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Abstract
With the emergence of autonomous transport vehicles it becomes desirable to sim-
ulate and evaluate their behavior before they begin operating on the open road. In
this work we study three simulator platforms for traffic and logistics simulation and
evaluate them over eleven criteria and three scenarios. We find that none of the
simulators is strictly better than any of the others, instead excelling in handling dif-
ferent classes of problems, such as simulation of goods transport or fuel consumption
estimation.

Keywords: Traffic, logistics, simulation, transportation, autonomous vehicles, sur-
vey.
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1
Introduction

In the European Union, the transportation sector directly employs around 10 million
people and comprises 5 % of GDP [1]. At the same time, the transportation sector
accounts for 14 % of global greenhouse gas emissions [2], the vast majority of which
— 72 %, or 10 % of all emissions — come from road transport [3]. In order to
improve the efficiency of the transport sector while lessening the impact on the
environment, researchers are looking to both the automation and electrification of
transport vehicles.

Volvo Group Trucks Technology (Volvo GTT), a research and development divi-
sion of Volvo Group, are making advances in automating short-range, high-demand,
repetitive transport tasks. In 2016 Volvo presented a pilot autonomous vehicle for
heavy transport (AV-HT) for use in underground mining operations [4] and recently
presented an electric AV-HT intended for use in ports or similar logistics centers [5].
Further advances in the field of autonomous vehicles (AVs), broadening the scope of
what AVs can do, may soon follow.

While these two examples are quite different, both in form and purpose, they are
both AVs. Developing and testing such advanced vehicles, as well as designing the
transport networks in which they operate, can be costly and — if the AVs travel
on public road — dangerous. Indeed, as soon as the network exceeds one or two
stretches of public road, practical trials become impossible. To work around this
problem, engineers may instead seek to simulate the vehicles. Such simulations are
substantial undertakings which necessarily must start by selecting the right tool for
the task. In this thesis, we will survey a number of simulation tools in order to find
what they are capable of, where they fall short, and the problems they are intended
to solve.

1.1 Problem description

There are numerous scenarios in which one may wish to employ AV-HTs and there
may be any number of properties one wishes to study before deploying them into
the real world. Doing real-world studies is, of course, the most direct approach,
but it is often prohibitively expensive and time consuming while also adding many
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1. Introduction

uncontrollable variables.

In order to allow engineers to study strictly controlled, simplified models of complex
systems, we can use simulation. Traffic and logistics simulations are no exception —
indeed, modeling infrastructure before roads are built and tracks are laid is essential,
as both are extremely expensive to re-build later.

In this thesis we will be looking at such simulations from a different angle — instead
of designing the roads, we are designing the vehicles and the fleets they operate
in. We may also get to decide how many loading/unloading bays we have or where
charging ports are, but we cannot re-draw roads.

The potential use-cases for a fleet of AV-HTs are many and they may not have a lot
in common. In the case of an underground mine, we are moving through rough and
hazardous terrain, but we also have absolute control over any other traffic along any
given route and perhaps even where the routes are. In some other scenario, say a
port-to-distribution center network, our AV-HT may need to use public roads and
thus have to interact with other vehicles, both human-operated and autonomous, as
well as pedestrians.

There are also any number of details we wish to study in these scenarios. Perhaps
we wish to study different models for AV pathfinding, and don’t want other vehicles
to disturb. On the other end of the spectrum, we may want to study fuel consump-
tion in a busy traffic network, looking at the effect of both road slope and load
weight while ambient traffic causes interference. We may also want to study the
optimal network configurations, regarding number of AVs, number of loading/un-
loading bays, and charging/fueling stations, seeking to provide robust service at
minimal cost.

All in all, there are many problems engineers can encounter when building a fleet of
AV-HTs and its auxiliary systems. The testing of the vehicles, their logic, and the
supporting system can be done both faster and cheaper if simulated instead of tried
in practice. This thesis sets out to discover the strengths and weaknesses of a few
such simulators, so that these engineers can choose the right tool for their problem.

1.2 Goals and aims

Working from the problem description above, we studied three traffic- and logistics
simulators. These simulators were selected since they were freely available, both as
source and as binaries. Our three simulators are:

• Multi-Agent Transport Simulation (MATSim) [6]

• RinSim [7]

• Simulation of Urban MObility (SUMO) [8]
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1. Introduction

The simulators were subjected to a three-part analysis, described in chapter 3, then
critically compared and contrasted against each other. The goal of this work is to
show how suitable each simulator is to handle different types of problems.

1.3 Limitations

When seeking to model and simulate a complex system — such as the real world or
the movement of a vehicle fleet — there are any number of aspects one can choose
to focus on. For this reason, we have made a number of limitations which we will
not consider or evaluate. These are:

• Weather The weather can have a profound effect on vehicles and traffic. Fog
can limit max speed, wind can pose a hazard to high or long vehicles, and rain
or snow may interfere with AV sensors. These are important details which
should be taken into account, but they stray too far from the primary purpose
of this thesis.

• Road conditions The condition of the road itself can impact how a vehicle
behaves while driving on it. A cold, icy asphalt road will behave differently
than a hot, wet, gravel road or, indeed, an uneven rock “road” underground.
The surface that our vehicles drive on will impact their performance and fuel
consumption, but we will not look into simulation of these different surfaces.

• Platooning A common topic in research regarding AVs is platooning, mean-
ing that AVs drive close to each other and move as a unit in order to gain
from shared aerodynamic properties. This can, for example, reduce fuel con-
sumption of vehicles. Simulating platooning and, in particular, the gains from
it, is dependent on an aerodynamic model of each vehicle. Like the previous
limitations, this is an important aspect for a realistic simulation, but it strays
too far from the primary purpose of this work. For that reason, we will not
consider platooning.

1.4 Contribution

The work put forth in this thesis expands on the current understanding of traffic-
and logistics simulators, seeking to critically evaluate and compare their capabilities.
We will be focusing on freely available simulators, as they allow anyone, anywhere
to pick it up and start working without needing to pay a license cost. However,
the simulators are not created equal, so in order to find the one best suited for a
particular problem, we provide this survey, analysis, and summary.

This thesis can be used as a starting point, both for a broader study of similar
simulators, or for a deeper inspection of a subset of our simulators. We also foresee
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1. Introduction

this work to be of use to someone seeking to develop an entirely new traffic or logistics
simulator, in order to understand common features and shortcomings. Finally, it
should serve as a guide to the engineer who has a problem and needs to select a
simulator in which to solve it.

1.5 Outline

This thesis will begin by presenting the extant research regarding traffic and logistics
simulators as well as related theoretical problems in chapter 2, then proceed to
describe how we intend to compare our set of simulators in chapter 3. In chapter 4
we present our results which are then discussed and analyzed in chapter 5. The
thesis closes with our conclusions and suggestions for further work in chapter 6.
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2
Background

In this chapter, we will introduce traffic and logistics simulation, along with liter-
ature discussing the construction of such simulators, in section 2.1. In section 2.2
we will focus particularly on the simulation on AVs, and then close out the chap-
ter by introducing the theoretical Pickup and Delivery Problem and its variants in
section 2.3.

2.1 Traffic simulation: a summary

Traffic simulation has been a topic of research since the 1950s, as noted by Krauß [9]
and Behrisch et al. [10]. These simulations were initially concerned with modeling
the ebbs and flows in traffic for the benefit of civil engineers designing the road
networks. Since then, simulation has evolved. The simulation of traffic patterns is
still relevant, but models to simulate even larger traffic networks at even grander
timescales have emerged. This has given rise to a classification of simulator model
scope: microscopic, mesoscopic, and macroscopic. These will be introduced below.

2.1.1 Scopes: micro, meso, and macro

In a microscopic model each individual element of traffic is modeled and simulated
independently. An example is Krauß’s model [9] wherein each vehicle exists as a
separate and unique entity in the simulation and traffic flows happen as a result of
the interactions between vehicles. Similarly, as noted by Behrisch et al. [10], each
road segment — or even lane — is modeled individually. Indeed, the lane-changing
behavior of vehicles is important in microscopic models.

In contrast, a macroscopic model is one where individual vehicles are less important
than the flows they create. These are then modeled as statistical distributions,
detailing traffic density rather than the position of specific vehicles. Such models
often consider longer time steps than a microscopic model. For example, as detailed
in Adnan et al. [11], a microscopic model might use a time step of a fraction of a
second to a few seconds, while a macroscopic model can use steps of a day or more.
At time steps of a day or longer modeling traffic no longer makes sense — such a
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2. Background

simulator will instead look at long-term movements in population density or land
use.

A mesoscopic model is an in-between model — it is not a clearly defined class
rather than a collective name for models which are neither fully microscopic or
fully macroscopic. Such a model could, for example, have a macroscopic view of
traffic flow in general, but allow for microscopic simulation of specific vehicles. Such
vehicles would be slowed depending on the macroscopic traffic density around them,
rather than by interacting with other microscopic vehicles.

In this work, all simulators considered use microscopic models.

2.1.2 The reason for simulating

As noted above, one of the key reasons behind the development of traffic simulators
is to evaluate the performance of roads before they are built. In the same vein,
an engineer could simulate and evaluate how a road network performed if traffic
conditions changed.

One common task for microscopic traffic simulation is designing and evaluating Traf-
fic Light System (TLS) programming, such as in Vaudrin, Erdmann, and Capus [12].
The interplay between individual intersections can have a far-reaching impact on the
larger traffic system. For this reason, TLS-controlled intersection are often exten-
sively simulated to find a programming which maximizes throughput for most traffic
conditions.

Hernández-Paniagua et al. [13] exemplifies another problem which benefits from
traffic simulation, namely emissions modeling. Hernández-Paniagua et al.’s study
used microscopic simulation but emissions modeling could be done using any scope,
as traffic density plays a more significant role than individual vehicle behavior.

Closely related to emissions modeling is fuel consumption modeling. Basso et al. [14]
studied methods for optimal routing of electric buses such that they would use the
minimum amount of power possible. Gallet, Massier, and Hamacher [15] did a sim-
ilar study, looking at the energy demand of introducing electric buses in Singapore.
Both studies employed microscopic simulation in order to accurately calculate the
power consumption of each individual bus.

Studies such as Basso et al. and Gallet, Massier, and Hamacher are interesting for
both traffic researchers and vehicle manufacturers. The former wants to study the
effects on traffic — or auxiliary systems, as in Gallet, Massier, and Hamacher — of
introducing new types of vehicles, while the latter wants to study how traffic affects
their new vehicle models. In recent years microscopic traffic simulation has begun to
incorporate AVs for the above mentioned reasons, among others. Such simulations
are introduced in the next section.
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2. Background

2.2 Simulating autonomous vehicles

Autonomous vehicles do not behave like human-operated vehicles. They do not need
to rest, nor stop for food or water. They respond faster than human drivers do, and
can — generally — replan their routes faster than humans can when faced with
unfavorable conditions. They are also able to share information with each other
or the environment — Vehicle-to-Vehicle (V2V) or Vehicle-to-Infrastructure (V2I)
communication, respectively — in ways that human drivers cannot.

As an example, Gora simulates the movement of communicating AVs and using the
data gathered from them to predict and optimize traffic flow [16]. Gong, Shen,
and Du similarly make use of communicating AVs to simulate a self-regulating pla-
toon [17]. A platoon — or platooning — is a formation of vehicles arranged such that
they benefit from each others’ slipstream, minimizing aerodynamic drag throughout
the platoon.

Independent AVs could be used to construct a distributed network of personal trans-
ports, as studied in Fagnant and Kockelman [18]. Such a network could lower traffic
congestion and emissions while also increasing mobility for persons who otherwise
have difficulties getting around, according to Litman [19].

The transport sector has gained interest in AV-HT in order to automate the move-
ment of goods, rather than people. As mentioned in chapter 1 above, Volvo GTT
has announced two such vehicles which will be used for short-distance, repetitive
transport tasks. Here, simulation could play a role in the design of the vehicle, its
control software, or the design of the transport network it will operate in. Optimiz-
ing the flow of goods in such transport networks is a difficult problem which can be
described in terms of a Pickup and Delivery Problem. This will be described in the
next section.

2.3 The Pickup and Delivery Problem

The following section is not directly relevant to the analysis of simulators carried
out in this work. Nevertheless, it is presented below as relevant background to the
general fields of traffic and logistics simulation.

Moving a unit of goods to the right recipient at the right time is not an easy task.
In 1959 Dantzig and Ramser defined the Truck Dispatching Problem (TDP) as a
generalization of the famous Traveling Salesman Problem (TSP) [20]. In the TDP,
the goal is to find optimal loops going to and from a “depot” node, rather than
finding the optimal full circuit, as in the TSP. This restriction can be interpreted
as a limitation on either fuel or storage capacity. While the TDP is more realistic
than the TSP it is still insufficient for some problems, such as handling customers
who need to send goods, rather than just receive.

7



2. Background

The General Pickup and Delivery Problem (GPDP) extends on the TSP and the
TDP to handle such problems. Parragh, Doerner, and Hartl [21], [22] provide an
excellent survey of the GPDP and its subclasses — as shown in figure 2.1 — as
well as potential methods for finding solutions. In their survey, Parragh, Doerner,
and Hartl focus on the Vehicle Routing Problem (VRP), which is the multi-vehicle
form of the TSP. The VRP is relevant for our study as a transport network with
AVs is likely to include more than one AV. Further, Parragh, Doerner, and Hartl
distinguish between full-truck and less-than-full truck transport. This distinction
is simple: in the full-truck case one unit of goods being transported fills an entire
truck, while in the less-than-full case a truck can transport more than one unit of
goods.

GPDP

VRPB VRPPD

Unpaired

PDVRP

Paired

PDP DARPVRPCB VRPMB VRPDDP VRPSDP

Figure 2.1: Structure of sub-classes of the General Pickup and Delivery Problem.
Based on figure 1 in Parragh, Doerner, and Hartl [21].

The two subclasses of the GPDP will be described below.

2.3.1 The Vehicle Routing Problem with Backhauls

The Vehicle Routing Problem with Backhauls (VRPB) is similar to the TDP in
the sense that a vehicle cannot visit all nodes within the network in one tour.
The Vehicle Routing Problem with Backhauls (VRPB) extends the TDP, adding
an additional type of transport — backhauls — in which goods are moved from
customers to the depot. The conventional type of transport, moving goods from
the depot to customers, is called linehaul. A VRPB also allows different starting
and ending depots, which was not allowed in Dantzig and Ramser’s definition of the
TDP.

There are four subclasses of the VRPB which distinguish how we schedule our
backhauls or model customer demands. These are briefly described below.

8



2. Background

VRPCB The Vehicle Routing Problem with Clustered Backhauls (VRPCB) re-
quires that, as the name suggests, the backhauls of each truck be clustered. In other
words, all of its linehauls must be completed before it can start collecting backhauls.

VRPMB The Vehicle Routing Problem with Mixed Backhauls (VRPMB) is the
complement problem of the VRPCB — instead of requiring that all backhauls hap-
pen after all linehauls, we allow them in any order. The VRPCB is therefore a
special case of the more general VRPMB.

VRPDDP The Vehicle Routing Problem with Divisible Deliveries and Pickups
(VRPDDP) introduces a new type of customer to our problem: one that both wants
to receive and send goods. We will call such customers double-haul customers. In
the definition of the VRP it is required that each customer is visited exactly once.
For the VRPDDP, this restriction is relaxed, allowing double-haul customers to
be visited exactly twice — once for linehaul and once for backhaul, though not
necessarily in that order.

Parragh, Doerner, and Hartl notes that a VRPDDP can be considered a special
case of the VRPMB [21] if each double-haul customer is defined as as two vertices in
the graph — one with a linehaul demand, the other with a backhaul demand. This
way, the visit exactly once restriction need not be relaxed, making the VRPDDP a
special case of the VRPMB.

VRPSDP The Vehicle Routing Problem with Simultaneous Deliveries and Pick-
ups (VRPSDP) is a limitation on the VRPDDP, reinstating the visit exactly once
restriction and additionally requiring that pickup and delivery be done simultane-
ously, by the same truck. This is achieved by changing how demand is modeled,
allowing a single customer — a single node in the graph — to have both linehaul and
backhaul demand. Consequently, it is not a special case of the VRPMB — rather,
the VRPMB is a special case of the VRPSDP, where a customer is allowed to have
either a linehaul or a backhaul demand.

2.3.2 The Vehicle Routing Problem with Pickup and
Deliveries

In the Vehicle Routing Problem with Pickup and Deliveries (VRPPD) goods do
not need to pass through a depot before they are delivered to a customer. Instead,
it allows direct customer-to-customer delivery. There are three subclasses of the
Vehicle Routing Problem with Pickup and Deliveries (VRPPD), split into two types:
paired and unpaired. The subclasses are described briefly below.

9



2. Background

PDP The classic Pickup and Delivery Problem (PDP) is a paired form of the
VRPPD. This means that nodes in the graph are paired — one producer and one
consumer — which Parragh, Doerner, and Hartl call “requests.” When a truck picks
up a unit of goods from a producer, that good must be delivered to the paired
consumer. While this transport mission is in progress the truck cannot pick up any
other goods.

DARP The Dial-a-Ride Problem (DARP) is an extension of the Pickup and De-
livery Problem (PDP) which considers transporting humans instead of inanimate
parcels. Humans, in difference from parcels, can become impatient while waiting,
adding additional restrictions on timeliness to the PDP.

PDVRP The Pickup and Delivery Vehicle Routing Problem (PDVRP) is an un-
paired form of the VRPPD. In a PDVRP multiple producers may produce goods
which is desired by multiple consumers, such that a unit of goods from one producer
could satisfy the demand of several consumers. The PDVRP also allows a truck to
pick up and deliver goods in any order, no longer requiring that a unit be delivered
before another is picked up.

2.3.3 Additional constraints

Parragh, Doerner, and Hartl note that any of the above problems can, rather easily,
be extended with additional constraints. The examples they give concern a time
window for pickup or delivery and a maximum route duration. The demand model
could also be changed to allow for heterogeneous goods. Similarly, truck and depot
capacity could be changed to model size or weight restrictions in goods.

10



3
Method

As mentioned in section 1.2, the simulators were studied using a three part analysis.
These three parts are:

1. Studying and summarizing the published literature related to the simulators.

2. Defining a set of common criteria and comparing the simulators using these.

3. Designing a small number of evaluation scenarios for the simulators, in order
to test the capabilities of each simulator and how easy they are to work with.
These scenarios were designed based on some problem which was explored in
the published literature.

In this chapter, the three parts above will be described in detail.

3.1 Literature study

The literature study for each simulator began by searching Google Scholar, Cite-
seerX, and the Chalmers Library for articles related to “simulation” and “auto-
nomous vehicles.” Articles related to one or more of our simulators were considered
particularly relevant. Having established an understanding of the simulators, we
also searched for articles related to “network design,” “routing,” and “optimization”
in the context of traffic or logistics simulation. Finally, we searched for “compari-
son” and “survey,” again in the context of our simulators, seeking previous studies
comparing and contrasting simulator platforms.

Articles were selected on the condition that they were relevant to this work, peer-
reviewed, and published within the last fifteen years. Older publications were in-
cluded for historical context when considering relevant theoretical problems which
can be solved using traffic simulation. We also reviewed article quality — poorly
written articles or articles from dubious sources were discarded, as we cannot guar-
antee that they have been thoroughly peer-reviewed.
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3.2 Criteria

In this section, we present the eleven criteria, divided into two categories, which
were selected to compare the simulators in a fair manner. The criteria evaluate not
only the capabilities of the simulator itself, but also its extensibility and ease of use.
Some criteria are vague, but they have been defined such that a binary yes-or-no
answer can be given to each of them.

3.2.1 Primary criteria

Certain capabilities of a simulator are critical if it is to be easily included in a
vehicle or fleet development project — it cannot take up large amounts of time and
resources to set up. We make this limitation since our simulators have open source
code, meaning a developer with a wealth of time and resources could mold any of
them to fit any problem. However, such a scenario is unlikely to occur in any real
development office. For this reason, three of the eleven criteria were selected as
primary criteria, as they allow quick integration into an existing project. These are:

1. External control

2. On-line interaction

3. GUI

Below, these criteria will be thoroughly explained.

External control The external control criterion requires that the simulator can be
fully controlled from some arbitrary external process without changing the simulator
source code.

This would allow a simulator to be interfaced against a script running on the same
computer as the simulator, such that the script can both read and write to the
entire simulator state. This could also be done with a network interface, allowing
the external process to be located on some other computer.

The motivation for this criterion is the fact that AVs seldom operate alone. There
may be external systems such as fleet managers, routers, mission planners, cargo
coordinators, or similar, which all need to communicate with an AV. In a simula-
tion without external control, these systems would need to be built directly into the
simulator source code, requiring a deep understanding of the simulator and increas-
ing the likelihood of bugs. With external control, the simulator could instead be
interfaced against the same systems that would coordinate the real-world AVs. This
opens a new avenue for testing these auxiliary systems. Further, it reduces the work
needed to do so since they do not need to be ported into the simulator code.
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On-line interaction The on-line interaction criterion requires that the simulator
state can be manipulated while the simulator is running.

A simulator which does not allow on-line interaction must be left alone to run —
only once it has run its course can the result be studied and the simulation scenario
be tweaked for the next run. On-line interaction instead allows the simulation state
to be read and written to mid-simulation, allowing dynamic strategy changes as the
simulation unfolds. How the state is manipulated is not important — it could be
via an interface to an external process, through a GUI (Graphical User Interface),
or through some other means.

The motivation for this criterion is the fact that a simulator which can be inspected
and tuned on the fly will take less time to correctly configure than an offline simu-
lator. They may both require the same number of full simulation runs to get right,
but a simulator which supports on-line interaction allows a user or program to wit-
ness the simulation unfold and influence it as it does. This is contrasted against the
log or result file post mortem which would be needed to understand what an offline
simulator did during its run.

GUI The GUI criterion requires that the simulator provides some support for
graphically visualizing the simulation, either while it is happening, or after the fact.
A GUI to simply select files or change settings is not sufficient.

The motivation for this criterion is ease of use. While a simulator can be perfectly
capable of simulating all necessary aspects of a system without also having a GUI,
having one can make the system more intuitive to the user and make it easier to
demonstrate a simulation to third parties.

3.2.2 Supplemental criteria

In addition to the primary criteria, there are a number of features which are nice
to have more than they are critical for use. To cover some of these, the remaining
eight criteria were designated as supplemental criteria. They are:

4. Separate configuration

5. Goods

6. Communication

7. Third dimension

8. Fuel

9. Transparency
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10. Documentation and Community

11. License

This list is by no means exhaustive, as there are any number of features which could
be simulated to add realism which are not considered in this project. Despite this,
we believe that this set of criteria will give a good overview of the capabilities of
each simulator within the scope of this thesis.

Separate configuration The separate configuration criterion requires that the
simulator can be configured to simulate a scenario without editing the simulator
source code.

The motivation for this criterion is again ease of use. Requiring a user to mod-
ify the simulator’s source code in order to start simulating entails a steep learning
curve, even if the user already is well versed in the language in which the simu-
lator is written. The alternative, having the simulator load configuration files of
some description, may lower this learning curve, depending on how complex these
configuration files are themselves.

Goods The goods criterion requires that the simulator supports simulating the
movement of inanimate objects independent of the vehicles that transport them.

The key part of this requirement is that each unit of goods is treated as an inde-
pendent object in the network, existing outside of the vehicles, so that it does not
“disappear” when not loaded on a vehicle. Given that, there are several possible
extensions for this criterion. The simplest case, where each vehicle carries one unit
of goods, is all that is required for fulfillment. In a more more realistic implemen-
tation, however, each vehicle can carry any number of goods. Going further, the
goods themselves may be of different types, where each type might have a sepa-
rate destination. The goods might have properties of their own, such as weight or
dimensions, affecting how many can be loaded on a vehicle.

The motivation for this criterion is the fact that we will often be considering AV-HTs
and the freight networks in which they operate. Considering a system where trucks
deliver goods to and from depots, it is as important to track the goods currently
loaded on trucks as it is to know what is waiting at the depot.

Communication The communication criterion requires that the simulated vehi-
cles can communicate with each other or some simulated infrastructure.

There is a distinction between this type of communication and the communication
mentioned in the external control criterion. In the latter, programs and scripts
are communicating with each other in order to facilitate the simulation itself. In
this criterion, we consider simulated communication, where simulated entities are
communicating with each other within the simulation.
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The motivation for this criterion is the fact that AVs rarely operate without at least
communicating to some control center. They may also communicate with each other
in order to exchange information.

Third dimension The third dimension criterion requires that the simulator sup-
ports positioning of all entities in 3D-space as well as modeling road slope.

The motivation for this criterion is fuel efficiency simulation. For heavy vehicles, an
incline can drastically impact fuel consumption, while electric vehicles can regain
battery charge through regenerative braking on declines.

Fuel The fuel criterion requires that the simulator supports modeling fuel con-
sumption.

For this criterion, only support for conventional gasoline- or diesel-fueled vehicles
is needed for fulfillment. It is desirable if the simulator, in addition to fuel con-
sumption, also tracks fuel capacity and the volume of fuel remaining, thus capping
a vehicle’s range. It is also desired that the simulation supports electric vehicles.

The motivation for this criterion is, predictably, also fuel efficiency simulation, in
particular ones where a refueling step is part of the simulation. While not a signifi-
cant problem for conventional vehicles, electric vehicles — especially ones for heavy
transport — require frequent charging. It is not reasonable to assume that an elec-
tric transport vehicle can complete a full day’s work without needing to charge, so it
becomes necessary to simulate its battery drain so that charging can be scheduled.

Transparency The transparency criterion requires that the simulator’s internal
models are transparent to the user, so that the user can review and understand its
processing.

This is one of two vague criteria. A perfectly non-transparent simulator is a black
box, revealing nothing about its inner workings save the results which a simulation
produces. The opposite — a perfectly transparent simulator — is harder to define.
Information on the simulator’s processing should be available to the user, but not
so much that the user becomes inundated. To pass this criterion, a simulator must,
at least, be near the center of that hypothetical scale.

The motivation for this criterion is the need for realism and accuracy in many
simulations. In particular, it is important to be able to review that the simulator
operates in a predictable, unobscured manner, so that the user can refine their
scenario or strategies in an informed way.

Documentation & Community The documentation & community criterion re-
quires that the simulator has a well-written and complete documentation along with
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an active community of users and developers. This criterion will also consider the
wealth of published scientific literature which uses the simulator.

Akin to Transparency above, this is a vague criterion. A simulator which completely
fails this criterion would be abandoned and undocumented, having no published
literature and unavailable source code. The opposite is a ubiquitous program, known
by everyone, and actively developed, which has exhaustive documentation and well-
commented, open source code. Neither of these extremes are likely to apply to any
of our simulators, so we will grade them on the spectrum in between.

The motivation for this criterion is ease of use. Having good documentation along
with a community of users functions as a safety net for a new user or developer
coming to grips with the simulator. Even better if the process of developing for or
extending the simulator is documented.

License The license criterion requires that the software qualifies as free and open
source software (FOSS).

For the purposes of this criterion, we define “free” software as software that is under
a license which conforms to the Free Software Foundation (FSF)’s Free Software
Definition [23]. Similarly, “open source” software must be under a license that
conforms with the Open Source Initiative (OSI)’s Open Source Definition [24]. To
be FOSS, it must conform to both.

The motivation for this criterion is ease of acquisition and ease of use. An advan-
tage of FOSS is that there are no licensing costs or other fees which must be paid
to acquire the software, benefiting both home-users, academics, and corporations.
While many licenses are lenient to home-users, commercial use is a significant prob-
lem, such as forbidding commercial use altogether or forbidding the resale of the
software or its modifications.

With FOSS, these problems are taken care of. The “free” in “free and open source
software” not only means “free of charge” but also “free as in freedom” — a common
expression describing FOSS. A FOSS license expressly allows a user, whoever they
may be or represent, to use the software for any purpose. The user may also modify
the source code, redistribute their modifications, even if they charge for it. When
incorporating a new piece of software into a development project, having source
code access along with explicit freedom to modify it, this software could quickly be
integrated and molded into something fit for the problem at hand.

3.3 Scenarios

As a complement to the eleven criteria, we have also defined a set of three scenarios
which will be implemented in each simulator. This serves both to test certain criteria
as well as to gain a practical understanding for how to work with a given simulator.

16



3. Method

Each scenario is based on a problem or study described in the published literature.
The three scenarios are defined below.

3.3.1 Traffic lights

In the traffic lights scenario, a simple road network containing at least one set of
traffic lights will be constructed.

This scenario will evaluate if the simulator allows the network in which the vehicles
operate to dynamically influence the operation of the vehicles. It can also be thought
of as a test of the communication criterion, as traffic lights constitute a rudimentary
form of V2I communication.

This scenario is inspired by Vaudrin, Erdmann, and Capus’s study [12], in which
they studied throughput at traffic lights when AVs were added into the traffic flow.

3.3.2 Mining operations

In the mining operations scenario a simple graph network will be constructed with
at least two producer nodes and at least two consumer nodes. Within the graph,
vehicles will be moving to retrieve goods from the producers and moving it to the
consumers. This makes the system a form of PDVRP.

This scenario will evaluate the goods criterion, as goods must “exist”, in some
sense, at the producer prior to being picked up. Goods could also be interactively
generated, such as at the press of a button, which will evaluate the on-line interaction
criterion.

This scenario is inspired by the work of Karlsson and Steffenburg [25] who explored
intelligent agents needing to navigate an underground mine and deliver ore from
“producers” to consumers.

3.3.3 Generative traffic

In the generative traffic scenario a small town road network will be constructed to
test if traffic density can vary as a function of time. In particular, the scenario will
seek to mimic the “rush hour” effect, when traffic volume drastically increases at
certain times of the day.

This scenario will evaluate if a simulator allows conditional generation of traffic and
if it supports the concept of a “day”, such that certain events occur at given times
each day.
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This scenario is inspired by Guggisberg Bicudo and Berkenbrock [26] who simulated
the traffic flows caused by the complex labor shifts in the town of Joinville, Brazil.
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4
Results

In this chapter, we will present the results of our analysis as described in chapter 3
above. The chapter begins with a summary and overview of the results in section 4.1,
then proceeding to an in-depth presentation of results from each simulator in turn,
starting with MATSim in section 4.2, RinSim in section 4.3, and finally SUMO in
section 4.4.

4.1 Overview

Below, the simulators’ criteria fulfillment is summarized in table 4.1. Of the three
simulators, SUMO fulfilled the most criteria — nine of eleven — while both MATSim
and RinSim fulfilled four of eleven.

Considering the evaluation scenarios, none of the simulators allowed us to imple-
ment all three scenarios, lacking some crucial feature. Only SUMO allowed us to
implement the traffic lights scenario, while only RinSim allowed us to implement
the mining operations scenario. All three simulators allowed us to implement the
generative traffic scenario in some form.

4.2 Multi-Agent Transport Simulation

In this section, we present the results for Multi-Agent Transport Simulation (MAT-
Sim), starting with its construction and design as well as some notable works in the
published literature, then presenting criteria fulfillment and the evaluation scenarios.
The work in this thesis was done using MATSim version 0.10.1.

4.2.1 Construction and design

MATSim is written in Java and is distributed either as source code or as a precom-
piled executable jar-file. It is also available for import into an existing project as a
Maven dependency.
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Table 4.1: Summary of the criteria fulfillment for the three simulators

Simulator MATSim RinSim SUMO
Type Traffic Logistics Traffic
Criterion

1. Ext. control - - X
2. On-line inter. - - X
3. GUI - X X
4. Sep. conf. X - X
5. Goods - X -
6. Comm. - X -
7. 3D - - X
8. Fuel - - X
9. Transparency X - X

10. Docs. & Community X - X
11. License X X X

MATSim’s basic model is demand-focused and agent-based, where agents — rep-
resenting individual humans — generate demand by needing to go places, such as
to work, to school, or to the store. This demand, along with a definition of where
agents “live”, “work”, and “study” cause the agents to move, in turn causing traffic.
This traffic can be modeled in many ways, from each agent having their own car to
multi-modal public transit systems. While in transit, agents evaluate their plan for
the day and re-plan it, if necessary, ensuring they can meet their goals even if the
traffic situation is working against them.

This approach to traffic generation allows MATSim to generate rich data about
city-wide demand and traffic patterns, predicting rush hours and lulls in traffic flow,
as well as revealing bottle necks in the network. While MATSim is a microscopic
simulator, it does this at the cost of a detailed vehicle simulation — indeed, MATSim
is far more focused on the agents themselves than their individual vehicles. We
nevertheless categorize MATSim as a traffic simulator, as its primary purpose is to
simulate the flow of traffic, though this flow is driven by agents going about their
daily business.

MATSim is designed to be highly modular [27], allowing a user to use no more or
less of the simulator than they need. Similarly, this allows a skilled user to develop
their own modules for the simulator, extending its function as they see fit.

4.2.2 Notable work

MATSim has seen some use in academic literature. Below, we present a sample of
published works which use or build upon MATSim.

Maciejewski and Nagel [28], [29] integrated MATSim with an optimizer for VRPs.
Their first paper looks at enabling on-line interaction between the two programs,
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while the second looks at using this system to study different taxi routing and
assignment strategies in an urban environment — a Dial-a-Ride Problem (DARP).
They found that none of their tested strategies was universally better — instead,
the choice of optimal strategy is dependent on the supply-to-demand ratio

Novosel et al. [30] used MATSim as a supplemental simulator to EnergyPLAN [31]
in a case study of the impact of the introduction of electric vehicles on Croatia’s
national power grid. In this study, MATSim was used to generate data on vehicle
use which was used to calculate power consumption, in turn informing the primary
EnergyPLAN simulation.

Schröder et al. [32] added freight activities to MATSim through a set of new agent
types which generate and coordinate shipping activities. They find that this method
can drive a rich transport simulation as well as generate valuable data on the econ-
omy of the freight system.

4.2.3 Criteria

As mentioned in the overview above, MATSim fulfilled four of the eleven criteria.
It notably passed no primary criteria, though there are caveats for all of them.

External control MATSim does not, in itself, support external control. Instead,
if a user wishes to utilize MATSim with some external process, it would be necessary
to write a tie-in module to MATSim, interfacing the two processes. This method
seems relatively commonplace — for example, as mentioned in section 4.2.2 Ma-
ciejewski and Nagel [28] integrated MATSim with an external optimizer for VRPs.

Lacking a standard method for interfacing MATSim to another process, without
modifying its source code, MATSim fails the first criterion.

On-line interaction Tying into both the first and third criteria, it is difficult to
have on-line interaction without either external control or a GUI. Maciejewski and
Nagel [28], [29] showed that it is possible to have an external process interact on-line
with MATSim but, as mentioned above, this requires a custom built interface with
the second process.

Again similar to the first criteria, since there is no standard method for on-line in-
teraction which does not require source code modification, MATSim fails the second
criterion.
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Figure 4.1: Screenshot of MATSim’s scenario selection GUI.

GUI As hinted to above, MATSim does not have a visualization GUI of its own.
It does come with a rudimentary GUI which can be used to select scenario file and
start the simulator, but little else. This GUI is shown in figure 4.1.

To visualize a simulation one needs a third party visualizer. The most popular one
is Simunto Via [33], a proprietary visualizer which is only capable of visualizing a
scenario after MATSim has finished simulating it. An example of such a visualization
is shown in figure 4.2. While this allows the user to rewind and fast-forward the
playback, it does mean that a lengthy simulation can’t be reviewed and debugged
until after its completion.

There is a MATSim-native visualizer called OTFVis (On The Fly Visualizer) [34]
which reportedly is capable of on-line visualization. However, this visualizer is not
available without source code modification.

For the above reasons, MATSim fails the third criterion.

Separate configuration MATSim’s configuration is done through XML files, de-
scribing its road network and agent plans. The internal syntax of these files is simple,
which should allow a novice user to get started quickly. Thus, MATSim passes the
fourth criterion.

Goods Looking again to Schröder et al. [32] shows that freight activities can be
simulated in MATSim. However, there is no mention of the goods being physi-
cal entities moving through the network, or if they are properties of the vehicles
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Figure 4.2: MATSim’s roundabout scenario being visualized in Simunto’s Via.
The agents are color coded depending on their speed, where green is at target speed
and red is far below target.

which transport them. As we are concerned with the movement of discrete, physical
packages through a network, it follows that MATSim fails the fifth criterion.

Communication MATSim does not support communication in any way, nor have
we found any reference using MATSim for simulation of communicating agents.
Thus, it fails the sixth criterion.

Third dimension MATSim does not support height data in its networks. Con-
sequently, it fails the seventh criterion.

Fuel MATSim does not support simulating fuel consumption in any meaningful
way. Surprisingly, it does support vehicle refueling actions, at least for electric
vehicles, as noted by Waraich and Bischoff [35]. Tangentially, Kickhöfer shows that
it is possible to derive emissions data by studying simulation output [36]. This
suggests that it should also be possible to derive fuel consumption data from the
same output. However, Kickhöfer’s models only consider vehicle average road speed,
since acceleration, deceleration, and slope are not known — fuel consumption models
without these input data will be less accurate.

That said, as MATSim does not support simulating fuel consumption, it follows that
it fails the eighth criterion.
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Transparency The internal models of MATSim, in particular its action-based
agent engine are well explained, such as by Nagel and Flötteröd in [37]. MATSim
itself also generates a wealth of output files by default, outlining agent movements
and actions, which can assist a new user in understanding what the simulator is
doing.

Thus, MATSim passes the ninth criterion.

Documentation & Community MATSim’s primary reference is “The Book”,
as it is often known [38]. This book serves as a tutorial for new users, a guide to
extending the MATSim code, and providing the reader with a sample of scenarios
which have been simulated in MATSim.

The project is community-driven with an active group of developers. Throughout the
project’s eleven-year history, 45 developers have made contributions to MATSim’s
GitHub repository [39]. Of these, 21 have made contributions since the start of
2018, suggesting the project is being actively and continuously developed. The
community has also held annual user meetings since 2009, suggesting that there is
an active community of users in addition to an active developer group.

Based on the above, it is reasonable to conclude that MATSim passes the tenth
criterion.

License MATSim is licensed under the GNU General Public License (GPL) ver-
sion 2, with an explicit permission to license derivative works under the GPL version
3. The GPL is the FSF’s gold standard license — written and maintained by the
FSF itself — so is naturally recognized as a free license. Similarly, the OSI has
approved the GPL, both version 2 and 3.

It should be noted that the Via visualizer software is neither free nor open source.
While available for free from the Simunto website, using it requires a license. For
private individuals, a free six months license is available after registration, but this
also limits the number of visualized vehicles to 500. Full licenses for for researchers
cost 1000e while commercial licenses start at 4000e per license per year. However,
as the visualizer is not an integral part of MATSim, this does not inhibit MATSim
itself from passing the eleventh criterion.

4.2.4 Scenarios

MATSim supported implementing one of the three evaluation scenarios. There is
good reason to believe that there is support in MATSim to implement the remaining
two scenarios as well, but only after modifying its source code. As such extensions
are beyond the scope of this thesis, we did not implement those scenarios.
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Traffic lights Using conventional configuration means, there is no readily avail-
able way for MATSim to simulate traffic lights or similar environmental traffic im-
pediments. There is support for traffic lights and other signaling methods in the
source code, but without modifying the source code, this functionality may be im-
possible to use. There is a slight possibility that it could be done, but there was
no user documentation for the signaling module and no example scenarios which
implemented traffic lights.

Mining operations Similarly to the traffic lights scenario above, there is no read-
ily available module in MATSim which supports the simulation of goods in any
meaningful way. Again, akin to the signaling module, there is a freight module
available, but its user documentation is missing. Its Java developer documentation,
meanwhile, gives no hints as to how one could make use of the module without
modifying source code.

As MATSim’s model is generally unconcerned with simulating real-world environ-
ments, it is improbable that non-agent-driven parcels could exist within the simu-
lated world, especially independent of vehicles. Zilske et al. [40] talks of a trans-
portation simulation toolkit for MATSim, which may add capabilities for goods
simulations, but makes no mention of goods existing independently of their trans-
port vehicles.

Generative traffic MATSim has an explicit daily cycle as part of its simulation
— all agent actions are planned for and carried out during a 24 h day. Timekeeping
is done with a simulated time-of-day clock, allowing the user to designate agents
taking some action at a time of day, rather than at a simulator timecode. That is
to say that events can be defined as taking place at 08:30, simulated time, rather
than a more arbitrary “40 s from simulator start.”

All MATSim traffic is explicitly defined, allowing a user to generate sudden traffic
flows whenever they wish. Traffic is a side-effect of agent mobility, however, since
a user specifies the routes, plans, and activities of individual agents, not individual
vehicles — an agent may use many different modes of transport to carry out its
plan.

This was tested by modifying the basic example scenario “equil”, shown in figure 4.3,
to delay the departure of some agents. In the scenario, 100 agents leave a specific
point at 08:00, while we modified the scenario to delay a number of agents’ departure
to 10:00. This was done through modifying the trips as defined in trips100.xml,
editing the start-of-day activity’s end time.
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Figure 4.3: Via visualization of MATSim’s example scenario with one agent se-
lected, highlighting it and its path.

4.3 RinSim

Similarly to section 4.2, we will now present the results for RinSim. The work in
this thesis was done using RinSim version 4.4.6 [41].

4.3.1 Construction and design

RinSim is developed in Java and is available for use either as source code or as a
Maven dependency. This all but requires that RinSim is used as a library rather
than as a standalone simulator. It also stands out from the other two in the sense
that it is designed as a logistics simulator, rather than a traffic simulator. This
means that it is focused on the efficient movement of goods through some network,
rather than simulating accurate vehicle behavior and traffic flows.

RinSim is designed as a multi-agent system, where intelligent agents make and
execute their own plans as well as interacting with the world and other agents. There
are no preset agent types, only general agent abstract classes, so each simulation
scenario is by necessity custom built to its purpose. This affords the developer
a great deal of power, allowing RinSim to be used to simulate a vast number of
scenarios, but does require a significant amount of work to create the scenario itself.

In terms of its internal model, RinSim is separated into strict modules. This means,
for one thing, that the entire simulation shares the same model of time. It also
means that the simulation model is kept separate from the multi-agent system and
its solver, as well as the visualization. This segmentation is intended to make RinSim
easily extensible.
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4.3.2 Notable work

RinSim has not yet been used to any great extent in academic literature. All ref-
erences we found, save one, were written by RinSim’s creator and namesake Rinde
van Lon — the exception being the recent Master’s thesis by Karlsson and Steffen-
burg [25].

The seminal work on RinSim was written by van Lon and Holvoet in 2012 which in-
troduces RinSim, the motivation behind its creation, and its internal structure [42].
Since then, van Lon and Holvoet have written on the topic of solving logistics prob-
lems using evolving agents in RinSim [43]. Later, van Lon, Branke, and Holvoet
continued working in RinSim to study using genetic algorithms for planning mis-
sions for freight agents [44].

The last paper appears to have inspired Karlsson and Steffenburg’s thesis, wherein
they modeled a set of agents having to navigate a constrained, shared environment.
The agents had to avoid colliding with each other with only limited capability to
detect other agents’ positions. All the while, the agents had to fulfill transport
contracts, moving ore through a simulated mine. As noted previously, this work
was the inspiration for the mining operations scenario.

4.3.3 Criteria

RinSim, just like MATSim, fulfilled four of the eleven criteria. However, RinSim
fulfilled one primary criteria, which MATSim did not.

There is a caveat to all of RinSim’s criteria — by virtue of RinSim’s construction as
a library rather than as a stand-alone simulator, it would be feasible to implement
support for nearly all of the criteria below. However, as we have explicitly disallowed
source code edits for the criteria, the fulfillment is based on what is supported in
RinSim’s core library.

External control RinSim does not itself support any interface to another process.
Thus, it fails the first criterion.

On-line interaction RinSim does not support on-line interaction. RinSim’s GUI
does not provide a way to interact with the simulation while it is running, beyond
controlling the rate at which it runs. Further, there is no way to interact with the
simulator through a terminal or other keyboard input. Therefore, RinSim fails the
second criterion.

GUI RinSim comes with a visualization GUI built in. While it is rather rudi-
mentary, it is also flexible, having rendering defined per-scenario. It only supports
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on-line visualization — viewing the simulation as it is carried out.

Thus, RinSim passes the third criterion.

Separate configuration RinSim scenarios are written as Java programs, using
RinSim as a Java library. This affords RinSim a very high level of flexibility, but
this comes at the cost of a significant learning curve. Since the separate configura-
tion criterion requires that scenarios can be defined without modifying source code,
RinSim fails the fourth criterion.

Goods RinSim is built around the concept of transporting goods, with special
parcel abstract class provided in RinSim’s core. This general parcel has a source,
a destination, a size, and independent delays for loading/unloading it. However, this
definition reveals limitations for certain problems. For example, it will cause diffi-
culties when modeling a single-origin, multiple-destination PDVRP problem, as the
parcel’s destination is singular and fixed from the moment of creation. Similarly,
the parcel’s size is implemented as an integer, saying nothing of size or weight.
This works with trucks and depots, which have an integer capacity, but does not
allow for weight- or size limits for goods.

That being said, RinSim has support for inanimate goods which exist independently
of their containers. Thus, it passes the fifth criterion.

Communication RinSim supports communication, allowing agents to send mes-
sages — with any content — to each other within the simulation. RinSim’s com-
munication model also allows for an agent to have its own communication range
and reliability. The range impacts how far an agent can transmit a message and the
reliability defines the chance of a transmission succeeding. Karlsson and Steffenburg
made use of this communication model for agents to locate each other and perform
collision avoidance, when necessary.

An example simulation — the CommExample included in RinSim — which uses com-
municating agents is shown in figure 4.4. In this scenario the agents move randomly,
attempting to greet all other agents. As agents have randomly generated range and
reliability, it may take a long time before everyone has met everyone.

Given the above, it follows that RinSim passes the sixth criterion.

Third dimension RinSim uses a simple two-dimensional positioning system, built
around its Point class. This could potentially be extended to include a third dimen-
sion, but due to the ubiquitous use of the Point class, this would be a significant
undertaking.

It follows that RinSim fails the seventh criterion.
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Figure 4.4: RinSim’s communication demo, simulating 16 agents randomly moving
around a plane, greeting each other as they go.

Fuel Vehicles in RinSim are simplified models of real-world vehicles, having no
weight, size, or driving properties. Every vehicle — unless the basic model is ex-
tended — has infinite acceleration and deceleration and has a turning radius of zero.
The concept of fuel does not exist in RinSim and, given the above, would require a
significant amount of work to implement, as a kinematic model for a vehicle is also
missing.

Thus, RinSim fails the eighth criterion.

Transparency It is difficult to judge the transparency criterion for RinSim. On
the one hand, the example scenarios provided are difficult to understand and code
quality is debatable. On the other hand, since a user by necessity needs to be
familiar with the RinSim source code to construct scenarios, it could be argued that
the internal models are transparent.

The intention of the transparency criterion was for transparency to come from the
user being presented with or being able to seek information in the application, not
the source code. Furthermore, understanding the source code requires a high level of
technical knowledge, which is not something that could be expected of most users.
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For the reasons above, it is reasonable to conclude that RinSim fails the ninth
criterion.

Documentation & Community RinSim does not have any form of user docu-
mentation beyond how to download the source or import it as a Maven dependency.
There is source code documentation, in the form of Javadocs, but it is incomplete.

As for community, RinSim has none — it is primarily and near-solely developed
by its creator and maintainer Rinde van Lon. van Lon uses RinSim as a tool for
researching genetic algorithms and for teaching multi-agent systems [42], which ap-
pears to drive development. However, only nine persons have ever contributed to
the RinSim GitHub repository [45]. Of these nine, van Lon alone accounts for 84 %
of contributions1. The number two contributor, Bartosz Michalik, accounts for 13 %
of contributions and has not contributed since 2013.

Based on the above, it is reasonable to conclude that RinSim fails the tenth criterion.

License RinSim is licensed under the Apache 2.0 license, which is fully recognized
and approved by both the OSI and the FSF. Thus, RinSim passes the eleventh
criterion.

4.3.4 Scenarios

RinSim supported implementing two of the three scenarios, only failing to support
the traffic lights scenario. The same caveat that applied to RinSim’s criteria applies
here, however — since RinSim behaves like a library, it is fully possible to build
support for all the scenarios. Doing so was beyond the scope of this thesis, however.

Traffic lights The only option to build a traffic light or other environmental effect
on the network is to build the functionality into the scenario code. In the case of
traffic lights or some other time-varying effect, this requires constructing listeners
to timing events from the simulator core. Interfaces for such listeners do exist, but
developing a listener to interface with the simulator was beyond the scope of this
evaluation scenario.

Mining operations This scenario is based on the FactoryDemo which is supplied
as one of RinSim’s example scenarios. A screenshot of this scenario is shown in
figure 4.5. We were able to change the destination of parcels in order to spell out
a different string as well as modify the network in which the Automatic Guided
Vehicles (AGVs) are operating by randomly adding edges between nodes.

1Calculated as average of share of total number of commits and share of total number of lines
of code changed.
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Figure 4.5: RinSim simulating AGVs as they move parcels in order to spell out
“Mining Operations.”

As noted above in the results for the goods criterion, RinSim cannot handle a sce-
nario where a parcel has more than one possible recipient, so the original definition
of the scenario could not be implemented. The parcels could, however, exist in the
world in “depots”, independently of vehicles.

Studying a basic form of this scenario was not difficult, since it is largely based on
the existing demo. However, to conform with the definition of this scenario, a special
Parcel class would need to be created in order to support open-ended deliveries.
This was out of scope for this scenario.

Generative traffic This scenario is based on the GradientFieldDemo, another
provided example. In it, buses and passengers are generated over time and the buses
had to pick up the passengers, before they got tired of waiting, and deliver them
to their destination. When all passengers had been delivered, the day was over. A
screenshot of this scenario is shown 4.6.

RinSim’s core supports both VehicleAddEvents and ParcelAddEvents — the pas-
sengers in this scenario are handled as parcels — which shows that RinSim is capable
of generative traffic. While one could also think that this shows that RinSim sup-
ports the concept of a “day”, that is a concept specifically designed in this scenario
and is not a feature of the RinSim core.

4.4 Simulation of Urban MObility

Akin to the two previous sections, we will now present the results for Simulation
of Urban MObility (SUMO). The work in this thesis was done using SUMO ver-
sion 1.1.0.
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Figure 4.6: RinSim simulating buses in the process of picking up and delivering
passengers.

4.4.1 Construction and design

SUMO is written in C++ and is available as source code or with an installer for
most major operating systems.

SUMO is also the oldest of the three, having its roots in 2001, when the project was
started by the German Aerospace Center [46]. It is a microscopic traffic simulator
by design, though its capabilities have grown over the years, including both meso-
and macroscopic models.

SUMO should be thought of as a suite of programs, rather than as one monolithic
simulator. The standard installation comes with a host of utility programs and
scripts, including generators for random traffic and road networks, converters from
map data to road networks, or optimizers. There are also a number of interchange-
able components, for example allowing the user to decide which driver model or
router they want to use on a scenario-by-scenario basis.

One such driver model is Krauß’s [9] — SUMO’s default driver model. This model is
based on one simple assumption: vehicles, in general, do not collide. It also requires
per-vehicle definition of acceleration and deceleration. From this, the model can
simulate vehicle interaction and flow at large scales. Krauß notes that traffic flow
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comes in three states — free flow, synchronized flow, or jammed — where the model
is capable of simulating all three and the transitions in between.

SUMO has been extended a number of times through the years, where the modifica-
tions either have been folded into SUMO itself, or have taken on a life of their own
as a separate project. Such an example is iTETRIS (the Open Simulation Platform
for Intelligent Transport System Services) [47], which has extended SUMO with
complex emission and noise models, routers, and communication protocols.

4.4.2 Notable work

Of our three simulators, SUMO is the most used in the published literature. The
following is a sample of notable work regarding SUMO and AVs.

Basso et al. [14] used SUMO as a part in their work for optimizing the routing of
electric buses. SUMO was used to simulate the movement of the buses, generating
realistic acceleration/deceleration data, which was later post-processed using Volvo’s
Global Simulation Platform (GSP) to calculate energy consumption.

Bjärkvik et al. [48] attempted to extend SUMO with a more advanced driver model
for AVs called the Intelligent Driver Model (IDM). They showed that this was pos-
sible, though difficult, due to the interaction between “normal” drivers, using the
Kraußmodel, and AVs using the IDM. In particular, they noted that lane changing
became problematic, where IDM vehicles could deadlock against other vehicles on
large roads.

Vaudrin, Erdmann, and Capus used SUMO to simulate and study how the intro-
duction of AVs in traffic flow affected throughput at traffic lights [12]. Their model
of an AV was not as advanced as Bjärkvik et al.’s, instead merely shortening the
response delay between a light turning green and the vehicle starting to accelerate.
Their results are inconclusive, however, as they cannot show a significant decrease
in waiting time when AVs are introduced. As mentioned above, this work served as
inspiration for the traffic lights scenario.

4.4.3 Criteria

SUMO fulfilled nine of the eleven criteria, including all primary criteria.

External control SUMO supports external control, though not entirely on its
own. SUMO gets its external control capabilities through Traffic Control Interface
(TraCI), originally described by Wegener et al. in 2008 [49]. TraCI itself is a
simulator-agnostic protocol for traffic simulator control, but the developers of SUMO
integrated it into SUMO’s core shortly after its introduction. Nowadays, SUMO
comes packaged with a Python library which fully implements the TraCI protocol,
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allowing a developer to make use of external control out of the box. There are other
language libraries, but the Python version is complete and is maintained as part of
the SUMO suite.

Thus, the power of TraCI and the fact that SUMO supports it without any source
code changes motivates SUMO passing the first criterion.

On-line interaction SUMO has full support for on-line interaction with a running
simulation. The primary and most powerful method to facilitate on-line interaction
is through TraCI, which allows an external process complete read/write access to
the simulation. While TraCI is in use, SUMO delegates time-stepping to the TraCI
client, ensuring that it will never miss out on information.

A user can also interact with a running simulation through the simulator GUI,
though this does not afford the user as much power as the TraCI interface. The user
can, however, read road or vehicle data, as well as plot time-varying values such as
vehicle speed profiles. The GUI also allows the user to, for example, close a road
segment or lane while the simulation is running. If the simulated vehicles do not use
a dynamic router, this tends to eventually result in traffic grinding to a complete
halt.

Given the two methods to influence a running simulation, it follows that SUMO
passes the second criterion.

GUI SUMO includes two prominent GUI applications in its suite. The first is the
simulator GUI itself, where a user can observe and interact with simulations as they
play out. This GUI is independent of the simulator itself, which can be run in a
non-graphical mode, though this severely restricts a user’s ability to interact with
a running simulation. The second GUI application is SUMO’s graphical network
editor, allowing a user to draw road networks for use in the main simulator.

Thus, SUMO passes the third criterion.

Separate configuration SUMO networks, traffic flows, vehicle types, and other
configuration is defined in a series of XML-files. While cumbersome to type by hand
— especially the often lengthy network definition files, which define all roads and
their properties — these files are independent from the simulator source code. Thus,
SUMO passes the fourth criterion.

Goods SUMO has extensive support for multi-modal person transport simulation,
including pedestrians moving without a vehicle, which suggests that it may also
support goods transport simulation. Indeed, there is a container model in place
which is intended to simulate the movement of inanimate cargo through a network.
However, this container model leaves a great deal to be desired.
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A major shortcoming is that container routing is handled backwards — the packages
route and handle themselves. In a real freight scenario, a freight planner would assign
containers to a vehicle and then dispatch the vehicle to load and transport them.
In SUMO’s model, each container is “aware” of its full transport plan and will load
itself onto an available vehicle if it is near enough and is headed to the container’s
goal. This is reminiscent of how a human would traverse public transport, but it
does not translate well to goods transport. It should still be possible to implement
a goods transport simulation in this model, however.

The goods criterion requires that we can simulate inanimate objects independent
of the vehicles that transport them. However, as SUMO’s containers can load and
unload themselves they cannot be considered fully inanimate. Thus, SUMO fails
the fifth criterion.

Communication SUMO does not support any model for V2V or V2I communica-
tion — collectively known as Vehicle-to-Somewhere (V2X) communication. Instead,
if a user wishes to simulate vehicle communication, for whatever reason, this needs to
be facilitated through attaching a network simulator to SUMO via TraCI. This was,
in fact, exactly what Wegener et al. did in their paper which introduced TraCI [49].

While there is at least one tried-and-tested method to realize V2X communication
in SUMO, it is not a feature of SUMO itself. Thus, it fails the sixth criterion.

Third dimension SUMO has support for three-dimensional positioning of all
elements, including vehicles. SUMO specifically calculates vehicle slope dependent
on road slope and travel direction, which could be a useful for fuel consumption
calculations. Thus, SUMO passes the seventh criterion.

Fuel SUMO supports calculating fuel consumption for individual vehicles. How-
ever, these metrics are based on emission models which are included in the SUMO
suite and may not accurately represent an experimental vehicle or modern electric
vehicles. A user may define their own emission and consumption models to get
around this problem, which can be done without editing source code.

Further, SUMO does not simulate an individual vehicle’s fuel type or volume or an
electric vehicle’s battery capacity or charge. Thus, a vehicle in SUMO can never
run out of fuel, nor does SUMO support refueling or recharging operations.

However, as the criterion only required support for fuel consumption simulation for
conventional vehicles, SUMO passes the eighth criterion.

Transparency SUMO’s inner workings are heavily based on peer-reviewed pub-
lications, meaning they are open to scrutiny. One example is the standard car fol-
lowing model, as mentioned above, which is based on Krauß’s PhD dissertation [9].
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Similarly, articles such as Behrisch et al. [10] describe the development of SUMO
and how it has evolved since its inception.

During runtime a user can inspect a simulation as it is in progress through the GUI,
viewing vehicle states and road properties as desired.

Thus, it is reasonable to conclude that SUMO passes the ninth criterion.

Documentation & Community SUMO is the most widely used simulator of
the four with a significant presence in academic research — Krajzewicz noted that
SUMO had been featured in hundreds of published articles by 2012 [50]. It is
also well documented, sporting a publicly editable and well cited wiki, which also
functions as its manual.

Regarding community, SUMO has an annual user conference — which in 2017 fo-
cused especially on autonomous mobility [51] — suggesting that there is a significant
community of active users. SUMO’s GitHub repository also suggests an active, albeit
small, community of developers [52]. 16 developers in total have made contributions
and all but three of these have made contributions since July 2018. That said, the
project appears to only recently have migrated to GitHub, as there are no commits
older than April 2018.

Based on the above, it is reasonable to conclude that SUMO passes the tenth crite-
rion.

License SUMO is licensed under the Eclipse Public License 2.0, which is approved
by the OSI. The FSF recognizes this as a free license, while also noting that it is
incompatible with its preferred license, the GPL version 3, due to weaker redistri-
bution terms.

Nevertheless, SUMO meets the criteria for FOSS, meaning it passes the eleventh
criterion.

4.4.4 Scenarios

SUMO supported implementing two of the three scenarios, having extensive support
for traffic lights and sufficient support for generative traffic, but lacking support for
goods simulations.

The scenarios below were all based on the open scenarios provided by Bieker et
al. [53], simulating roads and traffic in the city of Bologna, Italy.

Traffic lights The traffic lights scenario was based on the Acosta scenario, which
already includes a number of TLSs, such as the one shown in figure 4.7. These
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TLSs are presumably programmed to match the real-world timings of the modeled
intersections in Bologna.

Figure 4.7: Screenshot of SUMO simulating a large intersection in the Acosta
scenario, showing drivers obeying the traffic lights.

We were able to modify the light timing programs easily through modifying the
acosta_tls.add.xml file, which describes each TLS’s program. Through editing
this file it was possible to make individual lights in an intersection permanently
green, disable them to force drivers to yield, or simply write erratic timing. The
resulting timings could be observed both in the main simulation view, as seen in
figure 4.7 as colored bars by the intersection, or as a phase graph, as seen in figure 4.8.
This phase graph could be viewed based either on the static program, showing what
the phase graph should look like, or as a tracking graph, showing the actual phases
over time in the intersection — figure 4.8 shows the latter.

Figure 4.8: A SUMO traffic light tracking graph, showing the different phases of
lights in a large intersection.

Though none of the TLSs in the Acosta scenario implemented it, SUMO supports
dynamic light timing in addition to the static light programming tested above. Such
dynamic programs can be based on either demand or waiting time, informed by
induction loops embedded in the road, sensing cars passing or idling over them.
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Such induction loops can be seen in figure 4.7 as yellow rectangles at the left and
right edges. These loops only measure intersection throughput and do not inform
the TLS. When used, however, they allow SUMO to simulate a complex feedback
loop, where a TLS timing program impacts traffic conditions which in turn impact
the TLS timings.

Mining operations The mining operations scenario was based on the
Acosta_persontrips scenario, which extends the basic Acosta scenario with pedes-
trians and persons utilizing public transport. This suggested that it could be mod-
ified to simulate the movement of goods, rather than people.

There are two possibilities for implementing a goods transport scenario in SUMO.
One can either re-interpret persons to “pretend” to be packages, or one can use
SUMO’s rudimentary container model. In a sense, the container model already is
a re-interpretation of the passenger model, as it is the container itself, not some
freight planner, which controls its route and how it is loaded/unloaded.

A problem with either option is that neither allows an open-ended delivery — a
person or a container has a singular destination, so a VRPPD with multiple possible
destinations for a single person or container cannot be easily simulated. Nor is it
possible for containers to be of varying size — a SUMO transport vehicle can take
a fixed number of containers, but a container cannot consume more than one “slot”
in the vehicle.

The way SUMO implements loading and unloading of containers could cause prob-
lems in larger scale freight networks. As mentioned above, the container itself con-
tains information about its source, destination, and route, including which vehicle
will transport it. If that vehicle passes nearby the container’s position, the container
will load itself and, similarly, unload itself at the destination. While it should be
possible to implement complex networks in this model, it does not match reality
wherein a container is a dumb, inanimate object which is loaded and unloaded by
separate operators. The container itself may have both a sender and an intended
recipient, but it is not responsible for its routing or vehicle assignment.

Generative traffic All traffic in SUMO is inherently generative. A scenario’s
routes-file defines each vehicle precisely: where it will enter the simulation, at what
time, and where it will exit. In most cases this definition also includes a pre-
determined route, though SUMO does support routing vehicles dynamically.

To test this, the Acosta scenario was again used as a base, this time to test injecting
a stream of traffic at a certain point in time. This is possible through SUMO’s flow
definition. Instead of defining individual vehicles, this allows the user to define a
flow of identical vehicles from some point in the network — the flow needs not have
an endpoint — such that some number of vehicles are generated in a given time
interval. In our evaluation, a flow of 42 vehicles was generated at one vehicle per
ten seconds, starting at the green dot and moving to the blue dot shown in figure 4.9.
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Figure 4.9: View of the Acosta scenario network in SUMO with an entry and exit
to the network marked.

This could feasibly be used to simulate rush hour traffic, as describes in the scenario
definition.

SUMO does not, however, have a general concept of a “day,” instead having a clock
counting seconds from the simulation start — the time of day in the simulation is
not known or defined. If one wished to simulate identical traffic two days in a row,
one would need to duplicate all route information from the first day and increment
the departure times by 86 400 s. There is support in TLS programming for time-
dependent program switching, allowing different timing programs to be used during
the day, at night, or during the weekend. However, this is still dependent on the user
interpreting SUMO’s absolute time to some time of day in the simulation. Further,
it is up to the user to ensure all definitions — routing and TLS — use the same
reference point, as SUMO is only aware of its own absolute time. As an example,
if the route definitions are written assuming 0 s to be Monday 00:00 while the TLS
programs are written assuming 0 s to be Monday 08:00, SUMO will not be aware of
this discrepancy, but the simulation will clearly be faulty.
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Discussion

In this chapter, we will discuss the results presented above in order to compare and
contrast the three simulators we have studied. In section 5.1, we will discuss our
simulators from the context of our evaluation scenarios, looking at how well suited
they are to handle such problems. In section 5.2 we will discuss SimMobility and
why it, ultimately, did not get to be a part of this study. Finally, we close out the
chapter with a brief discussion on the aspects of ethics and sustainability for both
AVs and traffic simulation in section 5.3.

5.1 Comparison

The results presented in chapter 4 have given a general idea of what each simulator
is capable of. In this section we will compare the three simulators, scenario by
scenario, and discuss their relative strengths and shortcomings. In section 5.1.4,
we will look at it from the other direction and discuss the sorts of problem each
simulator is best suited for. Finally, in section 5.1.5 we will discuss the advantages
and disadvantages of extending one simulator to fit a set of tasks or using different
simulators for problems in the set.

5.1.1 Traffic lights

The traffic lights scenario studied whether or not each simulator would support
a scenario where something in the environment — such as traffic lights — could
affect the movement of vehicles. We found that only SUMO supported this out-
of-the-box. RinSim, as mentioned previously, has the potential to support any
scenario, including this one, since scenario configuration is practically the same
thing as extending the simulator. Lastly, MATSim appears to support traffic lights
though we were unable to test this, lacking adequate documentation.

The two simulators which ostensibly support traffic lights — SUMO and MATSim
— are the best choices if one wishes to examine a traffic network with such envi-
ronmental impediments. RinSim, while capable of simulating something like it, is
designed around the idea of moving goods, not the movement of traffic. Similarly,
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MATSim is generally more concerned with the movement of people rather than ve-
hicles — the cars which are simulated in MATSim are caused by the movement of
agents, not generated for the purpose of traffic. For much the same reason, MAT-
Sim does not have a good kinematic model of its vehicles — they accelerate and
decelerate instantly. Thus, traffic lights in MATSim can influence the flow of traffic,
but will not do so in a very realistic way.

SUMO is designed for realistic, microscopic simulation of vehicles in traffic, and
so handles this scenario well. As mentioned in the results, SUMO’s TLS program-
ming allows for many modes beyond simply red or green and the simulated vehicles
respond accordingly. Using the Krauß driver model, each vehicle has its own accel-
eration, deceleration, adherence to the maximum road speed, and reaction time.

An example of realistic traffic behavior which stems from this driver model is the
“traffic wave” phenomenon, which occurs both in SUMO and in the real world. This
phenomenon happens, for example, when multiple vehicles are waiting at a red light
which turns green. The first vehicle will accelerate, then a short moment after that
the second vehicle will have had time to react and starts accelerating. Another
moment later and the third vehicle will accelerate, and so on, creating a “wave”
moving backward through the waiting vehicles. This phenomenon can be seen in
figure 4.7 (see page 37) in the vehicles entering the intersection from the left. The
first row of vehicles are already in the intersection, while the second row has started
accelerating. The third row and beyond still appear stationary.

The Vaudrin, Erdmann, and Capus study [12] which inspired this scenario was
simulated in SUMO, so it is perhaps not surprising that it fared the best. Indeed,
the study looked at adjusting the above mentioned reaction time of simulated AVs,
along with changing TLS timing, to reduce the traffic wave phenomenon which, in
turn, should increase throughput at an intersection.

5.1.2 Mining operations

The mining operations scenario studied if each simulator would support a scenario
where goods were moved from some producers to some consumers — a Pickup and
Delivery Vehicle Routing Problem (PDVRP). We found that only RinSim solved
this in any meaningful way, though no simulator could simulate the exact scenario
specified in section 3.3.2. Beyond merely simulating the movement of goods — which
was handled by the goods criterion — the scenario required that goods from any
producer could satisfy any consumer. In particular, a unit of goods could not have
a singular intended recipient just as, in a mine, a “unit” of ore may have more than
one processing station or cart that could receive it. Unfortunately, no simulator
allowed such a transport network.

MATSim and SUMO both failed to even begin to implement this scenario, having
both failed the goods criterion. SUMO gets a little further than MATSim by having
its container model, though this model is even less compatible with the single-sender,
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multiple-recipient PDVRP model than RinSim’s parcel model. Both SUMO’s con-
tainer and RinSim’s parcel have the singular sender and recipient as properties of
the object, but SUMO’s container also has the plan for traversing the transport
network as a property. As noted in section 4.4.4, this is akin to how a person might
reason about moving through public transportation, which does not translate over
to the movement of inanimate objects through a transport network.

RinSim stands out in this scenario, not only for being the only simulator to support
it, but also for being built around the idea of moving goods. RinSim, as noted in 4.3.1
and table 4.1 is a logistics simulator whereas the other two are traffic simulators. It
is designed to study the interplay of agents carrying out transportation tasks.

As also noted above, RinSim is more of a simulation development library and less of
a simulator in itself. While configuring RinSim involves Java development — a task
which may be too complex for many users — it affords a skilled user an immense
amount of power to simulate any scenario they might care to. The current, basic
implementation of the parcel class in RinSim’s core library does not allow a parcel
to have more than one recipient. However, it is entirely possible, as shown by
Karlsson and Steffenburg [25], to construct a scenario where the agents themselves
have to choose where to deliver a parcel — the parcel itself has no preference.

Karlsson and Steffenburg’s thesis was the inspiration for this scenario. They used
RinSim in their work so it is, again, unsurprising that it did as well as it did. What
is surprising, however, is how poorly the other two simulators did. SUMO could
conceivably model the paired variants of the VRPPD, in particular the Dial-a-Ride
Problem (DARP). MATSim notably has modeled the Dial-a-Ride Problem (DARP),
as described in Maciejewski and Nagel [29], though this required extending MATSim
and so is not a native capability of the simulator. However, when considering a sce-
nario which requires the movement of inanimate goods rather than people, RinSim
is most likely the best choice.

5.1.3 Generative traffic

The generative traffic scenario studied if each simulator would support traffic flows
varying as a function of time, so as to simulate rush hours, for example. The
scenario also investigated whether or not each simulator had a concept of a “day”
and the cycles in operation that would entail. All three simulators had explicitly
defined traffic, which thereby supports the first part of the scenario. The way they
implemented this varied a great deal, however.

MATSim, as we have mentioned previously, does not explicitly define traffic. Rather,
traffic is what happens when the agents, whose movements are explicitly defined,
need to move. In a scenario where each agent has their own car, the definition of
agent movement and traffic flow is synonymous. If a scenario incorporates public
transport or multi-passenger vehicles, however, this is no longer the case. MATSim’s
model provides an organic simulation of the movement of people, but it may be

43



5. Discussion

difficult to define a certain vehicle density, at a certain location, at a certain time.
On the other hand, rush hour traffic may be emergent behavior from the agents’
movement, removing the need for explicitly defining it.

SUMO, in contrast, does define traffic explicitly. Each vehicle has a given time
and location when it will enter the simulation and most vehicles also have a pre-
determined path it will follow. As we showed in section 4.4.4, setting a specific
traffic density along a specific path is easy.

RinSim does have core support for generative traffic but, as expected, requires the
scenario to be specially developed in order to make use of this. Since RinSim does
not have separate configuration, there is no ready-made parser for XML routing files,
as in the other two simulators. Instead, the example scenario used in section 4.3.4
used a purpose-built file reader for an unfamiliar format.

The second part of the scenario — support for a “day” — was not well supported.
Both RinSim and SUMO failed this part, neither having a concept of time beyond
internal simulator time. SUMO counts internal time in seconds even if the simulation
was run at time steps longer or shorter than a second, which offers some internal
consistency. The same cannot be said for RinSim which only tracks simulator “ticks,”
without any relation to real or simulated time.

MATSim stands out in this scenario since it is explicitly built around the idea of a
daily cycle. Given its focus on agents representing people, this is a sensible model.
In the basic MATSim model, agents go through their day, following their plan, then
score and evaluate the result at the end of the day. With this evaluation, they
construct a new plan for the next day, and the cycle repeats.

Like the above two scenarios, it is not surprising that the best simulator in our find-
ings is also the simulator that was used in the study which inspired it. Guggisberg
Bicudo and Berkenbrock [26] used MATSim in a small example study to see if they
could replicate the complex traffic patterns of Joinville, Brazil.

5.1.4 Use cases

Let us imagine a new scenario. You, the reader, have been tasked to lead the
development of a new, electric AV-HT, from the first line on the drawing board to
its maiden voyage. You are — hopefully — convinced that part of this project will
require simulation. But which simulator will you use? Is there a best simulator?

The short answer is no. As we have discussed above, our three simulators are all
good at different things, and none of them is generally better than any other. The
skilled engineer will choose the right tool for each task and these simulators are just
that: tools.

Above, we studied how each simulator fared in each of our evaluation scenarios. Let
us now take each simulator and construct a hypothetical scenario where it would
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excel.

MATSim Simulating the microscopic movement of individuals is where MATSim
excels. If we are planning new bus routes, laying new tracks for light rail, or exploring
the impact of introducing tolls on certain roads, MATSim is the recommended tool
to use. The simulated agents have “homes” and somewhere to be during the day
— be it work, school, or the supermarket. If we change the available methods of
getting there, the agents will adapt and we can observe the emergent flow of people
and traffic.

In context of AV-HT, moving goods instead of people, MATSim may not seem
like a good choice. However, MATSim’s agent-based computation could be used to
model highly detailed freight networks, as discussed in Schröder et al. [32]. The
goods themselves may not be simulated, but this approach could be used to test
large-scale planning and scheduling strategies.

RinSim Imagine a scenario where you need to optimize a system in which electric
AVs pick up goods at a single producer and deliver them to a single consumer.
At either end there are limited numbers of loading and unloading bays and even
fewer charging stations. We are not concerned with the actual power drain of these
vehicles, but we know they need to charge every so often. The problem is: how do
we schedule vehicles for pickups, deliveries, and charging to optimize throughput.
RinSim would be well suited to simulate this scenario and may even optimize it as
well.

If there are goods involved and vehicle kinematics are of lesser importance, Rin-
Sim will be the best choice. The same goes for multi-agent reasoning problems,
where AVs have to negotiate and agree on something. RinSim has strong support
for modeling complex goods and communications systems, and lends itself well to
GPDP-type problems.

There are few real limitations to what one can do in RinSim. In our study, we have
investigated what can be done with the core simulator, but in a real use case, the
user has the power of the whole Java language at their disposal. With RinSim, there
is no difference between a user and a developer.

SUMO The control systems for our imaginary AV-HT project are coming along
and it is time to start testing them. Unit tests have gotten them so far, but they need
to be tried in action. Unfortunately, our AV-HT is not allowed to be on the road
yet, let alone near human drivers, so a live test is out of the question. Still, we need
to look at the interaction between the AV-HT and its control center as it encounters
different traffic conditions. In this scenario, SUMO could be used together with
TraCI to connect a simulated AV-HT to the real world control systems. Then we
would be free to throw whatever we wanted at the simulated vehicle to see how it
would fare.
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If realism is important, then SUMO is the best place to start. It is the only one of
our three simulators where vehicles know to obey traffic laws, yielding, and staying
more-or-less within the speed limit. We can also use it to model three-dimensional
terrain and calculate fuel consumption metrics for the vehicles driving over it. We
could model pollution — both noise and air — or connect it to any other application
via TraCI, allowing the other application to make up for where SUMO falls short.
There is, in theory, nothing stopping you from connecting SUMO to RinSim, creating
a simulator system which fulfills all eleven criteria and supports all three scenarios
we have studied.

5.1.5 Combining vs. extending

Given all of the above, we should still ask ourselves if it is easiest to extend one
simulator or use a combination of simulators. There are instances where it may be
relevant to use two simulators at the same time, with one informing the other. In
another case they could be used at different stages in the process, depending on
what each simulator does best. As an example, one could use SUMO to design an
AV-HT and its control logic, accurately simulating its behavior on the road. Once
that is done, one could use RinSim to lay out a model of the transport network,
simulating different placements of loading bays and varying numbers of vehicles to
find the optimal configuration.

The obvious downside to combining simulators is that the user must be familiar with
more than one simulator. Alternatively, more than one person must be involved in
the simulation and the simulation must move between them. However, this is not
likely to be a problem in large corporations. Barring all extensions, the simulation
is also dependent on the already implemented models in each simulator which may
be flawed or insufficient for a given problem. On the other hand, combining different
simulators allows a simulation work flow to be put in place quickly.

On the other hand, extending a simulator requires a great deal of time and effort.
In exchange, it affords the developer absolute control of the simulation and elimi-
nates any errors caused by translating a single scenario between multiple simulators.
Bespoke extensions will need to be extensively verified, however, since they will not
have been tested and validated by the simulator’s community of users.

RinSim stands out as the best candidate for extension rather than combination,
simply because it must be extended to be used. However, it has its niche, and for
major modifications it may be easier to try to use it alongside another simulator.
MATSim is intended to be modular, so will probably lend itself to both approaches
rather well. Finally, SUMO is likely best suited to working alongside some other
process — simulator or otherwise — via its external control capabilities. The easiest
way to add capabilities to SUMO is by extending its external controller, rather than
SUMO itself.
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5.2 SimMobility — the fourth simulator

SimMobility [54] was originally intended to be the fourth simulator in this study.
Unfortunately, a series of problems prevented it from being included. Below, we will
briefly introduce it and discuss what made it fall short.

SimMobility is the spiritual successor to MITSimLab [55] and DynaMIT [56], all
three developments of MIT’s Intelligent Transportation Systems Lab. It is intended
to simulate traffic and the movement of people at a massive scope — from fraction-of-
a-second microscopic traffic simulations to time steps of months or years, simulating
the change in mobility trends and land use as people change homes or jobs [11]. In
the scope of our project, the microscopic model was deemed relevant to study.

At first glance, acquiring SimMobility would be easy, as the source code is hosted
on GitHub. Unfortunately, acquiring the code was the only easy step. SimMobility
is only available as C++ source code, requiring a user to compile it themselves. The
documentation describing how to do so was lacking, leaving a number of details to
guesswork or trial and error.

Once compiled came the problem of running SimMobility. In difference from all
the simulators we did include in our study, SimMobility did not come with any
sample scenarios, nor information about how to create a scenario from scratch. The
documentation referred to a “prototypical city” which could be used for testing
SimMobility, but this data was missing. It later became clear that one had to
request access to this data from the developers, a process which may require signing
a non-disclosure agreement.

As mentioned in chapter 1, a criteria for selection of a simulator is that it is freely
available. While SimMobility’s source code is available, there is no method — short
of reverse-engineering the source — to use it, lacking both example data and docu-
mentation. The source code itself is available for anyone to download, but it is by no
means FOSS. Yoni Rabkin, a licensing volunteer for the Free Software Foundation,
assisted in reviewing SimMobility’s license and found that it places restrictions on
redistribution which are incompatible with free software [57]. Specifically, it pro-
hibits a person for charging a fee for redistribution. We also found that the license
infringes on the Derived Works clause of the OSI Open Source Definition [24, no.
3], as redistribution must be done through SimMobility’s public GitHub repository.
A derivative work may be used only within an organization, but such use still re-
quires the source code, with documentation of changes made, to be submitted to
the GitHub repository first. Thus, it is not suitable for commercial use, where edits
may be confidential.

In summary, SimMobility was excluded from our study due to it lacking crucial
information in order to run it and due to being neither free nor open source software.
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5.3 Ethics and sustainability

At a cursory glance, it could appear that everything is well and good, ethically and
in terms of sustainability, with the emergence of autonomous vehicles. Studies such
as Fagnant and Kockelman [18] and Litman [19] show that AVs can allow traffic to
flow more smoothly, with lower emissions, while also granting greater mobility to
persons who may otherwise have trouble getting around. AVs also drive better than
humans which will lower the rate of traffic accidents. All of this is likely true, but
it is not the whole picture.

There is a famous ethics problem, known as the Trolley Problem, which is usually
brought up when discussing autonomous vehicles. In brief, the problem states that
you see a runaway trolley speeding towards a track where five people are in the way.
Next to you is a switch lever, allowing you to divert the trolley to a side track where
there is only one person in the way. What do you do?

Referring back to the AVs, what would it do? What should it do? In this scenario, it
is the trolley, and must make a decision which may very well kill a human. Should it
prioritize saving its passengers, even if that means injuring bystanders? Bonnefon,
Shariff, and Rahwan found that their study participants would prefer utilitarian AVs
— that is, AVs that would sacrifice its passengers for the greater good — so long as
the respondent was not a passenger [58].

Answering these questions is a topic for another thesis, but it is nevertheless impor-
tant to mention them as we discuss allowing computers to make ethical, potentially
lethal, decisions. We should also ask who we blame when — not if, when — an AV
injures someone. Is it the fault of the AV’s owner or of its manufacturer? Do we
treat the AV as infallible and blame the injured party? At this time, there is no way
to say, although the last version seems unlikely.

Leaving the tangled ethics of the trolley problem and personal injury, let us consider
electric AVs. As mentioned by Fagnant and Kockelman [18], AVs drive more effi-
ciently than human drivers, causing lower emissions than a human would, even if the
AV drives further. With that, an electrical AV should have even less of an impact
on the environment. Again, this is true, but it is not without drawbacks. Electric
vehicles themselves have no emissions, but the electricity is generated somewhere.
If the power source is not clean, it becomes harder to justify the increased load from
electric vehicles.

Automation of heavy transport is a promising avenue for this emerging technology,
but there are problems to account for here as well. As noted in chapter 1, the
transportation sector employs a large number of people. Increasing automation in
this sector could oust these people from their jobs, increasing unemployment. A Pew
Research study [59] shows that 81 % of respondents believe that “many people who
drive for a living would lose their jobs” as a result of AVs becoming more widespread.
In the same study, 65 % of respondents said they would feel unsafe sharing the road
with an autonomous freight vehicle.
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Finally, let us turn to simulation. There are many advantages of traffic simulation
as compared to live road tests. Simulation is cheaper, faster, and safer, just to name
a few. Increasing traffic simulation in vehicle development could help the vehicles
reach the road faster and be safer on the road than if development had relied solely on
live road tests. However, over-reliance on simulation brings its own set of problems.
Careless engineering could build vehicles or control systems that work fine in the
simplified, simulated world but are incapable of handling the complex and random
nature of the real world. Simulation as a whole, much like the individual simulators
discussed above, is not a silver bullet — it cannot solve all problems. As the saying
goes: take everything — including simulation — in moderation.
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6
Conclusion

In this thesis, we have studied three different simulators for traffic and logistics
networks — Multi-Agent Transport Simulation (MATSim), RinSim, and Simulation
of Urban MObility (SUMO). This study has entailed reviewing literature related to
each simulator, determining its fulfillment of eleven criteria, and testing its support
for three scenarios. Through this analysis, we have found that no simulator stands
out as clearly “better” than the rest — rather, they are all better than the others for
certain classes of problems. MATSim outperformed the others in problems relating
to population simulation and intelligent route planning. RinSim excelled in problems
related to the movement of goods and simulation of inter-agent communication.
Finally, SUMO stood out in scenarios requiring realistic simulation of traffic flows
and vehicle behavior.

6.1 Further study

Further study could take one of two routes. A study may choose a single simulator
from our three to perform an in-depth study of its capabilities or extend it to handle
some class of problems it currently cannot. The other route is to take a broader
scope, looking at a greater number of simulators than have been covered in this
work. This route would be particularly interesting if such a study compared the
three FOSS simulators in this work to commercial simulators.
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