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Abstract

Anomaly detection has shown to be a valuable tool in a variety of application do-
mains, e.g. detecting credit card fraud, network intrusion and sensor malfunction.

This thesis provides an anomaly detection algorithm as a monitoring aid applied
to time series data from the pulp and paper industry, developed for the company
Eurocon MOPSsys AB. The algorithm is designed to be generally applicable to the
targeted time series by providing methods for adapting parameters to the input data.
The anomaly detection algorithm runs in an unsupervised setting using a statistical
approach for detection. The algorithm works by fitting a statistical model to a
training set of a given size and computing control limits for extracted features of the
data. An anomaly is said to be found if a feature falls outside of its limits that are
constantly updated to adapt to the current data. The thesis also gives an algorithm
that detects changes in the trend of the time series by investigating residuals of
linear fits to calculated trends of the data. The time complexities of the algorithms
are linear in training size which make them suitable to run in an online environment.

The algorithm was evaluated using time series data provided by MOPSsys consisting
of both laboratory and sensor values. As an aid for the evaluation, the time series
were inspected visually to manually label deviating patterns. The anomaly detection
algorithm is shown to be able to find these deviating patterns. However, it could not
be determined whether these patterns are anomalies with respect to the underlying
process as no labelled test data was available. Changes in the trend were also found
to be in agreement with the beforehand expected outcome.

The developed algorithms show promising results but need labelled test data to give
a more accurate evaluation of its performance.

Keywords: online anomaly detection, adaptive statistical process control, time se-
ries, segmentation, pulp and pulp industry, unsupervised learning.
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1
Introduction

Many experts say that we are currently experiencing the fourth industrial revo-
lution, as advances in information and communication technology has allowed for
more intelligent treatment of information and interconnectivity between machines
and man [1]. There are said to be four design principles of the fourth industrial
revolution: interoperability, information transparency, technical assistance and de-
centralised decisions. This thesis ties in to the third point, technical assistance.

Eurocon MOPSsys is a company that works to facilitate data analysis by supplying
information systems for gathering, storing and presenting process information. Their
target customers are the pulp and paper industries. Presentation of the stored data
gives valuable information to the users about the current state of the production
process. This information is used as a support in making decisions regarding the
production. In addition, the system is used as an analysis tool for evaluation of the
process.

Data collected in the process industry consists of time series with values that
originate from sensors or that are manually rendered, for example laboratory values.
A time series y is a collection of data where each data point has two entries, a time
stamp t and a value y(t) or yt. Associated to each time series is a sampling frequency,
which is the rate that data is gathered. A typical paper mill might have upwards of
10 000 - 20 000 collected and stored time series.

The paper and pulp industry is, as many other process industries, striving to
achieve lower production costs, and reducing the number of employees is one possible
measure. The result is that each employee will have more areas of responsibility,
and thereby reduced possibility to monitor all parts of the process in detail. This
induces a demand for better decision support and the ability to let the support
systems request the operator’s attention when needed. Detecting when a process
variable deviates from its normal pattern may prove to be a valuable indicator if
this detection can be made with a reasonably low frequency of false positives.

A helpful tool in finding these deviations is to apply anomaly detection. Anomaly
detection is the concept of finding deviating patterns in data and is applied in a
large variety of domains, e.g detecting credit card fraud, network intrusions and
sensor malfunctions. Regardless of application domain, the ability to find anomalies
has shown fruitful as anomalies contain valuable information. The definition of

1



1. Introduction

an anomaly may vary with the application domain and sometimes even within the
application domain. This makes implementation of anomaly detection techniques
challenging. Another issue is that anomalies in general are rare events. This means
that creating a data set with labels of normal and abnormal behaviour that is large
enough to capture both the anomalies and the normal behaviour is not only difficult
but also time consuming.

With this in mind, extracting labelled data of each possible anomaly occurring
in the 10 000 - 20 000 collected time series from a paper mill is often not feasible.
A more reasonable approach which this thesis explores is extracting the notion of
normality from historical values, resulting in an unsupervised anomaly detection
algorithm. In addition, for the anomaly detection to work as a monitoring aid it
needs to be able to detected anomalies of streaming time series, i.e. run in an online
environment.

1.1 Aim
This master’s thesis aims to design and evaluate an online anomaly detection al-
gorithm for process data from the pulp and paper industry. The algorithm should
run in an unsupervised setting and the detected anomalies should be written to a
database. To make this algorithm easily applicable in real-life situations, the aim is
also to make this algorithm user friendly and time efficient. The thesis also aims to
provide a summary and overview of the current state of the art regarding the field
of anomaly detection. This last part of the aim is performed as a literature study.

1.2 Scope
This thesis aims to present a first approach to apply anomaly detection methods
meant for practical use in pulp and paper production. The scope is to perform
a literature study to get an overview of the field and from that choose a suitable
method for implementation and evaluation. This thesis is limited to investigate data
of univariate time series. Also, the detection techniques should be of the nature such
that no previous knowledge of the process is needed. Only historical values of the
variable being analysed should be considered. Applying process knowledge would
probably improve the results but is outside the scope of this thesis.

1.3 Outline
This thesis is arranged as follows. Chapter 2 gives the theory on which this the-
sis relies. It also presents the results from literature study of anomaly detection.
Chapter 3 concerns the methods for the practical implementation of the proposed
algorithm. In chapter 4 the results of the evaluation of the algorithm are presented.
Chapter 5 gives a discussion of the results and suggestions on future work. Chapter
6 provides a conclusion and a short summary of the work.

2



1. Introduction

1.4 Contributions
This thesis provides a comprehensive overview of the field of anomaly detection.
In addition, a first attempt of developing an anomaly detection algorithm for the
pulp and paper industry was performed. The thesis provides an evaluation on how
the algorithm is affected by different choices of parameters. This is useful informa-
tion for further development of the algorithm. At this point the algorithm shows
promising results and with further development it may become a useful monitoring
aid at the pulp and paper industry. Furthermore, a first attempt on developing an
algorithm that detects changes in the trend was performed. This algorithm also
shows promising results but could use further evaluation before used in practice.

3
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2
Theory

The purpose of this chapter is to give an overview of the concepts and methods used
in this thesis. The chapter begins with an introduction to statistical process control,
ideas on which the proposed anomaly detection algorithm is based. The chapter
continues with an overview of the field of anomaly detection, which is a result of a
literature study and serves as a background for the choices of the proposed method.
The chapter ends with methods for time series analysis.

2.1 Statistical process control using
Shewhart charts

In this section the basic concepts of statistical process control are introduced. The
proposed method for anomaly detection relies on these ideas. Statistical process
control is a methodology for monitoring processes to detect deviations. There are a
variety of methods used in statistical process control, where this thesis uses so called
Shewhart charts.

To keep a process in a desired state, monitoring and adjustment of the process is
needed. Shewhart control charts is a monitoring tool used to detect deviations in
the process. Figure 2.1 shows a typical Shewhart control chart, where µ is the target
value and 3σ,−3σ are the upper and lower control limits. Values collected from a
streaming time series make up the data points of the control chart. This data can
be raw values of a time series, manipulated values or calculated statistics. New data
points are plotted when they become available. When the current point lies between
the control limits the process is said to be in a state of control. In contrast, when a
data point lies outside a control limit the process is said to be out of control [2].

Even if the process is in a state of control we expect there to be some variation
around the target value. This variation is often due to common causes, i.e. noise,
in contrast to assignable causes. If assignable causes are detected their impact
may be decreased, as they are believed to have an underlying avoidable cause. In
the Shewhart control chart, these assignable causes are indicated by sufficiently
extreme deviations. To obtain an indication of how large the deviation should be to
be considered an indication of an assignable cause a statistical model is applied to
model the noise. What kind of model to apply depends on the type of noise present.
In this thesis the normal and χ2 distributions are used to model the noise. Details
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of these distributions and how parameters are estimated and their distributions are
given in appendix A.

The model of the noise is used to estimate the target value and its standard
deviation. From these estimations control limits are defined, shown as ±3σ in Figure
2.1. In this case a normal distribution was applied to model the noise. If the input
data is independently normally distributed the probability of falling outside the
control limits defined by ±3σ is about 1 in 370. This means that if the data is
sampled once per day, less than one data point is expected to fall outside of the
control limits per year. This frequency can be considered an acceptable rate of false
positives, for this reason ±3σ is a common measure for indication of an assignable
cause. By instead choosing other values for the control limits, ±k · σ, k > 0, it is
possible to affect the rate of false positives. However, the choice of k is a trade off
between the number of false positives and possibly missing assignable causes.

Detecting assignable causes has three main advantages:
• The underlying cause may be identified and eliminated in the future
• It may be possible to adjust the process to the level where the impact of the

cause is as low as possible and thus improve the overall process
• It will be easier to discover other assignable causes as the noise is reduced

since the detected assignable cause now is known
Detecting when there are unexplained deviations in the process may thus not only
give the possibility for short term corrections of the process but also provide knowl-
edge for improving the process in the long term.

Figure 2.1: Example of a Shewhart chart.

2.2 Anomaly detection

This section gives an overview of the field of anomaly detection. Based on Chandola
et al. Anomaly Detection: A survey [3], the section discusses the concept of anomaly
and several detection techniques are presented. The techniques are evaluated with
focus on their applicability and time complexity.
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2.2.1 Anomaly detection setup
Anomalies are defined as patterns in data that do not conform to expected or normal
behaviour. The problem of finding such patterns is referred to as anomaly detection.
Anomaly detection can be applied to any type of data, binary, discrete or continuous,
univariate or multivariate. A set of initial data, which will be referred to as the
training set, must be provided. The set of data to be tested if it contains anomalous
points is referred to as the detection set. The training and detection sets may be
the same. These sets can change over time, e.g. in the case of streaming data.
Detecting anomalies in streaming data is the problem of online anomaly detection,
while detecting anomalies when the training and detection set is given beforehand
is anomaly detection in an offline environment. There is more demand on an online
anomaly detection algorithm, for example it needs to run with low time complexity
and be able to adapt if new patterns in the data arise.

2.2.2 Types of anomalies
There are mainly three types of anomalies that are studied in the literature, namely
point anomalies, sequential anomalies and contextual anomalies. A brief description
of those is given below.

• Point Anomalies If a single point deviates from the considered normal pat-
tern it is referred to as a point anomaly. This is the simplest form of an
anomaly and is the most researched form [3]. An example of a point anomaly
is if a process value suddenly is very low or high. An illustration of this is
given in Figure 2.2, where the anomaly is marked in red.

Figure 2.2: The figure illustrates a time series of logged sensor data. It contains a
point anomaly, which is marked in red.

• Sequential Anomalies If a sequence or collection of points is anomalous with
respect to the rest of the data, but not the points themselves, it is referred to
as a sequential or collective anomaly [3]. Since this thesis deal with anomalies
in time series we will refer to this type of anomaly as a sequential anomaly.
An example of a sequence anomaly is if a sensor that records process values
fails and from that point outputs the same process value, which is illustrated
in Figure 2.3 Note that these values are not considered anomalous themselves,
but the sequence of them is.
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Figure 2.3: The figure illustrates a time series of logged sensor data. It contains a
sequential anomaly, which is marked in red. Note that the values of the anomalous
sequence are not anomalous themselves but the combination of them is.

• Contextual Anomalies If a point or a sequence of points are considered as
an anomaly with respect to its local neighbourhood, but not otherwise, it is
referred to as a contextual anomaly [3]. For example, suppose a process can
target different qualities at different times resulting in changes of the process
values for each quality. Let the qualities result in process target values of
three different levels 1, 2 and 3. If the process is running a quality at level 2
and there is an instance of a process value close to those of level 3 this is an
contextual anomaly, however, globally a process value close to level 3 is not
anomalous when running the quality of that level. This is illustrated in Figure
2.4.

Figure 2.4: Example of a contextual anomaly (marked in red) in a time series.

To summarise, the most straightforward form of an anomaly is point anomaly. It is
also the simplest one to detect since there is no need to find what sequence or context
it belongs to. When detecting sequential anomalies it is common to transform
subsequences of the data to points containing information about the subsequence.
Then the techniques for finding point anomalies can be used to find sequential
anomalies. However, how to construct subsequences is a problem on its own and can
be difficult to solve. Similarly to anomaly detection there are several segmentation
techniques that approach this problem. The efficiency of the segmentation technique
affects the result of the anomaly detection. Keogh et al. [4] gives a survey of existing
segmentation algorithms in time series. To find a contextual anomaly the context
must be identified using the contextual attributes of the data. Then an ordinary
anomaly detection technique can be applied for each of the contexts. Similarly to
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sequence anomalies and constructing subsequences, to identify the contexts can be
difficult.

2.2.3 Foundation of anomaly detection
The anomaly detection problem has been investigated in many different fields of
mathematics and with different application areas. The anomaly detection tech-
niques have many times been developed to be applied to a specific area of concern
resulting in problems when applying the same technique to a different area. Anomaly
detection was first research in the field of statistics as outlier detection. Lately the
statistical approaches have been expanded by machine learning methods. Hodge
and Austin [5] gives an extensive survey of these anomaly detection techniques. Re-
cently other approaches have been explored such as neural networks presented by
Markou [6] and methods for cyber-intrusion detection [7].
What is similar for all anomaly detection techniques is that they consists of two
parts, a training phase and detection phase. During the training phase, the anomaly
detection uses a set of training data to define a model which specifies what is con-
sidered normal and/or abnormal with respect to the training set. In the detection
phase, new or incoming data is classified using the model from the training phase.
Depending on the technique and implementation, the result is either binary or re-
turned as a level of anomaly. A binary result implies that the tested data instance
is either reported normal or abnormal, while a result as a level of anomaly is an
anomaly score produced from the detection technique. Data instances with anomaly
scores above some threshold level could then be classified as anomalies.

2.2.3.1 Learning methods in anomaly detection

The type of data available influences what anomaly techniques that can be applied.
There is a main difference in the types of data, labelled or unlabelled data instances.
For labelled data there are labels associated with each data point which gives infor-
mation if the instance is normal or abnormal. For unlabelled data instances there
is no such information. From the type of data available there are three different
approaches for the training phase:

• Supervised learning When applying supervised learning the system is fed
with labelled data on which the algorithm defines what is normal or not. The
challenge of supervised learning is that it is usually very time consuming to
label data and it is normally hard to include all types of anomalies, which is
needed for the algorithm to perform well.

Advantages
– Could use powerful anomaly

detection techniques to learn
the underlying model

– Can be used when anomalies
are more frequently occurring
than normal instances

Disadvantages
– Time consuming and some-

times impossible to label data
– Hard to find labelled data of all

possible normal and abnormal
instances
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• Semi-supervised learning When applying semi-supervised learning the sys-
tem is solely fed with points of normal behaviour. This gives the system a way
to learn what is normal. Similarly to the supervised learning it is hard to find
data points that cover every instance of normality.

Advantages
– More widely applicable than

supervised learning
– Does not need to specify all

types of anomalies that might
arise

Disadvantages
– Might be challenging to find

normal data that covers all nor-
mal instances

• Unsupervised learning Unsupervised learning does not use labelled data.
Instead, this method assumes that the normal behaviour is the most frequently
occurring. Normal instances are then defined as the most frequently occurring
patterns, and points or sequences deviating from these patterns are reported
as anomalies.

Advantages
– No labelled data needed
– Widely applicable

Disadvantages
– Relies on the assumption that

normal instances are far more
frequent than abnormal ones

In conclusion, the learning technique that can be used depends on the available data.
If labelled data is available and and it is sufficient to assume that this data represents
most of the instances that were given then supervised learning is the most suitable.
Semi-supervised learning is used with advantage if it is easy to extract a great variety
of normal instances. Unsupervised learning is the only possible alternative if none
of the above is applicable.

2.2.3.2 Anomaly detection techniques

This section gives an overview of some of the existing anomaly detection techniques.
As part of the literature study, advantages and disadvantages of each approach is
given.

• Classification based The majority of classification based anomaly detection
techniques runs in a supervised or semi-supervised environment. It uses a
training set of labelled data to learn a model or classifier. This model is then
used to classify new or incoming points. The classification-based techniques
rely on the assumption that it is possible to distinguish between normal and
anomalous points in the given feature space. Examples of classifiers are Neural
Networks [8] [9], Bayesian Networks [10], Support Vector Machines [11] and
Rule-based [12] classifiers.
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Advantages
– Powerful algorithms can be

used to distinguish between in-
stances

– Low time complexity of the de-
tection phase

Disadvantages
– Needs labelled data
– Computationally heavy train-

ing phase
– Usually returns binary results,

i.e. no level of anomaly is avail-
able

• Clustering based The clustering-based method groups similar points of the
data to form clusters. The clustering-based method can be divided into three
categories as they rely on different assumptions. The first clustering-based
method relies on the assumption that normal points belong to a cluster and
anomalous points do not. Thus it is sufficient to determine if a point to be
classified belongs to a cluster or not. [3]
The second clustering-based method relies on the assumption that normal
points lie close their closest cluster centroid while anomalous points do not.
In this setup, the centroids of each cluster must be calculated with respect to
some measure. The distance to the closest centroid is then the anomaly score
for each point. [3]
The third clustering-based method relies on the assumption that normal data
instances belong to clusters that are large and dense while anomalies either
belong to clusters that are small or sparse. This technique requires the calcu-
lation of the density and size of the clusters. A point is reported as anomalous
if the density and/or size of the cluster it belongs to is below some threshold.
[3]

Advantages
– Runs in an unsupervised envi-

ronment
– Low time complexity of the de-

tection phase
– Widely applicable, can be used

on several data types

Disadvantages
– Depends on the performance of

the clustering algorithms
– Not optimised for anomaly de-

tection but rather to find clus-
ters

– Computationally heavy train-
ing phase

– Defining distance measure is
not always straightforward

• Statistical approach The statistical methods for anomaly detection rely on
the assumption that "normal data instances occur in high probability regions
of a stochastic model, while anomalies occur in the low probability regions of
the stochastic model"[3].
The statistical methods could be divided into two types of techniques, para-
metric and non-parametric. The parametric techniques assume that the nor-
mal data instances are generated from a parametric distribution with param-
eters Θ. If the parameters are unknown, they are estimated from the training
set. The anomaly score of a point x is given by the inverse of the probability
density function at f(x,Θ). Statistical hypothesis test could also be used to
classify data instances.
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On the other hand, non-parametric methods do not define the underlying
model a priori, but finds the structure from the data. The simplest non-
parametric technique uses histograms. A histogram is made from the training
data set and the anomaly score of a point is the inverse of the height or the
number of other points in the bin it falls into. This method is sensitive to the
choice of the bin length. [3]

Advantages
– Runs in an unsupervised envi-

ronment
– If the statistical assumption is

true, this technique provides a
statistically justified solution

– Low time complexity of both
the training and detection
phase

Disadvantages
– Relies on the assumption that

data comes from the assumed
statistical distribution

– Hard to determine the correct
test statistic to use

– Multivariate anomalies might
not be detected

The most suitable anomaly detection technique to use depends on what training
data is available and also what restrictions there are on the time complexity. The
proposed techniques usually need some modifications when applied in a real life
situation.

2.3 Time series analysis
This section gives techniques for time series analysis. It focuses on the problem of
processing and analysing data to gain useful information. The methods presented
are trend estimation, segmentation, aggregation and extraction of features. For each
of these methods their time complexities are given. The Big O notation is used to
analyse the time complexity, which is explained in appendix B.

2.3.1 Definition of a time series
A time series is a collection of data consisting of time stamped entries ordered in
time. The time stamp is denoted t and the value of the time series at that point
in time is denoted y(t) or yt. The rate at which data is collected in a time series is
referred to as the sampling frequency. The sampling frequency is usually given as
the average number of samples per second.

2.3.2 Trend estimation
To analyse long term changes in a time series it can be useful to calculate the trend of
the time series. The computed trend is itself a time series that explains underlying
tendencies and can be viewed as a smoothed version of the original time series.
There are multiple ways of computing the trend, this section presents the methods
moving average, moving median and exponentially weighted moving average.

• Moving average One of the most intuitive ways of computing the trend is
to use moving average. Utilising this method the trend component, ỹ(t), at
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each point in time is the average of the n previous points. Formally, let y be
a time series of process values and n be the number of previous points to use.
The trend component or moving average at time t is given by

ỹ(t) = MA(t) = yt + yt−1 + ...+ yt−n
n

= 1
n

t−n∑
i=t

yi

Advantages
– Easy to understand
– Time complexity of O(1)

Disadvantages
– Not trivial to choose n to get a

good result
– Sensitive to outliers

• Moving median An other intuitive way to calculate the trend is to use moving
median. This is analogous to the moving average method, but the average is
exchanged for the median. Formally, let y be a time series of process values
and n be a fixed time frame. Then the trend component or moving median at
time t is given by the median of the n previous points,

ỹ(t) = MM(t) = median(yt, yt−1, ..., yt−n).

Advantages
– Easy to understand
– Robust against outliers

Disadvantages
– Not trivial to choose n to get a

good result
– Time complexity of O(n log n)

• Exponentially weighted moving average Another way of calculating a
trend is to use an exponentially weighted moving average. This method is
related to the moving average, but uses a smoothing coefficient θ instead of
a number of previous points n. The exponentially moving average is the av-
erage of all historical points but the influence of the historical points decay
exponentially with time. Let yt be the value of the time series at time t and
θ ∈ [0, 1] be the smoothing constant. The exponentially weighted average is
given by

ỹt = EWMA(t) = (1− θ)(yt + θyt−1 + θ2yt−2 + ...).

The weights sum up to one since the geometric series

1 + θ + θ2 + θ3 + ... = 1
1− θ

when θ ∈ [0, 1], much like the n weights of 1/n of the moving average sum up
to one. The smoothed value can be calculated recursively as

ỹt = (1− θ)yt + θỹt−1,
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since

ỹ0 = y0

ỹ1 = (1− θ)(y1 + θ ·
ỹ0︷︸︸︷
y0 )

ỹ2 = (1− θ)(y2 + θ(y1 + θy0)) = (1− θ)y2 + θ

ỹ1︷ ︸︸ ︷
(1− θ)(y1 + θy0)

...
ỹt = (1− θ)(yt + θyt−1 + θ2yt−2 + ...+ θt+1y0) = ...

... = (1− θ)yt + θ

ỹt−1︷ ︸︸ ︷
(1− θ)(yt−1 + θyt−2 + ...+ θty0)

This makes it possible to compute the EWMA in O(1) as long as the EWMA
of the previous point in time is known. A θ close to 0 will give the most re-
cent value greater influence on the value of the exponentially weighted moving
average while a θ close to 1 will give the historical values the most influence.
When calculating a trend, θ should preferably be close to 1.

Advantages
– Adapts to the recent behaviour

of the process
– Time complexity of O(1)

Disadvantages
– Conceptually complicated in

comparison to the moving av-
erage and the moving median

– Depends on the choice of θ

2.3.3 Segmentation of time series
Segmentation of time series is a useful tool for detection of sequential anomalies as
mentioned in section 2.2.2. The purpose of a segmentation algorithm is to partition
the time series y in smaller subseries < y1, y2, ..., yk > where yi is a subsequence of
y such that

y =
k⋃
i=1

yi

and
yi
⋂
yj = ∅, i 6= j.

The resulting subsequences should consist of similar values with respect to some
measure. This section gives an overview of some of the existing segmentation meth-
ods. We will focus on partitioning the time series into piecewise linear segments,
but the methods are applicable for other attributes as well, e.g. partitioning into
subsequences with similar variance.

The segmentation can either utilise linear interpolation or linear regression as a
tool to measure similarities in the subsequences. Using linear interpolation the fitted
lines are drawn between the initial and end point of the segment. While using linear
regression the line is fitted in order to minimise the sum of the squared residuals. A
residual is the vertical distance from a point to the fitted line.
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The segmentation methods use a maximum error bound to decide when to create a
new segment. For example, an error measure could be the sum of squared residuals.
Another common error measure is the largest distance for a point in the segment to
the line. These or some other error measure can be used to determine the error of the
segment. An ideal segmentation has small errors and a small number of segments.
The result of the segmentation depends on the choice of threshold level for the error.
A too small value of the threshold level may result in a large number of segments
that might not provide much additional information to the original time series. In
contrast, a too large value of the threshold level may result in few large segments
which can mask critical differences.
There are a multitude of different segmentation methods with different advantages
and disadvantages. In the list below a few of them are described in more detail.

• Sliding window segmentation algorithm The sliding window method
builds up segments from an initial point t0 and then proceeds forward in time.
A new segment is created when the previous segment exceeds some predefined
error limit. Let y(t), t ∈ [t0, T ] be a time series to segment. The first segment
starts at t0 and consecutive points in time are added to the segment until the
error of the segment exceeds some predefined threshold level. A new segment
is created from the end point of the previous segment and onwards. This con-
tinues until the entire time series has been segmented.

Advantages
– Can run in an online environ-

ment
– Time complexity of O(Ln),

where n is the length of the
time series and L is the aver-
age length of a segment

Disadvantages
– Usually produces a segmenta-

tion far from optimal

• Top down segmentation algorithm The top down method differs from the
sliding window method by that the whole sequence is considered at once. All
possible partitions are evaluated and then the time series is split at the best
location, i.e. where the error decrease is the largest. These new segments
are then tested to see if their approximation error is below the predefined
threshold, if not the algorithm recursively continues to split the segments into
sub-segments until all segments fulfill the threshold level.

Advantages
– Produces a solution with low

total residual error

Disadvantages
– Time complexity of O(n2K),

where n is the length of the
time series and K is the num-
ber of segments

– Is not suitable to run in an on-
line environment

• Bottom up segmentation algorithm The bottom-up method is opposite
to top-down in the sense that it starts with the finest partition and builds up
the solution by fusing these. In more detail, if n is the length of the time series,
at first n/2 segments are created. These segments are then fused with one of
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their adjacent segments in a way such that the increase in error is the smallest.
This procedure continues until some stopping criteria is fulfilled. Such criteria
could be a maximum number of segments, a maximum increase in error when
segments are fused and/or a total maximum error of the segments.

Advantages
– Time complexity of O(Ln)

where n is the length of the
time series and L is the aver-
age length of a segment

– Produces a solution with low
total residual error

Disadvantages
– Is not suitable to run an online

environment

2.3.4 Aggregation

A major topic of time series analysis is aggregation. Aggregation is important when
mining data and extracting information, but also for presentation of the data. Time
series often consist of a very large amount of data points which may be trouble-
some to handle. Aggregation methods provide a way to compress a time series by
replacing consecutive data points by some representative value, e.g. their mean or
median value. Aggregation is beneficial since it reduces the number of points and
clarifies patterns in the time series by suppressing noise. In this section the method
piecewise aggregate approximation is presented together with a proposed method for
adaptive choice of the aggregation parameter n, i.e. the number of points to use for
aggregation.

Piecewise aggregate approximation

One of the simplest methods for aggregation, proposed by Keogh et al., is piecewise
aggregate approximation [13]. The time series is divided into equally sized subse-
quences over which the mean is taken. This reduces the length of the time series
with a factor n that is the length of the subsequences, see Figure 2.5. This method
both has low time complexity and can be run in an online environment. The choice
of the length n of the subsequences is a trade off between number of reduced points
and risk of masking critical patterns. A small value of n may leave an unnecessary
amount of points and noise while a large value of n may be a too rough approxima-
tion and mask significant patterns. A suitable choice of n can differ a lot between
time series, sometimes by several powers of 10. This makes it hard, and sometimes
impossible, to determine a fixed value of n that gives an adequate result to different
time series. This gives rise to the need of finding a method that in an adaptive way
sets a suitable choice of n.
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Figure 2.5: Time series aggregation using piecewise aggregate approximation. The
time series to the left is aggregated by taking the mean of the points between the
vertical lines. The result is displayed to the right.

Determining n adaptively using the autocorrelation function

This is a proposed method to approach the problem of finding an adaptive way to
determine the time frame n used for aggregation. A key point for a good aggregation
is to find few points that efficiently describe the pattern of the time series. For
example, consecutive points that follow a linear pattern can efficiently be aggregated
by the end points of a fitted line of this section, as illustrated in Figure 2.6.
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Figure 2.6: Time series aggregation of points that follows a linear pattern. The
time series to the left is aggregated by taking the end points of the fitted line of this
section. The result is displayed to the right

The proposed method seeks to find an average length of linear relationships in the
time series by utilising the autocorrelation function. Such an average length of
linear relationships is believed to be a good measure for the aggregation length.
The autocorrelation of a time series measures the degree of linear relation between
points that are some distance or lag τ apart. [14] The autocorrelation function with
lag τ is given by

ρτ = Cov(yt, yt+τ )
Var(yt)

.

For a time series that originates from a continuous process for which the trend is
eliminated, the absolute values of the autocorrelation tend to be close to 1 for ad-
jacent points in time and decay to zero as the time lag increases. To find a suitable
choice for n the autocorrelation is calculated for r subsequences of the time series of
length l with increasing values of τ until ρτ drops below some predefined level α. The
value of τ is registered at this point and an average of them is taken as the value of n.

Advantages
• Adapts to the data
• Time complexity of O(n)

Disadvantages
• Relies on the assumption that

the autocorrelation will drop
and that this measure is a suit-
able choice for n

• Depends on the length of the
subsequences which is not triv-
ial to choose
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2.3.5 Extraction of features
A time series consists, in its raw state, of a collection of time stamps and values
associated with these. To detect changes in amplitude or shape of the time series
it is necessary to extract information about the patterns of the time series. This
section defines some of the possible features of a time series used to quantify and
detect these patterns. The described features will be considered both using the
original time series and when the trend of the time series is eliminated.

• Raw data The most trivial feature is the raw data values of the time series.
This feature can be used to detect global extreme values of the time series,
e.g. as shown in Figure 2.2. In the case when the trend is eliminated, this
feature will explain how the time series varies around the trend. This makes
it possible to find local extreme values as well, e.g. as shown in Figure 2.4.

• Difference to previous point Using this feature as a measure it is possible
to detect extreme fluctuations. It is given by

DTPP(t) = yt − yt−1,

where yt is the process value at time t. This feature is used to detect extreme
fluctuations between consecutive points. Singular extreme values, e.g. as
shown in figures 2.2 and 2.4, may also be detected by this feature.

• Variance of subsequences This feature can detect if the variance of certain
sections of the time series changes. A change in variance for an adjusted
process could indicate that the regulator does not work properly. This feature
requires a segmented time series. The variance of each subsequence is given
by

Var(X) = 1
n− 1

n∑
i=1

(xi − X̄)2.

This feature is used to detect changes in the variance, e.g. as shown in Figure
2.3.
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3
Method

This chapter outlines the practical methods used for anomaly detection in time series
data and their implementation in the proposed algorithms. The chapter begins
with a presentation of the proposed anomaly detection algorithm together with
motivations for choices of methods. Furthermore, the proposed method for detecting
changes in the trend is presented. The chapter ends with an outline of the practical
implementation considerations.

3.1 Proposed method for anomaly detection in
time series

This section presents the proposed anomaly detection algorithm. The algorithm
consists of three main steps. At first the data is preprocessed to extract information
and features of the time series data. Afterwards the preprocessed data is analysed
to find if any of the extracted features lie outside any control limit. In that case an
anomaly is reported. Lastly the control limits are updated.

To find different aspects of the analysed data, the algorithm is run on both the
original data and on trend eliminated data. The algorithm run on the original data
is referred to as algorithm a and is presented in the flowchart in Figure 3.1. The
algorithm run on the trend eliminated data is referred to as algorithm b, presented
in the flowchart in Figure 3.2. For each step in the flowchart there is a reference to
a section that presents the details of the step.
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Streaming time series data

3.1.4 Aggregation3.1.1 Time
frame n
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Report anomaly
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Figure 3.1: A flowchart of the proposed anomaly detection algorithm a.
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Streaming time series data
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Figure 3.2: A flowchart of the proposed anomaly detection algorithm b.

3.1.1 Calculating the time frame
Time frame n used for aggregation is deduced in an offline step in the beginning of
the algorithm. The reason for not constantly update this parameter is due to two
main reasons:

• Reduce number of operations of the algorithm This parameter is be-
lieved to have a small variance, i.e. it will lie approximately around the same
value. Thus constantly performing these calculations will not have a large
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impact on the accuracy
• Increase user friendliness Frequent changes of time frame for aggregation

may be confusing for the users
An outline of the algorithm is shown in the flowchart in figure 3.3. For each step of
the algorithm there is a reference to the section that presents the step in detail.

Historical time series data

3.1.2 Trend
elimination

3.1.3 Determine
time lag τ when

the autocorrelation
drops below level α

Time
frame n

Figure 3.3: A flowchart of the proposed algorithm to determine the time frame n
for aggregation.

3.1.2 Trend elimination
Trend elimination is performed as the first step for deducing time frame n for aggre-
gation and for the anomaly detection algorithm b. The trend is eliminated by calcu-
lating a trend using exponentially weighted moving average, ’EWMA’, explained in
section 2.3.2 with θ = 0.8. The ’EWMA’ method for computing the trend is used due
to two reasons. It has low time complexity and choosing a value of the smoothing
coefficient θ giving a reasonable result for a variety of time series is straightforward
in comparison of finding a suitable number of points n used for moving average or
moving median. The computed trend is subtracted from the original time series.
Pseudocode for eliminating the trend is found in the listing 3.1.

Listing 3.1: Pseudocode for eliminating trend of a time series
Input : Streaming time s e r i e s TS , trend parameter t h e t a
Output : Time s e r i e s with trend e l i m i n a t e d eTS

t r e n d _ e l i m i n a t i o n (TS , t h e t a )

s [ t ] <− (1− t h e t a )∗TS [ t ] + t h e t a ∗ s [ t −1] # s ( t ) i s t h e t r e n d
eTS <− TS [ t ] − s [ t ]

return ( eTS )
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3.1.3 Determine time lag τ when autocorrelation drops be-
low level α

To find the time frame n used for aggregation, repeated autocorrelation calculations
of subsequences of the time series is performed. The subsequences are determined
by randomly selecting r points from the time series. These points are used as
initial points for subsequences of length l which are extracted from the time series.
The autocorrelation is calculated for these subsequences with increasing time lag τ .
When the correlation drops and is below some predefined level α for five consecutive
points the value of τ is registered. Finally the median is taken of the registered values
of τ . Pseudocode is found in the listing 3.2.

Listing 3.2: Pseudocode for calculating n using autocorrelation function
Input : Time s e r i e s with trend e l i m i n a t e d eTS , number o f r e p e t i t i o n s r , subsequence l e n g t h l , alpha
Output : Time frame n

determine_n ( eTS , r , l , alpha )
randomly s e l e c t r p o i n t s from eTS
c r e a t e subsequences o f l e n g t h l from the randomly s e l e c t e d p o i n t s
for i in 1 : r

a u t o c o r r e l a t i o n <− i n f
tau <− 1
while ( a b s o l u t e value o f a u t o c o r r e l a t i o n > alpha )

c a l c u l a t e a u t o c o r r e l a t i o n for subsequence i and l a g tau
tau <− tau + 1

endWhile
r e g i s t e r tau

endFor

return median o f r e g i s t e r e d tau

The median of the different values of τ is translated to the nearest time frame,
that is translating the numerical value median(τ) into a unit of a time period. For
example, if the sampling frequency of the time series is 1/day and the median of the
values of τ is 6. Then the numerical value 6 may be translated into the time period
of 1 week.

3.1.4 Aggregation

A step in preprocessing the data is aggregating the time series. This reduces noise
and clarifies patterns. The aggregation is performed using piecewise aggregate ap-
proximation, which is described in section 2.3.4. This method uses parameter n,
which is the time frame to aggregate over. This parameter is set using the proposed
method that utilises the autocorrelation of the time series. This method is explained
in section 3.1.1. Pseudocode for the aggregation is shown in the listing 3.3. The
aggregated time series is the data used from now on for the anomaly detection.

Listing 3.3: Pseudocode for aggregation using piecewise aggregate approximation
Input : Streaming time s e r i e s TS , l e n g t h o f subsequence n
Output : Aggregated time s e r i e s ATS

piecewise_aggregate_approximation (TS , n )
t_0 <− time t i c k s i n c e l a s t a gg r eg at ed p o i n t
t <− c u r r e n t time t i c k
I f t−t_0 >= n

ATS <− mean (TS [ t_0 : t ] )
t_0 <− t

return ATS
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3.1.5 Extraction of features
The second step of the algorithm is to extract features of the data. Three features
are extracted, namely raw data, difference to previous point and variance of segment,
explained in section 2.3.5. Details of the implementation is given in this section.

3.1.5.1 Raw data

Extracting this feature is trivial, as this feature consists of the raw input values.
The raw data is assumed to be independently normally distributed N(µ, σ2), where
µ is the target values and σ describes the amount of noise. However, the indepen-
dence assumption is unlikely to hold true for values close in time but for simplicity
independence is assumed.

3.1.5.2 Difference to previous point

The next feature is difference to previous point that captures the behaviour of fluctu-
ation of the time series. The values of this feature are assumed to be independently
normally distributed N(0, 2σ2 − 2Cov(yt, yt−1)). Note that this feature eliminates
linear trends and thus should be symmetrically centred around 0 if the normality
assumption holds true. Pseudocode for the implementation of the extraction of this
feature is given in the listing 3.4.

Listing 3.4: Pseudocode for extracting feature: difference to previous point
Input : Streaming time s e r i e s TS
Output : D i f f e r e n c e to p r e v i o u s p o i n t DPP

d i f f e r e n c e _ t o _ p r e v i o u s _ p o i n t (TS)

t <− c u r r e n t time t i c k
DPP <− TS [ t ] − TS [ t −1]

return DPP

3.1.5.3 Variance of segment

The third feature that is extracted is the variance of segments. The time series is
divided into segments in a fashion of sliding windows with window size n = 10 and
jump size l = 5. Since the raw data is assumed to be normally distributed and the
variance includes squaring these numbers, the values of this feature are assumed to
be chi-squared distributed χ2(n − 1), where n is the window size. Pseudocode for
the implementation of the extraction of this feature is given in the listing 3.5.

Listing 3.5: Pseudocode for extracting feature: variance of segment
Input : Streaming time s e r i e s TS , window s i z e / segmentation l e n g t h n , hop l e n g t h l
Output : Variance o f segment VOS

variance_of_segment (TS , n , l )
t0 <− l a s t time t i c k v a r i a n c e was c a l c u l a t e d
t <− c u r r e n t time t i c k
i f ( t−t0 >= l )

VOS <− v a r i a n c e (TS [ ( t−n : t ] )
e n d I f
return VOS
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3.1.6 Detecting anomalies

The next step of the algorithm is to decide if the streaming points are anomalous or
not with respect to the most recent data. This is simply done by checking if the most
recent points of the extracted features falls outside the control limits determined in
the last iteration. How the control limits are calculated is explained in section 3.1.7.
If a point falls outside of the control limits it is reported anomalous.

3.1.7 Calculation of control limits

The last step of the algorithm is to update the control limits. As described in
section 2.1 the control limits are given by ±kσ. The control limits are dynamically
determined by estimating σ for each streaming point from the data using the n most
recent points and a given value of k. Pseudocode for calculating the control limits
is given in the listing 3.6. The value of k is set so that an accepted rate of expected
false positives is reached.

Listing 3.6: Pseudocode for calculating the control limits
Input : Streaming data o f e x t r a c t e d f e a t u r e s EF, t r a i n i n g s i z e n , c o n s t a n t for c o n t r o l l i m i t k
Output : Control Limits CL

c a l c u l a t i o n _ o f _ c o n t r o l _ l i m i t s (EF, n , k )

t <− c u r r e n t time t i c k
sigma_hat <− standard_deviat ion (EF [ t−n : t ] )
CL <− c o n c a t e n a t e (−k∗ sigma_hat , k∗ sigma_hat )

return CL

3.2 Detect changes in the trend

An important aspect to consider for many time series from the paper and pulp
production is changes in the trend. A change in trend can indicate a change in
the process that may affect the quality negatively, however a change in trend may
also define a normal behaviour, e.g. a shift in target value. This section proposes a
method for detecting changes in the trend.
The trend detection consists of three main steps. The first step is to calculate a
trend. The second step is to linearly segment the trend. Finally, a change in trend
is reported if a new segment is created, i.e there are more than one segment after
the segmentation is completed. This method is based on the assumption that if
the trend does not change, i.e. the slope does not change, a line can be fitted with
streaming points of the trend without a significant increase in sum of residuals per
points. Contrarily, if the trend changes, there will be an increase in sum of residuals
per points with the result that a new segment is created and a change in trend is
reported. An example of the algorithm is illustrated in figure 3.4
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Figure 3.4: Illustrated example of the proposed algorithm for trend change detec-
tion. The top left figure shows the input data and the top right shows the calculated
trend for this data using exponentially weighted moving average with θ = 0.9. The
middle left figure shows the linear fit (blue line) to the initial subsequence. The mid-
dle right figure shows the linear fit to the extended subsequence. The added points
are marked in green. The bottom left figure shows the linear fit to the further ex-
tended subsequence. Since ARRS > max_error a change in trend is reported an a
new segment is formed, shown in the bottom right figure.

A flowchart of the algorithm is shown in Figure 3.5, for each step there is a reference
to the section that gives details of the practical implementation.
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Figure 3.5: A flowchart of the proposed method for detecting changes in the trend.

3.2.1 Trend calculation
The first step of the algorithm to detect changes in trend is to calculate a trend.
This is done using exponentially weighted moving average as described in section
2.3.2 with θ = 0.9. For this method it is convenient to use a larger value of θ to get
a smoother trend.

3.2.2 The initial step
The purpose of the initial step of the segmentation is to determine a threshold,
max_error, which will be the decision boundary for when a new segment should
be produced. A line is fitted in the least square sense to the initial subsequence of
the trend with length n. The threshold is calculated by

max_error = α ·
∑n
i=1 r

2
i

n

29



3. Method

where ri is the residual at point i and α is a constant ≥ 1 to tune the sensitivity of
the detection. That is, α allows for minor deviations in the average residual sum of
squares (ARSS) of future fittings without causing a report of change in trend. In
comparison with the anomaly detection algorithm α is similar to k. A small value
of α may falsely report changes in the trend while a large value of α may influence
the algorithm to detect changes in the trend later in time.

3.2.3 The subsequent steps
The trend is segmented by adding l consecutive points to the initial subsequence of
the trend. A new line is fitted to this extended subsequence. The average residual
sum of squares is calculated as

ARSS =
∑n
i=1 r

2
i

n
.

If ARSS of this new segment is greater that max_error the recently added points
are rejected to be part of the current segment. A change in the trend is reported
and a new initial segment is created. If the trend does not change the extended
subsequence will eventually be very large and a trend change may then be masked.
Therefore does the algorithm use a maximum length of the subsequence such that
when the extended subsequence reaches the maximum length a sliding window ap-
proach is applied.

3.3 Practical implementation procedure
This section gives the details of the practical implementation, such as software used
and data format.
Software language R The algorithm and the evaluation of it is implemented in
R and the library ’sats’ is used. R is used due to its powerful tools for statistics
and data analysis. It is also convenient since it allows for creating objects and
functions. These features make R ideal for prototyping the algorithm. For increased
performance in future implementations, R has the ability to integrate with other
programming languages such as C, C++, Java and Python.
Data format The data covers 14 different time series collected at a pulp and paper
mill, which are stored on a hard drive. The time series consists of time stamps,
values at the time stamps and status codes. Values of status codes other than ’ok’
are removed. Streaming data is simulated using a for-loop.
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4
Results

This chapter presents the results of the thesis. The chapter begins with an explana-
tion of how time series was selected used to evaluating the algorithm. Afterwards,
results of the impact of various parameters on the anomaly detection algorithm is
presented. This is followed by results from the algorithm that detects changes in the
trend. The chapter ends with an outline of the time complexities of the developed
algorithms.

4.1 Selection of data

The fourteen provided time series were inspected visually. Three of these time series
were selected as representatives for analysing the algorithm as they capture a variety
of potential anomalies and behaviours that the algorithm should be able to adapt to.
Furthermore, subsequences of these time series were selected that captures critical
patterns and contain a reasonable low amount of data points. For one of the time
series, two subsequences were selected. The time series are plotted in figures 4.1-4.3.
In the anomaly detection algorithm, each of the time series are considered in their
original state, then referred to as time series x.a, and with their trend eliminated,
then referred to as time series x.b.
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Figure 4.1: Time series 1.a and 1.b. This time series contains a seasonal trend in
its original state, time series 1.a.
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Figure 4.2: Time series 2.a and 2.b. The underlying process of this time series has
different target values. When the trend is removed, time series 2.b, it is no longer
possible to detect these levels.
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Figure 4.3: Time series 3.1.a, 3.1.b, 3.2.a and 3.2.b. Time series 3.1 and 3.2
originates from the same process and are extracted from different time periods.
This time series has a high sampling frequency.

4.1.1 Details about the time series

Time series 1, Figure 4.1, consists of results from a manually performed test in the
laboratory that measures impurity of recycled pulp gathered during a day. Impurity
of the pulp may be due to deviations in the process and may affect the quality if
the levels are too high. In an ideal state these measurements should have low and
constant values. This time series is particularly interesting for anomaly detection as
it shows a seasonal trend which may mask local spikes/outliers.
Time series 2, Figure 4.2 consists of online sensor measurements of a quality param-
eter of paper. The quality is adjusted to different target values depending on the
currently produced quality. For each target level the values should preferably be
constant. This time series is interesting for the anomaly detection algorithm as it
contains different levels, and so the algorithm must be able to adapt to the current
level.
Time series 3.1 and 3.2, Figure 4.3 consists of online sensor measurements of con-
centration of pulp. The process is adjusted to a single target value. This time series
is interesting for the anomaly detection as it shows changes in the variance which
would be useful to detect.
Compiled information about the time series is given in Table 4.1.
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Table 4.1: Detailed information about time series 1-3.2. The table sates if the
values of the time series are collected from a sensor or comes from laboratory tests.
It also gives if the underlying process is adjusted to a target value or not. In addition
the sampling frequency is given and the total number of points in the considered
region.

Time Series Value type Adjusted Frequency (Hz) Number of points
1 Laboratory No 1/day (1.16 · 10−5) 390
2 Sensor Yes 1/20s (0.05) 12000
3.1 Sensor Yes 1/10s (0.1) 26000
3.2 Sensor Yes 1/10s (0.1) 149000

4.1.2 Suggested anomalies to detect

For the selected time series a couple of points that seems anomalous were pointed out
manually, these are shown in figures 4.4 - 4.6. Note that these suggested anomalies
might not be anomalous points in the context of the pulp and paper production and
there might be anomalous point that are not discovered by this manual method.
These deviating points are solely discovered by the pattern recognition by the human
eye and do not include any knowledge about the process.
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Figure 4.4: Suggested anomalies for time series 1. Anomalies 1 and 2 are point
anomalies that locally have extreme values. Anomaly 3 is a sequential anomaly
where there is an unusual rapid fluctuation.
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Figure 4.5: Suggested anomalies for time series 2. Anomalies 1-5, 7 and 9 are
point anomalies that have extreme values locally. Anomalies 6 and 8 are sequential
anomalies with sequences that have the same value for an unusually long period of
time. The jumps are not considered anomalous as they correspond to changes in
process settings.
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Figure 4.6: Suggested anomalies for time series 3. Anomaly 2 is a point anomaly
since it has an extremely high value compared to the rest of the series. Anoma-
lies 1 and 3 are sequential anomalies showing a decrease and increase in variance
respectively.

The anomaly detection algorithm will be evaluated according to its ability to detect
these anomalies.

4.2 Anomaly detection algorithm

In this section the results of the anomaly detection algorithm, explained in section
3.1, is presented. The anomaly detection algorithm is performed with different
values of the parameters to evaluate how the algorithm is affected by the choices of
these parameters.
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4.2.1 Results of determining time frame for aggregation
To derive the behaviour of the autocorrelation function for the selected time series,
they are plotted in Figure 4.7. Note that the autocorrelation drops quickly for time
series 1 and 2.
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Figure 4.7: Autocorrelation functions for time series 1 (top left), 2 (top right), 3.1
(bottom left) and 3.2 (bottom right).

To determine the time frame for aggregation the method described in section 3.1.4
was applied with parameters number of repetitions r = 10, subsequence length
l = 1month and threshold level α = 0.1. The result is shown in Table 4.2.

Table 4.2: Time lags τα at which the autocorrelation function drops below the
predefined level α = 0.1 for the time series.

Time Series Estimated τ
1 2
2 7
3.1 432
3.2 329

4.2.2 Impact of aggregation
In this section results of the algorithm for different aggregations are presented.
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The numerical results in Table 4.2 are translated into the corresponding time frames,
given in Table 4.3.

Table 4.3: Calculated approximate time frames for aggregation using the correla-
tion method described in section 4.2.1.

Time Series n Corresponding time frame
1 2 2 days
2 7 3 minutes
3.1 432 1.2 hours
3.2 329 55 minutes

Based on the results in Table 4.3 three time frames were selected for each time series
to evaluate the impact of aggregation, see Table 4.4.

Table 4.4: Time frames for aggregation that were used for evaluation. Time series
3.1 and 3.2 are considered jointly for this evaluation.

Time Series n1 n2 n3
1 1 day (original data) 2 days 1 week
2 1 minute 6 minutes 12 minutes

3.1 & 3.2 30 minutes 1 hour 2 hours

The anomaly detection algorithm was executed with the different time frames for
aggregation. The results describe whether the anomalies pointed out in the figures
4.4 - 4.6 are detected or not, the number of additional anomalies that were found and
the number of anomalies found per number of input points. A sequential anomaly
as anomaly 1 in Figure 4.6 is not considered as detected if only a single point in
that interval is detected as anomalous. The results for the three time series, with
and without trend component, are shown in tables 4.5 - 4.10. For these results the
other parameters were fixed as follows:
Training size 60
k for control limit 3
trend estimation method ’EWMA’
θ for ’EWMA’ 0.8
Visual representations of the detected anomalies are found in appendix C.

Time series 1
Table 4.5 shows the result for different aggregations for time series 1.a. From this
table we see that the number of found anomalies decreases with increased length of
the time frame for aggregation. Regarding the feature DTPP anomalies 2 and 3 are
found for the aggregation with longer time frame, which suggest that the aggregation
in this case clarifies patterns. However, anomaly 1 that was detected for the shorter
time frame for aggregation is lost, which in contrast suggests that the aggregation
also masks patterns.
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Table 4.5: Anomalies found for time series 1.a with different aggregation. Anoma-
lies 1,2 and 3 refer to the anomalies in Figure 4.4. • indicates that the anomaly was
found and ◦ that it was not. The number of other anomalies that were found is also
presented. In these trials k was set to 3 and the training size was 60.

Anomalies found
Feature Aggregation 1 2 3 Other Frequency

Raw data
1 day • ◦ ◦ 1 0.5%
2 days ◦ ◦ ◦ 1 0.5%
3 days ◦ ◦ ◦ 1 0.7%

DTPP
1 day • ◦ ◦ 3 1.0%
2 days ◦ • • 0 1.0%
3 days ◦ • • 0 1.5%

VOS
1 day ◦ ◦ ◦ 1 0.5%
2 days ◦ ◦ ◦ 0 0.0%
3 days ◦ ◦ ◦ 0 0.0%

Total
1 day • ◦ ◦ 4 1.3%
2 days ◦ • • 1 1.5%
3 days ◦ • • 1 2.3%

Table 4.6 shows the result for different aggregations for time series 1.b, i.e. time
series 1 with the trend removed. Comparing the results between time series 1.a and
1.b shows that anomaly 3 was found studying the feature raw data when the trend
was removed which was not the case for time series 1.a.
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Table 4.6: Anomalies found for time series 1.b with different time frames for
aggregation. Anomalies 1,2 and 3 refer to the anomalies in Figure 4.4. • indicates
that the anomaly was found and ◦ that it was not. The number of other anomalies
that were found is also presented. In these trials k was set to 3 and the training size
was 60.

Anomalies found
Feature Aggregation 1 2 3 Other Frequency

Raw data
1 day • ◦ • 1 0.8%
2 days ◦ ◦ ◦ 0 0.0%
3 days ◦ ◦ ◦ 0 0.0%

DTPP
1 day • ◦ ◦ 3 1.0%
2 days ◦ • • 0 1.0%
3 days ◦ • • 0 1.5%

VOS
1 day ◦ ◦ ◦ 0 0.0%
2 days ◦ ◦ ◦ 0 0.0%
3 days ◦ ◦ ◦ 0 0.0%

Total
1 day • ◦ • 4 1.5%
2 days ◦ • • 0 1.0%
3 days ◦ • • 0 1.5%

Impact of aggregation on time series 2

Table 4.7 shows the result for different aggregations for time series 2.a. From this
table we see, similarly to time series 1, that the number of found anomalies decreases
with increased time frame for aggregation.

41



4. Results

Table 4.7: Anomalies found for time series 2.a with different aggregation. Anoma-
lies 1-9 refer to the anomalies in Figure 4.5. • indicates that the anomaly was found
and ◦ that it was not. The number of other anomalies that were found is also
presented. In these trials k were set to 3 and the training size was 60.

Anomalies found
Feature Aggregation 1 2 3 4 5 6 7 8 9 Other Frequency

Raw data
1 min • • • • • ◦ • ◦ • 79 2.0%
6 min ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • 33 4.6%
12 min ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • 28 7.5%

DTPP
1 min • • • • • ◦ • ◦ • 22 0.7%
6 min • ◦ ◦ ◦ ◦ ◦ ◦ ◦ • 12 1.8%
12 min ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • 9 0.3%

VOS
1 min ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ 29 0.7%
6 min ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ 4 0.7%
12 min ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 2 0.5%

Total
1 min • • • • • ◦ • • • 130 3.2%
6 min • ◦ ◦ ◦ • ◦ ◦ • • 49 6.9%
12 min ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • 39 10.3%

Table 4.8 shows the result for different time frames for aggregation for time series
2.b, i.e. time series 2 with the trend removed. Comparing the results between time
series 2.a and 2.b we see that more of the suggested anomalies are found when the
trend is eliminated.
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Table 4.8: Anomalies found for time series 2.b with different time frames for
aggregation. Anomalies 1-9 refer to the anomalies in Figure 4.5. • indicates that
the anomaly was found and ◦ that it was not. The number of other anomalies that
were found is also presented. In these trials k was set to 3 and the training size was
60.

Anomalies found
Feature Aggregation 1 2 3 4 5 6 7 8 9 Other Frequency

Raw data
1 min • • • • • ◦ • ◦ • 38 1.1%
6 min ◦ ◦ • ◦ • ◦ ◦ ◦ • 11 1.8%
12 min ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 7 1.8%

DTPP
1 min • • • • • ◦ • ◦ • 22 0.7%
6 min ◦ • • • • ◦ ◦ ◦ • 8 1.7%
12 min ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 9 2.3%

VOS
1 min ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ 10 0.3%
6 min ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ 4 0.7%
12 min ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 1 0.3%

Total
1 min • • • • • ◦ • • • 70 1.8%
6 min ◦ • • • • ◦ ◦ • • 23 3.8%
12 min ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 17 4.4%

Impact of aggregation on time series 3

Time series 3.1 and 3.2 are considered jointly when evaluating the impact of aggre-
gation. The only feature that shows a difference in detected suggested anomalies for
the different aggregations is VOS.
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Table 4.9: Anomalies found for time series 3.a with different aggregation. Anoma-
lies 1,2 and 3 refer to the anomalies in Figure 4.6. • indicates that the anomaly was
found and ◦ that it was not. The number of other anomalies that were found is also
presented. In these trials k was set to 3 and the training size was 60.

Anomalies found
Feature Aggregation 1 2 3 Other Frequency

Raw data
30 min ◦ • ◦ 14 1.1%
1 hour ◦ • ◦ 6 1.0%
2 hours ◦ • ◦ 3 1.1%

DTPP
30 min ◦ • ◦ 22 1.6%
1 hour ◦ • ◦ 10 1.5%
2 hours ◦ • ◦ 3 1.1%

VOS
30 min • ◦ • 3 0.4%
1 hour ◦ ◦ • 0 0.1%
2 hours ◦ ◦ • 0 0.0%

Total
30 min • • • 49 3.7%
1 hour ◦ • • 22 3.4%
2 hours ◦ • • 7 2.5%

44



4. Results

Table 4.10: Anomalies found for time series 3.b with different time frames for
aggregation. Anomalies 1,2 and 3 refer to the anomalies in figure 4.6. • indicates
that the anomaly was found and ◦ that it was not. The number of other anomalies
that were found is also presented. In these trials k was set to 3 and the training size
was 60.

Anomalies found
Feature Aggregation 1 2 3 Other Frequency

Raw data
30 min ◦ • ◦ 17 1.3%
1 hour ◦ • ◦ 12 1.8%
2 hours ◦ • ◦ 6 2.0%

DTPP
30 min ◦ • ◦ 28 2.0%
1 hour ◦ • ◦ 15 2.2%
2 hours ◦ • ◦ 4 1.4%

VOS
30 min • ◦ • 4 0.4%
1 hour • ◦ ◦ 0 0.1%
2 hours ◦ ◦ ◦ 0 0.0%

Total
30 min • • • 50 3.7%
1 hour • • ◦ 27 4.1%
2 hours ◦ • ◦ 10 3.1%

4.2.3 Impact of training size

The training size influences the estimation of µ and σ that are used for determining
the control limits. A large training size gives a more accurate estimation of the
parameters but has the down side of taking more time to adapt to changes in the
data. To evaluate how the training size influences the estimation 1000 samples with
size equal to the investigated training size were taken for which the parameters were
estimated. The average and the standard deviation of the estimations were recorded
and can be found in Table 4.11. The estimated µ and σ for the whole series is
given as a reference. However note that the time series itself is a sampling of an
underlying distribution for which we want to estimate the parameters and thus an
increased number of entries in the time series would introduce an uncertainty to the
largest training sets as well. As expected, the standard deviation of the estimated
parameters drops as the training size increases.
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Table 4.11: The average and standard deviation of parameter estimations from
1000 samples from the time series with different sample sizes.

Time series Training size µ̄ sµ̄ σ̂ sσ̂

1.a

30 79.2 2.03 11.4 1.29
60 79.2 1.36 11.5 0.855
120 79.3 0.865 11.5 0.541
390 79.3 — 11.5 —

1.b

30 0.268 1.09 6.02 0.832
60 0.29 0.707 6.05 0.566
120 0.269 0.466 6.07 0.359
390 0.275 — 6.09 —

2.a

30 45.3 0.369 2.02 0.242
60 45.3 0.273 2.04 0.17
120 45.3 0.186 2.04 0.12
12000 45.3 — 2.04 —

2.b

30 -0.00133 0.0367 0.203 0.0511
60 0.00096 0.0266 0.0206 0.040
120 0.00023 0.00191 0.207 0.029
12000 0.00018 — 0.209 —

3.1.a

30 6.39 0.00865 0.0486 0.00721
60 6.39 0.0062 0.0486 0.00494
120 6.39 0.0044 0.0485 0.00356
26000 6.39 — 0.0487 —

3.1.b

30 2.41 · 10−6 0.00049 0.00236 0.00122
60 1.17 · 10−5 0.00034 0.00252 0.00104
120 5.23 · 10−6 0.000251 0.00259 0.000813
26000 −4.23 · 10−7 — 0.0027 —

3.2.a

30 6.4 0.0117 0.0592 0.0137
60 6.4 0.0080 0.06 0.0101
120 6.4 0.0055 0.0605 0.0073

149000 6.4 — 0.0608 —

3.2.b

30 -0.00012 0.00578 0.0302 0.0104
60 -0.000178 0.0041 0.0312 0.00793
120 -0.000041 0.00297 0.0316 0.0061

149000 -0.00115 — 0.0322 —

To further study how the training size affects the behaviour of the control limits for
time series with a changing trend, a graphical representation for different training
sizes is presented in Figure 4.8. Notice that for time series 1.a the control limits
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lie closer to the input data for small training sizes, i.e. they adapt to the current
pattern. However, also note that the control limits are more influenced by extreme
values when the training size is small. Time series 2.a shows that the method is
very influenced by quality shifts causing the control limits to be far from the input
data a short period after the quality shift. This effect is caused by the rapid change
in target value, causing the estimated µ̂ and σ̂ to deviate from the expected value
while the algorithm is adapting. This effect is increased for larger training sizes.
This usually makes the control limits unusable for this period of time.

47



4. Results

Figure 4.8: Control limits for different training sizes for time series 1.a (top) and
2.a (bottom), both for raw data.

This method was also applied to the feature difference to previous point of the time
series, shown in Figure 4.9. Notice that this feature eliminates the trend and thus
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also the negative influence of the trend shifts on the control limits.

Figure 4.9: Control limits for different training sizes for time series 1.a (top) and
2.a (bottom), both for the feature difference to previous point.
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Lastly, the method was applied to the feature variance of segment for time series
3.2.a, shown in Figure 4.10. This feature shows several spikes which influences the
control limits in a similar way to the quality shifts.

Figure 4.10: Control limits for different training sizes for time series 3.2.a for the
feature variance of segment.

4.2.4 Impact of k

The parameter k is used to determine the control limits, where the control limits are
given by ±kσ̂ and σ̂ is the estimated standard deviation. For the variance, which is
assumed to be χ2 distributed, the control limits are determined by finding the limits
where a sample has probability p to lie outside of the limits. The choice of k and
p is a trade-off between false positives and false negatives. A common practice in
the Shewhart diagram is to use k = 3 which corresponds to p = 0.05. Figure 4.11
shows how the number of detected anomalies depends on the choice of k for each of
the time series. A desired result is to have a small difference in the number of found
anomalies for small changes in k.
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Anomalies as a function of p/k for time series 2.a & 2.b

Figure 4.11: The number of anomalies detected from raw values (top), DTPP
(middle) and VOS (bottom) as a function of parameter k that influences the control
limits for time series 2.a (left) and 2.b (right). The time series is aggregated over 6
minutes.

To further analyse how the choice of k affects the detection of anomalies, the same
method as before is applied together with information of when the suggested anoma-
lies from Figure 4.5 are not longer detected, shown in Figure 4.12. Note that a larger
value of k could be used to reduce the number of detected anomalies without missing
the suggested anomalies.
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Figure 4.12: The number of anomalies detected for feature difference to previous
point of time series 2.a. The time series is aggregated over 6 minutes. The breaking
point where the suggested anomalies, Figure 4.5, are not longer detected are marked
in red with the corresponding number next to it.

4.2.5 Normality assumption

The anomaly detection algorithm relies on the assumption that the input data, or
at least the subsequences that the parameters are estimated from, is normally or χ2

distributed. Q-Q plots is used to evaluate the normality assumption. Figure 4.13
shows Q-Q plots of two representative subsequences of the feature DTPP for time
series 2.a. The figure also includes a Q-Q plot for the same feature over the entire
time series. The figure shows that some subsequences can be considered normally
distributed while others do not. Over all, the Q-Q plot for the entire time series
shows that data is heavy tailed. Q-Q plots for the other time series are found in
appendix E

52



4. Results

−2 −1 0 1 2

−
0
.4

0
.0

0
.4

Normal Q−Q Plot

Theoretical Quantiles

S
a
m

p
le

 Q
u
a
n
ti
le

s

−2 −1 0 1 2

−
0
.3

0
.0

0
.2

0
.4

Normal Q−Q Plot

Theoretical Quantiles

S
a
m

p
le

 Q
u
a
n
ti
le

s

−2 0 2

−
2

−
1

0
1

2

Normal Q−Q Plot

Theoretical Quantiles

S
a
m

p
le

 Q
u
a
n
ti
le

s

Figure 4.13: Q-Q plots of the feature difference to previous point of two represen-
tative subsequences (top and middle) and the entire period (bottom) for time series
2.a .
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4.3 Change in slope of the trend

In this section the results from the implementation of the algorithm for detecting
changes in the trend is presented. The algorithm is evaluated with different choices
of the parameters for time series 1 and 2 since they show a change in the trend.
The algorithm is applied to time series 3.1 for evaluation of the performance on a
time series without a change in trend, Figure 4.16. In figures 4.14 - 4.15 we see that
the number of segments and thus the reported changes in trend decreases as the
training size and α increases.
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Figure 4.14: Result from detecting changes in trend for different values of training
size and α for time series 1. The vertical lines indicate where a new segment is
created.
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Figure 4.15: Result from detecting changes in trend for different values of training
size and α for time series 2. The vertical lines indicate where a new segment is
created.

Jun 16 Jun 18 Jun 20 Jun 22

6
.3

0
6
.4

5

 

 

 

Figure 4.16: Result from detecting changes in trend for time series 3.1 with training
size of 2000 (≈5.5h) and α = 1.3. The vertical lines indicate where a new segment
is created.

4.4 Time complexity
An important aspect of the developed algorithm is the time complexity. If the
algorithm should be able to run in an online environment with streaming data of
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Table 4.12: Time complexity per sample of anomaly detection algorithm, where n
is the time frame for aggregation, l is the length of the sequence that the variance is
calculated over and TrSz is the training size for estimating the mean and standard
deviation for the control limits.

Step Time complexity
Eliminating trend O(1)

Aggregation O(n)
Extraction of features O(l)

Detect anomaly O(1)
Update control limits O(TrSz)

Total O(max(n, l, T rSz))

Table 4.13: Time complexity per sample of algorithm for detecting changes in the
trend, where TrSz is the training size, max_length is the maximum length of the
subsequence.

Step Time complexity
Calculate trend O(1)

Fit a line in the least square sense and calculate max_error O(TrSz)
Add l points and fit linear trend O(max_length)

Detect change in trend O(1)
Total O(max_length)

a sampling frequency of at least 0.1Hz the time complexity must be low so that
the execution is finished before the next sample arrives. In addition, the algorithm
should be able to analyse upwards of 20 000 time series simultaneously.
Table 4.12 outlines the time complexity for the anomaly detection algorithm.
Table 4.13 outlines the time complexity for the algorithm that detects changes in
the trend.
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This chapter discusses the results of the project. The chapter begins with evaluating
to what extent the aims of the thesis were fulfilled. This is followed by evaluations of
the performances of the anomaly detection algorithm and the trend change detection
algorithm. The chapter ends with ideas for improvements for future work.

5.1 Evaluation of the goals of the thesis

The anomaly detection algorithm was developed to be applicable to any arbitrary
time series of the pulp and paper production process. This generality results in
limitations when it comes to defining patterns of anomalies and determining the
parameters of the algorithms.

A difficulty during the project has been that there is no straightforward way to
define patterns that in general separates abnormal behaviour from normal, due to
the fact that what is considered normal and abnormal depends on the underlying
process. A certain pattern in one time series may be considered anomalous while
the same pattern in another time series may be considered normal.

Determining the parameters of the algorithm becomes challenging when imple-
menting the algorithm in an arbitrary setting, since suitable choices of the parame-
ters change with the specific time series due to the reasons mentioned above. This
created the need to develop a method that adaptively chooses the values of the pa-
rameters. This introduces another source of errors apart from the performance of the
algorithm itself. As a contrast, if the algorithm was to be implemented for a single
time series, the parameters could be chosen by hand to give optimal performance.
However, if the method that adaptively determines values for the parameters is suc-
cessful the algorithm will be powerful as it can be applied to a variety of time series.
The results of the method are promising but further evaluation is needed.

Another precondition for the project was that the algorithm should only use his-
torical data to distinguish between normal and abnormal events. This has the
advantage of not needing labelled data. The detection of anomalies may however be
more accurate by training on labelled data, but extracting labelled training data is
not feasible in the target application due to the vast amount of work required.
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The implemented method using a statistical approach for anomaly detection has
the advantage of being time efficient. It can also provide a measure of the degree of
anomaly together with confidence interval for the detected anomaly. The statistical
approach is also suited for the input data, since it is numerical and patterns can be
extracted as a quantitative measure. In addition it is reasonable to believe that the
data follows a normal distribution. This assumption is supported by the Q-Q plot
shown in Figure 4.13. Other detection techniques, such as clustering techniques,
may be beneficial with other preprocessing techniques of the data.

Furthermore, the algorithm was developed with the aim of being user friendly. The
algorithm is considered user friendly if the presentation of the anomalies is clear and
it is easy to use, e.g. there are few parameters for the user to tune. The algorithm
is implemented such that it performs adequately with predetermined parameters as
defined in the project. At this stage there is no user interface implemented. The
design of the future user interface will have a great impact on the user experience.

Moreover, the algorithm should be able to run in an online environment, which
demands that the algorithm is time efficient. As of this project the possibility
to run the algorithm in an online environment has not been tested in a real-life
environment. However, a theoretical investigation on the time complexity was done.
It shows that both the anomaly detection algorithm and the algorithm for detecting
changes in the trend are linear in input size which is a desirable result. However,
this may still cause restrictions on possible values of the input parameters. For the
algorithm that detects changes in the trend the time complexity is O(TrSz + n ∗ l)
where TrSz is the training size, l is the number of points added in each round and
n is the number of repetitions. If no change in trend is reported for many iterations
n, TrSz + n ∗ l will become very large. To lower the time complexity a maximum
number of iterations n can be set. After these n iterations a new segment can be
created without reporting a change in trend.

Due to time constraints the part of the aim concerning writing detected anomalies
to a database was not implemented. However, there is no inherent limitation to
doing this in the algorithm, and it should be possible by formatting the output data
correctly. Storing the anomalies in a database would have the advantage of being
able to further study eventual relationships between the anomalies. Such findings
may in turn give valuable information about the dynamics of the process itself.

In conclusion, the anomaly detection algorithm is able to find deviating patters
captured by the extracted features. It was also shown that the trend detecting
algorithm was successful. The implemented algorithms meet the aims except for
writing the detected anomalies to a database, which is not implemented as of yet.
In addition, whether the detection was performed with a reasonably low frequency
of false positives and false negatives could not be confirmed since there is no labelled
test data at this point. There were more points detected as anomalous than expected
by chance under the assumption of normally distributed data. This suggests that
either there were many anomalous points in the time series or that the normality
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assumption does not hold true. This may be further investigated using labelled test
data. Labelled test data would also be useful to evaluate the choice of parameters.

5.2 Performance of the anomaly detection algo-
rithm

It is clear from tables 4.5 - 4.10 that it is possible to detect anomalies with the
proposed anomaly detection algorithm. However, the lack of labelled test data has
limited the development and evaluation of the algorithm. Given labelled data it
would be possible to find more specific features defining anomalies. It would also
be possible to evaluate the influence of the parameters on the anomaly detection
algorithm more accurately. However, from the produced results it is possible to
study how the parameters time frame n for aggregation, training size and k for
control limit affects the anomaly detection in general.

• Impact of aggregation Tables 4.5 - 4.10 show that the investigated aggrega-
tions in general rather masks than clarifies patterns for large number of points
n used for aggregation. However, as seen in tables 4.5 and 4.6 the aggregation
may also both clarify and mask critical patterns. A way to avoid this scenario
must be found to increase the performance of the algorithm. The autocorre-
lation function was utilised to find a suitable time frame n for aggregation.
From the results of tables 4.5 - 4.10 it is hard to conclude if these are good in-
dications of n due to two reasons. Firstly, by the lack of labelled test data it is
impossible to say if the aggregation masks or clarifies patterns. Secondly, the
results are also dependent on the choices of the other parameters. However,
the results indicates that the investigated values of n are reasonable to use for
aggregation as they approach the optimal point for decreasing the number of
points while still not masking interesting patterns. We see that as in general
more suggested anomalies are found for the smaller time frame for aggregation.

• Impact of training size The choice of training size is a trade off between
quickly adapting to new patterns and certainty of the estimated parameters.
Table 4.11 gives an idea of how the estimated parameters are distributed for
different training sizes. As expected the standard deviation of the estimated
variables decreases with an increase in training size. Furthermore, figures 4.8-
4.10 show the behaviour of the control limits as a function of the training size.
A small training size better adapts when there are gradual changes in the trend
of the time series. However, for small training sizes the influence of singular
extreme values is large. If there is no reason to believe that new patterns will
arise in the time series, a larger training size is preferred. When calculating
control limits for the variance it seems preferable to use a larger training size
to account for the extreme values. A possible improvement in this area would
be to perform some kind of outlier removal before updating the control limits.
There is also the possibility to investigate the potential of developing a "smart"
method that adapts the training size to these prerequisites.

• Impact of k/p The parameter k determines the control limits together with
the estimated standard deviation. In effect, k influences the border that sep-
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arates normal points from anomalous. It is not possible to quantitatively
determine the choice of k as we have no labelled test data. If such infor-
mation would be available k could be evaluated by analysing the number of
false positives and false negatives. However, we get an indication on what
k/p that is suitable from Figure 4.11. For a suitable k/p it is preferable to
have a small difference in the number of found anomalies with small devia-
tions in k. This connects to the estimation of the standard deviation. If the
estimation is far from the actual standard deviation it is equivalent to alter
the value of k/p. It is preferable if the algorithm is robust with respect to such
deviations. Especially the result in Figure 4.12 suggests an increased value of
k to reduce the total number of detected anomalies while still detecting the
suggested anomalies. This is an example on how labelled data could come in
use to tune parameters.

5.3 Performance of trend change detection
This method is a first attempt to detect changes in the trend. From figures 4.14
and 4.15 it is clear that this method works well with suitable choices of α and TrSz
by visual inspection of the data. A weakness of the algorithm is that the initial
subsequence may capture a trend change, for example a quality shift, and in such
case initialise the algorithm with bad choices of parameters. The algorithm could
thus need a method to reduce the probability of such scenario. To further improve
the performance of the trend change detection algorithm, a better method could
be used to calculate the trend. Currently the calculated trend is ragged, as seen
in figures 4.14 and 4.15, but a smooth and close to piecewise linear trend would
be favourable. A better performing trend change detection would result in a more
stable detection with fewer false positives.

5.4 Future work
The following list presents a few possible areas of improvements to further improve
the algorithm and realise the aims of the project as described in section 1.1.

• Selection of Data Three out of the fourteen provided time series with differ-
ent characteristics were selected as representatives for evaluating the anomaly
detection algorithm. These time series capture a variety of features that the
time series in a pulp and paper industry possess. These features include differ-
ent sampling frequencies, adjusted and non-adjusted processes, laboratory and
sensor values, processes with one, multiple or no target value among others.
However, as there are way more time series collected in a pulp and paper pro-
duction a more comprehensive study of these might be necessary to capture
all properties of the targeted time series.

• Labelled test data A limitation of this project is the lack of any labelled
data and a possible next step would be testing the algorithm on labelled data.
As stated earlier, it is not possible to label all time series in a pulp and paper
industry, but labelling a few time series would probably improve the result for
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more time series than the labelled ones. Testing the algorithm on labelled data
would allow for better verification as to whether the algorithm detects all the
known anomalies or not. By using labelled data it would also be possible to
extract more specific features that separates anomalous instances from normal
ones. In addition, using a labelled data set, machine learning techniques could
be applied to tune parameters.

• Improvement of the algorithm From the current state of the algorithm,
the greatest improvement is probably to refine the features that distinguish
normal instances from abnormal ones. A good way to do this would be by
either using labelled data or by applying prior process knowledge. A feature
with the only purpose to find anomalies of a specific type of time series is still
valuable if it does not cause false positives in other time series. Even if the
feature causes false positives it could be used only for the time series where it
is relevant. There is also the possibility to use other analysing tools, such as
analysing the time series in the frequency domain using spectral analysis.

• Implementation and evaluation of online performance One of the main
aspects of the anomaly detection algorithm was its ability to run in an online
environment. This was only tested theoretically and the next step would be
to implement the algorithm in a real world scenario to test if it would be
realisable.

• Design of user interface The anomaly detection algorithm was implemented
with the intention to be user friendly. This was accomplished by implementing
methods to automatically set the values of the parameters. An important
part for the final application to be user friendly is the design of the user
interface. This entails presenting the detected anomalies in an informative
way and detailing the conditions under which the anomalies were detected.
The design of such a user interface would be a major project in itself.

• Writing anomalies to a database As mentioned this part of the aim was
not completed. This relatively straightforward step would form the basis for
further analysis of the behaviour of the found anomalies.
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Conclusion

The developed anomaly detection algorithm was shown to be able to detect anoma-
lies. In fact, most of the beforehand suggested anomalies of the selected time series
were detected for suitable choices of the parameters. Since there is no labelled test
data given, the algorithm cannot be evaluated in detail, i.e. the true number of false
positives and false negatives is unknown. Labelled data would therefore be valuable
for future development of the algorithm.

The proposed algorithm to detect changes in the trend gives desirable results for
the considered time series with suitable choices of the parameters. However, as this
method is a first attempt to detect changes in the trend further investigation is
needed to conclude its performance.

Theoretically, both the anomaly detection algorithm and the algorithm to detect
changes in the trend could run in an online environment. That is since their time
complexities are estimated to be linear in input size. However, it remains to be
tested if it is possible to run the algorithms in a real-life situation.
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Appendix A

The normal distribution N(µ, σ2) is a symmetric distribution that depends on two
parameters, the mean µ, where µ ∈ [−∞, ∞] and the standard deviation σ, where
σ > 0. The normal distribution and has probability density function

f(x) = 1
σ
√

2π
e−(x−µ)2/2σ2

.

If X1, X2, ..., Xn is a sample, drawn or believed to have been drawn from a normal
distribution N(µ, σ2), the parameters µ and σ can be estimated from the sample by

µ̂ = 1
n

n∑
i=1

Xi

σ̂ = 1
n− 1

n∑
i=1

(Xi − µ̂)2

Now µ̂ and σ̂ are random variables. The estimated mean µ̂ follows the t-distribution
as µ̂−µ

sµ̂
∼ tn−1 where sµ̂ is the estimated variance of µ̂. A 100(1 − α) confidence

interval of µ is thus µ̂± tn−1(α/2) · sµ̂. Similarly the estimated variance, S2, follows
the χ2 distribution as (n−1)S2

σ2 ∼ χ2
n−1. This gives an exact 100(1 − α) confidence

interval of σ2 as
[

(n−1)s2

χ2
n−1(α/2) ,

(n−1)s2

χ2
n−1(1−α/2)

]
.

The χ2 distribution has probability density function

f(x) = 1
2 k

2 Γ
(
k
2

)x k2 −1e−x
2 ,

where k is a positive natural number usually referred to as the degrees of freedom.
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Appendix B

Algorithms and their time complexities are evaluated and compared using asymp-
totic upper bounds for the worst-case time complexity. Let T (n) be a function of
the worst case running time of an algorithm with input size n. If T (n) ≤ c · f(n)
is true for all n ≥ n0 where n0 > 0 and c > 0 is a constant, then T (n) is said to
be O(f(n)). In other words T (n) is asymptotically upper bounded by f . The time
complexities of algorithms can be classified using this notation. [15] For example,
linear algorithms are algorithms with T (n) = O(n), quadratic T (n) = O(n2) etc.
Table B.1 gives an idea of the running time for different f(n) and n.

Table B.1: The running times of algorithms with different time complexities with
c = 1 for a processor performing a million instructions per second. The times are
rounded upwards.[15]

n n log2 n n2 n3 2n n!
n = 10 < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec 4 sec
n = 30 < 1 sec < 1 sec < 1 sec < 1 sec 18 min 1025 years
n = 50 < 1 sec < 1 sec < 1 sec < 1 sec 36 years > 1025 years
n = 103 < 1 sec < 1 sec 1 sec 18 min 1017 years > 1025 years
n = 104 < 1 sec < 1 sec 2 min 12 days > 1025 years > 1025 years
n = 106 1 sec 20 sec 12 days 104 years > 1025 years > 1025 years
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Figure C.1: Detected anomalies for time series 1.a with time frame for aggregation
of 1 day.
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Figure C.2: Detected anomalies for time series 1.b with time frame for aggregation
of 1 day
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Figure C.3: Detected anomalies for time series 2.a with time frame for aggregation
of 1 minute.
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Figure C.4: Detected anomalies for time series 2.b with time frame for aggregation
of 1 minute.
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Figure C.5: Detected anomalies for time series 3.1.a with time frame for aggrega-
tion of 30 minutes.
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Figure C.6: Detected anomalies for time series 3.1.b with time frame for aggrega-
tion of 30 minutes.
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Figure C.7: Detected anomalies for time series 3.2.a with time frame for aggrega-
tion of 30 minutes.
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Figure C.8: Detected anomalies for time series 3.2.b with time frame for aggrega-
tion of 30 minutes.
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This appendix gives figures that shows the number of detected anomalies as a func-
tion of k and p for time series 1 and 3.
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Anomalies as a function of p/k for time series 1.a & 1.b

Figure D.1: The number of anomalies detected from raw values (top), DTPP
(middle) and VOS (bottom) as a function of parameter k that influences the control
limits for time series 1.a (left) and 1.b (right). The time series is aggregated over 1
day, i.e. the raw values are used.
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Figure D.2: The number of anomalies detected from raw values (top), DTPP
(middle) and VOS (bottom) as a function of parameter k that influences the control
limits for time series 3.1.a (left) and 3.1.b (right). The time series is aggregated over
1 hour.
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Figure D.3: The number of anomalies detected from raw values (top), DTPP
(middle) and VOS (bottom) as a function of parameter k that influences the control
limits for time series 3.2.a (left) and 3.2.b (right). The time series is aggregated over
1 hour.
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Figure E.1: Q-Q plot of time series 1.a
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Figure E.2: Q-Q plot of time series 1.b
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Figure E.3: Q-Q plot of time series 2.a
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Figure E.4: Q-Q plot of time series 2.b
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Figure E.5: Q-Q plot of time series 3.1.a
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Figure E.6: Q-Q plot of time series 3.1.b
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Figure E.7: Q-Q plot of time series 3.2.a
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Figure E.8: Q-Q plot of time series 3.2.b
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