
Master’s Thesis

Iteratively Regularized Finite Element Method
for Conductivity Reconstruction in a Waveguide

Carl Persson

Department of Mathematical Sciences
Chalmers University of Technology
Gothenburg, Sweden 2016

Iteratively Regularized Finite Element Method
for Conductivity Reconstruction in a Waveguide

Student/Author: Carl Persson

Supervisor/Examiner: Dr. Larisa Beilina

Department of Mathematical Sciences

Chalmers University of Technology

Gothenburg, Sweden 2016

Abstract
In this work we consider iteratively regularized conjugate gradient method to solve the inverse problem of

reconstructing the unknown space dependent conductivity function in a bounded domain. The conductivity
function is reconstructed by solving the hyperbolic differential equation using measured data in space and
time on the boundary of the domain, where the measured data is generated by sending a plane-wave through
the domain.

The inverse problem is stated as a minimization problem of the Lagrangian functional, defined using the
Tikhonov functional, and approximate functions are computed by the finite element method (FEM). The
stationary point that minimizes the Lagrangian is found by computing a sequence of conductivity functions
that converges to the minimum point. Conjugate gradient method (CGM) and fixed point iterations (FPI)
are considered to compute the minimization sequence, where the Tikhonov functional is iteratively updated.

The goal of this master’s thesis is to compare the efficiency and speed of the optimization algorithms,
when the regularization parameter in the Tikhonov functional is iteratively updated.

i

Contents
Abstract i

1 Introduction 1

2 General theory about ill-posed inverse problems 3
2.1 Tikhonov functional . 3
2.2 Iteratively regularized Tikhonov functional . 4

3 Minimization methods, some common iterative schemes 6
3.1 Definition of convergence rate . 6
3.2 Fixed point iteration (FPI) . 6
3.3 Gradient method (GM) . 6

3.3.1 GM on quadratic functions . 7
3.4 Conjugate gradient method (CGM) . 7

3.4.1 CGM on quadratic functions . 8
3.5 Example of GM and CGM on a quadratic function . 8

4 Model problem 9

5 Forward problem 10
5.1 Definition of p(t) . 10

6 Inverse problem 10

7 Function spaces 11

8 Variational formulation of forward problem 11

9 Tikhonov and Lagrangian functionals 12

10 Minimization problem 12
10.1 Differentiating L(u, v, a) with respect to v . 12
10.2 Differentiating L(u, v, a) with respect to u . 13

10.2.1 Strong solution to the adjoint problem . 13
10.3 Differentiating L(u, v, a) with respect to a . 14

10.3.1 Strong solution to the conductivity coefficient . 14

11 Finite element function spaces 15

12 Finite element approximations to the variational formulations 16
12.1 Finite element approximation to the forward problem . 17
12.2 Finite element approximation to the adjoint problem . 18
12.3 Finite element approximation to the conductivity coefficient 19

13 Solving the finite element system of equations 20
13.1 Computing the columns in U . 20
13.2 Computing the columns in V . 22

14 Minimization methods applied on FEM solutions 24
14.1 Fixed point to Lagrangian . 25
14.2 Gradient methods applied on Lagrangian . 25
14.3 Iteratively regularized gradient methods applied on Lagrangian 26

ii

15 Iterative algorithms for solving inverse problem 27
15.1 Fixed point iterations (FPI) . 27
15.2 Conjugate gradient method (CGM) . 28
15.3 Iteratively regularized conjugate gradient method (IRCGM) 29

16 Numerical studies 30

17 Case 1 31
17.1 Results using backscatter and transmitted data without any noise 33
17.2 Results using only backscatter data, varying noise level . 40

18 Case 2 46
18.1 Results using backscatter and transmitted data without any noise 48
18.2 Results using only backscatter data, varying noise level . 51

19 Discussion and conclusion 57
19.1 Restricting the iteratively updated regularization parameter 58

Appendix 59

A 1D linear basis functions and resulting FEM matrices 59
A.1 Mass matrix . 59

A.1.1 R1 . 60
A.2 Convection matrix . 60

A.2.1 C1 . 61
A.3 Stiffness matrix . 61

B 2D linear basis functions and resulting FEM matrices 63
B.1 Computing basis functions on one arbitrary triangle element 63
B.2 Element mass matrix . 64
B.3 Element stiffness matrix . 64
B.4 Global matrices . 65
B.5 Mass matrix M1 and M2 . 65

References 67

iii

1 Introduction
Reconstruction techniques of the unknown conductivity function a(x), x ∈ Ω ⊂ R3, in space present increasing
interest for the mathematical and physical research community. Some common techniques used today, are for
example, ultrasound and x-ray, which give a good image of the object inside the material but a poor estimate
of numerical values of a(x). Possible areas of applications are cancer diagnostics, nondestructive testing of
materials and many others.

Reconstruction of the conductivity is an ill-posed, inverse problem of finding a feasible a(x) so that
A(a(x)) = b(x, t), where A is an arbitrary mapping operator to the system defined for all feasible a(x), and
b(x, t) ∈ Ω× J is measured data in time interval J ⊂ R and space Ω. Since the inverse problem is ill-posed
the solution might be numerically unstable for small perturbations of b, see [6, 11]. The inverse problem is
solved by minimizing the Tikhonov functional:

F (a(x)) = 1
2‖A(a(x))− b‖2L2(Ω×J) + γ

2 ‖a(x)− a0(x)‖2L2(Ω),

where a0 is an initial guess, assumed to be close to the exact solution, γ ∈ (0, 1) is the regularization
parameter, ‖ · ‖L2(Ω×J) and ‖ · ‖L2(Ω) are the L2 norm over Ω × J and Ω respectively. The regularization
term in the functional ensures that solutions ‖a(x)‖L2(Ω) remains bounded and close to the initial guess.

The conductivity a(x) can be reconstructed using computer simulations of partial differential equations
in two and three dimensions, meaning that the mapping operator A(a(x)) can be computed for any feasible
a(x), it is important to use efficient computational methods for speed and accuracy when the computational
domain is very large.

This master’s thesis examines the benefits of iterative regularization, using the Lagrangian approach to
reconstruct the conductivity in a hyperbolic equation, see [1, 3] where this method is applied, which can
also be used to reconstruct the coefficients in Maxwell’s equations, see [5, 10]. This is done by comparing
the results of computer simulations using different iterative minimization algorithms. The algorithms used in
this work are fixed point iterations (FPI), conjugate gradient method (CGM) with a constant regularization
parameter, and CGM with a iteratively regularized Tikhonov functional. See [5, 11] for details of iterative
regularization.

In works [1, 3, 5, 10] the mapping A(a(x)) is computed with domain decomposition of Ω = ΩFEM ∪
ΩFDM ∈ R3, using an adaptive finite element method (FEM) on the subdomain ΩFEM of the material where
a(x) is assumed to be unknown, and finite difference method (FDM) on ΩFDM where a(x) is assumed to
be constant. Using FEM/FDM domain decomposition ensures that the more computationally costly FEM is
only used where needed. The resulting equation systems are solved using parallel computing for speed.

However, in this work the inverse problem is solved in two dimensions using a non-adaptive FEM over the
whole domain, without any parallel computing.

The mathematical equation that governs the propagation of a wave in a waveguide is the hyperbolic partial
differential equation, which in its general form is defined as:

1
c2
∂2u

∂t2
−∇ · (a∇u) = f in Ω× (0, T), (1)

where the scalar field u(x, t) denotes the measured property of the wave such as voltage or displacement,
c(x) > 0 denotes the wave speed in the domain, a(x) > 0 denotes the conductivity coefficient in the domain
and f(x, t) denotes some external force acting on the system. The domain Ω ∈ R3 is assumed to be convex
and bounded, the boundary to Ω is denoted Γ.

If c, a and f are known, then u(x, t) can be solved using initial conditions:

u(x, 0) = u0(x) in Ω,

∂u

∂t
(x, 0) = u1(x) in Ω,

and first order absorbing boundary conditions:
∂u

∂n
= −∂u

∂t
on Γ× (0, T).

1

The hyperbolic equation (1) is simplified for the scope of this master’s thesis, which is comparison of
iterative minimization methods for reconstructing the conductivity coefficient a(x) in (1). It is sufficient to
work in two dimensions with a rectangle domain Ω ∈ R2, any results and conclusions are directly applicable
on the problem in three dimensions. Working in two dimensions reduces computational time and makes it
easier to view the conductivity a(x). The coefficients in (1) are dimensionless, so that the wave speed c = 1
throughout the domain, and a(x) ≥ 1 with a(x) = 1 on Γ. External forces f = 0 and initial conditions
u0 = u1 = 0 are set to zero. The wave is initialized in Ω by introducing an impulse function p(t) acting on a
part of the boundary for a sub-interval (0, t1].

This simulates sending a plane wave through a material that is initially at rest with no external forces
working on it, and then measuring u(x, t) on the boundary over the time t ∈ (0, T). The measurements of
u on Γ× (0, T) gives information about the material and are used to reconstruct the conductivity inside the
domain.

The data measured on the boundary where the plane wave is induced, is known as backscatter data,
which is caused by that the wave is reflected in regions where ∇a 6= 0. The data measured on the opposite
boundary from where the plane wave is induced, is known as transmitted data, which is distorted from the
induced plane wave if ∇a 6= 0 in regions in the material.

The outline of this work is as follows. Section 2 of this thesis describes some general theory of ill-posed
inverse problems and Tikhonov functionals that can be used to solve such problems, see [6, 11]. Section 3
describes some common iterative minimization methods when applied on real valued functions, see [4, 5].
Sections 4-10 define the classical problem described by P.D.E. with boundary and initial conditions, the
variational formulation and minimization problem, who are all equivalent, that is:

(P.D.E. Problem)⇔ (Variational Formulation)⇔ (Minimization Problem),

where the classical P.D.E. problem have strong solutions, and variational formulations have weak solutions.
The Lagrangian functional is defined in section 9, using the Tikhonov functional, and then it is shown that
(Minimization Problem) ⇒ (Variational Formulation) ⇒ (P.D.E. Problem), in the sense that the strong
solutions to the forward problem, adjoint problem and conductivity coefficient are derived from the variational
formulations of the minimization problem. Then the finite element method is defined and described in detail
in sections 11-13. The FEM gives approximate solutions to the variational formulation that minimizes the
Lagrangian functional. Sections 14-15 define the minimization methods and algorithms used to compute a
sequence {a0(x), a1(x), . . . , aN (x)} that minimizes the Lagrangian functional. Sections 16-19 present the
numerical results and discussions when algorithms of sections 13-14 are implemented in two different case
studies.

The appendix presents and describes some common methods to define and compute linear basis functions
in one and two dimensions, for the finite element method, and how to compute resulting FEM matrices. See
[2, 7, 8, 9].

2

2 General theory about ill-posed inverse problems
In this section the general theory of real valued operators and functionals is presented. For further enquiry
see [6, 7, 11].

2.1 Tikhonov functional
Let A be a mapping operator on a Hilbert space H1 into a Hilbert space H2 such that A : H1 → H2. Also
assume that the two Hilbert spaces H1 and H2 contain real valued elements, and let (·, ·)H1 , (·, ·)H2 denote
the bilinear scalar product associated with the two function spaces. Define the norms by:

‖x‖2H1
= (x, x)H1 x ∈ H1,

‖y‖2H2
= (y, y)H2 y ∈ H2.

(2)

Assume that A(x) = y is well-posed and can be computed for each x ∈ H1, but A(x)−1 is ill-posed. We
want to find x∗ such that A(x∗) = y∗, where y∗ is known, let X∗ 6= ∅ denote the set of possible solutions.
Define the Tikhonov functional as:

F (x) = 1
2‖A(x)− y∗‖2H2

+ γ

2 ‖x− x0‖2H1
, (3)

where γ > 0 is the regularization parameter and x0 is the initial guess, a fixed point in H1.
The initial guess x0 is assumed to be chosen in the vicinity of x∗ ∈ X∗, so that the chosen optimization

method is able to converge to x∗, but the fixed point x0 does not necessarily have to be the initial guess of
the optimization method. It can be chosen as an arbitrary fixed point ξ ∈ H1, that will consequently limit
the set of possible minimization points to an open ball around ξ for any fixed γ > 0.

Our goal is to find the xγ ∈ H1 that minimizes F , that is:

F (xγ) ≤ F (x̄) ∀x̄ ∈ H1. (4)

The most direct way to find the minimum point is to compute the Fréchet derivative of the Tikhonov functional
and find the stationary points. Denote the Fréchet derivative F ′(x) = H(x) + γ(x− a0) ∈ H1 for simplicity,
where the operator H : H1 → H1, and find the stationary points xγ that satisfies:

F ′(xγ) = H(xγ) + γ(xγ − a0) = 0, (5)

and chose the xγ that is the global minimizer. Depending on γ, the point that minimizes F will differ from
x∗. Clearly the Tikhonov functional satisfies:

inf
x∈H1

F (x) ≥ 0 ∀γ ≥ 0, (6)

but the functional does not necessarily have a global minimizer. However, for any γ > 0 and for any accuracy
ε > 0 there exists an element xεγ ∈ H1 such that:

inf
x∈H1

F (x) ≤ F (xεγ) ≤ inf
x∈H1

F (x) + ε. (7)

Meaning that F (xεγ) differs by not more than ε from the infimum. Take some minimum point x∗ ∈ X∗, we
have the estimate:

F (xεγ) ≤ F (x∗) + ε. (8)
Using the definition of the Tikhonov functional, the estimate is:

1
2‖A(xεγ)− y∗‖2H2

+ γ

2 ‖x
ε
γ − x0‖2H1

≤ γ

2 ‖x
∗ − x0‖2H1

+ ε. (9)

From equation (9) it follows that:

1
2‖A(xεγ)− y∗‖2H2

≤ γ

2 ‖x
∗ − x0‖2H1

+ ε,

‖xεγ − x0‖2H1
≤ ‖x∗ − x0‖2H1

+ 2 ε
γ
.

(10)

3

Suppose that ε = ε(γ) depends on the regularization parameter such that:

lim
γ→0

ε(γ)
γ

= 0, (11)

which implies that lim
γ→0

ε(γ) = 0. Then the sequence of elements {xε(γ)
γ }γ∈(0,γ0] fulfilling the estimate,

minimizes the functional as γ → 0, since:

lim
γ→0
‖A(xεγ)− y∗‖H2 = 0,

lim
γ→0
‖xεγ − x0‖H1 = ‖x∗ − x0‖H1 .

(12)

2.2 Iteratively regularized Tikhonov functional
The general idea of iteratively regularized Tikhonov functional is to choose an iterative optimization method,
such as the gradient method (GM) or conjugate gradient method (CGM), to compute a sequence of points
{xn} that converges to x∗ for an arbitrary strongly convex functional, given a sequence of regularization
parameters {γn} that converges to zero.

This implies that the Tikhonov functional tends to zero for large n:s, instead of some positive constant.
The sequence {γn} should fulfill:

γ0 ≥ γ1 ≥ . . . γn ≥ γn+1 > 0,

lim
n→∞

γn = 0,
(13)

and be chosen to ensure fast convergence for the optimization method.
Let εn = ε(γn) denote the accuracy and xεnγn denote the point that differs by no more than εn from the

infimum, dependent on γn and iteration n in the iterative scheme. Write the estimates derived from equation
(9) as:

1
2‖A(xεnγn)− y∗‖2H2

≤ γn
2 ‖x

∗ − x0‖2H1
+ εn,

‖xεnγn − x0‖2H1
≤ ‖x∗ − x0‖2H1

+ 2 εn
γn

,

(14)

and suppose that:
lim
n→∞

εn = lim
n→∞

γn = lim
n→∞

εn
γn

= 0. (15)

Let xγn denote the stationary point that exactly minimizes the Tikhonov functional in each given iteration,
with the condition F ′(xγn) = 0.

Consider using the gradient method with an iteratively regularized parameter γn that satisfies condi-
tion (13), to find the global minimizer. The gradient method is based on computing the steepest descent
−F ′(xn) ∈ H1 at point xn and minimize the function F (xn − αF ′(xn)) by performing a line search along
xn − αF ′(xn). The step-size αn > 0 that minimizes the function along the steepest descent is then chosen
to compute xn+1, such that:

xn+1 = xn − αnF ′(xn) = xn − αn(H(xn) + γn(xn − x0)), (16)

until convergence is achieved for the sequence of {xn}. How to perform the line search and compute F ′(xn)
is explained for the model problem in sections 10, 14. The gradient method implemented on general real
valued functions as f : Rd → R is described in more detail in section 3. For now, we assume that it is possible
to compute F ′(xn) and αn for the arbitrary Tikhonov functional. The step-size αn > 0 is an inner parameter
of the gradient method that will depend on the regularization parameter γn.

To find a suitable sequence of {γn} that fits the gradient method, start by subtracting the global minimizer
xγn and take the H1 norm squared, so that:

‖xn+1 − xγn‖2H1
= ‖xn − xγn − αn(F ′(xn)− F ′(xγn))‖2H1

. (17)

4

Here we have used that F ′(xγn) = 0 on the right hand side. Assume that the H1 norm is defined by a bilinear
scalar product so that ‖ · ‖2H1

= (·, ·)H1 , we then get:

‖xn+1 − xγn‖2H1
= ‖xn − xγn‖2H1

− 2αn(F ′(xn)− F ′(xγn), xn − xγn)H1

+ α2
n‖F ′(xn)− F ′(xγn)‖2H1

.
(18)

The sequence of regularization parameters is found by estimating equation (18) and analysing its convergence
rate.

The first step is to estimate the (F ′(xn) − F ′(xγn), xn − xγn)H1 term. Use that F ′(xn) = H(xn) +
γn(xn − x0) = ξ, where ξ is an arbitrary element in H1, and that F ′(xγn) = H(xγn) + γn(xγn − x0) = 0.
We get that F ′(xn)− F ′(xγn) = H(xn)−H(xγn) + γn(xn − xγn) = ξ. Scalar multiply F ′(xn)− F ′(xγn)
by xn − xγn to get:

(F ′(xn)− F ′(xγn), xn − xγn)H1 = (H ′(xn)−H ′(xγn), xn − xγn)H1

+ γn‖xn − xγn‖2H1
= (ξ, xn − xγn)H1 .

(19)

Use the fact that F is strongly convex in H1, so that:

(H ′(x2)−H ′(x1), x2 − x1)H1 ≥ 0 ∀x1, x2 ∈ H1. (20)

Hence we get the inequality:

(F ′(xn)− F ′(xγn), xn − xγn)H1 ≥ γn‖xn − xγn‖2H1
, (21)

which means that:
−(F ′(xn)− F ′(xγn), xn − xγn)H1 ≤ −γn‖xn − xγn‖2H1

. (22)

Substitute inequality (22) into equation (18), to get:

‖xn+1 − xγn‖2H1
≤ ‖xn − xγn‖2H1

− 2αnγn‖xn − xγn‖2H1

+ α2
n‖F ′(xn)− F ′(xγn)‖2H1

.
(23)

The next step is to estimate the ‖F ′(xn) − F ′(xγn)‖2H1
term. This is done by using the definitions of

F ′(xn), F ′(xγn) and expanding the bilinear scalar product ‖ · ‖2H1
= (·, ·)H1 , so that:

‖F ′(xn)− F ′(xγn)‖2H1
= · · · = ‖H ′(xn)−H ′(xγn)‖2H1

+ 2γn(H ′(xn)−H ′(xγn), xn − xγn)H1

+ γ2
n‖xn − xγn‖2H1

≤ ‖H ′(xn)−H ′(xγn)‖2H1
+ γ2

n‖xn − xγn‖2H1

≤ γ2
n‖xn − xγn‖2H1

,

(24)

where inequality (20) is used again. Substitute (24) into (23), divide both sides by ‖xn − xγn‖2H1
and take

the square root of the expression, to get:

‖xn+1 − xγn‖H1

‖xn − xγn‖H1

≤
√

1− 2αnγn + α2
nγ

2
n = 1− αnγn. (25)

To get convergence in the gradient method, we need to choose γn, αn so that 0 < 1 − αnγn < 1 is small
for at least large n:s. The sequence of {γn} should fulfill (13) and the sequence of step-sizes {αk} should
converge to zero as the gradient method converges to the minimum point.

5

One example of such a sequence that slowly converges to zero is:

γn = γ0

(n+ 1)p ,

αn = α0

(n+ 1)p+q ,

n = 0, 1, . . . ,

(26)

where γ0, α0, p ∈ (0, 1) and q > 0. For further enquiry on the theory behind choosing a suitable sequence,
see [5, 11].

3 Minimization methods, some common iterative schemes
The iterative schemes described in this section are for real valued functions f(x) : Rn → R, continuous for
x ∈ Ω, and f(x∗) ≤ f(x) ∀x ∈ Ω is the sought for minimum point.

3.1 Definition of convergence rate
For any given iterative scheme, the sequence xk → x∗ as k →∞, converges with rate p ≥ 1, if ∃c > 0, such
that:

lim
k→∞

|xk+1 − x∗|
|xk − x∗|p

= c. (27)

In the computer simulations, x∗ is known, and the error sequence ek = xk − x∗ can be computed and
estimated by |ek+1| ≈ c|ek|p for large enough k. If the exact x∗ is not known, the the error can be estimated
by ẽk = xk − xk−1 for large enough k [4]. That is to say, c and p can be approximated by solving:

εk = |ek| = |xk − x∗|, (28a)

ε̃k = |ẽk| = |xk − xk−1|, (28b)
εk+1

(εk)p ≈ c, (when k is large) (28c)

εk+1

εk
≈
(εk
εk−1

)p
, (when k is large) (28d)

for large enough k:s, where you use the error ek or ẽk, depending on if x∗ is known or not.

3.2 Fixed point iteration (FPI)
The point x∗ is a fixed point to f if it fulfills f(x∗) = x∗. The sequence:

xk+1 = f(xk) (29)

converges to x∗ for x0 chosen in the vicinity of x∗. If the function is Lipschitz continuous, so that |f(xi)−
f(xj)| ≤ L|xi−xj | for any points xi, xj ∈ Ω, with Lipschitz constant L<1, it can be shown that |xk−xk−1| ≤
Lk−1|x1 − x0|. Fixed point iteration converges linearly to x∗, since:

lim
k→∞

|xk+1 − x∗|
|xk − x∗|

= L. (30)

3.3 Gradient method (GM)
Assume that f(x) : Rn → R is continuous, and that f ′(x) : Rn → Rn exists. Then minimize f(x) by
computing the sequence:

dk = −f ′(xk),

αk = argmin{f(xk + αdk) : α ≥ 0},

xk+1 = xk + αkdk.

(31)

6

The step-size αk is chosen to minimize the function gk(α) = f(xk + αdk) for each k. This can be seen as
doing a line-search from the point xk along the direction dk, which may not be possible or feasible to do
exactly, then choose ak to “loosely” minimize the functional along the direction.

3.3.1 GM on quadratic functions

A common minimization problem is to minimize the quadratic function:

f(x) = 1
2x

TAx− xT b, (32)

where A is an n×n symmetric positive definite matrix. We have that f ′(x) = Ax− b and f ′′(x) = A. Since
f ′(x) = Ax− b we get that dk = b− Axk and gk(α) = f(xk + αdk) is a second order polynomial that can
be computed and minimized for each k. By expanding gk(α) and computing g′(α) = 0, we get that:

gk(α) = 1
2

(
xTkAxk + 2αdTkAxk + α2dTkAdk

)
,

g′(α) = dTkAxk + αdTkAdk − dTk b = 0,

α = dTk (b−Axk)
dTkAdk

= dTk dk
dTkAdk

= ‖f
′(xk)‖22

‖f ′(xk)‖2A
.

(33)

The computing sequence for f(x) = 1
2x

TAx− xT b then becomes:

dk = −(Axk − b),

αk = dTk dk
dTkAdk

,

xk+1 = xk + αkdk.

(34)

3.4 Conjugate gradient method (CGM)
Let f(x) be as for GM. Minimize f(x) by the sequence:

d0 = −f ′(x0), (first iteration)

dk = −f ′(xk) + βkdk−1,

βk = ‖f ′(xk)‖2

‖f ′(xk−1)‖2 ,

αk = argmin{f(xk + αdk) : α ≥ 0},

xk+1 = xk + αkdk.

(35)

The major difference from the gradient method, is that a fraction of the previous direction dk−1 is added to
dk. As for the GM, αk is chosen to minimize the function gk(α) = f(xk +αdk) for each k. It should also be
mentioned that βk can be chosen in many ways, the way described above is the Fletcher-Reeves method.

7

3.4.1 CGM on quadratic functions

If f(x) = 1
2x

TAx− xT b, where A is S. P. D., the computing sequence becomes:

gk = f ′(xk) = Axk − b,

d0 = −g0, (first iteration)

βk = gTk gk
gTk−1gk−1

,

dk = −gk + βkdk−1,

αk = gTk gk
dTkAdk

,

xk+1 = xk + αkdk.

(36)

Here it is used that f ′(xk) ⊥ f ′(xk−1) when computing αk. As before we get that:

α = dTk (b−Axk)
dTkAdk

= (rk + βkdk−1)T rk
dTkAdk

= rTk rk
dTkAdk

. (37)

3.5 Example of GM and CGM on a quadratic function

Figure 1: Example of GM and CGM on a quadratic positive definite function.

Figure 1 shows an example of GM and CGM on the quadratic function f(x) = (x1 + 0.2)2 + (0.5(x2−0.2))2.
The contour of f(x) is outlined and the arrows show how the GM and CGM approaches the minimum point
(−0.2, 0.2) from the same starting point.

CGM needs at most n iterations to find the exact minimum point for a quadratic S.P.D. function in n
dimensions, given any starting point.

Depending on the starting point and if the quadratic function have elliptic contours, the GM may never
reach the exact minimum point in a finite number of steps.

8

4 Model problem

Figure 2: Example of the rectangular domain Ω in R2. The grey circle shows where a(x) > 1. Boundaries
where n · ∇u = 0 are unified into Γ3.

The model problem used to reconstruct the conductivity is the hyperbolic equation (1) in d = 2, 3 dimensions
with absorbing boundary conditions and zero initial conditions. Let Ω ∈ Rd be a bounded domain where
the conductivity a(x) is a function of x. Ω is assumed to be a rectangle domain in two dimensions, and a
rectangular box in three dimensions. The boundaries to Ω are denoted by Γ = Γ1 ∪ Γ2 ∪ Γ3, where Γ1 and
Γ2 are opposite. The boundaries where n · ∇u = 0 are unified into Γ3, see figure 2 for an example of Ω in
two dimensions. The model problem used in computations is defined as:

∂2u

∂t2
−∇ · (a∇u) = 0 in Ω× (0, T), (38a)

u(x, 0) = 0 in Ω, (38b)

∂u

∂t
(x, 0) = 0 in Ω, (38c)

∂u

∂n
= p(t) on Γ1 × (0, t1], (38d)

∂u

∂n
= −∂u

∂t
on Γ1 × (t1, T), (38e)

∂u

∂n
= −∂u

∂t
on Γ2 × (0, T), (38f)

∂u

∂n
= 0 on Γ3 × (0, T). (38g)

The conductivity coefficient a(x) is assumed to satisfy:

a(x) ∈ [1, amax] x ∈ Ω,

a(x) = 1 x ∈ Γ,
(39)

for some constant 1 < amax ≤ d1, where d1 is a bound we know a priori.

9

5 Forward problem
Determine u(x, t) in (38), when a(x) and p(t) are known.

5.1 Definition of p(t)
The impulse p(t) induces a plane wave propagating from Γ1 to Γ2 in the model problem. It is chosen as an
sine wave.

Figure 3: p(t) plotted for t ∈ [0, t1].

Definition of p(t):
p(t) = sin(ωt) ∀t ∈ [0, t1],

t1 = π

ω
,

(40)

for some chosen angular frequency ω. Some relations between angular frequency ω [rad/s], frequency f [1/s],
speed c = 1 [m/s], period time tp [s] and wavelength lp [m]:

ω = 2πf,

tp = 1
f
,

c = flp ⇔ lp = 1
f
.

(41)

6 Inverse problem
Determine the unknown coefficient a(x) in (38), that satisfies (39), given known measurements ũ(x, t) on
the boundary:

u(x, t) = ũ(x, t) ∀(x, t) ∈ Γ1 × (0, T) (Backscatter data),

u(x, t) = ũ(x, t) ∀(x, t) ∈ Γ2 × (0, T) (Transmitted data).
(42)

It is enough to have one set of known boundary data to reconstruct the conductivity, but the reconstruction
becomes better given both measurements. In the derivation of Tikhonov and Lagrangian functionals it is
assumed that only backscatter data is known.

In the FEM computer simulations the data is generated by defining a completely known a∗(x) that is used
to compute u∗(x, t). Noise is then added to the data by:

ũ(x, t) = u∗(x, t) + σ · P · u∗(x, t) ∀(x, t) ∈ Γ1 × (0, T) (Backscatter data),

ũ(x, t) = u∗(x, t) + σ · P · u∗(x, t) ∀(x, t) ∈ Γ2 × (0, T) (Transmitted data),

ũ(x, t) = 0 else,

(43)

10

where P is some probability distribution and σ ∈ [0, 1] is the noise level. As an example, P can be the
standard normal distribution or a random uniform distribution with values from [−1, 1]. The random variable
P is drawn for each (x, t) where data is collected.

7 Function spaces
Let ΩT = Ω× (0, T) and define the real valued function spaces:

U1 =
{
w ∈ H1(ΩT) : w(x, 0) = ∂w

∂t
(x, 0) = 0

}
,

V 1 =
{
w ∈ H1(ΩT) : w(x, T) = ∂w

∂t
(x, T) = 0

}
,

A =
{
w ∈ L2(Ω) : 1 ≤ w ≤ amax, w = 1 on Γ

}
.

(44)

8 Variational formulation of forward problem
In this section the variational formulation is derived to the forward problem of finding u ∈ U1, using the
standard Galerkin method, assuming that a(x) ∈ A is known. First step is to multiply the differential equation
(38a) by the function v(x, t) ∈ V 1 that has the end-condition v(x, T) = vt(x, T) = 0, then integrate over
Ω× (0, T): ˆ

Ω

ˆ T

0

∂2u

∂t2
v dxdt−

ˆ

Ω

ˆ T

0
∇ · (a∇u)v dxdt = 0.

Use partial integration on the time-derivative term and that ∇ · (va∇u) = ∇v · (a∇u) + v∇ · (a∇u), to get:
ˆ

Ω

([∂u
∂t
v
]T
t=0
−
ˆ T

0

∂u

∂t

∂v

∂t
dt
)

dx+
ˆ

Ω

ˆ T

0
a∇u · ∇v dxdt

−
ˆ

Ω

ˆ T

0
∇ · (av∇u) dxdt = 0.

The first term is zero, since v(x, T) = 0 and ut(x, 0) = 0. Use Gauss divergence theorem and that a = 1 on
Γ, to get:

−
ˆ

Ω

ˆ T

0

∂u

∂t

∂v

∂t
dxdt+

ˆ

Ω

ˆ T

0
a∇u · ∇v dxdt

−
ˆ

Γ

ˆ T

0

∂u

∂n
v dsdt = 0,

where ∂u
∂n = n · ∇u. Insert the boundary conditions for u in equation (38d)-(38g) to get:

−
ˆ

Ω

ˆ T

0

∂u

∂t

∂v

∂t
dxdt+

ˆ

Ω

ˆ T

0
a∇u · ∇v dxdt

+
ˆ

Γ1

ˆ T

t1

∂u

∂t
v dsdt+

ˆ

Γ2

ˆ T

0

∂u

∂t
v dsdt =

ˆ

Γ1

ˆ t1

0
p(t)v dsdt.

(45)

The variational formulation of the forward problem is then to find u ∈ U1 such that equation (45) is fullfilled
for all v ∈ V 1.

11

9 Tikhonov and Lagrangian functionals
Define the Tikhonov functional F (a) = F (u(a), a) as:

F (u, a) = 1
2

ˆ

Γ1

ˆ T

0
(u− ũ)2 dsdt+ 1

2γ
ˆ

Ω

(a− a0)2 dx, (46)

where ũ is the known measurements on the boundary, γ ∈ (0, 1) is the Tikhonov regularization parameter
and a0 is the initial guess of the conductivity.

Alternatively, if there is backscatter and transmitted data available, the integral over Γ2 is be added for
additional input, and the Tikhonov functional can be defined as:

F (u, a) =1
2

ˆ

Γ1

ˆ T

0
(u− ũ)2 dsdt+ 1

2

ˆ

Γ2

ˆ T

0
(u− ũ)2 dsdt

+1
2γ
ˆ

Ω

(a− a0)2 dx.
(47)

Define the Lagrangian L(a) = L(u(a), v(a), a) as:

L(u, v, a) =F (u, a)−
ˆ

Ω

ˆ T

0

∂u

∂t

∂v

∂t
dxdt+

ˆ

Ω

ˆ T

0
a∇u · ∇v dxdt

−
ˆ

Γ1

ˆ t1

0
p(t)v dsdt+

ˆ

Γ1

ˆ T

t1

∂u

∂t
v dsdt+

ˆ

Γ2

ˆ T

0

∂u

∂t
v dsdt,

(48)

where the functions (u, v, a) ∈ U1 × V 1 ×A from equation (44). The inverse problem is then formulated as
an optimization problem by minimizing the Lagrangian with respect to (u, v, a).

10 Minimization problem
The minimization problem is to find (u, v, a) ∈ U1 × V 1 ×A such that

L(u, v, a) ≤ L(ū, v̄, ā) ∀(ū, v̄, ā) ∈ U1 × V 1 ×A, (49)

where L is the Lagrangian functional defined in equation (48). This is done by searching for a stationary point
(u, v, a) that has the Fréchet derivatives ∂L

∂u (u, v, a)(ū) = 0, ∂L∂v (u, v, a)(v̄) = 0 and ∂L
∂a (u, v, a)(ā) = 0.

10.1 Differentiating L(u, v, a) with respect to v

Let (u, v, a) be the stationary point that minimizes the Lagrangian functional and compute:

dL
dα (u, v + αv̄, a) =−

ˆ

Ω

ˆ T

0

∂u

∂t

∂v̄

∂t
dxdt+

ˆ

Ω

ˆ T

0
a∇u · ∇v̄ dxdt

−
ˆ

Γ1

ˆ t1

0
p(t)v̄ dsdt+

ˆ

Γ1

ˆ T

t1

∂u

∂t
v̄ dsdt+

ˆ

Γ2

ˆ T

0

∂u

∂t
v̄ dsdt,

where α is some scalar and v̄ is any function in V 1. Let α→ 0 to get ∂L
∂v (u, v, a)(v̄) = 0, which is:

−
ˆ

Ω

ˆ T

0

∂u

∂t

∂v̄

∂t
dxdt+

ˆ

Ω

ˆ T

0
a∇u · ∇v̄ dxdt

−
ˆ

Γ1

ˆ t1

0
p(t)v̄ dsdt+

ˆ

Γ1

ˆ T

t1

∂u

∂t
v̄ dsdt+

ˆ

Γ2

ˆ T

0

∂u

∂t
v̄ dsdt = 0,

(50)

12

where v̄ is any function in V 1. Equation (50) gives the variational formulation for the forward problem, which
is defined as: find u(x, t) that satisfies equation (50) ∀v̄ ∈ V 1. This is exactly the same as derived in equation
(45). The strong solution to u(x, t) fulfills equation (38).

10.2 Differentiating L(u, v, a) with respect to u

Let (u, v, a) be the stationary point that minimizes the Lagrangian functional and compute:

dL
dα (u+ αū, v, a) =

ˆ

Γ1

ˆ T

0
(u+ αū− ũ)ūdsdt−

ˆ

Ω

ˆ T

0

∂ū

∂t

∂v

∂t
dxdt+

ˆ

Ω

ˆ T

0
a∇ū · ∇v dxdt

+
ˆ

Γ1

ˆ T

t1

∂ū

∂t
v dsdt+

ˆ

Γ2

ˆ T

0

∂ū

∂t
v dsdt = 0,

where α is some scalar and ū is any function in U1. Let α→ 0 to get ∂L
∂u (u, v, a)(ū) = 0, which is:

ˆ

Γ1

ˆ T

0
(u− ũ)ūdsdt−

ˆ

Ω

ˆ T

0

∂v

∂t

∂ū

∂t
dxdt+

ˆ

Ω

ˆ T

0
a∇v · ∇ūdxdt

+
ˆ

Γ1

ˆ T

t1

v
∂ū

∂t
dsdt+

ˆ

Γ2

ˆ T

0
v
∂ū

∂t
dsdt = 0,

(51)

where ū is any function in U1 that fullfills the boundary conditions in equation (38d)-(38g). Equation (51) is
the variational formulation for the adjoint problem of solving v(x, t).

10.2.1 Strong solution to the adjoint problem

The strong solution to the adjoint problem can be found by rewriting the time-derivative terms in equation
(51), using partial integration and initial conditions for v and ū, so that:

ˆ

Γ1

ˆ T

0
(u− ũ) ūdsdt+

ˆ

Ω

ˆ T

0

∂2v

∂t2
ūdxdt+

ˆ

Ω

ˆ T

0
a∇v · ∇ūdxdt

−
ˆ

Γ1

ˆ t1

0
0 ūdsdt−

ˆ

Γ1

ˆ T

t1

∂v

∂t
ūdsdt−

ˆ

Γ2

ˆ T

0

∂v

∂t
ūdsdt−

ˆ

Γ3

ˆ T

0
0 ūdsdt = 0.

(52)

Identify the boundary conditions for ∂v
∂n and let zδ(x) be a cut-off function with the property:

ˆ

Ω

f zδ dx =
ˆ

Γ1

f ds. (53)

Then equation (52) is simplified to:
ˆ

Ω

ˆ T

0
(u− ũ) zδ ūdxdt+

ˆ

Ω

ˆ T

0

∂2v

∂t2
ūdxdt+

ˆ

Ω

ˆ T

0
a∇v · ∇ūdxdt−

ˆ

Γ

ˆ T

0

∂v

∂n
ūdsdt = 0. (54)

Use Gauss divergence theorem and that −∇ · (aū∇v) = −a∇ū · ∇v − ū∇ · (a∇v) and simplify to:
ˆ

Ω

ˆ T

0
(u− ũ) zδ ūdxdt+

ˆ

Ω

ˆ T

0

∂2v

∂t2
ūdxdt−

ˆ

Ω

ˆ T

0
∇ · (a∇v) ūdxdt = 0, (55)

13

which implies that the strong solution to v(x, t) fulfills:

∂2v

∂t2
−∇ · (a∇v) = −(u− ũ) zδ in Ω× (0, T),

v(x, T) = 0 in Ω,

∂v

∂t
(x, T) = 0 in Ω,

∂v

∂n
= 0 on Γ1 × (0, t1],

∂v

∂n
= ∂v

∂t
on Γ1 × (t1, T),

∂v

∂n
= ∂v

∂t
on Γ2 × (0, T),

∂v

∂n
= 0 on Γ3 × (0, T).

(56)

10.3 Differentiating L(u, v, a) with respect to a

Let (u, v, a) be the stationary point that minimizes the Lagrangian functional and compute:

dL
dα (u, v, a+ αā) = γ

ˆ

Ω

(a+ αā− a0)ādx+
ˆ

Ω

ˆ T

0
ā∇u · ∇v dxdt,

where α is some scalar and ā is any function in A. Let α→ 0 to get ∂L
∂a (u, v, a)(ā) = 0, which is:

ˆ

Ω

ˆ T

0
(∇u · ∇v)ā dxdt+ γ

ˆ

Ω

(a− a0)ādx = 0, (57)

where ā is any function in A. Equation (57) is the variational formulation for solving a(x).

10.3.1 Strong solution to the conductivity coefficient

Clearly the variational formulation in equation (57) corresponds to the strong solution of a(x) that fulfills:
ˆ T

0
∇u · ∇v dt+ γ(a− a0) = 0 ∀x ∈ Ω,

a(x) ∈ [1, amax] ∀x ∈ Ω,

a(x) = 1 ∀x ∈ Γ.

(58)

where (u(a), v(a)) ∈ U1×V 1 are the stationary points that minimizes the Lagrangian functional. Define the
functions h(x) and g(x) as:

h(x) =
ˆ T

0
∇u · ∇v dt,

g(x) =
ˆ T

0
∇u · ∇v dt+ γ(a− a0).

(59)

14

11 Finite element function spaces
The weak solutions to the three variational formulations in equation (50), (51) and (57), are approximated by
choosing functions that are continuous piecewise linear, and piecewise constant, over the discretized domain
Ω× (0, T).

Let Kh denote the discretized domain of Ω ∈ Rd, which consists of adjoint triangles when d = 2 and
of tetrahedra when d = 3. Each subset (triangle or tetrahedra) Ki is known as an element to Kh, so that
Kh =

⋃q
i=1Ki. The triangulation Kh consists of q elements and have m nodes.

Let Jτ denote the discretized interval of J = [0, T], with constant step-size τ = tj−tj−1 ∀j ∈ {2, . . . , n}.
Jτ have n nodes, and each sub-interval Jj = [tj−1, tj] for j ∈ {2, . . . , n} are known as elements to Jτ .

Let P1(Kh) denote the set of all functions that are continuous piecewise linear on Kh and let P1(Jτ)
denote the set of all functions that continuous piecewise linear on Jτ . Let P0(Kh) denote the set of all
functions that are piecewise constant on Kh. Define the finite element spaces used for approximating the
weak solutions as:

U1
h =

{
w ∈ U1 : w ∈ P1(Kh)× P1(Jτ)

}
,

V 1
h =

{
w ∈ V 1 : w ∈ P1(Kh)× P1(Jτ)

}
,

Ah =
{
w ∈ A : w ∈ P0(Kh)

}
.

(60)

In the FEM we choose approximating functions u(x, t) ≈ uh(x, t) ∈ U1
h , v(x, t) ≈ vh(x, t) ∈ V 1

h and
a(x) ≈ ah(x) ∈ Ah. The approximated functions are written shortly as an superposition of basis functions:

uh(x, t) =
m∑
i=1

n∑
j=1

uijφi(x)ϕj(t) = φTUϕ,

vh(x, t) =
m∑
i=1

n∑
j=1

vijφi(x)ϕj(t) = φTV ϕ,

ah(x) =
q∑

k=1
akηk(x) = ηTa,

(61)

where {φi(x)}mi=1 is the set of linear basis functions on Kh with m nodes, {ϕj(t)}nj=1 is the set of linear basis
functions on Jτ with n nodes and {ηk(x)}qk=1 is the set of constant basis functions on Kh with q elements.
In the notation above, φ, ϕ and η are vectors defined as φT = [φ1(x), . . . , φm(x)], ϕT = [ϕ1(t), . . . , ϕn(t)]
and ηT = [η1(x), . . . , ηq(x)]. The m×n matrices U , V and q vector a contains the nodal values to the basis
functions. The constant basis functions ηi(x) on Kh are defined as:

ηi(x) =
{

1 if x ∈ Ki,

0 if x /∈ Ki.
(62)

The linear basis functions φ on Kh ∈ R2, and linear basis functions ϕ on Jτ ∈ R, and resulting FEM matrices
used in numerical computations are explained in more detail in the appendix.

15

12 Finite element approximations to the variational formulations
In this section the equation systems for approximating solutions of the variational formulations are derived, by
substituting the functions uh, vh and ah, that are spanned by piecewise linear and piecewise constant basis
functions as described earlier, into the three variational formulations.

By choosing the arbitrary functions ū, v̄ as one of the pair φi(x)ϕj(t), and ā as one of the ηi(x), in each
respective set of basis functions, it is shown that the variational formulations in equation (50), (51) and (57)
gives m × n and q equations from where the nodal values to uh, vh and ah can be solved. The resulting
equation systems can be written shortly with matrix-matrix multiplication, using the matrices and vectors
defined by:

mik =
ˆ

Kh

φk(x)φi(x) dx (global mass matrix on Kh),

kik =
ˆ

Kh

a(x)∇φk(x) · ∇φi(x) dx (global stiffness matrix on Kh),

m
(1)
ik =

ˆ

Γ1

φk(x)φi(x) ds (mass matrix along Γ1),

m
(2)
ik =

ˆ

Γ2

φk(x)φi(x) ds (mass matrix along Γ2),

bi =
ˆ

Γ1

φi(x) ds (vector along Γ1),

rjl =
ˆ T

0
ϕl(t)ϕj(t) dt (global mass matrix on Jτ),

r
(1)
jl =

ˆ t1

0
ϕl(t)ϕj(t) dt (“partial” mass matrix on Jτ),

cjl =
ˆ T

0
ϕ′l(t)ϕj(t) dt (global convection matrix on Jτ),

c
(1)
jl =

ˆ T

t1

ϕ′l(t)ϕj(t) dt (“partial” convection matrix on Jτ),

sjl =
ˆ T

0
ϕ′l(t)ϕ′j(t) dt (global stiffness matrix on Jτ),

where i, k ∈ {1, . . . ,m} and j, l ∈ {1, . . . , n}.

(63)

The basis functions and matrices are computed in detail in the appendix, for Jτ ∈ R and Kh ∈ R2. When Ω
is a square domain in R2, the mass matrices along Γ1 and Γ2 are analogue to mass matrices in one dimension,
with non-zero entries corresponding to nodes that are on Γ1 or Γ2. All the matrices are symmetric except
convection matrices C and C1.

16

12.1 Finite element approximation to the forward problem
Let u ≈ uh be spanned by the two sets of basis functions, let v̄ be each pair of those basis functions and
interpolate p(t) into p ≈ pτ , so that:

uh(x, t) =
m∑
k=1

n∑
l=1

uklφk(x)ϕl(t),

pτ (t) =
n∑
l=1

plϕl(t) pl = p(tl),

v̄(x, t) = φi(x)ϕj(t) i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}.

(64)

Insert the approximations into equation (50), the variational formulation for u, and simplify to get m × n
equations. We get that for each i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}:

−
m∑
k=1

n∑
l=1

ukl

ˆ

Kh

φk(x)φi(x) dx
ˆ T

0
ϕ′l(t)ϕ′j(t) dt

+
m∑
k=1

n∑
l=1

ukl

ˆ

Kh

a(x)∇φk(x) · ∇φi(x) dx
ˆ T

0
ϕl(t)ϕj(t) dt

+
m∑
k=1

n∑
l=1

ukl

ˆ

Γ1

φk(x)φi(x) ds
ˆ T

t1

ϕ′l(t)ϕj(t) dt

+
m∑
k=1

n∑
l=1

ukl

ˆ

Γ2

φk(x)φi(x) ds
ˆ T

0
ϕ′l(t)ϕj(t) dt

=
n∑
l=1

pl

ˆ

Γ1

φi(x) ds
ˆ t1

0
ϕl(t)ϕj(t) dt.

(65)

Identify the matrices and vectors from equation (63) and write the equation system in (65) as:

m∑
k=1

n∑
l=1

(
−mik ukl sjl + kik ukl rjl +m

(1)
ik ukl c

(1)
jl +m

(2)
ik ukl cjl

)
=

n∑
l=1

bi pl r
(1)
jl , (66)

for each i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}, which can be written shortly using matrix-matrix multiplication
as:

−MUS +KUR+M1UC
T
1 +M2UC

T = b pTR1. (67)

17

12.2 Finite element approximation to the adjoint problem
Let vh, uh, ũh be spanned by the two sets of basis functions and chose ū as each pair of φi(x)ϕj(t), that is:

vh(x, t) =
m∑
k=1

n∑
l=1

vklφk(x)ϕl(t),

uh(x, t) =
m∑
k=1

n∑
l=1

uklφk(x)ϕl(t),

ũh(x, t) =
m∑
k=1

n∑
l=1

ũklφk(x)ϕl(t),

ū(x, t) = φi(x)ϕj(t) i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}.

(68)

The functions uh and ũh are assumed to be known. Insert the approximations into equation (51), the
variational formulation for v, to getm×n equations. We get that for each i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}:

−
m∑
k=1

n∑
l=1

vkl

ˆ

Kh

φk(x)φi(x) dx
ˆ T

0
ϕ′l(t)ϕ′j(t) dt

+
m∑
k=1

n∑
l=1

vkl

ˆ

Kh

a(x)∇φk(x) · ∇φi(x) dx
ˆ T

0
ϕl(t)ϕj(t) dt

+
m∑
k=1

n∑
l=1

vkl

ˆ

Γ1

φk(x)φi(x) ds
ˆ T

t1

ϕl(t)ϕ′j(t) dt

+
m∑
k=1

n∑
l=1

vkl

ˆ

Γ2

φk(x)φi(x) ds
ˆ T

0
ϕl(t)ϕ′j(t) dt

= −
m∑
k=1

n∑
l=1

(ukl − ũkl)
ˆ

Γ1

φk(x)φi(x) ds
ˆ T

0
ϕl(t)ϕj(t) dt.

(69)

Identify the matrices and vectors from equation (63) and write the equation system in (69) as:

m∑
k=1

n∑
l=1

(
−mik vkl sjl + kik vkl rjl +m

(1)
ik vkl c

(1)
lj +m

(2)
ik vkl clj

)
= −

m∑
k=1

n∑
l=1

m
(1)
ik (ukl − ũkl) rjl, (70)

for each i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}, which can be written shortly using matrix-matrix multiplication
as:

−MV S +KV R+M1V C1 +M2V C = −M1(U − Ũ)R. (71)

Note that the convection matrices C1 and C are not transposed.
If there is also transmitted data available, so that the Tikhonov functional uses both backscatter and

transmitted data, the equation system gets the additional term −M2(U − Ũ)R on the left hand side and can
be defined as:

−MV S +KV R+M1V C1 +M2V C = −(M1 +M2)(U − Ũ)R. (72)

The m × n matrix U − Ũ can be defined as having zero-rows corresponding to the nodes where no data is
collected.

18

12.3 Finite element approximation to the conductivity coefficient
Let ah and initial guess a0 be spanned by the set of piecewise constant basis functions on Kh. The function
hh(x) is piecewise constant in each element because uh and vh are continuous piecewise linear onKh, meaning
that h(x) ≈ hh(x) can be defined by:

hi =
ˆ

Jτ

∇uh · ∇vh dt x ∈ Ki for i ∈ {1, . . . , q}. (73)

Chose ā(x) as one of the piecewise constant basis functions ηi. The functions are then defined by:

ah(x) =
q∑
j=1

ajηj(x),

a0(x) =
q∑
j=1

a
(0)
j ηj(x),

hh(x) =
q∑
j=1

hjηj(x),

ā = ηi(x) i ∈ {1, . . . , q}.

(74)

Insert the approximations into equation (57), the variational formulation for a, to get q equations that are
simplified to:

q∑
j=1

hj

ˆ

Kh

ηj(x)ηi(x) dx+ γ

q∑
j=1

(aj − a(0)
j)
ˆ

Kh

ηj(x)ηi(x) dx = 0, . (75)

for each i ∈ {1, . . . , q}. Define the symmetric matrix E by:

eij =
ˆ

Kh

ηj(x)ηi(x) dx i, j ∈ {1, . . . , q}. (76)

Clearly we have that E is diagonal since ηiηj = δij . When Kh ∈ R2, eii equals the area of element Ki

and when Kh ∈ R3 it equals the volume of element Ki . The equation system can be written shortly as
Eh+ γE(a− a0) = 0, which is simplified to:

h+ γ(a− a0) = 0. (77)

It might seems unnecessary to go through these steps, but if basis functions of higher order are chosen to span
uh, vh, ah the result will differ. The result will also differ if ah is chosen from P1(Kh), the set of continuous
piecewise linear functions on Kh.

19

13 Solving the finite element system of equations
The two FEM equations (67) and (71) for m× n matrices U and V can be solved column-by-column by the
steps described below. The FEM equation (77) for q vector a can be computed once U and V are solved.

The general idea in solving U and V is to multiply in the j:th column of the tridiagonal n × n mass-,
convection- and stiffness-matrices of Jτ into U = [u1, . . . , un] and V = [v1, . . . , vn], and then solve the
linear system of equations that arise, using standard methods such as Gaussian elimination or Cholesky
decomposition. Let j ∈ {1, 2, . . . , k− 1, k, k+ 1, . . . , n− 1, n} where k is the node number corresponding to
the time t1 in the forward problem, which is the end-time for p(t). We then have that:

(−MU)sj + (KU)rj + (M1U) [CT1]j + (M2U) [CT]j = (bpT)r(1)
j ,

(−MV)sj + (KV)rj + (M1V)c(1)
j + (M2v)cj = (−M1(U − Ũ))rj ,

(78)

for each j:th column vector, where [CT1]j and [CT]j denotes the j:th column of the transposed convection
matrices.

The first column vector u1 = 0 in U is known because of initial condition uh(x, 0) = 0, the other columns
in U are computed by increasing j upwards from 1. All the column vectors in U can be computed for any
given conductivity coefficient a, the exact or reconstructed. The only m ×m matrix that is dependent on
conductivity a is the stiffness matrix K.

The last column vector vn = 0 in V is known because of end condition vh(x, T) = 0, the other columns
in V are computed by decreasing j from n. V is dependent on U − Ũ and can be computed once U is fully
determined for the given conductivity a.

In the numerical examples the measured data Ũ on the boundary is generated by computing U∗, using
the exact conductivity a∗, with noise added according to equation (43).

13.1 Computing the columns in U

Compute the sequence of column vectors u2, u3, . . . , un by solving uj+1 in the following steps:

step 1. j = 1

−M(uj − uj+1) + τ2

6 K(2uj + uj+1) + τ

2M2(−uj + uj+1)

=τ2

6 b (2pj + pj+1).
(79)

Use that uh(x, 0) = 0⇒ u1 = 0, and simplify to:(
M + τ2

6 K + τ

2M2

)
︸ ︷︷ ︸

A3

uj+1 = τ2

6 b (2pj + pj+1)︸ ︷︷ ︸
fj

. (80)

Identify matrix A3 and vector fj ; uj+1 can be solved from L.S.E:

A3uj+1 = fj . (81)

step 2. ∀j = 2, . . . , k − 1

−M(−uj−1 + 2uj − uj+1) + τ2

6 K(uj−1 + 4uj + uj+1)

+τ

2M2(−uj−1 + uj+1) = τ2

6 b (pj−1 + 4pj + pj+1).
(82)

20

Simplify to: (
M + τ2

6 K −
τ

2M2

)
︸ ︷︷ ︸

A1

uj−1 +
(
− 2M + 4τ2

6 K
)

︸ ︷︷ ︸
A2

uj

+
(
M + τ2

6 K + τ

2M2

)
︸ ︷︷ ︸

A3

uj+1 = τ2

6 b (pj−1 + 4pj + pj+1)︸ ︷︷ ︸
fj

.

(83)

Identify matrices A1, A2, A3 and vector fj ; uj+1 can be solved from L.S.E:

A3uj+1 = fj −A1uj−1 −A2uj . (84)

step 3. j = k

−M(−uj−1 + 2uj − uj+1) + τ2

6 K(uj−1 + 4uj + uj+1)

+τ

2M1(−uj + uj+1) + τ

2M2(−uj−1 + uj+1) = τ2

6 b (pj−1 + 2pj).
(85)

Simplify to: (
M + τ2

6 K −
τ

2M2

)
︸ ︷︷ ︸

A1

uj−1 +
(
− 2M + 4τ2

6 K − τ

2M1

)
︸ ︷︷ ︸

A2

uj

+
(
M + τ2

6 K + τ

2 (M1 +M2)
)

︸ ︷︷ ︸
A3

uj+1 = τ2

6 b (pj−1 + 2pj)︸ ︷︷ ︸
fj

.

(86)

Identify matrices A1, A2, A3 and vector fj ; uj+1 can be solved from L.S.E:

A3uj+1 = fj −A1uj−1 −A2uj . (87)

step 4. ∀j = k + 1, . . . , n− 1

−M(−uj−1 + 2uj − uj+1) + τ2

6 K(uj−1 + 4uj + uj+1)

+τ

2M1(−uj−1 + uj+1) + τ

2M2(−uj−1 + uj+1) = 0.
(88)

Simplify to: (
M + τ2

6 K −
τ

2 (M1 +M2)
)

︸ ︷︷ ︸
A1

uj−1 +
(
− 2M + 4τ2

6 K
)

︸ ︷︷ ︸
A2

uj

+
(
M + τ2

6 K + τ

2 (M1 +M2)
)

︸ ︷︷ ︸
A3

uj+1 = 0.
(89)

Identify matrices A1, A2 and A3; uj+1 can be solved from L.S.E:

A3uj+1 = −A1uj−1 −A2uj . (90)

Note that M is sparse symmetric positive definite band matrix and K, M1, M2 are sparse symmetric positive
semi-definite band matrices. Therefore A3 is sparse S.P.D. band matrix in all four steps for computing all
columns in U .

21

13.2 Computing the columns in V

Define F = U − Ũ = [f1, . . . , fn]. Compute the sequence of column vectors vn−1, vn−2, . . . , v1 by solving
vj−1 in the following steps:

step 1. j = n

−M(−vj−1 + vj) + τ2

6 K(vj−1 + 2vj)

+τ

2 (M1 +M2)(vj−1 + vj+1) = −τ
2

6 M1(fj−1 + 2fj).
(91)

Use that vh(x, T) = 0⇒ vn = 0, and simplify to:(
M + τ2

6 K + τ

2 (M1 +M2)
)

︸ ︷︷ ︸
A1

vj−1 = −τ
2

6 M1(fj−1 + 2fj)︸ ︷︷ ︸
cj

. (92)

Identify matrix A1 and vector cj ; vj−1 can be solved from L.S.E:

A1vj−1 = cj . (93)

step 2. ∀j = n− 1, . . . , k + 1

−M(−vj−1 + 2vj − vj+1) + τ2

6 K(vj−1 + 4vj + vj+1)

+τ

2 (M1 +M2)(vj−1 − vj+1) = −τ
2

6 M1(fj−1 + 4fj + fj+1).
(94)

Simplify to: (
M + τ2

6 K + τ

2 (M1 +M2)
)

︸ ︷︷ ︸
A1

vj−1 +
(
− 2M + 4τ2

6 K
)

︸ ︷︷ ︸
A2

vj

+
(
M + τ2

6 K −
τ

2 (M1 +M2)
)

︸ ︷︷ ︸
A3

vj+1 = −τ
2

6 M1(fj−1 + 4fj + fj+1)︸ ︷︷ ︸
cj

.

(95)

Identify matrices A1, A2, A3 and vector cj ; vj−1 can be solved from L.S.E:

A1vj−1 = cj −A2vj −A3uj+1. (96)

step 3. j = k

−M(−vj−1 + 2vj − vj+1) + τ2

6 K(vj−1 + 4vj + vj+1)

+τ

2M1(−vj − vj+1) + τ

2M2(vj−1 − vj+1) = −τ
2

6 M1(fj−1 + 4fj + fj+1).
(97)

Simplify to: (
M + τ2

6 K + τ

2M2

)
︸ ︷︷ ︸

A1

vj−1 +
(
− 2M + 4τ2

6 K − τ

2M1

)
︸ ︷︷ ︸

A2

vj

+
(
M + τ2

6 K −
τ

2 (M1 +M2)
)

︸ ︷︷ ︸
A3

vj+1 = −τ
2

6 M1(fj−1 + 4fj + fj+1)︸ ︷︷ ︸
cj

.

(98)

Identify matrices A1, A2, A3 and vector cj ; vj−1 can be solved from L.S.E:

A1vj−1 = cj −A2vj −A3uj+1. (99)

22

step 4. ∀j = k − 1, . . . , 2

−M(−vj−1 + 2vj − vj+1) + τ2

6 K(vj−1 + 4vj + vj+1)

+τ

2M2(vj−1 − vj+1) = −τ
2

6 M1(fj−1 + 4fj + fj+1).
(100)

Simplify to: (
M + τ2

6 K + τ

2M2

)
︸ ︷︷ ︸

A1

vj−1 +
(
− 2M + 4τ2

6 K
)

︸ ︷︷ ︸
A2

vj

+
(
M + τ2

6 K −
τ

2M2

)
︸ ︷︷ ︸

A3

vj+1 = −τ
2

6 M1(fj−1 + 4fj + fj+1)︸ ︷︷ ︸
cj

.

(101)

Identify matrices A1, A2, A3 and vector cj ; vj−1 can be solved from L.S.E:

A1vj−1 = cj −A2vj −A3uj+1. (102)

Note that M is sparse symmetric positive definite band matrix and K, M1, M2 are sparse symmetric positive
semi-definite band matrices. Therefore A1 is sparse S.P.D. band matrix in all four steps for computing all
columns in V .

If both backscatter and transmitted data are used, then M1 → (M1 +M2) in the terms for computing cj .

23

14 Minimization methods applied on FEM solutions
This section derives some of the functions and parameters that needs to be computed so that fixed point
iterations (FPI), conjugate gradient method (CGM) and iteratively regularized conjugate gradient method (IR-
CGM) can be implemented on the minimization problem. The algorithms are then defined for the minimization
problem in section 15. The FPI and CGM are described for general real valued functions f(x) : Rn → R in
section 3. To implement these algorithms on the Lagrangian functional we need to identify a fixed point, and
be able to determine step-sizes in the gradient methods.

The functional that is minimized to solve the inverse problem is the Lagrangian L(u, v, a), defined in
equation (48), with respect to a. The functions (uh, vh, ah) ∈ U1

h×V 1
h ×Ah are chosen from the approximate

function spaces defined in equation (60), and computed using FEM as described in the previous section. Let
a0, a

∗ ∈ Ah denote the initial guess and exact solution respectively. The sequential solutions to u(k)
h , v(k)

h

and a(k)
h are determined by the nodal values in the m× n matrices Uk, Vk and by the element values in the

q vector ak, such that:

u
(k)
h (x, t) =

m∑
i=1

n∑
j=1

u
(k)
ij φi(x)ϕj(t) = φ(x)Ukϕ,

v
(k)
h (x, t) =

m∑
i=1

n∑
j=1

v
(k)
ij φi(x)ϕj(t) = φTVkϕ,

a
(k)
h (x) =

q∑
i=1

a
(k)
i ηk(x) = ηTak,

(103)

Define the sequential q vectors hk and gk by:

h
(k)
h (x) =

ˆ T

0
∇u(k)

h · ∇v
(k)
h dt = ηThk,

g
(k)
h (x) =

ˆ T

0
∇u(k)

h · ∇v
(k)
h dt+ γ(a(k)

h − a0) = ηT gk.

(104)

Define the scalar product (f, g) of two real valued functions, and the L-2 norm ‖f‖L2 , by:

(f, g) =
ˆ

Kh

f g dx,

‖f‖2L2
= (f, f).

(105)

The scalar product of two piecewise constant functions such as ah(x) = η(x)Ta, hh(x) = η(x)Th can
easily computed using matrix multiplication. As before, η(x)T is a vector containing the piecewise constant
functions for each element, and a, h are constant vectors containing the constant value of the coefficients in
each element. The scalar products are then computed as:

(ah(x), hh(x)) = (aT η(x), η(x)Th) = aT (η(x), η(x)T)h = aTAh, (106)

where A is a diagonal symmetric positive definite matrix, where elements aij are defined by:

aij =
ˆ

Kh

ηjηi dx =
{

area(Ki) if i = j,

0 if i 6= j,
(107)

for Kh ∈ R2. If Kh ∈ R3, then aii = volume(Ki). As before, Ki denotes the i:th element of the discretized
domain Kh.

24

14.1 Fixed point to Lagrangian
Algorithm of fixed point iteration can be applied to the minimizing problem using equation (77), which states
that g(x) = 0 on the stationary point that minimizes the Lagrangian functional. By rewriting the equation
we get that:

a∗ = a0 −
1
γ
h(a∗) γ ∈ (0, 1], (108)

which clearly is a fixed point to a0 − h(a)/γ = f(a). The FPI sequence ak+1 = f(ak) converges to a if f is
Lipschitz continuous, which depends on Kh, Jτ , p(t), a0 and γ. The regularization parameter γ acts as an
step-size and is chosen as γ = 1, otherwise the sequence will diverge. Assuming that each ak+1 gets closer
to the exact a∗, let a0 → ak be the last guess. The the FPI is to compute the sequence:

ak+1 = ak − hk, (109)

until convergence criteria is satisfied.

14.2 Gradient methods applied on Lagrangian
In both the gradient method (GM) and conjugate gradient method (CGM), the sequence of ak+1 is computed
by ak+1 = ak + αkdk, where the step-size αk ∈ (0, 1] is chosen so that αk = argmin{L(uk, vk, ak + αdk) :
α ≥ 0}, and dk is the chosen direction.

In the gradient method dk is chosen as the steepest descent dk = −∂L∂a (ak) = −gk, and in the conjugate
gradient method a fraction β ∈ (0, 1] of the last direction is added so that dk = −gk + βkdk−1.

Let G(α) = L(u, v, a+ αd), then the step-size that minimizes G(α) can be estimated “directly” for any
given (u, v, a, d), if we assume that u and v are not dependent on a. Using the definition of L(u, v, a) in
equation (48), the functional G(α) is defined as:

G(α) =
ˆ

Ω

ˆ T

0
(a+ αd)∇u · ∇v dxdt+ 1

2γ
ˆ

Ω

(a+ αd− a0)2 dx+ T (u, v), (110)

where T (u, v) is a collection of the terms not dependent on αd. Differentiate by α to get:

dG
dα =

ˆ

Ω

ˆ T

0
d∇u · ∇v dxdt+ γ

ˆ

Ω

(a+ αd− a0) ddx = 0 (111)

Use the definition for h(x) and simplify to:
ˆ

Ω

h ddx+ γ

ˆ

Ω

(a− a0) ddx+ γα

ˆ

Ω

d ddx = 0 (112)

Use the notation (·, ·) for scalar products, we get an estimate for the α that minimizes G(α) as:

α = − (h, d) + γ(a− a0, d)
γ(d, d) = − (g, d)

γ(d, d) γ ∈ (0, 1], (113)

for any given (u, v, a, d).
When deriving α for a real valued quadratic function f(x) in the appendix, it is known that f ′(xk) and

f ′(xk−1) are orthogonal so that (f ′(xk), f ′(xk−1)) = 0 for all k. But no such assumption can be made for
gradients gk and gk−1 from the Lagrangian functional, since u and v changes for each a.

For the CGM method the fraction βk is chosen as:

βk =
‖gk‖2L2

‖gk−1‖2L2

= (gk, gk)
(gk−1, gk−1) . (114)

Since the gradients gk and gk−1 can not be assumed to be orthogonal, or that ‖gk‖L2 ≤ ‖gk−1‖L2 , it might
happen that β > 1 for some k. I observed this when running the CGM algorithm and subsequently the

25

sequence diverged to ‖ak‖L2 →∞. To get around this problem, it is sufficient to limit β ∈ (0, 1]. Once β is
always less or equal to one, the step-size αk will always be non-negative. Therefore define βk and αk as:

βk = min
{ (gk, gk)

(gk−1, gk−1) , 1
}
,

αk = min
{
− (gk, dk)
γ(dk, dk) , 1

}
.

(115)

The step-size needs to be limited from above too, since it is divided by γ.
If we can assume that each computed ak+1 gets closer to a∗ for each iteration, we can let a0 be the last

guess ak−1, so that gradient gk is updated by:

gk = hk + γ(ak − ak−1) k = 1, 2, . . . ,

g0 = hk (first iteration).
(116)

This works quite well for nice problems with low noise.

14.3 Iteratively regularized gradient methods applied on Lagrangian
On the CG and CGM, the Lagrangian can be iteratively regularized by choosing a sequence of regularization
parameters {γk} that slowly converges to zero, using the rule:

γk = γ0

(k + 1)p γ0, p,∈ (0, 1], (117)

and computing gradient gk = hk + γk(ak − a0). This ensures that the Tikhonov term in the functional tends
to zero for large k:s, instead of some positive constant. The step-size αk is computed in the way described
in equation (115) for each γk.

For theory behind choosing the sequence of regularization parameters, see section 2, that describes general
theory about ill-posed inverse problems, and [6, 11].

26

15 Iterative algorithms for solving inverse problem
In this section we describe in detail the iterative algorithms which are used to reconstruct the conductivity.
The algorithms use the assumption that a(x) ≥ 1, the known lower bound from equation (39), when com-
puting ak+1, so that ak+1 is always in the feasible set. It is not necessary to round off entries in ak+1 for
convergence, the algorithms work just as well without it, but the reconstruction will be better for low num-
bers of iterations. The initial guess is usually a0(x) = 1, which should be a qualified guess close to the exact a∗.

The CGM have two ways of computing the gradient gk. It can be computed using last vector ak−1 instead
of a0, which implies that the γ‖ak − ak−1‖L2 term in the Tikhonov functional tends to zero for problems
with good convergence, because ‖ak − ak−1‖ → 0 as k → ∞ for any constant γ. CGM with gradient
gk = hk + γ(ak − a0) is denoted CGM (1), and with gk = hk + γ(ak − ak−1) denoted CGM (2).

The IRCGM algorithm is just as CGM, except that the regularization parameter γk is iteratively updated
so that γk → 0 as k →∞, forcing the γk‖ak − a0‖L2 term in the functional to zero as k →∞.

15.1 Fixed point iterations (FPI)
step 0. Given input data of measurements on the boundary (42), choose mesh Kh, partitioned time interval

Jτ and initial guess a0(x) that fulfills the assumptions in (39). Let k = 0 and ak = a0 be the vector
representing the discretized conductivity. Compute the sequence of ak by the following steps.

step 1. Compute the FEM solution Uk using ak.

step 2. Compute the FEM solution to adjoint problem Vk using ak and Uk.

step 3. Compute hk.

step 4. Compute ak+1 by:
ak+1 = ak − hk

and use the assumption that a(x) ≥ 1 to round off any entries in the vector ak+1 smaller than one.

step 5. Check convergence criteria: if ‖hkh‖L2 < θ is satisfied for some chosen tolerance θ, then let ah(x) =
η(x)Tak+1, else increment k by one and go to step 1.

27

15.2 Conjugate gradient method (CGM)
step 0. Given input data of measurements on the boundary (42), choose mesh Kh, partitioned time interval

Jτ and initial guess a0(x) that fulfills the assumptions in (39). Let k = 0 and ak = a0 be the vector
representing the discretized conductivity. Choose a constant γ ∈ (0, 1]. Compute the sequence of ak
by the following steps.

step 1. Compute the FEM solution Uk using ak.

step 2. Compute the FEM solution to adjoint problem Vk using ak and Uk.

step 3. Compute hk.

step 4. Compute gradient gk as:

gk =
{
hk + γ(ak − a0) CGM (1),

hk + γ(ak − ak−1) CGM (2),

where CGM (1) is standard and CGM (2) is iteratively updated Tikhonov functional, g0 = h0 (first
iteration).

step 5. Compute βk as:
βk = min

{ (gk, gk)
(gk−1, gk−1) , 1

}
,

where β0 = 0 (first iteration).

step 6. Compute the descent direction dk as:

dk = −gk + βkdk−1,

where d0 = −g0 (first iteration).

step 7. Compute the step-length αk as:

αk = min
{
− (gk, dk)
γ(dk, dk) , 1

}
.

step 8. Compute ak+1 by:
ak+1 = ak + αkdk

and use the assumption that ak+1 ≥ 1 to round up any entries in the vector smaller than one.

step 9. Check convergence criteria: if ‖gk‖L2 < θ is satisfied for some chosen tolerance θ, then let ah(x) =
η(x)Tak+1, else increment k by one and go to step 1.

28

15.3 Iteratively regularized conjugate gradient method (IRCGM)
step 0. Given input data of measurements on the boundary (42), choose mesh Kh, partitioned time interval

Jτ and initial guess a0(x) that fulfills the assumptions in (39). Let k = 0 and ak = a0 be the vector
representing the discretized conductivity. Choose a constant γ0 ∈ (0, 1] and p ∈ (0, 1]. Compute the
sequence of ak by the following steps.

step 1. Compute the FEM solution Uk using ak.

step 2. Compute the FEM solution to adjoint problem Vk using ak and Uk.

step 3. Compute hk.

step 4. Compute γk and gradient gk as:

γk = γ0

(k + 1)p ,

gk = hk + γk(ak − a0),

where g0 = h0 (first iteration).

step 5. Compute βk as:
βk = min

{ (gk, gk)
(gk−1, gk−1) , 1

}
,

where β0 = 0 (first iteration).

step 6. Compute the descent direction dk as:

dk = −gk + βkdk−1,

where d0 = −g0 (first iteration).

step 7. Compute the step-length αk as:

αk = min
{
− (gk, dk)
γk(dk, dk) , 1

}
.

step 8. Compute ak+1 by:
ak+1 = ak + αkdk

and use the assumption that ak+1 ≥ 1 to round up any entries in the vector smaller than one.

step 9. Check convergence criteria: if ‖gk‖L2 < θ is satisfied for some chosen tolerance θ, then let ah(x) =
η(x)Tak+1, else increment k by one and go to step 1.

29

16 Numerical studies
The four iterative algorithms are compared by applying them to two case studies. The computer simulations
are performed in Matlab on a single processor, using a computer with Intel i5-2500 CPU (3.30 GHz), 64-bit
system, RAM 8.00 GB.

The first case uses a coarse mesh and simple piecewise constant conductivity, it takes about 1 minute to
perform 1000 iterations. The second case uses a fine mesh and more complicated conductivity, it takes about
30 minutes to perform 1000 iterations. Of interest in the case studies is to compare how good reconstruction
it is possible to get when:

• using both backscatter and transmitted data without any noice.

• using only backscatter data and varying the noise levels.

The input data is generated using the same mesh Kh × Jτ in space and time, which is a variational crime.
This means that there is no mismatch between the model used to generate ũ on the boundary and the model
used to reconstruct the conductivity. If ũ are from a real life measurement of an object, then there is always
an mismatch between the two models, which depends on noise added from measuring equipment, mesh Kh,
time step τ and small terms that are neglected or considered constant in the model problem described in
equation (38).

Since the same mesh is used for generating the measured data with exact conductivity, and reconstructing
the conductivity in the inverse problem, there is no difference between the two models, and it is possible to
get extremely good results when no noise is added to ũ.

I tried generating the measured data for case 1 using a finer mesh, and a coarser mesh in the minimization
problem, but to get good results both meshes have to be extremely fine, which significantly increase the
computational times needed.

When noise is added, there is a mismatch between the model used to generate the boundary data and the
model used to reconstruct the conductivity. That is, the variational crime is avoided by introducing statisti-
cally generated noise to ũ as described in (43). The chosen probability distribution for the numerical studies
is the uniform distribution with values from [−1, 1], amplified by noise levels σ ∈ {0.00, 0.03, 0.10, 0.20}.

The parameter p used to compute the sequence of regularization parameters in equation (117), is set to
one in all the iteratively regularized schemes, to ensure fastest possible convergence. In both cases the exact
conductivity a∗ ∈ Ah is completely known and the error norm εk = ‖ak−a∗‖L2 can be computed for each k.
You would not know a∗ in an real life application, but it is used here to evaluate the efficiency of the iterative
algorithms.

30

17 Case 1
Use a coarse mesh on the square domain Ω = [0, 2]× [0, 4] with two enclosures where the exact a∗ = 4 inside
and a∗ = 1 else. The mesh and exact a∗(x) are shown in figure 4.

(a) Piecesewise constant a∗(x). (b) 3D view.

Figure 4: The triangulated domain Kh, with a contour plot of a∗(x) on it. Each “square” in the mesh is
determined by step lengths hx = hy, which is divided into four triangle elements.

The parameters used to generate the mesh are:

Lx = 2 [m],

Ly = 4 [m],

nx = 7 (number of points in x-direction),

ny = 13 (number of points in y-direction),

nn = 163 (number of nodes),

nel = 288 (number of elements),

hx = hy = Li
ni − 1 = 1

3 [m].

(118)

The time dependent parameters used to generate the FEM solutions are:

T = 3
2Lx = 3 [s],

f = 2
3hx

= 2
[1
s

]
,

t1 = 1
2f [s],

τ = t1
10 [s],

nt = T

τ
+ 1 = 121 (number of time nodes),

p(t) =
(

6 + 2
3

)
sin(2πft).

(119)

The frequency f is chosen so that the Lp/hx = 1.5, where the wavelength Lp of p(t) is computed by Lp = c/f
[m]. The end-time T is chosen to give enough time for a wave, with speed c = 1 [m/s], to propagate through
the length Lx of the domain and bounce back from the enclosures. This is easy to verify visually once u∗h(x, t)
has been computed. For large enough time T , we have that u∗h(x, T) is approximately constant.

31

To get a better convergence, the impulse p(t) is amplified p(t) = c sin(2πft), so that u∗h(x, T) ≈ 1. If
u∗h(x, T) is very small, the gradients are miniscule in the iterative schemes, and if u∗h(x, T) is very large, the
gradients are to large.

The constant is found by firstly computing u∗h(x, t) with p(t) = sin(2πft), and estimating u∗h(x, t) ≈ b.
Then define a new impulse as p(t) = (1/b) sin(2πft) and compute the FEM solution using the amplified
impulse. The shape of the wave remains the same, but now u∗h(x, T) ≈ 1.

In the first simulation, the conductivity a(x) is reconstructed using backscatter and transmitted data
ũ(x, t) from boundary Γ1 and Γ2, without any noise added. To do so, I run 10 000 iterations of each
algorithm, noting the results when ‖gk‖L2 ≤ θ for θ = 10−2, 10−3, 10−4, . . . and so on until k = 10000.

In the second simulation, the conductivity is reconstructed using only backscatter data with noise level
σ ∈ {0.00, 0.03, 0.10, 0.20}. To do so, I run 10 000 iterations of each algorithm and present the ak closest to
a∗, where k might be smaller than 10 000 if the sequence diverges.

It requires about 10 minutes to compute one 10 000 iterations in Matlab with this coarse mesh. The
parameter p used to compute γk in IRCGM, is set to one in all the simulations to get the fastest possible
convergence rates.

32

17.1 Results using backscatter and transmitted data without any noise
The results of the simulations can be seen in figures 6 to 10.Error norms versus number of iterations are
shown in table 1 and figure 5.

Figure 5: Logarithmic plot of the error norm εk and gradient norms ‖hk‖L2 , ‖gk‖L2 versus the number of
iterations k for the four algorithms. Both backscatter and transmitted data are used without any noise.

The inverse problem has a good convergence in case 1, when both backscatter and transmitted data are
used. All algorithms converge to a∗ or stabilizes near a∗. It appears that it is possible to reconstruct a to any
desired degree of accuracy using FPI, CGM (2) or IRCGM, with CGM (2) being the fastest.

CGM (1) is the only iterative method that does not converge to a∗, but to a point near a∗. This is because
of the constant regularization term γ‖ak − a0‖2L2

/2 which limits the reconstruction to a neighbourhood near
a0. The gradient and error norm stabilizes around 100 iterations for CGM (1), and the algorithm is not able
to compute any better reconstructions, meaning that a100 and a10000 are largely the same. The regulariza-
tion parameter γ determines how close the reconstructed conductivity field can get to the exact, and the
number of iterations needed before the norms stabilizes. As γ → 0, the norms tend to zero. For CGM (1),
γ = 0.001 is chosen smaller than for the other algorithms, so that the norm of gk is able to become smaller
than 10−2. If γ is set even lower, the curves for CGM (1) in figure 5 will follow those of IRCGM until the
norms stabilizes. The reconstructions, in figure 7, are however adequate to make predictions of the shape and
numerical values of the exact a∗. The enclosures where a∗ > 1 are clearly outlined, with an average around 3.5.

The simplest algorithm FPI gives good results, clearly ak → a∗ as k → ∞. FPI is slow but steady,
compared to the conjugate gradient methods. This is because FPI has no line-search, where the optimal
step-size αk is computed, nor any fraction of the previous direction added to the gradient. After around 300
iterations, the reconstruction is better then that of CGM (1), but worse then that of CGM (2) and IRCGM.

33

When k is large, the value and convergence rate of the gradient norm are comparable that of IRCGM, and the
error norm has about the same convergence rate as IRCGM. The reconstructions, in figure 6, are very good
and almost exact for large k:s. The enclosure where a∗ > 1 is clearly visible in all the subfigures. Around 700
iterations is needed to make a qualified guess of the numerical value inside the enclosure.

Method θ k ‖hk‖L2 εk+1 figure

FPI

10−2 229 1.0 · 10−2 5.5 · 10−1 6a
10−3 720 1.0 · 10−3 1.3 · 10−1 6c
10−4 3 767 1.0 · 10−4 3.9 · 10−2 6e
10−5 10 000 4.0 · 10−5 1.9 · 10−2 6g

Method θ k ‖gk‖L2 εk+1 figure

CGM (1), γ = 0.001
10−2 33 9.6 · 10−3 5.9 · 10−1 7a
10−3 2 435 5.4 · 10−3 4.3 · 10−1 7c
10−3 10 000 5.4 · 10−3 4.3 · 10−1 7e

CGM (2), γ = 0.05

10−2 38 9.9 · 10−3 5.0 · 10−1 8a
10−3 90 1.0 · 10−3 1.5 · 10−1 8c
10−4 473 1.0 · 10−4 4.6 · 10−2 8e
10−5 3 957 1.0 · 10−5 5.0 · 10−3 9a
10−6 7 723 1.0 · 10−6 5.0 · 10−4 9c
10−7 10 000 2.5 · 10−7 1.3 · 10−4 9e

IRCGM, γ0 = 0.05

10−2 36 9.4 · 10−3 6.3 · 10−1 10a
10−3 320 9.9 · 10−4 1.2 · 10−1 10c
10−4 3 493 1.0 · 10−4 1.5 · 10−2 10e
10−5 10 000 3.5 · 10−5 5.3 · 10−3 10g

Table 1: The stop data for the simulations, αk and βk are not shown. CGM (1) uses gk = hk + γ(ak − a0)
and CGM (2) uses gk = hk + γ(ak − ak−1).

IRCGM converges linearly to a∗ when k is large. It gives extremely good reconstructions, as can be seen
in figure 10, and you need around 300 iterations to make a qualified guess of the numerical values inside the
enclosures. When comparing to CGM (2), the shape of the reconstruction from IRCGM looks better for the
same number of iterations, but the error norm is slightly higher.

CGM (2) gives the best reconstructions in the least number of iterations in this case. Around 100-500
iterations is necessary to be able to make good predictions of the conductivity inside the enclosures.

34

(a) Stopping criteria θ = 10−2. (b) 3D view.

(c) Stopping criteria θ = 10−3. (d) 3D view.

(e) Stopping criteria θ = 10−4. (f) 3D view.

(g) Stopping criteria θ = 10−5. (h) 3D view.

Figure 6: Reconstructed conductivity a(x) for case 1, using FPI, both backscatter and transmitted data
without any noise.

35

(a) Stopping criteria θ = 10−2. (b) 3D view.

(c) Stopping criteria θ = 10−3. (d) 3D view.

(e) Stopping criteria θ = 10−3. (f) 3D view.

Figure 7: Reconstructed conductivity a(x) for case 1, using CGM (1) with gk = hk + γ(ak − a0), both
backscatter and transmitted data without any noise.

36

(a) Stopping criteria θ = 10−2. (b) 3D view.

(c) Stopping criteria θ = 10−3. (d) 3D view.

(e) Stopping criteria θ = 10−4. (f) 3D view.

Figure 8: Reconstructed conductivity a(x) for case 1, using CGM (2) with gk = hk + γ(ak − ak−1), both
backscatter and transmitted data without any noise.

37

(a) Stopping criteria θ = 10−5. (b) 3D view.

(c) Stopping criteria θ = 10−6. (d) 3D view.

(e) Stopping criteria θ = 10−7. (f) 3D view.

Figure 9: Reconstructed conductivity a(x) for case 1, using CGM (2) with gk = hk + γ(ak − ak−1), both
backscatter and transmitted data without any noise.

38

(a) Stopping criteria θ = 10−2. (b) 3D view.

(c) Stopping criteria θ = 10−3. (d) 3D view.

(e) Stopping criteria θ = 10−4. (f) 3D view.

(g) Stopping criteria θ = 10−5. (h) 3D view.

Figure 10: Reconstructed conductivity a(x) for case 1, using IRCGM, both backscatter and transmitted data
without any noise.

39

17.2 Results using only backscatter data, varying noise level
The results of the simulations can be seen in figures 12 to 15. Error norms versus number of iterations are
shown in table 2 and figure 11.

(a) FPI. (b) CGM (1).

(c) CGM (2). (d) IRCGM.

Figure 11: The error norm εk and gradient norm ‖hk‖L2 , ‖gk‖L2 versus number of iterations k for the four
algorithms. Only backscatter data is used, noise level σ is varied.

The inverse problem has good convergence in case 1, when only backscatter data is used and the noise
level is zero. For non-zero noise levels FPI, CGM (2) and IRCGM diverge after some number of iterations,
indicating that the inverse problem is ill-posed as the solutions become numerically unstable when noise is
introduced. Clearly the reconstructions get worse as more noise is added, and the algorithms diverge or sta-
bilizes for lower number of iterations as the noise level is increased.

For FPI, the best possible reconstruction, using maximum 10 000 iterations, is shown in figure 12. With
no noise, the algorithm is able to reconstruct a very satisfactory. The result is comparable to that of using
both backscatter and transmitted data. When σ 6= 0, the solution diverges after some number of iterations.
However, the gradient norm stabilizes before the error norm diverges. The reconstruction for σ = 0.03 is
quite good compared to those of σ = 0.10, 0.20. It is possible to predict the shape of the enclosures for all
the noise levels simulated. One way to do so, in a post process, is to let all the elements with a < 2 be set
to 1, and take the mean value of the enclosures that appear.

CGM (1) never diverges. The error norm stabilizes when the gradient norm stabilizes, which is one of
the good properties of CGM (1). Figure 13 shows the stabilized reconstruction a10000 for all noise levels.

40

Clearly the reconstruction becomes worse near the boundary Γ2, in all noise levels, when compared to the
previous simulation for CGM (1). The shape of the enclosures can be estimated in all noise levels. Using
σ = 0.00, 0.03 gives comparable results.

Method σ k ‖hk‖L2 εk+1 figure

FPI

0.00 10 000 1.2 · 10−4 8.5 · 10−2 12a
0.03 5 425 4.1 · 10−3 2.9 · 10−1 12c
0.10 1 327 1.2 · 10−2 1.1 · 100 12e
0.20 748 4.5 · 10−2 1.4 · 100 12g

Method σ k ‖gk‖L2 εk+1 figure

CGM (1), γ = 0.001

0.00 10 000 4.5 · 10−3 7.9 · 10−1 13a
0.03 10 000 5.2 · 10−3 8.8 · 10−1 13c
0.10 10 000 1.4 · 10−2 1.4 · 100 13e
0.20 10 000 3.1 · 10−2 1.7 · 100 13g

CGM (2), γ = 0.05

0.00 10 000 4.1 · 10−5 8.6 · 10−2 14a
0.03 146 9.6 · 10−3 1.1 · 100 14c
0.10 202 1.8 · 10−2 1.1 · 100 14e
0.20 82 3.0 · 10−2 1.6 · 100 14g

IRCGM, γ0 = 0.05

0.00 10 000 3.5 · 10−5 5.3 · 10−3 15a
0.03 222 4.9 · 10−3 1.6 · 10−1 15c
0.10 186 2.0 · 10−2 3.4 · 10−1 15e
0.20 37 3.5 · 10−2 5.9 · 10−1 15g

Table 2: Stop data for lowest possible error norm εk for the different noise levels σ and algorithms. CGM (1)
uses gk = hk + γ(ak − a0) and CGM (2) uses gk = hk + γ(ak − ak−1).

CGM (2) gets very good results when σ = 0, but quickly diverges for non-zero noise levels. It appears
to be the least suitable algorithm in the case, compared to the other algorithms, because it gets the highest
error norm for low noise levels.

The reconstructions for IRCGM in figure 15 are extremely good and clearly gives the best solutions in this
case. The solution is almost perfect for σ = 0.00, 0.03 and adequate for σ = 0.10, 0.20. The elements near
boundary Γ2 are close to 1 and the enclosures are easily made out in all noise levels, which is something that
the other algorithms lack. However, the error norm diverges instead of stabilizing as the CGM (1) does.

For both CGM (2) and IRCGM, it is critical that the convergence criteria in the algorithms can determine
when the gradient norm have stabilized, so that the computing sequence is broken before the error norm
increases to much. Also, the divergence point can be raised by increasing γ and γ0, meaning that the
algorithms need more iterations to produce the same results, but are more stable. For IRCGM the parameter
p ∈ (0, 1] is always set to one in the simulations, choosing a smaller p so that γk → 0 more slowly will also
increase the divergence point.

41

(a) σ = 0.00, k = 10000. (b) 3D view.

(c) σ = 0.03, k = 5425. (d) 3D view.

(e) σ = 0.10, k = 1327. (f) 3D view.

(g) σ = 0.20, k = 748. (h) 3D view.

Figure 12: Best reconstructed conductivity a(x) for case 1, using FPI, only backscatter data and varying
noise level σ.

42

(a) σ = 0.00, k = 10000. (b) 3D view.

(c) σ = 0.03, k = 10000. (d) 3D view.

(e) σ = 0.10, k = 10000. (f) 3D view.

(g) σ = 0.20, k = 10000. (h) 3D view.

Figure 13: Best reconstructed conductivity a(x) for case 1, using CGM (1), only backscatter data and varying
noise level σ.

43

(a) σ = 0.00, k = 10000. (b) 3D view.

(c) σ = 0.03, k = 146. (d) 3D view.

(e) σ = 0.10, k = 202. (f) 3D view.

(g) σ = 0.20, k = 82. (h) 3D view.

Figure 14: Best reconstructed conductivity a(x) for case 1, using CGM (2), only backscatter data and varying
noise level σ.

44

(a) σ = 0.00, k = 10000. (b) 3D view.

(c) σ = 0.03, k = 222. (d) 3D view.

(e) σ = 0.10, k = 186. (f) 3D view.

(g) σ = 0.20, k = 37. (h) 3D view.

Figure 15: Best reconstructed conductivity a(x) for case 1, using IRCGM, only backscatter data and varying
noise level σ.

45

18 Case 2

Figure 16: Exact a∗(x, y) plotted in 3D over Ω.

Compare the results of the algorithms using a fine mesh with a exact conductivity function:

a∗(x, y) = 1 + 5 · e−5(x2+y2). (120)

Let Ω = [−1, 1] × [−1.5, 1.5] and use step lengths hx = hy = 0.1 in the triangulation of Ω, which means
that the mesh has nx = 21, ny = 31, nn = 1251 number of spatial nodes and nel = 2400 number of spatial
elements. The exact a∗ is projected into the space of piecewise constant of functions by:

ai = 1
area(Ki)

¨

Ki

a∗(x, y) dxdy ∀i ∈ {1, 2, . . . , nel}. (121)

When the elements are so small that a∗ is approximately linear in each element, we get the simpler approxi-
mation:

ai = 1
3

(
a∗(x1, y1) + a∗(x2, y2) + a∗(x3, y3)

)
∀i ∈ {1, 2, . . . , nel}, (122)

where (xj , yj), j ∈ {1, 2, 3} denotes the corner nodes that defines each triangle element.

(a) Piecesewise constant a∗(x). (b) 3D view.

Figure 17: The triangulated domain Kh, with a contour plot of a∗(x, y) ∈ Ah on it. Each “square” in the
mesh is divided into four triangle elements. The white line in (a) is the contour where a∗ = 4.

46

The time dependent parameters used to compute FEM solutions are:

T = 2Lx = 4 [s],

f = 2
3hx

= 6 + 2
3

[1
s

]
,

t1 = 1
2f = 3

40 = 0.075 [s],

τ = t1
10 [s],

nt = T

τ
+ 1 ≈ 534 (number of time nodes),

p(t) = 20 sin(2πft).

(123)

As for case 1, frequency f is chosen so that the wavelength of p(t) divided by step length hx equals 1.5. We
have that angular frequency ω = 2πf ≈ 41.9 [rad/s]. The end time T is chosen so that u∗h(x, T) ≈ b where
b is some real constant, and p(t) is amplified so that the constant b ≈ 1.

Each simulation requires about 0.5 h of computational time to perform 1000 iterations. The gradient
norm and error norm are saved and used to find the number of iterations kmin needed to minimize the error
norm, which may be smaller than 1000 if the sequence diverges, then the simulation is run one more time
with kmin < 1000 as maximum number of iterations to reconstruct the best possible conductivity field.

In the first simulation, the conductivity a(x) is reconstructed using backscatter and transmitted data
ũ(x, t) from boundary Γ1 and Γ2, without any noise added.

In the second simulation, the conductivity is reconstructed using only backscatter data with noise level
σ ∈ {0.00, 0.03, 0.10, 0.20}.

The parameter p used to compute γk in IRCGM, is set to one in all the simulations to get the fastest
possible convergence rates.

47

18.1 Results using backscatter and transmitted data without any noise
The results of the simulations can be seen in figure 19. Error norms versus number of iterations are shown in
table 3 and figure 5.

Figure 18: Logarithmic plot of the error norm εk and gradient norms ‖hk‖L2 , ‖gk‖L2 versus the number of
iterations k for the four algorithms. Both backscatter and transmitted data is used without any noise.

Method k ‖hk‖L2 εk+1 figure
FPI 422 3.3 · 10−1 8.8 · 10−1 19a

Method k ‖gk‖L2 εk+1 figure
CGM (1), γ = 0.01 1 000 1.8 · 10−2 1.4 · 100 19c
CGM (2), γ = 0.01 320 5.3 · 10−2 1.4 · 10−1 19e
IRCGM, γ0 = 0.01 315 5.0 · 10−2 1.7 · 10−1 19g

Table 3: Stop data for lowest possible error norm εk of the algorithms, using both backscatter and transmitted
data without any noise. CGM (1) uses gk = hk + γ(ak − a0) and CGM (2) uses gk = hk + γ(ak − ak−1).

The inverse problem has quite bad convergence in the more complex case 2. The error norm diverges or
stabilizes in all the algorithms, even though both backscatter and transmitted data without any noise is used.
The regularization parameter is chosen so that γ = γ0 = 0.01 in the conjugate gradient methods, so that
they are more comparable. This means that the reconstructions from CGM (1) are quite bad, which needs
a smaller γ to enable smaller norms, and that the CGM (2) and IRCGM both converges and diverges fast.

48

The best possible reconstructions are shown in figure 19, where the white line in the contour plots shows the
boundary where a∗ = 4.

The FPI algorithm is able to produce a reconstruction where the circular shape of a∗ is somewhat visible,
where the maximum value of a is a little above 4. The CGM (1) reconstruction is quite bad and can not be
used for any good predictions. Of course, it can be expected that the reconstruction gets better with lower
γ. The CGM (2) and IRCGM gets almost the same results in the almost the same number of iterations. The
shape looks very much like a∗ and the numerical values are very close to the exact values.

49

(a) FPI. (b) 3D view.

(c) CGM (1). (d) 3D view.

(e) CGM (2). (f) 3D view.

(g) IRCGM. (h) 3D view.

Figure 19: Best reconstructed conductivity a(x) for case 2, using both backscatter and transmitted data
without any noise.

50

18.2 Results using only backscatter data, varying noise level
The results of the simulations can be seen in figures 21 to 24. Error norms versus number of iterations are
shown in table 4 and figure 20.

(a) FPI. (b) CGM (1).

(c) CGM (2). (d) IRCGM.

Figure 20: The error norm εk and gradient norm ‖hk‖L2 , ‖gk‖L2 versus number of iterations k for the four
algorithms. Only backscatter data is used, noise level σ is varied.

The error norm diverges or stabilizes after some number of iterations for all the algorithms, when only
backscatter data is used with varying noise level.

The error norms for FPI diverges for k > 1000. As before, better reconstructions are attainable with
low noise levels, but the difference is quite small. The shape of the reconstruction is about the same for
σ = 0.00, 0.03, but the center of the shape is not in the origin.

The CGM (1) gets very bad reconstructions. The shape is spread out and off center, which clearly is
the result from the missing information of the transmitted data. However, the reconstructions are largely the
same for all noise levels. The error norm for CGM (1) stabilizes around 2.05 which is rounded to one decimal
point in the figures.

51

Method σ k ‖hk‖L2 εk+1 figure

FPI

0.00 1 000 5.7 · 10−3 1.2 21a
0.03 1 000 5.9 · 10−3 1.2 21c
0.10 1 000 1.0 · 10−2 1.3 21e
0.20 1 000 2.0 · 10−2 1.5 21g

Method σ k ‖gk‖L2 εk+1 figure

CGM (1), γ = 0.01

0.00 1 000 1.5 · 10−2 2.1 22a
0.03 1 000 1.5 · 10−2 2.1 22c
0.10 1 000 1.7 · 10−2 2.0 22e
0.20 1 000 2.2 · 10−2 2.1 22g

CGM (2), γ = 0.01

0.00 106 6.8 · 10−3 1.1 23a
0.03 84 8.5 · 10−3 1.2 23c
0.10 67 1.6 · 10−2 1.2 23e
0.20 47 2.5 · 10−2 1.3 23g

IRCGM, γ0 = 0.01

0.00 106 6.5 · 10−3 1.2 24a
0.03 97 7.7 · 10−3 1.1 24c
0.10 65 1.0 · 10−2 1.2 24e
0.20 46 3.0 · 10−2 1.3 24g

Table 4: Stop data for lowest possible error norm εk for the different noise levels σ and algorithms. CGM (1)
uses gk = hk + γ(ak − a0) and CGM (2) uses gk = hk + γ(ak − ak−1).

For CGM (2) and IRCGM, the error norm diverges after some number of iterations depending on σ. If γ
is chosen higher, the reconstruction might become better, but it will take more iterations. Both algorithms
have extremely similar results for the same number of iterations and noise level. The shape is similar to that
of FPI, spread out and slightly off center, but the maximum values are higher, and the number of iterations
needed to compute the best possible reconstruction are lower.

52

(a) σ = 0.00, k = 1000. (b) 3D view.

(c) σ = 0.03, k = 1000. (d) 3D view.

(e) σ = 0.10, k = 1000. (f) 3D view.

(g) σ = 0.20, k = 1000. (h) 3D view.

Figure 21: Best reconstructed conductivity a(x) for case 2, using FPI, only backscatter data and varying
noise level σ.

53

(a) σ = 0.00, k = 1000. (b) 3D view.

(c) σ = 0.03, k = 1000. (d) 3D view.

(e) σ = 0.10, k = 1000. (f) 3D view.

(g) σ = 0.20, k = 1000. (h) 3D view.

Figure 22: Best reconstructed conductivity a(x) for case 2, using CGM (1), only backscatter data and varying
noise level σ.

54

(a) σ = 0.00, k = 106. (b) 3D view.

(c) σ = 0.03, k = 84. (d) 3D view.

(e) σ = 0.10, k = 67. (f) 3D view.

(g) σ = 0.20, k = 47. (h) 3D view.

Figure 23: Best reconstructed conductivity a(x) for case 2, using CGM (2), only backscatter data and varying
noise level σ.

55

(a) σ = 0.00, k = 106. (b) 3D view.

(c) σ = 0.03, k = 97. (d) 3D view.

(e) σ = 0.10, k = 65. (f) 3D view.

(g) σ = 0.20, k = 46. (h) 3D view.

Figure 24: Best reconstructed conductivity a(x) for case 2, using IRCGM, only backscatter data and varying
noise level σ.

56

19 Discussion and conclusion
The iteratively regularized conjugate gradient method (IRCGM) shows promising results for the two case
studies. It appears to be the most versatile algorithm that can cope with noisy input data and still be able to
reconstruct the conductivity in a satisfactory way.

Conjugate gradient methods updated with gk = hk + γ(ak − ak−1) (CGM (2)) is able to reconstruct the
conductivity extremely good in a faster way than IRCGM, for nice inverse problems such as case 1 that have
a good convergence. But the method quickly becomes numerically unstable when noisy input data is used.

Conjugate gradient methods updated with gk = hk +γ(ak−a0) (CGM (1)) is very stable, but the quality
of the reconstruction depends greatly on the value of the regularization parameter. To generate acceptable
reconstructions it is often necessary to run the simulation multiple times trying different γ:s, which the IRCGM
does in a better way.

Fixed point iterations (FPI) performs good on inverse problems with good convergence, but is slower than
the conjugate gradient methods. The algorithm becomes numerically unstable for ill-posed inverse problems,
but is often able to reconstruct a better conductivity function than CGM (1). The method is the simplest,
but the gradient methods are much faster and more suitable when computational time is an issue.

One way of solving the problem where the error norm diverges instead of stabilizing in IRCGM, might be
to restrict the sequence of γk in equation (117) to only decrease if the gradient gk decreases. That way, the
lowest possible γk is found for the conjugate gradient method. In a Matlab program the restriction can be
written as:

i f beta_k < the ta2
gamma_k = gamma_0 / (1+ coun t e r)^p ;
coun t e r = coun t e r + 1 ;

end

This means that if ‖gk‖L2 ≥ ‖gk−1‖L2 , then let γk = γk−1, and we can expect the error norm to stabilize
just as the CGM (1) algorithm does. The counter is an integer initially set to one. If the algorithm is able
to find a ak closer to a∗, then it is likely that ‖gk‖L2 < ‖gk−1‖L2 and γk will decrease. The algorithm can
then find the a that minimizes the Tikhonov functional for that γk.

The gradient norm is not constantly decreasing for all k:s in any of the algorithms, as can be seen in
the figures. The trend is of course decreasing, but on the small scale the gradient norm often oscillate. A
condition that only allows γk to decrease if the gradient norm is smaller than the previous, ensures that the
algorithm is not stopped prematurely.

To handle numerical uncertainty when ‖gk‖L2 ≈ ‖gk−1‖L2 , a good statement is ‖gk‖L2/‖gk−1‖L2 < θ,
where θ ≤ 1 a small non-negative constant chosen close to one. In computer programs, it is convenient to
use

βk =
‖gk‖2L2

‖gk−1‖2L2

< θ2 (124)

to check the statement. The theta2 scalar in the Matlab code above, is chosen as theta2 = θ2. Using a
restriction as this means that γk+1 needs to be computed after βk, for each iteration k in the algorithm, with
initial chosen γ0 and β0 = 0.

The CGM (1) can be improved by updating a0 two or three times, making a combination of CGM (1)
and CGM (2). The idea is to chose a0 and compute ak+1 until ‖gk‖L2 is smaller than some tolerance or is
stabilized. If the gradient norm is stabilized, then let a0 := ak+1 and run the algorithm one more time.

This might work, because a0 is supposed to be chosen in the vicinity to the exact a∗ and the regulariza-
tion parameter γ limits the possible set of conductivity functions that minimizes the Tikhonov functional to
a neighbourhood around a0. If we assume that the best reconstruction from the first run of the algorithm is
closer to a∗, then it is possible to get better reconstructions using this conductivity as a0 in a second run of
the algorithm.

Of course, all reconstructions improve when transmitted data is available to the inverse problem, and real
life applications should benefit greatly by using both sets of data.

57

19.1 Restricting the iteratively updated regularization parameter
To get an idea of how the error norm from IRCGM behaves when γk is only allowed to decrease if equation
(124) is fulfilled, I run a couple if simulations on case 1, using only backscatter data and noise level σ = 0.10.
The IRCGM algorithm is compared when updating γk with and without the restriction. The result can be
seen in figure 25, where the same measured ũ on the boundary is used in the four simulations. However, it
is not exactly the same data-set as used in the results for case 1, due to the randomness of the noise. In the

Figure 25: Logarithmic plot of the error norm εk and gradient norm ‖gk‖L2 versus the number of iterations
k for the IRCGM algorithm with and without a restriction on γk, using only backscatter data with noise level
σ = 0.10.

plot IRCGM (1) denotes the algorithm as described without any restriction on γk, and IRCGM (2) includes
the if statement, where γk+1 is computed after βk, if it is less than θ2 and θ ∈ {1.00, 0.99, 0.95}.

Clearly the error norm stabilizes close to the minimum as ‖gk‖L2 stabilizes, when θ < 1, instead of
diverging. All the simulations have approximately the same minimum point for the error norm, which is
εk ≈ 1.21 − 1.24 at k = 85 − 91, but the resulting reconstruction at k = 10000 differs largely when θ < 1.
If the criteria that γk+1 ≤ γk is only allowed to decrease if ‖gk‖L2/‖gk−1‖L2 < θ is imposed, then the
iteratively regularized CGM algorithm can easily use the convergence criteria to stop computing ak+1 if the
gradient norms are considered stabilized. This can be done practically by comparing the sequence of ‖gk‖L2 ,
or sequence of βk or counting the number of successive times that γk+1 = γk. In IRCGM (1), it is harder to
determine when the gradient norm can be considered to be stabilized, and the error norm diverges for each
iteration after the minimum point.

The best possible reconstruction obtained in the result for case 1 is better, using IRCGM under the same
conditions, but that was computed using a different data-set as input, since the generated random variables
used to compute ũ are not the same.

58

A 1D linear basis functions and resulting FEM matrices
Discretize the interval J = [t1, tn] into n − 1 sub-intervals between the points t1 < t2 < · · · < tn, with
step-length τj = tj − tj−1. If we have equal step-length then τj = τ for all j. The sub-intervals are defined
by Jj = [tj−1, tj]. The n hat-functions {ϕj(t)}nj=1 spanning the interval are then defined by:

(first end-point) ϕj(t) =


tj+1−t
tj+1−tj if t ∈ [tj , tj+1],

0 else.
j = 1 (125a)

(inner-points) ϕj(t) =


t−tj−1
tj−tj−1

if t ∈ [tj−1, tj],
tj+1−t
tj+1−tj if t ∈ (tj , tj+1],

0 else.

j = 2, . . . , n− 1 (125b)

(last end-point) ϕj(t) =


t−tj−1
tj−tj−1

if t ∈ [tj−1, tj],

0 else.
j = n (125c)

The hat-functions on the end-points are also known as half hat-functions.

(a) Plotted over J . (b) Plotted over Jj .

Figure 26: The hat-functions plotted over the time interval J and the subinterval Jj . The subinterval has
two non-zero hat-functions and is considered to be a standard element.

A.1 Mass matrix
Define the n× n symmetric mass matrix R by:

rij =
ˆ tn

t1

ϕj(t)ϕi(t) dt i, j ∈ {1, . . . , n}. (126)

59

The entries in R can be computed to:

R = 1
6



2τ2 τ2 0

τ2 2(τ2 + τ3) τ3

τ3 2(τ3 + τ4) τ4

τ4 2(τ4 + τ5)
. . .

.

. . . 2(τn−1 + τn) τn

0 τn 2τn



. (127)

When we have equal step-length τj = τ , the matrix is simplified to:

R = τ

6



2 1 0

1 4 1

1 4
. . .

.

. . . 4 1

0 1 2


. (128)

A.1.1 R1

In the FEM we have a mass matrix R1 which is defined by integrating over (0, t1) instead of over the whole
interval (0, T). The time t1 is not to be confused by the points on the discretized time interval. Assume that
t1 corresponds to the k:th time node, counting t = 0 as the first time node and t = T as the last n:th node,
then the n× n matrix R1 can be defined by block matrices as:

R1 =

 R̃ 0

0 0

 , (129)

where R̃ is an k × k matrix defined as equation (128)

A.2 Convection matrix
Define the n× n convection matrix C by:

cij =
ˆ tn

t1

ϕ′j(t)ϕi(t) dt i, j ∈ {1, . . . , n}, (130)

60

where cji = −cij on all entries of C, except at i = j = 1, n. The entries in C can be computed to:

C = 1
2



−1 1 0

−1 0 1

−1 0
. . .

.

. . . 0 1

0 −1 1


. (131)

C is not dependent on τj and remains the same when equal step-length τj = τ is used.

A.2.1 C1

In the FEM we have a convection matrix C1 which is defined by integrating over (t1, T) instead of over the
whole interval (0, T). The time t1 is not to be confused by the points on the discretized time interval. Assume
that t1 corresponds to the k:th time node, counting t = 0 as the first time node and t = T as the last n:th
node, then the n× n matrix C1 can be defined by block matrices as:

C1 =

 0 0

0 C̃

 , (132)

where C̃ is an (n− k + 1)× (n− k + 1) matrix defined as equation (131).

A.3 Stiffness matrix
Define the n× n symmetric stiffness matrix S by:

sij =
ˆ tn

t1

ϕ′j(t)ϕ′i(t) dt i, j ∈ {1, . . . , n}. (133)

The entries in S can be computed to:

S =



1
τ2

− 1
τ2

0

− 1
τ2

(1
τ2

+ 1
τ3

) − 1
τ3

− 1
τ3

(1
τ3

+ 1
τ4

) − 1
τ4

− 1
τ4

(1
τ4

+ 1
τ5

)
. . .

.

. . . (1
τn−1

+ 1
τn

) − 1
τn

0 − 1
τn

1
τn



. (134)

61

If equal step length is used, S is simplified to:

C = 1
τ



1 −1 0

−1 2 −1

−1 2
. . .

.

. . . 2 −1

0 −1 1


. (135)

62

B 2D linear basis functions and resulting FEM matrices
Discretize the domain Ω into Kh by drawing arbitrary, adjoint triangles on it, so that there are n nodes and q
elements in Kh. The triangles can be acute-, right- or obtuse-angled. Each triangle is determined by its three
corner nodes. It is assumed throughout the computations, that the corner nodes for each triangle is given in
a counter-clockwise fashion. This ensures that area computations are always positive for each element. The
two spatial axes are denoted by x and y.

(a) Triangulation Kh of Ω. (b) Standard element A.

Figure 27: Above is an example of an triangulation of an square domain, and one arbitrary standard element.
The three corner nodes in the standard element are denoted 1, 2, 3 instead of the more arbitrary i, j, k.

B.1 Computing basis functions on one arbitrary triangle element
Let ri = (xi, yi), i ∈ {1, 2, 3} denote the corner nodes that span the arbitrary standard triangle element
denoted A. The continuous piecewise linear function u(x, y) is then described as:

u(x, y) = c1 + c2x+ c3y =
[

1 x y
]

c1

c2

c3

 , (136)

where the unknown constants c1, c2, c3 are specific for each element. Assume that u(x, y) is known at the
corner nodes so that ui = u(ri). This gives three equations for three unknown constants:


u1 = c1 + c2x1 + c3y1

u2 = c1 + c2x2 + c3y2

u3 = c1 + c2x3 + c3y3

⇔


u1

u2

u3


︸ ︷︷ ︸

=v

=


1 x1 y1

1 x2 y2

1 x3 y3


︸ ︷︷ ︸

=R


c1

c2

c3


︸ ︷︷ ︸

=c

, (137)

where R−1 can be computed via method of cofactors and c = R−1v, inserting c in equation (136) gives
u(x, t) = [1, x, y]R−1v = φ(x, y)T v, where the row vector φ(x, y)T = [1, x, y]R−1. When computed, the

63

three basis functions that span the element are:

φ1(x, y) = 1
d

(
x2y3 − x3y2 + x(y2 − y3) + y(x3 − x2)

)
,

φ2(x, y) = 1
d

(
x3y1 − x1y3 + x(y3 − y1) + y(x1 − x3)

)
,

φ3(x, y) = 1
d

(
x1y2 − x2y1 + x(y1 − y2) + y(x2 − x1)

)
,

d = x2y3 − x3y2 + x3y1 − x1y3 + x1y2 − x2y1,

(138)

where d = det(R) is twice the area(A) of the triangle element, d can be computed easily in Matlab using a
skew-symmetric matrix D so that d = yTDx, that is:

d =
[
y1 y2 y3

]
0 −1 1

1 0 −1

−1 1 0



x1

x2

x3

 = 2 · area(A). (139)

B.2 Element mass matrix
The 3× 3 symmetric element mass matrix M computed on one element. M is defined by:

mij =
¨

A

φjφi dxdy i, j ∈ {1, 2, 3}, (140)

where A denotes the element spanned by the three corner nodes.
To compute this integral you can rotate the (x, y)-coordinate system by substituting u = rTnu and

v = rTnv, so that φi(u, v) = φi(u). This is the case when nu is parallel to the gradient of φi. Then
determine φj(u, v) and compute the integral.

The resulting element mass matrix is:

M = d

24


2 1 1

1 2 1

1 1 2

 . (141)

B.3 Element stiffness matrix
The 3× 3 symmetric element stiffness matrix K computed on one element. K is defined by:

kij =
¨

A

a (∇φj)T∇φi dxdy i, j ∈ {1, 2, 3}, (142)

where A denotes the element spanned by the three corner nodes, and a(x, y) is the piecewise constant
conductivity. Using the definitions from equation (138), we get that:

∇φ1 = 1
d

 −(y3 − y2)

x3 − x2

 ,
∇φ2 = 1

d

 y3 − y1

−(x3 − x1)

 ,
∇φ3 = 1

d

 −(y2 − y1)

x2 − x1

 .
(143)

64

Since the scalar product of the gradients does not depend on (x, y), and a(x, y) is constant in each element,
we get that kij = (∇φj)T∇φi area(A) a, where element area(A) = d/2.

One easy way to compute K in Matlab, is to define the Jacobian J = d(φ1,φ2,φ3)
d(x,y) by JT = ∇φT or

J = [∂φ∂x ,
∂φ
∂y], then K = (ad/2)JJT .

B.4 Global matrices
The global n × n matrices are computed by adding up all the q element matrices. As an example, compute
the global mass matrix by:

Kh =
q⋃
l=1

Kl,

mij =
¨

Kh

φjφi dxdy =
q∑
l=1

¨

Kl

φjφi dxdy i, j ∈ {1, 2, . . . , n},
(144)

where
˜
Kl

φjφi dxdy is non-zero when i, j is one of the three nodes that span element Kl.

As an example: if bel is the set of three nodes that span element Kel and Mel is the 3× 3 element mass
matrix, then the global mass matrix M is easily constructed in Matlab by:

M = zeros (n , n) ;
f o r i = 1 : q

% Determine b_el and compute M_el .
M(b_el , b_el) = M(b_el , b_el) + M_el ;

end

B.5 Mass matrix M1 and M2

The mass matrices M1 and M2 along Γ1 and Γ2, used in the FEM equations, are defined by:

m
(1)
ij =

ˆ

Γ1

φj(x)φi(x) ds i, j ∈ {1, 2, . . . , n},

m
(2)
ij =

ˆ

Γ2

φj(x)φi(x) ds i, j ∈ {1, 2, . . . , n},
(145)

where m(1)
ij is non-zero for nodes i, j on Γ1 and m(2)

ij is non-zero for nodes i, j on Γ2. The integral is analogue
to computations made for the 1D linear basis functions on Jτ . Assume that bi is the set of nodes that are on
Γi for i ∈ {1, 2} , arranged in an counter-clockwise way. Then Mi can easily be computed in Matlab by:

M_i = zeros (n , n) ;
% Determine b_i
% Compute b l o ck mat r i x M_ti lde a l ong boundary .
M_1(b_i , b_i) = M_1(b_i , b_i) + M_ti lde ;

65

As an example: the triangulation in figure 27a have b1 = {15, 8, 1} and b2 = {4, 11, 18}. Let ei for
i ∈ {1, . . . , n = 18} be unit vectors, then M1 and M2 are computed by:

M̃ = hy
6


2 1 0

1 4 1

0 1 2

 ,

eT15

eT8

eT1

M1

[
e15 e8 e1

]
= M̃,


eT4

eT11

eT18

M2

[
e4 e11 e18

]
= M̃,

(146)

where hy is the equal step length in the y-direction.

66

References
[1] L. Beilina and K. Niinimäki, Numerical studies of the Lagrangian approach for reconstruction of the

conductivity in a waveguide, arXiv:1510.00499, 2015.

[2] M. Asadzadeh, An Introduction to the Finite Element Method (FEM) for Differential Equations, lec-
ture notes available at http://www.math.chalmers.se/~mohammad/teaching/PDEbok/draft_FEM_
version6.pdf, 2016.

[3] L. Beilina, Domain decomposition finite element/finite difference method for the conductivity reconstruc-
tion in a hyperbolic equation, Communications in Nonlinear Science and Numerical Simulation, Elsevier,
doi:10.1016/j.cnsns.2016.01.016, preprint available at arXiv:1509.01399, 2015.

[4] J. R. Senning, Computing and estimating the rate of convergence, lecture notes available at http:
//www.math-cs.gordon.edu/courses/ma342/handouts/rate.pdf, 2007.

[5] S. Hosseinzadegan, Iteratively Regularized Adaptive Finite Element Method for Reconstruction of Co-
efficients in Maxwell’s System, master’s thesis available at http://publications.lib.chalmers.se/
records/fulltext/218637/218637.pdf, 2015.

[6] H. W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems, Kluwer Academic Publishers,
2000.

[7] S. Larsson and V. Thomée, Partial Differential Equations with Numerical Methods, Springer, 2009, 2003.

[8] J. W. Demmel, Applied Numerical Linear Algebra, Siam, 1997.

[9] N. Ottosen and H. Petersson, Introduction to the Finite Element Method, Prentice Hall, 1992.

[10] L. Beilina and S. Hosseinzadegan, An adaptive finite element method in reconstruction of coefficients in
Maxwell’s equations from limited observations, arXiv:1510.07525, 2015.

[11] A. B. Bakushinsky, M. Y. Kokurin and A. Smirnova, Iterative Methods for Ill-Posed Problems, de Gruyter,
2011.

67

http://www.math.chalmers.se/~mohammad/teaching/PDEbok/draft_FEM_version6.pdf
http://www.math.chalmers.se/~mohammad/teaching/PDEbok/draft_FEM_version6.pdf
http://www.math-cs.gordon.edu/courses/ma342/handouts/rate.pdf
http://www.math-cs.gordon.edu/courses/ma342/handouts/rate.pdf
http://publications.lib.chalmers.se/records/fulltext/218637/218637.pdf
http://publications.lib.chalmers.se/records/fulltext/218637/218637.pdf

	Abstract
	Introduction
	General theory about ill-posed inverse problems
	Tikhonov functional
	Iteratively regularized Tikhonov functional

	Minimization methods, some common iterative schemes
	Definition of convergence rate
	Fixed point iteration (FPI)
	Gradient method (GM)
	GM on quadratic functions

	Conjugate gradient method (CGM)
	CGM on quadratic functions

	Example of GM and CGM on a quadratic function

	Model problem
	Forward problem
	Definition of p(t)

	Inverse problem
	Function spaces
	Variational formulation of forward problem
	Tikhonov and Lagrangian functionals
	Minimization problem
	Differentiating L(u,v,a) with respect to v
	Differentiating L(u,v,a) with respect to u
	Strong solution to the adjoint problem

	Differentiating L(u,v,a) with respect to a
	Strong solution to the conductivity coefficient

	Finite element function spaces
	Finite element approximations to the variational formulations
	Finite element approximation to the forward problem
	Finite element approximation to the adjoint problem
	Finite element approximation to the conductivity coefficient

	Solving the finite element system of equations
	Computing the columns in U
	Computing the columns in V

	Minimization methods applied on FEM solutions
	Fixed point to Lagrangian
	Gradient methods applied on Lagrangian
	Iteratively regularized gradient methods applied on Lagrangian

	Iterative algorithms for solving inverse problem
	Fixed point iterations (FPI)
	Conjugate gradient method (CGM)
	Iteratively regularized conjugate gradient method (IRCGM)

	Numerical studies
	Case 1
	Results using backscatter and transmitted data without any noise
	Results using only backscatter data, varying noise level

	Case 2
	Results using backscatter and transmitted data without any noise
	Results using only backscatter data, varying noise level

	Discussion and conclusion
	Restricting the iteratively updated regularization parameter

	Appendix
	1D linear basis functions and resulting FEM matrices
	Mass matrix
	R1

	Convection matrix
	C1

	Stiffness matrix

	2D linear basis functions and resulting FEM matrices
	Computing basis functions on one arbitrary triangle element
	Element mass matrix
	Element stiffness matrix
	Global matrices
	Mass matrix M1 and M2

	References

