inequality but not
Identity of indiscernibles.

2.3.2.2 Frobenius norm

Frobenius norm is a matrix norm on the emission matrix of both models. This
was applied to HMM [6] and later adopted to fit VLMC [10]. The Frobenius norm
requires that both models have the same set of states. However, due to the nature
of VLMCs this is not always the case. Instead either the union or the intersection of
the two state spaces has to be used. This new state space is then used to determine
what part of the emission matrices to use. Using the intersection is both faster
and more accurate compared to union and will therefore be used in this thesis [10].
The Frobenius norm of the intersection of the emission matrices will be denoted
Frobenius intersection or FN.
The Frobenius intersection is given by equation (2.5) where x, y are VLMCs and
S = Ex ∩ Ey.

dfn(x, y) =
√√√√ 1
|S|

∑
s∈S

∑
a∈Σ

(Px(a|s)− Py(a|s))2 (2.5)

The Frobenius intersection obeys non-negativity and symmetry but not Identity of
indiscernibles nor triangle inequality.

2.3.2.3 Kullback–Leibler divergence

The Kullback-Leibler (KL) divergence is a measurement of how different two prob-
ability distributions are. It is defined for any two probability distributions over the
same probability space. Equation (2.6) gives the definition of KL-divergence on two
probability distributions P and Q defined on some discrete probability space X. The
continuous version is similar but it integrates over all of X.

DKL(P,Q) = −
∑
x∈X

P (x) log
(Q(x)
P (x)

)
(2.6)

8



2. Background

Note that the KL-divergence is only defined if P (x) = 0→ Q(x) = 0.
When comparing two VLMCs it is possible that a state exists in one model but not
the other. Because of this it is not possible to calculate the KL divergence using just
the transition probabilities of both models. Instead one has to create a probability
space where both VLMCs are defined. This can be done in the say way that [12]
defined KL divergence for hidden Markov models. Let X be a set of one or more
generated sequences of length s. Equation (2.6) is then defined on this set X and
will approach the true KL divergence between the VLMCs as the sequence length s
approaches infinity.
KL divergence obeys non-negativity, symmetry ifDKL−sym = 1

2(DKL(P,Q)+DKL(Q,P )),
Identity of indiscernibles, but not triangle inequality.

2.4 K nearest neighbor classification
K nearest neighbor (knn) classification is a classical machine learning, or data mining
technique that consists of two parts, a database and set of points to classify. The
data in the database consists both of some value, or point, and a label, such as
a specific virus or bacteria. To classify a point using Knn is a two stage process.
First, the point is queried against the database which returns the k closest, or
nearest, points from the database. These are referred to as the k nearest neighbors,
hence the name. The second stage is to use these k points to classify — determine
the label of — the queried point by for example majority vote, see below.
The benefit of knn classification is that it allows for classifying a point without
comparing it to the whole database. Techniques for increasing the accuracy or
speed of a knn classifier comes in three forms. Either they modify the data set,
change the database structure or change the classification step at the end.

2.4.1 Classification algorithm
The simplest of all classification algorithms is to just classify the point as the most
frequent label of the k neighbors. This is however prone to errors, especially if the
queried point is in a rare class or close to the decision boundary. See figure 2.4.
If three neighbors are used the green point is classified as a red triangle. If five
neighbors are used it is classified as a blue square.
To avoid this problem weighted nearest neighbor classification can be used. This
adds some weights wi to each neighbor’s label li for i = 1..k. The weight can be as
simple as k− i or 1

di
where di is the distance to the query from the ith neighbor. The

weights are then summed and the query is classified as the most heavily weighted
label. Choosing wi = 1 for all neighbors is equivalent to the naive classifier above.
More complex weighting schemes can be chosen that are more or less task specific,
see for example [8, 5].
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2. Background

Figure 2.4: Nearest neighbor classification example with the query in green and two
different classes represented by the red triangles and blue squares. If one neighbor is
used it is classified as a red triangle, same goes for three. However, for five neighbors
it is classified as a blue square if unweighted NN classification is use.

2.4.2 Data structures
Trees are commonly used to structure the data before performing a nearest neighbor
search. The goal of storing the data in a tree is to find some way of pruning branches.
That is, determine that the nearest neighbor cannot be in a specific sub tree and
avoid traversing it. Another benefit with trees is that algorithms are often fairly
simple.

2.4.2.1 Kd-tree

A kd-tree, or k dimensional tree is a binary tree data structure used to store multi-
dimensional data. For each level of the tree only one dimension is used to determine
whether a node is greater than, or less than its parent. Because of this a Kd-tree
requires that the data has the same, fixed, dimensions and is therefore hard to use
for vlmcs.

2.4.2.2 Vantage point tree

A vantage point tree (VP-tree) proposed by Uhlman in [22] is a tree structure for
storing metric data. It partitions the data by selecting elements to be used as
vantage points. These vantage points are stored in each node and the children are
partitioned by putting all sufficiently close points in the left sub tree and the rest
in the right sub tree.
A vantage point tree is constructed using algorithm 1 where d(p, vp) is the distance
from p to vp. The function select_vp selects the vantage point to use from all of
the data. It can have a large impact on the nearest neighbor search speed [2].
The algorithm for finding the nearest neighbor in a VP tree given by algorithm 2.
It will recursively traverse the tree and takes as input a node n, a query q and the
so far nearest neighbor best. To understand how this algorithm works an example
is given where the point X figure 2.5 is classified. The given line numbers refer to
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input : data: D
output: root node: n

1 Function construct(D)
2 if D 6= ∅ then
3 vp = select_vp(D)
4 n.data = vp
5 n.cutoff = cutoff
6 n.left = construct( {p ∈ D |d(p, vp) ≤ cutoff} )
7 n.right = construct( {p ∈ D |d(p, vp) > cutoff} )
8 return n
9 else

10 return ∅
11 end
12 end
Algorithm 1: algorithm for constructing a vp tree. Generally the cutoff
is chosen to be the median distance from all points in D to vp.

line numbers in algorithm 2. First the distance to 1 is calculated and because this
is lower than the cutoff for 1 the left tree is explored first (5-6). The distance to 2
is calculated and the best distance updated (2-3). Again it is closer than the cutoff
and the left tree will be explored (5-6) and the distance to three is calculated. The
best distance is updated because 3 is the closest node so far (2-3). 3 is a leaf and the
algorithm cannot progress further down the tree. The closest distance so far (black
line) is compared to the distance to the cutoff boundary of 2 (dotted line) (7). The
black line is shorter and node 4 can be pruned. The black line is then compared
to the dotted line of 1 (7). Again it is shorter and the whole right subtree can be
pruned and the nearest neighbor of X is 3.
Note that the pruning done on line 7 and 12 uses triangle inequality. Because of this
it will not guarantee optimal results for distance functions that do not obey triangle
inequality. Also note that the algorithm visits at least one leaf and that it can never
terminate unless it has just visited node with 1, or 0 children. Therefore to classify
Y it will visit 1,5,8,6,7,2,4 in that order.

2.4.2.3 Ball-trees

Ball trees work very similar to VP trees in that it is generally a binary tree that
partitions space. Ball trees however store all data in spheres as opposed to a VP
tree that stores the closer points in a sphere and the other points in a, potentially
thick, shell. This has the benefit of ensuring that objects are at most some radius r
away from the sphere center.
There are multiple construction algorithms for ball trees. A general goal however is
to minimize the total volume of all balls in the tree [17]. The construction algorithm
can have a large impact on the final tree however.
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Figure 2.5: Example of a VP tree storing data from three different classes (blue,
green red) and two queries (X,Y). A representation of the 2D space is given on top
where the circles represent the cutoff distance and underneath a VP tree of this data
is shown.
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input : n, q, best
output: nearest neighbor

1 Function nn()
2 if d(n.data, q) < d(best,q) then
3 best = n.data
4 end
5 if d(n.data,q)<n.cutoff then
6 best = nn(n.left,q,best)
7 if d(n.data,q)+d(best,q)>n.cutoff then
8 best = nn(n.right,q,best)
9 end

10 else
11 best = nn(n.right,q,best)
12 if d(n.data,q)-d(best,q)<n.cutoff then
13 best = nn(n.left,q,best)
14 end
15 end
16 return best
17 end

Algorithm 2: algorithm to find nearest neighbor in vp tree

2.5 Other classification methods

2.5.1 String based methods
Traditionally string based methods are used to classify DNA sequences. Examples
of such methods are BLAST[1], kraken[23], Megan[11], MetaPhlAn[21]. MetaPhlAn
work by finding pre-determined specific DNA substrings that are known to be im-
portant for a specific species or genus. The sequence that is being classified is then
searched for these specific substrings. This means that any species or genus not in
that pre-determined dataset cannot be classified. The method is however fast and
can be used to give an overview of what organisms are present.
Kraken [23] works by constructing a lowest common ancestor database based on k-
mers of the DNA sequence. These k-mers can be obtained by using a sliding window.
The database is queried for every k-mer in the DNA sequence being classified. The
total number of times that k-mer is found is stored in a tree. When all k-mers have
been queried into the database this tree is traversed following the highest scoring
path until a leaf is reached. The DNA sequence is classified as that leaf’s class. See
fig 2.6 for an illustration from the Kraken paper.
When analyzing DNA sequences using k-mer based methods it is important to choose
the correct size of k-mers. Kraken uses a k = 31 as a standard length of their k-mers.
This gave them a 70GB large database [23]. They also released a version with rare
k-mers cut away. This is significantly smaller at only 4GB and is called mini-kraken.
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Figure 2.6: Figure showing the Kraken classification algorithm. The top shows
all k-mers extracted from the DNA sequence. They are matched with the LCA, or
Taxonomy tree. The total counts of each node found is then stored in a separate
tree. The branch with the highest counts is chosen as the tree is traversed. When a
leaf node is reached that is chosen as the class for the DNA sequence. Figure from
[23].
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3.1 Code
The code is mostly written in python and can be found on Github under the BSD
3 Clause license at:

https://github.com/Gertdor/genomic-signatures-data-structure
The generation of VLMC is done using code by Norlander and Gustafsson [10].

3.2 Data
The database used contains 8901 organisms from different superkingdoms and the
distribution can be observed in table 3.1. It contains only complete genomes or
whole chromosomes taken from the NCBI database [9]. All the organisms used can
be found in the file settings/organisms_in_db on Github.
This database was used because it already existed with pre-computed signatures
and relevant metadata. It was also sufficiently large and varied to perform the
experiments. Most of the database was constructed by adding various viruses and
their hosts.

3.2.1 GC content
Figure 3.1 gives an XY plot between the GC distances and FN distances in the
dataset. Interestingly the GC content is a lower bound for the FN distance. This
allows for pruning the left tree if the queried point’s GC content is sufficiently
different from the vantage point’s GC content. Because GC distance is orders of
magnitude faster to compute than FN this can speed up computation.

Number of Genomes Kingdom
867 Bacteria
712 Plasmid
332 Eukaryote mitochondrion
1788 Eukaryote chloroplast
2761 Eukaryote
256 Archaea
2185 Viruses

Table 3.1: Distribution of kingdoms present in database.
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Figure 3.1: distribution between GC and FN distance. GC is a lower bound on
the FN distance. The hump in very low FN distance are plasmids. X axis is GC
distance and Y axis FN distance

3.2.2 Data division for experiments

For each experiment, the data was divided into two parts. 80% was used to construct
the tree and the remaining 20% was used to query into the tree. These two parts were
generated using RepeatedKFold function from sklearn [18]. This function takes all
of the data and randomizes it, then divides it into five equal parts {p1, p2, p3, p4, p5}.
p1 will first be used to query into a tree constructed from the remaining four parts.
Then p2 is used to query into a tree constructed from the other four parts and so
on until all five segments have been used to query different trees. Importantly all
the data is used as queries once and the queried points are never in the tree. This
whole process of randomizing and splitting the data is repeated multiple times.
To be able to compare the accuracy between VLMCs from full genomes and VLMCs
from reads, the reads were generated from the full genomes. This was done by
two different methods. The first was taking sliding windows of different sizes and
extracting substrings which were then saved. The sizes 160, 480, 720 and 1200
were used because they are divisible by 80 and as such contains a full row from the
standard fna file format for DNA sequences. The four categories also cover most
of the common read sizes. At most 10000 reads were generated from one genome.
This is to limit the proportion of reads from longer genomes. The number of reads
per superkingdom for reads of length 480 can be found in table 3.2
The second method was using wgsim from samtools [19] to create sequences with
similar defects found by modern high-throughput sequencing machines. wgsim was
run on the same original genomes but 1000 reads were generated from each original
genome. Because of this there is a smaller proportion of Eukaryote reads in this
dataset. The standard error values from samtools1.9 were used. wgsim was also run
without errors to get a fair comparison on exactly how much the errors affected the
classification accuracy.
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Superkingdom number of reads
Viruses 51159

Eukaryote chloroplast 149359
Eukaryote 4782712

Eukaryote mitochondrion 2684
Bacteria 1402675
Archaea 341102

unclassified 1023

Table 3.2: Table showing the number of reads per superkingdom. Even if the
number of reads is limited to 10000 per organism there are still a clear majority of
Eukaryote and Bacteria. The reads are 480bp long.

3.3 Classification methods
There were three different types of experiments. Either brute force or Classification
with VLMC generated from either complete genomes or from reads. These three
methods are explained further in this section.

3.3.1 Brute force method
The brute force method calculates all the pairwise distances between all the organ-
isms in the database. These are then stored in a matrix and can be used to retrieve
the true nearest neighbor using that distance function. This is used as a baseline
to determine how much the different algorithms and pruning techniques alter the
classification accuracy.

3.3.2 VLMC from complete genomes
The database contains VLMC generated from complete genomes. This data can,
therefore, be used directly after splitting it as described in section 3.2.2. This kind
of experiment was used to understand how different pruning techniques affect the
classification accuracy and speed. They can also be seen as the likely best possible
performance in terms of accuracy. They are however probably less useful than
previously thought. Because these models are generated from much longer sequences
many of the insights are hard to carry over to classification from reads, which is
the end goal. However, unless specifically specified otherwise, all experiments are
performed using this technique in the results section.

3.3.3 VLMC from reads
When performing nearest neighbor classification using VLMC the sequences first
have to be turned into VLMCs. It is important to choose correct hyperparameters
however it is not clear exactly how they should be chosen for optimal results. Because
the reads are much shorter than the genomes the VLMC tend to be much smaller
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than those in the tree. However, because the distance functions work for sequences
of different sizes this is not a problem.
The generated VLMC is then used to query the tree. Some number of nearest neigh-
bors were then saved and were used for classification. The classification algorithm
used is weighted nearest neighbor classification.

3.4 VLMC
VLMC were used because Norlander and Gustafsson [10] found these to be better
than fixed order Markov models. However, correctly choosing parameters when
creating the VLMC can have a large impact on classification accuracy. Below are
two tables 3.3 and 3.4 showing the effect of changing the min count when creating
VLMCs for viruses.
As can be observed these parameters can have a large impact and should be chosen
differently depending on what distance function is used and how long the DNA
sequence is. The mincount values used for the experiments were 10 for viruses
and 100 for everything else. The maximum number of parameters were 193 unless
otherwise stated.

Min count rank classification accuracy
100 genus 73.1%
10 genus 55.2 %
100 family 85.9%
10 family 64.2 %

Table 3.3: Effect of min count on KL-divergence classification accuracy for viruses.

Min count rank classification accuracy
100 genus 48.7%
10 genus 59.1%
100 family 53.9%
10 family 71.2%

Table 3.4: Effect of min count on FN classification accuracy for viruses.
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Distance function average time (s) genus accuracy
KL-div 18.5 39%
FN 0.0485 74%

Table 3.5: Difference between KL divergence and FN when used to classify herpes
virus in a VP tree.

distance function rank max parameters max accuracy
FN genus 193 84.0%
FN genus 255 83.0%
FN family 193 91.6%
FN family 255 91.7%

KL-div genus 193 82.6%
KL-div genus 255 77.2%
KL-div family 193 90.8%
KL-div family 255 86.6%

Table 3.6: Difference in classification accuracy between KL divergence and FN for
bacteria for different number of parameters

3.5 Distances

The two main distance functions to consider are KL divergence and FN. KL diver-
gence will give the true statistical difference between two VLMCs if the generated
strings are long enough and FN is faster than KL divergence while still gives similar
results. FN also obeys the triangle inequality much better than KL-divergence and
has better performance if triangle inequality is used to prune results as can be seen
in table 3.5.
It is also not true that KL-divergence will always have better classification accuracy.
If the models are noisy, very long sequences can be needed before KL-divergence con-
verges to the true difference. This can be observed in table 3.6. The KL-divergence
was calculated using a sequence of length 10000 yet it is still not enough to overcome
the noise of the mincount 10 models. Sequence length 10000 was used as it gives
reasonable accuracy without being unreasonably slow.

3.6 Speedup techniques

3.6.1 Greedy factor
One simple way to speed up the nearest neighbor queries is to more greedily prune
the branches of the VP tree. This can be done fairly easily by simply adding a
factor α ∈ [0, 1], referred to as a greedy factor, to line 6 and 11 of algorithm 2.
This means that instead of pruning a branch if d(n.data, q)− d(best, q) < n.cutoff
it is now done if d(n.data, q) − d(best, q) < n.cutoff ∗ α. For metric distances this
also gives a 1

α
approximation.
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3.6.2 Parallel searching
Because each query into the tree is completely independent it also supports parallel
searching of nearest neighbors. Because each query is fairly fast this currently only
scale well for 1000s of queries. It might be possible to improve this but it was not
explored further in this thesis.

3.6.3 Forests
Another possible speedup technique is to split the data and create multiple trees
which each contain a subset of the data. One possible way to divide this is by GC
content because if two organisms have sufficiently different GC content they also
cannot be near neighbors with regards to FN distance. This is a direct result of
GC being a lower bound for FN distance. It could, therefore, be possible to split
the dataset into multiple, slightly overlapping, buckets such that only one of these
buckets have to be searched for the nearest neighbor. This would work best if the
GC content is distributed uniformly, however, this is not the case. Figure 3.2 gives
the GC distribution in the database. There is a large spike around 40% GC content
and the majority of all organisms are in the 30-70% range.
Almost all of the nearest neighbors with respect to FN distance are within 11% GC.
This gives a minimum bucket size of 22 plus the width of the actual bucket. Because
of this most buckets would still contain almost the whole original database. It may
be possible to split the data in some other way but this was not explored further.

3.7 Comparison to other methods
When comparing VLMC classification to Kraken the seed 15567 was used for Re-
peatedKFold and the first 20% was used as queries. The aid of each organism can
also be found on Github under settings/query_aids.txt and settings/db_aids.txt.

3.7.1 Definition of classification accuracy
Classification accuracy refers to the number of correct classifications divided by the
total number of classifications made at that rank. For example, for Kraken, the
genus accuracy will calculate the total number of correct classifications at genus
level divided by the total number of classifications made at genus level. That is,
a superkingdom classification will not count towards the total number of classifica-
tions.

3.7.2 Kraken database and classification
Two Kraken databases were constructed. One containing all the 8901 organisms and
one containing 80%. This was done with:

kraken2-build --add-to-library /path/to/data --db /path/to/db --no-masking
kraken2-build --download-taxonomy --db /path/to/db
kraken2-build --build --db /path/to/db --threads 16
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Figure 3.2: Distribution of GC content of all organisms in the database.
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This resulted in either a 104Gb or 129Gb large database with a 29Gb large taxonomy
database. Masking was not used because the necessary 3rd party dependencies were
not installed on the server. The actual classification was done on one core with:

kraken2 --db /path/to/db /path/to/fna/folder/* | python reduceOutput.py

where reduceOutput.py takes the output of Kraken and saves only the id of the
organism in the fna file as well as the taxonomic classification it was given.
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4.1 VP tree
Because the VP tree prunes using triangle inequality it no longer guarantees optimal
results. Experiments show that around 2% of the nearest neighbors found are not
the true nearest neighbor but rather a fairly close one.

4.1.1 GC pruning
Another technique for pruning the VP tree is to use the GC content of the signatures.
As can be seen in figure 3.1 the GC distance can be used as a lower bound for the
FN distance. It also tends to find the exact same neighbor. In the cases where it
doesn’t, it seems to be random whether the new neighbor is better, or worse than
previously. The reason why it is possible to find a better neighbor is probably that
FN does not obey triangle inequality. See figure 4.1 for a box plot over the result.

4.1.2 Forests
One way to construct a forest would be to split the data by GC content. This is
however not very useful as most organisms have a GC content in the 0.4-0.5 range
and the VP-tree does a good job of pruning distant points anyway. See fig 3.2 for
the distribution of GC content in the database. The effect of using a forest can
be seen in figure 4.1. Note how it has little to no effect on the number of distance
calculations but may slightly improve accuracy.

4.1.3 Greedy factor
The effect of the greedy factor can be seen in 4.2 and 4.3. As can be observed the
number of distance calculations needed decreases rapidly but the quality of neighbors
is effected very little.
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Figure 4.1: The effect of GC pruning and forest on the number of distance calcu-
lations made and effect on distance to the nearest neighbor.
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Figure 4.2: Number of distance calculations needed to find the nearest neighbor
for different hyper parameters. Each block of slowly increasing 4 is for different
number of neighbors: 1,3,5 or 7. Each block uses a different value of greedy factor:
1, 2 or 3. GC pruning is used everywhere
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Figure 4.3: Effect of different hyperparameters family classification accuracy. The
different colors represent the number of nearest neighbors that are of the same family.
As the number of neighbors increases the probability of including the true family
also increases. Higher greedy factor has little effect on the result. Note that it is
possible that the family is not present at all in the database.

4.1.4 Multiple neighbors
Including more neighbors means that more information is passed to the classification
portion of the algorithm. In general, this can aid classification but at the expense of
more calculation. However, if the classification algorithm is not good enough it can
decrease accuracy. Currently, even if using weighted nearest neighbor classification
the accuracy decreases as more neighbors are added. Figure 4.3 shows the the
number of times the correct family is present within the nearest neighbors found. If it
exists atleast once the classification algorithm has some chance to classify correctly.
If it is not (the green bar) then the classification algorithm cannot ever classify
correctly. Similar results are obtained for genus also.

4.2 VLMC parameters

4.2.1 Maximum number of parameters
Changing the maximum number of parameters has a potentially large effect on both
the classification accuracy and speed as can be seen in figure 4.4. The average
distance to the nearest neighbor in the tree increases with model size which might
be a result of the distance function used. Because the Frobenius norm on VLMC
takes the intersection of states it will compare a different number of parameters
depending on the size of the model. Because there are more states in the larger
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model, there will in general also be more intersecting states. It is possible that this
in turn results in larger distances.
The increase in distance calculations can be the result of two things. Either the
distances to the query increases more than the distances within the tree or the
dimensionality of the problem increases. Let us consider these in order: if the
distances between elements in the tree remain constant but the distance to the
query increases it will take longer to classify it. This is because the tree pruning is
done by checking if a sphere around the queried point intersects with any possible
nearer neighbors. If the distance to the nearest neighbor is larger then the volume of
this sphere is also larger. This, in turn, increases the number of possible candidates
and the search space can be pruned less aggressively resulting in more distance
calculations. If the dimensionality increases the total amount of space increases
exponentially and points tend to be more equidistant. This also results in fewer
branches being pruned, and therefore an increase in distance calculations.
The effect of the maximum number of parameters also depends on the length of
the DNA sequence which in turn depend on the organisms themselves. To study
the effect of the maximum number of parameters on classification accuracy three
representative groups were selected: Viruses, representing short genomes, Bacteria
representing medium-sized genomes and Eukaryote representing the large genomes.
Figure 4.5 shows the classification accuracy at family level for these three superking-
doms using models of different sizes. The classification accuracy was measured using
FN and the brute force method. Note how the impact on viruses was much greater
than the impact on both Bacteria and Eukaryotes. Eukaryotes and especially Bac-
teria see a small decrease in classification accuracy for 146 maximum parameters
but otherwise stay fairly constant. Viruses, however, seem to have a clear spike near
the 193 mark. The accuracy levels out at around 1875 because few viruses contain
enough information to generate models this large even with a mincount of 10. The
data for genus classification looks similar and is found in Appendix A.

4.2.2 Mincount
The original genomes that the models are generated from have vastly different
lengths. Because of this they also contain vastly different amounts of information.
This leads to the models behaving poorly if constants, such as mincount, do not
depend on the genome length. Because of this, the mincount for the much shorter
viruses was changed to 10, the performance increase can be found in table 3.4.

4.3 VLMC sequence classification results

4.3.1 Time
The time it takes to classify a sequence depends on two things. The time it takes to
generate a VLMC from a given sequence and the time it takes to find the nearest
neighbors of this VLMC. The time it takes to generate this VLMC depends on three
major things: The length of the sequence, the maximum length, and the mincount.
These all depend on each other and it is not trivial to predict the time it will take
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Figure 4.4: Barplots showing the effect of maximum number of parameters on
the average distance to nearest neighbor found in tree and the number of distance
calculations needed for different greedy factors. Note how the number of calculations
made follows the average distance very well. Other parameters were Mincout 10 for
Viruses and 100 for everything else, maximum branch length was 15.
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Figure 4.5: Family classification accuracy for Viruses, Bacteria and Eukaryotes
using differently sized models. FN and brute force was used with only Viruses,
Bacteria or Eukaryotes in the database.
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max parameters mincount read length time (minutes)
50 4 480 769
100 8 480 845
50 6 480 691
100 4 480 831
50 4 1200 1244
100 8 1200 848
50 6 1200 845
100 4 1200 1300

Table 4.1: Classification time for different VLMC parameters and reads of length
480 and 1200. Note how generally reducing mincount and having longer reads
increases classification time.

to generate a sequence even given the value of these three variables. This is because
the time also depends on the distribution of {A, T,G,C} in the sequence.
The time it takes to classify a VLMC depends mostly on how close its nearest
neighbor is and whether or not there is a large cluster of VLMCs in that area. If
the nearest neighbor is close then more VLMCs can be pruned. However, if there
are many other VLMCs close, many distance calculations may be needed. As seen
before, having larger VLMCs tend to increase the time it takes to find the nearest
neighbor.
When using GC pruning and a greedy factor of 2.5 it takes about equal time to
generate the VLMC as it does to classify it for sequences of length 480 (mincount 4,
maximum number of parameters 100, maxlength 5). For shorter sequences, the time
it takes is slightly dominated by the classification time. For longer sequences, the
classification time increases slightly while the VLMC generation takes much longer.
The exact amount of time it takes can be found in table 4.1. As can be seen, the
difference between 480bp and 1200bp is massive for mincount equals 4 and it is
due to the slower VLMC generation. Why it was so slow to classify sequences with
maximum number of parameters 100, mincount 8 and 480bp is unknown.

4.3.2 Accuracy

The classification accuracy is very poor when classifying reads using VLMCs as can
be observed in table 4.3. The accuracy is low enough to be useless. The accuracy
is, however, better for viruses than for any other organism. This is mostly because
the VLMCs tends to classify everything as a virus. If one compares the distribution
between the superkingdoms in table 4.2 and table 3.2 it is vastly different. Most
reads are from Eukaryotes but most reads are classified as viruses.
If one instead looks at the classification accuracy of viruses in table 4.3 they are bet-
ter. Importantly viruses tend to at least be classified into the correct superkingdom
as can be seen in table 4.4. Even for only viruses, and superkingdom accuracy it is
much too low to be of use.
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Superkingdom Classifications
Viruses 5057436
Archaea 71804
Eukaryote 712277
Bacteria 320126
Plasmids 569071

Table 4.2: The table shows which superkingdom each read was classified into. The
reads are mostly eukaryote but classified as viruses

Queried Organisms Sequence Length Taxonomic Rank Accuracy
all 480 genus 1.61%
all 480 family 2.28%
all 1200 genus 1.64%
all 1200 family 2.36%

Virus 1200 genus 14.5%
Virus 1200 family 18.3%
Virus 480 genus 9.92%
Virus 480 family 13.5%

Table 4.3: Classification accuracy for VLMC generated from different sized se-
quences. The accuracy is calculated when only virus reads are used and when all
reads are used to query into the database. The hyper parameters were maxlength
9, mincount 4, maximum number of parameters 100

Superkingdom Count
Viruses 45598
Archaea 559
Eukaryote 935
Bacteria 1365
Plasmids 2702

Table 4.4: Distribution of superkingdoms from querying 51159 virus reads of length
480 into the database. The hyper parameters were maxlength 9, mincount 4, maxi-
mum number of parameters 100
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4.3.3 Effect of Noise on Classification Accuracy
Table 4.5 shows the effect of read noise on classification accuracy for VLMC. As can
be seen, the classification accuracy is overall low and the effect of noise is similar
for all experiments. Removing the noise also gives a decent accuracy improvement.

Rank Read length Noisy Read Flawless Read Improvement
genus 160 2.46% 2.65% 7.7%
genus 420 3.04% 3.30% 8.6%
family 160 4.24% 4.54% 7.0%
family 420 4.99% 5.31% 6.4%

Table 4.5: Effect of noise in sequence reads on classification accuracy. The accuracy
is improved when using flawless reads. The classification was run on 1000 sequences
from each genome.

4.3.4 Memory Usage
The VP tree containing the database of VLMC as well as the docker container
and other overhead takes up around 3Gb of space. The memory usage of VLMC
classification spikes to around 5.5 GB when training length 1200 sequences. This
makes the VP tree very portable and easy to run on, for example, a laptop.

4.4 Kraken2 results

4.4.1 Accuracy
When kraken2 does it classification it will classify at different taxonomic ranks
depending on the counts in the LCA database. Kraken tries to maintain accuracy
while being as specific as possible. This type of dynamic classification is out of scope
for this thesis and as such the Kraken results have been converted to three levels of
specificity: genus, family or too general/unclassified. The distribution can be seen
in the table below. For an exact distribution see Appendix A.
As can be seen in table 4.6 the longer the sequence the more specific the classification
can become. Interestingly, the accuracy tends to get worse as the sequences, and the
specificity, increases. It is also worth noting that for all sequence length if Kraken is
forced to make a more general prediction at family level it is often incorrect. This
can be observed in table 4.7 as a noticeable drop in accuracy even if family level
predictions stand for only 3.6%-0.6% of the total predictions.

4.4.2 Time
Kraken is very fast and the time it takes to classify a sequence scales linearly with
the sequence length.
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Sequence Length Proportion Genus Proportion Family Unclassified
160 82.3% 3.6% 14.0%
480 89.7% 1.3% 9.0%
720 91.8% 0.9% 7.4%
1200 93.7% 0.6% 5.7%

Table 4.6: Distribution of the taxonomic rank of classifications made by kraken.
The genus column contains all classifications made at genus level or lower and family
all classifications between genus and up to family. Everything more general is labeled
unclassified.

Sequence Length Genus Accuracy Family Accuracy
160 92.8% 91.0%
480 92.0% 90.4%
720 91.5% 91.0%
1200 91.2% 90.8 %

Table 4.7: Total accuracy for predictions by kraken at genus level or lower and
family level or lower. Note therefore that the family column also contains all genus
level or lower predictions.

Number of Sequences (106) Sequence Length Time(s)
8.10 160 92
6.78 480 263
6.12 720 359
5.27 1200 660

Table 4.8: Classification time for different length of sequences in the kraken
database containing 80% of the whole database.
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4.4.3 Effect of noise on classification accuracy
Table 4.9 shows the effect of noise on Kraken’s classification accuracy. There are
two major things to note. Kraken seems to be better at classifying Eukaryote
compared to other superkingdoms. This can be seen when comparing these results
to the results of table 4.7. Second, the total effect of read noise on the classification
accuracy is very small. Surprisingly, adding noise increases the accuracy of family
level classifications for Kraken. This is because Kraken performs fewer species or
genus classifications (just over 1.5% fewer) on the noisy reads. Instead these are
mostly classified at a sub-family or family level. Kraken is therefore "over confident"
when classifying flawless reads. This also means that the accuracy difference between
genus and family classifications is much larger for noisy reads compared to flawless
reads.

Rank Read length Noisy Read Flawless Read Improvement
genus 160 76.0% 77.6% 2.1%
genus 420 72.5% 73.6% 1.5%
family 160 82.6% 81.7% -1.1%
family 420 89.1% 88.2% -1.0%

Table 4.9: Effect of noise in sequence reads on classification accuracy. Kraken is
affected surprisingly little by the noisy reads. Indeed the performance is better on
the noisy reads for family classification. The classification was run on 1000 sequences
from each genome.

4.4.4 Memory usage
Kraken2, on the other hand, used approximately 110-120Gb of memory when classi-
fying the same length sequences in a database with the same information. Kraken2
does, however, have a special — 8GB — database that it is released with which
is much more portable and can be run on a laptop. This small database was not
used because it could not be used to train VLMCs. This meant that the algorithms
would have vastly different possibilities of classifying the queries.
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5.1 Tree settings

5.1.1 Forest
A forest based on GC content does not work very well. It may be possible to divide
the data by other factors. One possible solution is to use A, T, G and C content.
This could, however, run into the same trouble. It is also important not to create
too many buckets or the memory usage may explode.

5.1.2 GC pruning
GC pruning works well and there is almost no reason not to use it. It can however
only do so much. Because it is a lower bound it is not possible to prune the right
tree for example. If one were to find a fast heuristic that is an upper bound to the
FN distance, or whichever distance function is used, that can be used to prune the
right tree.

5.1.3 Greedy factor
The greedy factor is one of the main components that improve classification speed.
It also has surprisingly little effect on the end classification if FN is used. The
improvement from brute force to VP tree is about equal to the improvement from
VP tree to VP tree with greedy factor of 2.5. The accuracy is also reduced more by
going from brute force to tree than from tree without greedy to tree with. It is not
known exactly why the tree is so good at predicting which branch to traverse first.
It does affect the overall distance to the nearest neighbor, but if a further neighbor
is chosen it tends to be of the same genus. It may be because the genus clusters well
enough.

5.2 VLMC hyper parameters
The importance of the hyperparameters when generating VLMC is just starting
to be understood. Going forward it may be reasonable to use genetic algorithms
or other optimization strategies to find optimal hyperparameters for the different
genomes. This can also shed some light on which parameters, if any, should depend
on for example genome length or the superkingdom of the organism.
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Currently, larger models do not seem to increase classification accuracy. This can,
however, be because FN is ill-suited for large models or it may be because the smaller
models capture all the information.

5.3 Distance functions

5.3.1 Between VLMCs from complete genomes
KL divergence was previously seen as the ground truth measurement of the distance
between two VLMC. However, it seems to be much more susceptible to noise as
indicated by table 3.3. It may, therefore, be infeasible to calculate these ground
truth distances even for small databases. As such it is a idea good to consider other
metrics as well when evaluating the performance of different distance functions.
Examples could be classification accuracy, proportion of genus or family in x near
neighbors, or the average number of neighbors needed to cover all members of a
genus or family.
It may also be possible that the tree structure of the VLMC contains additional
information not captured by the KL divergence. Because of this, it is possible
that other distance functions can perform better than KL divergence even if KL
divergence reaches the true statistical difference in the limit. Frobenius Norm is sadly
especially ineffective at utilizing this tree structure. Due to taking the intersection
of the trees long branches often get excluded and are therefore not counted. This
also means that one of the main benefits of VLMCs are lost, namely the ability to
store these long important branches. It may, therefore, be beneficial to combine FN
with a distance function on the tree structure. This tree structure function could be
as simple as the overlap of nodes, potentially weighted such that deeper branches
contribute more. FN is still surprisingly effective at comparing VLMCs however as
can be seen in both the results and [10].
Other possible information to consider is the exact number of times each node has
been observed. Currently only the probability of observing each nucleobase is stored.
If the number of times the current state was observed in the original genome was also
stored that could be used to weigh these probabilities. Currently two probabilities
weigh equally even if one has been observed 10 times and the other 1000 times.
Additionally it was found in this thesis that smaller models tend to result in smaller
distances. Going forward it may be interesting to see if the average distance between
models depends on the model size. For example, if all models tend to be closer to
190 parameter models than 500 parameter models that can be problematic. One
would then have to take care to generate models all of the same size or classification
results would be skewed.
In conclusion, one should make sure to use as much information as possible from
the models when they are generated from a complete genome. This is because the
models are very information-rich as they compress multiple megabytes of data into
just kilobytes. KL divergence is more susceptible to noise than previously thought
and going forward, new distance functions may be needed to increase performance.
It is also important to note that all of this only applies to models generated from
complete genomes, or at least very long sequences.
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5.3.2 For classifying reads
When generating VLMC from reads the VLMC will either be very small, noisy, or
both. Because of this, it is important that the distance function used is resistant to
noise. It is also important that this distance function does not rely too much on the
tree structure. The models one can feasibly generate from reads are much smaller
than those stored in the database. If one were to compare the tree structure of the
models it would favor small models unless all models are equal in size. It would then
also be important to study the general structure of models generated from shorter
sequences.
Instead, it may be better to find distance functions that work well on reads directly.
If we compare the results from [7] and this thesis the classification accuracy of
the VP tree is much worse than the brute force method of [7]. This is despite
using similar sized reads and relying on VLMC to perform the classifications. One
reasonable explanation for this difference is that reads contain too little information
to generate useful VLMC. In [7] the classification was done by finding the model
most likely to have randomly generated the read. This meant that none of the
information in the read was lost, something that might happen when a VLMC is
created.
It is also worth noting that the reason KL divergence is so slow is that it has to
generate long sequences to overcome the randomness of the model. If these sequences
are already generated, and quite short, the KL divergence is much faster to compute.
This may make it, or other similar distance functions, viable for classifying reads.

5.4 Classification method
If one can skip the generation of VLMC from reads one can cut down on computation
cost quite a bit, especially for slightly longer sequences. The main problem with KL
is the generation of sequences and how long they need to be to accurately compare
the two models. This is not the case for reads. They are short and if KL is used,
reads can be directly queried into the tree. KL does, however, perform very poorly
with triangle inequality pruning. As such a different pruning technique needs to be
applied, for example, Bregman VP trees proposed by Nielsen et al. [15]. Even this
is not enough, however, because the KL divergence is not symmetrical. This is also
hard to overcome as it is not possible to compute the divergence from the read to
the model. If one is able to overcome this problem it could improve performance
drastically. If the Bregman VP tree is used then the intersection is no longer trivial to
compute. It will, therefore, be important to limit the number of branches traversed.
This can be done by having multiple children in the leaves or by having multiple
vantage points as proposed by [2, 3].
It is also possible to improve the actual classification step of the nearest neighbor
classifier significantly. This can be done by for example allowing classification at
different taxonomic ranks. If multiple neighbors are found it is possible to calculate
weights for species, genus or family accuracy, much like how Kraken does. This can
increase the accuracy of the model and give users an indication of how confident
the classification is. It is also possible to apply many distance functions in the
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last classification step. Say five near neighbors are found, it is then reasonable to
calculate multiple metrics between the read and the five found models. This can
give additional information to the classification step and the computation time is
constant with regards to the database size. It is, however, unreasonable to spend
time on the classification step if the neighbors found are as bad as they are currently.
If the true class is not within the found neighbors no classification algorithm can
make a correct prediction.

5.5 Comparison to kraken

5.5.1 Classification speed
The classification speed of Kraken is orders of magnitude faster than VLMC classi-
fication. This is because it only does a linear amount of hash-lookups depending on
the DNA sequence length. The only way for VLMC classification to be faster is if
it did not need to generate a VLMC from the sequence and if the distance function
was faster.
Kraken does, however, outperform most other classification methods in a similar
manner in terms of speed. That is also one of the reasons Kraken was chosen, it is
one of, if not the fastest method currently while still having great accuracy. The goal
should instead be to get close enough to Kraken’s classification speed but improve
on the accuracy.

5.5.2 Classification accuracy
The read classification accuracy of VLMC classification is currently very poor. For
it to be a useful classification algorithm this needs to be significantly higher.
For Kraken the proportion of sequences classified seems to match their paper quite
well. However the classification accuracy is much lower than what they receive [23].
The experiments in the Kraken paper used reads from organisms in the database. For
our experiments this was not the case as the reads were generated from chromosomes
or genomes not in the database. In reality, where the sample is taken from will have
a large impact on whether the species can be expected to be in the database or
not. Kraken also had an even lower accuracy if the proportion of Viruses, Bacteria
and Archaea was high. This is likely because almost none of these organisms have
multiple chromosomes. As such it is impossible to make species level classifications
— with the current experiment setup — for most of these.
Surprisingly Kraken had very poor results when it made classifications at family or
subfamily level. For some experiments, it was as low as 30%. This is very different
from the near 99% accuracy the paper states.

5.5.3 Sensitivity to read noise
One of the proposed reasons to use VLMC for classification is that it would be more
noise resistant than string based methods such as k-mer counting [16]. This does
however not seem to be the case. The experiments show that Kraken deals very well
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with the noise that can be expected from modern sequencing methods. If further
research is conducted on VLMC based classification improving the classification
quality on poor reads could be interesting. At least it is important to use realistic
reads as read quality has noticeable impact on classification accuracy.

5.5.4 Memory usage
This is an area where VLMC classification can be quite far ahead of other methods.
The VLMC compress the database size significantly and as such the whole database
fits without problem on a modern laptop. This is not true for Kraken. This one
factor is not enough to make a classification algorithm useful. It is also worth noting
that genome sequencing machines are very expensive. It is therefore not a large extra
cost to also invest in a small to medium server that can easily fit Kraken’s database
in RAM.

5.6 Ethical considerations
When construction an algorithm that seeks to aid doctors, researchers and others to
understand pathogens it is important not to make false claims. Exaggerating the ac-
curacy by, for example, selecting only successful results could give misleading results
that might lead to human harm or suffering. However, a successful and accurate
algorithm has great potential to be instrumental in improving human health.
Because of how specialized the algorithm is, it is hard to use for anything else. It is
also hard to do anything malicious with taxonomic classifications of DNA samples.

5.7 Concluding remarks
During this thesis, the complexity of using VLMCs for capturing genomic signatures
has been better understood. It is now clear that it is not as straight forward as
previously thought. Many of the results of the thesis are mostly relevant when
comparing VLMCs from complete genomes. This is valuable information for many
applications but probably not for classification.
The current method of generating VLMCs from reads performs poorly and major
changes have to be made. This can be both in the form of a complete revision of
the algorithm where VLMCs of the reads are no longer generated to changing the
distance function and database data structure.
Current methods lack the ability to classify rare pathogens. If unparalleled accuracy
can be achieved orders of magnitude slower performance is excusable. Currently,
however VLMC classification cannot match current methods even if the queries are
generated with the whole genome, except for Eukaryotes.
Going forward a test with a small number of reads should be conducted where the
brute force accuracy of FN, KL divergence between VLMC, and KL divergence
on the sequence should be tested for different VLMC parameters. This gives a
theoretical maximum classification accuracy for VLMC classification. If none of
the methods gives decent classification accuracy either the model, or the distance
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function has to change. If something works then it is relevant to test the loss of
accuracy by using nearest neighbor classification. This would include testing the
effect of forest, GC pruning. greedy factor, multiple nodes per leaf and/or VP as
well as different pruning techniques.
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Below are the taxonomic ranks of classifications made by kraken for 480 long reads:

’family’: 50257, ’no rank’: 678408, ’species’: 4667413, ’genus’: 241211, ’tribe’: 9626,
’subtribe’: 1869, ’class’: 1490, ’subfamily’: 21642, ’subclass’: 227, ’superorder’:
3269, ’superkingdom’: 14392, ’subgenus’: 10036, ’order’: 7488, ’subspecies’: 364238,
’species group’: 2430, ’infraorder’: 1927, ’parvorder’: 1329, ’species subgroup’: 2891,
’varietas’: 71111, ’phylum’: 351, ’infraclass’: 3067, ’kingdom’: 88, ’superfamily’:
105, ’cohort’: 59, ’forma’: 38011, ’subkingdom’: 34, ’suborder’: 101, ’subphylum’:
14, ’section’: 51
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max parameters mincount sequence len time(min)
50 4 160 674
50 4 480 769
50 4 720 877
50 4 1200 1244
100 8 160 683
100 8 480 845
100 8 720 864
100 8 1200 848
50 6 160 683
50 6 480 691
50 6 720 730
50 6 1200 845
100 4 160 813
100 4 480 831
100 4 720 955
100 4 1200 1300

Table A.1: classification times for more hyper parameters when generating VLMC
from reads

Method Read length Imperfect Read Flawless Read Improvement
Kraken 160 82.6% 81.7% -1.1%
Kraken 420 89.1% 88.2% -1%
VLMC 160 4.24% 4.54% 7.0%
VLMC 420 4.99% 5.31% 6.4%

Table A.2: Effect of noise in sequence reads on classification accuracy. This is run
on 1000 sequences from each genome. As such there are fewer Eukaryote sequences
in this dataset compared to the other. The classification is made at family level or
lower.

number of parameters average distance
146 0.02458
193 0.02585
255 0.02699
510 0.02997
768 0.03000
1200 0.03372

Table A.3: Exact value of average distance to nearest neighbor in tree for different
sizes of models
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Figure A.1: Genus accuracy for Viruses, Bacteria and Eukaryotes. These were
done using FN and brute force with just Viruses, Bacteria or Eukaryotes in the
database.

III


	Introduction
	Delimitations

	Background
	Biological background
	DNA
	Taxonomy
	Genomic signatures

	Markov models
	Fixed order Markov models
	Variable length Markov chains

	Distances
	Metric distances
	Distance functions on VLMCs
	GC
	Frobenius norm
	Kullback–Leibler divergence


	K nearest neighbor classification
	Classification algorithm
	Data structures
	Kd-tree
	Vantage point tree
	Ball-trees


	Other classification methods
	String based methods


	Methods
	Code
	Data
	GC content
	Data division for experiments

	Classification methods
	Brute force method
	VLMC from complete genomes
	VLMC from reads

	VLMC
	Distances
	Speedup techniques
	Greedy factor
	Parallel searching
	Forests

	Comparison to other methods
	Definition of classification accuracy
	Kraken database and classification


	Results
	VP tree
	GC pruning
	Forests
	Greedy factor
	Multiple neighbors

	VLMC parameters
	Maximum number of parameters
	Mincount

	VLMC sequence classification results
	Time
	Accuracy
	Effect of Noise on Classification Accuracy
	Memory Usage

	Kraken2 results
	Accuracy
	Time
	Effect of noise on classification accuracy
	Memory usage


	Discussion and Conclusion
	Tree settings
	Forest
	GC pruning
	Greedy factor

	VLMC hyper parameters
	Distance functions
	Between VLMCs from complete genomes
	For classifying reads

	Classification method
	Comparison to kraken
	Classification speed
	Classification accuracy
	Sensitivity to read noise
	Memory usage

	Ethical considerations
	Concluding remarks

	Bibliography
	Appendix 1

