

Automatic Generation of Control Code for

Robot Function Packages

Design of software for robot setup description generation

Master of Science Thesis

DANIEL WAHLBERG

YIXIAN ZHANG

Department of Signals and Systems

Division of Automatic Control, Automation and Mechatronics

CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden, 2010

Report No. EX093/2010

MASTER’S THESIS REPORT NO. EX093/2010

Automatic Generation of Control Code for Robot

Function

 Design of software for robot setup description generation

DANIEL WAHLBERG,Systems,Control and Mchatronics

YIXIAN ZHANG, Software Engineering and Technology

Examiner and Chalmers Supervisor:

Petter Falkman, petter.falkman@chalmers.se

Automation Research Group

Chalmers University of Technology

41296 Göteborg, Sweden

Volvo Car Corporation Supervisor:

Tord Nordin, tnordin@volvocars.se

Facilities, Tooling and Equipment

Volvo Car Corporation

Dept. 81331 FTE, TAÖ40

40531, Göteborg, Sweden

Department of Signals and Systems

Division of Automatic Control, Automation and Mechatronics

CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden 2010

Automatic Generation of Control Code for Robot Function Packages

Design of software for robot setup description generation

Master’s Thesis in the Master’s programme in Systems,Control and

Mechatronics & Software Engineering and Technology

DANIEL WAHLBERG, wahlberd@student.chalmers.se

YIXIAN ZHANG, yixian@student.chalmers.se

© DANIEL WAHLBERG & YIXIAN ZHANG, 2010

Report No. EX093/2010

Department of Signals and Systems

Division of Automatic Control, Automation and Mechatronics

CHALMERS UNIVERSITY OF TECHNOLOGY

SE-412 96 Göteborg

Sweden

Telephone: + 46 (0)31-772 1000

mailto:wahlberd@student.chalmers.se
mailto:wahlberd@student.chalmers.se
mailto:wahlberd@student.chalmers.se
mailto:wahlberd@student.chalmers.se
mailto:wahlberd@student.chalmers.se
mailto:wahlberd@student.chalmers.se
mailto:wahlberd@student.chalmers.se
mailto:yixian@student.chalmers.se
mailto:yixian@student.chalmers.se
mailto:yixian@student.chalmers.se
mailto:yixian@student.chalmers.se
mailto:yixian@student.chalmers.se
mailto:yixian@student.chalmers.se
mailto:yixian@student.chalmers.se

Automatic Generation of Control Code for Robot Function Packages

Design of software for robot setup description generation

DANIEL WAHLBERG

YIXIAN ZHANG

Department of Signals and Systems

Division of Automatic Control, Automation and Mechatronics

Chalmers University of Technology

Summary

Much effort has been put in developing efficient automation procedures

for manufacturing industries. This has however been mostly focused on

the final implementation steps. To further decrease ramp-up time and

improve production commissioning there is a need to examine the

possibilities of applying more automation strategies in the planning stage

of plant adjustments. This thesis presents a method to transfer robot setup

data from a simulation tool to a robot controller setup tool. The

AutomationML specification has been implemented to provide the bridge

between the two environments. A new setup tool has been developed

during automatic generation of robot setup descriptions. These contain

control code files that make up complete robot function packages that can

be downloaded to a robot controller.

Keywords: Automation, Software, Simulation, AutomationML, Setup tool,

Robot control, virtual commissioning, Robot program development,

Volvo Cars, Chalmers

Acknowledgements

In particular, we acknowledge Petter Falkman, who provided us with the project,

recommended the right people to us, and patiently guided us through the process and

provided encouragement, ensuring that the process kept on going during the whole

project.

A special acknowledgement goes to our supervisor Tord Nordin at Volvo Cars, who

has been helpful and supportive towards our work. He has provided us with required

knowledge, materials and in-time feedback. As a continual project, Ruben Pabello,

Sathyamyla KanthabhabhaJeya, and Fei Zhennan answered a lot of questions.

Of course, we have appreciated the help and patience from Stefan Axelsson, who

solved quite a lot of small questions and issues that showed up every now and then in

VCC. Special thanks also go out to Mathias Sundbäck and Fredrik Westman who

helped us in the verification part.

Contents

1. Introduction 1

2. Goals 3
2.1. Subgoals . 3

3. Background 5
3.1. Developing the robot commissioning process at Volvo Cars 5
3.2. Current setup description generation . 7

3.2.1. The setup description . 7
3.2.2. Automatic setup description generation 8
3.2.3. The current Setup program . 10
3.2.4. The Robot function library . 11

3.3. AutomationML . 13
3.3.1. The AutomationML structure . 14

4. Method 19
4.1. Rebuild of Setup program . 19
4.2. Choice of software development environment 19
4.3. Developing a software model . 20

4.3.1. General model . 21
4.3.2. Robot function library connection . 22
4.3.3. Setup Data Model . 22

4.4. AutomationML Interface . 23
4.5. Setup description generation . 24
4.6. Adjustment of Process Simulate add-on . 24
4.7. Verification methods . 24

4.7.1. Verification of generated setup description 25
4.7.2. Verification of data consistency . 25
4.7.3. Verification of add-on change . 26

5. Results 27
5.1. Software model . 27

5.1.1. Robot function library connection . 30

1

5.1.2. Setup Data Model . 32
5.1.3. GUI design . 32
5.1.4. Setup description generation . 34

5.2. Process Simulate connection . 34
5.3. AutomationML . 34

5.3.1. The AMLEngine Extension . 34
5.4. Verification . 35

5.4.1. Verification of generated setup description 37
5.4.2. Verification of data consistency . 40
5.4.3. Verification of Process Simulate connection 42

6. Conclusion 43

References 45

A. Setup Program Extension Guide 47

B. Setup Description Generation Overview 49

1. Introduction

Since IT technology has been widely used in every area of industry, off-line programming of in-
dustrial robots has largely been used by production companies. It provides an interface between
simulation and the plant. This greatly reduces the need to stop production when making changes
without rebuilding factory cells.

Volvo Car Corporation (VCC) has been using this procedure since early 1990s. However, when
planning for new installations in the production line (commissioning) the same degree of au-
tomation is not established today. The simulation of a new robot station results in a specification
for the robot configuration, covering for example Tool Center Points, mounted tools, external
tools, tool changes and media (air, water). This specification is to large extent dealt with manu-
ally, and used as input to a VCC setup software which assembles needed function packages and
control code from a library. The outputted result is downloaded to the robot controller and a
description is passed to a line builder to make adjustments to the plant.

In industry, the virtual robotic environments are commonly used to develop, prototype and
simulate control strategies and algorithms for single or multi-robot systems. The concept of
the Digital Factory (Kuhn 2006) has been a topic for discussions on how to further develop
these procedure. This is discussed in (Schleipen and Drath 2009) and also touched upon in
(Ranky 2004).

The robots in the production line need to be reconfigured with new control software, apart from
change of their production programs. The main idea of this project is to automate data exchange
between the simulation tool and the robot controller during a station build-up. Today robot setup
data is transferred through manually created documents between the production planning stages.
Through the work here presented an automatic interface is instead established. This has been
subject to two master theses works.

The previous thesis deals with the extraction of data from the simulation tool through devel-
opment of an API and an add-on software (Kanthabhabhajeya and Pabello Rodriguez 2010).

This thesis covers the process of developing a software tool with a GUI for defining a setup
description. As input this software can use the extracted simulation tool data. Its output is func-
tion packages and code files that can be downloaded to a robot controller.

1

For the data exchange between the tools the AutomationML data format has been examined
and implemented. This format has been suggested for exchange of manufacturing industry en-
gineering data in (Luder, Hundt and Keibel 2010), (Rossdeutscher, Zuern and Berger 2010)
and (Schleipen and Drath 2009). This work provides a real implementation of some of these
concepts.

CHALMERS, Master’s Thesis 2010:EX093 2

2. Goals

Our main goal is a connection of automatic data exchange between simulation system and robot
controller.

It is desired to establish a less manual link between simulation and setup generation for new
robot cells, since it would reduce the lead time in the commissioning phase. This can be achieved
by introducing data exchange between the production simulation tool and the setup generation
tool. Two essential questions in this process are:

1. How to extract the needed information from the simulation software?

2. How to transform this information into a corresponding setup?

The first question has been subjected to a thesis work carried out by R. Pabello and S. Kan-
thabhabhaJeya. The second question is the starting-point for this thesis. It is also requested
to examine the possibility of using Automation Markup Language (AutomationML, or AML)
as the data exchange format to bridge the gap between the simulation and the setup software.
AutomationML is a new standard for describing automation processes, incorporating the XML-
structures of CAEX, PLC Open and Collada.

This project involves developing a new software program used for defining a robot controller
setup. It will be used to automatically generate control code for the robot controller. There is
currently a similar tool in use at VCC, but it does not provide all the necessary functionality for
todays requirements.

2.1. Subgoals

A number of subgoals are also defined for this new Setup program. It should:

• maintain the functionality of the old Setup program

• handle manual and automatic input

• be flexible to future changes in input

• be well documented

3

CHALMERS, Master’s Thesis 2010:EX093 4

3. Background

This chapter covers some key concepts related to this report. Section 3.1 gives an overview
of the current robot commissioning process at VCC. In section 3.2 the robot controller setup
description is presented. Section 3.3 provides an introduction to the AutomationML standard
(Alonso-Garcia and Drath 2010).

3.1. Developing the robot commissioning process at Volvo
Cars

The schema in figure 3.1 provides a general view of the connection between simulation and
robot controller implementation at VCC today.

The simulation model is developed according to provided requirements. When a working sim-
ulation model has been defined the specifications for each robot station is denoted manually
into a document. This document is passed by the engineer at the simulation department to a
colleague at the manufacturing department. A Robot Setup program is then used for input of
the specification. The Setup program assembles a setup description (see section 3.2.1), which is
downloaded to a robot controller. This project limits to setup description generation for KUKA
robot controllers.

The Setup program interacts with user input and a Robot function library (see section 3.2.4)
to fetch and adjust files within the library according to setup. The files chosen from the library
are only the ones needed for a particular setup.

This schema should be extended by introducing an automatic data exchange link between the
simulation tool and the Setup program (see figure 3.2). The simulation tool used is Tecnomatix
Process Simulate, provided by Siemens. It allows for simulation data to be extracted through the
addition of a customized plug-in program, a so called add-on.

5

Figure 3.1.: Current workflow from simulation to robot controller at VCC

Figure 3.2.: New workflow from simulation to robot controller

The add-on is an application called Robot tool set-up generation. This was developed in the first
master thesis work associated with this project (Kanthabhabhajeya and Pabello Rodriguez 2010).
By including the add-on in the environment another button is included. This is enabled when a
robot object is chosen, and the add-on GUI is activated when this is clicked, as shown below in
figure 3.3. The add-on will, when Continue is clicked, generate an AutomationML document
(see section 3.3) containing extracted robot setup data in a structured way.

Another interface for the AutomationML document will be included in the new Setup program.
This will parse the data from the document to be used by the program. Thus the manual paper
interface can be removed, providing both a faster and more secure data transfer. Ideally this
automatic data exchange would include all necessary setup data obtainable from the simulation
environment. For the scope of this project this has been restricted to contain gripper tool config-
uration data. This means that the manual link will still be used for other setup data.

CHALMERS, Master’s Thesis 2010:EX093 6

Figure 3.3.: The Process Simulate add-on

3.2. Current setup description generation

This section gives an overview of the setup description and how it is generated by the Setup
program. The Robot function library is also presented together with an explanation of how its
content is used as a base in the Setup description generation.

3.2.1. The setup description

The setup description is a collection of setup files that can be downloaded to a robot controller.
It serves the controller with necessary parameters and functions. This includes:

• Definitions of available tools

• Definitions of available loads

• Definitions of available parts

• Configuration of IO-ports

• General handler function libraries included in every setup description

• Handler function libraries for the specified tool types

• Handler function libraries for communication interfaces

• Handler function libraries for media control, such as air or water supervision

• Icons, menus and options to the teach pendant user interface

7 CHALMERS, Master’s Thesis 2010:EX093

It needs to be pointed out that the setup description does not contain the program executed by the
robot controller when used in production. Rather it provides the necessary data and functionality
for such a program to be executed as intended when downloaded to the controller.

3.2.2. Automatic setup description generation

Although a robot setup is particular for a certain robot, different setup descriptions have many
components in common. Some are used in all setup descriptions, other are specific to for exam-
ple certain tools. With this in mind VCC have created file libraries and template files arranged
in logical directory structures. A Setup program has then been developed to help with the gen-
eration of setup descriptions. Different data sources are used in this generation:

• The Default setup folder contains files used as template files in the setup description gen-
eration.

• The Robot function library contain control code and initialization files, both general and
setup specific.

• The file and user input to the Setup program provide the necessary information on what
files to include and what parameter values to change in the template files.

A schema of the setup description generation procedure is presented in figure 3.4. An input file
containing an initial specification is imported to the Setup program. The available options in the
Setup program adapts to the structure of the Robot function library. By input to different forms
the user can make changes and additions to the specification. The updated specification is then
processed to generate a setup description.

A file system view of the components is given in figure 3.5.

CHALMERS, Master’s Thesis 2010:EX093 8

Figure 3.4.: Schema of the setup description generation

Figure 3.5.: Robot setup file system overview

9 CHALMERS, Master’s Thesis 2010:EX093

3.2.3. The current Setup program

As input to the Setup program is a file called ToolBase.ini which provide specifications for:

• Tool data

• Part data

• Load data

This file is parsed within the Setup program and its data is presented in different forms. The
Setup program is divided into a few steps where the user does different choices from available
options. These options reflect the content of the Robot function library (see section 3.2.4). Thus
the inputted specification can be extended and changed manually. When all the steps has been
gone through an output directory is chosen.A setup description is then generated by assembling
setup files according to the updated specification. This procedure is illustrated by figure 3.6.

Figure 3.6.: Current Setup program steps

CHALMERS, Master’s Thesis 2010:EX093 10

3.2.4. The Robot function library

The Robot function library, krl routines, used by VCC is divided into three different categories,
represented by three folders (see figure 3.7):

Figure 3.7.: The Robot function library folders

• The folder General contain General handler function libraries with source and initializa-
tion files that is included in every setup description.

• The folder Handler contain Optional handler function libraries that can be chosen through
the Setup program.

• The folder ToolTypes contain function libraries for specific tools, as well as so called tool
fork files which handles branching in execution depending on what tool is currently held
by the robot.

Since the Robot function library will change over time, the Setup program need to adapt to the
current content of the library. The available options in the program forms thus reflect the library
folder structure. This is illustrated by two examples from the program, namely the tool form
(figure 3.8) and the optional handler form (figure 3.9).

11 CHALMERS, Master’s Thesis 2010:EX093

Figure 3.8.: Form for robot tools definition in current Setup program

Figure 3.9.: Form for optional handlers in current Setup program

CHALMERS, Master’s Thesis 2010:EX093 12

3.3. AutomationML

This chapter cover the basics of the AutomationML standard.

AutomationML (Automation Markup Language, also abbreviated AML) is a standard that is
being developed with the goal to provide a data exchange format gluing together different engi-
neering steps in the Digital Factory (Kuhn 2006). This is achieved by providing a top level XML
architecture, which in turn incorporates other now established standards. The AutomationML
standard is based upon CAEX (Computer Aided Engineering Exchange) which is a schema
designed to describe hierarchical object structures. By including definitions for references Au-
tomationML can be used to reflect different type of engineering information. Table 3.1 presents
the standards that are supported by AutomationML today and what data they can represent.

Table 3.1.: Standards supported by AutomationML

Standard Data

CAEX (IEC 62424) Hierarchical structures, such as plant topology. Describes
the attributes of different objects, and their relations.

Collada Kinematics, graphics and geometry descriptions.
PLCopen XML Logical behaviour, operational sequences and IO-

connections.

The engineering tools associated with specific project tasks are often sophisticated. They how-
ever tend to work independently, without proper interfaces towards each other. The information
from one tool is therefore transferred by manually assembled documents to be used as more or
less manual input to the next tool. AutomationML is intended to solve this issue, allowing for
faster and secure information transfers between tools. How this can be further conceptualized
to provide a base for data and knowledge exchange between various engineering disciplines is
discussed in (Schleipen and Bader 2010).

For AutomationML to work as a data exchange format the tools need to include proper inter-
faces providing export and import functionality. This is illustrated by figure 3.10. One important
aspect pointed out is that AutomationML requires a global unique identifier (GUID) to be as-
signed to each object in the hierarchy. This way a specific object can be tracked from one tool
to another.

13 CHALMERS, Master’s Thesis 2010:EX093

Figure 3.10.: Using AutomationML as data exchange between engineering tools

3.3.1. The AutomationML structure

The CAEX structure used in AutomationML will here be further explained. As mentioned
CAEX provides a hierarchical representation of different objects. An example would be a pro-
duction cell, with its different components (as depicted in figure 3.11). The top component
Project is the name for the InstanceHierarchy. All its children object instances referred to as
InternalElements. These can hold Attributes describing the properties of the object.

Figure 3.11.: Production line represented in AutomationML by InternalElements (IE) in an In-
stanceHierarchy (IH)

CHALMERS, Master’s Thesis 2010:EX093 14

As mentioned an Internal Element is an object instance. There is thus an object concept included
in the CAEX model. This is based upon the entity RoleClass. According to the AutomationML
specification, every AutomationML object instance in the InstanceHierarchy should be refer to
a specified RoleClass. The RoleClass provides an abstract view on the functionality of the ob-
ject, and can be used for automatic semantic classification of the object when an AutomationML
document is imported in a tool.

Each AutomationML RoleClass is derived from a base role class called AutomationMLBase-
Role. The specification also defines a RoleClassLibrary with seven other base role classes.
These are shown in figure 3.12.

Figure 3.12.: AutomationML BaseRoleClass library

The second part of the AutomationML specification (which only exists as a white paper version
at the time of writing this paper) is called AutomationML Libraries. It further develops the Role-
Class concept by introducing additional RoleClassLibraries suitable for different applications.
Of interest for this project is the Manufacturing Industry RoleClassLibrary found in figure 3.13.
The guideline is that an InternalElement should refer to one of this RoleClasses. In case one
RoleClass is too specific its parent is instead chosen.

15 CHALMERS, Master’s Thesis 2010:EX093

Figure 3.13.: AutomationML Manufacturing Industry RoleClass library

In addition to the RoleClasses AutomationML also allows for user defined SystemUnitClasses.
These are user/vendor specific classes, for example different models of an object, and can sup-
port one or more RoleClasses. Attributes with optional default values and constraints can also
be defined for these SystemUnitClasses. A SystemUnitClass is used as a template for an In-
ternalElement. The RoleClass - SystemUnitClass - Object instance relations are visualised by
figure 3.14 and figure 3.15.

Figure 3.14.: AutomationML object concept

CHALMERS, Master’s Thesis 2010:EX093 16

Figure 3.15.: AutomationML RoleClass - SystemUnitClass - InternalElement example

The aspects of AutomationML here presented are the essential ones in the scope of this project.
AutomationML supports a range of other concepts as well. ExternalInterfaces provide connec-
tion point between objects. InternalLinks are used to establish such connections. The referenc-
ing of other documents, for example COLLADA and PLCopen XML documents, have also just
been touched upon briefly. For descriptions of these and other concepts we refer to the Automa-
tionML specification (Alonso-Garcia and Drath 2010). A good introduction is also provided by
(Drath, Luder, Peschke and Hundt 2008).

17 CHALMERS, Master’s Thesis 2010:EX093

CHALMERS, Master’s Thesis 2010:EX093 18

4. Method

This chapter describes the steps taken in order to reach the final solution.

4.1. Rebuild of Setup program

The Robot function library has incorporated new functionality, so the Setup program need to be
updated to meet the new requirements. The current Setup program is developed in Visual Basic,
and its source code is not compilable in the new Visual Studio environment. To rebuild the Setup
program from scratch can provide full control of software and outputs. Helpful documentation,
lacking for the current Setup program, can then also be created. In addition, Visual Basic is old
according to the software development maintenance.

4.2. Choice of software development environment

When choosing the software development environment (SDE) for the new Setup program we
consider the following:

• In which operating system is the application going to be used?

• Which SDE:s are preferred at VCC?

• For which SDE:s are useful resources available?

• Which do we have previous knowledge of?

• Which would we find useful to learn more of?

The operating system used for most engineering tools at VCC is Microsoft Windows. Applica-
tions are commonly developed both in JAVA SDE:s and Microsoft Visual Studio according to
software designers at VCC. The Process Simulate add-on, together with an accompanying API,
has been developed in C# in Visual Studio 2005 edition. A C# class library for developing AML
related applications, called the AMLEngine is provided by the AutomationML Group. This can
be used in Visual Studion 2008 edition.

We have more experiences of developing in JAVA SDE:s, but find that development in C# would
better suit the project. Since both are objected oriented languages with many similarities our

19

choice is using Visual C# 2008 edition. Learning this SDE during the process is also a good
educational experience.

4.3. Developing a software model

Figure 4.1.: Software development according to the waterfall model

The standard process of software development through waterfall model structure (figure 4.1) is
used as a guideline. Considering the requirements from Volvo perspective, the software needs to
fulfill all the functionalities of the old setup program. It is required to handle import and export
of AML documents. The software should be highly flexible to allow for future extension when
updates are needed.

A general working model (see section 4.3.1) is developed according to the requirements. With
this as base software functionalities are designed and implemented. This is mostly done through
a bottom to top manner, in which the lowest level algorithms first are implemented and then
used when creating higher level algorithms. Finally every functionality is combined to form a
complete software.

Each part of the software is tested for different input followed by verification of outputs. At
last, verification of the data exchange link to the Process Simulate add-on is performed. Details
on the verification methods are provided in section 4.7.

CHALMERS, Master’s Thesis 2010:EX093 20

4.3.1. General model

A general model is developed according to the requirements. This is presented as a schema
showing necessary functionalities and connections in figure 4.2.

Figure 4.2.: General software model

The core of the software model is the Setup Data Model (see section 4.3.3), which is used as an
internal format to store setup data. The following interfaces should be provided for the Setup
Data Model:

• To and from AML documents (the new setup data files)

• To and from the GUI

• From the file ToolBase.ini (which provide Tool, Load and Part data)

• From the file SetUp.dat (the setup data file used by the old setup program)

• To a generated setup description (that can be downloaded to a robot controller)

• To other documents which can be easily read by a person

The GUI should allow for manipulation of these parts of the setup:

21 CHALMERS, Master’s Thesis 2010:EX093

• Tool definitions

• Handler choices

• Load definitions

• Part definitions

This should be kept within a containing environment providing easy navigation and usability.
To enable simple use of different robot libraries and output paths it is desirable to implement
configurable program settings. Some suitable class libraries are also suggested:

• The AMLEngine provided by the AutomationML group

• An extension library to add VCC specific AML functionality

• A Graphical styles library, with templates that can be easily used by the GUI objects

• A Robot library class library, which provide a connection to the Robot function library

• A class library which contain algorithms for generating the Setup description.

4.3.2. Robot function library connection

For presenting the available tools and handlers the Setup program need to fetch this information
from the Robot function library. Different versions of the library might be used and they will also
undergo changes which should be reflected within the Setup program. Thus the software needs
an import functionality that loads the necessary information from the Robot function library into
classes. These classes can then be used as reference in different execution steps.

4.3.3. Setup Data Model

The setup description generated by the Setup program is an assembly of different function files
which are adjusted to the setup specification. The specification contain information for the setup
description components given in table 4.1. In order for the program to be able to operate on this
data it needs to be represented by suitable class objects. This is referred to as the Setup Data
Model (SDM).
The Setup Data Model is used as an intermediate data format. Each supported input file is
parsed into the SDM, which is loaded into the GUI components. Changes can be applied by the
user, and when generating output the GUI form object values are first stored back into SDM.
The possibly changed SDM is then used as input for generation of a setup description or an
AutomationML file. Figure 4.3 visualizes this in the form of a Data Flow Diagram.

CHALMERS, Master’s Thesis 2010:EX093 22

Table 4.1.: Necessary Setup description components

Setup description component Description

Robot data Name and ID of robot, and some other parameters
Tools Tools available for the robot along with necessary parame-

ters
Tool configuration Specifies Default tool, Last tool and Last tool with tool

stand
Handling packages Packages providing functionality for different tool types,

communication interfaces, media control etc
Load data Loads available for the robot along with necessary param-

eters
Part data Parts available for the robot along with necessary parame-

ters
Output paths Directions on where the different part of the setup descrip-

tion should be outputted

Figure 4.3.: Setup program data flow diagram

4.4. AutomationML Interface

As a base for the AutomationML interface is used the AutomationML C# class libraries provided
by the AutomationML website. This is referred to as the AMLEngine. To better suit the needs
for VCC in general and our solution in particular a new AML class library providing additional
functionality is developed. This is called the AMLEngine Extension.

23 CHALMERS, Master’s Thesis 2010:EX093

The Setup program deals with AML documents in three ways:

• As input retrieving the Process Simulate setup information

• As output storing the complete setup information

• As input retrieving the complete setup

The AMLEngine together with the new AMLEngine Extension provide necessary functionality
for simple creation of AML documents. All content of the Setup Data Model needs a corre-
sponding AutomationML representation. The concept of RoleClass - SystemUnitClass - Inter-
nalElement as described in section 3.3.1 will be used.

For enabling import of AML documents a parser needs to be built. This should be enough
flexible to allow different layouts of the InstanceHierarchy holding the object instances. Objects
will be identified by their roles. The imported data should be easily translated into the Setup
Data Model.

4.5. Setup description generation

In order to correctly implement all steps in the setup description generation all necessary algo-
rithms are identified through:

• Inspection of the old Setup program source code

• Discussion with the VCC supervisor

• Comparison of the output from the new and old Setup program (see section 4.7.1)

4.6. Adjustment of Process Simulate add-on

The Process Simulate add-on created in the preceding master thesis project produces an output
that does not completely correspond to our AutomationML parser. For example, the parser is
built upon the RoleClass concept (section 3.3.1), which was not used in the add-on AML output.
To resolve this issue, the add-on need to be updated to meet the requirements for the parser. This
is done through modification of the add-on source code.

4.7. Verification methods

To assure that the correct information is imported, withheld and exported through the different
interfaces it should be verified that:

CHALMERS, Master’s Thesis 2010:EX093 24

• The Setup program generates a correct setup description.

• Data is consistent if not deliberately changed.

• Data is not affected by the changes to the Process Simulate add-on.

4.7.1. Verification of generated setup description

It is vital that the setup description generated by our software is completely correct. Otherwise it
might cause serious problems in the robot controller. This is verified by comparing the generated
setup descriptions to:

• Setup descriptions generated for the same parameters in the old Setup program.

• A setup description provided from VCC, including the additions implemented.

In order to compare the output we use a software called Beyond Compare, which provides meth-
ods and GUI to easily check that:

• The content in two folders is the same. All files should be included, and no additional files
are allowed.

• The content of two files is the same.

The final verification of the setup description would be to do a real download to a robot con-
troller. The resources and time is however not enough in the project scope for performing this
step. Since the Setup program is going to be put to use at VCC, this will be done quite soon after
the writing of this report.

4.7.2. Verification of data consistency

Data imported to the new setup program should be maintained in a correct ways. That means:

• No essential data should be missed when imported. No data should be unintentionally
changed.

• No data should be unintentionally added.

• No data should be missed when outputted.

This can also be checked with Beyond Compare, by assuring that:

• An imported AML document is sufficiently equal to an exported, when the setup is not
changed through the GUI.

• An imported SetUp.dat-file is sufficiently equal to an exported, when the setup is not
changed through the GUI.

25 CHALMERS, Master’s Thesis 2010:EX093

4.7.3. Verification of add-on change

The changes done in the source code for the Process Simulate add-on should not affect the data
stored in the outputted AML document, but only the document syntax and XML structure. This
can be verified by comparing the output from the unchanged add-on with the output from the
updated.

CHALMERS, Master’s Thesis 2010:EX093 26

5. Results

This chapter provides the result of the project, divided into different sections.

5.1. Software model

To fulfill the General model presented in section 4.3.1 and the requirements of a modular, flexible
solution the software model here presented was developed. All entities shown in figure 5.1 are
class libraries with their own namespaces. A separation has been done between external existing
libraries, external new libraries, data model, GUI, other IO interfaces, and other general libraries.
A short description of the libraries functionalities are hereby given:

• External existing class libraries

AMLEngine Provided by the AutomationML Group

• External new class libraries

VCC AMLEngine Extension Providing additional functionality for the AMLEngine
and VCC specific AML document generation and parsing. This might be useful for
other applications dealing with AML as well.

• Data model

SetupDataModel The internal data model gluing together the software. Also see sec-
tion 5.1.2 for more details.

• IO interfaces

SetupFileImport Parsers for reading data from the files SetUp.dat and ToolBase.ini into
the Data Model.

AML Interface Parsing of AML documents into the Data Model, and methods for cre-
ating AML documents from the Data Model. Uses both the AMLEngine, and the
VCC AMLEngine Extension.

SetupGeneration - Assembly of Setup description according to the Data Model.

• General functionalities

27

Settings Allows (and demands) of the user to specify paths to the Robot function library,
the AutomationML Standard Library, the Default folder (containing templates) and
(optional) standard output paths. The settings are stored to a file called Settings.txt
in the application folder. This class library holds both objects for holding the settings
data, and the GUI to adjust it.

GraphicalStyles Provide templates that can be used by GUI components.

• GUI structure

Main, MainForm Start of execution, and the overall GUI container.

InputSelection Choice of input source. Contain methods that connect to the im-
port functionality of the IO interfaces.

SetupGUI Holds the form objects for a loaded (or empty) setup. Also contain
methods that connect to the output functionalities of the IO interfaces.

SetupOverview Shows a grouped list of all setup data.

ToolSelection Allows for definition of tools.

PartAndLoadData Allows for definition of Part and Load data.

HandlerSelection Allows for defintion of optional Handlers.

CoordSelection Allows for definition of objects with three or six degrees of
freedom, such as Tool Center Points, or inertia. Used by ToolSelection and
LoadSelection.

LoadSelection Allows for definition of loads. Used by ToolSelection and
PartAndLoadData.

OutputSelection Allows for definition of output paths, and hold GUI com-
ponents to call the output methods in SetupGUI.

The general model also includes functionality for creation of other readable documents. This
functionality has been left out because of time limitations, but will be easily implemented if
needed, since all necessary data is conveniently provided through the Setup Data Model.

The modular solution for the Setup program provide flexibility for future extensions, which
was one of the subgoals. Appendix A contain a guide on how to extend the functionality of the
Setup program.

CHALMERS, Master’s Thesis 2010:EX093 28

Figure 5.1.: Setup program class library overview

29 CHALMERS, Master’s Thesis 2010:EX093

5.1.1. Robot function library connection

Since the information from the Robot function library should not be changed once loaded to the
software, the content is loaded into a static class, named RobLib (see figure 5.2). This class is
then used as a source for information about the Robot function library throughout the software.
It provides the following information through different public fields:

• The names and paths of the directories within krl routines/General, krl routines/Handler
and krl routines/ToolTypes

• Handler objects according to krl routines/Handler (see figure XX)

• ToolLib objects according to krl routines/ToolTypes (see figure XX)

• The ToolTypes associated with different Tool Libraries

• Which Tool Libraries should be regarded as Special Tool Libraries

Figure 5.2.: The Robot function library class

CHALMERS, Master’s Thesis 2010:EX093 30

Figure 5.3.: Setup Data Model class diagram

31 CHALMERS, Master’s Thesis 2010:EX093

5.1.2. Setup Data Model

The Setup Data Model (SDM) is designed to be a structural representation of the components
of a robot setup. This is achieved by letting the components be represented by class objects
with suitable inheritances and associations. All components are included in the instance of the
object type Setup. The Setup class hold fields for the types Tool, Handler, ToolConfiguration,
RobotData, PartData, LoadData and OutputPaths, as can be seen in the class model diagram in
figure 5.3.

5.1.3. GUI design

We build the GUI according to the data model used in our model (figure XX above). We set the
background color to blue in order to give a equable environment for customers. By creating five
buttons and the same functional tool lists, we can choose among the required input formats.

Figure 5.4.: GUI - Input selection

All GUI components such as the comboboxes and buttons are chosen according to the function-
alities. For example, SetupForm is constructed and added to GUI by methods in InputSelec-
tionForm (figure 5.4). In the ToolSelectionForm (figure 5.5, we get the Add Tool button to add
any tool or delete tool by using Remove Tool. Considering the large number of different graphic

CHALMERS, Master’s Thesis 2010:EX093 32

components to adjust, we choose a distinct class UseGraphicalStyles to set the styles and fonts
of each graphic component. In this way we define the style formally.

Figure 5.5.: GUI - Tool selection

Figure 5.6.: GUI - Output selection

For creating an AML output file, we set the output directory first, and save it to the folder we
choose as shown in the figure 5.6.

33 CHALMERS, Master’s Thesis 2010:EX093

5.1.4. Setup description generation

All steps in the setup description are included in the class library SetupGeneration. They are
executed sequentially from the method CreateSetup. In order to not loose data if the generation
process for some reason fails the current output direction is first copied to a backup folder. This
is deleted when the new setup description has been correctly assembled. An in depth guide to
all steps are provided in Appendix B.

5.2. Process Simulate connection

The first attempt to update the Process Simulate add-on was to rewrite the AML document gen-
eration using our new developed VCC AMLEngine Extension class library. This solution could
however not be implemented because the needed class libraries could not be used in Visual Stu-
dio 2005.

Instead the AML document was created in the same manner as it was originally, by a com-
bination of hard coding and a few help methods. This solution is not as neat from a source code
maintenance point of view, but at least generates an AML document according to our updated
requirements.

5.3. AutomationML

Three aspects of the AutomationML related results will here be presented. First is an example of
the new AMLEngine Extension. This is followed by a presentation of the AutomationML rep-
resentation of the Setup Data Model. The third aspect is an overview of the import functionality,
the AutomationML document parser.

5.3.1. The AMLEngine Extension

When doing tests of the AMLEngine class library provided at the AutomationML website there
were some programming steps in the document creation that appeared non-intuitive when com-
pared to the rest. An example of that is the recurring task of creating an InternalElement using a
SystemUnitClass as template. The code for doing this using the AMLEngine looks like this:

// Create instance of SystemUnitClass

Altova.Xml.TypeBase instance = systemUnitClass.CreateClassInstance();

// Cast instance of SystemUnitClass to InternalElement

InternalElementType internalElement = (InternalElementType)instance;

// Assign a name to the new InternalElement

internalElement.Name.Value = "internalElementName";

CHALMERS, Master’s Thesis 2010:EX093 34

Especially the first operation involves general XML operations, which draws attention from the
AutomationML structure we want to work with. A cast is then necessary to get to type we
actually want. This lead us to develop the AMLEngine Extension - a class library built upon the
AMLEngine, which add additional functionality and cover some of the flaws. The same code is
then used within a function, which can be called by a more simple (and intuitive) command:

InternalElementType internalElement =

systemUnitClass.CreateInternalElement("internalElementName");

Other functionality implemented in the AMLEngine Extension is:

• Creation of Attributes with defined fields in one step

• Fetching of objects (Attributes, RoleClasses, SystemUnitClasses) by their names, instead
of by uninformative indexes.

• Appending elements after others in the hierarchy (instead of inserting them on top, which
is default in the AMLEngine).

Apart from this general functionality the AMLEngine Extension also contain methods for cre-
ation of AutomationML data specific to VCC and our solution. A straightforward example of
this is shown in figure 5.7. This shows the method for creating a Robot object. Role, SystemUnit
and InternalElement are all created in one go. Types and methods specific to the AMLEngine
is marked bold. Methods from the AMLEngine Extension is marked bold italic. The included
comments (preceded by dual slash //) should be sufficient to grasp the meaning of the code. The
resulting AutomationML output is showed in figure 5.8.

5.4. Verification

Three verification steps are provided in this section:

• Verification of generated setup description

• Verification of data consistency

• Verification of Process Simulate connection

35 CHALMERS, Master’s Thesis 2010:EX093

Figure 5.7.: Creating AML data with the AMLEngine and the AMLEngine Extension

Figure 5.8.: Ouput generated from the method in figure 5.7

CHALMERS, Master’s Thesis 2010:EX093 36

5.4.1. Verification of generated setup description

To verify that the generated setup description corresponded to one generated with the old setup
program the outputs were compared using the software Beyond Compare. This was an iterative
process where new aspects of the setup description generation were discovered and adjusted
to. Figure 5.9 shows an example where some files included in the old setup description are not
included in the new.

Figure 5.9.: Output generated from the original Setup program to the left, and from the new to
the right. Some files are not included.

The files assembled within the setup description generation were also checked through the soft-
ware. Information missed out, as shown in figure 5.10, made necessary additional changes to
the setup description generation algorithms.

Figure 5.10.: File generated by the original Setup program to the left, and by the new to the right.
Some lines are not included.

37 CHALMERS, Master’s Thesis 2010:EX093

The final comparison contained all available ToolTypes and all different Handlers. This is not a
probable real scenario, but assures that each possible scenario should be correct. The result is
given in figure 5.11, figure 5.12 and figure 5.13.

Figure 5.11.: Comparison containing all ToolTypes and Handlers

Figure 5.12.: ToolType file comparison. Incorrect output from original Setup program, to the
left.

Figure 5.13.: Teach Pendant menu file. Incorrect output from original Setup program, to the left.

Every Handler library is correctly copied. The ToolType files in lTools are equal, with the
difference that the old setup tool outputs incorrect files when the tool id number reaches 10 and
above (see figure 5.12). It is not likely that any VCC robot setup will contain that many tools,

CHALMERS, Master’s Thesis 2010:EX093 38

and that is the probable reason that this wrong output has not been discovered. The menu-file
for the teachpendant, MenueKeyUser.ini was not either correctly assembled by the old setup
program for some ini-files (see figure 5.13). Both these issues is corrected in the new setup
program.

Figure 5.14.: Full comparison. Original Setup program to the left, new Setup program to the
right.

All files are correctly copied to the R1 folder (figure 5.14). The assembled file $config.dat differs
only in that the new output replaces xxyy with the robot number, which should be more correct.
The SetUp.Dat-file is equal apart from the time-stamp and output folder specified.

Figure 5.15.: Full comparison. Template files folder.

A few template files differ in what default values are assigned in certain definitions (figure 5.15).
The new setup program output values according to directions gotten from discussions with our
supervisor at VCC.

Another comparison was made for a Fieldbus gripper setup. This type of setup cannot be pro-
duced by the old setup program. Provided to us was instead a partly manually created setup
description. The result is presented in figure 5.16.

39 CHALMERS, Master’s Thesis 2010:EX093

Figure 5.16.: Comparison for Fielbus Gripper setup. Original Setup program output to the left,
new Setup program output to the right.

In this case the files $config.dat, MenueKeyUser.ini and hMove.kfd dont show any differences
when compared. For the ToolType files in lTools the new setup program add the tool ID to some
places where it is missed out in the manually created setup description. Another differing file is
SetUp.dat. Apart from the time-stamp and output path differences the new setup program also
adds Fieldbus gripper specific info to this file.

The setup description generated by the new setup program is thus equal or improved compared
to the old.

5.4.2. Verification of data consistency

Our first test of data consistency is to verify that all data stored in the AML documents are
correctly imported, kept, and exported. A large test containing all ToolTypes and Handlers is
used. The steps executed are:

• Create an AML document (doc1)

• Import doc1 to the Setup Data Model (SDM)

• Load the SDM into the GUI

CHALMERS, Master’s Thesis 2010:EX093 40

• Save the GUI data back to SDM

• Create a new AML document (doc2)

If doc1 and doc2 are sufficiently equal according to our requirements, that means that our data
has been kept consistent. The documents are compared using the text comparator in Beyond
Compare. A small part of the result is provided in figure 5.17.

Figure 5.17.: AML document comparison

The only difference in the documents is the ID numbers for some InternalElements. This is in
order, since they are solely used to form collections of other InternalElements holding the es-
sential data. These inner InternalElements do keep their ID through the process, which means
that the same ID is kept for the same Tool, Handler, Load and Part. This is essential to provide
trackability of the specific objects. For example, in figure 5.17 the InternalElement Tools (which
holds the Role Collection) differs in ID, but NoTool (of role Tool) have the same ID. With this
we can conclude that the AML documents are sufficiently equal, and that data consistency is
granted.

A second test of data consistency is to do the same experiment on the old setup program data
storage - the file SetUp.dat. In this comparison the only difference (see figure 5.18) is the time
for creating the file, which of course is alright.

41 CHALMERS, Master’s Thesis 2010:EX093

Figure 5.18.: Comparison of SetUp.dat files

5.4.3. Verification of Process Simulate connection

The essential part in the update of the Process Simulate add-on is that all data stored in the out-
putted AML document is the same. This was also the result we received when comparing an
output from the original add-on with an output from the updated. The same Process Simulate
project was used in both cases.

When using the new AML output as input to our Setup program all information fetched from
Process Simulate is also correctly transferred. The requested data exchange connection is there-
fore obtained.

CHALMERS, Master’s Thesis 2010:EX093 42

6. Conclusion

For this work, a working data exchange link was established between the simulation environ-
ment and a new robot controller setup program. Robot setup data was extracted from Process
Simulate through an add-on, and outputted to a document following the AutomationML specifi-
cation. Through the construction of a parser this data could be imported into the Setup program,
which allows for adjustments through a GUI. Setup descriptions was generated by the Setup
program according to the setup specification. These contains control code files for complete
robot function packages that can be directly downloaded to a robot controller. Verification of the
steps in this process assure data consistency and correct interface functionalities.

The setup data retrieved from the simulation model is partial. A natural future step would be to
extend the data extraction API to include other robot tool configurations. This is supported by
the AutomationML document, and to large extent prepared for in the AML document parsing.
Other parts of the setup data need to be provided by a new common framework or database. This
would hold information about available resources and keep a common naming standard, so that
for example the different handling packages could be correctly associated to the robot controller
setup at an earlier stage in the planning. The VCC AMLEngine Extension class library could
be used to help this implementation, but that requires upgrade of the simulation tool API to at
least Visual Studio 2008 version.

43

CHALMERS, Master’s Thesis 2010:EX093 44

References

Alonso-Garcia, A. and Drath, R. (2010). Automationml whitepaper, web resource:
http://www.automationml.org/images/download/tecDoc/automationml whitepaper part 1 -
automationml architecture v 1.4.pdf. available 2010-12-09.

Drath, R., Luder, A., Peschke, J. and Hundt, L. (2008). Automationml - the glue for seamless au-
tomation engineering, Emerging Technologies and Factory Automation, 2008. ETFA 2008.
IEEE International Conference on, pp. 616 –623.

Kanthabhabhajeya, S. and Pabello Rodriguez, R. E. (2010). Automatic generation of control
code for robot function packages. generation of robot set-up descriptions based on data in
the simulation, Master’s thesis, Chalmers tekniska hgskola.

Kuhn, W. (2006). Digital factory - simulation enhancing the product and production engineering
process, Simulation Conference, 2006. WSC 06. Proceedings of the Winter, pp. 1899 –
1906.

Luder, A., Hundt, L. and Keibel, A. (2010). Description of manufacturing processes using
automationml, Emerging Technologies and Factory Automation (ETFA), 2010 IEEE Con-
ference on, pp. 1 –8.

Ranky, P. G. (2004). Automotive robotics, Industrial Robot: An International Journal, Vol.
31:3, pp. 252–257.

Rossdeutscher, M., Zuern, M. and Berger, U. (2010). Virtual robot program development for
assembly processes using rigid-body simulation, Computer Supported Cooperative Work
in Design (CSCWD), 2010 14th International Conference on, pp. 417 –422.

Schleipen, M. and Bader, T. (2010). A concept for interactive assistant systems for multi-user
engineering based on automationml.

Schleipen, M. and Drath, R. (2009). Three-view-concept for modeling process or manufacturing
plants with automationml, Emerging Technologies Factory Automation, 2009. ETFA 2009.
IEEE Conference on, pp. 1 –4.

45

CHALMERS, Master’s Thesis 2010:EX093 46

A. Setup Program Extension Guide

47

VCC Kuka Robot Setup Tool

Developer’s extension guide

Overview
This guide provides information on how to extend the functionality of the VCC KUKA Robot
Setup Tool. It will focus on the addition of a Special Tool with specific attributes. In order to
achieve this additions to the Setup Data Model, the GUI, the AML interface and the Setup
Generation will be needed. This guide can thus be used also to get a general understanding of
the architecture of the VCC KUKA Robot Setup Tool, and how the different software modules
interact.

The TestTool
We will create the new Special Tool TestTool. “Special Tool” refers to a tool which have certain
characteristics that can’t be found in the standard tool. It still inherits all the base characteristics
of a standard tool. The TestTool will not be of actual use, but is only provided as help for future
extensions.

To keep it simple our TestTool will just have two additional attributes:

● The attribute Power represent the power consumption of the tool
● The attribute Color is one of three available colors: red, green, blue.

This will be implemented in a number of steps. The order of executing these steps are not
absolute, though they have been found to enable fast addition of new functionality during the
development process.

STEP 1 - Setup Data Model
The Setup Data Model provide classes to create objects representing all different parts of a
robot controller setup. This class library is the core of the software.

The type Tool is used to represent a tool in the setup. Its Class Diagram looks like this:

We now want to create the class TestTool as a child to this class:
● Open SeputDataModel.cs
● Expand the region Special Tools
● Insert the following code:

In addition to the first constructor, we’d like to add a constructor for import of AutomationML
data. The AML document parser in VCC_AMLEngine_Extension puts imported data in a
Hashtable structure that provide a convenient way to fetch the correct data for each attribute.
The Hashtable (called valueTable in the constructor) for Tool looks like this:

Some of the keys provide string values, while others hold other Hashtables. An example of a
TCP hashtable is also shown. A constructor using the hashtable would then first be used by
the Tool constructor to fetch values for the standard keys, and then by the Special Tool to fetch
values for the special tool keys. The TestTool hashtable constructor thus becomes:

 NOTE: The string with attributes particular to the TestTool must be passed to the parent
constructor. Otherwise it would treat them as Additional attributes (which are attributes not
specifically defined in a Tool class).

Here is the updated Class Diagram:

STEP 2 - krl_routines Connection
Since all tools available in the Setup Program reflects the krl_routines library, we need a way
to point out which tool library should be represented by our Special Tool. The tool libraries are
connected to the different tool types as specified in the file ToolType.txt, which is located in
krl_routines/ToolTypes. By adding an extra tag “<SpecialTool>” to a ToolLib the Setup program
will identify this ToolLib as a Special Tool. In this way it is even possible to assign the same
Special Tool Class to more than one tool library.

For our example we associate the Special tool TestTool with the Tool library SpotGun:

STEP 3 - GUI
The form for defining robot tools is found in the class library ToolSelectionForm.cs. The
complete tool definition form is an instance of the class ToolSelectionForm. Each tool on
this is of type ToolForm. This will for a standard tool occupy one row in the Tool selection
form. To allow for additional form components for a SpecialTool the ToolForm can hold a
SpecialToolPanel. This will be put on the row below the standard tool values for a Special Tool.

So - in order to enable the GUI form elements for our TestTool we need to create a new class,
inheriting from SpecialToolPanel:

The constructor creates the GUI, and if data is held in the inputed TestTool object, it is assigned
to the corresponding form elements.

To be able to retrieve new input made by the user the method SaveToTool must be included.
This updates the attached TestTool object and returns it.

The AddGUIComponents method is used to create the GUI and for our example it looks like
this:

One additional thing needs to be added for this additionalPanel to show up. In the
class ToolForm, open region ToolType/ToolLib variations. Here you find a method
SetAdditionalPanel. This method checks if the chosen tool is a Special Tool, and, in case that’s
true, creates an instance of its SpecialToolPanel to the additionalPanel field:

Here is added an if-statement to check whether the tool is of type TestTool.

The GUI part is now finished, and can be viewed and tested by running the software. The new
additional panel will show up when choosing the SpotGun toollib, as specified in STEP 2. This is
our result:

STEP 4 - AML output
We dealt with the AML input interface in STEP 1. In this step we will add code to enable
generation of TestTool data to an AML document.

● Open AML_Interface.cs
● Expand the region Create AutomationML documents from SetupDataModel objects

● Expand method AML_From_SpecialTool

In this method add a new if-statement for our TestTool:

Here the internalElement represents the parent node in the AML structure. In this case it’s the
Tool node. Next create the method AML_From_TestTool, in which the new attributes are added
to the Tool object:

NOTE: The VCC_AMLEngine_Extension allows for this simple creation of attributes (in which
you directly set (Name, DataType, Value)).

The resulting AML output for the tool is then:

and as presented in the AutomationML Editor:

STEP 5 - Setup Overview
The next step is to include the new data in the Setup Overview tab:

● Open SetupOverviewForm.cs
● Expand the region Constructor in the class SetupOverviewForm
● Expand the method AddSpecialTool
● Insert code for SpecialTool, as below:

The method ToPanel() is not defined within the TestTool class. We instead add a method
extension:

● Expand the region Special Tools Data Overview in the class MethodExtensions
● Add the following method extension:

NOTE: The method extension syntax is: MethodName(this Type name). The method
MethodName will then be available for objects of Type.

Now the new attributes are visible in the Setup Overview:

STEP 6 - Setup Generation
The final step is to adjust SetupGeneration.cs, so that the new additions correctly affects the
outputted Setup description. Since this step might look quite different for new functionalities, just
a few guidelines are here given.

When adjusting the Setup Generation to different SpecialTools you will probably find the method
CopyFilesFromToolTypeDevices suitable. In this you can add calls to new methods that you
design for the special tool you’re using. The code snippet below shows how the special method
SetLToolRSequences is called for the SpecialTool FieldbusGripper.

If you would like to update the SetUp.dat output as well, this is done in the method
SpecialToolToSetupDat.
THAT’S IT!
If you would also like to make additions to the SetUp.dat and ToolBase.ini-file that is also
possible through SetupFileImport.cs. This should however not be necessary when using the

AutomationML document for data storage.

CHALMERS, Master’s Thesis 2010:EX093 48

B. Setup Description Generation
Overview

49

V
C

C
 K

U
K

A
 R

ob
ot

 S
et

up
 A

ss
em

bl
y

1.
Cr
ea
te
 d
ire

ct
or
y,
 b
ac
ku
p
co
nt
en

t

2.
Co

py
 D
ef
au
lt
fo
ld
er
 c
on

te
nt

3.
In
i:
al
iz
e
Se
tu
p.
da
t

4.
G
en

er
al
 h
an
dl
er
 s
et
up

5.
To
ol
Ty
pe

 fi
le
s
se
tu
p

6.
O
p:

on
al
 h
an
dl
er
 s
et
up

7.
H
an
dl
er
 to

 S
et
up

.d
at

8.
A
dj
us
t r
ob

ot
 d
ep

en
di
ng
 fi
le
s

9.
D
iv
id
e
in
i‐s
tr
in
g
co
nt
en

t d
ep

en
di
ng

on
 c
ha
pt
er
s

10
.
Ch

ec
k
D
ou

bl
e
IO

11
.
Pa
rs
e
ne

w
 in
i‐s
tr
in
gs

12
.
A
ss
em

bl
e
st
an
da
rd
 fi
le
s

13
.
D
el
et
e
ba
ck
up

 fo
ld
er

O
ve

rv
ie

w Th
is
 d
oc
um

en
t i
s
a
de

sc
ri
p:

on
 o
f h

ow
 a
 S
et
up

 fo
r
a
Ku

ka
 ro

bo
t i
s
as
se
m
bl
ed

 fr
om

th
e
fil
es
 in
 k
rl_

ro
u'

ne
s
de

pe
nd

in
g
on

 th
e
sp
ec
ifi
ca
:o

n
gi
ve
n
in
 th

e
VC

C
KU

KA
 R
ob

ot

Se
tu
p
To
ol
. T
he

 p
ro
ce
du

re
 c
an
 b
e
di
vi
de

d
in
to
 a
 n
um

be
r
of
 s
te
ps
. T
he

 s
te
ps
 a
re

co
nn

ec
te
d
to
 o
ne

 o
re
 m

or
e
m
et
ho

ds
 in
 th

e
cl
as
s
lib
ra
ry
 S
et
up

G
en
er
a'

on
. T
he

se
 a
re

he
re
 s
ho

w
n
as

Ve
rs

io
n

1

T
he

 s
te

ps
m

et
ho

d

tis
da

g,
 2

01
0

de
ce

m
be

r 1
4

‣
Ch

oo
se
 a
 n
am

e
fo
r
th
e
ne

w
 ro

bo
t d

ire
ct
or
y,
 e
.g
. a
 n
um

be
r
be

tw
ee
n
00

01
 a
nd

99

99

‣
If
ne

ce
ss
ar
y
cr
ea
te
 n
ew

 d
ire

ct
or
y
in
 V
ol
vo
Ro

bo
tL
ib
ra
ry
/

‣
A
 ro

bo
t w

ith
 n
um

be
r
44

44
 g
et
s
fo
r
ex
am

pl
e
ge
ts
 th

e
di
re
ct
or
y

Vo
lv
oR

ob
ot
Li
br
ar
y/
r4
44

4/

‣
If
th
e
di
re
ct
or
y
ex
is
ts
, fi
rs
t b

ac
ku
p
its
 c
on

te
nt
 in
to
 fo

ld
er
 /
ba

ck
up

‣
D
el
et
e
al
l o
th
er
 c
on

te
nt
 in
 o
ut
pu

t d
ire

ct
or
y,
 in
 o
rd
er
 to

 c
re
at
e
th
e

se
tu
p
fr
om

 s
cr
at
ch
, n
ot
 k
ee
pi
ng
 u
nn

ec
es
sa
ry
 fi
le
s

1.
 C

re
at

e
di

re
ct

or
y,

ba
ck

up
 c

on
te

nt

V
C

C
 K

U
K

A
 R

ob
ot

 S
et

up
 A

ss
em

bl
y

Co
py

Al
l(m

ai
nD

ire
ct

or
y,

ba
ck

up
D

ire
ct

or
y)

D
el

et
eF

ol
de

rC
on

te
nt

(m
ai

nD
ire

ct
or

y,
tr

ue
, t

ru
e)

tis
da

g,
 2

01
0

de
ce

m
be

r 1
4

‣
Co

py
 th

e
co
nt
en

t f
ro
m
 th

e
Vo

lv
oR

ob
ot
Li
br
ar
y/
D
ef
au

lt/
 fo

ld
er
 to

 th
e
ne

w
 ro

bo
t

fo
ld
er
.

2.
 C

op
y

D
ef

au
lt

fo
ld

er
 c

on
te

nt

V
C

C
 K

U
K

A
 R

ob
ot

 S
et

up
 A

ss
em

bl
y

Co
py

D
ef

au
ltF

ol
de

r(
)

tis
da

g,
 2

01
0

de
ce

m
be

r 1
4

‣
A
dd

 fi
rs
t l
in
es
 to

 S
et
U
p.
da

t:

‣
fo
llo
w
ed

 b
y
sp
ec
ifi
ed

 T
oo

l c
on

fig
ur
a:

on
:

3.
 In

iti
al

iz
e

Se
tu

p
fil

e

D
E
F
D
A
T

S
e
t
U
P

;
V
o
l
v
o

p
r
o
g
r
a
m

s
t
r
u
c
t
u
r
e

S
e
t
U
p

;
1
0
:
3
9
:
1
7

;
2
0
0
9
-
0
6
-
0
1

;
c
:
\
_
Y
3
5
2

K
U
K
A

R
e
u
s
e
\
K
U
K
A

V
S
S
\
Y
2
0
\
V
o
l
v
o
R
o
b
o
t
L
i
b
r
a
r
y
\
r
4
4
4
4

Y
o

u
r

p
at

h

;
*
*
*
T
O
O
L
S
*
*
*

;
[
T
O
O
L
0
]

;
T
o
o
l
L
i
b
r
a
r
y
:

;
T
T
y
p
e

#
N
o
n
e

;
E
X
T
E
R
N
A
L

F
A
L
S
E

;
T
o
o
l
S
t
a
n
d

F
A
L
S
E

;
T
c
p

{
X

0
.
0
,

Y

0
.
0
,

Z

0
.
0
,

A

0
.
0
,

B

0
.
0
,

C

0
.
0
}

; ;
T
L
O
A
D

{
M

-
1
.
0
,
C
M

{
X

0
.
0
,
Y

0
.
0
,
Z

0
.
0
,
A

0
.
0
,
B

0
.
0
,
C

0
.
0
}
,
J

{
X

0
.
0
,
Y

0
.
0
,
Z

0
.
0
}
}

;
[
T
O
O
L
1
]

;
T
o
o
l
L
i
b
r
a
r
y
:

S
t
u
d
G
u
n

;
#
S
t
u
d
G
u
n

;
E
x
t
e
r
n
a
l

F
A
L
S
E

;
T
o
o
l
S
t
a
n
d

F
A
L
S
E

;
T
c
p

{
X

0
.
0
,

Y

0
.
0
,

Z

0
.
0
,

A

0
.
0
,

B

0
.
0
,

C

0
.
0
}

; ;
T
L
O
A
D

{
M

-
1
.
0
,
C
M

{
X

0
.
0
,
Y

0
.
0
,
Z

0
.
0
,
A

0
.
0
,
B

0
.
0
,
C

0
.
0
}
,
J

{
X

0
.
0
,
Y

0
.
0
,
Z

0
.
0
}
}

V
al

u
e

s
fe

tc
h

e
d

 f
ro

m
th

e
 T

o
o

l
co

n
fi

gu
ra

ti
o

n
in

p
u

t
fo

rm

V
C

C
 K

U
K

A
 R

ob
ot

 S
et

up
 A

ss
em

bl
y

In
iti

al
iz

eS
et

U
pD

at
()

Ad
dT

oo
lsT

oS
et

U
pD

at
()

tis
da

g,
 2

01
0

de
ce

m
be

r 1
4

‣
A
dd

 P
ar
t a

nd
 L
oa
d
da
ta
 in
to
 S
et
up

.d
at
:

‣
an
d

‣
an
d
fr
om

 T
oo

l c
on

fig
ur
a:

on
 fo

rm

3.
 In

iti
al

iz
e

Se
tu

p
fil

e

;
*
*
*
P
A
R
T
D
A
T
A
*
*
*

;
R
O
B

;
P
a
r
t
R
e
f

#
W
o
r
l
d

;
P
a
r
t
F
r
a
m
e

{
X

0
.
0
,

Y

0
.
0
,

Z

0
.
0
,

A

0
.
0
,

B

0
.
0
,

C

0
.
0
}

;
P
a
r
t
L
O
A
D

{
M

-
1
.
0
,
C
M

{
X

0
.
0
,
Y

0
.
0
,
Z

0
.
0
,
A

0
.
0
,
B

0
.
0
,
C

0
.
0
}
,
J

{
X

0
.
0
,
Y

0
.
0
,
Z

0
.
0
}
}

;
P
2
8
C
a
r
1

;
P
a
r
t
R
e
f

#
W
o
r
l
d

;
P
a
r
t
F
r
a
m
e

{
X

0
.
0
,

Y

0
.
0
,

Z

0
.
0
,

A

0
.
0
,

B

0
.
0
,

C

0
.
0
}

;
P
a
r
t
L
O
A
D

{
M

-
1
.
0
,
C
M

{
X

0
.
0
,
Y

0
.
0
,
Z

0
.
0
,
A

0
.
0
,
B

0
.
0
,
C

0
.
0
}
,
J

{
X

0
.
0
,
Y

0
.
0
,
Z

0
.
0
}
}

;
*
*
*
L
O
A
D
D
A
T
A
*
*
*

;
G
u
n
L
o
a
d
1

;
{
M

-
1
.
0
,
C
M

{
X

0
.
0
,
Y

0
.
0
,
Z

0
.
0
,
A

0
.
0
,
B

0
.
0
,
C

0
.
0
}
,
J

{
X

0
.
0
,
Y

0
.
0
,
Z

0
.
0
}
}

;
G
r
i
p
p
e
r
L
o
a
d
1

;
{
M

-
1
.
0
,
C
M

{
X

0
.
0
,
Y

0
.
0
,
Z

0
.
0
,
A

0
.
0
,
B

0
.
0
,
C

0
.
0
}
,
J

{
X

0
.
0
,
Y

0
.
0
,
Z

0
.
0
}
}

;
P
a
r
t
L
o
a
d
1

;
{
M

-
1
.
0
,
C
M

{
X

0
.
0
,
Y

0
.
0
,
Z

0
.
0
,
A

0
.
0
,
B

0
.
0
,
C

0
.
0
}
,
J

{
X

0
.
0
,
Y

0
.
0
,
Z

0
.
0
}
}

;
D
e
f
a
u
l
t
T
o
o
l
=

1

;
L
a
s
t
T
o
o
l
=

1

;
L
a
s
t
T
o
o
l
S
t
a
n
d
=

1

V
al

u
e

s
fe

tc
h

e
d

 f
ro

m
th

e
 T

o
o

l
co

n
fi

gu
ra

ti
o

n
in

p
u

t
fo

rm

V
C

C
 K

U
K

A
 R

ob
ot

 S
et

up
 A

ss
em

bl
y

Ad
dP

ar
tA

nd
Lo

ad
D

at
aT

oS
et

U
pD

at
()

Ad
dT

oo
lC

on
fig

To
Se

tu
pD

at
()

tis
da

g,
 2

01
0

de
ce

m
be

r 1
4

‣
Co

py
 .k
fd
, .
ic
o
an
d
.b
m
p‐
fil
es
 fr
om

 k
rl_

ro
u'

ne
s/
G
en
er
al
/.
..
in
to
 T
em

pl
at
e

‣
U
pd

at
e
kf
d‐
fil
es
 if
 n
ee
de

d

4.
 G

en
er

al
 h

an
dl

er
 s

et
up

V
C

C
 K

U
K

A
 R

ob
ot

 S
et

up
 A

ss
em

bl
y

Co
py

Fi
le

sF
ro

m
G

en
er

al
D

ire
ct

or
y(

)
U

pd
at

eK
fd

Fi
le

()

tis
da

g,
 2

01
0

de
ce

m
be

r 1
4

‣
Co

py
 .s
rc
, .
da

t a
nd

 .s
ub

‐fi
le
s
fr
om

 k
rl_

ro
u'

ne
s/
G
en
er
al
/.
..
in
to
 d
ire

ct
or
y
gi
ve
n

in
 G
en

er
al
 H
an
dl
er
 in
i‐fi

le
s
un

de
r
ch
ap
te
r
[D
ire

ct
or
yR
1]
. e
.g
.:

‣
A
ls
o
co
lle
ct
 th

e
co
nt
en

t o
f a
ll
th
e
in
i‐fi

le
s
in
 a
 c
om

m
on

 in
i‐s
tr
in
g.
 T
hi
s
st
ri
ng
 is

la
te
r
on

 p
ar
se
d
(s
ee
 9
),
an
d
its
 c
on

te
nt
 th

en
 d
iv
id
ed

 d
ep

en
di
ng
 o
n
ch
ap
te
rs
.

4.
 G

en
er

al
 h

an
dl

er
 s

et
up

, c
on

t.

V
C

C
 K

U
K

A
 R

ob
ot

 S
et

up
 A

ss
em

bl
y

tis
da

g,
 2

01
0

de
ce

m
be

r 1
4

‣
Co

py
 fi
le
s
LT
oo

l.s
rc
 a
nd

 LT
oo

l.d
at
 fr
om

 fo
ld
er
 T
oo

lT
yp
es
/
to
 R
1/
LT
oo

ls
/

‣
In
 LT
oo

l.s
rc
 a
dd

 ”c
as
es
”
in
 e
ve
ry
 d
efi

ne
d
fu
nc
:o

n
fo
r
ea
ch
 to

ol
 in
 th

e
se
tu
p

5.
 T

oo
lT

yp
e

fil
es

 s
et

up

V
C

C
 K

U
K

A
 R

ob
ot

 S
et

up
 A

ss
em

bl
y

Ad
dF

or
kF

ile
s(

)

tis
da

g,
 2

01
0

de
ce

m
be

r 1
4

‣
Fo
r
ea
ch
 to

ol
 u
se
d
in
 th

e
se
tu
p
co
py
 a
ll
.s
rc
, .
da

t a
nd

 .s
ub

‐fi
le
s
fr
om

co
rr
es
po

nd
in
g
fo
ld
er
 in
 T
oo

lT
yp
es
/D
ev
ic
es
/
in
to
 R
1/
LT
oo

ls
/

‐
Re

na
m
e
th
e
fil
es
 w
ith

 th
e
to
ol
 n
um

be
r.
e.
g.
 LT
oo

lR
2.
da

t,
 LT
oo

l3
.s
rc

‐
In
 th

e
fil
es
, e
xc
ha
ng
e
al
l ”
su
n”
‐s
ym

bo
ls
 w
ith

 th
e
to
ol
 n
um

be
r

‐
Fo
r
sp
ec
ia
l t
oo

l fi
le
s,
 p
er
fo
rm

 c
er
ta
in
 a
dj
us
tm

en
ts
 (s
ee
 m

et
ho

d)

5.
 T

oo
lT

yp
e

fil
es

 s
et

up
, c

on
t.

V
C

C
 K

U
K

A
 R

ob
ot

 S
et

up
 A

ss
em

bl
y

Co
py

Fi
le

sF
ro

m
To

ol
Ty

pe
D

ev
ic

es
()

tis
da

g,
 2

01
0

de
ce

m
be

r 1
4

‣
Co

py
 .k
fd
, .
ic
o
an
d
.b
m
p‐
fil
es
 fr
om

 c
ho

se
n
ha
nd

le
r
fo
ld
er
s,
 a
nd

 d
ev
ic
e
fo
ld
er
s

in
 k
rl_

ro
u'

ne
s/
H
an

dl
er
/.
..
in
to
 T
em

pl
at
e

‣
U
pd

at
e
kf
d‐
fil
es
 if
 n
ee
de

d

6.
 O

pt
io

na
l h

an
dl

er
 s

et
up

V
C

C
 K

U
K

A
 R

ob
ot

 S
et

up
 A

ss
em

bl
y

Co
py

Fi
le

sF
ro

m
O

pt
io

na
lH

an
dl

er
D

ire
ct

or
y(

)
U

pd
at

eK
fd

Fi
le

()

tis
da

g,
 2

01
0

de
ce

m
be

r 1
4

‣
Co

py
 .s
rc
, .
da

t a
nd

 .s
ub

‐fi
le
s
fr
om

 c
ho

se
n
H
an

dl
er
 a
nd

 d
ev
ic
es
‐f
ol
de

rs
 in
to

di
re
ct
or
y
gi
ve
n
in
 H
an
dl
er
 in
i‐fi

le
s
un

de
r
ch
ap
te
r
[D
ire

ct
or
yR
1]
. e
.g
.:

‣
A
ls
o
co
lle
ct
 th

e
co
nt
en

t o
f a
ll
th
e
in
i‐fi

le
s
in
 th

e
co
m
m
on

 in
i‐s
tr
in
g.
 T
hi
s
st
ri
ng

is
 la
te
r
on

 p
ar
se
d
(s
ee
 9
),
an
d
its
 c
on

te
nt
 th

en
 d
iv
id
ed

 d
ep

en
di
ng
 o
n
ch
ap
te
rs
.

6.
 O

pt
io

na
l h

an
dl

er
 s

et
up

, c
on

t.

V
C

C
 K

U
K

A
 R

ob
ot

 S
et

up
 A

ss
em

bl
y

tis
da

g,
 2

01
0

de
ce

m
be

r 1
4

‣
A
dd

 to
 S
et
up

.d
at
 th

e
ge
ne

ra
l h
an
dl
er
 fo

ld
er
 n
am

es

‣
A
dd

 to
 S
et
up

.d
at
 th

e
ch
os
en

 o
p:

on
al
 h
an
dl
er
s

7.
 H

an
dl

er
 t

o
se

tu
p

fil
e

;
*
*
*
G
E
N
E
R
A
L

H
A
N
D
L
E
R
*
*
*

;
[
B
k
G
r
o
u
n
d
]

;
[
H
_
M
o
v
e
]

;
[
H
_
M
s
g
]

;
[
H
_
P
l
c
]

;
[
I
n
s
t
a
l
l
a
t
i
o
n
]

;
[
L
o
g
F
i
l
e
]

;
[
L
_
R
o
b
o
t
]

;
[
M
a
i
n
]

;
[
S
E
T
U
P
]

;
[
T
O
R
Q
T
E
C
H
]

;
*
*
*
O
P
T
I
O
N
A
L

H
A
N
D
L
E
R
*
*
*

;
[
P
L
C
T
y
p
e
]

;
Y
2
0

;
[
S
t
u
d
]

;
S
t
u
d

F
e

tc
h

e
d

 f
ro

m
S

e
tu

p
.H

a
n

d
le

rs

V
C

C
 K

U
K

A
 R

ob
ot

 S
et

up
 A

ss
em

bl
y

Ad
dG

en
er

al
H

an
dl

er
To

Se
tu

pD
at

()
Ad

dO
pt

io
na

lH
an

dl
er

To
Se

tu
pD

at
()

tis
da

g,
 2

01
0

de
ce

m
be

r 1
4

‣
Co

py
 L
Rx
xy
y.
sr
c,
 a
nd

 L
Rx
xy
y.
da

t f
ro
m
 c
ho

se
n
Te
m
pl
at
e
fo
ld
er
 in
to
 r
XX

YY
‐f
ol
de

r.

‣
Re

na
m
e
th
e
fil
es
 a
cc
or
di
ng
 to

 ro
bo

t n
um

be
r.

‣
Ex
ch
an
ge
 ”
xx
yy
”
w
ith

 ro
bo

t n
um

be
r
in
 th

e
fil
es
.

8.
 A

dj
us

t
ro

bo
t

de
pe

nd
in

g
fil

es

V
C

C
 K

U
K

A
 R

ob
ot

 S
et

up
 A

ss
em

bl
y

Co
py

Fi
le

sF
ro

m
Te

m
pl

at
eF

ol
de

r(
)

tis
da

g,
 2

01
0

de
ce

m
be

r 1
4

‣
Pa
rs
e
th
e
in
i‐s
tr
in
g,
 w
hi
ch
 is
 a
ss
em

bl
ed

 b
y
in
i‐fi

le
s
fr
om

 G
en

er
al
 a
nd

 O
p:

on
al

H
an
dl
er
 fo

ld
er
s
(s
ee
 5
 a
nd

 7
).
Th
e
ch
ap
te
r
he

ad
er
s
in
 th

e
in
i‐s
tr
in
g
te
lls
 w
he

re

to
 p
ut
 th

e
in
fo
rm

a:
on

. A
n
ex
am

pl
e:

9.
 D

iv
id

e
in

i-s
tr

in
g

co
nt

en
t

ac
co

rd
in

g
to

 c
ha

pt
er

s

[C
ON

FI
G]

;
F
O
L
D

G
e
n
e
r
a
l

V
a
r
i
a
b
l
e
s

D
E
C
L

L
O
A
D

T
L
O
A
D

D
E
C
L

L
O
A
D

P
A
R
T
L
O
A
D

;

V
a
r
i
a
b
l
e

d
e
c
l
e
r
a
t
i
o
n

f
o
r

a
p
p
r
o
x
i
m
a
t
i
o
n

D
E
C
L

I
N
T

E
X
A
C
T
=
0

D
E
C
L

I
N
T

F
I
N
E
=
1
0

D
E
C
L

I
N
T

C
o
a
r
s
e
=
1
0
0

;
E
N
D
F
O
L
D

[I
NI

T]
M
s
g
I
n
i
t

(

)

M
o
v
I
n
i
t
A
l
l

(

)

I
n
i
T
o
o
l

(
T
o
o
l
O
n
R
o
b
o
t
(
)
)

l
R
x
x
y
y

(

)

I
n
i
t
P
l
c

(

)

[V
ol

vo
Te

ch
Kf
d]

{S
ta
tK
ey
Sc
ri
pt
}

D
e
c
l

S
T
A
T
K
E
Y
B
A
R

T
o
p
S
t
a
t
K
e
y
b
a
r

[C
ON

FI
G]

[B
ac

kg
ro

un
dI
ni
t]

[B
ac

kg
ro

un
dL
oo
p]

[M
en

uK
UK

AI
ni
]

{V
OL
VO
Ke
ys
}

V
P
T
P
=

P
t
p
,

2
0
1
0
,

I
N
L
I
N
E
F
O
R
M
,

K
U
K
A
T
P
U
S
E
R
;
M
o
v
;
P

V
L
I
N
=

L
i
n
,

2
0
1
0
,

I
N
L
I
N
E
F
O
R
M
,

K
U
K
A
T
P
U
S
E
R
;
M
o
v
;
L

{V
OL
VO
Ba
r}

V
o
l
v
o
M
o
v
e
e
x
t
T
e
c
h
=

V
E
X
T
P
T
P
,
V
E
X
T
L
I
N
,
V
E
X
T
C
I
R
C
,
V
E
x
t
C
h
e
c
k
P
o
s

A
dd

 th
is
 to

 a
 s
tr
in
g
ca
lle
d
st
rC
on

fig

A
dd

 th
is
 to

 a
 s
tr
in
g
ca
lle
d
st
rI
ni
t

A
dd

 th
is
 to

 th
e
su
bc
ha
pt
er
 {S

ta
tK
ey
Sc
ri
pt
}

in
 a
 s
tr
in
g
ca
lle
d
st
rV
ol
vo
Te
ch
Kf
d

A
dd

 n
ot
hi
ng

 to
 s
tr
Co

nfi
g,
 s
tr
Ba

ck
G
ro
un

dI
ni
t

an
d
st
rB
ac
kg
ro
un

dL
oo

p

A
dd

 th
is
 to

 th
e
su
bc
ha
pt
er
s
{V
O
LV
O
Ke

ys
}

an
d
{V
O
LV
O
Ba

r}
 re

sp
ec
:v
el
y
in
 a
 s
tr
in
g

ca
lle
d
st
rM

en
uK

uk
aI
ni

V
C

C
 K

U
K

A
 R

ob
ot

 S
et

up
 A

ss
em

bl
y

Pa
rs

eI
ni

St
rin

g(
)

tis
da

g,
 2

01
0

de
ce

m
be

r 1
4

‣
Pa
rs
e
th
e
st
ri
ng
 s
tr
Co

nfi
g
(s
ee
 s
te
p
9)
, a
nd

 ra
is
e
a
w
ar
ni
ng
 fo

r
ev
er
y
do

ub
le

In
pu

t/
O
ut
pu

t s
ig
na
l t
ha
t i
s
fo
un

d.

‣
A
dd

 to
 s
tr
Co

nfi
g
th
e
To
ol
, P
ar
t a

nd
 L
oa
d
de

fin
i:
on

s.

10
.

C
he

ck
 D

ou
bl

e
IO

;
F
O
L
D

M
e
d
i
a

S
i
g
n
a
l
s

S
I
G
N
A
L

I
_
A
i
r
P
r
e
s
s

$
I
N
[
4
]

;
A
i
r

P
r
e
s
s
u
r
e

I
n
p
u
t

S
I
G
N
A
L

I
_
A
i
r
P
r
e
s
2
n
d

$I
N[
6]

;
2
n
d

A
i
r

P
r
e
s
s
u
r
e

I
n
p
u
t

;
E
N
D
F
O
L
D

;
F
O
L
D

M
e
d
i
a

S
i
g
n
a
l
s

;

I
/
O

S
i
g
n
a
l
s

S
I
G
N
A
L

I
_
W
a
t
e
r
F
l
o
w

$
I
N
[
5
]

;
W
a
t
e
r

F
l
o
w

I
n
p
u
t

S
I
G
N
A
L

I
_
W
a
t
e
r
P
r
s

$I
N[
6]

;
W
a
t
e
r

P
r
e
s
s
u
r
e

I
n
p
u
t

S
I
G
N
A
L

O
_
C
o
o
l
W
a
t
e
r

$
O
U
T
[
1
]

;
W
a
t
e
r

C
o
o
l
i
n
g

O
u
t
p
u
t

;
E
N
D
F
O
L
D

Ra
is
e
a
w
ar
ni
ng
 s
in
ce
 $
IN
[6
] i
s
pr
es
en

t i
n
bo

th
.

A
llo
w
 th

e
do

ub
le
 to

 b
e
ig
no

re
d.

;
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

;

T
O
O
L

d
e
f
i
n
i
t
i
o
n

R
x
x
y
y

;
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

D
E
C
L

T
O
O
L
T
y
p
e

N
O
T
O
O
L
=
{
T
O
O
L
I
d

0
,

T
c
p

{
X

0
.
0
,

Y

0
.
0
,

Z

0
.
0
,

A

0
.
0
,

B

0
.
0
,

C

0
.
0
}
,

E
X
T
E
R
N
A
L

F
A
L
S
E
,
T
o
o
l
S
t
a
n
d

F
A
L
S
E
,

T
T
y
p
e

#
N
o
n
e
,

T
L
O
A
D

{
M

-
1
.
0
,
C
M

{
X

0
.
0
,
Y

0
.
0
,
Z

0
.
0
,
A

0
.
0
,
B

0
.
0
,
C

0
.
0
}
,
J

{
X

0
.
0
,
Y

0
.
0
,
Z

0
.
0
}
}
}

D
E
C
L

T
O
O
L
T
y
p
e

T
O
O
L
1
=
{
T
O
O
L
I
d

1
,

T
c
p

{
X

0
.
0
,

Y

0
.
0
,

Z

0
.
0
,

A

0
.
0
,

B

0
.
0
,

C

0
.
0
}
,

E
X
T
E
R
N
A
L

F
A
L
S
E
,
T
o
o
l
S
t
a
n
d

F
A
L
S
E
,

TT
yp
e
#G
un

,

T
L
O
A
D

{
M

-
1
.
0
,
C
M

{
X

0
.
0
,
Y

0
.
0
,
Z

0
.
0
,
A

0
.
0
,
B

0
.
0
,
C

0
.
0
}
,
J

{
X

0
.
0
,
Y

0
.
0
,
Z

0
.
0
}
}
}

D
E
C
L

T
O
O
L
T
y
p
e

T
O
O
L
2
=
{
T
O
O
L
I
d

2
,

T
c
p

{
X

0
.
0
,

Y

0
.
0
,

Z

0
.
0
,

A

0
.
0
,

B

0
.
0
,

C

0
.
0
}
,

E
X
T
E
R
N
A
L

F
A
L
S
E
,
T
o
o
l
S
t
a
n
d

F
A
L
S
E
,

TT
yp
e
#G
un

,

T
L
O
A
D

{
M

-
1
.
0
,
C
M

{
X

0
.
0
,
Y

0
.
0
,
Z

0
.
0
,
A

0
.
0
,
B

0
.
0
,
C

0
.
0
}
,
J

{
X

0
.
0
,
Y

0
.
0
,
Z

0
.
0
}
}
}

D
E
C
L

T
O
O
L
T
y
p
e

T
O
O
L
3
=
{
T
O
O
L
I
d

3
,

T
c
p

{
X

0
.
0
,

Y

0
.
0
,

Z

0
.
0
,

A

0
.
0
,

B

0
.
0
,

C

0
.
0
}
,

E
X
T
E
R
N
A
L

F
A
L
S
E
,
T
o
o
l
S
t
a
n
d

F
A
L
S
E
,

TT
yp
e
#G
un

,

T
L
O
A
D

{
M

-
1
.
0
,
C
M

{
X

0
.
0
,
Y

0
.
0
,
Z

0
.
0
,
A

0
.
0
,
B

0
.
0
,
C

0
.
0
}
,
J

{
X

0
.
0
,
Y

0
.
0
,
Z

0
.
0
}
}
}

;
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

;

T
O
O
L

d
e
f
i
n
i
t
i
o
n

R
x
x
y
y

;
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

D
E
C
L

T
O
O
L
T
y
p
e

N
O
T
O
O
L
=
{
T
O
O
L
I
d

0
,

T
c
p

{
X

0
.
0
,

Y

0
.
0
,

Z

0
.
0
,

A

0
.
0
,

B

0
.
0
,

C

0
.
0
}
,

E
X
T
E
R
N
A
L

F
A
L
S
E
,
T
o
o
l
S
t
a
n
d

F
A
L
S
E
,

T
T
y
p
e

#
N
o
n
e
,

T
L
O
A
D

{
M

-
1
.
0
,
C
M

{
X

0
.
0
,
Y

0
.
0
,
Z

0
.
0
,
A

0
.
0
,
B

0
.
0
,
C

0
.
0
}
,
J

{
X

0
.
0
,
Y

0
.
0
,
Z

0
.
0
}
}
}

D
E
C
L

T
O
O
L
T
y
p
e

T
O
O
L
1
=
{
T
O
O
L
I
d

1
,

T
c
p

{
X

0
.
0
,

Y

0
.
0
,

Z

0
.
0
,

A

0
.
0
,

B

0
.
0
,

C

0
.
0
}
,

E
x
t
e
r
n
a
l

F
A
L
S
E
,
T
o
o
l
S
t
a
n
d

F
A
L
S
E
,

TT

yp
e

#S
tu

dG
un

,

T
L
O
A
D

{
M

-
1
.
0
,
C
M

{
X

0
.
0
,
Y

0
.
0
,
Z

0
.
0
,
A

0
.
0
,
B

0
.
0
,
C

0
.
0
}
,
J

{
X

0
.
0
,
Y

0
.
0
,
Z

0
.
0
}
}
}

D
E
C
L

T
O
O
L
T
y
p
e

T
O
O
L
2
=
{
T
O
O
L
I
d

2
,

T
c
p

{
X

0
.
0
,

Y

0
.
0
,

Z

0
.
0
,

A

0
.
0
,

B

0
.
0
,

C

0
.
0
}
,

E
X
T
E
R
N
A
L

F
A
L
S
E
,
T
o
o
l
S
t
a
n
d

F
A
L
S
E
,

TT

yp
e

#U
nD

ef
in

ed
,

T
L
O
A
D

{
M

-
1
.
0
,
C
M

{
X

0
.
0
,
Y

0
.
0
,
Z

0
.
0
,
A

0
.
0
,
B

0
.
0
,
C

0
.
0
}
,
J

{
X

0
.
0
,
Y

0
.
0
,
Z

0
.
0
}
}
}

D
E
C
L

T
O
O
L
T
y
p
e

T
O
O
L
3
=
{
T
O
O
L
I
d

3
,

T
c
p

{
X

0
.
0
,

Y

0
.
0
,

Z

0
.
0
,

A

0
.
0
,

B

0
.
0
,

C

0
.
0
}
,

E
X
T
E
R
N
A
L

F
A
L
S
E
,
T
o
o
l
S
t
a
n
d

F
A
L
S
E
,

TT

yp
e

#U
nD

ef
in

ed
,

T
L
O
A
D

{
M

-
1
.
0
,
C
M

{
X

0
.
0
,
Y

0
.
0
,
Z

0
.
0
,
A

0
.
0
,
B

0
.
0
,
C

0
.
0
}
,
J

{
X

0
.
0
,
Y

0
.
0
,
Z

0
.
0
}
}
}

V
C

C
 K

U
K

A
 R

ob
ot

 S
et

up
 A

ss
em

bl
y

Ch
ec

kD
ou

bl
eI

O
()

Ad
dT

oo
lIn

fo
To

Co
nfi

gD
at

()

tis
da

g,
 2

01
0

de
ce

m
be

r 1
4

‣
To
 c
re
at
e
th
e
M
en
ue
Ke
yU

se
r.i
ni
, w

hi
ch
 is
 a
 s
et
up

 d
oc
um

en
t f
or
 th

e
te
ac
h

pe
nd

an
t,
 p
ar
se
 s
tr
M
en
uK

uk
aI
ni
 (c
re
at
ed

 in
 s
te
p
9)
 in
to
 th

e
te
m
pl
at
e
fil
e

M
en
ue
Ke
yU

se
r.t
m
p
fo
un

d
in
 th

e
G
en
er
al
 d
ire

ct
or
y.
 T
he

 d
iff
er
en

t c
ha
pt
er
s
ar
e

ha
nd

le
d
a
lif

le
 b
it
di
ffe

re
nt
ly
, b
ut
 th

ey
 m

ap
 to

 th
e
fin

al
 fi
le
 li
ke
 th

is
:

11
. P

ar
se

 n
ew

 in
i-s

tr
in

gs

[
M
e
n
u
K
U
K
A
I
n
i
]

{
V
O
L
V
O
K
e
y
s
}

V
S
t
u
d
I
n
i
t
=

I
n
i
t
,

2
0
1
0
,

I
N
L
I
N
E
F
O
R
M
,

K
U
K
A
T
P
U
S
E
R
;
S
T
U
D
;
I
n
i
t

V
S
t
u
d
W
e
l
d
=

W
e
l
d
,

2
0
1
0
,

I
N
L
I
N
E
F
O
R
M
,

K
U
K
A
T
P
U
S
E
R
;
S
T
U
D
;
W
e
l
d

V
o
l
v
o
S
t
u
d
=

S
t
u
d
,

,

,

,
P
O
P
U
P
,
V
o
l
v
o
S
t
u
d
T
e
c
h

{
V
O
L
V
O
B
a
r
}

V
o
l
v
o
S
t
u
d
T
e
c
h
=

V
S
T
U
D
I
N
I
T
,
V
S
T
U
D
W
E
L
D

{
m
T
E
C
H
N
O
L
O
G
I
E
}

V
o
l
v
o
S
t
u
d

;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;

[
S
O
F
T
K
E
Y
S
]

V
S
t
u
d
I
n
i
t
=

I
n
i
t
,

2
0
1
0
,

I
N
L
I
N
E
F
O
R
M
,

K
U
K
A
T
P
U
S
E
R
;
S
T
U
D
;
I
n
i
t

V
S
t
u
d
W
e
l
d
=

W
e
l
d
,

2
0
1
0
,

I
N
L
I
N
E
F
O
R
M
,

K
U
K
A
T
P
U
S
E
R
;
S
T
U
D
;
W
e
l
d

V
o
l
v
o
S
t
u
d
=

S
t
u
d
,

,

,

,
P
O
P
U
P
,
V
o
l
v
o
S
t
u
d
T
e
c
h

m
i
F
H
_
A
r
c
h
i
v
B
a
c
k
u
p

=

B
a
c
k
u
p
2
D
,

3
2
,

F
I
L
E
H
A
N
D
L
E
R
,
B
a
c
k
u
p
;
B
a
c
k
u
p

c
m
i
J
U
S
T
A
G
E
_
L
O
A
D
_
L
O
A
D
_
N
O
O
F
F
S
E
T

=

R
e
s
t
o
r
e
,

1
2
,

J
U
S
T
A
G
E
,

S
e
t
u
p
M
a
s
t
e
r
L
o
a
d
L
o
a
d
N
o
O
f
f
s
e
t
,

,
m
i
J
U
S
T
A
G
E
_
L
O
A
D
_
L
O
A
D
_
N
O
O
F
F
S
E
T

m
i
C
a
l
l
T
R
A
C
C

=

T
R
A
C
C
,

4
,

O
F
F
L
I
N
E
,

u
t
i
l
\
T
R
A
C
C
D
M
I
.
e
x
e

m
i
C
a
l
l
I
O
M
O
N

=

V
O
L
V
O

I
O
-
M
o
n
i
t
o
r
,

5
,

O
F
F
L
I
N
E
,

u
t
i
l

\
M
O
N
I
3
2
X
.
e
x
e

;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;

[
#
M
E
N
U
]

V
o
l
v
o
S
t
u
d
T
e
c
h
=

V
S
T
U
D
I
N
I
T
,
V
S
T
U
D
W
E
L
D

;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;

[
C
O
M
M
A
N
D
]

;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;

[
B
U
T
T
O
N
]

;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;
;

[
M
O
V
E
]

V
o
l
v
o
S
t
u
d

=

,

M
E
N
U
#
m
T
e
c
h
n
o
l
o
g
y

Li
ne

s
un

de
r

{V
O
LV
O
Ke
ys
}

ar
e
co
pi
ed

 to
[S
O
FT
KE
YS
]

Li
ne

s
un

de
r

{V
O
LV
O
Ba

r}

ar
e
co
pi
ed

 to
[#
M
EN

U
]

Li
ne

s
un

de
r
ch
ap
te
rs
 w
hi
ch
 s
ta
rt
s

w
ith

 {m
SO

M
ET
H
IN
G
}
ar
e
in
cl
ud

ed

in
 [M

O
VE

] a
nd

 re
w
ri
f
en

 a
s:

Li
ne

Bl
aB

la
 =
 ,
M
EN

U
#m

So
m
et
hi
ng

Th
es
e
an
d
ot
he

r
lin
es
 a
re
 in
cl
ud

ed
 in

M
en
ue
Ke
yU

se
r.t
m
p

V
C

C
 K

U
K

A
 R

ob
ot

 S
et

up
 A

ss
em

bl
y

Pa
rs

eM
en

ue
Ke

yU
se

r(
)

tis
da

g,
 2

01
0

de
ce

m
be

r 1
4

‣
Si
m
ila
ri
ly
 to

 s
tr
M
en
uK

uk
aI
ni
, d
iv
id
e
st
rV
ol
vo
Te
ch
Kf
d
in
to
 th

e
ch
ap
te
rs
:

‣
{S
TA
TK
EY
SC
RI
PT
}

‣
{S
TA
TK
EY
BA

R}
**

‣
{S
TA
TK
EY
D
EC
L}
*

‣
{S
TA
TK
EY
SE
T}
*

‣
*
Ju
st
 c
op

y
th
e
ro
w
s
un

de
r
th
is
 in
to
 s
tr
in
gs
 s
tr
Sc
rip

t,
 s
tr
D
ec
la
re
 a
nd

 s
tr
Se
t

‣
**
 C
re
at
e
w
ith

 e
ac
h
ro
w
 u
nd

er
 th

is
 s
tr
in
g
st
rB
ar
:

SE
T
To
pS
ta
tK
ey
ba

r=
{;
ST
AT
KE
Y[
1]
 r
ow

1,
 S
TA
TK
EY
[2
]
ro
w
2.
..}

‣
Cr
ea
te
 th

e
ne

w
 s
tr
Vo

lv
oT
ec
hK

fd
 li
ke
 th

is
:

st
rV
ol
vo
Te
ch
Kf
d
=
st
rS
cr
ip
t +

 s
tr
D
ec
l +
 s
tr
Ba

r +
 s
tr
Se
t;

11
. P

ar
se

 n
ew

 in
i-s

tr
in

gs
, c

on
t.

V
C

C
 K

U
K

A
 R

ob
ot

 S
et

up
 A

ss
em

bl
y

Pa
rs

eV
ol

vo
Te

ch
Kf

d(
)

tis
da

g,
 2

01
0

de
ce

m
be

r 1
4

‣
W
ith

 th
e
st
ri
ng
s
cr
ea
te
d
in
 s
te
p
9,
 a
nd

 th
e
ad
ju
st
ed

 s
tr
Co

nfi
g
fr
om

 s
te
p
10

, a
dd

st
ar
t a

nd
 fi
ni
sh
 s
ta
te
m
en

t a
nd

 c
re
at
e
th
e
fo
llo
w
in
g
fil
es
:

12
. A

ss
em

bl
e

st
an

da
rd

 fi
le

s

”
D
E
F
D
A
T

$
C
O
N
F
I
G

P
U
B
L
I
C
”

st
rC
on

fig
”
E
N
D
D
A
T
”

in
to
 R
1\
co
nfi

g.
da

t

”
D
E
F

B
k
G
d
I
n
i
t
(
)
”

st
rB
ac
kG

ro
un

dI
ni
t

”
E
N
D
”

in
to
 R
1\
lR
ob

ot
\B
kG

dI
ni
t.
su
b

”
D
E
F

B
k
G
d
L
o
o
p
(
)
”

st
rB
ac
kG

ro
un

dL
oo

p
”
E
N
D
”

in
to
 R
1\
lR
ob

ot
\B
kG

dL
oo

p.
su
b

W
ith

in
 th

e
in
i‐s
tr
in
g
(s
tr
In
i)
‘lR

xx
yy
’ i
s
ch
an
ge
d
to
 ‘l
R4

44
4’
 e
tc

”
D
E
F

I
N
I
T
(
)
”

st
rI
ni
t

”
E
N
D
”

in
to
 R
1\
lR
ob

ot
\i
ni
t.
sr
c

”
D
E
F
D
A
T

S
e
t
U
P
”

st
rS
et
up

”
E
N
D
D
A
T
”

in
to
 S
et
U
p.
da

t

Th
is
 fo

r
ex
am

pl
e

re
su
lts
 in
 th

e
fin

al

fil
e
Bk

G
dL
oo

p.
su
b

A
nd

 th
is
 re

su
lts
 in

in
it
.s
rc

V
C

C
 K

U
K

A
 R

ob
ot

 S
et

up
 A

ss
em

bl
y

As
se

m
bl

eS
ta

nd
ar

dF
ile

s(
)

tis
da

g,
 2

01
0

de
ce

m
be

r 1
4

‣
If
al
l s
te
ps
 in
 th

is
 p
ro
ce
du

re
 h
as
 b
ee
n
co
rr
ec
tly

 e
xe
cu
te
d
th
e
fo
ld
er
 b
ac
ku
p
is

de
le
te
d.

‣
If
pr
ob

le
m
s
ha
ve
 o
cc
ur
ed

 th
e
se
tu
p
ge
ne

ra
:o

n
w
ill
 a
bo

rt
. T
he

 b
ac
ku
p
fo
ld
er

ca
n
th
an
 b
e
us
ed

 to
 re

st
or
e
th
e
ol
d
se
tu
p.

13
.

D
el

et
e

ba
ck

up
 fo

ld
er

V
C

C
 K

U
K

A
 R

ob
ot

 S
et

up
 A

ss
em

bl
y

D
el

et
eF

ol
de

r(
ba

ck
up

D
ire

ct
or

y,
fa

lse
, f

al
se

)

tis
da

g,
 2

01
0

de
ce

m
be

r 1
4

