2 ol &

;/

15 \,\‘y

3
CHALMERS |
A b 2

WY 1829 0¥
e NS =
AR

Media Streaming For Infotainment
Predictive streaming using adaptive bitrate and buffering

Master of Science Thesis in the Programme Networks & Distributed Systems

Andreas Lilleste
Lukas Lundgren

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG

Goteborg, Sweden, June 2009



The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work
does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author
warrants hereby that he/she has obtained any necessary permission from this third party to
let Chalmers University of Technology and University of Gothenburg store the Work
electronically and make it accessible on the Internet.

Media Streaming For Infotainment
Predictive streaming using adaptive bitrate and buffering

Andreas Lilleste
Lukas Lundgren

© Andreas Lilleste, June 2009.
© Lukas Lundgren, June 2009.

Examiner: Jan Jonsson

Department of Computer Science and Engineering
Chamers University of Technology

SE-412 96 Goteborg

Sweden

Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Goteborg, Sweden June 2009



Abstract

This master thesis will investigate if it is possible to vary the bitrate
of a media stream in real time to make it fit over a link with varying
quality. The varying bitrate of the media stream is based on differ-
ent strategies for when to buffer and how much needs to be buffered.
Strategies for buffering uses an estimated bitrate for the link to be
able to predict when and where the link has high bandwidth or low
bandwidth. The estimated bitrate is constantly updated and based on
previously measured bitrates. Streaming is done between a client and
server where the client is connected against the server trough a mobile
broadband or a wireless accessed point.



Sammanfattning

I den héar rapporten kommer vi att undersoka om det ar mojligt
att variera bandbredden pa en mediastrém i realtid sa att den kan
skickas Over en ldnk som har en varierande kvalité. Den varierande
bandbredden pa mediastrommen &r baserad pa olika strategier Gver
nar buffring ska ske samt hur mycket som behovs buffra. Strategierna
anvander sig av en estimerad bandbredd for lanken for att pa sa sett
kunna prediktera nar och var lanken har lagre eller hogre bandbredd.
Den estimerade bandbredden uppdateras kontinuerligt och ar baserad
pa gamla uppmaétta bandbreddsvarden. Mediastrommen skickas mel-
lan en server och en klient dar klienten ar uppkopplad mot servern via
ett mobilt bredband eller ett 6ppet tradlost ndtverk

ii



Preface

The original idea for this Master Thesis came from the company Mecel AB.
The work was carried out by Andreas Lilleste and Lukas Lundgren. We
are both grateful to have been given the opportunity to develop and put
the original idea into practice. We want to thank our supervisor at Mecel,
Lars-Christian Aadland and Jan Jonsson, our examiner at Chalmers. We
also would like to thank Lars Matsson and Anders Eliasson at Mecel for all
expertise and helpful feedback.

iii



Contents

Abstract

Sammanfattning

Preface

Introduction

1.1 Background . . .. ... ... ..

1.2 Thesis description . . . . . . . . ... ... ..

1.3 Delimitation . . . . . . . . ... . ... ... ..
1.3.1 System layout . . . ... ... .. ... ... ...,
1.3.2 Clientroute . . . . . ... ... ... ... .......
1.3.3 Data collection . . . .. ... ... ... ........
1.3.4 Open Source . . .. .. .. ... .. .. ...

1.4 Organization . . ... ... .. ... ... ...

Method Description

2.1 Design . . . . .
2.2 Implementation . . . . . . ... ... L oo
2.3 Testing . . . . . .
2.4 Measuring . . . . . ...
Analysis
3.1 Coverage deviations . . . . . .. ... ... ... ...
3.2 Targetsystem . . . . . ... ... ... .
3.3 Operating System . . . . . . . ...
3.4 Development Software & Environment . . . . . . ... .. ..
3.5 Programming languages . . . . ... .. ... ... L.
3.6 Transport method . . ... .. ... ... ...........
3.7 Open Source Software and the Automotive Industry . . . . .
3.8 Libraries & Software . . . . . ... ... ...
3.8.1 GStreamer . . .. ... ...
3.8.2 libavcodec & libavformat . . .. ... ... ... ...
3.83 Clutter . . ... ... .. ... .. ...
3.8.4 Twisted . . . . . .. . ... .
385 D-Bus . ... ... ...
3.8.6 X264 . . . ...
3.87 Cairo . . . ..
3.8.8 PostgreSQL . . . . ...
3.89 PostGIS . . .. ... .
3.810 gpsd . . ..
3.8.11 Apache HTTP Server . . .. ... ... ... .....
3.8.12 Open Street Map . . . . .. ... ... ... ...,

iv

ii

iii



3.9 Market Survey . . . ... 17
3.9.1 Techniques . .. ... ... ... .. ... ... 17

3.9.2 Summary . . . ... ..o 18

4 Implementation and Analysis of the Client 19
4.1 Client Backend . . . .. ... ... .. ... .......... 19
411 GPS .. o 20

4.1.2 Wifi .. .o 20

413 Cellular . . . .. ... oo 20

4.1.4 Networks . . . . .. .. . ... ... 21

4.1.5 Simulation . .. ... ... ... 0L 22

4.2 Client Frontend . . . . . . .. .. ... ... ... ... ... 23
421 Playback . . ... ... ..o 24

4.2.2 Tools . . . . .. 24

4.3 Packet Routing . . . . . ... ..o 26
Implementation and Analysis of the Server 27
51 Open Street Map . . . . . . . .. ..o 27
5.2 Database . . . ... ... 28
53 Coverage Map . . . . . . . . . ..o 30
5.4 Streaming . . . . . . ... 32
54.1 Video Codec . .. ... ... .. .. ... ....... 32

5.4.2 Transcoding . . . . . . . . . . ... 33

5.5 Measuring bandwidth . . . . ... .. ... ... ... 36
5.6 Estimating available bandwidth and velocity . . . .. .. .. 37
5.7 Strategies for adapting bitrate and buffering . . . . . . .. .. 39
5.7.1 Identifying intervals to buffer . . . . . . . . ... ... 40

5.7.2 Finding intervals where buffering is possible . . . . . . 40

5.7.3 Implementation . . . . . ... ... ... oo 41

6 Results 42
7 Conclusion & Discussion 43
Glossary 48
Index 49
Appendices 50
A Cellular provider comparison 50
B D-Bus API 51



List of Figures

0 3 O Ui W N =

System overview . . . . . . . .. ... 11
Reference route . . . . . . ... oo 11
Throughput at different times on the same route . . . . . . . 12
Backend overview . . . .. ..o L Lo oo 20
GStreamer pipeline client-side . . . . . . ... ... ... ... 24
Screenshot of a coverage map . . . . . . ... ... ... ... 31
Data throughput VS. encoding bitrate . . . . . .. .. .. .. 33
GStreamer pipeline server-side . . . . . ... ... ... ... 35



List of Tables

© 00 O Ui W

System Parts . . . . . ... ... 10
Client hardware table . . . . ... ... .. ... ....... 12
Different network states . . . . . . . ... ... ... ... .. 22
Data sent toserver . . . . . .. ... oL 24
Table of what velocity a certain road type has . . . . . . . .. 27
Table in the measurement database . . . . . .. ... ... .. 29
Bitrate to colour table . . . . . ... ... ... 0oL, 30
Tested processors . . . . . . . . ... 32
Cellular provider comparison . . . . . . .. ... ... .... 50



1 Introduction

1.1 Background

The Internet has changed people’s communication habits. Just decades ago
when people wanted to communicate they had to send a letter or make a
phone call through a land line connected telephone. Letters could take days
to arrive but with the revolution of Internet, email has become a fast and
reliable communication channel. As the wireless nets becomes faster and
covers larger areas people will be able to stay connected to the Internet
anywhere and at any time. With a modern mobile phone it is possible to
browse the Internet and read emails nearly anywhere. Today people use
the Internet for business, entertainment, education and information seek-
ing. A new trend is that home appliances such as TV sets and stereos come
equipped with network plugs and Wifi. This enables streaming of MP3 mu-
sic, movies, Internet radio and YouTube clips direct to the TV set or stereo.
The streaming could be done from a home computer where all media such
as pictures and movies and music is stored on. A new actor on the stream-
ing market is Spotify [1]. They deliver a vast library of music to anyone
who is connected to the Internet and has a Spotify account. They have
succeeded in establishing contracts with some major record companies to
legally stream copyrighted music. All this streamed digital media will soon
lead to a demand for streaming media to cars as well.

Infotainment systems in cars today come with many features such as satel-
lite navigation, Bluetooth and even the possibility to play DVD movies. As
these systems become more available and used, the demand for streaming
media to the car grows. A main advantage with being able to steam the
media to the car is that you get media on demand. You don’t have to
buy a DVD or a music CD in advance to be able to listen to it in the car.
With streaming passengers will be able to watch their favorite YouTube
clips while heading down the highway. A problem with streaming to mobile
units is the varying bandwidth and the bandwidth you get depends on many
different factors such as how congested the network is and on the physical
surroundings. There could be a building in the way or a low valley where
the coverage of the wireless link is bad. This leads to an unreliable link with
a lot of bandwidth fluctuation. When streaming media to mobile units it is
not possible to guarantee any good Quality of Service (QoS) because that
would require every Internet service provider to priority the stream in their
network. As wireless networks depend on many different factors, it is hard
to guarantee QoS over a wireless network.

This Master Thesis will try to stream media over wireless networks with
some QoS. The main focus of this master thesis will be to present a way



to predict the expected bitrate over a link for a specific position. The link
will be between a server, which is connected to the Internet with a fast
connection, and the client which is connected to the Internet using a 3G
connection or a local wireless access point. Previously measured bitrates at
a specific position between the server and client are stored in a database
which is located on the server. With the help of these measurements and
the route of the client it is possible to make good buffering decisions such
as when to buffer and how much buffering is needed. The media will be
encoded to an estimated bitrate to make it fit on the link.

To be able to stream media on such a link buffering of the media is needed.
As a result of the buffering you would have to wait for the movie or music
to start playing or worse the media will have to pause to buffer. Another
problem with buffering is to determine how much to buffer to be able to play
the media without having to pause or wait to long for the media to start
playing. To be able to determine how much to buffer you will have to be able
to predict what bitrate you can get out of the link at a certain time and place.

This report will try to give a solution how to estimate the bitrate for a link
at a certain time and place, and with the help of this estimated bitrate de-
termine a good strategy for buffering and adapting the A/V bitrate in real
time. With good strategies it could be possible to achieve higher reliability
and better quality on the media stream. If the estimated bitrate and the
buffering strategies work well, the result of this thesis could be interesting
to use in the future where it would be possible to watch a movie or listen to
music in the car without having to download the media in advance. It will
truly become media on demand.

This master thesis will also briefly discuss already existing solutions for
streaming media to mobile units such as Multimedia Broadcast Multicast
Service (MBMS) and Digital Video Broadcasting Handheld (DVB-H). An
assessment of how the market for mobile streaming looks today will also be
made and how these techniques could evolve in the future.



1.2 Thesis description

The original preliminary thesis description stated:

The thesis work includes setting up a server environment which
can receive streamcast/YouTube/Joost from the Internet as well
as DVB-T/DVB-S and stream these via 3G cellular networks in a
compressed format suitable for viewing in an Infotainment envi-
ronment. The server should also be able to stream locally stored
media such as DivX/MPEG/MP3. The receiving side, which
should be Linux based, suitable open source software should be
used to either store the media stream for later playback or live
playback.

e Suggest possible suggestions for the client and the server.
The focus is on the client.

e Define requirements for QoS for live and stored playback.
Is respective scenario viable?

Before the work on this thesis begun the goals was reworked to incorporate
some ideas Mecel AB had regarding predicting coverage and how to use it
to optimize streaming. The original goals were extended to reflect this:

e Suggest possible solutions for the client and the server. The focus in
on the client.

e Define requirements for QoS for live and stored playback. Is respective
scenario viable? How can compression, buffering and dynamic buffer-
ing be used to increase availability. Is predictive availability/coverage
a possible solution? Can roaming between 3G and Wifi help QoS?

e As an overview, a short market survey of other techniques for mobile
A/V, should be included: DVB-H, IP-streaming, MBMS.

As the work began at Mecel AB, we started to investigate on what parts
of the problem to focus on together with our supervisor. It was decided to
focus on adapting buffering and the A/V bitrate using predictions of the
coverage environment for a client. The project shifted somewhat from the
original description which described the server requirements in detail but
stated the client as the point of focus, to how to best stream an A/V stream
using techniques to predict coverage.



1.3 Delimitation

This master thesis contains many different parts such as the collecting of
measurement to the database, compute strategies for streaming, streaming
the media, testing of all parts and to visualize it in a good and understand-
able way. Due to the size of the many different parts of this master thesis
some delimitation were necessary.

1.3.1 System layout

The proposed solution in this Master Thesis only has one server and a client
where the media is streamed from the server to the client. This kind of solu-
tion has a drawback that it does not scale very well. As the number of clients
grows the server will have to do a lot of heavy calculations such as encoding
and decoding. Other system like DVB-H uses multicast which scales better.
A drawback with DVB-H is that it does not deliver truly media on demand.
You only have a selection of channels which you can watch. Therefore you
will not be able to watch or listen to a specific tune or movie whenever
you want. To be able to deliver true media on demand a server and client
structure is needed. A drawback with this kind of system layout is that the
number of clients the server can handle is limited by the hardware perfor-
mance of the server and the Internet connection to the server. To be less
dependent of the server hardware performance the system could possibly be
modified to use Peer to Peer (P2P) network but with today’s mobile 3G nets
the upload is limited. For this reason P2P is currently not a practical solu-
tion. A P2P solution could also have difficult legal issues such as copyrights.

The proposed system has only been tested with one client due to limited
access to clients. But the system has been implemented with many clients
in mind. And to make the system scale a home media server would stream
to the client. Nearly every household today has a computer where they have
stored pictures music and videos. This computer could act as the streaming
server and this would make the server client layout scale very well.

1.3.2 Client route

A delimitation is that the client knows which route it will travel and that
it never deviates from the route. At the beginning the client sends which
route it will travel to the server. Calculation of the clients route is out of
this master thesis scope and therefore predetermined routes are used which
are stored at the client. Due to limited time for implementation the system
does not handle if the client deviates from the specified route. But a possible
solution would be to look at what position the client previously had and use
the gathered information about this position. With the help of this data



it would be possible to make some rough estimations about were the client
might be and what bitrate it might get.

1.3.3 Data collection

When collecting measurements of the cellular networks, only data along
specific routes were collected. Instead of collecting data from a very large
area, data were collected from specific smaller routes many times. This gives
more data for specific routes and leads to higher accuracy when computing
estimations of the bitrate.

1.3.4 Open Source

Mecel required that Open Source software and libraries were used. Because
they believe Open Source will become more used within the Automotive
industry.

1.4 Organization

The rest of this report is organized as follows: In Section 2 we discuss the
method which is followed with an analysis in Section 3, 4 and 5. Finally in
Section 6 and 7 the results and conclusions of this Master Thesis is discussed
and presented.



2 Method Description

2.1 Design

We chose to use a server client architecture because we found this system
type the most appropriate for this project. A P2P[2] solution was discarded
because of the limited uplink bandwidth of cellular networks. A server client
architecture does not scale very well as the system is limited by the server
hardware performance and the Internet connection of the server. But we
believe this could be solved because nearly every household has a computer
at home which could act as a streaming server to the client.

2.2 Implementation

The implementation phase overlapped somewhat with the design phase.
Hardware handling on the client was implemented first as it was vital for
testing the networks during the development.

2.3 Testing

Before testing of the system could be made we had to gather measurement
data for the cellular networks. This required several trips out on the field
where the client where rigged in a car and set to measure the bandwidth of
the different cellular networks. All the measurement was logged and later
inserted into the server database.

To test our system we implemented a simulation application on the client
which simulated a route. A problem with just simulating the route is that
we get the same bandwidth on the wireless cellular link all the time. But
to truly test the system we had to bring it out on the field and go between
areas where the bandwidth changed from good to worse. This was time
consuming to do so only a few tests were made. Tests were made on the
route between Landvetter and Hindas in Sweden. This route was chosen
because the bandwidth went from good to worse along the route. Here we
could see if the system would compensate for the changing bandwidth. The
result of the test is found in section 6 on page 42

2.4 Measuring

A few different programs were tested to make accurate bitrate measurements
between the server and client. Measuring was done from the server to the
client. A problem might be that the client is behind a firewall. This could
be solved by making the connection from the client to the server. We tested
a program called iperf[3] which is a client server based program which can
measure bandwidth on both the uplink and downlink. This program was



discarded due to problems with stability. A program called tptest[4] was
also tested. This program is also a client server based and was discarded
due to lack of stability and problems with connectivity. A simple server
application was written which listens for connections and as clients connect
sends as much garbage data as possible. This program is described more in
section 5.5.



3 Analysis

The primary task of this project has been to implement a system for adap-
tive streaming of an A/V stream over various transmission media such as
cellular Universal Mobile Telecommunications System (UMTS) and Wifi
networks. Adaptive streaming is to adjust the stream to be sent according
to the unique, constantly changing, environment of each client. This can
be done by changing the bitrate of the A/V stream in real time or buffer
intelligently. Most adaptive solutions today choose a bitrate at connection
for each client which may not be optimal on a link which varies heavily in
available bandwidth depending on different external factors. The project
requires the creation of both a server application to stream data as well as
a client to receive it.

The proposed system can be divided into several parts:

Table 1: System Parts

System | Task

Hardware control (Modems, GPS)
Network handling

Routing

Measure bandwidth

Receive & buffer stream

Play stream

Transcoding

Streaming

Database (Measurements)
Estimation (Bandwidth, Velocity)
Strategies for streaming

Coverage maps

Client

Server

The proposed system deviates from a standard server/client streaming solu-
tion as the server needs to estimate what conditions the client will experience
in the near future to be able to adapt both bitrate and buffering. This will
be done by collecting bandwidth measurements consistently on the client
which will be sent to the server. Given a geographical route the server
should then produce a realistic strategy to stream provided there is enough
previous collected data along the route.

As the availability of different public networks increases so does the potential

networks available for use to vehicles. The application proposed should be
able to use both cellular networks as well as Wifi networks interchangeably

10



and roam between available networks as the vehicle moves. A crude overview
of the system can be seen in figure 1.

e i 3 Server

Network 1
Network 2

Internet

Figure 1: System overview

3.1 Coverage deviations

The basis for this thesis is handling coverage deviations for different net-
works, the major one being cellular networks. A reference route was used
for measurements during the later parts of the development, as can be seen
in figure 2. Several separate measurements were made on this route at differ-
ent times to show that coverage deviates during this route. Figure 3 shows
the different measurements of bandwidths at five different times along with
a combined estimate of available bandwidth using the data from all previous

measurements.

Oxaryd

Rinnabacke .
s Cistra
;}‘ MNedfio nedsjn
¥
% Tulleba
Bjtrkesda villastaden | ngelse
Skartorp Rya Grophui™ Hindds
- dw@:&un Rya hed
L 1%}
Snakered — e Aleslatten
indveller = m":-:"mk
Bjorrod e b o Borssledg
S _y
L ~a
Stora
¥ Bugarde Bratared
Harryda Bratared w
Bua Sodra e

Sandsbacka

Figure 2: Reference route

11



2 — :
Conbined —
1 —
1.5 g
4
4
n 1
;S
n.5
a

a ] 18 15 28 25 38 35 48 45
Figure 3: Throughput at different times on the same route

3.2 Target system

Mecel AB proposed a client with an Intel Atom processor due to the fact
that new infotainment platforms will be based on this processor type. See
section 3.7 for more information about mobile platforms. If the client had
similar hardware as these upcoming infotainment platforms an integration
of the proposed system would hopefully be easier. The client needed to be
a laptop because of the measurement test would take place in a moving car
and therefore would a laptop make the testing easier. An Asus 901 EEE PC
was chosen as the client system because it is flexible and powerful enough for
decoding media stream. For more detailed information about the hardware
see table 3.2.

Component Description

Display 8.9¢

Processor 1,6 GHz Intel Atom N270
Memory 1024 MB SO-DIMM DDR2 RAM
Disk 20 GB SSD

Wireless card | 802.11n, Bluetooth

Weight 1.1 kg

Table 2: Client hardware table

3.3 Operating System

Mecel AB believes that Open Source operating systems will play a prominent
role in future automotive Infotainment systems. Therefore we chose to use
Arch Linuz[5] which is a light weight and flexible Linux distribution which

12



we also had some previous experience of. We chose to use Arch Linux both
on the client and on the server for smoother usage.

3.4 Development Software & Environment

IBM Rational ClearCase was used for version control of the code created.
ClearCase is used at Mecel AB and was the reason why it was used for this
Master Thesis. The UCM[6] layer of ClearCase was also used. The report
was written using Latexr and a separate external Subversion repository was
created to provide easy access to the report from outside Mecel AB.

3.5 Programming languages

Several programming languages were considered for both the server side
as well as the client side. Due to time constraints a managed higher level
language was preferred. The choice fell on python as the main language to
be used. The libraries used, see section 3.8, all have language bindings for
python even though they are primarily written in C. Some C' was used to
modify the libraries when necessary.

3.6 Transport method

The client and server communicate via two channels. A data channel which
is only used to send the A/V stream to be played by the client and a commu-
nication channel. TCP was chosen over UDP due to the need of an ordered,
reliable protocol for both the data channel and the communication channel.
The client does not handle error correction or fault tolerance of the A/V
stream received.

3.7 Open Source Software and the Automotive Industry

Open Source is a computer program or source code which is available for
anyone to use and modify. An open source code project is usually maintained
by a group of people. The modifications on the original source code or
program which is done by other people is usually passed back to those who
maintain the project. This is done so the maintainer of the original project
can decide if the modifications should be part of the original program or
source code.

Mecel AB required that Open Source was used through out the master thesis
because they believe Open Source will play a big role in future In-Vehicle
Infotainment (IVI) systems to cut development times and costs.

13



GENIVI

GENIVI is a non-profit industry alliance with the goal of driving the adop-
tion of an IVI open source development platform. It was founded by the
BMW Group, Wind River, Intel, GM, PSA, Delphi, Magneti-Marelli, and
Visteon. By developing a reusable platform consisting of the essential core
services of an IVI system, such as media and graphics, it is believed this will
result in shorter development cycles, quicker time-to-market and reduced
costs for companies developing IVI systems. GENIVI supplies a reference
software architecture platform called the GENIVI Platform. It contains
Linux based core services, middleware and an open application layer inter-
face. Automobile manufacturers and suppliers can add their products on
top of this architecture.

Moblin

Moblin is a Linux platform specifically designed for mobile devices such as
netbooks, Mobile Internet Devices (MIDs) and IVI systems. The architec-
ture contains a layer called the Moblin Core. This layer is hardware and
usage model independent which provides a uniform way of developing for
mobile devices. The layer below the Moblin Core contains the Linux kernel
together with specific device drivers for the target hardware platform. The
uppermost level contains a specific user interface for the target device. The
Moblin Core is built upon the GNOME Mobile Platform[7]. Moblin will act
as an independent distribution mechanism for the first GENIVI reference
implementations.

3.8 Libraries & Software

A number of different open source libraries and software was evaluated for
inclusion into the project. The main reason for the use of them in the project
was to cut development times and make development easier. The libraries
are listed below with a description and why each was used or not used.

3.8.1 GStreamer

GStreamer|[8] is a cross platform multimedia framework written in C. Audio
and video components are chained together into pipelines which allows for
playback, recording, editing and streaming. GStreamer is free software,
licensed under the GNU Lesser General Public License. It is used within
the project to transcode, stream and finally play the stream on the client.

3.8.2 libavcodec & libavformat

libavcodec and libavformat are both part of the open source FFMPEGI9]
project. libavcodec is a library containing codecs for encoding and decoding

14



video and audio and libavformat contains muzers and demuxers for a number
of different formats. Both are licensed under the GNU Lesser General Public
License. The two libraries was considered for use in the transcoding part of
the project, see section 5.4.2, but GStreamer was chosen instead as it offered
a more versatile solution.

3.8.3 Clutter

Clutter[10] is an open source graphics library for creating hardware-accelerated
user interfaces. It is used to present the A/V stream on the client. Licenced
using the GNU Lesser General Public License.

3.8.4 Twisted

An event-driven network programming framework written in Python. Twisted[11]
is licensed under the MIT License and is used on the client to simplify han-
dling of both the communication channel as well as the data channel.

3.8.5 D-Bus

A message bus system providing interprocess communication. It’s widely
used within the project for:

e Receive notifications of hardware changes (3G modems).
e Backend/Frontend communication.

e Queuing creation of coverage maps.

3.8.6 x264

A free software library for encoding H.264/MPEG-4 AVC video streams.
Licensed using the GNU General Public License. Used by Gstreamer to
encode H.264 video.

3.8.7 Cairo

Cairo[12] is a free software library for creating and modifying graphics which
was used on the server for rendering coverage maps.

3.8.8 PostgreSQL

PostgreSQL[13] is a open source database which was used on the server for
storing the bitrate measurements and the OSM data.

15



3.8.9 PostGIS

PostGIS[14] is an extension to PostgreSQL which adds support for geo-
graphic objects. This was used on the server for easy and fast calculation of
distance between two positions.

3.8.10 gpsd

Gpsd[15] is a software daemon which allows other programs to access gps
data without contention or loss of data. A Gps unit could be connect trough
a Serial port or a USB port. Gps data is queried from gpsd via TCP. Gpsd
was chosen because of it easy use and it exists a Python wrapper class. It
is used on the client to make easy gps position requests.

3.8.11 Apache HTTP Server

Apache[16] webserver was used on the server so the client could access the
coverage maps.

3.8.12 Open Street Map

OSM]J17] is a open source map which is open for use and contribution by
anyone and it covers the whole world. OSM is used on the server for creating
coverage maps.

16



3.9 Market Survey

The Internet has become a massive distribution channel for media and people
are storing pictures, movies and music on their computers. Today it is
possible to stream that media direct to a TV. As this becomes more used a
demand for playing media on mobile unit will grow. Mobile service providers
use different approaches to deliver media to mobile units. One approach is
to download the media in advance to the mobile unit before playing it. This
enables the viewer to start watching or listening on the media from the
beginning. Another technique is to stream the media direct to the mobile
unit.

3.9.1 Techniques

It exist a few different techniques for streaming media either trough unicast,
multicast or P2P. If unicast is used a dedicated stream is setup between
the streaming server and the mobile unit. This enables every mobile unit
to watch whatever they like whenever they like. A drawback with unicast
is that it is not an efficient way to deliver the same stream to many units
because of one stream is needed for every mobile unit.

An efficient way of delivering the same stream to many mobile units is to use
multicast. With multicast one stream from the server can be delivered to
many mobile units at the same time. The MBMSJ[18] and DVB-H are both
multicast techniques but they use different distribution networks. MBMS
uses the UMTS network for delivering the same stream to many users. While
DVB-H requires a whole new distribution network to be built and new dedi-
cated frequency bands. Today it exist working DVB-H networks in Finland,
India and Italy. Recently the EU commission decided that DVB-H is going
to be the official standard for delivering mobile TV within Europe. Today it
does not exist any working MBMS network but Ericsson AB which develops
MBMS believes that MBMS will come to play dominant role in the future.

Another technique for streaming media is P2P[2]. In a P2P network the
clients pull fragments of a file from other clients which posses the same file.
In this way the client gain a higher total bitrate than if it would pull the file
from only one source. Joost[19] is a system which uses the P2P technique
and if it does not exist any other clients with the same file the client can
pull the file from a main server. P2P requires a good uplink from the clients
and therefore it is not a practical solution with today’s slow upload bitrate
of UMTS networks.

17



3.9.2 Summary

A few different techniques exist for distributing media as described above.
Some of them are working today already and some will maybe come in the
future. According several surveys found in [20], people are willing to pay for
mobile streaming services. These surveys clearly shows it exist a market for
streaming to mobile units. A combination of unicast and multicast would
be the optimal solution for streaming media. MBMS or DVB-H would de-
liver TV channels to the great mass of mobile units and unicast will enable
individual media streams to the units. Unicast could be delivered trough a
cellular or Wifi network.

18



4 Implementation and Analysis of the Client

The purpose of the client is twofold: it should not only play an A/V stream
produced by the server but also gather information about the client’s en-
vironment. This information would then be passed on to the server which
does all the actual calculations.

It was decided to control the necessary hardware, such as modems and Wifi
cards, in a separate application on the client. This application would han-
dle available networks along with the hardware needed for each network.
Other applications may communicate with this application to retrieve infor-
mation about different networks as well as GPS location and velocity. In
a GENIVI/Moblin context, this subsystem can be seen as a service with a
set of Application Programming Interfaces (API) for other applications to
use. This application is hereby referred to as the backend, see section 4.1.
The application responsible for playing the A/V stream is referred to as the
frontend, see section 4.2.

4.1 Client Backend

The main purpose of the backend is to decouple the handling of hardware
and networks from the actual streaming and user interfaces. The backend
is a service which runs in the background keeping track of the state of hard-
ware, networks and other resources needed for the streaming application.
Other applications may query the backend, or receive signals when changes
occur, using D-Bus. D-Bus is used by the majority of Linux distributions
today and is also part of the Moblin platform[21]. The use of D-Bus enabled
us to develop the backend early and use it continuously during development,
testing and also as a help for researching what bandwidths to expect using
different cellular operators. Simple tools could be developed to extract the
information necessary. For an API reference of the implemented D-Bus API,
see appendix B. As the backend acts as a service it has no user interface,
important information and events are logged to a simple log file. The user
interface is instead implemented as a separate frontend. Some use of the
devices handled by the backend is also controlled by different frontends, see
section 4.2.

19



W ifi Cellular

[Networkl [NetworkZ] msx | Network n
pHer) 1 prce [pHer) 4

Y 4
( D-Bus System Bus ]

Figure 4: Backend overview

4.1.1 GPS

The backend handles the GPS unit by the use of gpsd, see section 3.8.10.
The GPS daemon is polled frequently for longitude, latitude, velocity and
connection status to satellites. When the data has changed the backend
emits a signal notifying frontends that the GPS data has changed. It is also
possible to ask the backend for the latest data retrieved from the GPS.

4.1.2 Wifi

The Wifi interface of the client is continuously used to scan for new access
points. Only open access points, that are not using WEP/WPA or any other
cryptographic protocol, are considered. Available access points are added
as offline and are not checked if they are actually useable. The networks
are not verified until the backend is told to try to take the network online.
When a Wifi network is brought online the following steps are taken: The
Wifi interface is configured and a DHCP client is launched to try to receive
network information such as a valid IP address. If an address is received
the backend tries to reach the project server. If it succeeded the net is
considered valid and added to the list of valid networks of the backend.
Should the procedure fail the network is considered invalid. If consecutive
scans shows that the net has disappeared it is removed as a valid net. A
program which connects to the Wifi networks to determine is they can be
used was also written, see section 4.2.2

4.1.3 Cellular

To be able to handle cellular networks the backend first needs to control
an UMTS modem. One modem is required per network and the backend
supports multiple cellular networks when more then one modem is plugged
in.

20



Two different models from Huawei were used: F220, E169. The behavior of
these devices varied in some details, mostly in the initializing phase of the
devices. The modems exports two serial communication devices, one for es-
tablishing the actual data link and the other one for querying the device for
information. Each modem has an identification number which is used to map
each modem to a specific cellular provider. Communication is done using
the Hayes command set protocol detailed in [22]. As the backend must cope
with cellular network changes, such as roaming or degraded signal the state
of the modem is monitored for changes. If the modem looses the connection
to the base station the backend invalidates the network until the connection
is online again. The current bandwidth reported by the modem is also saved.

When a modem is plugged into the client a signal is emitted by HAL and
received by the backend. The backend proceeds by:

1. Resetting the communication device

2. Queries the device for an identification number

3. Authenticates using a PIN code if necessary

4. Asks the modem to send information asynchronously

When the modem reports a viable state the backend tries to take the net-
work online by issuing a dial command as well as starting a PPP daemon.
If the daemon receives an IP address the network is considered useable and
is added to the list of valid networks just as a Wifi network would. The net
is only removed if the modem is unplugged.

A simple interface to send raw AT commands via D-Bus to the modems
was also implemented. This was used during testing to simulate faults in
the cellular network by telling the modem directly to disconnect from the
current network cell and begin scanning for a new.

4.1.4 Networks

As nets are added, removed or their state changes, signals are emitted via
D-Bus. Tt is also possible to issue a state change via D-Bus: The backend
could for example be told to try to take a net online which is currently in
the offline state. The different states are:

21



State Wifi Cellular

Invalid DHCP failed / Server unreachable | Cellular network lost
Offline -

Connecting | Acquiring DHCP lease ‘ PPP negotiation
Routing Routing initializing

Verifying Server reacheable? \ Not used

Online Network available for use

Establishing | Contacting server ‘ Contacting server
Measuring Measuring in progress

Streaming Streaming in progress

Table 3: Different network states

Depending on the available networks and which states they are in the back-
end keeps one network as the preferred communication net to the server.
This network is the net in which all non streaming communication will take
place, although streaming is possible too. If the preferred network goes of-
fline or becomes unavailable in some way the backend tries to find a new
suitable network for communication with the server. The viable types of net-
works for the communication net can be configured to allow for only Wifi
networks, only cellular networks or both. As the communication protocol
does not require any significant bandwidth a reliable network is preferred
over a network which might be short lived, such as a Wifi network.

4.1.5 Simulation

To help development of the frontend and the server a simulation feature was
implemented to the backend. If the backend is started in simulation mode
a configured gpx file with a route is read. The physical GPS is disabled and
the GPS signal is emitted as if the client would be traveling the route. The
client would report the positions to the server as they were real allowing
tests of the server as if the client really was travelling a route. The mea-
surements reported by the client would still be from the actual location of
the client. Simulation of measurements would have been preferred but was
not implemented due to time constraints.

22



4.2 Client Frontend

The main purpose of the frontend is to receive the A/V stream and play it.
It also reports its state to the server like where it is or what networks are
available. The frontend communicates with the backend, see section 4.1, to
receive information.

The initial goal of the frontend of the client was a graphical interface with
three parts: A media player, a coverage map viewer and an interface to the
backend. The media player would simply play the stream and present a
simple interface to control playback such as pausing and playing. The sec-
ond part of the frontend would download map tiles from the server and show
them as map, displaying expected bitrates at various parts of the route. The
third part would display information supplied by the backend, information
such as available networks, states and GPS position. The different parts
would be implemented using Clutter.

Due to time constraints which became more evident as the work progressed
there would not be enough time to implement the frontend as originally
intended. The map viewer had to be discarded, although the maps are still
available to the client by using a web browser, see section 5.3. A user inter-
face to the backend was implemented during the development of the backend
for testing purposes. The decision was made to keep this implementation as
is and not integrate it into the main frontend as previously planned. The
media player was implemented using GStreamer and the pipeline detailed
in table 5. The player is very basic, it is only possible to toggle pausing.
Incoming data is buffered before playback.

The frontend needs two different connections to the server: One communi-
cation channel and a data channel where the raw media stream is received.
Both channels were built on top of the Twisted framework for an asyn-
chronous message system. The client first establishes the communication
channel to the server by asking the backend which is the preferred com-
munication network. When connected the client identifies itself, sends the
route it will travel, and asks for a list of available streams. The server needs
to have some information about the client to be able to make decisions
regarding the stream, therefore the following data is sent frequently:

23



Table 4: Data sent to server

Type Frequency Comments

Network Event driven | Networks added, removed or changes of state
Player state | Timed Position in stream and bytes buffered

GPS Timed Longitude, latitude and velocity

As soon as the server retrieves information about the network states on
the client side it can make an informed decision of what network the client
should use while streaming. The client receives the name of the network
to use along with a port number to connect to. The data connection is
established and the stream is played back.

4.2.1 Playback

GStreamer was used for decoding the stream and presenting it to the user.
The pipeline used is depicted in figure 5. The intermediate buffer when
receiving data is used to cope with small fluctuations of bandwidth and as
a buffer for parts of the stream which is prebuffered to cover areas with less
or no coverage. The size of the queue affects how much time it is possible
to buffer and at what quality.

Video pipeline

a oy

Queue Decode Playbac

<
Source Queue % %
J
Queue Decode Playback
Audio pipeline

Figure 5: GStreamer pipeline client-side

4.2.2 Tools

Many small applications were written during development which interacts
with the backend. Some were just used during development while some are
considered a part of the final system.

ip
Given the name of a network, returns the current IP address mapped
to the network.

24



measure
Connects every online network not currently used for streaming to the
measuring server and starts to measure the bandwidth of the network.
If a network is brought offline or used for streaming, the measuring
process is aborted until the network becomes available again.

wifi
The purpose of this tool is to verify that the available Wifi networks are
actually useable for streaming. The tool tries to bring every available
Wifi network online and if a network fails it is regarded as invalid and
not useable.

gps
Simple visualization of the state of the GPS. Displays current position

and velocity.

logger
Used during testing to log measurements for networks before the server
was implemented. Saves measurements to a local database which can
be imported on the server later.

25



4.3 Packet Routing

Most of the traffic for the client will be incoming data, such as the A/V
stream. The available networks still need to be able to send outgoing data
to communicate with the server. As the client handles multiple networks
simultaneously outgoing traffic must be able to flow independently for each
network. The system must be able to route traffic for a number of 3G
modems as well as a Wifi card. In traditional systems routing is only based
on the destination of the packet which is not sufficient when multiple in-
terfaces exists which all has the ability to route to a specific destination,
namely the project server. To overcome this limitation source based routing
is required. With source based routing, routing decisions are based on the
source of the packet which can be set by binding to a specific interface. So
to send data over a specific network you must first bind to the corresponding
device before connecting to the remote location. The procedure to set up
routing for a networks works like follows:

1. Create a routing table

2. Define a rule declaring that all traffic originating from the interface
must use the new table.

3. Specify a gateway for the table.

The routing procedure is performed every time a network is brought online,
after link specific protocols such as DHCP or PPP. Routing tables and rules
for each network is removed when it enters the offline state.

26



5 Implementation and Analysis of the Server

The main application on the server handles communication with the client.
It keeps track of clients and information received from the clients, such as
position, available networks and what it currently displays of the stream. All
decisions regarding the stream for each client is taken within this program.

5.1 Open Street Map

To be able to visualize the bitrate coverage for the wireless nets a map was
needed and the choice fell on Open Street Map (OSM) which is an open
source project where any one is allowed to contribute or use the map in any
way. To gain access to the map data, a database file with all map informa-
tion were downloaded from [17]. Since the tests in this master thesis only
were conducted in Sweden, only map information for Sweden was down-
loaded. Once the database file was downloaded the file was loaded into a
PostgreSQL database for easy and fast access.

To make maps from the database information, an open source Python pro-
gram called Mapnik[23] was used. Mapnik generates tiles which are png files
and the tiles are saved in a hierarchy according to a zoom level, latitude and
longitude. When the tiles are generated they are set side by side to form a
map. Tiles are used to form coverage maps 5.3.

The estimation program described in section 5.6 needs to be able to estimate
velocity at a given positions. With the help of OSM it is possible to find
out what type of road a position is on and from the road type a rough
estimations of the velocity is made. See Table 5 for what velocity a certain
road type in Sweden has.

Table 5: Table of what velocity a certain road type has

Road type | Velocity (km/h)
Motorway 110

Trunk 90
Primary 80
Secondary | 60
Tertiary 70

Residential | 50
Unclassified | 50

27



5.2 Database

All measurement data which the client collects is stored in a SQL database.
An API was built for the measurement database to enable fast and easy
accesses to the measurements. Estimating functions which is described in
section 5.6 uses the API to get measurements for a specific position. To find
which measurements lies within a specified range some calculation is needed.
Therefore was PostGIS[14] used in the measurement database. PostGIS al-
lows adding a geometry object to a table and PostGIS also offers functions
for distance calculations on the geometry objects.

Geometry objects can be a point or a polygon and in the measurement
database we used the point object which stores an x and y value. In the mea-
surement database each entry has two geometry objects, one has a WGS84
projection and the other has a Google projection. A projection is a method
on how to represent the surface of a sphere on a plane. In this case the
sphere is the Earth and the plane is the map. Two geometry objects were
used because the coverage map program needs the coordinates to be in
Google projection due to the coverage maps are defined in pixels. Mean-
while the estimate functions need the coordinates in latitude and longitude.
This makes it easier due to the client is reporting its positions in longitude
and latitude.

The database API offers an insert function for inserting measurements and a
get function which given a longitude and a latitude finds the measurements
which lies within a specified radius. The measurement database consists of
a table which can be seen in Table 6.

28



Table 6: Table in the measurement database

Column Type Description

osm_id integer Not used.

client_id integer Client id.

name character varying | Network name.

net_type character varying | Network type (wifi,utms)

tim bigint Timestamp in unixtime

bitrate integer The measured bitrate
bitrate_is_max | boolean Client in measuring/streaming mode.
quality integer Network quality

velocity double precision | Client velocity

extra character varying | Cell id

geom geometry WGS84 mercator geometry object.
the_geometry | geometry Google mercator geometry object.

29




5.3 Coverage Map

To easily see what estimated bitrates are available at different positions
some sort of coverage maps is needed. The idea is that the bitrate estima-
tion function takes data from the measurement database and hands it to a
program which will generate coverage maps. A coverage map program will
run as a daemon in the background and when new measurements are regis-
tered at the server it will check which tiles needs to be updated. After that
the program takes one tile at a time and renders this tile. The rendering
process collects the tile in question from the Open Street Map and divides
this tile in small squares. For each square it asks the estimation function
for which bitrate is possible to achieve in this square and translates it to a
colour according to table 7. Color is then applied to the square with some
opacity this makes its possible to see the original Open Street Map tile. At
last the program saves the tile in a hierarchy accordingly to zoom level and
position. The maps are accessed through a web server. To see the bitrate
coverage maps you simply connect to the server trough a web browser. From
here you can choose which service providers 3G net you want to see. Figure
6 is a screenshot depicting how the coverage map looks like.

A possible extension would to integrate the coverage maps into the client
fronted. Then it would be possible to follow the client route on the coverage
maps. But there were not enough time for implementing this. Generating
coverage maps could be optimized by using several threads to generate the
coverage tiles by pulling tiles from the queue simultaneously instead of just
one thread taking one tile at the time.

Table 7: Bitrate to colour table

Bitrate (Mbit/s) Colour
Measurements missing | No colour
0.0-1.0 Red
1.0-2.0 Pink
2.0 - 3.0 Orange
3.0-4.0 Yellow
4.0-5.0 Turquois
5.0 - 6.0 Blue
>6.0 Green

30



Figure 6: Screenshot of a coverage map

31



5.4 Streaming
5.4.1 Video Codec

H.264, also known as MPEG-4 Part 10 and MPEG-4 AVC, was the preferred
codec by Mecel due to the growing number of decoding hardware accelera-
tion implementations. With hardware accelerated decoding a less powerful
CPU is needed to decode the video as the decoding is done completely in
hardware, usually by a graphics card. The intent of H.264 was to provide
good quality with lower bitrates compared to previous standards, such as
MPEG-2, H.263, or MPEG-4 Part 2, while still maintaining good quality at
higher bitrates.

To test the performance of encoding on the target server hardware, a through-
put test was performed with different settings regarding bitrate. Three dif-
ferent systems were tested labeled as System A, B, C € D, see table 8. Both
systems A and C are dual core systems, system D uses a quad core proces-
sor while system B has a single core. The test for system C and D was
performed within a wmwvare machine which negatively affects the results.
Figure 7 shows the results where the bars represents throughput for each
system at different encoding bitrates and the lines how many times faster
than real-time it is possible for this system to operate.

Table 8: Tested processors

System | Processor

Intel(R) Pentium(R) Dual CPU E2180 @ 2.00GHz
Intel(R) Pentium(R) 4 CPU 3.20GHz

Intel(R) Xeon(TM) CPU 2.80GHz (Virtualization, 2 cores)
Intel(R) Xeon(TM) CPU 2.40GHz (Virtualization, 4 cores)

gQws

32



Encoding h.264

18868 Systen A {Throughput} ——

geea | Systen D {(Throughput?}
Systen B {Throughput}

G6aea | Systen

4888 |

kbit/s

20888 [

128 296 512 1824 20848 4896

kbit/s

Figure 7: Data throughput VS. encoding bitrate

5.4.2 Transcoding

As the stream must be modified to fit the environment of each unique client
the source to be streamed must be transcoded to allow real-time modification
of the A/V bitrate. Transcoding is a very CPU intensive task and multiple
steps must be performed which must be performed faster than or equal
to real-time to guarantee the client always has data to play. Transcoding
includes:

e Demultiplex the source into a video stream and an audio stream
e Decode the streams
e Encode the streams according to specification

e Multiplex the streams

Two fundamentally different approaches to performing the transcoding were
considered: In advance and real-ttme. When transcoding in advance multi-
ple versions of the source with different bitrates is created and cached locally
on the server. An obvious disadvantage of this technique is that it requires
the source to be of a non-live nature, i.e. a file on disk. If a some what
static collection of sources is to be offered by the system this approach can
be advantageous as the CPU intensive transcoding is only performed once,
albeit in several versions. Disk space could become a factor if a large number
of versions need to be kept. When the actual streaming is performed the
different versions needs to be interleaved to a stream. The system can only
choose from the relatively limited set of versions created and try to adapt
to the network environment as good as possible.

33



By transcoding the source in real-time the bitrate can be adjusted to match
the limitations of the network more precisely. This comes with the cost of
higher CPU usage during streaming. Live sources, such as the signal from
a Digital Video Broadcasting (DVB) source, could also use this as no ini-
tial caching or preparation of the media is performed. Some optimizations
of non-live sources could be advantageous to minimize CPU usage during
streaming. An example would be to re-encode sources encoded with a codec
which requires large amounts of resources to decode to make the resources
needed to decode less.coded to a less CPU intensive format.

From an implementation point of view, transcoding in advance is the more
complex alternative due to the fact that the different version needs to be
interleaved when streaming. This needs to be done on a frame level when
considering video as not all frames are stored in full. When researching can-
didate software using a technique similar to the proposed method nothing
viable was found. Research showed that transcoding in real-time would be
a less complex task to implement. By modifying the parameters for the
codec in real-time, the codec would hopefully pick up the new parameters
and adjust the bitrate. Some testing of the 26/ encoder showed that it was
possible to feed it new parameters by reinitialize it during runtime. For a
description of z26/, see section 3.8.6. Real-time transcoding was chosen as
the best solution as it is less complex to implement and switching bitrate
can be done with a higher resolution. It’s possible to increase or decrease
the bitrate with just a few Kbit.

Another requirement of the transcoding process is the ability to encode faster
than real-time. By keeping the bitrate as it is and as much data buffered
as needed before an area with bad or non existent network coverage the
user will not see a deterioration of the quality of the media streamed nor
will any pausing for buffering be necessary. The server must be able to en-
code data fast enough when buffering is possible to fully utilize the available
bandwidth. As seen in figure 7 the project hardware was not enough to en-
sure network throughput higher than the theoretical maximum throughput
of a High-Speed Downlink Packet Access (HSDPA or Turbo 3G) connection.

Both libavcodec and GStreamer were considered for the task of transcoding,
both being open-source and widely used on the linux platform. See section
3.8 for a brief description of the two libraries. Both libraries were tested with
the x264 encoder and could produce a media file with sections containing
different bitrates. The plugin for x264 in GStreamer had to be modified,
to allow the bitrate property to be changed after initialization. GStreamer
further abstracts the transcoding compared to libavcodec, Graphs dictat-
ing the flow of the audio and video streams can be constructed to easily
modify streams. For a graph depicting the transcoding of the source as

34



well as the sending via TCP, see figure 8. As GStreamer would make the
implementation simpler, it was chosen over libavcodec.

Video pipeline

Tagera > )

Source Demux Mux Queue TCP

Queue Decode Encode
Audio pipeline

Figure 8: GStreamer pipeline server-side

GStreamer pipelines can be in four different states|[24]: null, ready, paused
and playing. When starting the server pipeline for a stream it is initially
set to paused. When a client connects the state is temporarily switched to
playing until the client disconnects again. To control how fast transcoding
the process flows, and ultimately control to what degree the client’s connec-
tion is saturated, it is possible to change the synchronization property of the
TCP element of the pipeline. This property decides whether the element
should synchronize to the pipeline’s clock or not. Testing of this property
showed that it worked per expectation if it was set during the initialization
of the pipeline. If the element was set to not synchronize to the clock at
start up and later told to synchronize, the element would stop sending data
until it reached the position if would have had if it would have synchronized
the whole time. This is a problem as it voids the whole buffering process.
It was finally solved by reinitializing the pipeline during runtime:

1. Set pipeline state to ready
2. Set the synchronization property

3. Set pipeline state to playing

This is not an optimal solution but was chosen due to the fact that the
problem was discovered late in the development phase and time was a con-
straint. A problem with this solution is that the clock of the pipeline is
reset. A correct clock is needed to determine the length of the buffered data
on the client. The stream position of the server and the client is compared
to estimate how many seconds of the stream currently is buffered on the
client. The reset of the clock was solved by saving the current value of the
clock before the reset and then add this value to the new clock. A better
alternative solution would have been to control the data rate by a separate
component in the pipeline or to modify the pipeline clock appropriately.

35



5.5 Measuring bandwidth

The only way of retrieving the available bandwidth is to actually send or
receive data as fast as possible. This is a problem as transmitting data
could have an associated economical cost or disturb other vital transmis-
sions. When streaming and not buffering the system does not know if the
bandwidth is the maximum available or not. Due to the CPU requirements
of transcoding, encoding H.264 in particular, even when buffering as fast as
possible it is not certain that the available bandwidth is fully used as the
CPU on the server may be the bottleneck and not the connection to the
client. As can be seen in figure 7, the performance of the test system’s hard-
ware is not enough to be neglected. The most accurate measurements are
obtained when no streaming is performed and arbitrary data can be sent to
the client as fast as possible. These measurements can be reported as fully
utilizing the link as the network is guaranteed to be the limited resource.
When streaming the utilization is reported as unknown by the the client
so that the server can determine the accuracy of the measured value by
evaluating whether the streaming is done in real-time or buffering. Another
possibility would be to look at CPU utilization to determine if the CPU is
limiting buffering speeds or not.

To be able to measure bandwidth on links which are not being streamed to
a simple server streaming data was needed. The contents of the data are
not important as long as the data is being generated fast enough to saturate
the link on the client-side. A simple server was written in C which accepts
connections on a configured port. As soon as a client is connected the server
sends random data as fast as possible until the client disconnects. The server
reads the data to send from /dev/random which is a pseudo random number
generator [25] as the client connection may use a compression protocol, such
as PPP Deflate[26], which would provide incorrect measurements. As data
would have been compressed, bytes transferred would have been reported
higher than bytes actually sent.

36



5.6 Estimating available bandwidth and velocity

As a client moves a long a route the system must estimate how much band-
width is available in different parts of the route before the client reaches the
waypoints. It is also a benefit to estimate what velocity the client will have
at each part to be able to deduct how long the client will stay in every part
of the route.

A number of different factors needs to be taken into account when estimating
the available bandwidth and expected velocity of the vehicle at a given
point. These factors need to be weighted according to relevance to create a
realistic value as possible. By retrieving all previous measurements within
a configured radius of the estimation point, the values can be merged into
an estimate by weighing according to the following factors:

Distance
Measurements nearby the estimation point will give a more accurate
estimate. The distance between where the particular measurement
was made and the estimation point is calculated and weighted to give
close points more weight.

Intermittence

Due to the fact that the available bandwidth can be affected by the
number of users of the cellular network, the possibility exists that
the bandwidth might decrease during certain parts of the day. For
instance in a traffic jam during rush hour when there is a large number
of cellular clients over a small area. Such a scenario would also lower
the velocity of the vehicle with the result that the client would spend
more time in that specific area.

Fresh measurements are more relevant than old measurements as base
stations may change, buildings built or demolished which could affect
coverage. Wifi access points may have been closed.

Velocity
If tests show that there is a correlation between the velocity of the
vehicle and measured bandwidth, this need to be taken into account.

How these factors are weighed is defined in a configuration file which allows
different configurations depending on the type of value to be estimated. For
every measurement retrieved from the database, a weight per factor is cal-
culated. This weight reflects how relevant the measurement is according to
the factor. These weights are in turn weighted according to configuration
file to calculate a final weight for the measurement. An estimate can then
be calculated using all measurements and their corresponding weights.

37



By estimating the bandwidth and velocity for every point along a route it
is possible to estimate how long, and at what intervals, the client will have
certain bandwidth.

38



5.7 Strategies for adapting bitrate and buffering

There are many different motives for adapting bitrate and buffering depend-
ing on available bandwidth and conditions. Different users may prioritize
different factors. One user may want to minimize data traffic as a mean to
lower costs and another user might want to maximize quality of the A/V
stream as much as physically possible. To accommodate these cases a num-
ber of strategies will be presented. The strategies make decisions based on
the estimations detailed in section 5.6:

Cost

Bandwidth costs money and some ISP’s do not offer a flat rate pricing
model. The user usually pays per megabyte transferred. Some flat
rate subscriptions has a cap on how much data may be transferred
over a given amount of time, after the cap is reached the connection is
throttled to a fraction of the speed previously available. See appendix
A for a comparison of Swedish cellular providers. The purpose of this
strategy is to minimize total data sent. The idea is to choose as low
bitrate as the A/V source permits, identify areas which have a lower
estimated bitrate than the chosen bitrate and try to buffer enough for
these areas before they are reached. If the user closes the stream the
buffer is disregarded, as such, it might be a benefactor to buffer data
as late as possible to reduce the risk of streaming unused data.

Average
With the average strategy an A/V bitrate is chosen early and is per-
manent as long as it’s still possible to buffer areas with less or no
coverage.

Quality
If the cost of the bandwidth is a non-issue it’s feasible to try to max-
imize the quality of the video streamed. The goal is to maximize the
bitrate on the A/V stream while still buffering to cope with areas
where the coverage is worse. The A/V bitrate is updated regularly to
reflect the estimated bitrate. Areas with low or no coverage at all is
still buffered by lowering the bitrate in an earlier part of the route.

39



5.7.1 Identifying intervals to buffer

Given a desired bitrate b and a function e(t) defining the estimated bitrate
at time ¢, all continuous intervals where e(t) < b is saved. For each interval
[ti, t;] the number of bytes B needed to buffer before t; is:

t.
B=(t—t) *b—/tje(t)dt.

By letting B = 0 and ¢; be unknown a new interval starting at ¢, can be

calculated: .
[;7 e(t)dt
e =t = =

tip = (tj; —ty) is the number of seconds which must be buffered before the
deadline ¢;. Let D contain all identified deadlines and number of seconds
which must be buffered:

D = {(titip), -}

5.7.2 Finding intervals where buffering is possible

Given an interval [t;,¢;], the number of seconds which can be buffered during
this period depends on chosen bitrate, available bitrate and maybe even the
cpu. The buffered video over the interval will have the same A/V bitrate as
the video considered live. As such, different strategies may want to choose
intervals differently. A strategy which tries to optimize quality may want
to choose the period with the highest A/V bitrate while a strategy which
tries to lower costs may want to buffer as late as possible to avoid wasting
bandwidth if the user decides to stop the stream prematurely.

All intervals [t;, t;] where e(t) > b+e€ are intervals where buffering is possible.
€ is a safety margin to prevent buffering when the A /V bitrate is very close to
the estimated bandwidth. For every interval the number of seconds possible
to buffer within the interval is calculated:

tje Az
8; = ftl Q Cft ftl bl) dt * (tj —t;)
J,b(t) dt

Let I contain all calculated available seconds along with ¢; which marks
when the seconds are available:

I=A{(tj,s5), -}

For the streaming strategy to be successful the required number of seconds
buffered must be available at each deadline. If the strategy fails it may retry
with more conservative values for the bitrates during some intervals until it

40



succeeds.

Buffering during an interval with a certain bitrate results in the same bitrate
for the buffered stream. As such, choosing suitable intervals is dependent
on the selected strategy. The required CPU resources is also higher during
intervals with a high bitrate which means it is possible to buffer more seconds
of the stream per second the lower the bitrate.

5.7.3 Implementation

When the client first connects it will send a predetermined route to the
server. Based on this route the server calculates which networks will be
available to the client. For each network available, estimations of the avail-
able bandwidth are calculated using the technique described in Section 5.6
on page 37. The best network is selected for each waypoint along the route.
What A/V bitrate and buffering mode used for each waypoint is decided by
the different strategies. Three different strategies were implemented:

Cost
The A/V bitrate is chosen to be as low as allowed. Buffering may still
be necessary as some intervals may have no coverage at all or very low.
The buffering should occur as late as possible to avoid sending data
which would be unused.

High Quality
The A/V bitrate is set to the maximum allowed for the entire route.
All intervals which need buffering are identified. If the identified inter-
vals which need buffering can’t be buffered in time a lower bitrate is
selected for the route and the calculations are repeated. This is done
until a viable buffering strategy is found.

Smooth Quality
The A/V bitrate is set to follow the estimated bandwidth as close as
possible. The same strategy as High Quality is used for buffering.

The strategies are executed every time the client reports a new position.
This allows the server to cope with unexpected bandwidth to some extent.
The client may not have buffered the expected amount of the stream. New
decisions are made to ensure the expected behavior. A number of scenarios
were not taken in to account which may improve the strategies. Buffering is
done as early as possible which is not optimal for some strategies as buffering
at a specific interval means the buffered data will have the same A /V bitrate
as the interval. A strategy interested in minimizing data sent might want
to select an interval with a lower A/V bitrate.

41



6 Results

The result of this thesis is a proof of concept system including a set of client
applications as well as a server environment. The server accepts measure-
ments from clients and stores the values in a database. Estimations based on
these values are calculated and used to construct coverage maps and band-
width graphs for use in strategies to stream efficiently. The configuration
used to estimate values was not researched for efficiency in calculating opti-
mal values, it was considered well enough for testing of the system. Simple
versions of the strategies mentioned in the analysis are also implemented.
The transcoding implementation works as expected with the possibility to
control the A/V bitrate of the video in real time. The control of the data
rate when streaming, that is, the ability to either send the stream in real
time speed or to burst the stream as fast as possible, is somewhat lacking
due to the choice of using the synchronization method of the components in
GStreamer.

The system has a number of areas where it can be improved to provide a
more reliable and better solution: The rate control of the streaming needs
a better implementation compared to the one currently implemented. The
strategies implemented could be improved together with some research of
how the most accurate estimations of the available bandwidth are calculated.

Testing of the bandwidth provided by cellular providers in different areas
and at different times has showed that it does exist areas with greatly de-
creased bandwidth. As seen in figure 3 on page 12 the coverage deviations
is constant enough to make qualified estimations of the available bandwidth.

To summarize the resulting system it provides a framework for future devel-
opment within the area. The client provides access to both a Wifi card and
to a number of cellular networks in a uniform way. Coverage testing of net-
works can easily be performed. The server application provides an interface
to test buffering and dynamic bitrate adaptation strategies for various use
cases. Streaming and playback is implemented but with a few limitations
as mentioned previously.

42



7 Conclusion & Discussion

This has been a very interesting and rewarding project to work with. It cov-
ered a lot of different areas such as databases, media streaming and hardware
handling. Because of the many different areas we had to solve many different
and interesting types of problems. We have therefore gained a whole lot of
new knowledge about how to vary the bitrate of a media stream in real time,
how generate maps using OSM and handle hardware such as GPS devices
and cellular modems. The work has been free in the sense of planning the
work and designing the system. This master thesis was divided into several
phases which was, research, designing the system, implementing the differ-
ent parts of the system, testing the system and finally writing the report.

Smart buffering is an interesting concept as it allows for smoother playback
of the stream, while it helps to minimize unnecessary traffic to the client.
The system knows when to buffer to use the network link optimally for user.
This might mean to delay buffering until roaming to a cheaper network is
possible, or to just delay it as long as possible if the user decides to cancel
playback. To further help the client to always have data from the stream to
play, the concept of adapting the bitrate in real time is a viable solution. The
resource requirement on the server side is a drawback, but in turn it’s possi-
ble select a bitrate tailored to the client which is updated frequently. If the
client would spend more time in an area with lower coverage than intended
lowering the bitrate temporary is possible to still provide a smooth playback.

As mentioned in the results the final implementation has some shortcom-
ings which were not resolved due to time constraints. Some aspects of the
development took longer than expected which lead to some compromises
in the implementation. These compromises should be resolved for future
use of the application. This would result in more accuracy in the stream
control and how much of the stream really is buffered in the client applica-
tion. The client also has some shortcomings mentioned in 4.2. The client
use several programs to provide all the desired functionality. This should
be merged into one process as was the original purpose of the client frontend.

As for estimating values for maximum available bandwidth at a location
a limiting problem is the fact that it is necessary to maximize throughput
on the link to measure it. When receiving a stream in real time and not
performing any buffering it is only possible to say that the available band-
width is at least what the measurement reported. Receiving data for the
only purpose of measuring the link is associated with a cost for the user. To
provide reliable estimations of available bandwidth a large dataset of mea-
surement is required over a large geographic area. This is a time consuming
and expensive job to do for company or organization. If the collecting of

43



measurements were community driven then anyone could contribute with
bitrate measurement from any where in the world. With enough members
contributing with bitrate measurements this would be a cost effective solu-
tion for gathering measurements.

The major problem with the resulting system concept is not to predict where
the coverage will be suffering or to adapt the A/V bitrate but how to get
enough measurement data to predict with efficiently. The data need to cover
a large area for the service to be appealing for a market and the data must
constantly be updated to reflect changes in different providers networks.

Future Work

The estimation part of the server implementation could be generalized into
a separate service. This could be useful as this feature is interesting for
other applications which require mobile Internet access. This service would
export an API for retrieving estimations of values based on a geographical
location and a point in time. This separate system could then be used by
this application and by other systems in the need of information regarding
available bandwidth.

The resulting system would benefit from various solutions regarding routing.
The route sent to the server could use some interpolating of the waypoints
for higher accuracy when calculating where the client is on the route. The
system also does not handle client route deviations. If the client would devi-
ate from the prepared route, the system could calculate a temporary route
by using data from the GPS as well as information from OSM.

Some form of predictive routing would alleviate the need of the client to
provide a route. Based on usage patterns of the user a likely route could
be calculated and used by the server. The system could use a magnitude of
information to make intelligent guesses of the route. A current project at
BMW [27] researches such a system. Using information such as date, time,
passengers and driver a probable route is calculated.

As described in Appendix A the mobile Internet Service Providers has a
max limit of how much data one can download under a month and after the
max limit is reached they will reduce your bandwidth next to nothing. It
would be desirable to take this into count when streaming so one tries to
hold down the amount of sent data. Amount of sent data could be reduced
by decreasing the quality of the movie or music. This allows one to watch or
listen to more media per month. Another possible extension to the stream-
ing strategies would be to choose the cellular network with the lowest price
per data transferred. This is interesting when traveling between different

44



countries where it is some times possible to choose what cellular operator
to use.

More data in the measurement database will lead to better accuracy when
estimating the bitrate and to more accurate coverage maps. To get more
measurements one have to go by car and run the test system. This is a time
consuming job but it could be interesting to know what bitrates you really
get. This could evolve into a service where you could sell coverage maps
either to the Internet Service providers or to others who are interested.

45



References

[1]
[2]

“Spotify, streaming music.” http://www.spotify.com/en/.

M. Frick and E. Steen, “Streaming Media Using Peer-to-Peer Technolo-
gies,” 2008.

“Iperf Project.” http://sourceforge.net/projects/ipert.
“TPTest.” http://sourceforge.net/projects/tptest.
“Arch Linux, a Linux Distribution.” http://www.archlinux.org/.

“IBM Rational Clearcase UCM.” http://en.wikipedia.org/wiki/
IBM_Rational_ClearCase_UCM.

“GNOME Mobile.” http://www.gnome.org/mobile/.
“GStreamer Project.” http://www.gstreamer.org.
“Ffmpeg project.” http://wuw.ffmpeg.org.

“Clutter Toolkit.” http://www.clutter-project.org.
“Twisted.” http://twistedmatrix.com.

“Cairo Graphics Library.” http://cairographics.org.
“PostgreSQL.” http://www.postgresql.org.
“PostGIS.” http://postgis.refractions.net.

“gpsd.” http://gpsd.berlios.de/.

“Apache HTTP Server Project.” http://httpd.apache.org.
“Open Street Map.” http://www.openstreetmap.org.

F. Hartung, U. Horn, J. Huschke, M. Kampmann, T. Lohmar, and
M. Lundevall, “Delivery of broadcast services in 3g networks,” MARCH
2007.

“Joost, P2P Streaming.” http://www.joost.com/about.

Statens Offentliga Utredningar, “Tillgédnglighet, mobil tv samt vissa
andra radio- och tv-rattsliga fragor,” SOU 2006:51.

“Moblin Services.” http://www.FIXME.
3rd Generation Partnership Project, “AT command set for User Equip-
ment (UE),” 2008.

46



23]
[24]

[25]

“Mapnik.” http://www.mapnik.org.

W. Taymans, S. Baker, A. Wingo, R. Bultje, and S. Kost, “GStreamer
Application Development Manual.” http://gstreamer.freedesktop.
org/data/doc/gstreamer/head/manual/html/index.html.

Z. Gutterman, B. Pinkas, and T. Reinman, “Analysis of the Linux
Random Number Generator,” March 2006. http://www.pinkas.net/
PAPERS/gpr06. pdf.

J. Woods, “RFC1979 - PPP Deflate Protocol,” August 1996. http:
//www.ietf.org/rfc/rfc1979.txt.

“Navi mit kiinstlicher intelligenz.” http://www.all-electronics.de/
news/31673-Navi+mit+kuenstlicher+Intelligenz.

“Tre price list.” http://www.tre.se.
“Tele2 price list.” http://www.tele2.se/mobilt-bredband.html.

“Telia price list.” http://www.telia.se/privat/produkter_
tjanster/mobilt/mobiltbredband/.

“Bredbandsbolaget price list.” http://www.bredbandsbolaget.se/
wps/portal/privat/bredband.

“D-Bus Data Types.” http://dbus.freedesktop.org/doc/
dbus-python/doc/tutorial.html#data-types.

47



Glossary
A/V Audio/Video. 4, 5, 10, 13, 15, 19, 23, 26, 33, 39, 41, 42, 44

API Application Programming Interface. 19, 44
CPU Central Processing Unit. 32-34, 36, 41

DHCP Dynamic Host Configuration Protocol. 26
DVB Digital Video Broadcasting. 34

DVB-H Digital Video Broadcasting Handheld. 4, 6, 17, 18
GPS Global Positioning System. 43

H.264 Video codec, also known as MPEG-4 Part 10 and MPEG-4 AVC.
15, 32, 36

HAL Hardware Abstraction Layer. 21

HSDPA High-Speed Downlink Packet Access, also known as Turbo 3G. 34
IVI In-Vehicle Infotainment. 13, 14

MBMS Multimedia Broadcast Multicast Service. 4, 17, 18

MID Mobile Internet Device. 14
OSM Open Street Map. 15, 16, 27, 43, 44

P2P Peer to Peer. 6, 8, 17

PPP Point-to-Point Protocol, a data link protocol. 21, 26
QoS Quality of Service. 3, 5
TCP Transmission Control Protocol. 13

UDP User Datagram Protocol. 13

UMTS Universal Mobile Telecommunications System. 10, 17

48



Index

Backend, 19 Routing, 26

Cellular Simulation, 22
Usage, 20 Strategies, 39

Clutter, 15 Streaming, 32

Coverage Map, 30
Transcoding, 33

D-Bus Twisted, 15
Description of, 15 )
Usage, 19 Wifi
Database, 28 Usage, 20
x264, 15

Estimating, 37
Frontend, 23

GENIVI, 14
GPS, 20
gpsd, 16
Usage, 20
GStreamer, 34
Client, 24
Description of, 14
Pipeline
Client, 24
Server, 35
States, 35

H.264, 32
libavcodec, 14

Market survey, 17
Measuring, 36
Moblin, 14
Modems, 21

Open Source, 13
Open Street Map, 27

PostgreSQL
Description of, 15
PostGIS, 16

49



Appendices

A Cellular provider comparison

This market investigation was done 2009-05-18 and changes could have been
made since then. Swedish Internet Service Providers market their mobile
broadband with bitrates up to typically 7.2 Mbit/sec. Consumers has filed
complaints against this because they feel they have been fooled due to that
the real download bitrate just reaches around 1-3 Mbit/sec. During our tests
we had an average bitrate of 1-3 Mbit/sec down to the client. The upload
bitrate of the networks are fairly poor with around 0,38 Mbit/sec. Se table
9 for a comparison between Swedish mobile providers. The information has
been taken from [28], [29],[30] and [31].

Table 9: Cellular provider comparison

Provider Bitrate Max data/- | Reduced | Price
down/up,| month, bitrate (SEK /A
(Mbit/sec) (Gbyte) (Mbit/sec) month)
Tre 7.2/0,384 | 20 0,2 199--
21/5,76 | 20 0,2 249:-
Telia 10/1 * 3 0,057 229:-
10/1 * ) 0,057 249:-
6/0,7% |2 0,057 99:-
Tele2 14,4/~ |10 0,064 249
7.2/- 5 0,064 219
7,2/- 1 0,064 129:-
Telenor 7,2/0,384 | Unlimited - 199:-
Bredbandsbolaget 7,2/0,38 | 1 0,03 199:-

* Telia has 2500 zones in some bigger Swedish cities where it is possible to
reach bitrates of 22 Mbit /sec.

50



B D-Bus API

D-Bus API reference. For a description of the various D-Bus data types, see

[32].

org.mecel.gps

An interface to the GPS device. Enables retrieval of GPS data as well as
signalling when the data changes.

Name | Arg. | Ret. | Description

get None | nddd | Returns mode, latitude,
longitude and velocity

update | nddd | None | Signals a change in

mode, latitude,
tude or velocity

longi-

org.mecel.netmanager

This interface handles information regarding networks.
available networks.

Used to retrieve all

Name Arg. | Ret. | Description

netExists S b Returns True if network
exists

getNets None | as Returns all networks

getPreferedCommunicationNet None | s Return current commu-
nication net

netAdded S None | New network available

netRemoved S None | Network removed

preferedCommunicationNetChanged | s None | Communication net
changed

org.mecel.net

Base interface for all networks.
types of networks implements.

o1

Contains methods and signals which all




Name Arg Ret. | Description
makeValid None | b Validate network manu-
ally
measureStarted None | b Mark network as cur-
rently measuring
measureStopped None | b Mark end of measuring
streamingStarted | None | b Mark network as cur-
rently used for stream-
ing
streamingStopped | None | b Mark end of streaming
activate None | b Bring network online
deactivate None | b Take network offline
getName None | s Return name of network
getState None | n Return state of network
getType None | s Return type of network,
"wifi” or ”umts”
isOnline None | b Return True if network
is online and useable
getQuality None | n Return quality of link
getBitrate None |t Return current bitrate
getIP None | s Return TP  address
bound to network
getGateway None | s Return current gateway
getDNS None | ss Return primary and
secondary DNS servers
setState n None | manually set state
stateChanged n None | State changed
qualityChanged n None | Quality changed
bitrateChanged t None | Bitrate changed
ipChanged S None | New IP assigned
gatewayChanged S None | New gateway assigned
dnsChanged SS None | Primary or Secondary
DNS has changed

org.mecel.net.umts

All cellular networks implements this interface

52




Name Arg Ret. | Description

getCell None | s Return current cell the
modem is bound to

getOperator None | s Return current operator

getMode None | n Return current mode

getSubMode None | n Return current sub-
mode

getLAC None | s -

get RSSI None | n Return RSSI as re-
ported by modem

getBER None | n Return BER as re-
ported by modem

getTx None |t Return total transmit-
ted data

getRx None |t Return total received
data

get TxFlow None -

getRxFlow None -

getTxRate None Return current trans-
mitting bitrate

getRxRate None |t Return current receiv-
ing bitrate

cellChanged S None | Modem has roamed to a
new cell

operatorChanged | s None | Modem has roamed to a
new network

modeChanged nn None | Mode of modem
changed

signalChanged nn None | Signal quality  has
changed

flowChanged tttttt | None | New information re-
garding flow of data

org.mecel.net.wifi

Used by wifi networks.

93




Name Arg. | Ret. | Description

getESSID None | s Return ESSID

getAP None | s Return MAC address of
current Access Point

getMaxBitrate None |t Return max theoretical
bitrate

apChanged S None | New Access Point regis-
tered

mazxbitrate Changed | t None | Max theoretical bitrate
changed

org.mecel.modem

Simple interface to allow sending of custom AT|[22] commands to modems.

Name Arg. | Ret. | Description

syncAT | s S Send AT command
manually and wait for
reply

asyncAT | s None | Send AT command
manually and return
immediatelly

54



	Master of Science Thesis in the Programme Networks & Distributed Systems
	Andreas Lilleste
	Lukas Lundgren


