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Abstract

So far, a unifying theory for perception and learning in biological systems is miss-
ing. A promising approach is the Bayesian framework, which allows to derive neural
encoding-dynamics and learning rules from first principles. However, when a popula-
tion of neurons learns to encode its input a fundamental problem arises: To properly
update their weights neurons need access to the momentary population-code which
is not a local quantity. Up to now in the framework of Bayesian inference in spiking
networks this problem has been avoided by dismissing concurrent population-codes
entirely. In the broader context of efficient coding a local update rule, approxi-
mating the correct gradient, has been proposed which relies on an error-correcting
balanced-state inhibition.
In this thesis this approximation is translated into the framework of Bayesian infer-
ence in spiking networks and we show that certain statistical dependencies in the
input can cause it to lead to a faulty code. Therefore, a second solution is proposed
which allows the neurons to learn according to the correct gradient using only local
quantities. In computer simulations we show that this update rule can effectively
deal with complicated statistical dependencies in the input. We also show that they
can qualitatively predict response characteristics of neurons in lower visual cortex
V1. Our results suggest that dendrites potentially aid learning by maintaining a
representation of the coding error in their local potentials via a forced balance of
inputs on a sub-cellular level. This mechanism could provide an explanation for the
observed clustering of inhibitory and excitatory synaptic connections in the cortex
from the perspective of neural learning.

Keywords: Balanced state, efficient coding, spiking neurons, inference, dendritic
computation, synaptic clustering.
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Introduction

On a toujours cherché des
explications quand c’était des
représentations qu’on pouvait
seulement essayer d’inventer
"We have always sought
explanations when it was only
representations that we could seek
to invent"

Paul Valéry

Animals have to interact with an enormously complex environment. In order to per-
form meaningful actions in it, it is essential for the animal to form a simplified model
of its surroundings based on the sensory input it receives. This perception however,
relying on the information the brain obtains from receptor cells, is fundamentally
uncertain due to the irregular and noisy nature of the world and the sensory system
itself. The animal thus faces two major challenges: Firstly to compress the very
high-dimensional input into symbolic representations that enable to model it using
limited resources and secondly to do so while dealing effectively with the uncertainty
intrinsic to this problem.
In order to solve this task most animals adapt to their environment during onto-
genesis. Especially in the case of the visual system it is known that many of them
specify their representations of the world based on the visual cues they observe. In
experiments with cats for example it has been found that, when raised in an envi-
ronment deprived of horizontal visual cues, they will be virtually unable to detect
these while their accuracy for vertical cues is increased [1, 2]. These observations
are in agreement with the long-standing hypothesis that animals strive to gather
maximal information about their environment given the limited resources they can
make use of [3]. The efficient codes resulting from this constrained optimization
have been used to explain properties of the visual system on a single-cell level [4, 5].
The way these noise-resilient and efficient representations are learned by animals is
therefore of great interest for neuroscience and related fields.
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1. Introduction

1.1 Bayesian inference and the brain

Quite naturally these considerations lead to view perception as a form of probabilis-
tic inference, as it has already been suggested by Helmholtz [6]. Bayesian inference
in particular manages to capture both of the aforementioned aspects. It provides
a principled way to find representations for sensory data while using probability
functions that can take the uncertainty of this inference into account. Strikingly
it has been found in different studies that humans often perform Bayesian-optimal
observations [7]. It has also been successfully used to describe learning in human
behaviour [8] and therefore takes a prominent role in the study of perception.
In the Bayesian framework probability distributions are assigned to the quantities of
interest and denote a belief about their current state. In the context of inference one
typically distinguishes between observed variables x and hidden (or latent) variables
z that explain them [9]. The observed quantities then could for example be the state
of the sensory system of an animal and the hidden variables could be objects, like
trees and other animals, that explain this state. These hidden causes thus are never
observed directly but have to be inferred from the senses. However, they can provide
a compact representation of the sensory data that allows for more efficient processing
in complex environments.
Formally the goal of Bayesian inference is to find a probability function that describes
the state of the hidden variables given the observation p(z|x), i.e. the posterior. For
this it is possible to employ the Bayesian formula. If one assumes a likelihood of
the data under the causes p(x|z) (i.e. the hidden causes generate the data) and a
prior probability of the causes p(z), then it is possible to find the posterior via the
Bayesian formula p(z|x) = p(x|z)p(z)

p(x) . This inference step can be difficult to compute,
but once the posterior is available to the animal, it can base its decisions on different
possible states of the world and their respective estimated probabilities.

1.2 Neural dynamics as sampling

How these Bayesian computations could be implemented by networks of spiking
neurons is an ongoing matter of research. One suggested possibility is that networks
of neurons generate population codes, meaning that a population of neurons code
to represent a particular probability function in their activity (e.g. by having each
neuron represent a probability ’kernel’) [10]. Another perspective is to see the indi-
vidual spikes of neurons as samples from a certain probability distribution [11, 12].
Here neurons are assigned a particular random variable and the (joint) probability
function of these variables is represented in the population activity over time.

1.2.1 From GLIF to Bayesian inference

The basic assumption in the sampling approach is that neurons fire probabilistically.
Biological neurons are indeed very noisy. They receive signals from thousands of
afferent connections, underlie thermal and ionic fluctuations, transmitter emission is

2



1. Introduction

unreliable, etc. which is reflected in their dynamics [13]. In this light noise has been
discussed as a resource and not a burden for computation in neural networks [14].
One particularly simple model for noisy neurons is the generalized leaky-integrate-
and-fire (GLIF) model. In the common LIF model neurons are leaky integrators
of their input that fire deterministically once their potential reaches a threshold.
When adding a white-noise term to the input these neurons will spike in an almost
Poissonian manner [15]. Their probabilistic activation function has a sigmoidal
shape and is given by p(spike|u) = 1

2erfc
(

θ−u
σ
√

2∆t

)
, where u is the activation of the

neuron, θ is the threshold, ∆t is the length of the considered time interval and σ
determines the strength of the introduced noise. Thus the signal-to-noise ratio of
the GLIF neuron directly influences how stochastic its spiking is.
With this background it has been proposed that neurons can sample from probability
distributions underlying their activity [11]. In this framework neurons fire according
to a similar sigmoidal (probabilistic) activation function. Under certain conditions
it has been shown that they can perform probabilistic inference by conducting a
Markov chain Monte Carlo scheme. Over time the neural dynamics will visit the
state space of the corresponding random variables according to their probability
function, e.g. the posterior distribution of hidden variables.

1.2.2 Winner-take-all circuits

Embracing satisfying connections between form and function like this Bayesian in-
ference is a promising approach to explain the role of cortical microcircuits in the
brain. One example of these microcircuits—reoccurring connectivity patterns be-
tween neurons that are assumed to obey a canonical function—which is of particular
importance for the neuroscience community is the so-called winner-take-all (WTA)
circuit [16]. The WTA network motif is ubiquitous in the cortex and as a model has
been used in various computational theories of the brain, for example in hierarchical
models of vision [17].
In WTA circuits neurons are arranged in a layer and compete for activation. In
the classical picture only one neuron ‘survives’ which is firing and suppresses the
activation of other neurons—more general models, where multiple neurons can be
active at once have in turn been termed soft-WTA circuits. This competition is im-
plemented by mutual inhibition between the neurons, either by having an additional
population of inhibitory neurons that is driven by the competing neurons or direct
inhibitory connections between them.
WTA circuits can effectively compute different functions, such as the nonlinear maxi-
mum function. They also prove useful in the context of Bayesian inference [18]. Here
explaining away effects occur between the hidden variables, meaning that if one hid-
den variable explains the data well other causes get less likely1. This can directly

1Consider the situation that someone wrote a good grade in a test and there are two possible
explanations: The test was very easy and/or the person is good at the subject. If we know that
the test was easy and the person has a good grade, we have a lesser belief that they are good at
the subject than if we only know that they have a good grade. The easiness of the test explains
away the good grade.

3



1. Introduction

be connected to inhibition in networks that perform inference: If two neurons code
for related hidden variables, they will strongly inhibit each other. This mechanism
provides an intuition how inhibition in WTA circuits could guide the sampling and
inference process.

1.3 Learning in spiking networks

How networks of spiking neurons learn, for example in order to model their input, is
another question of ongoing research. Recent efforts connect established theories of
neural learning to the theory of Bayesian sampling [18, 19, 20, 21]. This connection
could provide insight into the way animals adapt to their environment.
One of the central results of these studies is that the learning rules that can be
derived from first principles in the sampling models resemble one of the most studied
learning rules for spiking neurons: spike-timing dependent plasticity (STDP). A
neuron applying STDP will strengthen the connection to a connecting (pre-synaptic)
neuron if an input spike from this afferent neuron occurs immediately before its own
output spike. This learning by using timings of neural firing can be understood as
a powerful way to optimize the model a network builds of its input by correlating
neural activity with the occurrence of specific patterns [18].

1.4 Content of the thesis

There is however a very general problem that arises during learning in soft-WTA
circuits that encode sensory data. If multiple neurons code in an ensemble the
representation of the data is not a local quantity but one that is generated by the
whole population. Updating the neural connections in a way that respects this
non-local coding is difficult to implement in a biologically plausible manner.
This problem of local learning has been avoided so far in the context of probabilistic
inference—either by assuming that neurons in the population can not be simul-
taneously active due to the strong lateral inhibition [20], or simply using strictly
hierarchical network architectures [19]. In both cases no complicated explaining-
away effects occur and the learning can be easily localized. In relation to efficient
coding a solution has been proposed by Bourdoukan et al. [22] that can successfully
approximate the non-local update rules, while making assumptions about the way
the networks encodes its input.
In this work we take a look at the problem of local learning from the perspective of
Bayesian inference (Chapter 2). Specifically we will show how the solution to the
problem of local learning in soft-WTA circuits proposed by Bourdoukan et al. [22]
translates into a Bayesian framework. We will also propose another solution to the
problem which suggests that dendritic branches could play a critical role for neural
learning by maintaining a potential that locally approximates the coding error. The
main difference between the two models turns out to be that our proposed learning
scheme enables the neurons to adjust their encoding on a per-input level for novel
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1. Introduction

stimuli while the approximation by Bourdoukan et al. [22] can only consider the
global input.
In order to show these differences in the dynamics of the resulting neural network
models, experiments of varying difficulty will be conducted in computer simulations
(Chapter 3). In the last of them, using a data-set of natural images, we will replicate
results by Olshausen and Field [23] who manged to predict response characteristics
of neurons in the visual cortex via sparse coding. Finally the limitations and impli-
cations of the experimental results and the significance of the proposed solution for
local learning will be discussed.
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Theory

In the following chapter the dynamics of the neural circuit model and the rules it
can apply to learn will be developed. The task the network will have to solve is to
represent a (possibly high-dimensional) time-dependent signal x(t) in its activity.
From the outputs of all coding neurons z it should be possible to reconstruct the
signal via a linear transformation D such that x̂ = Dz is close to x.
In order to perform this reconstruction we assume that the signal x is distributed
according to a linear generative model (Figure 2.2). In this view the activations z
are hidden variables that explain—or generate—x. In the first part of this chapter
a network of spiking neurons is introduced that can sample from this model.
In the second part of this chapter these sampling dynamics will be used to update
the network parameters, i.e. the weights between neurons. Since there is a direct
relation between the network parameters and the model parameters this can be done
by maximizing the model log-likelihood via gradient ascent. Finally the resulting
learning rules are discussed in the light of biological plausibility.

2.1 Neural sampling theory

The goal of this section is to show how a population of neurons can sample from a
given joint probability distribution and—subsequently—how a dependency of neural
activity on their past firing can be included. For this we will rely on the neural
sampling theory developed by Buesing et al. [11] and extend it in order to consider
continuous variables as well.
Consider a joint probability distribution p(ν1, ..., νm) over m binary variables νj.
Under certain assumptions on p Buesing et al. show that a network of m spiking
neurons can sample from the distribution using its inherent dynamics. In this view
we say that a neuron j is spiking iff the corresponding variable νj is 1. This allows
the network to represent a sample ν1, ..., νm in its activity and iterate the sampling
as a Markov chain over discrete time-steps.
In order to construct the network we introduce stochastically firing neurons which
fire with a probability depending on their membrane potentials

pdyn(νj = 1) = sig(uj) (2.1)

7



2. Theory

zj

νj

time

Figure 2.1: The dynamics of a single neuron over time. When it spikes (νj = 1)
the output zj is increased by 1 immediately afterwards and subsequently decreases.

where sig is the sigmoidal function sig(x) = [1+exp(−x)]−1 and uj is the membrane
potential of neuron j. Here we will use a simplified version of the neural sampling
theory: Two neurons are assumed never to fire at the same time, with the reasoning
that in the limit of very small time-steps the probability for this event goes to zero.
The neurons now will sample from p if their membrane potential satisfies the neural
computability condition

uj = log p(νj = 1|νi = 0 for i ∈ {1, ...,m}/{j})
p(νj = 0|νi = 0 for i ∈ {1, ...,m}/{j}) . (2.2)

While the probability of concurrent spike-onset (which happens at a precise mo-
ment in time) goes to zero for small time-steps, the simultaneous coding-activity of
neurons should be possible. We model this by introducing continuous variables zj
which model their output, or more precisely the form of the post-synaptic potentials
(PSP’s) they elicit in connecting neurons. Every time a neuron spikes it will cause
an increase in the PSPs which exponentially decay with a time-constant τ (Figure
2.1)

żj(t) = −τzj(t) + δ(νj). (2.3)
The immediate model distribution p will depend on this past activity. This can be
seen as a coarse-graining in time of the neural spiking dynamics1. Notably these
dynamics are also consistent with viewing every neuron as a GLIF neuron with the
spikes ν as input.
Additionally we can introduce continuous inputs x(t), not depending on the firing,
which affect the neuronal dynamics. These two additional dependencies change the
joint distribution to p(ν1, ..., νm|x, z). Finally we write the spiking probability as

pdyn(νj = 1|x, z) = sig(uj). (2.4)

2.2 Optimal neural network

The task we want the network to solve is to represent a continuous input x with a
given distribution p∗(x) in its total activity ν + z. In this section a suitable gen-
erative model will be introduced that defines the relation between network activity

1This implies that in the generative model introduced later ν and z have to have the same
relation to x in order for it to be meaningful.

8



2. Theory

x

z
V

Figure 2.2: Linear generative model. When fixed, the z ‘generate’ the x via a
linear transformation V .

and modeled input. From this we can derive the neuronal dynamics how they opti-
mally would be in order to represent the model. In the last step, update rules for
the network parameters will be derived which can be employed by the neurons to
optimize the network parameters (and with that the model parameters) in order to
model the input distribution.

2.2.1 Linear generative model

A generative model is defined by a joint probability distribution, in this case pθ(x,ν|z)
where θ are the model parameters. This distribution contains the relation between
the firing ν, neuronal output z, and input x. When marginalizing out the spiking ν
of the neurons we get a model for the input distribution p∗(x|z). The filtered past
activity z is only conditioned upon, as there is no interest in drawing samples from
it or modeling it—what is supposed to be modeled is x.
We separate the model into the prior pθ(ν|z) on the network activity and likelihood
pθ(x|ν, z) of the input under the activity as

pθ(x,ν|z) = pθ(x|ν, z)pθ(ν|z). (2.5)

For the purpose of modeling a simple network, which we will see later, we define the
likelihood as

pθ(x|ν, z) = N (x;V (ν + z),Σ). (2.6)
In words, the input x is Gaussian-distributed around a linear transformation of the
activity with a given covariance matrix Σ (Figure 2.2). Here, for simplicity, we
will assume that this matrix is a scaled identity matrix Σ = σ2I. This amounts
to the idea that from the network activity z we can reconstruct an estimate of
the input x̂ = V z (so in this model V = D) which approximates the real input
x with a standard deviation of σ per dimension. The ν do not contribute to the
reconstruction in continuous time and can be left away when the precise firing time
is of no interest.
The prior is defined to be

pθ(ν|z) = 1
Z

exp{bTν} (2.7)

Since the prior factorizes all the νj are independent without input. Their prior
probability to be 1 is therefore pθ(νj = 1) = sig(bj).

9



2. Theory

x

z
V

W

x̂
D

A
ctiv

a
tio

n

Inhibition

T

Figure 2.3: Schematic drawing of the neural network. The neurons receive feed-
forward input from the inputs x transformed by the matrix V T and recurrent inhi-
bition from z via the matrix W which in the optimal model is equal to −V TV . An
estimation x̂ can be decoded from the activity z with a matrix D (which is not part
of the physical network), which in the optimal case is V . The scaling from σ−2 has
been omitted here.

Given the likelihood and prior the posterior can be calculated which will be needed
to derive the neural dynamics. It is given from the Bayesian formula and describes
the distribution of the νj given the input x (see Appendix A.1.3.2)

pθ(ν|x, z) =pθ(x|ν, z)pθ(ν|z)
pθ(x|z)

= 1
Z

exp
∑

j

νj

(∑
i

xiσ
−2Vij −

∑
ik

zkVikσ
−2Vij −

1
2
∑
i

σ−2V 2
ij + bj

)
(2.8)

This calculation of the posterior is the inference step that has to be performed by
the neurons. Here the normalization Z = f(θ, x, z) is difficult to calculate as we
don’t know pθ(x|z). However—as it turns out—it is not needed to be able to define
the neural dynamics.

2.2.2 Neural dynamics

Using the neural sampling theory introduced in section 2.1 it is possible to define
the neural dynamics that sample from the generative model defined in section 2.2.1.
For that we make use of the neural computability condition (2.2) and the model
posterior (2.8) which gives the membrane potentials of the neurons uj. As the
neural computability condition involves the fraction of the probabilities of νj = 1
and νj = 0, the regularization Z of equation (2.8) cancels, so it is not necessary to
calculate it.

uj =
∑
i

xiσ
−2Vij︸ ︷︷ ︸

activation

−
∑
ik

zkVikσ
−2Vij︸ ︷︷ ︸

inhibition

− 1
2
∑
i

σ−2V 2
ij + bj︸ ︷︷ ︸

bias

(2.9)
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2. Theory

Taking a closer look at the equation for the potential uj it is possible to separate
it into three parts. Firstly the neurons receive feed-forward activation from their
inputs x, secondly recurrent inhibitory input from their own past activity and thirdly
they have a constant (with respect to x and z) bias term which depends on the prior
and the average input estimated from V . This can be seen as corresponding to a
population of inhibitory neurons forming a neural network (figure 2.3). They form
synaptic connections to their inputs and—laterally—to themselves, whose scaling is
determined by the model parameters θ.
Another interesting observation is that all terms except for the bias bj are scaled with
σ−2, the precision of the model. If σ is small, i.e. the precision is large, neurons will
spike less stochastically as the inputs are scaled up while the sigmoidal activation
probability function stays the same. In the biological neuron this would correspond
to the amount of noise in its dynamics. In the scope of this model it is possible to
see it as a factor which determines how ‘sure’ the neurons are about their relation
to the input, i.e. how well they can model it.
Finally, the spiking probability pdyn(νj) depends on the potential uj via equation
(2.4). These two equations (2.4) and (2.9), together with the dynamics of zj (2.3)
define the complete neural dynamics. Note that in principle they can be considered
without reference to the generative model defined in the last section.

2.2.3 Learning rules

When the network is sampling correctly from the generative model it is possible to
use its dynamics to optimize the model parameters θ. Typically the performance of
a generative model is defined to be its log-likelihood (see for example [9])

L[pθ] = 〈log pθ(x)〉p∗(x). (2.10)
Since we also introduced time-dependent variables z(t) in our framework, what we
actually optimize is

LT [pθ] = 1
T

∫ T

t=t0
log pθ(x(t)|z(t)). (2.11)

For convenience however, and asserting that x(t) will be ergodic, we will use the
former notation. Maximizing this measure with respect to θ can for example be
done via gradient ascent

∆θ ∝ ∂

∂θ
L[pθ] (2.12)

This will minimize the Kullback-Leibler divergence between the model distribution
and the empirical distribution.
Unfortunately the network does not have access to the complete model distribution
pθ (specifically the posterior pθ(ν|x, z)) but only to samples from it via its own
dynamics pdyn(ν|x, z). However, it is still possible to approximately maximize the
log-likelihood by maximizing a lower bound for it which is obtained by subtracting
the difference of pθ to pdyn (appendix A.1.3.1)

L[pθ] ≥〈log pθ(x|z)−DKL[pdyn(ν|x, z)|pθ(ν|x, z)]〉p∗(x)

=H[pdyn(ν|x, z)] + 〈log pθ(ν,x|z)〉pdyn(ν|x,z)p∗(x)
(2.13)
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For the optimization the powerful EM-algorithm is employed which proceeds in two
steps and is guaranteed to converge. In the Expectation step the model pθ distribu-
tion is approximated by the distribution pdyn (minimizingDKL[pdyn(ν|x, z)|pθ(ν|x, z)]).
This is done by drawing correct samples via the neural sampling theory. In the
Maximization step this approximate distribution—i.e. the samples—is used to max-
imize the joint log-probability log pθ(ν,x|z). Because the network draws samples of
ν from pθ online, there is no need for the whole distribution to be present in the
network and there is no problem in performing the optimization.
In the following sections update rules for the feed-forward weights V , the bias b and
the precision σ−2 will be derived.

2.2.3.1 Feed-forward weights

From equations (2.8), (2.12) and (2.13) it is straightforward to derive the update-
rule for the weights V , which connect the neurons to the input. We perform gradient
ascend on the joint log-probability, as the entropy term in (2.13) doesn’t directly
depend on θ

∆Vij ∝
∂

∂Vij
〈log pθ(ν,x|z)〉pdyn(ν|x,z)p∗(x)

=〈σ−2zj(xi −
∑
k

Vikzk)〉pdyn(ν|x,z)p∗(x)
(2.14)

The resulting equation poses two problems. For one the sum can be identified with
the estimated input ∑k Vikzk = x̂i and this estimation depends on the activity zk of
all neurons which is not a local quantity. This problem will be addressed in a later
section. The second problem is the precision σ−2 as a factor in front. This can be
solved by appealing to the theory of covariant optimization.
The problem with having the precision as prefactor is that for large precision the
step-size of the updates will be large. In other words, the size of the updates depends
on the steepness of the goal function, which means that simply using the gradient
can lead to erratic behaviour during optimization. We can see this by noticing that
the update should be in units of [Vij], whereas gradient ascend proposes a rule in
units of [Vij]−1 which cannot always be compensated for by the learning rate. This
problem can be solved by multiplying with a factor given by [−∂Vij∂VijL]−1, making
the algorithm covariant (see [24]). It is not possible to do this here as this would
remove data-dependent terms (zj), but the rule can still be made less dependent on
the steepness by multiplying with the data independent term of the factor, which
simply is σ2. This means we can stabilize the performance of the optimization by
removing the precision as prefactor.
Finally we can write the update rule in this simpler form, which makes clear that
neurons should try to minimize the error of the representation when they are active

∆Vij ∝ 〈zj(xi − x̂i)〉pdyn(ν|x,z)p∗(x) (2.15)

Another interpretation of this is rule is as a Hebbian plasticity rule where the weight
grows larger when zjxi is correlated, but at the same time it is regularized by the
correlations with the population output ∑k Vikzkzj.

12
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2.2.3.2 Bias

The update rule for the bias can be derived analogously as

∆bj ∝
∂

∂bj
〈log pθ(ν,x|z)〉pdyn(ν|x,z)p∗(x)

= 〈νj − sig(bj)〉pdyn(ν|x,z)p∗(x)

(2.16)

The resulting rule is enforcing the consistency of the model with the dynamics, i.e.
the model prior sig(bj) tries to match the empirical firing probability 〈νj〉pdyn(ν|x,z)p∗(x).
Another way to choose the bias is to enforce a given firing rate via homeostatic
plasticity. An approach to do that which fits well into the framework of sampling
networks has been presented in detail by Habenschuss et al. [20]. Here the dynamics
pdyn are constrained during the E-step and the EM-algorithm will find a solution the
satisfies the constrains and maximizes the likelihood. Specifically pdyn is constrained
to be in the set of homeostatic distributions where the empirical firing rate is equal
to an homeostatic firing rate ρj which is chosen beforehand

{pdyn : 〈νj〉pdyn(ν|x,z)p∗(x) = ρj, for all j = 1...m}. (2.17)

This constraint optimization problem can be solved with the help of Lagrange mul-
tipliers βj. When finding pdyn in the E-step the function to maximize is not only
the negative Kullback-Leibler divergence but〈

−DKL[pdyn(ν|x, z)|pθ(ν|x, z)] +
∑
j

βj
(
〈νj〉pdyn(ν|x,z) − ρj

)〉
p∗(x)

(2.18)

This leads to the introduction of homeostatic biases b′j := bj + βj (which from now
we will refer to as bj as well for notational simplicity) and the update rule

∆bj ∝ 〈ρj − νj〉pdyn(ν|x,z)p∗(x) (2.19)

2.2.3.3 Precision

For the precision

∆σ ∝ ∂

∂σ
〈log pθ(ν,x|z)〉pdyn(ν|x,z)p∗(x)

=
〈
σ−3

(
(x− x̂)T (x− x̂)− nσ2

)〉
pdyn(ν|x,z)p∗(x)

(2.20)

where n is the number of inputs. We face the same issue with the gradient as for V
and solve it in the same way, resulting in the update rule

∆σ ∝
〈
σ−1

(
(x− x̂)T (x− x̂)− nσ2

)〉
pdyn(ν|x,z)p∗(x) (2.21)

Again this rule implies consistency of the model variance with the empirical variance.
If the variance is small, i.e. the neurons model their input precisely, they will fire
more deterministically.

13
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2.3 Biologically plausible learning rules

So far the derived (optimal) update rules have been introduced without discussing
how they possibly could be implemented in a biological neural circuit. As mentioned
before, the rules for the feed-forward weights V and the precision σ−2 contain the
nonlocal term x̂i = ∑

k Vikzk which depends on the activity zk of all other neurons as
well as the weights Vik connecting them to input i. This term is needed because an
optimal update the model asks for the error of the current reconstruction ε = x− x̂.
To implement these rules is therefore not feasible for a biological neuron that can
only make use of local quantities. Another problem which hasn’t been discussed
is the implementation of the recurrent inhibition. From the derivation in the last
section follows that the inhibitory connections should have the form W = σ−2V TV ,
but how this connectivity comes about is not immediately obvious.
In this section two solutions which solve both problems will be presented. In the
first solution a learning rule for W is derived from a consistency condition on the
network-dynamics with the generative model. Subsequently the learning rule for
V is localized while making assumptions about the error of the reconstruction. In
the second solution inhibitory connections to the dendrites of the other neurons are
learned such that their potential is a local approximation of the error. This error
can then be used to optimize the model parameters.

2.3.1 Solution 1: Learned somatic inhibition

2.3.1.1 Inhibitory weights

The main insight in this solution, which was developed by Bourdoukan et al. [22],
is that the neurons receive the optimal input if they are driven by the coding error
x− x̂. Let’s rewrite the potential of the neurons from equation (2.9) as

u =σ−2
(
V Tx− V TV z︸ ︷︷ ︸

V T (x−x̂)

− 1
2diag(V TV )

)
+ b

=σ−2
(
V Tx +Wz + 1

2diag(W )
)

+ b
(2.22)

where we contracted the inhibition into the matrixW = −V TV . Realizing that x̂ =
V z and refactoring reveals how the sum of activation and inhibition is proportional
to the coding error, which is balanced if the error is small. However, W = −V TV is
only the optimal inhibition if V is correctly regularized (then V = D, where D are
the decoding weights), otherwise—in order to have the error driving the input—the
inhibition should be W = −V TD. In this section we will derive update rules for
the recurrent inhibition W which will force this balance. In the end this enables the
network to locally learn the feed-forward weights V .
Bourdoukan et al. come up with the appropriate learning rule by noting that W
should be such that V Tx + Wz is zero most of the time. Subsequently they show
that the resulting rule converges to the desired solution W = −V TD. We will give
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a different account and derive the update rule from consistency constrains on the
network dynamics.
The basic idea is that—no matter what the input is—in the long run the observed
distribution of the firing pdyn(νj|z, x) should be following the prior distribution pθ(νj)
we assume it obeys. This is reasonable since in the case of optimal V this would
be enforced by the inhibition −V TV z − 1

2diag(V TV ) which we replace. The inhi-
bition then will decorrelate the coding neurons. This goal can be quantified as an
optimization goal by stating that the difference between the distributions should be
minimized (similar to the E-step)

0 != −〈DKL(pdyn(νk|z,x)|pθ(νk))〉p∗(x)

=
〈

log exp(bk)νk
1 + exp (bk)

− log exp(uk)νk
1 + exp (uk)

〉
pdyn(νk|z,x)p∗(x)

(2.23)

W can then be optimized via gradient descent on the distance function (see appendix
A.1.3.4). The derivation for this rule relies on the limit of dt→ 0.

∆Wjk ∝−
∂

∂Wjk

〈DKL(pdyn(νj|z,x)|pθ(νj))〉p∗(x)

≈− 〈zk(uj − bj)〉pdyn(νj |z,x)p∗(x)

(2.24)

Thus, whenever neuron k is active it forces neuron j via connection Wjk to fire
according to the prior pθ(νj) which is equivalent to uj = bj. This rule is the same as
derived in Bourdoukan et al. [22] and therefore has the same implications regarding
the reduction of the coding error.
This solution is termed somatic inhibition (SI-network) as all weights Wjk need
access to the same postsynaptic potential uj. In the biological neuron this quantity
would be easiest to actualize in the cell-body (soma), a place where all currents
come together. Therefore, in this picture the inhibitory synapses Wjk connect close
to the soma.

2.3.1.2 Feed-forward weights

The other problem, the non-local term in the learning rule for V , still remains.
Luckily learning W with (2.24) will help to keep the coding error in check even if
the feed-forward weights are not optimal, as long as they cover the data-manifold.
This makes it possible to approximate the gradient ∆V . Specifically we will assume
that x − x̂ ∝ x on average. Then the problematic term x̂ can be discarded since
the input x then is exactly what should be learned.
In principle with the proportionality assumption one could use a purely Hebbian
(STDP) rule ∆Vij ∝ zjxi. In this case the weights would grow without bounds
though, which we can solve by introducing a normalization term. The most straight-
forward choice is to demand that a single coding neuron should not over-explain the
input. Even if the single neuron has no access to the decoded signal x̂i = ∑

k Vijzj,
it can compute a lower bound for it, which is its own contribution Vijzj.
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Figure 2.4: Sketch of a neural network using the proposed dendritic inhibition
scheme. Here neuron i is active and propagates this activation to neuron j. Other
(inhibitory) coding neurons connect with synapses to the same locus in the dendritic
tree of neuron j. Via their connections Dj

ik they actively try to cancel the potential
caused by neuron i and with this they push the local coding error potential εji
towards zero. The remaining error potential then drives the neuron j via the weight
Vij.

The learning rule then reads

∆Vij ∝ 〈zj(xi − Vijzj)〉pdyn(ν|x,z)p∗(x) (2.25)

This results in learning an upper bound approximation for V which is proportional
to the correct solution if x− x̂ ∝ x on average.

2.3.2 Solution 2: Dendritic inhibition

Here we present a second solution to the two problems mentioned. For this we don’t
view the neuron as a point-neuron with uk being the only potential located at the
soma. Instead we will introduce dendritic potentials εji which represent the decoding
error xi − x̂i. In the end this solution can be seen as an argument how it could be
possible for the neurons to learn with the optimal gradient on V and the correct
inhibition using only local quantities.

2.3.2.1 Feed-forward weights and inhibition

Assume that on the dendrite of neuron j at the location of the xi synapse there also
are inhibitory connections Dj

ikzk from all coding neurons k (figure 2.4). Together
they contribute to a local potential equal to the coding error

εji = xi − x̂i = xi −
∑
k

Dj
ikzk (2.26)

The decoding error should drive the neuron, so the neuron potential (2.9) then is

uj = σ−2∑
i

εjiVij −
1
2
∑
i

σ−2V 2
ij + bj (2.27)

16



2. Theory

This is the correct error and input respectively if the weights Dj
ik are the correct

decoding weights. We know however, that in the optimal case we should have
Dk
ij = Vij. Thus, if D and V are learned via the same (correct) rule the network will

converge to the same solution as in the optimal case.
With this insight and εji defined as in equation (2.26) it is straightforward to write
down the update rule for V and D using only quantities locally available in the
dendrite. Vij is updated according to

∆Vij ∝〈zj(xi − x̂i)〉pdyn(ν|x,z)p∗(x)

=
〈
zjε

j
i

〉
pdyn(ν|x,z)p∗(x)

(2.28)

and Dk
ij uses the same rule including the local error-potential it connects to

∆Dj
ik ∝

〈
zkε

j
i

〉
pdyn(ν|x,z)p∗(x) (2.29)

2.3.2.2 Precision

Another advantage of maintaining a local error potential is that also the precision
σ−2 can be learned per input. For this the covariance matrix Σ is redefined to be a
diagonal matrix with entries σ2

i instead of using a ’global’ precision. In the network
the individual σji

2 = σ2
i then are the variances of the coding error εji for every j.

Therefore the update rule now is

∆σji ∝
〈
σji
−1 (

εji
2 − σji

2)〉
pdyn(ν|x,z)p∗(x) (2.30)

17



2. Theory

18



Results

To evaluate the differences in the way the network using the proposed dendritic
inhibition scheme, which should be equal to the ’optimal’ network, and the network
using somatic inhibition (SI-network) operate, several tests are conducted. In a first
test we compare all three networks on the standard MNIST data-set of handwritten
digits. For a second test we constructed an artificial data-set to specifically show
the differences that can arise in the learned weights. Finally we use a complex
’real-world’ data-set consisting of natural images.
In all tasks the coding neurons learn unsupervisedly to model the input distribution.
They apply the learning rules while consecutively patterns are presented, for 100ms
each, until convergence. During the comparisons firing rates ρ and precision σ
were fixed and the performance was measured via the decoder loss

〈
1
2 ||x− x̂||22

〉
p∗(x)

(appendix A.1.2).

3.1 Comparison on MNIST

3.1.1 Task

The MNIST data-set contains images of hand-written digits. Here—in order to
keep the network small—we constrained the presented images to the digits 0, 1 and
2. The signal x are the pixel values of the 16 × 16 pixels images presented over
time and faded linearly to zero between numbers. This was done in order to avoid
an overlapping of the neural codes (which are coarse-grained in time) for different
digits. Nine coding neurons then represent the signal in their activity (Figure 3.1).
In this test three different networks are compared. One using the optimal learning
rules (optimal network, figure 3.3), one using the approximation for the update rules
introduced as the first solution in section 2.3.1 (learned somatic inhibition, figure
3.3) and also an explicit implementation of the network introduced as solution 2
in section 2.3.2 (dendritic inhibition, figure A.1). The explicit implementation of
the dendritic inhibition is just a proof of principle here, as we derived the dynamics
specifically such that they are equal to the optimal network dynamics.
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Figure 3.1: Summary of the setup of the MNIST-experiment. The digits 0, 1 and
2 are presented such that a vector of the values of the individual pixels is the input
signal x (orange) which changes over time. The nine neurons encode the signal in
their spiking dynamics which can be decoded via D to obtain the estimate x̂ (blue)
which should track x.

3.1.2 Outcome

All three networks find good codes to represent their inputs. Most of the information
in the images comes from the distinction of which digit is depicted. Neurons will
therefore specialize to code for either 0, 1 or 2 and also mostly code for the whole
picture alone, as can be seen in the feed-forward weights. As there are more coding
neurons than digits, neurons coding for the same digit will specialize to different
realizations of it. If a particular stimulus lies in between those weights they will
encode it together.
This occasional joint activity is reflected in the feed-forward weights in the optimal
model (figure 3.3) and with that of course in the model using dendritic inhibition as
well (appendix, figure A.1). The weights show a prototypical digit, but they have
a ’penumbra’, a negative area close to the digit where the mutual coding conflicts
at times. Comparing them with the weights learned by the SI-network (Figure 3.3)
we see that the latter are bigger and don’t show this reflection of conflicting coding.
These differences are an expected effect of the different learning rules.
All in all the resulting code for all networks is essentially the same for a simple data-
set as MNIST. This is the case because here, even though the feed-forward weights
are not optimal when they are learned with the approximation, the difference is
small enough so that the correct inhibition can compensate for it completely. The
reconstruction performance converges to the same value after learning (figure 3.2).
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Figure 3.2: Comparison between the performances of the codes found by the differ-
ent networks on MNIST. The difference in the reconstruction error in the beginning
is mostly a result of the different firing rates, which haven’t converged to the goal
rates yet. In the end the errors converge to the same value at the same firing rate.
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Figure 3.3: Summary of the performance of the optimal network and the SI-
network in the MNIST-task. A Evolution of the decoder log-likelihood (i.e. the
log-likelihood using the optimal decoder D and its variance) over time. B Resulting
V -weights after learning. C Selection of test-inputs. D Reconstruction x̂ of the
test-inputs averaged over the presentation time. E Spiking times of the network
(bottom) and the comparison of inputs signal and reconstruction for a single pixel
in the center of the image (top) for a set of stimuli.
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Figure 3.4: Visual guide to the correlated bars data-set. The two parameters of
the data-set are the amount of white noise added onto the stimuli and the fraction
of the occurrence of two bars which cross in the diagonal (red squares).

3.2 Comparison on correlated bars

In order to show clear differences in the resulting dynamics of the optimal network
and the SI-network a more complicated artificial data-set was employed. The main
requirement for this data is thus to have a structure such that the assumption
x− x̂ ∝ x on average does not hold. Since this assumption was made to justify the
local feed-forward learning rule for the SI-network its contradiction should reflect as
a decrease in performance in the encoding.

3.2.1 Task

Similarly to the MNIST-task in the last section images are presented over time and
faded to zero in between the stimuli. The square images have 82 pixels and feature
1 or 2 of the 16 possible vertical and horizontal bars. They will be encoded by 16
coding neurons, meaning every neuron optimally should code for one of the bars
since they can occur isolated.
Two additional complications are introduced (figure 3.4). One is that the images
are distorted by the addition of Gaussian white noise ξ to the plain image of bars,
where ξ is a Gaussian random variable with mean 0 and covariance matrix σ2

ξI.
The other is that certain combinations of bars can be correlated while others are
always independent. For this firstly a random bar is chosen from all bars with
equal probability and added to the image. Subsequently, with probability χ, a
corresponding bar will be added which can be obtained by flipping the image around
the diagonal (top-left to bottom-right). Otherwise, another random bar out of all
16 bars will be selected.

3.2.2 Outcome

In total four different data-sets of varying difficulty were tested. These covered the
combinations bars with and without correlations (χ = 0.4 and χ = 0.0) and images
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Figure 3.5: Exemplary resulting network dynamics for the correlated bars data-set.
Here we compare the feed-forward weights and the spiking dynamics in response to
the bar stimuli of the optimal network and the SI-network after learning. The four
cases considered are data-sets with and without noise (σξ = 0.3 and σξ = 0.0) and
with and without correlations between bars (χ = 0.4 and χ = 0.0).

with and without noise (σξ = 0.3 and σξ = 0.0). The two networks were trained
with similar hyperparameters which were optimized for the task and equal for all
conditions. Their resulting dynamics and feed forward weights clearly differ (Figure
3.5). While the optimal network finds relatively consistent weights and encodings
for all four conditions the performance of the SI-network critically depends on the
introduced correlations. Together with the goal bars their correlated corresponding
bars show up in the weights as they cannot be subtracted individually. This deteri-
orates the code and neurons tend to spike for bars or noise they should be unspecific
for.
To test this differences quantitatively 50 runs per network and condition were con-
ducted. The neurons were trained and tested on the noisy images of correlated bars
and their goal was to de-noise the images, so the decoder loss was calculated in
respect to the noise-free images. In this particular task a second measure can be
introduced to show how specific the firing of the coding neurons are as each neuron
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Figure 3.6: Comparison of the performances of each network in the different con-
ditions of the bars task. Shown are the medians of the decoder loss and specificity
of firing of 50 runs and the corresponding 95% bootstrapping confidence intervals.

should optimally code for exactly one bar. The specificity of the firing was defined
to be the number of specific spikes (those spikes of a neuron responding to the bar
it preferentially spikes for) divided by the total amount of spikes emitted.
The results are summarized in figure 3.6. In the case of highly correlated bars there
clearly is a significant difference in median performance in terms of the decoder
loss between the optimal and the SI-network. In fact on all conditions the optimal
network performs significantly better (p � 0.01) while the SI-network happens
to get stuck at a local optimum more often. The optimal network also shows a
significantly better specificity (p � 0.01) except for the no noise, no correlations
condition (p = 1.0). The difference in the decoder loss in the conditions without
correlations is rather small however and the networks consistently find very similar
codes whose performances to a certain extent depend on the precise hyperparameters
used for learning. To summarize the experiment makes clear that—as expected—
certain types of correlations in the data of an otherwise simple task can lead to a
considerable decrease in performance for the SI-network while the optimal network
can subtract them out.

3.3 Natural image stimuli

In a last test the optimal network was applied to a more complicated real-world data-
set. Specifically we replicate the experiment performed by Olshausen and Field [23]
where the sparse components of natural images predict the tuning of receptive fields
of neurons in the visual cortex (V1). The same data-set of natural scenes as in the
original experiments was used [25] with slightly different preprocessing. The optimal
network was then applied to the images in a similar fashion as in the experiments
in the last sections.
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Figure 3.7: Summary of the setup of the natural scenes experiment. 16 × 16
patches are extracted from natural images. A linear-nonlinear model of on/off retinal
ganglion cells is applied to model the input to higher visual processing areas. The
output of the 162 ’ganglion cells’ is then encoded by the 192 coding neurons.

3.3.1 Task

The data-set consists of ten images of nature scenes with a resolution of 512× 512
pixels. From these images random 16× 16 patches are extracted. In principle these
patches could be fed into the network as the images in the last experiments. How-
ever, for this approach a problem arises that originates from the fact that natural
images roughly have a 1/f spectrum. This means that ’slow’ fluctuations in the
images (fluctuations of large extent) have a large effect onto the images magnitude
while fast oscillations are comparatively weak. The network would thus put ma-
jor emphasis on the large fluctuations, while the differences on a short length-scale
mostly wouldn’t be modeled. Additionally the neurons spiking is a binary process
and even though they can code for continuous variables the approximately Gaus-
sian distribution of pixel values is difficult to model with this process. The typical
solution to the first problem, employed by Olshausen and Field, is to whiten the
images, i.e. flattening the spectrum in Fourier space which amounts to convolving
the images with a whitening kernel. These kernels closely resemble difference-of-
Gaussians (mexican hat) functions which in turn can be used to model the receptive
fields of retinal ganglion cells [26]. The array of retinal ganglion cells which pref-
erentially react to bright spots with a dark surround or dark spots with a bright
surround, termed ON- and OFF-center cells respectively, can therefore be seen as
approximately whitening the incoming stimuli.
In order to provide the network with a meaningful input that it can process, the
retinal ganglion cells were modeled explicitly (Figure 3.7, appendix A.2.2). First
a lattice of evenly distributed 162 ON and 162 OFF-center retinal ganglion cells
receives the pixel luminances as input where the receptive fields of the cells are
difference-of-Gaussians functions. The cells then output this linear transformation
of their input modulated by a sigmoidal activation function. This linear-nonlinear
model tackles both problems mentioned by equilibrating the size of fluctuations of
different length-scales and making the stimuli easier to model for spiking neurons
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Figure 3.8: Results for the optimal network when learning natural scenes. A The
’receptive fields’ of the 192 coding neurons obtained by stimulating them with white
noise and measuring the responses. B Spiking times of the network (bottom) and
the comparison of inputs signal and reconstruction for a single ganglion cell in the
center of the image (top) for a set of stimuli. C Evolution of the decoder loss on a
test-dataset over time. D Evolution of the mean firing rate per neuron over time.

by soft-thresholding them. Finally the outputs of the 2 × 162 ganglion cells were
encoded by 192 coding neurons in the same way as in the tasks before with the
difference that now the precisions σi were learned and no homeostatic constraint
was put onto the firing rate.

3.3.2 Outcome

The coding neurons manage to model the input reasonably well after learning as
can bee seen in the evolution of the decoder loss over time and the accuracy of x̂
tracking x per ganglion cell (figure 3.8). Unlike the simpler stimuli which can be
modeled by few neurons the image patches are encoded by several coding neurons
which often are active at the same time. Especially during the activity of a large
amount of neurons the network shows an almost irregular behaviour.
Interestingly the networks performance converges quite early, after about 200,000
presented images. This is in contrast to the network parameters, which continue to
change in order to optimize the code. An effect of this remodeling can be seen in
the average firing rate of the neurons. It mostly decreases and converges much later,
after about 500,000 presented images. The reason for this is that the log-likelihood
lower bound includes an ’information cost’ (see appendix A.1.3.1, the log pθ(ν|x, z)
term) which penalizes unnecessary (uninformative) spiking. Since a higher firing rate
in principle should enable a better modelling of a continuous signal this signifies that
the encoding continues to improve by using less spikes while the decoder loss keeps
constant.
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3.3.2.1 Receptive fields

In contrast to the tasks before the individual roles of the neurons for coding cannot
be assessed by looking at the feed-forward weights. The weights only show the
relations to the ganglion cells and the ’convolution’ these perform on the images
is not exactly invertible in this case. This prevents the possibility to infer without
information loss directly from the network parameters to what stimulus (in the
image domain) a neuron preferentially responds.
To be able to characterize the neural response profile in a simple way and to make
them comparable to the results by Olshausen and Field a method can be employed
that finds applications in experimental neuroscience: reverse correlation [27, 28].
In this approach the receptive field of a neuron is defined to be the average of the
stimuli that trigger a spike. For this white noise images with a similar standard
deviation as the natural images are presented to the network including the linear-
nonlinear model. From the network response and the presented images the average
spike triggering stimulus then can be computed. The resulting receptive fields are
depicted in figure 3.8.

3.4 Discussion

There is a crucial difference between the two approaches to learning: When using
point-neurons as in the approximation by Bourdoukan et al. [22], the inhibition can
only act upon the projection of the error into the coding domain; the learning rule
for the inhibitory weights uses the somatic potential. In contrast, when we expand
the model neuron to include dendritic potentials it is possible to make use of this
information which previously has been lost. It enables the neuron to tell which part
of the input is not encoded well, which can have a great impact on the efficiency of
learning.
The results of the experiments show that under certain conditions the approxima-
tion of Bourdoukan et al. finds a good solution. However, in general it clearly is
advantageous to learn the network parameters by the proper gradient, since it al-
lows the coding neurons to separate the high-dimensional input between them even
if they are coding concurrently. This especially becomes apparent in the case of
natural scenes as input. Here no convergent network with the SI approximation has
been found during the work on this thesis. The results obtained in the correlated
bars task therefore seem to be generalizable to other complex input statistics.
The last experiment also shows that the proposed network can qualitatively predict
orientation-selective tuning of neurons in the lower visual cortex (V1). Most of them
show the typical Gabor wavelet tuning (a multiplication of a 2D Gaussian and a
2D sin- or cos-function) that has been found by Olshausen and Field [23] in their
experiment as well and which has been used to describe the response properties
of simple cells in V1 [29]. Gabor wavelets as image filters emerge in many other
computational models of vision such as slow feature analysis [30], deep learning
[31], feed-forward and recurrent models [32, 33] and others. The unifying property
of these different algorithms is that they find highly independent (linear) features
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which carry the majority of the information that can be modeled in the images. That
these components are recovered by a spiking network preforming Bayesian inference
is therefore reassuring, since the generative model strives to capture precisely this
underlying structure of the images in its hidden variables.

3.4.1 Plausibility of the dendritic inhibition scheme

This qualitative correspondence between the codes of the model and biological neu-
rons is enticing, however it poses the valid question if cortical circuits really could
specialize through similar mechanisms. The proposed dendritic inhibition scheme
bears several idiosyncrasies that appear artificial and hard to implement in a bi-
ological system. Firstly it constrains the coding neurons to be inhibitory neurons
by Dale’s law, which poses that neurons can only be either inhibitory or excita-
tory. This could be undesirable if the encoding of the input is going to be processed
further. Secondly the connection scheme demands that every coding neuron forms
inhibitory connections to every dendritic subbranch of all coding neurons including
its own. This would require a enormously sophisticated growing mechanism to find
all the targets. It would also imply that the number of synaptic connections grows
to the square of the number of coding neurons times the number of inputs which
very soon would result in an unfeasible architecture.
A convenient aspect of the inhibition scheme is that a big part of these connections in
most cases won’t be needed. As soon as one of two neurons, which engage in mutual
inhibition, is unspecific for a certain input, i.e. there are no correlations between
their activity, the inhibitory connections can be omitted as their contribution would
be close to zero. From a biological perspective the loss of a large portion of synaptic
connections during neurogenesis in childhood is a well-known phenomenon, also
known as synaptic pruning. It has been suggested that the growth and subsequent
elimination of neural connections is an important factor of the brain developing for
efficient information storage [34].
The number of connections can be further decreased by not only leaving away unin-
formative communication but also clustering communication that carries the same
information. If some quantities are sufficiently correlated, e.g. the activity of a
subset of coding neurons with particular inputs, then compressing this activity into
a lower-dimensional representation would be a possible strategy to merge inhibitory
connections. A straight-forward approach that also tackles the first problem men-
tioned would be to introduce a population of inhibitory neurons that receive acti-
vation by the coding neurons and mediate between them. The important aspect is
that the activity of the inputs can be (linearly) decoded on a per-input level from
the inhibitory population sufficiently well. If this is guaranteed then the coding
neurons can make use of the same benefits for learning as before while the number
of connections is minimized.
In turn, a good argument for the proposed scheme stems from studies on the loca-
tions of synaptic connections on dendrites. Several physiological studies observed
the clustering of synaptic connections; most notably a recent study found that the
clustering of inhibitory and excitatory synapses in the adult neocortex is governed by
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learning dynamics [35]. In this light a large amount of studies have introduced den-
drites as complex computational elements of neurons with the clustering of synapses
being a key component (see [36] for a review).
These studies mostly stress the boost in the computational capacity of the neuron
by using dendrites as computational compartments whereas here we emphasize a
possible benefit for learning. Related to our suggestion a study by Maass and Leg-
enstein [37] introduces a plasticity mechanism that creates a competition between
dendritic branches. While this work considers nonlinear dendrites, interestingly two
mechanisms play a central role which can be found in our model as well: dendritic
scaling (DS) and back-propagated action potentials (bAP). DS can be found in our
model in the learning rules for the feed-forward weights V (2.28), where the impact
of the dendritic error potential εji onto the membrane potential uj of the neuron is
scaled instead of the individual synaptic connections. In vivo, a resemblant mecha-
nism for the adaption of the coupling strength between dendritic branches and the
soma has been observed in the rat hippocampus [38]. This branch strength could
not only allow the dendritic potential to travel to the soma but also let emitted
action potentials pass backwards to the connecting synapses. The impact of these
bAP’s onto local error potential would then replace the inhibitory self-connections
Dj
ij with the branch strength Vij.

Another connection to ongoing studies in neuroscience is the dependence of the
learning rules on the local dendritic potential. In the derived rules the inhibitory
weights in the network change such that the net-input to the neuron is close to
zero. This detailed balance of excitation and inhibition on a sub-cellular level has
been proposed to enable precise gating of information-flows in networks [39]. On
a network level it is known that such a balanced state results in chaotic dynamics
of the spiking neurons [40]. From an information theoretic perspective in this case
the individual spiking is very informative which helps to render the code efficient.
Therefore a tight balance between inhibition and excitation has been discussed as a
simple mechanism for constructing optimal population codes [41, 22].

3.4.2 Future directions

Considering these arguments an interesting questions is how well this input-specific
inhibition could be implemented while using an additional population of inhibitory
interneurons. Since the encoded signal would be further compressed in this case
it is not clear if the input can be reconstructed from this representation, which is
necessary for the correct inhibition. In the cortex one finds approximately a portion
of 20% inhibitory neurons. In this view this quota could be hypothesized to be the
minimal amount of inhibitory capacity needed given the structure of the input.
Regarding the simulations in the last experiment as a biological model of the lower
visual system, it is clear that a variety of important details have been left out in
order to keep the model simple. The precise properties of the model of the retinal
ganglion cells have been chosen ad-hoc and only with loose reference to physiological
studies. Especially the outputs of the modelled ganglion cells show very different
characteristics from their biological counterparts since they emit constant signals
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that have no coherence over longer time-scales. While the lack of spiking behaviour
can be argued to be an adequate proxy for the behaviour of retinal ganglion cells
which have been observed to obey highly synchronous firing [42], the coherence of
consecutive stimuli is something that was not addressed in this model.
This aspect of time dependence and correlations over time however is important for
perception. Admittedly, even though spiking neurons intrinsically operate on a time
dependency, the model proposed here is not able to model this additional property
of the input as it only considers the momentary coding, i.e. there is no memory.
It could be extended though, for example by the introduction of motion sensitive
cells or by learning time dependent priors on the activity of the coding neurons.
This could enable the network to model dynamic quantities such as the movement
of objects or the egomotion of the observer. In any case the model bears a lot of
potential for extensions in order to model additional aspects of the visual and other
sensory systems.
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Conclusion

Spike-based learning in graphical models is difficult to implement biologically since
explaining-away effects introduce non-local dependencies in the learning rules. In
this thesis we showed that in a linear model this problem can be overcome by
introducing local potentials that model non-local quantities. These potentials, which
represents the coding error, can be used to adjust inhibitory synapses, feed-forward
impact of the inputs and even the stochasticity of the firing of the neuron. With
this adaptation, derived from the generative model, the network successfully learns
to model its input statistic.
In the case of natural images we could show that the response characteristics of
the model neurons bear resemblance to those of neurons in V1. Furthermore, this
straightforward solution to perform Bayesian computations with only local quanti-
ties predicts the clustering of inhibitory and excitatory connections on the dendrites
since the inhibition has to gate already known information on a per-input level. It
is remarkable that the framework of Bayesian inference can explain these properties
of neural networks in the cortex—such as STDP learning rules, synaptic clustering
and neural response characteristics—while relying on very few assumptions only.
In conclusion we show in an example that from the fundamental hypothesis, that an-
imals strive to encode maximal information about their environment, optimal neural
coding schemes and architectures can be derived. The potential of this approach
to explain features of the nervous system is encouraging the developement of more
sophisticated models that at some point might be able to capture the essence of
perception and learning—from a (sub-)cellular to a behavioural level—in a unified
theory.
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Appendix

A.1 Methods

A.1.1 Implementation

When implementing the network dynamics there are a few free parameters which
alter the performance that have to be fixed. These are the neural time constant τ
of equation (2.3) and the learning rates used in the update rules. Based on time
constants of biological post synaptic potentials, which range between 10ms and
100ms, for all simulations τ was chosen to be 10ms. Learning rates were determined
based on the task and can be found in the appendix.
An additional parameter δt which is not directly part of the neural dynamics comes
in because they can only be efficiently implemented in discrete time. Sampling from
the time-dependent Poisson distributions that arise from the spiking probabilities
in continuous time is not feasible. Therefore the simulation proceeds in time-steps
of length δt which is chosen depending on the task and the applied learning rules.
The most important aspect to consider here is that the probability of two neurons
spiking at the same time-step is negligible, otherwise one basic assumption of the
model dynamics is violated.

A.1.2 Evaluation

A.1.2.1 Performance measures

The natural measure for the performance of the network would be what we are trying
to optimize, the log-likelihood. However, a few problems arise with this measure.
First of all the log likelihood critically depends on the precision σ−2 which can grow
quite large for well-performing networks, leading to a much higher log-likelihood.
This is problematic as the precision—in the physical network—is only a parameter
and should not necessarily have direct influence on the perceived accuracy of the
code it produces. Therefore a suitable measure can be obtained by leaving away the
σ-dependent terms in the log likelihood, which yields simply the squared l2-norm of
the error 1

2 ||x− x̂||22.
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This points to a second problem. x̂ = Dz is not directly known from the network
parameters, since if we’re not using the correct gradient on V , it does not hold
anymore that V = D. In this case the optimal decoder D can be calculated by
performing gradient descend on the l2-norm (Appendix A.1.3.5). Then one can also
define a decoder-likelihood by finding the variance of the reconstruction. This makes
it possible to determine the performance of the code alone, independently of how
well the network approximates the corresponding linear generative model.

A.1.2.2 Fixed parameters for comparison

An important factor for the performance of the network is the firing rate of the
neurons. The tracking of a continuous signal is better if the neurons are firing a lot.
To eliminate this influence for the comparison of the feed-forward and inhibitory
learning rules the firing rate was constrained. In every task including comparisons
the neurons were forced to spike with a homeostatic rate ρ.
To render the dynamics of the different networks completely comparable when learn-
ing the weights another parameter to consider is the precision σ−2. When using
somatic inhibition there is no biologically plausible way to learn it properly—in the
framework of Bourdoukan et al. the neurons spike deterministically, corresponding
to a very large fixed precision. Because increased noisiness is beneficial in early
learning when the weights are not adapted we will start with a big σinit which
exponentially decays to a fixed final value σfinal, i.e. it is ’learned’ with the rule
∆σ ∝ 〈σ−1(σfinal − σ2)〉p∗(x)pdyn(ν|x,z). The initial and final value and the learning-
rate are chosen depending on the task.

A.1.3 Learning rules complete derivation

A.1.3.1 Log-likelihood

L ∝ −DKL[p∗(x)|pθ(x|z)]
L =〈log pθ(x|z)〉p∗(x)

≤〈log pθ(x|z)−DKL[pdyn(ν|x, z)|pθ(ν|x, z)]〉p∗(x)

=
〈
log pθ(x|z)− 〈log pdyn(ν|x, z)− log pθ(ν|x, z)〉pdyn(v|x,z)

〉
p∗(x)

=〈− log pdyn(ν|x, z) + log pθ(ν, x|z)〉pdyn(v|x,z)p∗(x)

=H[pdyn(ν|x, z)] + 〈log pθ(ν, x|z)〉pdyn(v|x,z)p∗(x)

=〈〈log pθ(x|ν, z)〉pdyn(v|x,z) −DKL[pdyn(ν|x, z)|pθ(ν|z)]〉p∗(x)
if pdyn≈pθ ≈〈log pθ(x|ν, z)〉pdyn(v|x,z)p∗(x) − I(N ;X|Z = z)

A.1.3.2 Optimal model

Likelihood:

pθ(x|ν, z) =Nx(V (ν + z),Σ)
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Prior:

pθ(ν|z) = 1
Z(b) exp

(
bT ν

)
=
∏
k

exp(νkbk)
1 + exp(bk)

Joint distribution:

pθ(x, ν|z) = 1
Z(σ2, b, V, x, z)

∏
k

exp

νk
−∑

ij

zjVijσ
−2
i Vik −

1
2
∑
i

σ−2
i V 2

ik +
∑
i

xiσ
−2
i Vik + bk



Posterior:

pθ(ν|x, z) ∝pθ(x, ν|z)

A.1.3.3 Learning rules

Feed forward:

∆Vij ∝
∂

∂Vij
〈log pθ(x, ν|z)〉p∗(x)pdyn(ν|x,z)

=
〈
σ−2zj(xi −

∑
k

Vikzk)
〉
p∗(x)pdyn(ν|x,z)

≈
〈
σ−2zj(xi − Vijzj)

〉
p∗(x)pdyn(ν|x,z)

if x is assumed constant the rule can be integrated

=
〈
σ−2νj

∫ ∞
t0

dt zj(t) (xi − Vijzj(t))
〉
p∗(x)pdyn(ν|x,z)
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=
〈
σ−2νj

∫ ∞
t0

dt zj(t0)e−
t
τ

(
xi − Vijzj(t0)e−

t
τ

)〉
p∗(x)pdyn(ν|x,z)

=
〈
σ−2νjτzj(t0)

(
xi −

1
2zj(t0)Vij

)〉
p∗(x)pdyn(ν|x,z)

Bias:

∆bj ∝
∂

∂bj
〈log pθ(ν|z)〉p∗(x)pdyn(ν|x,z)

= ∂

∂bj

〈∑
k

log exp(νkbk)
1 + exp(bk)

〉
p∗(x)pdyn(ν|x,z)

= 〈νj − sig(bj)〉p∗(x)pdyn(ν|x,z)

Precision:

∆σi ∝
∂

∂σi
〈log pθ(ν|x, z)〉p∗(x)pdyn(ν|x,z)

= ∂

∂σi

〈
− log (Z(σ))− 1

2(x− V z)Tσ−2(x− V z)
〉
p∗(x)pdyn(ν|x,z)

= ∂

∂σi

〈
− log

(√
(2π)n

∏
j

σ2
j

)
− 1

2ε
Tσ−2ε

〉
p∗(x)pdyn(ν|x,z)

=
〈
−σ−1

i + ε2iσ
−3
i

〉
p∗(x)pdyn(ν|x,z)

=
〈
σ−3
i (ε2i − σ2)

〉
p∗(x)pdyn(ν|x,z)

A.1.3.4 Learned inhibitory somatic inhibition

0 !=− 〈DKL(pdyn(νk|z, x)|pθ(νk))〉p∗(x)

= 〈log pθ(νk)− log pdyn(νk|z, x))〉pdyn(νk|z,x)p∗(x)

=
〈

log exp(bk)νk
1 + exp (bk)

− log exp(uk)νk
1 + exp (uk)

〉
pdyn(νk|z,x)p∗(x)

for dt→ 0, so bk → −∞ and uk → −∞
= 〈exp(uk)(bk − uk) + (1− exp(uk))[log(1− exp(bk))− log(1− exp(uk))]〉p∗(x)

∆Wij ∝−
∂

∂Wij

〈DKL(pdyn(νk|z, x)|pθ(νk))〉p∗(x)

=
〈
∂uj
∂Wij

exp(uj)(bj − uj)−
∂uj
∂Wij

exp(uj)+

∂uj
∂Wij

exp(uj)(log(1− exp(uj)) + 1)
〉
p∗(x)
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≈
〈
∂uj
∂Wij

exp(uj)(bj − uj)
〉
p∗(x)

≈〈zi(bj − uj)〉pdyn(νk|z,x)p∗(x)

A.1.3.5 Decoder

Loss:

L = 1
2(x−Dz)T (x−Dz)

Likelihood:

pθ(x|ν, z) =Nx(D(ν + z), σ2
D)

Update:

∆D ∝ − ∂L
∂D

= (x−Dz)zT

A.2 Results

A.2.1 Additional Figures
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Figure A.1: Summary of the performance of the network using dendritic inhibition
in the MNIST-task. Same as figure 3.3.

A.2.2 Linear-nonlinear model

162 points are placed randomly on a square lattice to model the centers of the
retinal ganglion cells. To achieve an organic and even distribution they repel each
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Figure A.2: Locations of the artificial retinal ganglion cells on the 16× 16 pixels
image.

other with forces depending on the difference of their positions ri: F ∝ eri
|ri|42

. A
simulation is run until convergence (figure A.2). Their receptive fields are difference-
of-Gaussians functions ki(x, y) = N (x, y; ri, σ1)−N (x, y; ri, σ2) where the two 2D-
Gaussians have standard deviations of σ1 = 0.7 and σ2 = 1.12 pixels—a ratio loosely
based on physiological data [43]. These kernels ki(x, y) are positioned at the centers
and multiplied with the pixel luminances p(x, y) so ui = ∑

x,y ki(x, y)p(x, y). The
outputs of the ’cells’ is calculated as outONi = sig(3.2ui − 0.8) for the ON-cell and
outOFFi = sig(−3.2ui − 0.8) for the OFF-cell.

A.2.3 Hyperparameters

Parameter Value
dt 1ms
τ 10ms
ρ 20s−1

σinit 1.0
σfinal 0.1
ησ 2.0 · 10−7

ηb 7.0 · 10−4

ηV 2.0 · 10−6

ηD 2.0 · 10−6

Table A.1: Figure 3.3, optimal and Figure A.1
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Parameter Value
dt 0.2ms
τ 10ms
ρ 20s−1

σinit 1.0
σfinal 0.1
ησ 0.2 · 2.0 · 10−7

ηb 0.2 · 7.0 · 10−4

ηW 0.2 · 2.0 · 10−6

ηV 0.2 · 2.0 · 10−6

ηD 0.2 · 2.0 · 10−6

Table A.2: Figure 3.3, SI

Parameter Value
dt 1ms
τ 10ms
ρ 10s−1

σinit 1.0
σfinal 0.1
ησ 1.5 · 10−6

ηb 1.0 · 10−2

ηV 5.0 · 10−5

ηD 5.0 · 10−4

Table A.3: Figure 3.6, optimal

Parameter Value
dt 0.333ms
τ 10ms
ρ 10s−1

σinit 1.0
σfinal 0.1
ησ 1.5 · 10−6

ηb 0.333 · 1.0 · 10−2

ηV 0.333 · 5.0 · 10−5

ηW 0.333 · 5.0 · 10−5

ηD 0.333 · 5.0 · 10−4

Table A.4: Figure 3.6, SI
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Parameter Value
dt 1ms
τ 10ms
σinit 1.0
ησ 2.0 · 10−7

ηb 1.0 · 10−5

ηV until t = 3000s 1.0 · 10−4

ηV until t = 6000s 3.0 · 10−5

ηV until t =∞ 1.0 · 10−5

Table A.5: Figure 3.8
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