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Abstract

A novel technique to co-design a push-pull power amplifier and a wideband omnidi-
rectional antenna has been investigated. The goal was to cover the frequency range from
750 MHz to 3 GHz. A biconical antenna has been simulated in Ansys HFSS and the result-
ing parameters were exported to AWR Microwave Office, where the remaining part of the
co-design was performed. The complete design resulted in simulated values of a total gain
of 11±1 dB and a PAE of 35% and a maximum output power of 47 dBm. The main focus
of the project was to overcome the problems entailed with abandoning the standardised in-
terface. Leaving to common interface required new, non-standardised, methods to conduct
simulations.

Keywords: Integrated antenna, Push-pull, Wideband, Power amplifier, Omnidirectional, Biconical
antenna
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1 Introduction

The 50 Ω interface is a well known concept to any high frequency engineer and researcher. Every-
thing from amplifiers and attenuators to network analysers are all developed in order to be able to
connect to this standardised environment without any impedance mismatch. This great advantage
of universal connectability has also got some drawbacks. Suppose that two devices are to be con-
nected to each other, both units having an preferred impedance of 10 Ω at the point of connection.
According to present standards, both of them would have to be impedance transformed to the 50 Ω
environment, which inevitably would entail loss in the system and limit the possible bandwidth
compared to if they were just connected using a 10 Ω interface .

Another aspect of the 50 Ω measurement interface is that there is only one signal connector and
one ground connector. If a half wave dipole antenna, which is balancedly fed, is going to be
connected to the standardised unbalanced interface, there has got to be a network in between to
convert from signal-ground to signal-signal, a so called balun.

The main goal of this thesis has been to investigate whether abandoning the unbalanced 50 Ω inter-
face could be beneficial compared to the standard design procedure when developing an antenna-
amplifier system. As depicted in Figure 1.1, the proposed design approach would yield a less
complex system than conventionally. To design the system a couple of design goals, or restric-

50 Ω

PROJECT PURPOSE

Conventional topology compared to the proposed concept

50 Ω
Matching 

network

Matching 

network

Balun

Matching

network

Matching

network

Balun

50 Ω
Matching

network

Matching 

network

Balun

Matching

network

Matching

network

Balun
Matching

network

Amplifier Antenna

Figure 1.1: The goal of this thesis has been to investigate the possible advantages of integrating an antenna-
amplifier system as shown in the lower flow chart instead of the conventional way shown in the upper flow
chart
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tions, had to be set up. A bandwidth of a 1:4 ratio between the lowest and highest frequency of
operation was chosen as the target frequency range of the system. In order to be able to perform
in laboratory measurement with the antenna in a not too cumbersome manner, but also to be able
to cover the whole frequency range in the anechoic measurement chamber, the specific frequency
band of interest was set to be from 750 MHz to 3 GHz. With respect to the examining nature of
the project, a specific goal of output power was not of great importance. Instead the choice of tran-
sistor, 35 W CREE GaN HEMT, was putting a limit to the output power. This specific transistor
was mainly chosen due to its favourable characteristics in the frequency region of interest.

Another part of the investigation has also been to see if the integration could be made using a
wideband omnidirectional antenna. Omnidirectional radiation is advantageously utilised in broad-
casting scenarios, since the transmitting and receiving capabilities in this case essentially are in-
dependent of the orientation of the terminal [1]. If the advantages with the proposed design would
be realised as previously stated along with an omnidirectional antenna with electrically small di-
mensions, the end result would be a compact low-loss wideband antenna-amplifier unit. Such a
unit would be of great interest to any non-stationary transmitter or receiver.
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2 Theory

In this section, the theory used to justify the different design goals and techniques is described.
First of all some general microwave theory will be dealt with, followed by two sections concerning
the theory of amplifiers and antennas that are of interest to the proceeding report.

The mathematical typesetting used, not only in this section but in the whole thesis, is based on the
article of Beccari [2]. Beccari bases his article on the ISO 31/XI standard for "Mathematical sign
and symbols for use in physical sciences and technology".

2.1 Microwave theory

This section will cover some basic concepts of microwave theory. Emphasis is given to the parts
that are of significant interest to this thesis. The concepts in this section, albeit not the nomencla-
ture, is inspired by the book of Pozar [3].

2.1.1 S-parameters

Scattering parameters, commonly know as S-parameters, are a very useful tool within microwave
theory and practice. Basically the S-parameters are the elements of the matrix describing the
relationship between incident and reflected voltage waves on an N -port circuit. This relationship
can be written as 

b1
...
bn
...
bN

 =


S11 · · · S1n · · · S1N

...
. . .

...
Sn1 Snn SnN

...
. . .

...
SN1 · · · SNn · · · SNN




a1
...
an
...
aN

 , (2.1)

where an is the incident wave at the nth port and bn the reflected wave at the same port.

The case whenN equals 2, referred to as a 2-port, is very common and can be seen in Figure 2.1.

 

   

      

   

Figure 2.1: The common 2-port. Incident waves are represented by a1 and a2. In the same manner outgoing
waves are represented by b1 and b2.
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The expression 2.1 is then reduced to(
b1
b2

)
=

(
S11 S12
S21 S22

)(
a1

a2

)
,

where S11 and S22 are the coefficients describing the reflection at the ports. S12 and S21 are the
coefficients describing the gain between the ports in both directions.

2.1.2 Mismatch

High frequency signals reflect in the boundary between two impedances. In reality this reflection
is mostly undesirable since it will result in power loss when part of the signal is reflected back to
the source. The reflection between two impedances is expressed by the coefficient ΓL,

ΓL =
V−
V+

=
ZL − Z0

ZL + Z0
,

where V+ and V− are the phasor of the in- and outgoing wave. The impedance ZL is the load
impedance and Z0 is the standard 50 Ω impedance according to Figure 2.2.

ΓL

Z0 ZL

Figure 2.2: ΓL marked in the boundary between two impedances. The arrow is always pointing towards
the impedance considered as load.

Another frequently used way to describe mismatch is the Standing Wave Ratio, SWR. A standing
wave occurs when the ingoing wave and the reflected wave are added before the mismatch and the
ratio is taken of the highest and lowest amplitude of the standing wave.

The maximum amplitude of the standing wave will occur at the position where the waves are
added constructively and the resulting amplitude is Vmax = |V+| + |V−|. The minimum of the
standing wave will in an opposite way occur at the position where the two waves are added in a
destructive way which will correspond to an amplitude of Vmin = |V+| − |V−| for a passive load.
The SWR is computed as the ratio between Vmax and Vmin,
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SWR =
|V+|+ |V−|
|V+| − |V−|

=
|V+| (1 + |ΓL|)
|V+| (1− |ΓL|)

=
1 + |ΓL|
1− |ΓL|

.

2.1.3 Transmission lines

The purpose of transmission lines is to transfer signals over a distance. For high frequency tech-
niques different types of transmission lines are used and realised in different ways. A transmission
line is characterised by its characteristic impedance Zc which depends on the physical dimensions
of the transmission line. In this section two different types of transmission lines will be explained.
The first one is the microstrip which is seen as the technically more flexible alternative since it
can be realised in different shapes depending of the application. The other one is the coaxial cable
which consists of a core surrounded by a shield. The coaxial cable is technically not flexible since
the characteristic impedance is fixed along the cable. However, the physical flexibility is much
better and therefore used to transfer signals far distances between devices.

2.1.3.1 Microstrip Microstrips are widely used as conducting paths in all kinds of high fre-
quency circuits. A microstrip consists of a conductor and a ground plane which are separated by a
dielectric medium of a certain height. The wavelength of a wave traveling through the microstrip
for a given frequency is depending on the relative permittivity εr of the substrate. High relative
permittivity gives a short physical wavelength.

Microstrips of certain shapes can be used to replace lumped components like inductors and capac-
itors. The lengths of a transmission line is often specified by the electrical length θ, which is an
angle corresponding to a phase at a given angular frequency ω:

θ = βl =
2π

λ
l =

ω

vp
l, (2.2)

where vp is the velocity of propagation, λ is the corresponding wavelength and β is the wavenum-
ber defined as 2π/λ . A general expression of the input impedance of a transmission line of electric
length θ and characteristic impedance Z0 loaded with ZL is

Zin = Z0
ZL + jZ0 tan θ

Z0 + jZL tan θ
. (2.3)

For a shorted piece of transmission line (ZL = 0) the expression is

Zin = Z0j tan θ, (2.4)

which can be compared with the reactance of an inductor
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Zind = jωL = jXind. (2.5)

Combining (2.4) and (2.5) the following expression for Xind can be derived:

Xind = Z0 tan θ. (2.6)

For small values of the electric length, tan θ ≈ θ. Combining (2.6) and (2.2) the expression for
Xind can be written as

Xind = Z0θ = Z0
ωl

vp
,

which shows that the reactanceXind of a narrow transmission line is proportional to frequency and
length and the inductance is given by

L = Z0
l

vp
.

In the same way the reactance Xcap of an open stub can be derived using (2.3) having ZL = ∞,
which leads to the expression

Xcap = −Z0 cot θ

and for small θ the approximate value of the resulting capacitance is

C =
l

Z0vp
. (2.7)

Summing up, the inductor is realised by a narrow piece of microstrip (high Z0) and the inductance
is proportional the the length. According to (2.7) a large capacitance is achieved by having a long
piece of stub with a low characteristic impedance Z0. A low characteristic impedance corresponds
to a wide conductor. Note that the assumption of having tan θ ≈ θ should always be considered
and is only valid for small values of θ.

2.1.3.2 Coaxial cable Coaxial cables are often used to transfer signals over long distances
(l� λ). Connecting an arbitrary frequency dependent load ZL(ω) to a coaxial cable of character-
istic impedance Z0 the input-impedance is

Zin(ω) = Z0
ZL(ω) + jZ0 tan θ

Z0 + jZL(ω) tan θ
.
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The input impedance Zin could be expressed in terms of ΓL, where ΓL is calculated relative the
characteristic impedance Z0, which gives:

ΓIN(ω) = ΓL(ω)e−2jβl = ΓL(ω)e−2jlω/vp . (2.8)

The extra term e−2jlω/vp is a rotation of ΓIN in the Smith chart by an angle of −2lω/vp radians.
A frequency shift of ∆ω will therefore cause a rotation of gamma equal to −2l∆ω/vp, which is
proportional to the length of the transmission line. That means the length l of a transmission line
emphasizes the rotation of ΓIN which is equivalent to a variation in Zin.

2.1.4 Balun

In order to transform an unbalanced signal to a balanced signal a balun is used. An unbalanced
signal is always measured towards ground. For a balanced signal, ground is not present and the
signal is seen as the potential difference between two conductors. In Figure 2.3, a balun is realised
using a quarter wavelength transmission line. The core of the transmission line will be isolated
from ground on both sides. According to (2.3), a grounded termination will be transformed into
open circuit at a distance λ/4 (90◦) and therefore the shield of the transmission line in Figure 2.3
can be considered as isolated from ground at a distance λ/4 from the ground. Both the shield and
the core of the transmission line will be seen as isolated from ground at the right side and hence
the output is balanced.

BalancedUnbalanced

Figure 2.3: Unbalanced to balanced using a quarter wavelength coaxial cable

The problem of using coaxial baluns is the bandwidth. The requirement of having the length
λ/4 will be valid for one and only one frequency and therefore hard to design for a broadband
application. In section 3.2.1 other alternatives will be discussed.
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2.2 Antenna theory

In this section a couple of antenna parameters are defined, in order to evaluate the proceeding
design. Also, the theory behind wideband antennas in general will be briefly described. The
theory of two antennas under consideration, the TASH antenna and the biconical antenna, is also
presented here.

2.2.1 Antenna characteristics

There are a lot of parameters that can be used to characterise an antenna. The parameters can
roughly be divided into two categories: parameters describing the amount of energy radiated from
the antenna element and parameters describing in which direction the energy is radiated. Most of
the definitions in this section are taken from the book of Balanis [4] and the chapter on Fundamen-
tal Parameters of Antennas, which is partly built upon IEEE standards [5] from the year of 1983.
Some guidance has also been taken from the more recent standards of 1993 [6].

2.2.1.1 Antenna input impedance The input impedance of an antenna is defined as the ratio
of the voltage to current at the antenna port and can be written as

ZA = RA + jXA,

where ZA is the antenna impedance, RA the antenna resistance and XA the antenna reactance. RA
is generally considered to consist of two parts as

RA = Rrad +Rloss,

where Rrad is the radiation resistance of the antenna and Rloss is resistance caused by losses in
the material of the antenna. Radiation resistance could be thought of as the constant that relates
the power in the radiated field to the square of the current put into the port of the antenna. If the
internal impedance of the generator feeding the antenna is assumed to be on the form

Zg = Rg + jXg,

the instance of maximum power delivered to the antenna will occur when the impedance of the
antenna and the impedance of the generator are the conjugate of each other. This means that

Rrad +Rloss = Rg
XA = −Xg.

Furthermore, since it is only Rrad that is useful, it is desired that Rloss and XA are close to or equal
to zero.
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2.2.1.2 |S11| and SWR As described earlier in the chapter, the relationship between incident
and reflected waves on an N -port can be described using S-parameters. This way of seeing things
also applies to antennas. In case of a purely transmitting antenna, |S11| will show how well
matched the antenna is to its environment. It is clear that |S11| should have a value as close to zero
as possible. If |S11| is unity, the antenna is completely useless, since all power will be reflected
back to the source. Often, |S11| is expressed in terms of decibel (dB). What an acceptable value of
|S11| is varies between applications, but a commonly used standard is that the level of |S11| should
not be higher than -10 dB [7] [1], which means that no more than 10 % of the incident power
should be reflected back to the generator. Another common measure of reflection or mismatch is
the SWR, also known as Voltage Standing Wave Ratio, VSWR. The common practice with SWR is
that it should not be higher than 2:1 [7] [1], which corresponds to |S11| being approximately -10 dB.

2.2.1.3 Bandwidth An important parameter for characterisation of an antenna is the band-
width. The bandwidth is defined as the range of frequency within which a specific criterion holds
true. One criterion could be |S11| < −10 dB. The bandwidth that can be expected varies between
different types of antennas. For some antennas with a narrow band of operation, a couple of per-
cent of the center frequency could be acceptable. For antennas with a wideband field of operation,
several multiples of the lowest operational frequency could be the goal. A common practice when
specifying a bandwidth is that for narrow band antennas, the bandwidth is given in percent of the
center frequency. For wideband antennas, the bandwidth is often given as a ratio between the
highest and the lowest frequency of operation.

2.2.1.4 Antenna efficiency Antenna efficiency is often defined as the efficiency in the antenna
with respect to mismatch at the feeding point and losses, both conductive and dielectric. According
to Balanis, the total efficiency η0 can be expressed as

η0 = ηrηcηd,

where ηr is the reflection efficiency, ηc is the conduction efficiency and ηd is the dielectric effi-
ciency. The reflection efficiency is defined as ηr = (1− |Γ|2), where Γ is the reflection coefficient
for the intersection between the antenna and the transmission line which is feeding it. Often it
is very difficult to obtain values for ηc and ηd numerically. Therefore it is common practice to
determine them by measurements and group them into one parameter, ηcd = ηcηd.

2.2.1.5 Directivity The directivity of an antenna in a certain direction is defined as the ratio of
the radiation intensity in a certain direction δ to the mean radiation intensity. Since the radiated
power is 4π times the mean radiation intensity, the directivity Dδ can be written as

Dδ =
Iδ
I0

=
4πIδ
Prad

,
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where Iδ is the radiation intensity, I0 is the mean radiation intensity and Prad is the radiated power.
Often one is interested in the directivity in the direction of the maximum radiation. The expression
is then turned into

Dmax =
Imax

I0
=

4πImax

Prad
.

2.2.1.6 Gain A parameter similar to the directivity is the gain. The only thing separating the
two is that the gain takes into account the accepted input power,

Pacc = (1− |Γ|2)Pavs,

in contrast to the radiated power in the case of directivity. Here, Pavs is the power available from
the source. The relationship between the accepted and radiated power can be written as

Prad = ηcdPacc,

where ηcd is defined as in section 2.2.1.4. This yields the relationship between directivity and gain G as

G = ηcdD.

Occasionally it is useful to talk about something called realised gain, which is the reduced gain
of an antenna, taken into account the mismatch at the input of the antenna. The power considered
when dealing with realised gain isPavs, which leads to that the realised gain GR can be written as

GR = (1− |Γ|2)ηcdD.

2.2.1.7 Radiation pattern To show the spatial radiation characteristics it is common to use a
plot of the radiation pattern. The radiation pattern is defined as the representation of radiation
characteristics as a function of spatial coordinates. A property of interest can for example be the
directivity of an antenna. In Figure 2.4 the spatial definitions along with a typical radiation pattern
of a half-wave dipole antenna is depicted.

In Figure 2.4a, r is defined as the radial distance from the center point, ϕ is defined as the angular
distance from the x axis and θ is defined as the angular distance from the z axis. Another name
for ϕ is azimuth angle and another name for θ is elevation angle.

Radiation region separation In most cases when mentioning the radiation pattern this is under-
stood to be at a distance

r ≥ 2D2

λ
(2.9)

away from the antenna center point. Here, D is the diameter of the smallest sphere encapsulating
the antenna. The regime where (2.9) holds true is called far-field region or Fraunhofer region.
The region where (2.9) does not hold true is called the near-field region. The near-field region
is divided into the radiating near-field region, also called the Fresnel region, and the reactive
near-field region.

IN 5000358-159 Issue 1



Th
is

do
cu

m
en

ta
nd

th
e

in
fo

rm
at

io
n

co
nt

ai
ne

d
he

re
in

is
th

e
pr

op
er

ty
of

S
aa

b
A

B
an

d
m

us
tn

ot
be

us
ed

,d
is

cl
os

ed
or

al
te

re
d

w
ith

ou
tS

aa
b

A
B

pr
io

rw
rit

te
n

co
ns

en
t.

16(91)
Date Issue Document ID

2013-06-18 A 87/03631-1/FCK11507
Issued by Classification Company Confidentially

OEGPU Viktor Hallman, Erik Sanford COMPANY UNCLASSIFIED
Classification Export Control Classification Defence Secrecy

NOT EXPORT CONTROLLED ÖPPEN/UNCLASSIFIED

 

 

 

 

 

 

  

 

 

  

  

  

  

  

  

Elevation plane 

Azimuth plane 

(a) (b)

Figure 2.4: (a) Commonly used spatial definitions and (b) radiation pattern of the half-wave dipole antenna
directivity in logarithmic scale

2.2.1.8 Phase center The Fraunhofer region field components of an antenna can be written as

Eu = ûE(θ, ϕ)ejψ(θ,ϕ) e
−jβr

r
,

where û is a unit vector that describes field polarisation,E(θ, ϕ) represents the amplitude variation
in space and ψ(θ, ϕ) represent the phase variation in space. In many aviation systems, such as
navigation and tracking, it is often of interest to assign the antenna to one radiating point in space.
In order to do this, ψ(θ, ϕ) has got to be constant for a given frequency. The reference point in
space that yield the independence of θ and ϕ is called the phase center of the antenna. The waves
occurring on a sphere surrounding the phase center should have the same phase. Insignificant
variations in the position of the phase center will call upon the use of the term apparent phase
center.

2.2.2 Wideband antennas

In many RF products, such as mobile phones and in radar applications, wideband antennas are
of great interest since it reduces the number of antennas needed when utilising several frequency
bands. The wideband behaviour is also favorable when doing measurements of waves with un-
known frequency. In theory some antennas can be designed to show infinite wideband behaviour
if their geometry is extended to infinity. These antennas are called Frequency Independent (FI)
antennas. In reality however, practical limitations make true FI antennas an impossibility, whereas
their realisable projections in wideband antennas are an important asset to the antenna engi-
neer.

There are different ways to theoretically approach the FI antennas. An antenna designed for a spe-
cific frequency can be redesigned for an arbitrary frequency by scaling its linear dimensions [8].
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Therefore an antenna with a structure that is invariant under linear scaling is also going to show the
same characteristics independent of frequency. One way a structure like this can be imagined is
by thinking of the geometry of the FI antenna as a combination of adjacent cells where the ratio of
the dimensions of one cell to its neighbour is constant throughout the whole structure as depicted
in Figure 2.5 [9].

 

(a)

 

(b)

Figure 2.5: Example of geometries where the adjecent cells are (a) simply connected and (b) multiply
connected

If Dn is some dimension of the nth cell, this constant ratio can be written on the form

Dn

Dn+1
= τ, (2.10)

where τ < 1 if n = 0 is the index of the smallest cell. When n = 0 the cell should in theory be
represented as a point. In the same manner, when n goes towards infinity, also the dimensions of
the cell goes towards infinity. In theory, this kind of geometry has to be of infinite extension and
of infinite precision in order to represent all cells. In practice though, an infinitely large structure
is rather impractical and the precision of construction has got an upper limit. Hence, truncation of
the structure needs to be done. The smallest cell defines the upper working frequency in the same
way as the largest cell defines the lowest working frequency. To make the impact of the lower
frequency truncation as negligible as possible the antenna must be designed so that no, or little,
current flow is cut off. The current should be attenuated at the point of truncation [10].

Victor H. Rumsey started to investigate FI antennas in the early 1950s since he got curious about
an observation in 1949. The conclusion of the observation stated that planar self-complementary
antennas have got an impedance of half the intrinsic impedance of vacuum, for all frequencies.
After some investigation of his own, Rumsey came up with the conclusion that the impedance and
pattern properties of an antenna are going to be independent of frequency, given that the antenna
geometry can be described only in terms of angles. This conclusion is sometimes referred to as
"Rumsey’s principle" [10].
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Even if true FI antennas can not be realised, there are many wideband antennas of interest. The
biconical, the helical and the spiral antennas, depicted in Figure 2.6, are three common types of
wideband antennas. All three types are suitable for detection of signals of unknown frequency.
Especially the biconical antenna is used for testing of Electromagnetic Compatibility (EMC) due

(a) (b) (c)

Figure 2.6: Three common wideband antennas: (a) the biconical, (b) the helical and (c) the spiral antenna.

to its high bandwidth and omnidirectional behaviour [11]. The helical and the spiral antennas are
mostly used in communication applications, such as satellite communication, due to their circular
polarisation of the electromagnetic field [12].

In the subsequent sections, two types of wideband antennas, the TASH antenna and the biconical
antenna, will be described more thoroughly. These antennas were chosen due to their wideband
behaviour and their exhibition of omnidirectional radiation pattern. An antenna also having these
characteristics is the planar spiral antenna. The reason why the spiral antenna was not consid-
ered was that the electrical size of the antenna is larger than the TASH and the biconical antenna
[4][13].

2.2.3 The biconical antenna

A popular antenna, especially for measurements, is the biconical antenna due to its wide frequency
range and near frequency independent radiation pattern [14]. In the following sections, the infinite
and finite biconical antennas along with their impedances will be dealt with.

2.2.3.1 The infinite case A popular way to describe the biconical antenna is by making analo-
gies to the theory of transmission lines [12][4]. As depicted in Figure 2.7, the bicone acts as a guide
for spherical waves in the same manner as the transmission line is a guide for plane waves.

Also, in analogy to the infinite transmission line, in the case of a biconical antenna with infinite
extension only outgoing waves have to be considered. Given that the geometry of the infinite
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Figure 2.7: The analogy between an (a) infinite biconical antenna and an (b) infinite uniform transmission
line

biconical antenna is completely determined by spatial angles, using Faraday’s law and Ampere’s
law, it is found that [4, equation 9-12a] the characteristic impedance of the antenna, Zc, is constant
with respect to frequency and expressed as

Zc = 120 ln
[
cot
(αcone

4

)]
Ω, (2.11)

where αcone is the cone angle as shown in Figure 2.7a. The variation of Zc as a function of αcone
is depicted in Figure 2.8.

If one of the cones is replaced by an infinite ground plane, the amplitude of the emitted field above
the ground plane is the same as with two cones. Therefore, the total power emitted is going to be
half of the one emitted by the bicone, but with the same current fed to the antenna. By the law of
P = RI2 this implies that the characteristic impedance of the single cone antenna will be half of
the biconical one.

2.2.3.2 The finite case One way to approach the finite biconical antenna was suggested in the
year of 1943 by Schelkunoff [15]. Schelkunoff’s idea is to assume that most of the energy propa-
gating along the surfaces of the cones is reflected back towards the input. The energy propagating
parallel to the mirror plane of the two cones on the other hand, is almost completely radiated into
free space. This is depicted in Figure 2.9.

By taking the idea one step further, the reflected energy can be thought of as a result of that the
ends of the cones are being terminated with a certain load impedance, ZL. By altering ZL and the
length l of the cone side one can alter the input impedance of the biconical antenna in a similar
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Figure 2.8: The characteristic impedance of a infinite biconical antenna as a function of cone angle αcone
according to equation (2.11)  

Escaped 

energy 

Reflected 

energy 

Figure 2.9: Energy traveling towards the poles of the sphere encapsulating the antenna is reflected back.
Energy travelling towards the equator of the sphere is escaping into free space.

way as with a transmission line with characteristic impedance Zc and length l being terminated
with a load ZL, see Figure 2.10.

In analogy with the transmission line the input impedance Zi of the biconical antenna is related
to the characteristic impedance Zc of the cones, the slant height l of the cone and the termination
impedance ZL. This relationship can be written as

Zi = Zc
ZL + jZc tanβl

Zc + jZL tanβl
,
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Figure 2.10: The finite biconical antenna can be seen upon as a transmission line with a characteristic
impedance, Zc, that is terminated with a certain load, ZL. This results in an input impedance Zi.

where β is the wavenumber. The theoretical impedance of the finite bicone for some specific cases
is presented by Kraus [12, section 8-4]. One important observation that he calls upon is that the
variation in impedance is decreasing when the angle of the cone is increased.

Occasionally in the literature the lowest operational frequency of the biconical antenna is being
related to the distance d rather than the slant height l of the cone [16][17]. In accordance with the
transmission line analogy this holds for small angles, since d = l cos αcone

2 , but for larger angles
l� d and it would be less relevant to relate the lowest operating frequency to d.

2.2.4 The TASH antenna

In September 2001, Thomas J. Warnagiris proposed a novel type of wideband antenna in Mi-
crowave Journal [18]. He called it Tapered Area Small Helix (TASH) antenna. The easiest way to
describe the TASH geometry is maybe to describe it as a triangle that has been rolled up from one
of its bases into a cylinder shaped object, see Figure 2.11, with a feeding point and a grounding
point at the base spiral.

In the second article of Warnagiris there are some quite precise design recommendations to follow [19].
The design parameters are stated in Table 1 and their descriptions are illustrated in Figure 2.12.

Warnagiris also states a couple of advantages over traditional antennas. For example, albeit that
the log-periodic antenna easily exhibits wideband characteristics, its phase center varies with fre-
quency, its largest physical dimension is quite large compared to the lowest operating frequency
and the antenna is highly directional. These, in some cases, inconveniences would according to
Warnagiris be overcome using the TASH. In comparison with the biconical antenna the main stated
advantage would be that the TASH is far less bulky.
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Figure 2.11: The Tapered Area Small Helix (TASH) antenna is essentially a triangle that has rolled up from
one of its bases into a cylinder shaped geometry.

Table 1: The design parameters given in the article by Warnagiris [19]

Parameter Designation Value
TASH height Y 0.2 λ
Base length X 0.32 λ
Ground spacing S 0.004 λ
Feed point F1 at the innermost point
Shorting point F2 0.08 λ in from the tip
TASH diameter D 0.1 λ

 

 

 

 

  

 

 

 

 

  

Unrolled TASH 

F1 F2 

X 

Y
 

D 

S
 

Figure 2.12: The definitions of the TASH parameters to be considered

In order to explain the radiating behavior of the TASH one can think of the antenna as a superpo-
sition of a monopole antenna, a transmission line antenna and a helical antenna [19], where the
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radiation modes of the different antennas would sum up to the total radiation. This is illustrated in
Figure 2.13.

Low High
Frequency

R
el
a
ti
v
e
co
nt
ri
b
u
ti
o
n
to

ra
d
ia
ti
o
n

Monopole mode

Transmission line mode

Helical mode

Figure 2.13: The relative radiation contribution from each one of the TASH radiation modes with respect
to frequency

Another way to consider the antenna is to think of the base spiral as a transmission line that feed
an infinite amount of radiating elements that are perpendicular to the transmission line. Almost
like a log-periodic antenna that has been splitted in the direction of the main lobe and rolled up
into a cylinder.

In his two articles about the TASH, Warnagiris is rather specific when it comes to the design
parameters of the antenna, defining for instance the diameter of the rolled element to be λ/8.
However, in the patent of the TASH antenna, Warnagiris is widely extending the spectrum of what
can be considered to be a TASH antenna[20]:

”Although the present invention has been described in detail, it should be under-
stood that various changes, substitutions, and alterations can be made hereto without
departing from the spirit and scope of the invention...”
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2.3 Amplifier theory

Depending on the area of use for the amplifier, different parameters are studied. For receivers
the noise performance is more important. For power amplifiers the maximum output power and
Power Added Efficiency (PAE) are more taken under consideration. In this section some of the
important measures for power amplifiers will be explained together with the theory of stability.
Some different classes of amplifier will also be explained.

2.3.1 Amplifier characteristics

To determine the performance of an amplifier a number of different measures can be used. In this
section the ones important for power amplifiers will be explained.

2.3.1.1 Power Added Efficiency In general, the efficiency of an amplifier is important for two
main reasons. First of all it reduces the power consumption and second it prevents the ampli-
fier from overheating. The importance of the power consumption aspect grows with the number
of amplifiers produced and is therefore a well discussed topic within the area of large telecom
networks [21]. The PAE is the ratio between the added RF-power divided by the total power
consumption:

PAE =
Pout − Pin

PDC
.

Referring to the conservation of energy the heat generated by the amplifier is

Pheat = Pin − Pout + PDC = PDC(1− PAE).

2.3.1.2 Return loss An important specification when designing an input matching network is
the achieved return loss (RL). The RL of a device shows the amount of reflected power and is
often given in dB. The goal is to have a small amount of reflected power. Given the S-parameters
of a circuit the RL in dB can be calculated using

RL = 20 log10 |S11| . (2.12)

The S-parameters are calculated for an N-port having all ports terminated to 50 Ω which means
(2.12) is only valid having all other ports terminated to 50 Ω.
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2.3.1.3 Gain The total gain of the amplifier is dependent of the impedance seen at the input
and output of the transistor. The optimal impedances are more or less frequency dependent and
in order to get an understanding of how the source and load impedances affect the gain, a load
and pull measurement can be performed which sweeps through all possible loads and sources and
retrieve the resulting gain. More details about this in a later section.

2.3.1.4 Stability The following theory analyzing the stability of a linear 2-port system will be
based on theory provided by [22]. Seeing the amplifier as a 2-port circuit including a matching net-
work with corresponding S-parameters the stability can be derived depending on the S-parameters
and the terminations. Instability occurs when the total reflection in any interface is greater than
1. For the 2-port network there are four reflections that need to be considered according to Figure
2.14. For |ΓS| < 1 and |ΓL| < 1 the only requirement is that the Re ZL > 0 and Re ZS > 0 which
is always true for passive terminations which will be assumed. Hence only ΓIN and ΓOUT remains
to be considered.

ZS ZL

ΓL ΓOUTΓIN ΓS

2-port

Figure 2.14: All possible reflections in a 2-port which needs to be considered for stability estimations.

The input reflection coefficient ΓIN can be seen as a sum of infinitely many reflections. The first re-
flection is S11. The second reflection goes through the 2-port and reflects against the load and back
again. That gives a contribution of S21ΓLS12. The third reflection bounces one additional time be-
tween the load and the 2-port, which gives an extra contribution of a factor of S21ΓLS22ΓLS12.
The total expression can be written using a trigonometric sum
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ΓIN = S11

+ S21ΓLS12

+ S21ΓLS22ΓLS12

+ S21(ΓLS22)2ΓLS12

+ S21(ΓLS22)3ΓLS12 + ...

= S11 + S21ΓLS12
1−ΓLS22

,

for |ΓLS22| < 1.

This shows the importance of keeping ΓL, S12 and S22 as low as possible in order to prevent
instability. This also shows the relationship between stability and gain expressed as S21. In the
same way an expression for ΓOUT can be derived by just changing S11 to S22 and ΓL to ΓS. The
complete set of inequalities to ensure stability will be:

|ΓS| < 1

|ΓL| < 1

|ΓIN| =
∣∣∣S11 + S21ΓLS12

1−ΓLS22

∣∣∣ < 1

|ΓOUT| =
∣∣∣S22 + S21ΓSS12

1−ΓSS11

∣∣∣ < 1.

The inequalities |ΓIN| < 1 and |ΓOUT| < 1 can be transformed into a forbidden region for ΓL and
ΓS respectively. The inequality |ΓIN| < 1 will result in a forbidden region of ΓL given by

∣∣ΓL − Cp
∣∣ < R,

where

Cp =
(S22−S∗

11∆)∗

|S22|2−|∆|2

R =
∣∣∣ S12S21

|S22|2−|∆|2

∣∣∣
∆ = S11S22 − S12S21,

which can be seen as a circle in the Smith chart with center point Cp and radius R according to
Figure 2.15. In an analog way the forbidden region for ΓS can be derived.
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R
Cp

Figure 2.15: Forbidden region for ΓL assuming passive termination (|ΓL| < 1)

All criteria above can be expressed using one criterion called the K factor,

K = 1−|S11|2−|S22|2+|∆|2
2|S21S12|

∆ = S11S22 − S12S21.

In order to ensure stability another stability measure B1 is used. B1 is also called the auxiliary
stability factor and is defined as

B1 = 1 + |S11|2 − |S22|2 − |∆|2

∆ = S11S22 − S12S21.

In general, stability can be categorised into one of the following groups:

• Unstable K < 1 and B1 < 0

• Conditionally stable K < 1 and B1 > 0

• Unconditionally stable K > 1 and B1 > 0

where the state conditionally stable means the stability is dependent on the load.

IN 5000358-159 Issue 1



Th
is

do
cu

m
en

ta
nd

th
e

in
fo

rm
at

io
n

co
nt

ai
ne

d
he

re
in

is
th

e
pr

op
er

ty
of

S
aa

b
A

B
an

d
m

us
tn

ot
be

us
ed

,d
is

cl
os

ed
or

al
te

re
d

w
ith

ou
tS

aa
b

A
B

pr
io

rw
rit

te
n

co
ns

en
t.

28(91)
Date Issue Document ID

2013-06-18 A 87/03631-1/FCK11507
Issued by Classification Company Confidentially

OEGPU Viktor Hallman, Erik Sanford COMPANY UNCLASSIFIED
Classification Export Control Classification Defence Secrecy

NOT EXPORT CONTROLLED ÖPPEN/UNCLASSIFIED

2.3.2 Classes of amplifiers

There are many different types of amplifiers and it is of great importance to know the advan-
tages and disadvantages of the main types before starting the design. Amplifiers are divided into
different classes based on the conduction angle θc when a sinusoidal signal is considered. The
conduction angle describes how many degrees of a cycle the transistor is conducting.

VT
VG

ID

(a) Class A bias having a conduc-
tion angle of 360◦

VT
VG

ID

(b) Class AB bias having a conduc-
tion angle of 180◦ < θc < 360◦

VT
VG

ID

(c) Class B bias having a conduc-
tion angle of 180◦

Figure 2.16: Different amplifier configurations

2.3.2.1 Class A A class A amplifier has a conduction angle of 360◦ and is therefore conducting
through the whole cycle and the resulting output will theoretically be a pure sinusoidal wave
according to Figure 2.16a. That is accomplished by choosing the gate bias point VGS large enough
to fulfill (VGS − Vgs) > VT where Vgs is the amplitude of the input signal at the gate and VT is
the transistor voltage threshold.

2.3.2.2 Class AB As the name implies class AB amplifier can be seen as a hybrid of a class
A and a class B amplifier with a conduction angle 180◦ < θc < 360◦. The amount of harmonics
are lower than a class B amplifier since the output is more like a pure sinusoidal signal and the
efficiency is better than class A amplifier.

2.3.2.3 Class B In a class B amplifier the transistor is switched off during half the cycle. This
is achieved by choosing the gate bias to VT where VT is the threshold voltage which defines the
threshold where the transistor enters the conducting state, illustrated in Figure 2.16c. A single
transistor biased in class B will produce an output shown in Figure 2.16c.

By using two transistors biased in class B together in a push-pull configuration, shown in Figure 2.17,
the nonlinearity will be compensated. Each transistor will be conducting half a period and in that
way cover the whole period. The total output will be the difference of the two outputs.

One great advantage using a class B amplifier in a push-pull configuration is the fact that the
second harmonic will be canceled out due to the way the output is composed. The output from
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G

D

G

D

Figure 2.17: Push-pull amplifier biased in class B having two inputs phase separated by 180◦. The resulting
output is seen as the difference of the two outputs.

each transistor will have a 180◦ phase difference at the output at the fundamental. At the second
harmonic this phase shift will correspond to a 360◦ phase shift since the frequency is doubled.
That means the second harmonic of the outputs will be in phase and therefore not contribute to the
total differential output. Instead the second harmonic will contribute to the common mode output
where the signals are driven in phase instead. In a similar way the third harmonics (f = 3f0) of
the two branches will have a phase shift of 3·180◦ and are therefore out of phase which means they
will contribute to the differential mode in the same way the fundamental frequency does.

In case the conduction angle is less than 180◦ the total output will be distorted according to
Figure 2.18, where part of the period none of the transistors are conducting[23].

t

vHtL

Transistor 2

Transistor 1

Figure 2.18: Showing the contribution of each transistor to the total output in a push-pull amplifier when
the conduction angle is less than 180◦. Part of the cycle no transistor will be conducting and the distortion
is called crossover distortion.

IN 5000358-159 Issue 1



Th
is

do
cu

m
en

ta
nd

th
e

in
fo

rm
at

io
n

co
nt

ai
ne

d
he

re
in

is
th

e
pr

op
er

ty
of

S
aa

b
A

B
an

d
m

us
tn

ot
be

us
ed

,d
is

cl
os

ed
or

al
te

re
d

w
ith

ou
tS

aa
b

A
B

pr
io

rw
rit

te
n

co
ns

en
t.

30(91)
Date Issue Document ID

2013-06-18 A 87/03631-1/FCK11507
Issued by Classification Company Confidentially

OEGPU Viktor Hallman, Erik Sanford COMPANY UNCLASSIFIED
Classification Export Control Classification Defence Secrecy

NOT EXPORT CONTROLLED ÖPPEN/UNCLASSIFIED

3 Design

In this section the design of the antenna-amplifier system under investigation will be described.
First of all, the antenna design will be presented. The antenna simulations and measurements
resulted in impedance parameters that was then used in the amplifier design for optimisation. The
antenna simulations were carried out in Ansys HFSS and the amplifier simulations were carried
out in AWR Microwave Office. All prototypes of the antenna as well as all the amplifier parts were
built and measured at the Saab AB facility in Lackarebäck, Sweden.

3.1 Design of antenna

In this section the design of a TASH antenna and a biconical antenna will presented. The first
antenna to be designed was the TASH. Despite initial promising results from simulations and
prototyping, the TASH was left behind in order to avoid any potential patent intrusion. Then a
biconical antenna was designed. The biconical antenna is such a fundamental antenna element
that patent intrusion is out of the question.

Throughout all simulations the overall goal has been to design a wideband omnidirectional an-
tenna that should be easy to match from the amplifier’s point of view, which led to the pursuit
of an antenna input impedance of low variation. Since the impedance of the antenna element
and its feeding later was going to be used as an end load for the optimisation of the amplifier, a
short distance between the antenna and amplifier was desired in order to reduce the error in the
matching network, as described in section 2.1.3.2. That the antenna should be electrically small
has also been kept in mind, in order to result in a compact final solution. The investigation of
the input impedance as well as the behaviour of reflection coefficients was made as a measure of
goodness concerning the capabilities of matching. That the antenna reactance should be close to
zero was also taken into account, since the reactance does not contribute to any radiation in the
far-field.

Along the design process many antennas have been simulated in Ansys HFSS, built and eventually
measured to confirm the simulated data. Most of the data post processing has been carried out
using MATLAB, but also with the built in computational framework of HFSS.

3.1.1 Design of the TASH antenna

The behaviour of S11 at the TASH feeding that is presented in the second article of Warnagiris
[19], is shown in Figure 3.1.

As an initial investigation the design from the article was followed, with the deviation that the
lowest frequency of operation being 400 MHz instead of 225 MHz, in favor of size reduction. In
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Figure 3.1: Simulated and measured |S11| frequency response presented in [18]

Figure 3.2 the simulated and measured S11 values of the designed TASH are shown. The simulated
model and its reality counterpart are shown in Figure 3.3.

0 0.5 1 1.5 2 2.5 3
−25

−20

−15

−10

−5

0

Frequency [GHz]

|S
11

| dB

 

 
Simulated
Measured

Figure 3.2: Simulated and measured |S11| frequency response of the designed TASH antenna

As with the data presented in the article, the overall resemblance between simulated and mea-
sured curves is acceptable with the exception of some resonances. If one compare the data in
Figure 3.1 and 3.2 there are actually significant differences. The level of |S11| is higher for the
TASH of this project than in the article, both simulated and measured. Also the shape of the
curves in Figure 3.1 and 3.2 differs. That the differences in the data are greater between the two
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(a) (b)

Figure 3.3: (a) The simulated antenna model and (b) the manufactured counterpart. The rendering of the
model has been made in Autodesk Inventor.

TASH antennas than the difference between simulated and measured data belonging to them re-
spectively, could be a sign of the antennas not being completely coinciding in their designs. The
difference between simulated and measured data of this project is most likely due to that the over-
all behaviour of the TASH antenna is quite sensitive to any change of parameters. Since the TASH
construction was not done with exceptional precision, the risk of behavioural alteration was promi-
nent. The goal of the realisation though was merely to roughly verify the simulations, which was
the reason why not too much time was spent on constructing the antenna perfectly.

To further enhance the TASH for the purpose of the project, some parametric sweeps and opti-
misation with HFSS were made. In his article, Warnagiris is stating that one of the most relevant
parameter when it comes to altering the antenna impedance, is the position of the feeding point
and the grounding point. Therefore, the positions of the two points were swept and the standard
deviation of the impedance in the interval 400 MHz to 1.6 GHz was analysed. In Figure 3.4 the
standard deviation is shown as a function of the different combinations of feeding and grounding
points. The plot is based on interpolations from 56 simulated values.

The blank diagonal area in the plot represents the case of feeding and grounding point being too
close to each other, which would yield short circuit and no radiation. To set up a condition for
what is "too close" was in this case somewhat arbitrary and should perhaps be investigated more
carefully. The boundaries of the short circuit region should therefore merely be looked upon as

IN 5000358-159 Issue 1



Th
is

do
cu

m
en

ta
nd

th
e

in
fo

rm
at

io
n

co
nt

ai
ne

d
he

re
in

is
th

e
pr

op
er

ty
of

S
aa

b
A

B
an

d
m

us
tn

ot
be

us
ed

,d
is

cl
os

ed
or

al
te

re
d

w
ith

ou
tS

aa
b

A
B

pr
io

rw
rit

te
n

co
ns

en
t.

33(91)
Date Issue Document ID

2013-06-18 A 87/03631-1/FCK11507
Issued by Classification Company Confidentially

OEGPU Viktor Hallman, Erik Sanford COMPANY UNCLASSIFIED
Classification Export Control Classification Defence Secrecy

NOT EXPORT CONTROLLED ÖPPEN/UNCLASSIFIED

Figure 3.4: Standard deviation as a function of the angular position of the feeding and grounding wires
on the TASH base spiral. White indicates a high standard deviation, whereas black indicates low standard
deviation. The combination of positions given by the article is marked by a white triangle in the plot. The
blank region indicates the angular positions that yield too short distance between the feeding and grounding
point. A too short distance will result in short circuit and no radiation.

guidelines for the appearance of the area. The point marked with a triangle shows the design
positions proposed in the article. The regime of low standard deviation above the triangle was
chosen as a starting guess for the HFSS simulations aiming to optimise the feeding and grounding
positions. In addition to low standard deviation, a mean input impedance of 20 Ω was put as an
optimisation goal. The reason for choosing 20 Ω was primarily that it would be closer to the
impedance that the transistors wanted to see than the conventional 50 Ω, which would then yield
a less complex matching network at the amplifier side. On the other hand, if the impedance goal
was set too low, there was a risk of making the optimiser favorise conditions similar to short
circuit.

In Figure 3.5, the Smith chart representation of the normalised antenna impedance of the original
TASH and the improved one are shown. The position of the feeding pin is 355◦ from the center
point and 470◦ for the grounding pin. As can be seen, the length of the trace as well as its
spreading over the chart is substantially smaller for the improved antenna, which would yield an
easier matching of the antenna.

Despite the initial promising results of the improved TASH antenna, the decision to abandon it
was taken due to uncertainty concerning the legal aspect of patent intrusion that could have been
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Figure 3.5: The normalised antenna impedance of the original TASH and the improved one

a matter of attention if the TASH was put into production.

3.1.2 Design of the biconical antenna

When the TASH was left behind the antenna focus was shifted to another omnidirectional antenna,
the biconical antenna. Since the biconical antenna is such a fundamental and well investigated
antenna, there is no reason to fear any patent intrusion.

The final aim of the simulations was always to investigate the biconical antenna with a balanced
feeding. However, in order to make in process measurements, the initial design was made with a
monocone placed over a conducting ground plane. The gain of doing so was not only to enable
measurements in the familiar 50 Ω environment, but the problem for HFSS to solve was reduced
by a factor of two compared to the biconical case.

To make sure that a cone could be simulated and built with matching results, a solid shell cone
with cone angle αcone being 45◦ and top cone angle αtop being 90◦ was investigated. According
to Kraus [12], these design parameters are typical ones for biconical antennas. In Figure 3.6 the
simulated and the built cone is shown.

At the first instance the antenna feeding was modeled with a lumped port in HFSS. When doing
the measurements it became clear that something was not modeled correctly enough according to
what was actually built. It was soon to be discovered that a more accurate modeling of the point
of feeding was needed in order to get acceptable resemblance between simulated and measured
data. The solution was to use the concept of wave port excitation instead of lumped port when
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(a) (b)

Figure 3.6: (a) The simulated antenna model and (b) the manufactured counterpart. The rendering of the
model has been made in Autodesk Inventor.

modeling. The difference can be seen in Figure 3.7. More on how to model the feeding excitation
can be found in Appendix A.

0 1 2 3
−15

−10

−5

0

Frequency [GHz]

|S
1
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| dB

Measured
Simulated with lumped port
Simulated with wave port

Figure 3.7: Simulated |S11| with lumped port and wave port excitation along with the measured data

From theory it is clear that the standard deviation of the biconical antenna input impedance is de-
creasing when αcone is increasing. As previously stated, an impedance with low standard deviation
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and a value close to around 20 Ω instead of the traditional 50 Ω would reduce the complexity of the
matching network needed between the antenna and the amplifier. In order to combine these two
desired features of the antenna impedance into one variable to analyse, it is convenient to define a
reflection coefficient ΓA for the antenna as

ΓA =
ZA − Zd

ZA + Zd
,

where ZA is the impedance of the antenna and Zd is the desired goal impedance, which in this case
is 20 Ω. Three primary measures of goodness concerning ΓA was used during the simulations: the
length Λ and spreading ς of the ΓA curve in the Smith chart and the mean magnitude of ΓA, defined
as

|ΓA| =
1

N

fmax∑
f=fmin

|ΓA(f)|,

where N is the number of sampling points in the frequency interval [fmin, fmax]. The spreading ς
is defined as

ς = (max Re ΓA −min Re ΓA) · (max Im ΓA −min Im ΓA) .

One way of looking upon ς is simply as the area of the rectangle enclosing ΓA in the Smith chart.
The reason why ς is of interest is that it complements Λ in the way that even if Λ would be infinitely
large, a ΓA that is concentrated to one point in the Smith chart would turn out to be of interest
according to ς . An illustration of the parameters Λ, ς and ΓA,f is shown in Figure 3.8.

 

  

  

       

         

Figure 3.8: The parameters used during the antenna simulation. The area ς of the square is enclosing the
curve consisting of the points ΓA,f having a length of Λ.
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To investigate the impact of different αcone on the behaviour of the antenna, model variations with
αcone between 10◦ and 145◦ was simulated. During the simulations the slant height l, defined as in
the theory chapter, was kept constant. The frequency interval of interest was 750 MHz to 3 GHz
during all biconical investigations.

In literature, the guidelines for how to choose αtop are very vague. To determine the influence of
αtop, every cone angle simulation was carried out with αtop being 90◦, 110◦, 130◦ and 150◦. In
Figure 3.9, Λ as a function of αcone is presented. As can be observed, Λ is decreasing up to the
point where αcone ≈ 110◦, but then rapidly increases.

αcone

Λ
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0
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10
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110°

130°
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Median

Figure 3.9: The length Λ of the curve of ΓA when it is represented in the Smith chart as a function of αcone

The spreading ς , plotted in Figure 3.10, also shows similar behaviour to Λ with a minimum be-
tween αcone = 105◦ and αcone = 135◦.

When it comes to the mean magnitude of ΓA, which primarily serves as a measure of how close the
antenna impedance and goal impedance are to each other, the relationship to αcone is quite trivial
as can be seen in Figure 3.11. The mean magnitude of ΓA is monotonically decreasing when αcone
is increasing.

Another parameter that had to be taken into account was the degree of which the antenna was
presenting an omnidirectional radiation pattern. To analyse this, the mean directivity D in the ϕ-
plane with θ being 45◦ and 90◦ was plotted as a function of αcone, as depicted in Figure 3.12.

As can be seen in the figure, D approaches a value of around 3.5 when αcone is close to 0 and
θ is 90◦. This is not exactly what is expected since Dmax for a λ/4 monopole over a ground plane
is 3.2 theoretically. The reason for this difference in directivity could be that the small angled cone
is not uniformly thick as a true monopole is. The two curves presented in the figure show how the
density of the directivity is somewhat shifted from the azimuth plane towards a higher elevation
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Figure 3.10: The spreading ς of the curve of ΓA when it is represented in the Smith chart as a function of
αcone

αcone
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Figure 3.11: The mean magnitude of ΓA as a function of αcone

angle. For the purpose of this project, this change in directivity was not severe enough for any
further considerations with respect to αcone to be taken.

From the data presented in Figure 3.9, 3.10 and 3.11, it was clear that an αcone of 110◦ would be
suitable for the continued design. The data also gives a hint of that the chosen value of αtop is
rather uncorrelated to the behavior of the antenna characteristics. Primarily, in order to keep the
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Figure 3.12: The mean directivity of the simulated monocone in the ϕ-plane as a function of αcone

antenna size down, αtop was chosen to be 140◦. More data to support the choice of αcone and αtop
is to be found in Appendix C.1.

Since the overall aim of the project was to closely integrate the antenna with the amplifier, it was
clear that a lightweight antenna would reduce mechanical stress on the microstrip connecting the
amplifier to the antenna. Therefore the approach of cones built up by wires was investigated. First
of all, an eight wire cone with the previously deduced angles was simulated and built as depicted
in Figure 3.13.

(a) (b)

Figure 3.13: (a) The simulated wire cone model and (b) the constructed counterpart. The rendering of the
model has been made in Autodesk Inventor.

The |S11| frequency response of the simulated and the manufactured wire cone, along with the
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simulated solid cone, is shown in Figure 3.14. As can be seen in the figure, there is a resonance
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Simulated solid cone

Measured wire cone

Simulated wire cone

Figure 3.14: The |S11| frequency response of the simulated wire cone, the manufactured wire cone and the
simulated solid cone

at 1.3 GHz with the wire cone that was not to be seen in the solid cone case. To analyse this
more thoroughly, simulations were made with a solid cone and a wire cone at αcone being 45◦ and
110◦ respectively. The simulation result of the resistance of each antenna is depicted in Figure
3.15.
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Figure 3.15: The simulated antenna input resistance of the eight wire cone versus the solid cone for when
αcone is (a) 45◦ and (b) 110◦

In the graphs it can be observed that the eight wire cone is a good approximation of the solid cone
in the small angle case, but for the cone with large angle the wire approximation introduce an
unwanted resonance as previously stated. A guess of why this behaviour arose is that the density
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of wires in the cone decreased when the cone angle increased, given that the number of wires was
kept constant. In Figure 3.16 the results from simulations aiming to verify this guess is presented.
In the figure, the input resistance at the antenna is shown as a function of frequency and the amount
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Figure 3.16: The results from simulating the 110◦ wire cone with different amount of wires

of wires in the model. From the data it is clear that a greater number of wires will even out the
unwanted resonances. This is in line with that the solid cone, that in this case represents the case
when the amount of wires goes towards infinity, is free from these resonances.

The idea of using wires instead of a solid construction was eventually left behind due to several
reasons, the most prominent maybe being the resonances as previously explained. That the com-
putational effort in HFSS was increased when wires were used also contributed to the degradation
of the wire alternative. The insight of that the same net material used for the TASH antenna also
could be used for the cone, made the lightweight argument not so strong. Another advantage of
using the net was that the construction of the cone became much easier.

The next thing that had to be done was to design and simulate the transition between both of
the antenna cones and the matching network of the amplifier. Both the fact that any element of
metallic properties close to the antenna changes the antenna characteristics, and the fact that a
short transition from the antenna to the amplifier reduces the matching complexity and loss of the
system, had to be accounted for when determining the design.

In order to determine the widths and thereby the impedances of the transmission lines, the input
impedance of the antenna when fed by a copper pad had to be known. To find this out, a simple
model with an antenna and a feeding transmission line with a pad was simulated and built as shown
in Figure 3.17.

The data obtained was from the interface with the SMA connector, meaning in this case 10 cm
away from the antenna. The strip was made to be 10 cm away from the antenna in order to enable
measurements without interfering with the antenna too much. As can be seen in the Smith chart
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(a) (b)

Figure 3.17: The net cone antenna, (a) simulated and (b) constructed in order to determine the input
impedance the antenna had when fed by a copper strip. The rendering of the model has been made in
Autodesk Inventor.

of Figure 3.18, the impedance is circulating a point corresponding to approximately 40 Ω. From
this the decision was taken to design the transmission line between the antenna and the amplifier
matching network to present an impedance of 40 Ω.
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Figure 3.18: The impedance of the copper pad fed antenna at the SMA intersection

The idea of the transition was to let two separate transmission lines, coming from individual tran-
sistors, both climb upon a substrate perpendicular to the amplifier substrate and there start to
couple to each other instead of to a ground plane. When at perpendicular substrate the two lines
would feed one antenna cone each, as can be seen in the final design at page 44. The thickness of
the perpendicular substrate was also a somewhat delicate matter. From simulations and theory it
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was clear that that the separation of the two antenna cones should be as small as possible. On the
other hand, when the two couple strip lines are put closer together their widths must be decreased
in order to present the same impedance. When decreasing the width, the power delivery capability
will decrease, as will be described in Section 3.2.6 on page 62. This is highly undesirable in a
high power system. Also, when having a thin substrate the mechanical stability will not be as
prominent. The simple solution to this dilemma was to use the same substrate thickness as with
the amplifier itself, which minimised the manufacturing effort. In Figure 3.19 the design of the
transition is shown. The widths of the transmission lines was calculated using AWR Microwave
Office. 

 

0.017 mm 

2 mm 

10 mm 

10 mm 
1.2 mm 

2.7 mm 

10 mm 

0.762  mm 

Figure 3.19: The design of the transition between the antenna and the amplifier

When the design of the transition was determined, the complete antenna-transition part with the
amplifier shielding box and cooling block had to be simulated, in order to obtain an accurate
antenna impedance as possible with respect to the surrounding environment. Also the radiation
pattern would be affected by the presence of the metallic objects.

Since harmonics of the fundamental frequency was considered on the amplifier side, the simulated
feeding of the antenna had to be done in both differential and common mode. The difference
between the two modes is that the transmission lines are fed in phase during common mode and
out of phase in differential mode. The simulated model is depicted in Figure 3.20 and the resulating
common and differential mode impedance is plotted in the Smith chart of Figure 3.21.
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(a) (b)

Figure 3.20: The final model simulated in HFSS from a distance and zoomed in. The rendering of the
model has been made in Autodesk Inventor.
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Figure 3.21: The common and differential mode impedance of the antenna with transition and the amplifier
shielding box in the vicinity
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3.2 Design of amplifier

Besides undesirable coupling, there is only one interface between the amplifier and the antenna.
Therefore, technically the co-design will all be about that interface and to find out what impedance
that is suitable for the amplifier and what impedances that is possible to achieve with the an-
tenna.

In practice, the amplifier part of the co-design also includes the physical dimension of the amplifier.
Since the antenna is supposed to be mounted directly at the output of the amplifier there are
restrictions on the dimensions of the amplifier in order to make the mounting possible. The design
will be based on two 35 W CREE GaN HEMT transistors in a push-pull configuration and all
simulations will be performed in AWR Microwave office. The frequency range is from 750 MHz
to 3 GHz and some main topic in the amplifier design chapter will be:

Unbalanced to balanced The push-pull configuration requires a signal splitter having a phase
separation of 180◦. Three different techniques to accomplish this have been studied during this
project.

Impedance transformation In order to have the optimal impedance at the input and output of
the transistors impedance transformation networks are used which could be constructed in many
different ways using many different techniques.

Antenna representation The design is based on the simulated impedances of the antenna.
Therefore, the impedances play an important role in the co-design process.

3.2.1 Unbalanced to balanced

In a push-pull design the input signal is divided into two branches having a phase difference of
180◦. To split the signal into the branches a balun is used and during this project three different
types of baluns have been investigated. The first one is described in [24] where coaxial cables
together with ferrite beads are used to transform an unbalanced 50 Ω input to a balanced 12.5 Ω
output. The second one is a Marchand balun using coplanar waveguides [25] and the third one is
a balun based on a Wilkinson power divider plus a phase shifter of 180◦ discussed in [26].

3.2.1.1 Coaxial transformer In [24] a coaxial balun and a 4:1 coaxial transformer are simu-
lated and implemented as an input network to a balanced push-pull class B amplifier. The coax-
ial transformer transforms an unbalanced 50 Ω signal to a balanced 12.5 Ω signal according to
Figure 3.22. Since the amplifier is balanced the input to each transistor will be half of the total
balanced output from the transformer described in Figure 3.23.
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ZC=25 Ω

ZC=50 Ω

ZC=25 Ω

ZIN=50Ω

ZOUT=12.5Ω

Balanced

ZIN=50Ω Unbalanced

Balanced

Figure 3.22: Schematic over the coaxial transformer. At the first stage the signal is transformed from 50
Ω unbalanced to 50 Ω balanced using a coaxial balun together with a ferrite bead. At the next section the
two 25 Ω coaxial cables are connected in series and at the output the cables are connected in parallel which
enables the 4:1 transformation. The grey boxes are ferrite beads which increases the parallel inductances
along the core and the shield as shown in Figure 3.24

50 Ω

4:1

6.25 Ω

6.25 Ω

12.5 Ω

Figure 3.23: One of the benefit of balanced amplifier is the impedance halving of the balanced input which
simplifies the impedance transformation when transforming to lower impedances

To be able to simulate the performance of the coaxial transformer a model of a coaxial cable
through a ferrite bead is needed. A model provided by [24] has been used and shown in Figure
3.24 but instead of using ideal inductors the extra inductors have been measured and included as
2-port elements in order to make the model more realistic.

The inductors in the model represents the presence of the ferrite bead. A complete model of the
coax transformer and more details about the model are presented in section C.2 on page 90. The
measured return loss together with the simulated return loss for the coaxial transformer are shown
in Figure 3.25. The matching of the model is well correlated to measured result from 40 MHz to
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Figure 3.24: Model of coaxial cable through a ferrite bead

1 GHz. Because of difficulties to measure a balanced 12.5 Ω output, no measured data involving
the output has been performed for the coaxial transformer. The phase balance and the amplitude
balance were measured for the model and is shown in Figure 3.26 and 3.27 respectively.

0 0.5 1 1.5 2 2.5 3
−30

−25

−20

−15

−10

−5

0
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S
1
1
[d
B
]

Measured
Simulated

Figure 3.25: Both measured and simulated results for return loss of the coaxial transformer

This type of design is suited for frequencies up to 1 GHz. To cover the bandwidth from 750 MHz
to 3 GHz using this type of design was shown to be too difficult. No further investigations were
made.
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Figure 3.26: Phase balance for the model of the coaxial transformer
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Figure 3.27: Amplitude balance for the model of the coaxial transformer

IN 5000358-159 Issue 1



Th
is

do
cu

m
en

ta
nd

th
e

in
fo

rm
at

io
n

co
nt

ai
ne

d
he

re
in

is
th

e
pr

op
er

ty
of

S
aa

b
A

B
an

d
m

us
tn

ot
be

us
ed

,d
is

cl
os

ed
or

al
te

re
d

w
ith

ou
tS

aa
b

A
B

pr
io

rw
rit

te
n

co
ns

en
t.

49(91)
Date Issue Document ID

2013-06-18 A 87/03631-1/FCK11507
Issued by Classification Company Confidentially

OEGPU Viktor Hallman, Erik Sanford COMPANY UNCLASSIFIED
Classification Export Control Classification Defence Secrecy

NOT EXPORT CONTROLLED ÖPPEN/UNCLASSIFIED

3.2.1.2 Marchand balun An interesting design of a balun is the Marchand balun which is
investigated in [25]. A Marchand balun can be design in different ways and one example of design
is shown in Figure 3.28 where the center conductor is having a total length of λ/2.

P1

P2 P3

U
nb

al
an

ce
d 

in
pu

t

Balanced output

Figure 3.28: Marchand balun built up by coplanar waveguides and is used to convert an unbalanced input
at port 1 to balanced output at port 2 and 3. The Marchand balun is named after Nathan Marchand who
presented the solution in the year of 1944.

This setup will not be possible with the presence of a ground plane. A ground plane will decrease
the possible amount of coupling between the conductors to a level which is not enough. Since
the rest of the amplifier will be designed with the presence of a ground plane one solution could
be to mount the balun perpendicular to the ground plane and in that way remove the coupling to
ground. The need of absence of a ground plane is one disadvantage since the mounting will be
more complicated.

The frequency range of the amplifier is from 750 MHz to 3 GHz with a ratio between f1 and f2

of 4, where f1 and f2 are the minimum and maximum frequency respectively. That means the
wavelength λ will vary by a factor 4. Since the design of the Marchand balun will be based on the
wavelength a good compromise would be to base the design on the geometrical mean fc of f1 and
f2 defined as

fc =
√
f1f2. (3.1)

By designing the balun based on the geometrical mean frequency fc defined by (3.1), length l of
the middle conductor is given by

l = λc/2
= λ1/4
= λ2,

(3.2)

where λ1,2 corresponds to the wavelength of f1,2. Equation (3.2) shows the difficulties of design-
ing a wideband balun using a layout which is based on the wavelength. For the high frequencies
the middle conductor will not be λ/2 but rather λ and for the low frequencies the length will be
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λ/4. Referring to the theory section, the input impedance of a transmission line will be highly
dependent of the electrical length of the transmission line.

3.2.1.3 Multiple stage Wilkinson power divider Another design for a wideband balun that
has been investigated during the design process is a topology based on a multiple stage Wilkinson
power divider [26]. The principle behind this design is to split the signal into two branches using
a Wilkinson power divider and then switch the phase on one channel 180◦. In order to reach the
desired bandwidth a multiple stage Wilkinson power divider is used. Whether this really is a balun
or not has been discussed during the project. There is no balanced signal in this setup so calling it
balun would not be correct, but the function of producing two off-phase signals makes it equivalent
to a balun so for the rest of this thesis it will be called balun.

A single stage Wilkinson power divider consists of a microstrip of characteristic impedance Z0

which is divided into two lines each having characteristic impedance of
√

2Z0. At a distance of
λ/4 from the split the two branches are connected with a resistance of 2Z0 as in Figure 3.29.

R=2Z0

Z0

Z0

Z0

P1

P2

P3

Figure 3.29: Single stage Wilkinson power divider. First time published by Ernest J. Wilkinson in 1960.

The bandwidth of a single stage Wilkinson power divider will not be wide enough and in order
to increase the bandwidth a multiple stage technique is used. The bandwidth of power divider for
different number of stages has been simulated in AWR and the resulting return loss is shown in
Figure 3.30. The result shows a requirement of at least three stages in order to cover the whole
bandwidth.

At a first level the design can be implemented in AWR using closed-form simulations, see Figure 3.31,
which does not take any coupling between conductors into account.

The design goal is to cover the whole frequency interval from 750 MHz to 3 GHz with as low return
loss as possible. In order to simplify the matching to the transistors in the next stage there will
also be an impedance transformation to 25 Ω at the two outputs of the balun. Since the optimum
input impedance of the transistors will be as low as a few ohms, the matching between balun and
transistor will be much easier having a low impedance at the output. Based on Figure 3.30 three
stages will be used in the design in order to reach the desired bandwidth and the complete design
is shown in Figure 3.32.
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Figure 3.30: Comparison in return loss between a single, double and triple stage Wilkinson power divider.
The result is based on circuit simulation in AWR and used to determine the required number of stages for
the given bandwidth of 750 MHz to 3 GHz.

1

2

3 R1 R2 R3

l1 l2 l3

Figure 3.31: Closed-form simulation of a three stage Wilkinson power divider

R1 R3R2

Figure 3.32: Final design of the three stage Winkinson power divider

Phase shifter Since the Wilkinson power divider will produce an in-phase output the great chal-
lenge with this setup is to achieve a broadband phase shift of 180◦ between the outputs over the
band. The basics behind the 180◦ phase shifters that has been studied in this thesis is to use some
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type of transmission line and switch ground to signal and signal to ground. In [27] two interesting
designs of inverters are described. The first one is the one used in [26] where a coplanar waveg-
uides is used as shown in Figure 3.33b. The phase inverter is achieved by a cross-section where
the ground is connected to the signal and signal is connected to ground.

The other one is performed on a broadside waveguide where vias are used to switch the signals
as illustrated in Figure 3.33a. None of these solutions are possible with the presence of a ground
plane and since the rest of the amplifier will be designed upon a ground plane a more convenient
solution has been developed using a coaxial cable as transmission line.

(a) 180◦ phase shifter using broad-
side transmission line (b) 180◦ phase shifter using coplanar microstrips

Figure 3.33: Two different ways to accomplish a 180◦ phase shift

By using coaxial lines at the two outputs of the Wilkinson divider, a phase shift can be achieved by
letting one of them switch ground to signal and signal to ground. The idea is the same as described
above and the difference is the way the transmission lines are realised. Using coaxial cables there
is no need to remove the ground plane which is a huge advantage.

Figure 3.34: Wilkinson power divider together with coaxial phase shifter. The 3-port measurement was
done on this device and S-parameters were extracted and implemented as a part of the whole amplifier
design.
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Measurements of a 3-port network For measurements of the balun a 2-port network analyser
has been used. The way to measure a 3-port network using a 2-port network analyzer is to do
three 2-port measurements and combine the results into a 3-port measurement. While measuring
on two ports, the third port must be terminated with standard impedance of 50 Ω in order to make
the measurement equivalent to a 3-port measurement.

The way the results from each measurement are combined is explained in (3.3) where the matrices
show the contribution of each 2-port measurement to the whole 3-port. The parameters S11, S22

and S33 will be measured twice.

S11 S12 −
S21 S21 −
− − −

 S11 − S12

− − −
S21 − S21

 − − −
− S11 S12

− S21 S21


Port 1 and port 2 Port 1 and port 3 Port 2 and port 3

(3.3)

Measured results In order to determine the performance of the balun, return loss, amplitude
balance and phase balance have been measured. The balun was implemented using the technique
described above and the resulting 3-port was imported into AWR as a 3-port element where the
two output port impedances are set to 25 Ω. Measured return loss together with simulated return
loss is shown in Figure 3.35. One reason to the difference between the simulated and measured
results could be the coaxial phase inverter which is implemented in the final device but not in the
simulations. The connection between the circuit and the coaxial cable is hard to implement in the
simulation since the connection tend to be too ideal compared to reality.
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Figure 3.35: Measured return loss compared to simulated return loss
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Amplitude imbalance is calculated by taking |S31|dB − |S21|dB and is shown in Figure 3.36. The
reason why the amplitudes are not the same is because of the phase inverter. Without the phase
inverter the circuit would be symmetrical and the output amplitudes would be identical at port 2
and 3. The phase imbalance is shown in Figure 3.37. No simulated data of the phase imbalance
could be performed because difficulties to simulate the coaxial-circuit transition.
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Figure 3.36: Amplitude imbalance at the two outputs
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Figure 3.37: Phase imbalance at the two outputs
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3.2.2 Matching networks

Since the output impedance of the balun does not necessarily match the optimum in-impedance
of the transistor and the antenna does not necessarily match the optimum out impedance of the
transistor matching networks are required. For the amplifier in the frequency region 750 MHz
to 3 GHz microstrip stubs are used as matching network. In this section techniques of how the
optimum input and output impedances are retrieved will be explained together with some basic
techniques about how the matching networks were designed.

3.2.2.1 Load pull The first stage in the design of the amplifier matching networks is to deter-
mine the optimum load in order to reach the highest output power and PAE. By using the model
for the transistor this can be done by using a simple schematics shown in Figure 3.38 where a
tuner is used to sweep all possible impedances at input and output. Load-pull measurements can
be done for any specified measurements such as gain, PAE or return loss. Considering only the
gain the optimal input and output impedance is shown in Figure 3.39 where the Smith Chart is
normalised to 10 Ω. Load pull measurement considering the power added efficiency is shown in
Figure 3.40a with a maximum of 74.2%. Load pull of total output power is shown in 3.40b having
a maximum value of 47.6 dBm. Both load pull measurements are measured at the center frequency
1.5 GHz.

Drain

VdVg

Gate

Source

Figure 3.38: Setup used to simulate a load pull measurement where the all possible in and out impedances
are swept in the gamma plane

The goal when designing the input matching network is to transform the 50 Ω impedance to the
optimal impedance for the transistor. For a narrowband amplifier the matching becomes easy
by just using an equivalent LC-network as an impedance transformation. This approach is not
possible as a broadband solution since the values of L and C will only be valid for a single
frequency.
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Figure 3.39: Optimal input and output impedance considering the gain. Smith chart is normalised to 10 Ω.
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(a) Load pull measurement of PAE at 1.5 GHz where
the contours start from 18% with a step of 8% units.
The maximum PAE is 74.2%.
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Figure 3.40: Two load pull measurements calculated for the model of the transistor using the setup illus-
trated in Figure 3.38.
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3.2.2.2 Matching the antenna Next step after determining the optimal load for the transistor is
to match the antenna to that load. Neither the antenna impedance or the optimum load impedance
is fixed which makes the procedure complex. The differential mode impedance of the antenna is
shown in Figure 3.41 together with the resulting matched impedance seen by the transistors.
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Figure 3.41: Differential mode impedance with and without output matching network

3.2.2.3 Broadband matching network Broadband matching networks can be achieved using
many different techniques. The three main techniques are:

• Transformer matching

• Lumped component matching

• Transmission line matching

The 4:1 coaxial transformer investigated in [24] is an example of a transformer network. Match-
ing networks constructed using transformers are usually broadband but hard to achieve for high
frequencies.

The principles behind Lumped component matching and Transmission line matching are basically
the same and the difference is the way components are realised. One way to achieve a wideband
lumped component matching network is to connect multiple filters in cascade and transform the
impedance in small steps each stage shown in Figure 3.42. The maximum possible bandwidth of
the matching network is dependent on the number of stages used. By transforming the impedance
in many small steps the bandwidth will increase. In practice problems will occur having small
steps in impedance since that will require small component values which could be hard to realise.
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Other parasitic effects like coupling will also have a greater influence if component values are
small.

L1 L2 L3 L4

C1 C2 C3 C450 Ω ZL

Figure 3.42: Four stages of low pass filter used to match a 50 Ω source to a load ZL.

3.2.3 Feedback network

In [28] different designs of power amplifiers are presented and resistive feedback networks are
used to increase the input impedance in order to simplify the input and output matchings. A
resistive feedback network usually consists of a resistor and a capacitor in series connecting the
drain and the gate of the transistor. The capacitor is used to separate the DC-bias voltages at each
side of the feedback network and can also be used as a frequency selective component. Because
of the extra path connecting gate and drain the total S-parameters of the amplifier will be changed
and so will the stability of the amplifier.

The typical frequency response of a transistor is decreasing gain as frequency increases. In that
case a frequency dependent feedback can improve the gain flatness by either decrease the gain for
low frequencies or increase the gain for high frequencies. The physical length of the feedback
network will introduce a phase shift which will affect the feedback. During the simulation it was
shown that having a short feedback network was preferable in both stability and gain aspect. In
the final layout the feedback network was therefore mounted on top of transistor in order to make
the path as short as possible.

3.2.4 Bias network

The challenge of designing the bias network is to provide the right bias condition for the transistor
without affecting the high frequencies. Therefore, low pass filters are often used to isolate the RF
signal from the DC-supply.

High frequency isolation can be achieved in many different ways. For the gate bias the current
level will be low and a broadband solution for isolation is to simply use a resistance. The extra
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losses introduced by the resistance will be neglectable relative the total loss since the DC-current
level at the gate is low.

At the drain bias the DC-current level will be a few amperes which means every extra resistance
added in the drain bias network will affect the overall efficiency in terms of power loss in the
resistors. A better way for the drain bias is to use an inductor to isolate the RF signal without
introducing any loss. In reality the inductors will contain parasitic capacitances according to
Figure 3.43. By using inductors there is a potential risk for self resonance because of the extra
capacitance Cp, which makes the inductor behave like an LC-resonator. In a more accurate model,
parasitic capacitances to ground may also be included.

L R

Cp

Figure 3.43: A model for an inductor which includes parasitic elements and losses in terms of capacitance
and resistance

After trying different wires, different numbers of turns and different spacings between turns the
final design of the inductors is shown in Figure 3.44. The wire used is a 0.25 mm copper wire
wound two turns around a plastic core and the resulting impedance is shown as inductor 2 in Figure
3.45. Thin wire in the inductor is desirable since that will decrease the parasitic capacitance and
increase the impedance which has been verified with simulations in AWR.

Figure 3.44: The final design of the drain bias inductors shown together with the head of a match. The
thickness of the copper wire used is 0.25 mm.

The drawback having a thin wire is that the fusing current is decreased. Fusing current is the
maximum amount of current a wire can handle placed in open air without melting. The fusing
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Figure 3.45: Inductor 1 is made using a 0.05 mm copper wire with a resulting inductance of 11 nH. Inductor
2 which is shown in Figure 3.44 is wound in the same way as inductor 1 but with 0.25 mm copper wire.
The resulting inductance for inductor 2 is around 7 nH.

current can be approximated using Onderdonk’s equation [29]:

Ifuse = 344A

√
log(1 + (Tm − Ta)/(234 + Ta))

s
,

where A is the area given in mm2, Tm the melting point of the metal used, Ta the ambient tempera-
ture and s is the time in seconds. In the model Ifuse ∝ s−1 which means that any current will burn
any wire as long as s→∞ which is not realistic since a steady state temperature will be reached.
Therefore the model is recommended to use for s < 10 seconds. Using s = 10 for a copper wire
of width 0.25 mm the resulting Ifuse is 6.8 A which is way beyond the necessarily level. Instead
using a 0.05 mm wire Ifuse is 0.27 A.

3.2.5 Antenna representation

In the following section admittances will be used in order to simplify the calculations. The main
goal of this thesis is to investigate the possibility to connect an antenna directly to the balanced
output of a push-pull amplifier. For accurate simulations a good representation of the antenna is
essential because the impedance at the output of the amplifier will affect the performance of the
amplifier which has been illustrated earlier as a load pull measurement in Figure 3.39.

Since the antenna will show different input impedances for the even and odd mode the load can
not be represented by just one frequency dependent impedance. By terminating the amplifier with
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a circuit shown in Figure 3.46a the circuit seen by the odd and the even mode will be different.
The odd mode will see the same circuit and the even mode will see a circuit shown in Figure
3.46b

B

Y1

A

Y2

Y2

(a) Setup for representation
the antenna taking both the
even and odd mode under
consideration. This is also the
equivalent circuit seen by the
odd mode.

B

A

Y2

Y2

(b) Equivalent circuit seen by
the even mode. Since the po-
tential difference of point A
and B is 0, no current will
go through the admittance Y1

and therefore it has been re-
moved.

Figure 3.46: Figures showing the equivalent circuit for even and odd mode

The total input admittance of the circuit in Figure 3.46b is

Yeven =
1

2
Y2 (3.4)

The total input admittance of the circuit in Figure 3.46a is

Yodd = Y1 +
1

2
Y2 (3.5)

Given the odd and even admittance for the antenna and using (3.4) and (3.5) the expression for Y1

and Y2 can derived and gives

Y1 = Yodd − Yeven
Y2 = 2Yeven

Distinguishing the power radiated at the common and differential mode will not be straightforward
using this setup. Another equivalent setup which distinguish the common and differential power
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Table 2: Relates current to resulting temperature rise for different widths of microstrip of height 0.017 mm
(RO4350)

I [A]
∆T [◦C]

20 50 100

w [mm]

0.5 0.86 1.3 1.8
1 1.5 2.2 3.1
2 2.5 3.8 5.2
3 3.36 5.1 7.0
4 4.2 6.4 8.8

is shown in Figure 3.47, which has been implemented and used for simulations in AWR. The setup
contains two ideal baluns which are connected in parallel having a 180◦ ideal phase shifter before
the balun which is connected to the common mode impedance.

A

B

Zdiff

180◦ phase shift

Zcomm

Figure 3.47: Setup of antenna representation where Zdiff and Zcomm are simulated values of differential and
common mode impedance of the antenna extracted using HFSS.

3.2.6 Current limit of microstrip

One important thing to take under consideration when designing the output matching network is
the risk of overheating the microstrip. The current flowing through a microstrip will generate heat
and the amount of heat generated is related to the cross section of the conductor.

In [30] a model that relates the temperature rise in microstrips has been developed. The tempera-
ture rise is given for a certain current and cross section area. The cross section area is calculated
by multiplying the width and height of the conductor. The substrate that will be used in the de-
sign is Rogers 4350B which has a conductor thickness of 0.017 mm. In Table 2 the model has
been applied to some microstrip widths and some temperatures and the corresponding current is
calculated. The data has been used to estimate the limit of conductor width based on the estimated
current level.
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3.2.7 Final layout

The design process resulted in a layout shown in Figure 3.48. The layout includes the input
Wilkinson balun, input matching network, bias network and output matching network. At the
output the two output microstrips will be transformed into a broadside transmission line using
another piece of substrate which is mounted perpendicular between the gap at the output.

VG VD

VG VD

L1

L1

R1

R2 R3 R4

R5

R5

Output

C1

C3

C3 C4

R6

C4

R6

C7

C7

C2

C2

C5

C5

C6

C6

T2

T1

Figure 3.48: Complete layout where all components are marked and T1 and T2 are the two transistors, VG
and VD gate respectively drain bias voltage. A list of the component values used are listed in the following
table:

C1 = 0.47 pF L1 = 8 nH
C2 = 1000 pF R1 = 141 Ω
C3 = 50 pF R2 = 116 Ω
C4 = 3.0 pF R3 = 167 Ω
C5 = 1000 pF R4 = 215 Ω
C6 = 1000 pF R5 = 470 Ω
C7 = 100 pF R6 = 14.7 Ω
C8 = 3000 pF R7 = 87 Ω
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4 Results

In this section the simulated and measured results from the antenna-amplifier system will be pre-
sented. Because of overheating problem with the amplifier no measurement having the amplifier
and antenna mounted together were performed in the anechoic chamber. Measuring the system in
the anechoic chamber is the only way to measure the system since that is the only reliable way to
measure all radiating power from the antenna. Both the amplifier and the antenna has been mea-
sured separately but since the amplifier is designed for the impedance of the antenna the antenna
is irreplaceable in order to reach to expected performance. Measurements of the amplifier was
performed using a 50 Ω instead of using the antenna as a load.

4.1 Gain

Measurements of the amplifier are hard to perform for two reasons. First of all there is no output
port included in the design since the amplifier is terminated with the antenna. Second of all the
antenna is balanced, which means it will not be possible to, in a simple way, replace it with an
unbalanced 50 Ω output port. Having an unbalanced 50 Ω output port is required for performing
power measurements is a convenient way.

The gain of the amplifier has been measured by replacing the antenna with a 50 Ω power resistor
shown in Figure 4.1a. By measuring the temperature of the resistor and relating the temperature to
a power, the total gain has been calculated and is shown in Figure 4.2. The power and temperature
relation has been measured by performing a DC measurement. For more details about the DC-
measurement, see section C.3 on page 91.

(a) (b)

Figure 4.1: (a) Setup for measuring the gain using a 50 Ω power resistor together with a heatsink. (b) An
IR picture of the same setup used to measure the power dissipated in the load
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Figure 4.2: Gain measured having an input power of 28.4 dBm and load of 50 Ω

In the simulations the gain of the amplifier is defined as the ratio between the total power delivered
at the differential mode and the total input power, shown in Figure 4.3. The variation in gain is
quite large which is a result of the variation in the antenna impedance.
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Figure 4.3: Gain simulated having an input power of 33 dBm.
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4.2 Output power

In the previous section the total gain was measured by measuring the output power dissipated in a
50 Ω load. The output power level in the measurement was far from the expected maximum output
power, which is around 47 dBm. The load setup shown in Figure 4.1a would not be able to handle
the expected maximum output power level because of overheating. In order to be able to measure
the maximum output power a more power resistant load would be needed. A way to make the
load more power resistant would be to use many resistors and distribute the power equally to each
resistor. The drawback of doing so is the resulting parasitic components, which will be increased.
Attempts were made to use four resistors but the resulting parasitic effects were too large to get
any useful results. No more attempts were made to measure the maximum output power.

In the simulation, the antenna is represented by using two impedances, Zdiff and Zcomm discussed
in previous sections. The impedance Zdiff corresponds to the impedance seen when the two inputs
to the antenna have a phase shift of 180◦. That is the way the antenna is supposed to be fed and
therefore the output power is defined as the power radiating at the differential mode. In Figure 4.4
the power delivered to the antenna at the differential and the common mode are shown as a function
of input power. The frequency for the simulation is 1.5 GHz and the resulting maximum output
power is 47.4 dBm at an input power of 37.5 dBm.
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Figure 4.4: Simulation of power delivered to the antenna in both differential and common mode

4.3 PAE

In order to get the highest possible PAE, having a high output power is necessary. That is because
the transistor will consume a certain amount of power that is independent of the output power.
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That power will be relatively smaller if the output power is increased and therefore the efficiency
will increase.

Because of the limitation in the maximum possible output power level, the required output for
maximum PAE could not be reached. The data presented in Figure 4.5 is the simulated result of
the PAE, having an input power of 36 dBm.
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Figure 4.5: Power added efficiency for input power of 36 dBm.

4.4 Return loss

The return loss of the amplifier and the antenna was measured and the result is shown in Figure 4.6.
A mismatch at high frequencies is obvious and the goal to have a return loss below −10 dB was
not reached.

No measurements except return loss were made on the co-design because of the problems with
overheating of the amplifier. In order to measure the return loss of the antenna, the input balun was
connected directly to the antenna. The resulting measured and simulated return loss is shown in
Figure 4.7. The simulated return loss for the balun-antenna configuration is achieved by using the
model for the input balun with the model for the antenna together in AWR. As seen in Figure 4.7
the total model is good correlated to the measured data up to 750 MHz. At frequencies above
2 GHz the uncertainty between measured and simulated values is obvious. This result is interesting
because it shows that there is a problem with the modeling of the balun, antenna or the connection
between them. This uncertainty of the modeling might be the reason to the mismatch in the
complete setup.
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Figure 4.6: Measured and simulated values for S11 of amplifier with the antenna mounted at the output
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Figure 4.7: Measured values for S11 of balun with the antenna mounted at the output

4.5 Stability

Since oscillations are not restricted to the defined bandwidth of the amplifier it is of great impor-
tance to simulate the stability for frequencies from DC to fmax where fmax is the upper limit in
frequency where oscillation may appear. The maximum possible frequency for oscillation is not
a well defined frequency and during the design process the upper limit has been chosen to 6 GHz
which is above the maximum operation frequency of the transistor (4 GHz). During the project

IN 5000358-159 Issue 1



Th
is

do
cu

m
en

ta
nd

th
e

in
fo

rm
at

io
n

co
nt

ai
ne

d
he

re
in

is
th

e
pr

op
er

ty
of

S
aa

b
A

B
an

d
m

us
tn

ot
be

us
ed

,d
is

cl
os

ed
or

al
te

re
d

w
ith

ou
tS

aa
b

A
B

pr
io

rw
rit

te
n

co
ns

en
t.

69(91)
Date Issue Document ID

2013-06-18 A 87/03631-1/FCK11507
Issued by Classification Company Confidentially

OEGPU Viktor Hallman, Erik Sanford COMPANY UNCLASSIFIED
Classification Export Control Classification Defence Secrecy

NOT EXPORT CONTROLLED ÖPPEN/UNCLASSIFIED

discussions were held weather having the amplifier unconditionally stable is necessary. Since the
load is fixed and supposed to be well defined, it might not be necessary to fulfill the stability
criterion for all possible loads.

The simulation of the stability was performed by calculating the two parameters K and B1. Ac-
cording to the theory in section 2.3.1.4 on page 25 the stability was fulfilled by having K> 1 and
B1> 0, see Figure 4.8.
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0
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B 1

Figure 4.8: Stability simulation in order to ensure the amplifier to be unconditionally stable

4.6 Radiation pattern

As previously mentioned the radiation pattern of the antenna-amplifier system is to some extent
affected by the presence of the amplifier and the shielding and cooling parts associated with it. In
Figure 4.9 the simulated radiation pattern of the directivity is presented for a couple of frequencies
in the range of interest, both in the azimuth plane and the elevation plane.

As can be seen in Figure 4.9, the directivity seems to be somewhat concentrated in the direction of
the amplifier for lower frequencies. For higher frequencies however, the main concentration of the
directivity seems to shift direction 180◦. This shift is also confirmed by the measurements made
in the anechoic chamber, shown in Figure 4.10. In Figure 4.11 the antenna inside the anechoic
chamber is shown. An anechoic chamber is chamber with absorbing material on the inner walls
in order to mimic the case of free space radiation. The reason for that the maximum measured
frequency in the chamber is 2.7 GHz is that this frequency was the closest measurable frequency
to 3 GHz.

The presented measurements were not made with the actual amplifier present, but instead with a
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Figure 4.9: The radiation pattern of the directivity in logarithmic scale shown in the azimuth plane (θ =
90◦) (a) and in the elevation plane (ϕ = 0◦) (b). The amplifier is present in the direction (θ, ϕ) = (90◦, 0◦).
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Figure 4.10: The measured radiation pattern of the directivity in logarithmic scale shown in (a) the azimuth
plane (θ = 90◦) and in (b) the elevation plane (ϕ = 0◦). The feeding balun is present in the direction
(θ, ϕ) = (90◦, 0◦).

feeding balun and a block of aluminium to represent the conditions of interest. The lack of time
made it not feasible to measure the whole antenna-amplifier system. An explanation for the shifts
in the radiation pattern could be that the metal structure close to the antenna acts as beam director
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Figure 4.11: The antenna about to be measured in the anechoic chamber

for low frequencies and a beam reflector for high frequencies. Some support for this theory can be
derived from the Yagi-Uda antenna [4, p. 578].

To verify that the presented shift was due to the amplifier cooling and shielding, simulations
were made without them being present. The simulated data is plotted in Figure 4.12. As ex-
pected, the shifts of directivity are in all essentiality gone and the antenna behaves like a half-wave
dipole.

The simulated 3D radiation pattern of the directivity is shown together with the complete model
at a frequency of 750 MHz in Figure 4.13. In Figure 4.14, the 3D counterparts of the simu-
lated directivity is presented and in Figure 4.15 the measured directivity is presented in 3D polar
plots.
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Figure 4.12: The radiation pattern of the directivity in logarithmic scale shown in the (a) azimuth plane
(θ = 90◦) and in (b) the elevation plane (ϕ = 0◦). No amplifier box for shielding and cooling was present
in the simulation.

Figure 4.13: The simulated 3D radiation pattern of the directivity in linear scale together with the whole
antenna-amplifier system at a solution frequency of 750 MHz
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(a) 750 MHz (b) 1.2 GHz

(c) 1.9 GHz (d) 3 GHz

Figure 4.14: The simulated 3D radiation pattern of the directivity in linear scale for the whole antenna-
amplifier system. The amplifier is present along the x axis, which is pointing to the left in the images.
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(a) 750 MHz (b) 1.2 GHz

(c) 1.9 GHz (d) 2.7 GHz

Figure 4.15: The measured 3D radiation pattern of the directivity in logarithmic scale for the whole
antenna-amplifier system. The balun and aluminium block is present along the x axis
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5 Conclusions and Analysis

The main outcome of this project has been that the difficulties with co-designing an antenna-
amplifier system has emerged to the surface. This has provided useful lessons about how to not
conduct a co-design, but it has also given hints about how to proceed with future development
within the subject. In this final section, the project conclusions will be stated along with some
comments about possible approaches for future work.

5.1 Conclusions

First of all it should be said that the effort to separately model each part of an antenna-amplifier
system is not very high. Concerning the antenna part, the only thing to do is roughly to simulate
the antenna, aiming at as constant impedance as possible and deliver the result to the amplifier
designer. The extra effort needed to then match a frequency dependent load instead of the com-
fortable 50 Ω at the amplifier output is of course not negligible, but with the computer aid of today
it is certainly manageable.

The most difficult part with this project has by far been to measure. The in-process measurements
has not been a problem per se, but the problem to measure the complete system and its different
parts has overshadowed all possible benefits of the co-design. Typically, the gain of the amplifier
is measured by connecting a standard network analyser to the input and output. In our case there
is not even an output port, since the antenna should be directly mounted onto the amplifier output.
Even if the two parts were separated, the possibilities to measure them individually and get mean-
ingful results were almost non-existent due to that the intersection was balanced and not 50 Ω. As
described, both the antenna and amplifier were measured individually, but the data is merely a hint
of what the whole system would perform, since the very idea with the project is for the antenna
and amplifier to be integrated. A way to measure the total system gain would be to put the whole
construction into an anechoic chamber and measure the radiated power. From the power data ob-
tained, a total gain could be calculated. The problem with this is that once the antenna-amplifier
unit is in the chamber and measured, it is cumbersome to reverse the process and for example alter
individual components in the amplifier to increase gain.

Even if the problems with the measurements were in the main focus of attention, other issues were
also run into. As previously mentioned, the amplifier heatsink was heavily heated. In order for the
substrate and components to endure the excessive heat, an even more bulky heatsink would have
been needed. This would inevitably affect the antenna parameters and even the radiation pattern
would be compromised since a big enough heatsink would act as a reflector for all frequencies. A
bigger heatsink would also be more complex to mechanically integrate, a process that was already
non-trivial.
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5.2 Sources of errors

To make the co-design meaningful, accurate models for the devices used is important and has
been one of the greatest challenges during this project . Inaccurate antenna parameters will lead
to a more or less dysfunctional output matching network since the transistor will see another
impedance than expected. In the same way, an inaccurate model for the input balun will cause
problems for the input matching.

One possible source of error for the antenna parameters is the surroundings of the antenna. All
objects, especially metallic ones, will affect the impedance of the antenna. Although the amplifier
heatsink and the shielding box was simulated, it was not made with perfect resemblance with
reality. The approximate nature of the mechanical structure fixating the antenna-amplifier unit
also made the metallic objects approach the antenna more than foreseen, which most certainly did
not work in the advantage of the antenna characteristics. During assembly of the unit, the antenna
was somewhat deformed in the bottom area. This caused a permanent change of shape of the cone,
which probably also resulted in some parametric changes in the same way as a different cone angle
would do.

When the measurement in the anechoic chamber was made, the antenna could not be exactly
centered on the axis of rotation, which inevitably would lead to some shift and misalignment in
the radiation pattern of the antenna. Also the the fact that the fixation of the antenna was not
completely rigid, in combination with fast movements of the measurement device due to low
sample rate, probably introduced some unwanted artifacts in the radiation patterns.

For the balun a possible source of error was the transition between the microstrip and the coaxial
cables used for the phase shifter. The resulting performance of the balun was shown to be highly
dependent on the way that transition was made and small changes in the way the cables were
mounted could affect the resulting parameters of the balun.

5.3 Future work

By having another approach to the project, most of the problems mentioned above could have
been eliminated. A necessary improvement is to try to come up with a solution where the ampli-
fier and antenna can be separated a greater distance by for example two cables. The cables could
be connected to each of the two output branches of the amplifier and feed the antenna in a balanced
way. In that way the interaction of the antenna caused by the amplifier would be minimised. The
co-design part would more be about determining what characteristic impedance the cables should
have, which is preferably as close to the antenna impedance as possible. An additional investiga-
tion that could be made is to find antennas and transistors that more or less match each other when
it comes to desired load impedance of the transistor and input impedance of the antenna. By doing
this it would be easier to find a suitable characteristic impedance of the connecting cable.
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A Guidelines for simulation in HFSS

The antenna simulations in this project have been carried out using Ansys HFSS. This appendix
will cover some of the guidelines followed while simulating. The guidelines are written out of
experience gained during the simulations as well as the different topics covered in the HFSS Online
Help [31].

A.1 Modelling

When setting up a model in HFSS there is always the dilemma of accuracy versus computational
time. In some cases, simplification of the reality can spare both size of the problem and modelling
hours, but in some cases simplifications will do more harm than good. In this project for instance,
the aim of the simulations was often to obtain an input impedance. If this is the case, a well
modeled feeding of the structure is of high priority. As can be seen in Figure A.1, the modelling of
an SMA connector in the system meant the difference between mediocre and good results.

0 0.5 1 1.5 2 2.5 3
−20

−15

−10

−5

0

Frequency [GHz]

|S
1
1
| dB

Measured

Simulated

Simulated with SMA

Figure A.1: |S11| function of frequency in the case of an SMA connector present in the simulation or not,
compared with measured data.

Another subject that can cause hours of frustration is the case of intersecting parts. Sometimes
HFSS has got no problem at all with the presence of intersecting parts, but at other times it will
result in that none of the intersecting parts are created or that the execution of the simulation is
aborted. One thing that usually solves this problem is to utilise the tools Unite and Subtract, avail-
able in the modelling environment, in order to make parts either stick together or to be apart.
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A.2 Boundaries

There are two types of boundaries that are of major importance when doing antenna simulations
in HFSS. These are the Radiation boundary and the Perfect E boundary.

A.2.1 Radiation boundary

When an antenna simulation is to be made, the desire of putting the model into a free space
environment will become significant at some point. The easiest way to realise this is by assigning
the Radiation condition to the surface of the solution volume. A recommendation is to not put
the radiation surface closer than λ/4 to the antenna at the lowest frequency of interest, which in
practice means that a solution volume with a smaller extension than λ/2, in addition the largest
antenna dimension, is not preferable. The radiation surface is supposed to prevent any reflections,
and thereby act as free space, but this is not always achieved. Another way to go around the free
space problem is the so called Perfectly Matched Layer (PML). The PML can be thought of as
electromagnetic absorbers that are placed on the sides of the solution volume to prevent reflection.
On one hand, the problem to solve becomes bigger, but the reflections decreases which results in
a more accurate calculations. Another drawback with the PML is that it has got be assigned to a
rectangular surface, whereas the radiation condition can be assigned to any surface.

A.2.2 Perfect E boundary

The Perfect E boundary indicates that a certain surface is perfectly conducting. Therefore, the
Perfect E can be used when assigning the properties of for instance a strip line or a thin antenna.
This boundary condition can also be used when the simulated model is symmetric and the electric
polarisation is anti-symmetric with respect to a certain plane. By assigning Perfect E to the plane
of symmetry, the problem size and computational time is essentially half of the original ones. The
3D counterpart to the Perfect E surface is a Perfect Electric Conductor (PEC).

A.3 Excitations

In order to do a simulation there has got to be an excitation of electromagnetic field somewhere in
the model. There are different types of excitations available in HFSS. The ones used in this project
will here be briefly explained.

A.3.1 Modal and Terminal solution type

There are two solution type in HFSS to chose from. In the Modal solution the results are calculated
in terms of powers, whereas in the Terminal solution the calculations are made in terms of current
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and voltages. In this project the modal solution type has been used most of the time. However,
when including multi-conductor structures the terminal solution is preferable, since this allows the
extraction of differential and common mode impedances.

A.3.2 Wave port and Lumped port

When a solution type is chosen, the next thing to do is to assign one or several ports. The most
frequently used ports in this project has been the Wave port and the Lumped port. The two ports
resembles each other but there are some differences. The lumped port is to be placed at a location
where the field distribution would be as it is defined at the port, whereas the wave port excites a
wave that is let to propagate and stabilise after a certain distance from the port. The wave port
should also be placed outside the solution volume as some kind of window to the outer world,
but the lumped can be place inside the solution volume. There is however a way to circumvent
the restriction of external wave ports. This is done by capping the wave port surface with a PEC
object.

A.3.3 Differential pairs

If multiple excitations are present in the model it can sometimes be of interest to find out the dif-
ferential and common mode impedances and S parameters. To do this one can define Differential
pairs. HFSS will then excite signals that are completely in phase and signals that are completely
out of phase separately. If visualising of the present fields in the solution is desired, it is important
to note that by default only one source will be excited in Field overlays. By editing the sources any
kind of excitation can be realised. The change in source excitation will also affect other instances,
such as the radiation pattern.

A.3.4 Deembedding

If the impedance and S-parameters of interest is not where the port is placed but rather a distance
l away from the port, there is a function in HFSS called Deembed that can be helpful. The way
deembed works is that it takes the S-matrix at the port and then add a desired propagating length
according to

[Sdesired] = [eγl][Sport][eγl] (A.1)

where [Sdesired] is the S-matrix at the desired position, [Sport] the S-matrix at the port and [eγl] is a
diagonal matrix on the form of [

eγ1l1 0
0 eγ2l2

]
, (A.2)

if a 2-port is of interest. In the matrix, γi is the complex propagation constant of the uniform
transmission line between the port i and its desired position, which has got a length of li.
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A.4 Analysis

When setting up a solution for analysis there are a quite some alternatives. If it for instance only
is the radiation pattern at one frequency that is of interest, a simple Solution setup at the specific
frequency along with an infinite sphere is sufficient enough. Often a sweep over a frequency range
is essential, which calls for a Frequency sweep setup. In the frequency sweep dialog there are
three different solution types to chose from. The Fast sweep is suited for models with resonances
that are behaving in an abrupt way or fast change of the characteristics in the frequency band.
The Fast sweep gives an accurate description of the model near the resonance frequency. The
Discrete sweep will generate an accurate solution at specific frequency point. This sweep type is
best used as a verifier of the simulated data at certain frequencies. The default sweep in HFSS
is Interpolating sweep and will give an interpolated simulation result for a specified frequency
range. The Interpolating sweep is best suited for wide frequency ranges and when the frequency
response is smooth. One option that is available for the Interpolating sweep is Enforce passivity.
This option enables the user to specify the degree of passivity in the system for the interpolated
data points.

A.5 HFSS scripting

A feature of HFSS that can really come in handy when doing repetitive tasks is the HFSS scripting.
A script can either be recorded or ran from the command window of HFSS, which makes it easy to
repeat a cumbersome command as many times as necessary without too much work. When a script
is recorded it is saved as a Visual Basic script file, which can be reviewed in any text editor. By
analysing the text written in the file it is easy to reproduce the script using for instance MATLAB.
During the course of this project, MATLAB has been used to create a single script containing the
creation of the model simulated, the material used, the boundaries set and so on. When using
MATLAB, or any other software of choice, it is easy to generate a script that takes care of the
whole solution of interest. It is then easy to modify the script by altering predefined variables in
the software code.
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B Guidelines for simulation in AWR

Amplifier simulations in this thesis has been performed using AWR Microwave Office. The purpose
of this section is to share some experiences acquired during the design process.

B.1 Reliability

Having a simulation which produces result of high reliability is always desirable. It is also desir-
able with a low time consumption. Some different methods that will improve the reliability will
be discussed in this section.

B.1.1 Simulation method

Layout simulations can be performed in two different ways. One way is to represent each piece
of conductor as a closed form component where no coupling between conductors are taken into
account. Another way is to draw the layout and define ports and perform an electromagnetic
field (EM-field) simulation. An EM-field simulation calculates parameters for a component by
calculating the corresponding electromagnetic fields. All possible couplings are therefore taken
into account which is a great benefit of using the EM-field simulation. On the other hand the time
consumption will be much higher compared to closed form simulation.

A possible method is to combine both EM and closed form simulation in the same layout, shown
in Figure B.1. Objects that should be simulated using EM-simulation are components that in some
way, intentionally or unintentionally, are influenced by coupling. The time consumption is highly
dependent on the area and by using this technique the time consumption will be reduced. In case
the layout in one block is changed only that block needs to be re-calculated which is another
benefit of dividing the EM-simulation into blocks.

d
EM1 EM2

Figure B.1: A constructed layout with the purpose to illustrate the benefit of combining both EM- and
closed form simulation. The length l of the conductor joining the two inductors can be changed without
recalculating the EM-solution of the two inductors which improves the time consumption.

Each block will assume an empty surrounding when solving the EM-solution which requires space
between each block in order to perform reliability simulations.
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B.1.2 Layout simulation techniques

Both input and output matching networks for the amplifier has been constructed using stubs. For
closed form simulation stubs can be constructed in at least two different ways. To evaluate which
method that gives the most accurate result the simulations has been compared to an EM-simulation
performed in Axiem which is one of the EM-simulations included in AWR. In this chapter the EM-
simulation will be treated as the correct result and the two different closed form result will be
compared to the EM-simulation.

The two different methods of closed form simulation that has been investigated are illustrated in
Figure B.2. In the first method the stubs are realised by changing the width of the conductor.
Method number two is realised by connecting stubs to a cross section element.

FW FW FW FW

(a) Method 1 where stubs are realised using striplines of different width.

1

2

3

4

1

2

3

4

(b) Method 2 where stubs are realised using open stubs connected using a cross section.

Figure B.2: Two different ways to realise a section of two double stubs.

To investigate the differences in accuracy the following layout, see Figure B.3, has been drawn
and simulated using the two methods. In order to compare the methods the return loss S11 has
been simulated and the result is shown in Figure B.4. Result extracted using method 2 with the
cross section elements is showing best agreement to EM-simulation. Method 1 is less accurate
especially for high frequency.

The next layout that has been investigated is shown in Figure B.5. Same type of simulation has
been applied to this layout and the result is shown in Figure B.6

These results shows the importance of knowing when to use different types of methods to construct
a layout. In general method 1, where the width of the conductor is changed, should only be used
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P1 P2

Figure B.3: First layout that has been used to test methods 1 and 2.

0 1
.
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-0.
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0
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4

0

0
.
6

0
.
8

Method 1

Method 2

Axiem

Figure B.4: Simulated result for S11 of layout shown in Figure B.3. Method 2 which is based on stub
connected to a cross section is showing the best agreement for this layout. Simulation is done for frequencies
from 750 MHz to 3 GHz.

P1 P2

Figure B.5: Layout with short stubs.

for small step in width. AWR will display a warning if the ratio W2/W1 > 10 which should be
considered.

For short stubs on the other hand the change in width showed a more accurate result than using
the cross section element. In AWR no warning is displayed when using too short stub so an extra
attention here is required.
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Figure B.6: Simulated result for S11 of layout shown in Figure B.5. Compared to the long stub method 1 is
having the best agreement to EM-simulation. Simulation is done for frequencies from 750 MHz to 3 GHz.
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C In report not presented data

In this appendix, some of the data and information that could not fit in the main report will be
presented.

C.1 Design of the biconical antenna

The choice of the cone angle αcone to be 110◦ and the top cone angle αtop to be 140◦, is presented
previously in the report. The factors of decision are stated to primarily be Λ, ς and |ΓA|. However,
other parameters also showed it favourable to chose the stated angles. In Figure C.1, the standard
deviation of |ΓA| is shown as a function of αcone. From the graph it is clear that a cone angle
around 100◦ is a suitable choice.

αcone

σ

0 50◦ 100◦ 150◦
0

0.1

0.2

90◦

110◦

130◦

150◦

Median

Figure C.1: The standard deviation σ of |ΓA| as a function of αcone

All parameters to determine the goodness of a certain cone angle are inevitably dependent on the
behaviour of the impedance. As can be seen in Figure C.2 and C.3, the standard deviation of the
impedance decreases when αcone increases.

To determine the top cone angle αtop, simulations were made keeping αcone constant at 110◦. As
a measure of goodness the spreading ς , as previously defined, was observed. As can be seen
in Figure C.4, the spreading is kept on a relatively low level compare to when αcone was swept.
Though the data is quite noisy, it is observable that according to ς , αtop should be chosen to be
between 130◦ and 150◦. In order to keep size down and not to be close to the edge of this interval,
a top cone angle of 140◦ was chosen.
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Figure C.2: The standard deviation of the antenna resistance as a function of αcone
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Figure C.3: The standard deviation of the antenna reactance as a function of αcone
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Figure C.4: The spreading ς , as previously defined, as a function of the top cone angle αtop
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C.2 Model and result for coax transformer

The complete model for the coaxial transformer is shown in Figure C.5. The parasitic components
were derived by choosing the values in order to make the simulated return loss fit the measured
return loss. The values of the parasitic capacitances are probably results of coupling between the
coaxial cables and then highly dependent on the way the coaxial cables are mounted. Therefore
the values could be verified before the model is used.

1 2

1 2

1 2

1 2

1 2

1 2

C1

C2

C3
C4

Figure C.5: Complete model for the coaxial transformer. The capacitances C1...4 represents parasitic
capacitances. C1 and C2 are 540 pF, C3 is 1 pF and C4 is 9 pF.
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C.3 DC calibration of the load

In order to measure the power dissipated in the load, a DC calibration was performed by applying
a known power to the load and measure the resulting temperature, see Figure C.6. At first the
temperature was shown not to be stable enough and the reason to that was probably because of air
currents in the surrounding. That was solved by shielding the amplifier using a cardboard box. A
fan was also mounted to the box in order to create a stationary flow of air through the box. Having
a stationary flow around the amplifier made the temperature more stable since the fan made other
air flows neglectable.
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Figure C.6: Temperature related to power dissipated in the load. The relation was used to relate output
power of the amplifier by measuring the temperature of the load.
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