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Surface Plasmon Polaritons in Strongly Correlated Media
A Holographic Approach
Eric Nilsson
Department of Physics
Chalmers University of Technology

Abstract

The “strange metal” phase, exhibited by certain types of graphene and high-Tc supercon-
ductors above the transition temperature, sits at the frontier of condensed matter physics.
However, successfully describing the phase proves to be a difficult task, as it is character-
ized by strong correlations, making conventional methods fail. Hence there is a need of
novel approaches, where an alternative method comes from high-energy physics in the form
of the holographic principle. It states that the strongly coupled theory can be mapped to
a dual, weakly coupled, gravitational theory in one dimension higher, making calculations
go from impossible to feasible. Surface plasmon polaritons (SPPs) are a valuable tool in
an experimentalists toolbox, as they can serve as a probe of their surroundings. They may
therefore useful in the design of the experiments needed to answer the questions about
the strange metal phase. In this thesis, we model SPPs propagating on a strange metal in
a holographic setting. By numerically solving unwieldy differential equations in the dual
gravitational theory, with boundary conditions specified by the SPP system, we are able
to obtain some numerical dispersion relations for the plasmons, although more work is
needed. The results suggest that magnetic effects, which normally are suppressed, might
come into play when the material is strongly correlated.
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1. Introduction

Physics is the quest to explain nature. Due to the sheer complexity of the problems
that physicists attempt to solve, there often is the need to use approximative methods.
For instance, in perturbation theory, one considers corrections to a more simple, solvable
problem. It works remarkably well, and is responsible for the most accurate prediction
in all of physics. Calculations of the anomalous magnetic moment of the electron to
tenth order in perturbation theory agrees with experiments to ten significant figures [1]!
This can be attributed to the value of the fine structure constant, α ≈ 1/137, where the
perturbative correction to the nth order contains n factors of the coupling constant,

√
α.

As such, higher-order terms contribute less and less1, why the perturbation series can be
truncated to obtain satisfactory results.

But what if the coupling constant would approach, or even exceed, unity? This is precisely
what happens in strongly correlated systems, and the research of such systems sits at the
frontier of both condensed matter and particle physics. Examples of systems that exhibit
this behavior are the quark-gluon plasma, the state of matter in the very early Universe,
and in so-called strange metals. As the name implies, these metals posses a multitude of
exceptional properties. The most prominent feature is a linear-in-temperature resistivity,
to be contrasted with the typical ∼ T 2 result from Fermi liquid theory [3].

The strange metal phase appears in arguably two of the most interesting areas of condensed
matter physics; namely in certain types of graphene [4] and in high-Tc2 superconductors
[5]. In the latter, the phase sits above the superconductive region in the phase diagram,
extending all the way up to room temperature and beyond. The lack of a theoretical
description therefore hinders any attempts of designing materials with a higher critical
temperature, why an understanding of strange metals is paramount in order to reach the
holy grail of room-temperature superconductivity.

Conventional methods in condensed matter physics rely on the existence of particle-like
emergent phenomena called quasiparticles. But when the coupling is strong, the mean free
path traveled by such “particles” becomes comparable to their de Broglie wavelength. This
means that the state is very short-lived, so particle-like excitations are not well defined.

1In QED, which this relates to, there are details that need to be addressed. However, this does not affect
the accuracy of practical calculations, see [2].

2Below the critical temperature Tc, the resistivity drops to zero. High-Tc superconductors have Tc ≥ 77 K,
the boiling point of nitrogen.

1



1. Introduction

Furthermore, the strong coupling also challenges many numerical approaches, as numerical
inaccuracies escalate, ruining the convergence of the numerics. Hence, there is a need of
novel techniques able to handle the strongly coupled physics.

One promising method originates, maybe unexpectedly, from the theoretical physics com-
munity in their quest of a grand unified theory. The AdS/CFT correspondence in its
original form relates two different limits of string theories, but has through the general-
ized notion of a holographic duality gained traction in the condensed matter community,
where it is commonly called AdS/CMT3. It allows for an exploration of quantum many-
body physics normally inaccessible by conventional techniques, serving as a way around
the strongly coupled nature of e.g. strange metals. In short, the strongly coupled field the-
ory is mapped to a dual, weakly coupled gravitational theory living in a higher dimension,
making calculations go from impossible to feasible.

1.1 The AdS/CFT correspondence

The AdS/CFT correspondence (Anti-de Sitter/Conformal Field Theory) was first formu-
lated by Juan Maldacena in 1997, and states that N = 4 super Yang-Mills theory (a
supersymmetric conformal field theory) in four-dimensional spacetime, has a dual descrip-
tion in terms of supergravity on AdS5 × S5 [6]. In the case of a generalized holographic
duality, one instead considers a large N quantum field theory4, dual to a classical grav-
itational theory in one dimension higher. The spacetime is only required to approach
AdS as one moves towards its boundary, and the dual quantum field theory need not be
conformal. One speaks of the gravitational theory as being in the bulk, whereas the dual
field theory lives on the conformal boundary of the AdS spacetime. It is thorough this
generalized duality that novel aspects of condensed matter systems may be explored.

The duality implies that physics inside of a volume can be described purely by information
on its boundary, hence the name holography, akin to how a three-dimensional hologram
is projected from information stored on a two-dimensional surface. The first hint of a
holographic description was due to Hawking and Bekenstein, who realized that the entropy
for a black hole is given by [7]

SHB = kBA

4`2p
(1.1)

where kB is the Boltzmann constant and `p the Planck length. This states that the entropy
is related to the area A of the black hole, and not to its volume, as one would expect. Since
black holes are maximally entropic objects, the result is striking, as it begs the question
whether less entropic objects also can be described by boundary degrees of freedom.

The opposite viewpoint, where a lower dimensional theory has a dual description in a

3Anti-de Sitter/Condensed Matter Theory.
4N here refers to the degree of the gauge group, e.g. the strong force with gauge group SU(3) has N = 3.
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1.2. Plasmons

dimension higher, can be made sense of by considering the fact that the energy scale
at which physical processes take place does matter. This is most explicitly seen in the
running of coupling constants, where the value α ≈ 1/137 for the fine structure constant
is only valid at the relatively low energies at which atomic physics takes place. At higher
energies, such at those attained at the Large Hadron Collider, it has run to α ≈ 1/127
[8]. This process is called Renormalization Group (RG) flow, implying the existence of an
extra scale parameter which controls the values of constants such as α. The holographic
description in essence geometrizes the energy scale, where the extra dimension relates to
the RG flow parameter of the boundary theory.

It should be noted that holographic duality is a conjecture. However, is has stood tall
against numerous tests, to the point where it is now considered a “theorem”, with an
understanding comparable to that of the path integral [9].

1.2 Plasmons

A plasma is a gas-like substance made out of charged particles, and describes the conduc-
tion electrons in a normal metal, for instance. Plasmons are quanta of plasma oscillations,
similar to how phonons are quanta of lattice oscillations, and may therefore be pictured
as “electron sound waves”. A surface plasmon is a special case of a plasmon, confined
to an interface between a metal and a dielectric. This means that their properties are
highly anisotropic, in contrast to normal bulk plasmons, which propagate through the
entire material.

Plasmons are self-sustained oscillations, in the sense that they are solutions to Maxwell’s
equations in the absence of a source. However, they need to be excited somehow, akin
to how a guitar string needs to be plucked in order to produce sound. In the case of
surface plasmons, this is typically done by shining light on a metal, where the interaction
of the photon with a plasmon produces a new type of quasiparticle — a polariton. When
the frequency of the incident light matches the resonant surface plasmon frequency, it
generates an electromagnetic wave propagating along the surface, referred to as a surface
plasmon polariton, or SPP for short.

Although a theoretical description of plasmons did not come until until 1952 [10], they
have long fascinated mankind. Their effects can often be seen in the visible part of the
electromagnetic spectrum, explaining the colors of the stunning stained windows of the
Notre-Dame and the dichroic glass5 of the 4th-century Lycurgus cup. Furthermore, their
optical effects are sensitive to changes in the surrounding environment, why research groups
e.g. at Chalmers investigate the use of plasmonic nanoparticles in hydrogen sensors [11].

5This means that the color depends on the lighting conditions, i.e. whether the light is reflected or trans-
mitted.
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1. Introduction

The study of plasmons in a strongly coupled setting has advanced, due to recent develop-
ments in experimental techniques. Momentum-resolved electron energy-loss spectroscopy
(M-EELS) allows for precise measurement of the properties of plasmons in strange metals
[12], probing the strongly correlated physics that traditional condensed matter theory is
unable to explain. This motivates the pursuit of a holographic model, in order to construct
an effective theory that can describe the behavior of the plasmons.

Gran et al. have previously investigated bulk plasmons in a strongly coupled setting using
the holographic duality [13]–[15]. These papers use a model with two spatial dimensions, as
is common, since the calculations become easier. A logical next step is therefore to increase
the number of dimensions to three, where the effect of confinement to a two-dimensional
surface, i.e. SPPs, may be investigated.

1.3 Outline of the thesis

This thesis tackles the modeling of surface plasmon polaritons using the holographic prin-
ciple. The objective is twofold. Firstly, the holographic plasmon model will be extended to
that of plasmons living in three spatial dimension, confined to a two-dimensional surface.
Secondly, the dispersion relation for the holographic surface plasmon polaritons will be
investigated.

Chapter 2 treats the holographic duality, and in detail covers the canonical example of a
single scalar field in the bulk. The important relationships between bulk fields and bound-
ary properties are formulated in a holographic dictionary. Chapter 3 studies the physics of
surface plasmon polaritons, and derives the corresponding boundary conditions that make
the holographic theory model SPPs in particular. The application of the holographic
method to strongly correlated SPPs is outlined in Chapter 4, which step by step details
the necessary calculations needed to obtain the dispersion relations. The equivalent of a
conventional methods chapter is Section 4.4, which covers the the numerical implementa-
tion in Mathematica and Python. The results and conclusion follow in Chapters 5 and 6,
respectively.

Appendix A illustrates the sign conventions used in this thesis, and contains short primers
on mathematical concepts used. Appendix B is focused on detailed analytical calculations
that are too long and cumbersome to be included in the main text.

A note on conventions
Calligraphic letters (J µ,Aµ,Fµν etc. ) will in general be used for fields in the boundary
field theory, whereas normal letters are used for the bulk gravitational theory (gµν , Aµ, Fµν
etc. ). Unless otherwise stated, “god-given” natural units c = ~ = 1 are presumed and a
mostly plus signature is used for the metric. For a detailed description where any minus
signs show up, the reader is referred to Appendix A.2.
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2. The Holographic Principle

In this chapter we cover the main machinery behind this thesis, namely the holographic
principle. We will not detail Maldacena’s original arguments that motivate the AdS/CFT
correspondence, as this thesis mainly concerns AdS/CMT. The interested reader is referred
to e.g. [9] or [16].

In order to illustrate the important holographic dictionary, which relates the physics on
the boundary with the physics in the bulk, we walk through the canonical example of a
single scalar field. This also allows us to obtain enough of an understanding so that the
intricate steps in Chapter 4 become clear. The complete holographic dictionary can be
found in A.1 for reference.

2.1 Anti-de Sitter space

The source-free Einstein’s equations with a cosmological constant Λ,

Rµν −
1
2gµν (R− 2Λ) = 0, (2.1)

admit three different maximally symmetric spacetime solutions; Minkowski, de Sitter and
anti-de Sitter space, for Λ = 0, Λ > 0 and Λ < 0, respectively. D-dimensional Anti-de
Sitter space (AdSD) can be viewed as a hyperboloid embedded in a (D + 1)-dimensional
flat space with two time directions;

−X2
0 −X2

D +X2
i = −L2, i = 1, . . . D − 1. (2.2)

From this expression it is clear that the AdS length scale parameter L parametrizes the
curvature of the space, akin to the radius of a sphere. The isometry group of AdSD — the
group of diffeomorphisms that leave the metric invariant — is SO(2, D−1), as is manifest
from the form of (2.2). This is but one of the hints of a duality to a conformal field theory,
as SO(2, D − 1) is isomorphic to the conformal group in D − 1 dimensions [17].

Using the constraint in (2.2) to solve for one of the degrees of freedom amounts to deter-
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2. The Holographic Principle

mining a specific coordinate system for AdSD. A specific solution is on the form

XD = L
√

1 + tan % cos τ
X0 = L

√
1 + tan % sin τ

X1 = L tan % cos θ1

X2 = L tan % sin θ1 cos θ2

X3 = L tan % sin θ1 sin θ2 cos θ3

...
XD−2 = L tan % sin θ1 sin θ2 . . . cos θD−2

XD−1 = L tan % sin θ1 sin θ2 . . . sin θD−2

(2.3)

where the ranges for the coordinates are 0 ≤ % ≤ π/21, 0 ≤ τ < 2π, 0 ≤ θi < π,
i = 1, . . . , D − 3 and 0 ≤ θD−2 < 2π. The timelike coordinate τ is periodic but can be
extended to the entirety of R, giving the universal cover of AdSD [9], which gives the AdSD
metric

ds2 = −dX2
0 − dX2

D + dX2
i =⇒

ds2
AdSD

= L2

cos2 %

(
−dτ2 + d%2 + sin2 % dΩ2

D−2
) (2.4)

where dΩ2
D−2 is the metric on SD−2. In these coordinates, it is apparent that the metric

is topologically equivalent to a (hyper-)cylinder, which is a compact manifold, as seen in
Figure 2.1. The part of AdS space that is mapped onto its boundary at % = π/2, is called
the conformal boundary of AdS space, where the conformal field theory will live, as we
will motivate shortly.

τ

%

θ

Figure 2.1: Illustration of the coordinate system (2.4) of AdS3. For higher dimensions
D, the circular part of the cylinder generalizes to a SD−2 topology. Shaded in gray
is the Poincaré patch of AdS spacetime, and the conformal boundary is identified as
the boundary of the cylinder.

Another set of coordinate transformations takes us to the Poincaré coordinates, where the

1This is valid for D > 2.
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2.2. The holographic dictionary

AdSd+2 metric reads

ds2 = L2

r2

(
−dt2 + dx2

d + dr2
)

(2.5)

where the conformal boundary now sits at r = 0. By restricting the radial coordinate to
r > 0, only half of the AdS spacetime is covered. This is called the Poincaré patch, and
shown in gray in Figure 2.1. We will later put a black hole in the interior, which cuts off
the connection between the two parts anyway, why we let the bulk refer to the Poincaré
patch of AdS space. It should be mentioned that the coordinate r is sometimes called z in
the literature, with r being its inverse. However, since this thesis mainly concerns AdS5,
it is sensible to let xd = x, y, z denote the Cartesian three-dimensional coordinates while
r corresponds to the extra dimension.

If we talk about the dual field theory being at the boundary, one could question how it
can be affected by physics in the deep interior, which sits at r =∞. However, AdS space
enjoys the peculiar property that one can travel an infinite distance in finite time2. The
dual field theory can therefore be seen as actually living on the boundary of AdS space,
as it is causally connected to the entirety of the bulk.

Finally, the seemingly unintuitive choice of Poincaré coordinates where the boundary sits
at r = 0 should be addressed. This is explained via the interpretation of the radial bulk
coordinate r as the length scale of the boundary field theory. As energy is related to inverse
length, we can think of the boundary IR physics as “residing” in the far interior (r =∞)
of the bulk, where one moves towards UV physics as r → 0. Going from the gravity
to the field theory side of the duality, one effectively integrates away the extra radial
coordinate, reducing the number of dimensions. This represents a summation over higher
order Feynman diagrams in perturbation theory, essentially geometrizing the Wilsonian
renormalization group [18].

2.2 The holographic dictionary

Given a Lagrangian L, the essential information of a quantum field theory can be encap-
sulated in a partition function, which is the path integral

ZQFT[h(x)] =
∫
DΦ ei

∫
dd+1x [L+h(x)O(x)] (2.6)

where Φ denotes the degrees of freedom of the quantum field. The term h(x)O(x) is
called a source term, where h(x) is an external field acting as a source for the local field
operator O(x). Much like the partition function of statistical physics can be used to obtain
thermodynamic quantities, the quantum field theoretical partition function allows for the
calculation of the correlation functions of the theory. We say that that the partition

2More precisely, the proper distance is infinite, but the time it takes a photon to travel that distance is
finite.
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2. The Holographic Principle

function is a generating functional. For instance, the one-point function (expectation
value) of an operator is given by

〈O〉 = 1
Z0

∫
DΦO ei

∫
dd+1x [L+h(x)O(x)] = −i 1

Z0

δZQFT
δh(x)

∣∣∣∣
h(x)=0

, (2.7)

where Z0 = ZQFT[h(x) = 0]. Higher order n-point correlations functions are obtained in
a similar fashion, by successively taking n variational derivatives of ZQFT with respect to
the operators’ corresponding sources [19].

Gubser, Klebanov, Polyakov and Witten formulated a set of rules that relates the grav-
itational physics in the bulk with the boundary quantum field theory, called the holo-
graphic dictionary. Its cornerstone is the aptly named Gubser-Klebanov-Polyakov-Witten
(GKPW) formula, which is an equality between the partition functions of the two different
theories;

ZQFT[h(x)] = ZGrav[h(x)] ≡
∫ φ→h

Dφ eiSGrav[φ], (2.8)

where, importantly, the boundary conditions for the bulk theory (represented as φ → h)
corresponds to the source h(x) of an operator O(x) in the boundary theory. Here φ can
be any scalar, vector, spinor or tensor field, of which there can be multiple, each with
their own boundary conditions. Just as the holographic duality itself, the formula is a
conjecture. A derivation lies outside the scope even for most textbooks on the subject, so
we will simply take it as a blessing from the heavens above.

As described in the introduction, the holographic duality implies that the QFT is described
in the large N limit. This corresponds to stringy gravity reducing to classical gravity in
the bulk, which means that the gravitational partition function can be evaluated semi-
classically. By making a saddle-point approximation, the path integral can therefore be
taken only along stationary φ [17]. Concretely, this means that it is valid to make the
approximation

ZGrav[h(x)] = eiSGrav[φ∗] (2.9)

where φ∗ are solutions to the bulk equations of motion, subject to the boundary conditions
limr→0 φ(x, r) = h(x). Applying the GKPW formula (2.8) then gives the expectation value
of the boundary operator O in terms of the solutions to the bulk equations of motion as

〈O〉 = −i 1
ZQFT[0]

δZQFT
δh(x) = δSGrav[φ∗]

δh(x) . (2.10)

It is in general not trivial to identify which boundary operator corresponds to what bulk
field. However, they must without question respect the same symmetries, which allows
for the identification of the most common pairs. A bulk scalar field φ corresponds to a
boundary scalar operator (order parameter) O. Furthermore, the bulk metric gµν corre-
sponds to the energy-momentum tensor Tµν , while a bulk gauge field Aµ corresponds to
a conserved symmetry current J µ.

8



2.3. The canonical example

To keep track of the ideas discussed above, we condense the key takeaways in our own
holographic dictionary:

Holographic dictionary
1. The partition functions of the (d + 2)-dimensional gravitational theory and

the dual (d+1)-dimensional QFT can be taken to be equal (the GKPW rule).
2. The source h of an operator O is the boundary value of the dual field.
3. A scalar operator O is dual to a scalar field φ in the bulk.
4. The boundary energy momentum tensor Tµν is dual to the dynamical bulk

metric gµν .
5. A boundary conserved current J µ is dual to a bulk gauge field Aµ.

2.3 The canonical example

To illustrate how the the holographic dictionary can be used to relate quantities in the bulk
and on the boundary, we consider the simplest possible case, namely that of a minimally
coupled single scalar field φ in the bulk. The action for this system is

S = −
∫

dd+2x
√−g

(
1
2(∂µφ)(∂µφ) + m2

2 φ2
)

(2.11)

where g is the determinant of the metric gµν . As an approximation, we neglect the
backreaction of the scalar mass on the metric, i.e. that gµν is fixed and given by (2.5).
Requiring that the action is stationary leads as expected to the massive wave equation in
curved space;

∇2φ = m2φ =⇒ φ′′ − d

r
φ′ +

(
ω2 − k2 − m2L2

r2

)
φ = 0 (2.12)

using a plane wave ansatz φ = φ(r) exp{−iωt+ ik · x}, where we denote ∂rφ = φ′. To
investigate the behavior of the field near the boundary, we expand φ in a Laurent series
with lowest exponent ∆ as φ(r) = r∆ + h.o.t. The differential equation then reads[

∆2 − (d+ 1)∆−m2L2
]
r∆−2 +

(
ω2 + k2 + . . .

)
r∆ + h.o.t. = 0. (2.13)

Solving the equation to lowest order in r defines the indicial equation I(∆) = 0, where we
find that

I(∆) = 0 =⇒ ∆± = d+ 1
2 ±

√√√√(d+ 1
2

)2

+m2L2, (2.14)

where the two solutions are related as ∆± = d + 1 − ∆∓. The radial part of the scalar
field is as such given by a linear combination of the two solutions as

φ(r → 0) =
φ(0)
Ld/2

r∆− + · · ·+ φ(1)
Ld/2

r∆+ + . . . . (2.15)

9



2. The Holographic Principle

with φ(0) and φ(1) as the integration constants and factors of Ld/2 are factored out for
later prettiness.

Before the GKPW rule (2.8) can be applied, we must investigate the finiteness of the
on-shell action. When obtaining the equations of motion, we integrated (2.11) by parts.
Due to the nature of AdS space, we need to take a closer look at the boundary term;

S = 1
2

∫
M

dd+2x
√−g φ

(
∇2 −m2

)
φ− 1

2

∮
∂M

dd+1x
√−γ φnµ∇µφ. (2.16)

Here M is the bulk manifold, γµν ≡ gµν − nµnν is the induced metric on the boundary,
and na is unit vector normal to the boundary which points out of the bulk, with the only
non-zero component nr = −r/L. At the conformal boundary ∂M , the volume diverges,
why the theory needs to be regulated by placing the boundary at a finite cutoff radius
r = ε. With √−γ = (L/ε)d+1, the on-shell action reads

S∗ = +1
2

∮
r=ε

dd+1x
(
∆−φ2

(0)ε
2∆−−d−1 + (d+ 1)φ(0)φ(1) + ∆+φ

2
(1)ε

2∆+−d−1 + . . .
)
,

(2.17)
where the bulk term in (2.16) vanishes on-shell. The first term diverges as ε → 0, why
the φ(0) mode sometimes is referred to as non-normalizeable [20]. Similarly, we say that
φ(1) is a normalizeable mode. The divergence can be dealt with by adding a counterterm,
which if purely is in terms of boundary data, will not affect the equations of motions in the
bulk [17]. Either way, the counterterm clearly has to be Lorentz invariant, which severely
limits the possible choices. The simplest non-trivial case is a φ2 term, so by choosing a
prefactor in order to cancel the non-normalizeable mode in (2.17), we let

S → S + Sct = S − ∆−
2L

∮
r=ε

√−γ φ2. (2.18)

The on-shell action now reads

S∗ = 1
2

∮
r=ε

dd+1x (∆+ −∆−)φ(0)φ(1) + . . . (2.19)

where higher order terms go to zero as ε→ 0.

With this tidy form of the on-shell action in (2.19), the GKPW formula (2.10) can be
used in order to calculate 〈O〉. However, (2.14) tells us that ∆− can be negative, meaning
φ→∞ as r → 0, so how does one impose φ→ h? The identification of r as the (inverse)
energy scale, tells us that this corresponds to a UV divergence in the boundary theory,
which needs to be regulated. This is precisely what we did in (2.18), but translated into
a geometric language, where the divergence is due to the diverging volume of AdS space
near the boundary.

To make sense of the boundary condition φ → h, we should therefore take the field
theoretic source h as the leading order term φ(0), which can be seen as the renormalized
“boundary source” [9]. In the case presented above, this essentially means that

h(x) = lim
r→0

φ(r)r−∆−L−d/2 = φ(0) (2.20)

10
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with the additional factors of L to compensate for the cosmetic surgery in (2.15)3. Addi-
tionally, the AdS metric (2.5) is invariant under a rescaling {t, x, r} → λ {t, x, r}, so for
solutions to the equations of motion, φ must also remain invariant. (2.15) therefore tells
us that φ(0) = h → λ−∆−h, so the action of “stripping off” factors of r in (2.20) is the
implementation of renormalization group flow in λ, as taking r → 0 can be seen as letting
λ→ 0, i.e. flowing to the UV.

The variational derivative in (2.10) can now be taken:

〈O〉 = δS[φ∗]
δh

= ∆+ −∆−
2

δ

δφ(0)

(
φ(0)φ(1)

)
(2.21)

where we note 〈O〉 ∼ φ(1). In the language of linear response theory, the response (O)
must be related to the source (h), why

φ(1) = C φ(0) (2.22)

where C in general will be a matrix for non-scalar fields. We therefore obtain the slightly
peculiar result

δ

δφ(0)

(
φ(0)φ(1)

)
= φ(1) + φ(0)

δφ(1)
δφ(0)

= φ(1) + Cφ(0) = 2φ(1). (2.23)

Finally, we arrive at an explicit expression for the expectation value of a boundary operator
in terms of the bulk field as

〈O〉 = (∆+ −∆−)φ(1). (2.24)

Since the source h scales as h→ λ−∆−h under RG flow, and the measure on the boundary
contains d+ 1 factors of λ, the operator O conjugate to h must scale as

O(x)→ λ−∆+O(λx) since −∆+ = ∆− − d− 1, (2.25)

in order for the boundary action to be invariant. This tells us that ∆+ is the scaling
dimension for the dual operator O, in harmony with φ(1) being the mode associated with
the exponent ∆+.

There is one caveat that should be mentioned; AdS space actually admits stable solutions
for imaginary masses as long as m2L2 ≥ −(d + 1)2/4 [20], and (2.14) tells us that if
m2L2 ≤ 0, both modes ∆± are normalizeable. This allows one to interchange the roles
of φ(0) and φ(1) in the regime −(d + 1)2/4 ≤ m2L2 ≤ 0, called alternative quantization.
This can be shown to correspond to a double trace deformation in the boundary theory,
see e.g. [21].

3If there is conformal symmetry on the boundary, h can only be defined it up to scale transformations
either way [9], so this does not really matter.

11



2. The Holographic Principle

Holographic dictionary
6. If a source h is dual to a bulk field φ, it is canonically identified with the

leading behavior of the solution φ∗ to the bulk equations of motion.
7. The expectation value of the operator sourcing h is canonically identified with

the sub-leading behavior of φ∗, and is explicitly calculated as 〈O〉 = δS∗

δh .
8. The exponent ∆+ of the sub-leading solution is canonically identified as the

scaling dimension of the boundary operator O, and is dependent on the bulk
field’s mass.

To actually make the formula (2.24) useful, we must of course actually determine φ(1),
given φ(0). To do so, we return to the equations of motion for the scalar field (2.12), and
attempt to solve it throughout the entire bulk. A change of variables φ(r) = r

d+1
2 y(r) and

x = ir
√
k2 − ω2 leads to the Bessel equation

x2 d2y

dx2 + x
dy
dx +

(
x2 − α2

)
y = 0, (2.26)

where
α2 = m2L2 + 1

4(d+ 1)2 = ∆+ −
d+ 1

2 . (2.27)

Restricted to spacelike momenta, k2 > ω2, this equation has the linearly independent
solutions

y(x) = AIα(x) +BKα(x) (2.28)

in terms of the modified Bessel functions

Iα(x) =
∞∑
m=0

1
m!Γ(m+ α+ 1)

(
x

2

)2m+α
and Kα(x) = π

2
I−α(x)− Iα(x)

sinαπ . (2.29)

The solutions need to be regular in the interior, and since Iα(r)→∞ as r →∞, we must
require A = 0. Note that this does not mean that φ(1) is zero — following (2.15), φ(1) is
the factor in front of r∆+ . However, the elimination of one of the independent constants
effectively sets a relation between φ(0) and φ(1), i.e. sets a relation between the source and
its corresponding operator. Hence there is a need to “do physics” in the bulk in order to
determine 〈O〉 using (2.10).

With the explicit expressions for the two solutions in (2.29), the retarded Green’s function
of the boundary theory (the two-point function) can be computed by taking yet another
derivative of (2.10) with respect to the source. We find that

GROO(ω, k) ∼ δ 〈O〉
δh

∼ φ(1)
φ(0)

∼
(
k2 − ω2

)∆+−(d+1)/2
(2.30)

which has the same form as a Green’s function for a conformal scalar field with conformal
dimension ∆+ [9], in accordance with (2.25).
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2.4 Trouble in AdS5

For odd boundary space dimensions d, as will be the case for the plasmon system we wish
to study, there are additional divergences that needs to be taken care of. To illustrate
this, we return to the near-boundary Laurent series expansion of the scalar field, written
in more detail as

Ld/2φ = φ(0)r
∆−

∞∑
k=0

akr
k + φ(1)r

∆+
∞∑
k=0

bkr
k. (2.31)

Here a0 = b0 = 1 by definition, whereas higher order ak, bk are determined by solving
(2.13) to successively higher orders in r. The form of (2.13) implies that all ak and bk

with k odd vanish, in accordance with the full solutions (2.29). Hence higher order terms
in the expansions of the solutions come with additional factors of r2.

However, in the case of massless fields, (2.14) tells us that the solutions ∆± are separated
by even integers when d is odd. As such, there will come a point where the exponent of
higher order terms in the expansion of the φ(0) solution will be ∆+, that of the second
solution φ(1). But since ∆+ solves the indicial equation, it is impossible to satisfy the
differential equation to order r∆+−2. The remedy is to add a logarithm to the term that
degenerates as

ad+1r
d+1 → ad+1r

d+1 log r, (2.32)

changing (2.31) to a transseries expansion. To illustrate how this solves the problem,
consider a massless field in d = 1, such that ∆± = 0, 2. With the modified transseries
expansion, (2.12) yields

φ(0)I(∆−)r∆−−2 +
[
φ(0)

(
ω2 + k2 + a2

[
I(∆−) log r + 2∆− − 2

])
+ φ(1)I(∆+)

]
r∆+−2 +O

(
r∆+ log r

)
= 0.

(2.33)

Even though I(∆−) = I(∆+) = 0, a2 can be determined such that that the differential
equation is satisfied to next-to-leading order.

Since the logarithm diverges near the boundary, the action will require additional coun-
terterms. Note that we technically committed a heinous crime by taking the logarithm
of r, which is dimensionfull. Done properly, we would have to introduce a short-distance
cutoff scale rε and write log

(
r/rε

)
. But this is only a problem if there is any residual

log r-dependence as seen from the boundary, so with a proper treatment of the boundary
counterterm we can let this slip.

2.5 Black holes and temperature

When applying the holographic principle, there are primarily two different approaches.
In “top-down” holography, one starts with a full string theory that is known to be UV
complete, and that is a consistent theory of quantum gravity. This produces a conformally
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2. The Holographic Principle

invariant boundary theory, which is dual to a weakly coupled gravitational theory in the
large N limit. However, condensed matter systems are typically not described by large N
SU(N) gauge theories, nor do they exhibit conformal invariance apart from critical points.
Instead, we will start from a reasonable bulk action, and see what physics it can describe
on the boundary. One might argue that this weakens the validity of the duality, and that
the constructed theory might not be UV complete, but on the other hand, we obtain
a boundary theory that actually describes the physics we are interested in — strongly
coupled IR dynamics. This phenomenologically inclined approach is called “bottom-up”
holography, and is the most common choice in the AdS/CMT setting [17]. Its usage is
also supported by the fact that holographic duality can be motivated in the context of
purely classical gravity, i.e. without introducing string theory [22].

In Section 2.3, we approximated the background to be static, as we were only interested
in the scalar field and its connection to the boundary. In reality, the bulk action must of
course yield equations of motion for the bulk metric gµν to which AdS space is a solution.
In the case of bottom-up holography, stringy effects are essentially forgotten, meaning that
the bulk is described by the Einstein-Hilbert action;

SEH = 1
16πG

∫
dd+1x

√−g (R− 2Λ) , (2.34)

where R is the Ricci scalar. Varying the action with respect to the dynamical metric gµν
yields Einstein’s equations (2.1), to which the static AdS metric (2.5) as a stable solution.
The cosmological constant Λ is related to the AdS curvature as −2Λ = d(d+ 1)/L2.

There are however more solutions than the static AdS solution to the Einstein-Hilbert
action; namely black hole solutions. Furthermore, the holographic principle only requires
that that the bulk is asymptotically AdS, that is, that the metric takes on the form (2.5)
as r → 0. We may therefore look for solutions with massive objects — black holes — in
the interior of the bulk, as long as this condition is satisfied.

A black hole solution4 to the equations of motion defined by (2.34) can be written as

ds2 = L2
(
f(r)dτ2

r2 + dr2

f(r)r2 + dx2
d

r2

)
(2.35)

where we have Wick rotated (t → −iτ) to Euclidean space. In order for the space to be
asymptotically AdS (the Euclidean version thereof), we demand that f(0) = 1. Further-
more, the Euclidean version of a black hole horizon is the statement f(rh) = 0 for some
horizon radius rh ≥ 0. An expansion the metric around r = rh gives the so-called cigar

4Technically a “black brane” solution, as the horizon will be planar. We will however still refer to it as a
black hole, as is common in the literature.
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geometry

ds2 = L2
(∣∣f ′(rh)

∣∣(rh − r)dτ2

r2
h

+ dr2∣∣f ′(rh)
∣∣(rh − r)r2

h

+ dx2
d

r2
h

)

= dρ2 + ρ2dϕ2 + dx2
d

r2
h

, rh − r = r2
h

∣∣f ′(rh)
∣∣

4 ρ2, τ = 2ϕ∣∣f ′(rh)
∣∣ .

(2.36)

Imposing that the spacetime is regular at the horizon means that we must identify ϕ ∼
ϕ + 2π in order to avoid the conical singularity at ρ = 0 [17]. The horizon has made the
time coordinate ϕ periodic. The implications of this follow if we consider a quantum field
theory at some finite temperature T . The quantum statistical partition function is

Z = tr
{

e−βH
}

=
∫

ddq 〈q|e−βH |q〉 =

 N∏
i=1

∫
ddqi

 〈q1|e−
β
N
H |q2〉 . . . 〈qN−1|e−

β
N
H |q1〉

N→∞−−−−→
∫
Dq exp

{
−
∮

dτ LE(τ)
}

(2.37)
where β = 1/kBT , H is the system Hamiltonian, q are generalized coordinates and LE the
Euclidean Lagrangian. Since the trace implies a summation over diagonal matrix elements,
the product of transition matrix elements between neighboring states 〈qn| and |qn+1〉 wraps
around on itself, and we obtain a closed integral in the continuum limit, where the number
of intermediate states N tends towards infinity. Importantly, the integral has period β,
since dτ = β/N , meaning that the periodicity in the time coordinate in Euclidean space is
identified with the temperature for the field theory.

The periodicity in ϕ can therefore be related to τ ∼ τ + 1/T , which leads to the relation
between the boundary temperature and the bulk metric

T =
∣∣f ′(rh)

∣∣
4π , (2.38)

which is the Hawking temperature of the black hole [9]. Other thermodynamic quan-
tities of the black hole translate to the boundary as well [9]. For instance, recall the
Bekenstein-Hawking entropy in (1.1), which scales with the area of the black hole. In
higher dimensions, the black hole entropy is generalized via the Ryu-Takayanagi formula
[17], with the same key feature of being dependent on “area” and not volume. This means
that from the boundary point of view, the entropy has the expected dimensional scaling,
as the boundary theory lives in one dimension less.

Holographic dictionary
9. A finite temperature T on the boundary equals the Hawking temperature of

a black hole in the bulk.

Note that the addition of temperature badly breaks the conformal symmetry of a scale
invariant theory, described by the static AdS metric, at least in the IR. But this is exactly
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2. The Holographic Principle

what we want, as the physics of a real world condensed matter system is very much scale
dependent: it depends on the energy of a process in relation to the ambient temperature.
The fact that the effect of the black hole on the metric vanishes as r → 0, captures that the
boundary UV physics is unaffected by the temperature, where the conformal symmetry is
regained. We can view the dual field theory as flowing from a scale invariant CFT in the
UV, to a scale-dependent theory in the IR — the CMT in AdS/CMT.

2.6 Electromagnetism and chemical potential

If we are to model plasmons in holographic setting, we need to describe boundary electro-
magnetism. As is the case for most of bottom-up holographic condensed matter physics
[17], we add a Maxwell term to the Einstein-Hilbert action, to obtain the Einstein-Maxwell
action

S = SEH −
1

4e2

∫
dd+2x

√−g FµνFµν . (2.39)

The bulk fields under consideration are therefore the dynamical metric gµν and the bulk
gauge potential Aµ, related to the electromagnetic field tensor in the usual way as

Fµν = 2∇[µAν] = 2∂[µAν] ≡ ∂µAν − ∂νAµ (2.40)

where ∇µ is the covariant derivative defined by the metric gµν5.

In Section 2.2, we claimed that a bulk gauge field is dual to a conserved symmetry current
on the boundary. Consider now the on-shell Maxwell part of the Einstein-Maxwell action,
where the bulk gauge potential transforms as Aµ → Aµ+∇µα(x) under U(1). Integrating
the radial direction by parts, we find

S∗ ∼
∮
∂M

dd+1x
√−γnrAµF rµ →

∮
∂M

dd+1x
√−γ (Aµ +∇µα

)
nrF

rµ

=
∮
∂M

dd+1x
√−γ (nrAµF rµ + α∇µnrF rµ

)
,

(2.41)

integrating by parts on the boundary. As the bulk action is invariant under the gauge
transformation,

∇µnrF rµ
∣∣∣∣
δM
∼ ∇µJ µ = 0, (2.42)

so J µ is the conserved current on the boundary. Hence, Aµ is the holographic dual to
the boundary current J µ, why the corresponding source Aµ should be obtained from
the leading order terms from A∗µ that solve the bulk equations of motion. Since Aµ is a
gauge field, we are free to work in the radial gauge Ar = 0, making the mapping between
components of Aµ and Aµ one-to-one. Following the dictionary, we can therefore prescribe
the identification

lim
r→0

Aµ = Aµ (2.43)

5Note that the simplification to normal partial derivatives does not necessarily hold when the indices are
contravariant (Fµν)!
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where Aµ may have to renormalized. Importantly, the incorporation of a bulk vector field
allows us to model compressible phases of matter, that is, matter at some finite density
[17]. This is tuned by a chemical potential µ on the boundary, the conjugate source to the
charge density ρ = J t.

Holographic dictionary
10. The boundary and bulk vector potentials are identified as Aµ = limr→0Aµ.
11. A finite chemical potently µ on the boundary is the boundary value of the

time component of the bulk vector potential.

With the close relation of Aµ and Aµ, it follows that there is an electric field in the
bulk, and Gauss’ law implies this field must originate from somewhere. There are two
alternatives: either there exists some type of charged matter in the bulk, or the black hole
itself is charged. We will consider the latter, although there may be unstable behavior
near the horizon [17], as the former is computationally very intricate (see e.g. [23]).

When the charge is “separated” between the boundary and the black hole, it is referred
to as fractionalized. This is the case for the Reissner-Nordström black hole, the analogue
of the Schwarzchild black hole solution to the Einstein-Maxwell action. Determining the
AdS5 version of the Reissner-Nordström black hole will be the first quest we seek out in
Chapter 4.

With the Einstein-Maxwell action (2.39) and the identifications of the boundary temper-
ature and chemical potential from (2.38) and (2.43), we have developed a holographic
model that is dual to a static electromagnetic system at some specific ratio of µ/T . This
is called the Reissner-Nordström metal, which attempts to model the strange metal. In
order to realize surface plasmons of the strange metal, we have to find specific boundary
conditions for the bulk fields. This is the topic of the next chapter.
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3. Surface Plasmon Polaritons

This chapter treats the physics of surface plasmons polaritons, and defines the problem
treated in this thesis. The main outcome is to obtain equations that serve as bound-
ary conditions for the bulk fields. These boundary conditions are what makes a general
holographic model describe the specific physical system of surface plasmon polaritons.

3.1 Plasmon and interface conditions

To find the defining equations for surface plasmons, we turn to Maxwell’s equations in
dielectric and magnetic media. Written in differential form1, they read

dF = 0 , d ?W = ?Jext, (3.1)

where F = dA is the electromagnetic field tensor, W is the induction tensor and Jext is
the external 4-current. These may without loss of generality be decomposed as

F = E ∧ dt+ ?−1(B ∧ dt), W = D ∧ dt+ ?−1(H ∧ dt),
Jext = −〈ρext〉 dt+ jext,

(3.2)

where ρext and jext is the external charge density and current, respectively.. The boldface
denotes that the quantities are 3-vectors in space.

The electric field E and the magnetic flux density B are related to the displacement field
D and the magnetic field strength H via the constitutive equations

D = ε0E + P = ε0εE and B = µ0 (H + M) = µ0µH. (3.3)

where P and M are the polarization and magnetization inside of the material, respectively
[24]. These equations also define the dielectric function ε and the permeability µ (not to
be confused with the chemical potential) which characterize the material. ε0 and µ0 are
the vacuum permittivity and permeability, respectively, related to the speed of light as
c−2 = ε0µ0. With the decompositions in (3.2), Maxwell’s equations (3.1) can be expressed
in the more familiar vector form;

∇ ·B = 0, ∇ ·D = ρext,

∇× E = −∂B
∂t
, ∇×H = jext + ∂D

∂t
.

(3.4)

1For a short primer on the language of exterior calculus and differential forms, see Appendix A.3.
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3. Surface Plasmon Polaritons

In order to realize a surface plasmon, we consider the most basic setup consisting of a
metal slab surrounded by a dielectric with constant and real permittivity ε1, as shown
in Figure 3.1. The coordinate system is chosen such that the interface between the two
media is situated at z = 0, and without loss of generality, the electromagnetic wave is
assumed to propagate along the x-direction. Idealizing a real-world setup, the metal slab
is assumed to extend infinitely in the x-y plane and down to z = −∞.

z

y
x

Figure 3.1: The surface plasmons are confined to the interface between a dielectric
(z > 0) with constant and real permittivity ε1 and a (strange) metal (z < 0) with an
undetermined dielectric function ε(ω,k). The plasmons propagate in the x-direction.

We begin the analysis within the dielectric, for z > 0, and look for solutions to the electric
and magnetic fields E and H. A plasmon is a collective oscillation where the excitations
are self-sustained, i.e. solutions to Maxwell’s equations without external sources (Jext = 0)
[24]. This means that the curl equations in (3.4) can be combined as

∇×∇×H = −ε1
c2
∂2H
∂t2

(3.5)

whereby the vector identity ∇2H = ∇(∇ ·H)−∇×∇×H leads to a wave equation for
the magnetic field,

∇2H− ε1
c2
∂2H
∂t2

= 0. (3.6)

assuming there is no source for magnetization in the dielectric, i.e. µ1 = 1.

Surface plasmons normally come only from transverse magnetic (TM) modes, where the
magnetic field transverse to the direction of propagation. Systems with non-unity magne-
tization µ can support transverse electric (TE) modes as well, but the two types of modes
are decoupled [25]. We will restrict ourselves to the study of TM modes, so from the shape
of the wave equation, we make a plane wave ansatz decaying in the z-direction for the
vector potential as

A(1) =
(
α(1)
x dx+ α(1)

z dz
)

e−iωt+ikx−λ1z (3.7)

where the reciprocal value of the attenuation constant, 1/|λ1|, defines the evanescent decay
into the dielectric, and the wavevector is k = (k, 0, iλ1). Assuming that the dielectric is
non-magnetizing (µ1 = 1), the electric and magnetic fields follow directly from the vector
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potential ansatz as

E(1) =
(
iωα(1)

x dx+ iωα(1)
z dz

)
e−iωt+ikx−λ1z

H(1) = − 1
µ0

(
λ1α

(1)
x + ikα(1)

z

)
dy e−iωt+ikx−λ1z

(3.8)

where the displacement field is trivially related to the electric field as D = ε0ε1E. Inserting
the ansatz for H into the wave equation (3.6) directly relates the attenuation λ1 to the
other parameters,

k2 − λ2
1 = µ0ε0ε1ω

2. (3.9)

This is simply is the statement that the electromagnetic wave is light-like with the speed
of light modified by the material, i.e.

kµk
µ = 0, where kµ = (−√ε1

ω

c
, k, 0,−iλ1). (3.10)

Note that in general, ω, k ∈ C, where the imaginary part models the diffusive behavior.
However, we can always choose to take one of them real, and consider decay in either time
or space only.

Inside the metal, for z < 0, we assume that the system is strongly coupled and that
ε2 = ε(ω,k) is non-trivial. In order to account for any unexpected behavior of strongly
coupled physics, we make no prior assumptions on µ2 = µ(ω,k), which means that we do
not assume the existence of a simple wave equation for the fields. Still considering TM
modes, an analogous ansatz for the vector potential reads

A(2) =
(
α(2)
x dx+ α(2)

z dz
)

e−iωt+ikx+λ2z, (3.11)

where again, 1/|λ2| defines the evanescent decay, this time into the metal. However, with
non-trivial permeability, it is convenient to make a separate ansatz for the magnetic field
as

H(2) = hydy e−iωt+ikx+λ2z. (3.12)

The displacement field then follows from Maxwell’s equations, as

D(2) = hy
ω

(−iλ2dx− kdz) e−iωt+ikx+λ2z, (3.13)

but might not be trivially related to E(2), as the assumption about µ being non-trivial
might make ε a non-diagonal matrix.

The different solutions can now be related across the interface at z = 0. Maxwell’s
equations implies that the normal component of displacement field and the transverse
components of the electric and magnetic field have to be continuous2, which leads to the
matching conditions

E(1)
x − E(2)

x

∣∣∣∣
z=0

= 0 , D(1)
z −D(2)

z

∣∣∣∣
z=0

= 0 , H(1)
y −H(2)

y

∣∣∣∣
z=0

= 0 . (3.14)

2This is valid as long as there is no external surface charge or current, respectively
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3. Surface Plasmon Polaritons

Inserting the above ansätze, the matching conditions reads

α(1)
x = α(2)

x , iωε0ε1α
(1)
z = − k

ω
hy, λ1α

(1)
x + ikα(1)

z = −µ0hy, (3.15)

which when combined with the wave equation in the dielectric (3.9), leads to the defining
surface plasmon interface condition

ε0ε1ω
2αx −

√
k2 − ε0µ0ε1ω2hy = 0, (3.16)

dropping the superscript on αx. The magnetic field y-component hy can be obtained from
difference between the magnetic flux density and the magnetization as

H(2)
y = 1

µ0
B(2)
y −My = 1

µ0

(
∂zA(2)

x − ∂xA(2)
z

)
−My. (3.17)

This means that the interface condition can be written purely in terms of the boundary
vector field and magnetization as

ω2Ax −
√
k2 − ω2 (λ2Ax − ikAz −My

)
= 0 (3.18)

in units where c = 1, and where the relative permittivity of the dielectric is set to ε1 = 1
(e.g. air). The discussion of the boundary magnetization follows in the next section.

With the plane wave ansätze for the fields inside of the metal, Maxwell’s equations can
be rewritten into a more useful form. The current is related to the field strength and
induction tensor as [14]

d ? (F −W) = ?J . (3.19)

Zero external current means that d?W = 0 inside of the strange metal, so we are left with

d ? F = ?J =⇒ ∇×B − ∂E
∂t

= j. (3.20)

Using the relation E = −∂tAi −∇At, we find for the x-component that(
ω2 + λ2

2
)
Ax + ωkAt − ikλ2Az + Jx = 0, (3.21)

and similarly for the z-component;(
ω2 − k2

)
Az − ikλ2Ax − iωλ2At + Jz = 0. (3.22)

Following [13], these two equations will be referred to as the plasmon conditions, as they
in the case of λ2 = 0 imply the existence of bulk plasmons.

3.2 Magnetization through holography

The interface condition (3.14) contains the boundary magnetization My, which needs
to be modeled holographically. Just as the chemical potential µ is the thermodynamic
conjugate to the charge density ρ, the magnetization (density) M is conjugate to the
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3.2. Magnetization through holography

magnetic flux density B. The holographic dictionary therefore implies thatM is obtained
by taking a variational derivative of the on-shell bulk action with respect to B [26].

Consider the Maxwell part of the bulk action. Written in terms of differential forms, it
reads

SM =
∫
M
F ∧ ∗F (3.23)

where F is the bulk electromagnetic 2-form and ∗ is the 5-dimensional Hodge operator in
the bulk. We assume the existence of a homotopy operator K which satisfies

ω = Kdω + dKω and ιnK = 0 on ∂M (3.24)

for a form ω. The homotopy operator may be constructed via radial integration, since
AdS5 is naturally foliated into parallel submanifolds (surfaces of constant r) [27]. Since
the magnetic flux density B is related to the vector potential A via a derivative, consider
the contributions to the variation of the action from δ(dA);

δS =
∫
M
δ(dA) ∧ ∗F =

∮
∂M

δ(dA) ∧ K ∗ F (3.25)

using (3.24) and Stokes’ theorem. The details of this calculation can be found in Ap-
pendix A.4. Since the bulk and boundary vector potentials are directly identified, dA

∣∣
∂M =

dA = F , so the variational derivative with respect to By = Fzx yields the ty component
of K ∗ F . We may therefore construct a bulk field My as

My(r) =
〈∫ r

rh

∗F, dy ∧ dt
〉

=
∫ r

rh

dr (∂xAz − ∂zAx) (3.26)

where the boundary magnetization is identified asMy = limr→0My.
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4. Holography in Action

The computational prowess defined by the holographic framework in Chapter 2 and the
model specific boundary conditions in Chapter 3 are now ready to be combined. This
chapter outlines all the necessary calculations from the dual gravitational point of view.
Starting from a bulk action, we end up with an optimization problem which may be solved
for in order to obtain the dispersion relation for the plasmons. Most of the calculations take
help of Mathematica [28], and in particular the xAct package [29], as they are unreasonable
to do by hand. The Mathematica notebook may be requested by contacting the author.

4.1 Background solutions

The starting point is the Einstein-Maxwell action

S0 =
∫

d5x
√−g

(
R

2 − Λ− 1
4FµνF

µν

)
(4.1)

where R is the Ricci scalar of the manifold defined by the metric gµν . For simplicity, we
have chosen units where 8πG = 1 and absorbed the constant e into the vector potential.
As we saw in Section 2.3, the action may need to be renormalized, but this will not affect
the bulk equations of motion. Hence we can vary the bare action S0 with respect to the
metric and vector potential, yielding the Einstein’s and Maxwell’s equations of motion;

δgµν : 0 = −Λgµν − 1
4g

µνFκλF
κλ + FµκF νκ −Rµν + 1

2g
µνR

δAµ : 0 = ∇κ∇κAµ −∇κ∇µAκ
(4.2)

both of which are nonlinear. This is remedied by linearizing the equations, i.e. considering
small perturbations around a static background solution.

Under the assumption that the background is homogeneous and isotropic in space, and
static in time, we make ansätze for the metric and vector potential as

ds2 = L2

r2

(
−f(r)dt2 + dx2

i + g(r)dr2
)

and Aµ = L
(
h(r), 0, 0, 0, 0

)
, (4.3)

introducing three unknown scalar functions f , g and h. The metric ansatz generalizes
the pure AdS metric (2.5), and the vector potential ansatz respects our choice of radial
gauge. Furthermore, a static background solution corresponds to a static, unperturbed
system on the field theory side. This means that both the bulk vector potential and some
higher order derivative of it mush vanish at the boundary, ensuring that the boundary
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4. Holography in Action

electromagnetic field is static. It is therefore suitable to consider a background solution
with only a non-zero time component, since it relates to the boundary chemical potential,
µ.

Inserting the ansätze into the equations of motion (4.2) allows relates the scalar functions
by the following equations:

0 = −12f + 12fg + 3rf ′ − r4h′
2

0 = 12fg − 12fg2 + 3frg′ + gr4h′
2

0 = rh′′ − h′.
(4.4)

The solutions to the two first order and one second order differential equations have four
degrees of freedom, which we suggestively denote µ, c,M and Q. Introducing the black
hole horizon r = rh as the characteristic length scale, the solution to the equation for h(r)
can be written as

h(r) = µ−
√

3
2Q

(
r

rh

)2

. (4.5)

Following our discussion around (2.43), the integration constant µ really is the chemical
potential of the boundary. Furthermore, the holographic dictionary tells us that the
boundary charge density 〈J t〉 = ρ is obtained from the subleading term in the near-
boundary expansion of At, so Q must be some function of ρ. From the bulk point of view,
the charge can only originate from the only object there is; namely the black hole1, so we
identify Q as the charge of the Reissner-Nordström black hole. In order to avoid a gauge
singularity, the vector potential must vanish at the horizon, h(rh) = 0 [17], which sets the
relation between the boundary chemical potential charge density, dependent of the black
hole radius rh.

We continue with µ as the free parameter of choice, after which the solutions to the
remaining equations read

f(r) = c2 −M r4

r3
h

+ 2µ2

3
r6

r4
h

g(r) = c2

f(r) .
(4.6)

With our choice of units, the speed of light is unity, so at the boundary where the metric
should asymptote to free AdS space, we must require f(0) = 1, i.e. c = 1. Just like in
Section 2.5, there is another constraint on f(r) at the horizon, as it is defined by f(rh) = 0.
This allows us to specify the remaining parameter M , interpreted as the mass of the black
hole, such that rh = 1 (length units) via

M = 1
3
(
3 + 2µ2

)
(4.7)

1Since we chose to study fractionalized charge.
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4.2. Perturbative solutions

meaning that the finalized background solutions read

h(r) = µ(1− r2)

f(r) = 1−
(

1 + 2µ2

3

)
r4 + 2µ2

3 r6

g(r) = 1
f(r) .

(4.8)

However, let us keep the factors of rh explicit and investigate the temperature, akin to
Section 2.5. Avoiding the conical singularity at the horizon now yields a slightly more
intricate expression;

T = 3− µ2r2
h

3πrh
. (4.9)

We may construct a dimensionless parameter quantifying the scale of the system, as the
ratio of the chemical potential to the temperature as

µ

T
= 3πµ̂

3− µ̂2 (4.10)

where µ is explicitly made dimensionless as µ̂ = µrh. This expression also clearly illustrates
the bound µ̂ <

√
3, and approaching it means that the temperature of the black hole

approaches zero. A zero-temperature black hole is possible in the Reissner-Nordström case,
and happens when the entirety of the black hole’s mass comes from its electromagnetic
energy [9]. Since charge is conserved, the black hole cannot radiate, which is equivalent
to the statement that its Hawking temperature is zero.

Analogously, we can express the fractions of other dimensionfull parameters to the tem-
perature as

k

T
= 3πk̂

3− µ̂2 ,
ω

T
= 3πω̂

3− µ̂2 ,
λ2
T

= 3πλ̂2
3− µ̂2 .

(4.11)

where k̂ = krh, ω̂ = ωrh and λ̂2 = λ2rh are dimensionless.

4.2 Perturbative solutions

We have now managed to describe the bulk space corresponding to a static boundary sys-
tem, at some finite temperature T and chemical potential µ, via the background solutions
(4.8). But in order to realize plasmons traveling along the interface, the system needs to
be excited somehow. In an experimental setting this would typically be done by shining
a laser onto the surface, which given the correct frequency can excite a surface plasmon
polariton.

Excitations in the bulk are modeled by considering small perturbations of the background
solution as gµν → gµν + δ(gµν) and Aµ → Aµ + δ(Aµ), in line with the linearization of
the equations of motion. More precisely, we perturb the metric, following the plane wave
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4. Holography in Action

ansatz in Section 3.1, as

δ(gµν) = ε
L2

r2 e−iωt+ikx+λ2z



δgtt(r) δgtx(r) δgty(r) δgtz(r) 0
δgtx(r) δgxx(r) δgxy(r) δgxz(r) 0
δgty(r) δgxy(r) δgyy(r) δgyz(r) 0
δgtz(r) δgxz(r) δgyz(r) δgzz(r) 0

0 0 0 0 0


(4.12)

where ε is a small parameter, effectively determining the size of the perturbation. L2/r2 is
factored out in order to account for the diverging shape of the metric as r → 0, which makes
it meaningful to impose boundary conditions for the fluctuations δgµν . Furthermore, since
gµν is a gauge field just like Aµ, we can choose a radial gauge such that we only consider
diffeomorphisms that leave the radial parts of the metric invariant. Thus, in order to stay
in gauge, we set δgµr = 0.

In a similar fashion, the vector potential is perturbed as

δ(Aµ) = εLe−iωt+ikx+λ2z(δAt, δAx, δAy, δAz, 0) (4.13)

where δAr = 0 respects the choice of radial gauge. We define

Φ ≡ {δgtt, . . . , δAt, . . . , δAz} , (4.14)

containing the 14 different fluctuations (to be distinguished from the perturbations, defined
via the expressions in (4.12) and (4.13)).

Inserting the perturbations into the action yields

S = S(0) + εS(1) + ε2S(2) +O
(
ε3
)

(4.15)

where S(0) determines the background equations which are solved by (4.8), and the equa-
tions of motion defined by S(1) is zero by solutions to the background, as will be shown
later. S(2) defines the linearized equations of motion for the fluctuations, which in total
amounts to a system of coupled differential equation on the form

D1 (Φ) = 0
...

D14 (Φ) = 0

(4.16)

which we will refer to as the fluctuation equations. Here Di, i = 1, . . . , 14 are intricate
second order differential operators, the exact form of which depends on the background
solutions. For instance, the x-component of the bulk Maxwell’s equations reads

D12 (Φ) = (δAx)′′ + h′

f
(δgtx)′ +

(
f ′

f
− 1
r

)
(δAx)′

+ rh′′ − h′
fr

δgtx + ωk

f2 δAt + ω2 + λ2
2f

f2 δAx −
ikλ2
f

δAz = 0.
(4.17)
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4.2. Perturbative solutions

The transverse sector, consisting of ΦT =
{
δgty, δgxy, δgyz, δAy

}
, decouples from the lon-

gitudinal sector

ΦL =
{
δgtt, δgxx, δgyy, δgzz, δgtx, δgtz, δgxz, δAt, δAx, δAz

}
, (4.18)

since the linear equations are invariant under the parity transformation y → −y in the
longitudinal sector, but not in the transverse sector. Plasmons are in general longitudinal
waves, why their behavior should be captured by the fields in ΦL. Hence we focus our
attention on the remaining ten equations. Although slightly fewer in number, solving them
is no easy task and will in general require numerical methods. Quite luckily however, some
solutions can be found analytically.

4.2.1 Gauge solutions

When imposing the bulk radial gauge, we have not eliminated all gauge freedom in the
bulk. Remaining are the “large” gauge transformations which are non-trivial on the bound-
ary, changing what conserved value the Noether current takes. Since the dual field theory
lives on the boundary, its physics is affected by these transformations, why they can be used
to find pure gauge solutions to the fluctuation equations (4.16). The gauge transformations
under consideration are the spacetime diffeomorphisms and local U(1) transformations of
the Maxwell field:

gµν → gµν + δξgµν ,

Aµ → Aµ + δξAµ + ∂µΛ,
(4.19)

where Λ is the U(1) angle and the vector ξµ generates the diffeomorphism, which is given
by the Lie derivative as

δξgµν = Lξgµν = ξκ∂κgµν + gµκ∂νξ
κ + gκν∂µξ

κ. (4.20)

In order to find the gauge solutions, we make ansätze for the gauge fields consistent with
the perturbations as

ξµ = ζµ(r)e−iωt+ikx+λ2z,

Λ = θ(r)e−iωt+ikx+λ2z.
(4.21)

ζµ(r) and θ(r) can then be solved for by requiring that gauge solutions satisfy the radial
gauge condition;

δξgµr = 0 and δξAr + ∂rΛ = 0. (4.22)

The five-component vector ζµ and angle θ totals to six independent solutions, determined
by six integration constants c1, . . . , c6. The linearized equations of motion are invariant
under gauge transformations, and the trivial Φ = 0 is a solution, so the pure gauge
solutions can be constructed by fixing six linearly independent values of the vector C =
(c1, . . . , c6) [21]. The full solutions and their derivations are quite lengthy and can be
found in Appendix B.1, but as a representative, consider

δgµν = 0, δAµ = (−iω, ik, 0, λ2, 0) +O
(
r3
)

(4.23)
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4. Holography in Action

obtained by setting c6 = 1 and the remaining constants to zero. Five of the six solutions
belong to the longitudinal sector, which means that the number of numerical solutions we
need to find are cut in half!

4.2.2 Near-horizon solutions and Frobenius expansions

There is still more work to be done before the remaining solutions to the fluctuation
equations can be found, as the fluctuation equations become singular at the horizon. This
means that part of the equation vanishes in such a way that only the trivial solution
remains. To combat this, we employ the method of a Frobenius expansion2 [30]. Consider
an ordinary differential equation

D(y(x)) = 0 (4.24)

where D is a differential operator singular at x = 0. With an ansatz y = xrα(x) where α
is analytic, we can series expand f(x) = ∑

k akx
k and insert it into (4.24). In the same

vein as in Section 2.3, the equation schematically reads as

D(y(x)) = I(r)a0x
r + . . . (4.25)

In order to find a non-trivial solution, a0 must be non-zero, which leads to the indicial
equation I(r) = 0. With r specified, xr can be factored out, whereby α(x) can be solved
for.

In our case, this amounts to factoring out a part of the background metric as

δAµ = f(r)iαδA∗µ (4.26)

and analogously for δgµν , where δA∗µ is the regular field post Frobenius expansion. The
pathological behavior near the horizon should now be captured in the factor3 f(r)iα, since
f(r)→ 0 as r → rh. After the removal of this factor, the fluctuation equations (4.16) can
be solved for the post-Frobenius fields δg∗µν and δA∗µ at the horizon. More precisely, we
expand the fluctuation equations around the horizon as r = 1− δ and solve them to order
δ−2, δ−1 and δ0. This way, we find non-trivial solutions to the indicial equation when

α = ± 3ω
4(3− µ̂2) , where µ̂ <

√
3 (4.27)

where we choose the negative sign, corresponding to infalling boundary conditions. This
can be seen by using the relation between temperature and chemical potential in (4.9);

δAµ = f(r)−iω/4πT δA∗µ → e−iω(t+ 1
4πT log f(r))δA∗µ (4.28)

and analogously for δgµν , where we restored the explicit time dependence. The nega-
tive exponent corresponds to modes that carry energy towards the horizon as t → 0

2This works if the singular point is regular. See [30] for more details.
3In the literature one often sees (rh−r)iα factored out, which is leading behavior of f(r)iα near the horizon.
Factoring out the full f(r)iα makes the remaining equations slightly prettier.
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4.2. Perturbative solutions

[17], respecting that information can only flow into the black hole. Computing bound-
ary correlation functions with infalling/outfalling solutions to the bulk equations of motion
corresponds to retarded/advanced Green’s functions, respectively [17]. In this sense, phys-
ically reasonable arguments in the bulk — information cannot escape a black hole — is
mirrored in the boundary theory, where the Green’s functions should be causal. Note that
the gauge solutions in general will not satisfy the infalling boundary conditions. However,
they do not generate any flux lines at the horizon, so the singularity is not physical.

Solving the equations at the horizon with infalling boundary conditions also specifies some
requirements on the fields themselves; all time-direction components need to be zero, and
δgxx + δgyy + δgzz = 0 at r = 1. We are left with

{
δAx, δAy, δAz, δgxx, δgxy, δgxz, δgyy, δgyz

} ∣∣∣∣
r=1

(4.29)

as the remaining eight degrees of freedom, five of which live in the longitudinal sector.
The full set of fluctuation equation had 28 degrees of freedom, where half are removed
by demanding infalling boundary conditions. Combined with the six degrees of freedom
c1, . . . , c6 from the gauge solutions, all degrees of freedom are now accounted for.

4.2.3 Numerical bulk solutions

Just as for the scalar field in Section 2.3, the fluctuation equations (4.16) can be solved
near the boundary. This amounts to making a near-boundary series expansion of δAµ and
δgµν , where the corresponding indicial equations implies that

δAµ : ∆± = 0, 2 δgµν : ∆± = 0, 4 (4.30)

which means that expansion must contain logarithmic terms, following Section 2.4. At the
boundary, we impose that the leading order metric fluctuations vanish; δg(0)

µν = 0, i.e. that
the source for the boundary energy-momentum tensor is zero. Since the factor in front
of the logarithmic term is a function of δg(0)

µν , it is consistent to write the near-boundary
expansion of the metric fluctuations as

δgµν = δg(1)
µν r

4 +O
(
r6
)
. (4.31)

On the other hand, we write the near-boundary expansion of the vector field as

δAµ = a(0)
µ + a(1)

µ r2 +B ν
µ a(0)

ν r2 log r +O
(
r2
)
, (4.32)

where

B ν
µ

.= 1
2


k2 − λ2

2 ωk 0 −iωλ2

−ωk −ω2 − λ2
2 0 ikλ2

0 0 −ω2 + k2 − λ2
2 0

iωλ2 ikλ2 0 −ω2 + k2

 (4.33)

is a matrix mixing the different zeroth order components, determined by solving the near-
boundary equations to next-to-leading order, in analogy with (2.33). In order to stay in
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the grand canonical ensemble with fix chemical potential, the leading order contribution
to δAt needs to vanish at the boundary. However, when solving the fluctuation equations
for general values of ω, k and λ2, a(0)

t may not actually equal zero on the boundary. It is
therefore kept it in the above expression for numerical consistency.

These expansions are a good approximation of the true solution when r is small. We may
therefore continue by finding the remaining five numerical solutions to the longitudinal
fluctuation equations in the region r ∈ (δ, 1 − δ), which are given by five different sets of
horizon values; {

Φ(1)
L ,Φ(2)

L ,Φ(3)
L ,Φ(4)

L ,Φ(5)
L

} ∣∣∣∣
r=1−δ

(4.34)

where each set Φ(i)
L is defined by setting the ith longitudinal degree of freedom in (4.29)

to 1, and the rest to zero.

As discussed, only eight out of the ten fluctuation fields in the longitudinal sector should
vanish at the boundary; namely the metric components and the time component of the
vector potential. The fact that δAx and δAz are not subject to Dirichlet boundary condi-
tions is what models the plasmons [13]. What should be zero at the boundary however,
is the specific combination of vector potential components that constitute the plasmon
conditions (3.21) and (3.22). We therefore define two auxiliary fields as

χ =
(
ω2 + λ2

2
)
δAx + ωkδAt − ikλ2δAz + Jx/L,

ψ =
(
ω2 − k2

)
δAz − ikλ2δAx − iωλ2δAt + Jz/L,

(4.35)

since limr→0 LδAi = Ai.

Additionally, we wish to satisfy the interface condition (3.14) in order to model surface
plasmons. As a neat trick, the fluctuations of the magnetization can be computed by
solving the differential equation obtained by taking the derivative of (3.26);

δM ′y − (∂xδAz − ∂zδAx) = 0. (4.36)

This can be added to the list of numerical differential equations. Considering δMy as an
additional fluctuation field to be solved for, the interface condition can be expressed as

I(ω, k, λ2) = ω2δAx −
√
k2 − ω2 (λ2δAx − ikδAz − δMy

)
, (4.37)

which should equal zero on the boundary.
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AIµ(δ)

gIµν(δ)

r = δ

r = 1− δ

Figure 4.1: Illustration of the numerical problem. Given a set of starting values at the
horizon, the corresponding values on the boundary (r = δ) are computed by solving
the fluctuation equations in the region r ∈ (δ, 1− δ).

Consider now a ten-dimensional vector consisting of δAt and the seven longitudinal fluc-
tuations of the metric together with χ and ψ. There are ten independent solutions to the
equations of motion — five pure gauge from Section 4.2.1, and five numerical, defined by
the different sets of horizon values in (4.34). At the boundary, numerically situated at
r = δ, each field will take on some specific value for each solution. An illustration of this is
found in Figure 4.1. The full solution will be a linear combination of the ten independent
solutions, specified by constants CI , CII , . . . , CX . In matrix form, this can be written as

Φ̃ ≡



δgtt(δ)
...

δAt(δ)
χ(δ)
ψ(δ)


tot

=


δgItt(δ) · · · δgXtt (δ)

... . . . ...
ψI(δ) · · · ψX(δ)



CI

...
CX

 ≡ XC (4.38)

where δgItt(δ) is the value of δgtt at r = δ for the first solution, and so on. The boundary
conditions demand that the full solution at the boundary, given by the vector Φ̃, equals
the null vector. If we only wish to model bulk plasmons, the interface condition can be
ignored, and the existence of a non-trivial solution is the statement that the determinant
of the matrix X in (4.38) vanishes. To additionally investigate if the plasmons are surface
plasmons, we compute the eigenvector corresponding to the smallest eigenvalue of the
matrix X . This allows for an extraction of the combination of solutions C that makes X
(numerically) singular, and can be used to check the value of the interface condition (4.37)
at the boundary.
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4.3 Renormalizing the action

The final hurdle to overcome before the method outlined in the previous section can be
implemented, is to properly define the boundary current in terms of the bulk fields, since
it appears in the plasmon conditions. This requires us to construct the full action, in
analogy to the procedure in Section 2.3 for the scalar field. The theory needs to be
properly regulated, and as we saw in (2.24), regulating boundary terms will affect the
precise value of the dual boundary operator — in this case the boundary current J µ.

Recall the bare Einstein-Maxwell bulk action

S0 =
∫
M

dd+2x
√−gL0 =

∫
M

dd+2x
√−g

(
R

2 − Λ− 1
4FµνF

µν

)
(4.39)

with the negative cosmological constant as required of AdS;

Λ = −d(d+ 1)
2L2 = − 6

L2 in AdS5 (4.40)

In order to have a well-defined variation problem, the Einstein-Hilbert part of the action
requires that we add a surface term. The is due to the fact that the Ricci scalar contains
second derivatives of the metric field. To see why this is the case, consider

δ

∫
M

dd+2x
√−g R = δ

∫
M

dd+2x
√−g

(
Rµν −

1
2gµνR

)
δgµν + δ

∫
M

dd+2x
√−g gµνδRµν

(4.41)
where the requirement that the first term vanishes for arbitrary δgµν yields Einstein’s
equations. Via the Palatini identity, the second term can be re-written as a total covariant
derivative. Applying Stokes’ generalized theorem then turns this integral into a surface
integral over the manifold boundary ∂M ;∮

∂M
dd+1x

√−γ nµgµνgρσ
(
δ∂ρgνσ − δ∂νgρσ

)
(4.42)

which normally vanishes when considering open manifolds4. To counteract this, we add the
Gibbons-Hawking-York boundary term, such that the canonical Einstein tensor is obtained
from the variation of the Einstein-Hilbert action. The term is [31]

SGHY =
∮
∂M

dd+1x
√−γ K, K = γµν∇µnν (4.43)

where γµν ≡ gµν − nµnν is the induced metric on the boundary and K is the trace of
the extrinsic curvature of the manifold M . This is a general result, valid for all d, and is
needed whenever the manifold has a boundary.

To see what counterterms need to be added, the on-shell action should be investigated.
Inserting the background solutions into (4.39), the zeroth-order bare action contributes
with

S
(0)
0 =

∫
M

d5x
√
g(0)L(0)

0 = −
∫
M

d5x

(
4L3

r5 +O(r)
)

(4.44)

4For a more detailed calculation, see Appendix B.2.
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where we now explicitly study the case at hand with d = 3. Integrating out the radial
direction up to a cutoff ε (i.e. placing ∂M at the finite radius ε), we find

S
(0)
0 = −

∮
∂M

d4x
L3

ε4
+ finite. (4.45)

It is interesting to investigate if the Gibbons-Hawking-York boundary term not only makes
the variation problem well-defined, but also removes the divergence at the boundary.
However,

K = −√grrγµνΓrµν = 1
2γ

µνnr∂rgµν = 4
L

=⇒ S
(0)
GHY

∣∣∣∣
r=ε

=
∮
∂M

d4x
4L3

ε4
. (4.46)

We should therefore add a gravitational boundary counterterm

Sct, G = −
∮
∂M

d4x
3L3

ε4
(4.47)

in agreement with [32].

The above calculations can now be repeated for the first-order action S(1). The first-order
Lagrangian contributes with

L(1)
0 = 2r4

L2 η
µνδg(1)

µν +O
(
r6
)

(4.48)

neglecting the plane wave factor, with the δgµν as defined in (4.12), i.e. with L2/r2 already
factored out. This might seem troublesome since it seems to lead to a logarithmic diver-
gence on the boundary, but the fluctuations in √−g need to be accounted for. Writing
the metric as

gµν = gµν + εhµν (4.49)

where gµν is the background metric and hµν are the perturbations, the square root of the
metric reads √

−det(g + εh) =
√
−det g

√
exp

{
Tr
{

log
(
1 + εg−1h

)}}
=
√
−det g

(
1 + ε

2 Tr
{
g−1h

})
+O

(
ε2
)

=⇒(√−g)(1)
= L5

2r η
µνδg(1)

µν +O(1)

(4.50)

up to plane wave factors, using the near-boundary expansion of the metric fluctuations
(4.31) and that f(r)−1 = 1 +O(r). Taken all together, this means that

S
(1)
0 =

∫
M

d5x

(√−g(0) L(1)
0 +

√−g(1) L(0)
0

)
=
∫
M

d5x

(
L5

r5
2r4

L2 −
L5

2r
4
L2

)
ηµνδg(1)

µν +O(1) =
∫
M

d5xO(1)
(4.51)

which is finite. The Gibbons-Hawking term will also contributes to first order in ε due to
the factor of ∂rgµν in K; up to plane wave factors,

S
(1)
GHY =

∮
∂M

d4xL3ηµνδg(1)
µν (4.52)

which also is finite.
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4.3.1 Second order action and Maxwell counterterms

Extending the calculation in (4.50) to second order will necessarily include two factors of
δgµν ∼ r4, so √−g(2) ∼ r3. This means that both terms √−g(1)L(1)

0 ∼ √−g(2)L(0)
0 ∼ r3

are convergent, so we focus our attention to the expansion of the Lagrangian to second
order. Furthermore, the Einstein-Hilbert part is convergent, so consider the Maxwell part
of the bare action

S0,M = −1
4

∫
M

d5x
√−g FµνFµν = −1

2

∫
M

d5x
√−g∇µAνFµν . (4.53)

Using Stokes’ to integrate by parts,

S∗0,M = −1
2

∮
∂M

d4x
√−γ nµAνFµν (4.54)

where the bulk term contains the equations of motion ∇µFµν and thus vanishes on-shell.
With the near-boundary expansion of the vector field in (4.32), the action reads

S∗0,M = L

2

∮
∂M

d4x
1
r
Aνη

µν∂rAµ =⇒(
S∗0,M

)(2)
= L3

2

∮
∂M

d4x ηµν
(
2a(0)

µ a(1)
ν + a(0)

µ B κ
ν a(0)

κ + 2a(0)
µ B κ

ν a(0)
κ log r

)
+O(r)

(4.55)

where we used the unit normal nr = −L/r and that F rν = grrγµν∂rAµ in radial gauge.
The transseries expansion of the vector field is therefore responsible for the divergent
logarithm as ε→ 0, which needs to be regulated. We add the counterterm

Sct = L log(r)
∮
∂M

d4x
√−γ 1

4FµνF
µν (4.56)

since∮
∂M

d4x
√−γ FµνFµν = 2

∮
∂M

d4x∇µ
(√−γ Aν)Fµν = −2

∮
∂M

d4x
√−γ Aν∂µFµν

(4.57)
where we have used that the metric is covariantly constant, integrated by parts, that
∂(∂M) = 0 and ∇µFµν = ∂µF

µν5. In terms of the fluctuations, the counterterm action
takes on the value

S
(2)
ct = 1

2L
3 log(r)

∮
∂M

d4x
√−γ δAν∂µηµρηνσ

(
∂ρδAσ − ∂σδAρ

)
. (4.58)

Since the indices run over boundary coordinates, it is clear from (4.32) that any terms
containing log r come with additional factors of r2. As such, to lowest order in r, only the
leading order coefficients a(0)

µ contribute, such that

S
(2)
ct = L3 log(r)

∮
∂M

d4x

[
a(0)
ν ∂µη

µρηνσ∂[ρa
(0)
σ] +O(r)

]
, (4.59)

precisely canceling the divergent term in (4.55). The action is now finite to second order,
which means that the boundary operator J µ has been renormalized.

5The term ΓνµκFµκ = 0 from the opposite symmetry in µ and κ. ΓµµκFκν = 0 since the metric is diagonal.
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4.3.2 Definition of the current

Since Sct is a function of Aµ, it will contribute to the boundary current. But from (4.59)
it should be clear that the only addition to the current is the one to cancel the logarithmic
term in (4.55). Note however that the transseries is also responsible for a factor B ν

µ a
(0)
ν

that shows up without a logarithm in (4.55), which therefore will contribute to the current,
schematically as J ∼ 2a(1) + Ba(0). We therefore make the choice to add yet another
boundary term, not to cancel any divergences, but to make the current canonical, i.e.
identified with the sub-leading term in the near-boundary expansion as J ∼ 2a(1). From
the calculations above, and the structure of the terms in (4.55), it is clear that this is
achieved by the term

SFF = L

2

∮
∂M

d4x
√−γ FµνFµν (4.60)

as this will, to lowest order in r, precisely cancel the term ηµνB ν
µ a

(0)
ν in (4.55).

This sleight of hand requires some justification, so consider a rescaling of the vector field
by a factor

√
λ such that the boundary vector potential is identified as

lim
r→0

Aµ/
√
λ = Aµ. (4.61)

In the boundary theory, the J µAµ has to be left invariant — J µ and Aµ are conjugate
operators, related to each other via a Legendre transform, and we wish that (2.10) holds
with no additional factors of λ. This is solved by identifying J µ ∼

√
λ2a(1), which leaves

the boundary physics unchanged. However, this means that the bulk electromagnetic field
tensor will go from

1
4e2FµνF

µν → 1
4e2λ

FµνF
µν (4.62)

as seen from the boundary, where we have explicitly written out the factors of e6. Hence,
λ can be identified as a constant relating the strength of electromagnetic interactions on
the boundary (∼ e) and in the bulk (∼

√
λe). The additional boundary term added to

make the current canonical then simply leads to a simple rescaling
1
λ
→ 1

λ
− 1

2 . (4.63)

For reasonable values of λ (i.e. not λ = 0, for instance), boundary physics should be
unchanged, given proper redefinitions of the boundary operators. We therefore argue that
the effect of shifting λ by some small amount should not a problem, although the case
λ = 2 should probably be investigated more thoroughly in the future.

To conclude, the full action is given by

S = S0 + SGHY + Sct, G + Sct + SFF (4.64)

which on-shell reads
S∗ = L3

∮
∂M

d4x ηµν2a(0)
µ a(1)

ν + . . . (4.65)

6This factor can always be hidden by a redefinition of the fields.
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such that the boundary current is obtained as

〈J µ〉 = δS∗

δAµ
= 2L2a(1)

ν ηµν . (4.66)

With a proper deviation of the current, the plasmon conditions can be expressed purely
in terms of the bulk fields as

χ =
(
ωkδAt + (ω2 + λ2

2)δAx − ikλ2δAz
)(3

2 + log r
)

+ δA′x
r

ψ =
(
−iωλ2δAt − ikλ2δAx + (ω2 − k2)δAz

)(3
2 + log r

)
+ δA′z

r
.

(4.67)

This takes care of the fact that Ji 6= δA′i/r due to the logarithmic divergence.

4.4 Numerical implementation

It is time to assemble the computational machinery described in this chapter. First, we
choose a ratio between the boundary chemical potential and temperature, specifying the
grand canonical ensemble. The given value of µ/T defines the static background solution
(4.8), around which the perturbations defined in (4.12) and (4.13) may be solved for.

Given specific values of the parameters ω, k and λ2, we compute five different solutions
to the fluctuations equations in the region from near the horizon, r = 1 − δ, to near the
boundary, r = δ, in Mathematica using NDSolve, following Section 4.2.3. Numerically, δ
has to be small enough, and we have determined that

δ = 10−5 (4.68)

produces stable solutions. Combined with the analytical gauge solutions in Section 4.2.1,
the matrix X in (4.38) may then be constructed. To determine the dispersion relation, we
search the parameter space spanned ω, k and λ2 for values where where the determinant
of X is (numerically) zero. In the regions where this conditions is met, the boundary
conditions are satisfied, i.e. that:

1. the fluctuations of the metric components vanish, ensuring that there is no dynamical
graviton on the boundary,

2. the fluctuations of the time component of the vector potential vanishes, ensuring
that the background is at a static chemical potential,

3. the auxiliary fields χ and ψ vanish, ensuring that the plasmon condition is satisfied
on the boundary.

Additionally, the search can be restricted to surface plasmons, by searching for values
where the interface condition I is (numerically) zero as well.

The explicit dispersion relation can then be obtained by tracking a mode (a solution to
the above requirements) through the space spanned by ω, k, λ2 and µ. In general, both
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4.4. Numerical implementation

detX and I will take on complex values, so an eloquent way to implement that condition
that both are numerically zero, is to consider the simultaneous optimization problems

min
ω,k,λ2∈C

log
∣∣detX (ω, k, λ2)

∣∣ and min
ω,k,λ2∈C

log
∣∣I(ω, k, λ2)

∣∣. (4.69)

Here, one of ω and k can be restricted to being real, following our discussion in Section 3.1.
Additionally, with the direction of propagation in the positive x-direction, we may without
loss of generality demand that Re k ≥ 0. The optimization space is also restricted by
physical reasons to

Reω ≥ 0, Imω < 0, Im k > 0 Reλ2 ≥ 0 (4.70)

as the latter three otherwise would correspond to exponentially growing solutions.

The functions to be minimized in (4.69) are implemented as a Mathematica function. This
is latter called upon in Python via the Wolfram Client library for Python [33]. The mode
tracking algorithm is as follows:

1. Consider one of the parameters µ/T , k or ω to be fix, and choose another, call it x,
through which the dispersion relation will be tracked.

2. At some value of x, minimize the cost function.

3. Based on the position of the found minima, update the optimization area for the
next value of x based on the previous positions, by extrapolating the value of the
derivative in x-space.

At each point, the cost function is minimized using a Bayesian optimization procedure,
implemented through the package skopt [34]. As the cost function is a “black box”, in
addition to being relatively costly to compute, Bayesian optimization is a solid choice,
as it does not rely on computations of the gradient or Hessian. In short, the particular
method implemented relies on Gaussian processes in order to make an informed decision
about where to sample the objective function next.
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5. Results

This chapter highlights the numerical results obtained from the performed simulations.
First, bulk plasmons in three dimensions are investigated. As this has not been done
before, these new results are compared with previous results, which serves as a valuable
validation of the model, before embarking on the quest to find the surface plasmon polar-
tion dispersion.

5.1 Bulk plasmons in three dimensions

Holographic bulk plasmons in two dimensions have been studied previously using an AdS4

Reissner-Nordström model [13], [15], arguing that the bulk plasmon properties are qualita-
tively the same in two and three dimensions. Working in two spatial dimensions simplifies
the calculations greatly, and avoids the problem of the logarithmic divergence of the fields
near the boundary. Extending this to an AdS5 model with three spatial dimensions on
the boundary serves two purposes. Firstly, it investigates the validity of the argument in
the above papers. Secondly, and most importantly, it serves as a cross-validation for the
AdS5 model constructed in Chapter 4, especially with regards to the choice of the added
SFF counterterm which makes the current canonical.

In order to model bulk plasmons, the attenuation parameter λ2 should be set to zero,
and the interface condition should be ignored. This means that the z-components of
the fluctuation fields decouple in the fluctuation equations, why the calculations can be
restricted to the seven components

ΦBP =
{
δgtt, δgtx, δgxx, δgyy, δgzz, δAt, δAx

}
. (5.1)

Since there are four gauge solutions in this sector, the number of numerical solutions are
reduced to three, speeding up the calculations. Additionally, the plasmon condition in the
z-direction can be ignored, so the combination of solutions now reads

δgtt(δ)
...

δAt(δ)
χ(δ)


tot

=


δgItt(δ) · · · δgV IItt (δ)

... . . . ...
χI(δ) · · · χV II(δ)



CI

...
CV I

 ≡ X̃ C̃ (5.2)

where the determinant of the above seven-by-seven matrix X̃ is used to find the modes.
In the following, we let k be real, such that the decay is modeled by Imω, allowing us to
speak of the modes being “long-lived” or not.
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The system is studied in a handful of different regimes; where µ/T = {0, 1, 5, 10}. The first
corresponds to incompressible matter, which is not a common state of matter in the real
world, although it can be created in a laboratory by tuning certain systems to their critical
points [9]. However, it serves as a theoretically interesting limit, and can furthermore be
used to compare the model to theoretical predictions valid in this regime. Gran et al.
found “exotic” plasmon dispersion relations for an AdS4 model in the region 0 < µ/T . 2
[15]. Hence µ/T = 1 allows for an illustration of some of these abnormal features, as
well as being an interesting intermediate scale not easily accessible by non-holographic
methods. Lastly, µ/T = 5, 10 is chosen to represent the system when the charge density
effects dominate, as when µ/T is large, the model approaches that of zero-temperature,
finite density matter. In this regime, the system should behave more like a normal metal,
as an abundance of charge should lead to screening effects, weakening the coupling.

Before starting the mode tracking procedure outlined in Section 4.4, we first perform a
sweep in ω ∈ C, for some fixed, small value of the wave vector k̂. This allows for an easy
access to starting points for the optimizer, and gives a good visual representation of the
existing modes. Figure 5.1 shows the logarithm of the determinant of the matrix in (5.2)
for different values of µ/T . Hence, dark regions in the heatmaps indicate where the deter-
minant is close to zero, i.e. the existence of plasmon modes. Bright regions corresponds
to a diverging determinant, and occur at points where the differential equations become
singular. Note that for µ/T = 0, a slightly larger wave vector is chosen for visibility, as
this pushes the modes further from the origin.
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Figure 5.1: Parametric sweep of log | det{X̃ }| with X̃ as in (5.2), for µ/T = 0 with
k̂ = 0.5, and µ/T = 1, 10 with k̂ = 0.1. Dark regions indicate the existence of plasmon
modes.

In order to make the modes more visible, the plots have been normalized in two ways.
Before the logarithm is taken, the error is first divided by the sum of the parameters
squared1, since a fix relative error implies a larger absolute error further away from the
origin in the parameter space. This also partly removes the fake mode at k, ω = 0, which

1The fluctuation equations depend quadratically on the parameters, see e.g. (4.17).
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5.1. Bulk plasmons in three dimensions

is a trivial solution. Additionally, a parabolic fit is made to the logarithm of the error in
the entire sweep region. This background is then subtracted, making the essential features
more prominent.

In the heatmaps for µ/T = 0 and µ/T = 10, two types of modes are visible: purely
diffusive modes located along the imaginary axis, and long-lived, propagating modes with
respectable real part. Interestingly, in the intermediate region, where µ/T = 1, the dif-
fusive mode seems to have disappeared, and the remaining mode has acquired significant
damping. We will return to the discussion of this mode shortly.

The locations of the modes shown in Figure 5.1 can now serve as starting points for the
optimization algorithm described in Section 4.4, allowing them to be tracked through k̂-
space. The dispersion relations for the propagating modes are shown in Figure 5.2, and
are in good agreement with those found by Gran et al. [13], [15] in two spatial dimensions.
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Figure 5.2: Sound modes of the bulk plasmon system for various values of the boundary
chemical potential. Real and imaginary parts are shown as solid and dotted lines,
respectively.

When the chemical potential is zero, there is no source for the charge density fluctuations.
Hence the modes all have Aµ = 0, i.e. they are purely gravitational, from the bulk point
of view. The propagating mode for µ = 0 is therefore not related to the propagation of
plasmons of the system, but can be seen as a fundamental feature of “quantum sound”
for the system [9]. Recall that the bulk metric is dual to the boundary energy-momentum
tensor Tµν . Even though the fluctuations vanish on the boundary, the existence of a mode
with non-trivial δgµν in the bulk, can be interpreted as fluctuations of the boundary Tµν

in the IR, or more concretely, density waves, as T ij represents momentum flux.

In this regime of zero-density, finite-temperature physics i, the “thermal fluid” can be
modeled by Navier-Stokes-like hydrodynamics [9], valid in the regime where k/T is small.
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This tells of a longitudinal sound mode with the dispersion

ω = ±vsk − iΓsk2 (5.3)

where Γs is an attenuation constant and vs = 1/
√
d is the “speed of zero sound” [9]. This

theoretical prediction is in good agreement with our results, where a numerical fit in the
region near the origin agrees with vs = 1/

√
3 ≈ 0.58 to two decimal points.

When µ/T = 1, there is a kink in the dispersion curve at k/T ≈ 0.5. This is the exotic
behavior illustrated in [15], where the collision of modes forms new propagating modes
with anomalous behavior. This is a true plasmon mode, with a characteristic “gap” due
to the non-zero chemical potential. The gapped behavior is even more prominent for the
sound modes at µ/T = 5, 10, where the gap is roughly proportional to the size of µ/T .

We conclude that the holographic framework seems to work as expected when extended
to three space dimensions on the boundary. The results support the choice of the addition
of the boundary term SFF in (4.60), making the current canonical, although the effect of
a a non-canonical current relation would have to be explored before drawing any definite
conclusions. The existence of exotic behavior at certain values of µ/T seems to persist in
three dimensions, which bodes well for the prospect of finding unique dispersion relations
for surface plasmons, as this exoticism is only accessible through holographic models [15].

5.2 Surface plasmon polaritons

On the back of the results presented in the previous section, we are now ready to move on
to the uncharted waters of strongly coupled surface plasmon polaritons using holography.
When considering surface plasmons, it is convenient to let k be complex instead of ω. A
surface plasmon polariton travels some finite distance along the interface, why it makes
more sense to consider the decay in space as opposed to time. Furthermore, it elucidates
the comparison to the decay into the dielectric, λ2, and relates well to an experimental
setting, since a laser with tuneable imaginary frequencies has not been invented yet.

The problem is quite a bit more intricate than in the bulk plasmon case, as a sweep of the
entire two-dimensional complex space spanned by k and λ2 cannot be visualized easily,
in addition to being very costly to compute. Although far from perfect as a means of
visualizing the location of a mode, Figure 5.3 shows a sweep in Re k̂ and Re λ̂2 for ω̂ = 0.1
and µ/T = 1/3, where Im k̂ = 0.007 is based on the position of the corresponding bulk
plasmon mode, and Im λ̂2 = 0.

The k in the bulk plasmon dispersion shown in Figure 5.2 is the full wavevector, and
assumes that the setup is isotropic, such that the x-axis can be aligned along the direction
of propagation, without loss of generality. Inverting the dispersion in (5.3), which should
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be a good approximation for k, ω and µ small, tells us that

k̂ ≈ 0.17 + 0.08i when ω̂ = 0.1, (5.4)

which agrees with the asymptotic behavior in Figure 5.3a as λ2 approaches zero. The
problem is that the SPP setup does not have the same symmetry, as the wave vector
k = (k, 0, iλ2) cannot be rotated to lie along only one axis. Hence larger values of λ2

implies an anisotropy not captured by the bulk plasmon dispersion, why it cannot be
used to reduce the dimensionality of the optimization problem by scanning the interface
condition along the dark region in Figure 5.3a, where det |X | is close to zero. However,
we note that this region roughly follows the curve where real part of the full wave vector,
which can be approximated by

√
(Re k)2 − (Reλ2)2 when the other parameters are small,

is constant and equal to the value predicted by (5.4).
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Figure 5.3: Parametric sweep in the Re k̂-Re λ̂2 plane with Im k̂ = 0.007 and Im λ̂2 = 0,
for ω̂ = 0.1 and µ/T = 1/3. The effect of removing the magnetization from the
interface condition is shown in c).

The corresponding sweep for the interface condition is shown in Figure 5.3b. This features
a region with the same asymptotic behavior as in the sweep for det |X |. Although they
gradually overlap as one moves away from the origin, it produces no well-defined minimum.
However, we can also glimpse a 1/x-shaped region, why it might exist a common minimum
at the intersection of this region with the one in Figure 5.3a. Sadly, the optimizer is unable
to find a well-defined local minimum.

The problem can partly be attributed to the effect of the magnetization. Figure 5.3c shows
the effect of neglecting My in the interface condition. Although the main region that is
impacted, near the bottom of Figure 5.3c, is not physical (this it not a minimum for the
remaining boundary conditions), there is a noticeable change along the line in Figure 5.3a
as well. This supports the assumption that the fluctuations in the magnetization should
not be neglected, at least not in the regime where µ/T is small. This might be a hint of
something “exotic”, akin to the kink in Figure 5.2, captured by non-negligible magnetic
effects.
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5. Results

However, this presents an opportunity to study an easier subproblem, by assuming that
the magnetization is zero, i.e. making some assumptions on the strange metal. We can
then follow the standard plasmon literature and assume that the magnetic field inside of
the metal satisfies a simple wave equation [24], which leads to the relation

λ2
2 = k2 − ω2ε2. (5.5)

Combined with the continuity of Ex at the interface, λ2 can be solved for, as

λ1
λ2

= −ε1
ε2

=⇒ λ2 = k2
√
k2 − ω2 , (5.6)

which allows for a reduction in dimensionality of the optimization problem. Additionally,
the interface condition is always satisfied, so we only need to study the value of the
determinant. Choosing a relatively large value of µ/T should allow the system to behave
more as expected classically, according to the results in Figure 5.2. Following the procedure
in the previous section, we find one interesting dispersion relation, shown in Figure 5.4.
This does not exhibit the typical behavior of a surface plasmon polariton dispersion curve,
where k(ω) has the shape of an “S” [24], but it captures some feature, in the small kink
around ω/T ≈ 4.5.
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Figure 5.4: SPP dispersion relation for µ/T = 5, assuming no magnetization.
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6. Conclusion and Outlook

The extension of the relatively well-established AdS4 Reissner-Nordström metal to the
less common AdS5 version poses several difficulties. However, since the results for the
bulk plasmons are in good agreement with previous results, it seems that the extension in
dimensionality can be done by adequately treating the divergent logarithmic terms.

A more complete treatment of bulk plasmons in three spatial dimensions could address
a couple of shortcomings of this thesis. These include expanding the search space in
order to find additional, higher order modes, and to investigate the transverse sector for
completeness. The latter should be low-hanging fruit since the procedure is essentially the
same, but with fewer fields to solve for. Finally, the region with exotic dispersion could
be investigated more thoroughly, to see if there are any dimension-dependent behavior.
Based on our findings, it is however likely that the two-dimensional results in [13], [15]
generalize to three dimensions as expected.

The interest in increasing the number of dimensions mostly pertains to the study of holo-
graphic surface plasmons. The quest of finding a point in the parameter space which
satisfies all boundary conditions proves to be a difficult task, but the possibility of finding
such a point should not be ruled out. As this problem has not been studied before, it is
possible that there is some error in the analysis. Alternatively, a more sophisticated op-
timization method must be used, which for instance can address the problem of weighing
both the plasmon and interface conditions equally. One such workaround is to group the
interface condition with the rest of the fields in the matrix equation in (4.38), and search
for the null vector to the resulting 10-by-11 matrix. However, although this might make
the optimization easier, it makes the search for an initial mode to track very difficult, since
the parameter space is so large.

Another plausible, but computationally costly, method is to determine the anisotropic
bulk plasmon dispersion relation for various values of λ2. With a relation between the full
wavevector k = (k, 0, iλ2) and the frequency ω, the interface condition can be optimized
under the constraint that the parameters satisfy the plasmon conditions.

Although the problem can be simplified by following the steps around (5.6), it is probably
a good idea not to make too many assumptions when dealing with physics for which we
have limited intuition. Magnetic effects are usually suppressed, but when the coupling is
strong, we really do not know what to expect. Figure 5.3c clearly shows that the effect of
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6. Conclusion and Outlook

the fluctuations in magnetization is highly relevant, at least when µ/T is small. However,
it might be worthwhile to study the surface plasmon dispersion shown in Figure 5.4 in
more detail, for various values of µ/T . An understanding of how this dispersion behaves
for different parameter values could then serve as a valuable reference for when the sim-
plification in (5.6) is relaxed. As the full picture seems to require the inclusion of the
magnetization, transverse electric (TE) modes should be studied as well, since they are
supported when µ < 0 [25].

Finally, the effects of a material with non-zero equilibrium magnetization can be imple-
mented by extending the background Reissner-Nordström solution to that of a dyonic
black brane [35]. This would add an additional parameter defining the magnetic charge
of the brane, related to the value around which the magnetization would be allowed to
fluctuate.

In conclusion, magnetic effects seems to be important for surface plasmon polaritons in
strange metals, in contrast to the normal analysis in a weakly coupled regime. A holo-
graphic approach can produce a model that incorporates such strongly correlated behavior,
but more work is needed in order to obtain a complete dispersion relation.
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A. Supplementary Material

A.1 Holographic dictionary

1. The partition functions of the (d + 2)-dimensional gravitational theory and
the dual (d+1)-dimensional QFT can be taken to be equal (the GKPW rule).

2. The source h of an operator O is the boundary value of the dual field.
3. A scalar operator O is dual to a scalar field φ in the bulk.
4. The boundary energy momentum tensor Tµν is dual to the dynamical bulk

metric gµν .
5. A boundary conserved current J µ is dual to a bulk gauge field Aµ.
6. If a source h is dual to a bulk field φ, it is canonically identified with the

leading behavior of the solution φ∗ to the bulk equations of motion.
7. The expectation value of the operator sourcing h is canonically identified with

the sub-leading behavior of φ∗, and is explicitly calculated as 〈O〉 = δS∗

δh .
8. The exponent ∆+ of the sub-leading solution is canonically identified as the

scaling dimension of the boundary operator O, and is dependent on the bulk
field’s mass.

9. A finite temperature T on the boundary equals the Hawking temperature of
a black hole in the bulk.

10. The boundary and bulk vector potentials are identified as Aµ = limr→0Aµ.
11. A finite chemical potently µ on the boundary is the boundary value of the

time component of the bulk vector potential.
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A. Supplementary Material

A.2 Sign conventions

With the Minkowski metric in the mostly plus convention; η00 = −1, ηii = +1, we define
the 4-vector potential and 4-vector current as

Aµ = (φ,Ai), =⇒ Aµ = (−φ,Ai)
Jµ = (ρ, J i), =⇒ Jµ = (−ρ, Ji).

(A.1)

The electromagnetic field tensor is defined as Fµν = 2∂[µAν], from which is follows that

Fµν =


0 Ex Ey Ez

−Ex 0 Bz −By
−Ey −Bz 0 Bx

−Ez By −Bx 0

 =⇒ Fµν =


0 −Ex −Ey −Ez
Ex 0 Bz −By
Ey −Bz 0 Bx

Ez By −Bx 0

 . (A.2)

Note that with this sign convention, the time components are the ones to change sign.
Furthermore, Maxwell’s equations reads

∂µF
µν = −Jν or ∂νF

µν = Jµ (A.3)

which gives us explicitly

∇ ·E = ρ and ∇×B = J + ∂E
∂t

(A.4)

while the Bianchi identity yields

∂[µFνρ] = 0 =⇒ ∇ ·B = 0 and ∇×E = −∂B
∂t
. (A.5)

For the following chapter on differential forms, the sign convention for the Levi-Civita
pseudotensor needs to be set. We define it as

ε0123 = +1 =⇒ ε0123 = −1. (A.6)

Due to our sign convention of the Minkowksi metric, this is consistent through different
number of space dimensions.
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A.3. Differential forms

A.3 Differential forms

This appendix serves as a quick refresher, or short introduction, to the language of exterior
calculus and differential forms which are used throughout this thesis.

A p-form ω is defined as the wedge product of p 1-forms dxi as

ω = 1
p!ωi1,...,ipdx

i1 ∧ · · · ∧ dxip (A.7)

where we can identify ωi1,...,ip as the corresponding tensor (with covariant index structure!)
one might be more accustomed working with. The key takeaway is that we can identify
the value of the tensor with indices i1i2 as the term (without the factorial compensation
for over-counting) in front of dxi1 ∧ dxi2 , for instance.

The inner product between two 1-forms is the usual;

〈ω, η〉 = gµνωµην . (A.8)

Furthermore, the wedge product is skew-symmetric, i.e dx ∧ dy = −dy ∧ dx, so a wedge
product between a p-form ω and a q-form η becomes

ω ∧ η = (−1)pqη ∧ ω. (A.9)

The volume element of a semi-Riemannian manifold is

v =
√
|g|dx1 ∧ · · · ∧ dxn. (A.10)

The Hodge star operator is an isomorphism that maps p-forms to (n − p)-forms on a
manifold M with dimension n;

? : Ωp(M)→ Ω(n−p)(M) such that ω ∧ ?η = 〈ω, η〉v. (A.11)

Applying the Hodge star to a p-form yields

? (dxi1 ∧ · · · ∧ dxip) =
√
|g|

(n− p)!g
i1j1 . . . gipjpεj1...jndxjp+1 ∧ · · · ∧ dxjn (A.12)

where we use the definition ε0123... = +1. Since the signature of the metric is always −1
for a Lorentzian manifold, we have that

?2 = (−1)p(n−p)+1 (A.13)

so that in 4 spacetime dimensions, ?2 = −1 only on 2-forms, but in 5 spacetime dimensions,
?2 = −1 always! Due to the square, we have an inverse which takes on the sign

?−1 =

−? n is odd

(−1)p+1 ? n is even
(A.14)
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such that ??−1 = 1. The trick thing to remember when computing the Hodge dual of a
form α with our signature convention is:

Commute as needed such that α(?α) = dt ∧ dx . . .
Add an extra minus sign if α contains dt

(A.15)

Compare this with (A.12); the Levi-Civita tensor ensures the first property; it will give
plus for 0123... (i.e. dt∧dx∧. . . ) and any permutation that is of equal parity. Furthermore,
if α contains dt, the right-hand side will include g00 = −1. Note that cyclic permutations
alternate between being of even/odd parity for an even number of objects.

The exterior derivative takes a p-form to a p+ 1-form, is linear, and specifically,

d(ω ∧ η) = dω ∧ η + (−1)pω ∧ dη, for ω ∈ Ωp (A.16)

where the exterior derivative of a zero-form is the usual derivative. With the compound
index I; ω = fIdxI = f1dx1 ∧ f2dx2 . . . , we can write this as

dω = ∂fI
∂xi

dxi ∧ dxI . (A.17)

With these tools at our disposal, we can write Maxwell’s equations quite neatly. We treat
the electric and magnetic fields as vectors, so the field tensor decomposes as (compare
with (A.2)):

F = E ∧ dt+ ?−1(B ∧ dt) (A.18)

with E = Exdx+Eydy+Ezdz and so on. The term Exdx∧ dt means that Ex sits at Fxt.
Analogously, the term Bxdx ∧ dt gets dualized to +Fyz, since with our sign conventions,
?(dx ∧ dt) = +dy ∧ dz. With the language of differential forms, we can state Stokes
generalized theorem; ∫

M
dω =

∮
∂M

ω (A.19)

where we stress the fact that the integral over ∂M is closed - ∂M has no boundary, which
is manifest from the identity d2 = 0, if one were to apply Stokes theorem twice.

With these expressions, Maxwell’s equations now reads

dF = 0 and d ? F = ?J (A.20)

where
J = −ρdt+ J. (A.21)

Compare this with (A.1).
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A.4 Homotopy operators

We assume there to be a a homotopy operator K such that for a form ω;

ω = Kdω + dKω and ιnK = 0 on ∂M (A.22)

Note that K lowers the degree of the form it acts on. The homotopy operator may be con-
structed via radial integration, since AdS5 is naturally foliated into parallel submanifolds
(surfaces of constant r) [27].

The variation of the action with L[dA,A] is

δS =
∫
M
δA ∧ ∂L

∂A
+
∫
M
δ(dA) ∧ ∂L

∂dA
(A.23)

The first term we will leave as is. The second term splits into two, using the homotopy
operator;∫

M
δ(dA) ∧ ∂L

∂dA =
∫
M
δ(dA) ∧ Kd

(
∂L
∂dA

)
+
∫
M
δ(dA) ∧ dK ∂L

∂dA (A.24)

The second term can be written as a total derivative, since d2 = 0;∫
M
δ(dA) ∧ dK ∂L

∂dA =
∫
M

d
(
δ(dA) ∧ K ∂L

∂dA

)
+ 0

=
∮
∂M

δ(dA) ∧ K ∂L
∂dA =⇒

∮
∂M

δB ∧ ?M
(A.25)

by Stokes’ theorem. Hence we identify

M = K ∂L
∂dA =

∫ r

dr ∗ F =⇒

My =
〈∫ r

rh

∗F, dy ∧ dt
〉 (A.26)

as δdA must be in the transverse direction, and we want the magnetization in the y-
direction.

A-5



A. Supplementary Material

A-6



B. Calculations

B.1 Gauge solutions

We start with the radial component of the metric;

0 = δξgrr = ξr∂rgrr + 2grr∂rξr

∝ ζ ′r +
(
g′

g2 −
1
r

)
ζr ∝ d

dr

exp


∫ r

dr
(
g′(r)
g2(r) −

1
r

)ζr


=⇒ ζr = c1
r√
g

= c1r
√
f.

(B.1)

For the components of the form gµr with µ = t, x, y, z we can use the fact that the metric
is diagonal;

δξgµr = gµµ∂rξ
µ + grr∂µξ

r. (B.2)

The calculations are then straight-forward;

µ = t : 0 = gtt∂rξ
t + grr∂tξ

r

∝ fζ ′t + iωgζr =⇒ ζ ′
t = −iωc1r

f3/2

=⇒ ζt = −iωc1

∫ r

dr r

f3/2(r)
+ c2

µ = x : 0 = gxx∂rξ
x + grr∂xξ

r

∝ ζ ′x + ikgζr =⇒ ζ ′
x = −ikc1r√

f

=⇒ ζx = −ikc1

∫ r

dr r√
f(r)

+ c3

µ = y : 0 = ∂rξ
y = 0

=⇒ ζy = c4

µ = z : 0 = gzz∂rξ
z + grr∂zξ

r

∝ ζ ′z + λ2gζ
r =⇒ ζ ′

z = −λ2c1r√
f

=⇒ ζz = −λ2c1

∫ r

dr r√
f(r)

+ c5.

(B.3)

Finally for the gauge field, we only have a non-zero time component, so

0 = δξAr + ∂rΛ = h(r)∂rξt + ∂rΛ = −iωc1hr

f3/2 + Lθ′

=⇒ θ = iωc1

∫ r

dr rh(r)
f3/2(r)

+ c6

(B.4)

B-1



B. Calculations

meaning that the six gauge parameters are determined up to the six integration constants
c1, . . . , c6. These can be used to compute the pure gauge solutions to the modes. The
diagonal solutions are

δξgtt = ξr∂rgtt + 2L
2f

r2 iωξt

= ξrL2
(

2f − rf ′
r3

)
+ 2iωL2f

r2 ξt

= L2

r2

c1

(√
f(2f − rf ′) + 2ω2f

∫ r

dr r

f3/2(r)

)
+ 2c2iωf

 e−iωt+ikx+λ2z

δξgxx = ξr∂rgxx + 2L
2

r2 ikξx

= 2L2

r2

c1

(
−
√
f + k2

∫ r

dr r√
f(r)

)
+ c3ik

 e−iωt+ikx+λ2z

δξgyy = ξr∂rgyy = −c1
2L2

r2
√
fe−iωt+ikx+λ2z

δξgzz = ξr∂rg + 2L
2

r2 zzλ2ξ
z

= −2L2

r2

c1

(√
f + λ2

∫ r

dr r√
f(r)

)
+ c5λ2

 e−iωt+ikx+λ2z.

(B.5)

Recall that δξgµr = 0 for all values of µ by construction. The off-diagonal solutions are
slightly more intricate;

δξgtx = gtt∂xξ
t + gxx∂tξ

x

= −L
2

r2

c1ωk

(
f

∫ r

dr r

f3/2(r)
+
∫ r

dr r√
f(r)

)
+ c2iωf + c3iω

 e−iωt+ikx+λ2z

δξgty = gyy∂tξ
y = −c4

L2

r2 iωe−iωt+ikx+λ2z

δξgtz = gtt∂zξ
t + gzz∂tξ

z

= L2

r2

c1λ2iω
(
f

∫ r

dr r

f3/2(r)
+
∫ r

dr r√
f(r)

)
− c2λ2f − c5iω

 e−iωt+ikx+λ2z

δξgxy = gyy∂xξ
y = c4

L2

r2 ike−iωt+ikx+λ2z

δξgxz = gzz∂zξ
z + gzz∂xξ

z

= −L
2

r2

[
2c1λ2ik

∫ r

dr r√
f(r)

− c2λ2 − c5ik
]

e−iωt+ikx+λ2z

δξgyz = gyy∂zξ
y = c4

L2

r2 λ2e−iωt+ikx+λ2z.

(B.6)
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B.1. Gauge solutions

Continuing with the gauge field;

δAt = ξr∂rAt +At∂tξ
t + ∂tΛ

=

c1

(
r
√
fh′ − ω2h

∫ r

dr r

f3/2(r)
+ ω2

∫ r

dr rh(r)
f3/2(r)

)
− iω(hc2 + c6)

 e−iωt+ikx+λ2z

δAx = At∂xξ
t + ∂xΛ

=

c1kω

(
h

∫ r

dr r

f3/2(r)
−
∫ r

dr rh(r)
f3/2(r)

)
+ ik(hc2 + c6)

 e−iωt+ikx+λ2z

δAy = 0
δAz = At∂zξ

t + ∂zΛ

=

c1iωλ2

(
−h

∫ r

dr r

f3/2(r)
+
∫ r

dr rh(r)
f3/2(r)

)
+ λ2(hc2 + c6)

 e−iωt+ikx+λ2z.

(B.7)
These are our sought after gauge solutions! As these are gauge fields, a constant shift
doesn’t matter, which is why we can perform the integrals from anywhere in the region
(0, 1) to r. We’re mainly interested in their behavior near the boundary, so we choose 0
for simplicity. Some of these integrals can not be solved analytically, and are solved for
by expanding the integrand in a power series. To get linearly independent solutions, one
simply sets one of the integration constants to unity and the others to zero.
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B. Calculations

B.2 Counterterms

Performing variation of the Einstein-Hilbert action gives

δS =
∫
M

dd+2x
√−g

(
Rµν −

1
2gµνR

)
δgµν +

∫
M

dd+2x
√−g gµνδRµν . (B.8)

The Palatini identity tells us that

δRµν = ∇ρδΓρµν −∇νδΓρµρ =⇒ gµνδRµν = ∇µgµνgρσ
(
δ∂ρgνσ − δ∂νgρσ

) ≡ ∇µHµ (B.9)

where we have used that δgµν = δgµν = 0 when computing the variation of the affine
connection. Using the fact that the metric is covariantly constant, in combination with
Stokes’ theorem on second term in (B.8), we obtain∫

M
dd+2x∇µ

[√−g Hµ
]

=
∮
∂M

dd+1x
√−γ nµHµ. (B.10)

With the definition of the induced metric, we can write

nµH
µ = nµg

µνgρσ
(
δ∂ρgνσ − δ∂νgρσ

)
= 2nµ (γρσ + s���nρnσ) δ∂(ρgµ)σ

= −γρσnµδ∂µgρσ

(B.11)

where we have used the fact that vanishing metric on the boundary implies vanishing
tangential derivatives of the metric; γρσδ∂ρgµσ = 0. Nevertheless, since derivatives of
the metric in general are not required to vanish, the variation of the action may not be
well-defined. Adding the Gibbon-Hawking-York counterterm to the action, will yield an
additional contribution from the variation of (the trace of) the extrinsic curvature K as

δK = γµνδ∇µnν = γµν
(
����δ(∂µnν)− δΓρµνnρ

)
= −1

2γ
µνnσ

(
����δ∂µgµσ +����δ∂νgνσ − δ∂σgµν

)
= 1

2γ
µνnσδ∂σgµν

(B.12)

again requiring vanishing tangential derivatives of the metric. This term is with relabel-
ing of indices equal to the one in (B.11) up to a constant factor, and the effect of the
counterterm should now be clear.
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