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The fast-lane development of Automotive Ethernet for Autonomous Drive
OSCAR ASPESTRAND & VIKTOR CLAESON

Department of Electrical Engineering

Chalmers University of Technology

Abstract

Autonomous drive has emerged as a new field of interest in recent years. The major
car manufacturers are trying to implement the technologies needed for autonomous
solutions, and the concept of Automotive Ethernet is being evaluated. It is of inter-
est to investigate the current situation of the communication technologies present in
vehicles today. How does the bus technologies cope with the increasing demands on
bandwidth and how compatible are the different solutions. The purpose of this thesis
is to answer these questions by discussing the relevant technologies in an Automotive
Ethernet implementation. Focus lie on the construction of a small scale practical
model aimed at mimicking a potential scenario where an Automotive Ethernet im-
plementation is needed, in order to evaluate how feasible the current technologies
are. The communication involves a node with the operating system AUTOSAR,
common in vehicles today, and another node with Linux.

The results of the link evaluation were unexpectedly deficient and an investigation
over the whole link was performed to localize the defective area. The implemented
TCP/IP module in the AUTOSAR system displayed significant issues during large
data transmissions. Small structural additions were implemented to the existing
TCP/IP stack, which slightly improved the results, however the overall system re-
mained significantly below capacity. In conclusion, the results indicate that there
is still more work required for the relevant technologies before these implementa-
tions can be applied in practice. Further development suggestions are made, which
imply that further research should be made on the upcoming Adaptive AUTOSAR
platform as well as the Time-Sensitive Network protocol.

Keywords: Automotive Ethernet, AUTOSAR, CAN, FlexRay, LIN, MOST, SOME/IP,
TSN.
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1

Introduction

In the modern day automotive industry, the increasing implementations of new appli-
cations and infotainment systems implies that a large amount of Electronic Control
Units (ECUs) are required within a vehicle. Comparing contemporary automobiles
in the industry to former versions from 30-40 years ago, the increase in electronic
equipment is immense. Vehicles today include ECUs for a variety of features, in-
cluding aspects such as safety as well as comfort. With some of the ECUs connected
to crucial systems, the communication system in a vehicle must not falter. Thus,
it must be a high-speed-high-reliability system. As there exist many well-developed
communication protocols for other fields of expertise, an approach has been to adapt
these to fit in the automotive industry in combination with specifically constructing
some protocols for the automotive industry. With the expanding system complexity,
the need for a standardized architecture when implementing communication systems
in vehicles is vital. The AUTomotive Open System ARchitecture (AUTOSAR) De-
velopment Partnership was launched in 2003 by leading automotive manufacturers
and suppliers and defines a standardized architecture for communication systems in
vehicles, with the aim of keeping the application software independent of the hard-
ware [1], [2].

Furthermore, ECUs running on different operating systems may lack the possibility
to communicate without a compatibility extension. Scalable service-Oriented Mid-
dlewarE over IP (SOME/IP) is a protocol developed to function as a middleware so-
lution for the automotive industry and allows ECUs with different operating systems
to communicate. The protocol includes serialization, which transforms application
data into a stream of bytes instead of system specific structured data [3]. In addi-
tion, SOME /TP middleware shifts the communication concept from a signal-oriented
to a service-oriented. This means that information is sent when the receiver finds
a need for specific data, in contrast to signal-oriented transmissions where informa-
tion is sent when the sender finds a need e.g. when a value is changed or updated [4].

The AUTOSAR systems in the industry today mostly rely on bus systems like CAN,
LIN or FlexRay to transport data between ECUs in the vehicle. These bus type
systems rely on a broadcast data concept. This means that when one ECU has data
to transmit, the content is uploaded to the bus, where any receiving ECU can pick
it up. However, the data occupy the bus for all other ECUs even though they do
not need that data. This can cause overload issues, especially since the bus systems
were originally designed to transmit small data packets. The sensors and infotain-
ment implemented in vehicles today includes communication of a larger amount of
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data, which was not a concept in the initial bus link idea. An example of this could
be how a constant flow of LIDAR data should be sent to a neural network which
then can establish objects in front of a vehicle [5]. The data constraints has led to
an initiative of implementing Ethernet to automotives, which is a well functioning
protocol in other areas and it can handle large amounts of data. In vehicles however,
the requirements on speed and reliability are more crucial as communication failures
could lead to severe consequences [6], [7].

The implementation of Ethernet usually also implies that TCP/IP, in accordance
with the OSI-model, is used. This is one of the issues that the implementation of
Automotive Ethernet faces, since TCP/IP does not generally provide high-speed-
high-reliability communication. An example is that TCP/IP employs concept such
as retransmission if a packet was not received correctly. That scenario in a vehicle
could lead to fatal consequences if ECUs in charge of safety features do not trans-
mit /receive the packet immediately or if it is corrupted. An alternative to TCP/IP
and the OSI stack is to employ Ethernet extensions such as Audio Video Bridging /
Time-Sensitive Network (AVB/TSN). As the data is not supposed to be transported
across network boundaries in automotives, AVB/TSN protocols can provide suffi-
cient communication using only Ethernet frames. The frames utilize the VLAN tag
to prioritize the TSN frames and thereby AVB/TSN is able to provide low-latency
and high-quality transmission of streaming data [4].

1.1 Purpose

The core purpose of this thesis is an in-depth investigation of how far the automotive
industry has come in terms of high-speed-high-reliability communication technolo-
gies. Specifically, investigate Automotive Ethernet and evaluate whether it can be
a solution for autonomous drive applications. The focus lie on the construction of a
small scale test system, which is developed with the purpose of providing measure-
ment results and context to the theoretical background.

1.2 Scope

As AUTOSAR is continuously in development, improvements could have been made
with every new version and therefore the results may be version related. The version
used during the project was the AUTOSAR 4.2.2 release. In this version SOME/IP
is not implemented as a module yet, thus only a literature and feasibility study will
be performed. To implement SOME/IP as a complex driver was under consider-
ation but was deemed too time demanding and complicated for the scope of this
thesis. Likewise, to update the existing AUTOSAR available at the company was
considered and rejected due to time constraints.

Furthermore, in the designed practical model, the Ethernet cables and version used
was the regular 100Base-Tx instead of the BroadR-Reach thought-out for Auto-
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motive Ethernet. This is due to equipment and cost restrictions at the company.
Similarly, for the comparison of different communication technologies, only Ether-
net will be implemented in practice. The discussion and comparison to the other
technologies will be theoretical and utilizing previous work within the field.

1.3 Related Work

In [8], the authors successfully implemented a running TCP/IP Ethernet connec-
tion on an AUTOSAR platform. The microcontroller used (TMS570LS3137) was
less powerful than the one used in this thesis (MPC5744P). However, their goal
was to create a running web application which does not require quantities of either
memory or execution speed. In addition, different development tools and protocol
versions where used compared to this project, such as the TCP/IP stack and AU-
TOSAR configuration.

Degermark et al. [9] used a single-core 32-bit processor, Pentium Pro, with the
same clock speed of 200MHz as the processor used in this project. They managed
to perform quick IP routing lookups of forwarding tables at gigabit speeds, hence
our processor should be capable of a desirable bit rate hardware-wise.

1.4 Thesis Outline

The structure for the remainder of this thesis is organized as follows. In Chapter 2,
some background theory is presented regarding important concepts of Automotive
Ethernet. Chapter 3 covers the implementation choices and methods utilized when
designing the communication link. The result of the practical model when transmit-
ting images over the link is presented in Chapter 4. Chapter 5 includes a discussion
of the topics included in this thesis as well as further analysis of the results of the
communication link. Finally, Chapter 6 summarizes the conclusions and suggestions
for future improvements.
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2

Background Theory for
Communication Technologies in
Automotives

This chapter aims at introducing the reader to information about the communica-
tion technologies and concepts involved in the Automotive Ethernet development.
Firstly, some preliminaries are briefly explained.

2.1 Preliminaries

The following concepts were deemed important to be familiar with, as they are
referenced in the thesis and therefore a brief description was included.

2.1.1 OSI-model

The Open System Interconnection (OSI) model is a conceptual framework that alle-
viates terminology and complex interactions within computer networks. It consists
of 7 layers ranging from an application software down to the physical interface on
the hardware, Table 2.1 display the different layers along with a short description.
The communication flow goes from the higher levels to the lower ones as data is
passed on through the network. The OSI-model is often used as a reference for
protocols to determine at what abstraction level they operate e.g. TCP is a layer 4
protocol and Ethernet a layer 1 protocol.
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Table 2.1: A representation of the OSI-model, including a short description for
each of the 7 layers.

Network connection to the application, pro-
viding services.
Data conversion to different representations
and encryption.
Managing connection sessions, e.g. open,

7 | Application

6 | Presentation

5 | Session
close and recover.

4 | Transport End-to-end transmission of data.

3 | Network Packet forwarding and routing scheme.

9 | Data Link Transfer data between nodes within one net-
work.

| | Physical Conpectlon to the physical transmission
medium.

2.1.2 Cyclic Redundancy Check

Cyclic Redundancy Check (CRC) is an error-detecting method, which uses cyclic
codes to control if raw data has been corrupted. It includes a data verification to
the original raw bytes, on which the receiving side evaluates if the data is correct or
not.

The CRC operation can mathematically be explained as a binary data word being
treated as a polynomial, with each polynomial coefficient being zero or one, and
divided by a generator polynomial often referred to as a CRC polynomial. The
remainder of the division is the data verification check of the original raw bytes. It
is sent as a Frame Check Sequence (FCS) together with the raw bytes (as a trailer).
On the receiving side, the CRC is repeated and the remainder is compared to the
sent FCS. If they match, the result is most likely correct. There is a chance that
there was just the right amount of bit errors to go undetected by the CRC. This is
due to the CRC polynomial used, as each only have a limited amount of flipped bits
it can provide protection against.

An example of how a CRC is calculated can be seen in Figure 2.1. The divisor
is a polynomial which is predefined in each device and is one bit larger than the
remainder. The divisor performs an XOR operation in a sliding window-manner on
the whole payload step-wise. To start with, on the transmission side, the payload
is right-padded with zeros equal to the amount of bits of the desired remainder,
and then the bitwise XOR operation with the divisor starts. The division process
continues until the payload, without the padding, is a zero-vector, leaving only the
padding bits as the remainder. Upon arrival at the receiver, the payload and CRC
trailer is extracted and the same operation is repeated, with the same divisor as the
transmitter used. However, in this case, the payload is right-padded with the re-
mainder instead of zeros. If the final result is zero, the message is most likely correct.
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There are several methods of constructing a polynomial, which is dependent on
the application. Some provide good protection for long data words and some the
opposite. One of the most commonly used is the IEEE CRC-32 polynomial, where
the polynomial consist of 33 bits and the remainder is 32 bits [10].

Transmitter:
Payload: 100100100011110 , Divisor: 1011 (CRC-3-GSM, used in mobile
networks)

100100100011110 000 <— zero pad, will become remainder.
1011 <— Divisor.
001000100011110 000
1011 <—2nd bit = 0, therefore moving on to next 1 in payload
000011100011110 000 ... in order to align the divisor.
1011
000001010011110 000
1011
000000001011110 000
1011
000000000000110 000
101 1
000000000000011 100
10 11
000000000000001 010
1 011
000000000000000 001 <— 001 will be the remainder, hence the CRC check.

Receiver:

Payload: 100100100011110 , Divisor: 1011 (CRC-3-GSM, used in mobile
networks)

Received CRC check: 001

100100100011110 001 <— Right pad with the CRC check.
1011 <— Divisor known in receiver.
001000100011110 001
1011
000011100011110 001
1011
000001010011110 001
1011
000000001011110 001
1011
000000000000110 001
101 1
000000000000011 101
10 11
000000000000001 011
1 011
000000000000000 000 <— A zero vector shows correct message.

Figure 2.1: Transmitter and receiver CRC algorithm
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2.1.3 TCP Socket Communication

TCP/IP communication is built on the foundation of so-called socket communica-
tion. A TCP socket is an internal representation of an endpoint connected with the
local IP address and a port number. A socket can be defined as one out of two roles,
either as a server socket or as a client socket. The former binds a socket descriptor
to a specific port number and defines for what type of connections it should han-
dle e.g. TCP or UDP. The server is then set to a listening mode where it awaits
connections from client sockets, whom it will accept or reject depending on if they
fulfill the correct specifications. If a connection is accepted, the socket pair can now
begin to send and receive data.

The client socket does not require a binding to specific port number, it will receive
the first available one. The client socket must attempt a connect call towards an
ip-endpoint (server socket), specifying what type of connection that should be es-
tablished and await an accept. This process can be seen in Figure 2.2. The types
of socket are called: Datagram sockets, Stream sockets and Raw sockets. Datagram
sockets are also-called connectionless sockets and are used by UDP, in contrast to
Stream sockets which are called connection-oriented sockets and are used by TCP.
A raw socket simply encapsulates data without any formatting from the transport
layer.

Server Client

listen()

Connection establishment connect()

accept()

close()

Figure 2.2: Socket communication procedure between a server and a client socket.

2.1.4 TCP Delay Efficiency

Most TCP stacks employ the so-called Nagle algorithm, which enforces the send
command to wait for a maximum segment sized packet before transmission. This
behaviour is only interrupted when an acknowledgement (ACK) is received on the

8
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last remaining bytes in flight, i.e. so far un-acked bytes. The send buffer is then
transmitted regardless of the filled segment size. The Nagle algorithm is in most
cases an effective way to utilize the bandwidth and to avoid congestion problems,
by not transmitting packets with a small payload and large overhead. However,
it might not be suitable for all types of systems, one example being time-critical
real-time services. In these systems, latency is of highest importance and the large
overhead cost might be insignificant compared to the transmission delay when wait-
ing for maximum segment sized packets.

An issue that can occur with Nagle’s algorithm is when it is paired with the so-called
TCP delayed acknowledgements. This is also a delay efficiency method that most
TCP stacks utilize, which allows the receiving application to respond with less than
one ACK per segment. Furthermore, it can respond with a window update and an
eventual immediate response alongside the ACK. However, when paired with the
Nagle algorithm, there are scenarios where they inhibit each other. An example of
this is if the receiving end does not respond with an ACK due to the whole pack-
age not being received yet. At the same time, the Nagle algorithm is hindering
the transmission of the last remaining bytes of the package because it does not fill
the maximum segment size. This stalls the communication for the duration of the
timeout on the ACK [11].

2.2 Bus technologies in automotives

Bus-communication is the standard for data exchange in real-time between ECUs
in automotives. For serial data exchange between ECUs in automotive applications
only the lower layers of the OSI model are necessary, i.e. the Data Link Layer and
Physical Layer, in combination with the Application Layer. The reduction of the
original seven-layer OSI stack simplifies and improves the speed of the communica-
tion. Bus type communication relies on a broadcast type concept, where if a node
wants to communicate it transmits data to the bus and any other node can receive
the message. Even if there is a specific node that requires the data, the message
is still allocated on the bus for all other nodes as well. This can be a source of
congestion problems at high data loads [12]. There exists a few different bus type
protocols used for different applications, the most common in vehicles are CAN,
FlexRay, LIN and MOST (see Sections 2.2.1-2.2.4). The different network technolo-
gies must all provide solutions to the fundamentals of sharing a serial interface with
several users, organizing the access to the medium, provide a certain data rate and
a robust transmission.
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2.2.1 CAN

The Controller Area Network (CAN) protocol, common in vehicles today, was devel-
oped to allow microcontrollers to communicate in automotive applications. It was
developed by Robert Bosch in 1983 and it later became a standard for serial data
exchange in real-time between ECUs in automotives. CAN is a distributed com-
munication system organized as a hierarchy, which operates using a simplified OSI
stack mainly relying on the physical and data link layer. Instead of including source
or destination addresses in the messages transmitted like e.g. in Ethernet, each
message contains an identifier which specifies the message priority. As a transmit-
ted message is available for any node on the bus, each node performs an individual
test to determine if the message is of importance and should be accepted or not.
Every node on the bus responds with an acknowledgement on an error-free CAN
frame by setting a dominant bit in the acknowledgement space (see Table 2.2) of
the same packet. The receiving nodes do this regardless to if they actually use the
data or not. The transmitting node recognizes an acknowledgement without know-
ing from which receiving node it originated from. Adding that with the fact that
one acknowledgement is sufficient for the transmitter to perceive it as a successful
transmission, it causes a source of uncertainty as there is no proof that the intended
receiver node has seen the packet.

The hierarchy of the CAN network relies on the message priorities determined by the
identifiers. The method to determine which identifier is more important than the
other is called arbitration and it distinguishes between dominant (0) and recessive
(1) bits in the Message-IDentifiers. In the case of two ECUs starting to transmit at
the same time, the ECU whose message starts with the largest amount of dominant
bits is determined as the higher priority. In other words, a lower Message-1D implies
a higher priority. The node with a higher Message-1D, and thereby a lower message
priority, must wait a given fallback time before it can try to access the bus again.
However, if the CAN-bus is idle then any node can start transmitting .

The control over the transmission media is a combination of CSMA/CD (Carrier
Sense Multiple Access with Collision Detection) and NBA (Non-destructive Bitwise
Arbitration). This combination enables the maximum use of a CAN bus data trans-
fer capability. The CAN system provides high reliability, flexibility and robustness
in harsh environments such as within a vehicle. However, it was constructed to
handle small data loads and it can only achieve data rates of 1 Mbps (High-Speed
CAN). This means that it cannot handle the high data loads that some of the new
applications require. There can also be issues regarding congestion control, as higher
priority messages can block the bus for long periods of time if the data load is large
[7], [13], [14], [15].
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Table 2.2: Structure of a CAN frame.

Field name Le:ngth Details
[bits]
Start of frame (SOF) 1 Indlc‘ates the start of a frame transmission
and is always a 0.
Identifier (A) 11 First part of the unique identifier, which

also indicates the message priority.

Remote Transmission
Request (RTR) or Sub-
stitute Remote Request

RTR must be dominant (0) for data
1 frames and recessive (1) for so-called Re-
mote Frames. SRR must be recessive (1).

(SRR)
With 11-bit identifiers it must be domi-
Identifier extension bit 1 nant (0) and for 29-bit identifiers it must
(IDE) be recessive (1) and then includes the two
following fields.
Identifier (B) 18 Secor‘ld part of the unique ider}tiﬁer, which
also indicates the message priority.
o RTR must be dominant (0) for data
Remote Transmission

1 frames and recessive (1) for so-called 'Re-
mote Frames’.

One or two reserved bits depending on 11-
bit or 29-bit identifier case.

Specifies the length of data field (0-8
bytes).

The payload of the frame (length accord-

Request (RTR)

Reserved bits 1or?2

Data length code (DLC) | 4

Data field 0-64° 1 i0g to the DLC field).

CRC 15 The cyclic redundancy check.

CRC delimiter 1 Must be recessive (1).
Is set to recessive (1) by the transmitter
and all receiving nodes set this to domi-

ACK slot L nant (0) if theyg have received the frame
error-free.

ACK delimiter 1 Must be recessive (1).

End of frame (EOF) 7 Must be recessive (1).

2.2.2 FlexRay

As the demand for communication required larger amounts of data being trans-
mitted from an increasing amount of ECUs, the CAN standard did not meet the
requirements. The FlexRay serial communication protocol was developed for data
exchange in more safety-critical automotive applications, with higher demands on
reliability and safety of data as well as delivering 10 Mbps compared to CAN with
1 Mbps. One of the most significant differences, compared to CAN, is that FlexRay
uses a Time Division Multiple Access (TDMA) scheme for the Medium Access Con-
trol (MAC). Instead of sensing the medium and terminate transmission on noticing
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a busy bus, TDMA provides each ECU in the closed network with time slots which
correlates to the time-triggered communication architecture of FlexRay. The archi-
tecture’s core property of being time-triggered provides a static activation of actions
on each cycle, which typically is between one to five milliseconds. FlexRay was sup-
posed to be a flexible network capable of asynchronous operations, which a closed
TDMA network does not supply. Hence, FlexRay networks provide a dynamic seg-
ment in combination with the static segment. A FlexRay cycle containing these
segments is portrayed in Figure 2.3. Besides the static and dynamic segments, there
is also a segment called Symbol Window. It is primarily used for maintenance and
to identify special cycles (such as a cold-start). Furthermore, between two cycles is
a Network Idle Time segment which is a predefined interruption utilized to adjust
for potential drifts in the system [13], [16].

Static Segment —
Dynamic Segment
Symbol Window

Network Idle Time

Figure 2.3: Visual representation of one FlexRay duty cycle, where the cycle is
typically 1-5 ms. It consists of four segments, where the Network Idle Time is a
predefined interruption between cycles to adjust for any potential drifts.

The static segment is divided into several slots, correlating to an ECU in the net-
work. To avoid slowing down the FlexRay cycle by adding more static slots, the
dynamic segment can allow transmission of the less critical data. The dynamic
segment is also divided into slots, so-called minislots, which are prioritized accord-
ing to Frame IDs. The segment is of a fixed length, limiting the data that can be
transmitted per cycle. Furthermore, each minislot is of a configurable duration that
is typically a so-called macrotick (microsecond) long. A macrotick is the smallest
unit of time within a FlexRay network and is synchronized on every node. If the
ECU corresponding to a minislot is not ready for transmission, the time slot in the
dynamic segment is lost and the next minislot can take its turn. When an ECU
decides to broadcast, all future minislots are set on hold until the broadcast is com-
pleted. If the dynamic segment window is filled before all ECUs minislots have been
handled, these have to wait until the next cycle before they have an opportunity to
broadcast. This behaviour of the dynamic segment is similar to the event-triggered
behaviour in a CAN bus, by allowing nodes access to the bus in a prioritized fashion
if it is available [16].
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In order to maintain the schedule, each ECUs clock must be synchronized. This is
done by the static segment of FlexRay and at least two nodes are required. In order
to initialize a FlexRay clock synchronization at startup, certain startup frames are
transmitted from specific nodes. This process is called a cold-start and the nodes
responsible for sending the startup frames are called cold-start nodes. Upon comple-
tion of the cold-start, two other nodes are preconfigured to broadcast special sync
frames while the other nodes are idle. This process will synchronize each node’s
internal oscillator to the network’s tick. A clock must not exceed an offset of 0.15 %
of the reference clock. Due to e.g. frequency differences between ECUs, two nodes’
clocks may initially be the same but drift apart over time and thereby resulting in
a maximally allowed drift of 0.3 %. To avoid such an event, the Network Idle Time
slot adjusts the clock accordingly to the drift of the previous cycle.

A FlexRay frame consists of a 5-byte header, between 0-254 bytes of payload and
a 3-byte trailer. The content of the frame structure can be seen in Table 2.3. The
payload length is at maximum 254 bytes, which is about 30 times the size of a CAN
payload length [12], [13].

Table 2.3: Structure of a FlexRay frame.

Field name Le.ngth Detalils
[bits]
Reserved bit 1 Reserved bit

Indicates whether the data packet con-

Payl le indi 1 .
ayload preamble indicator tains a payload.

Indicates whether the data packet is a

Null frame indicator 1 Null frame.

Sync frame indicator 1 o oo whether the data packet i 2
Sync frame.

Startup frame indicator 1 groeates whether the data packet fs a

Startup frame.

Frame ID 11 Packet identifier.

Length indicator for the amount of

Payload length 7 bytes in the payload.
CRC for header. Covers the Null frame
Header CRC 1 indicator to Payload length.
Cycle count 6 Indicator for current cycle.
The actual payload of the frame.
Data field (payload) 0-254 bytes | Transmitter data is signaled by a "1"
and a receiver NACK by a "0".
Payload CRC 24 CRC of the payload.
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2.2.3 LIN

The Local Interconnect Network (LIN) protocol is used for automotive applications
such as power windows, central locks etc. (where CAN would overperform). These
are applications that do not have such high demands on being time or safety crit-
ical. It was a commonly deployed standard accepted in 2002, created by the LIN
consortium which was initiated in 1998. It is a single-ended system that is designed
so that 16 ECUs can share the media that the bus provides, reaching speeds of up
to 20 kbps. However, the most important feature of LIN is that it should be cost
efficient, high data rates were never the key requirement.

The multi-user access of the LIN bus is built on a Master/Slave configuration, with
one Master and up to 15 Slaves. The slaves are only allowed to transmit after they
have been polled with a header by the master. However, as it is a bus system,
two slaves can also engage in a master initiated communication and potentially all
information on the bus can be read by any unit attached to it [13].

A LIN transmission occurs during a LIN frame slot, which consists of a Message
Header, Message Response and a response space. The header is transmitted to the
bus by the master node and the response by the slave after a short processing time
called the response space, as can be seen in Figure 2.4. The master node can itself
also act as a slave in the exchange of data, as it contains a slave task in parallel with
the master task.

Frame Slot

Sync Break Sync Identifier Data Field Checksum

I

Response
space

| Message Header | | Message Response |

Figure 2.4: Structure of a LIN frame slot, with both the Master node’s Message
Header and the Slave node’s Message Response.

The Message Header consists of three fields: A Sync Break field, Sync field and an
Identifier field. The break field consists of 13 dominant bits (0) and a recessive bit
delimiter, with the purpose of announcing to all nodes that a message is incoming.
Following is the sync field which allows the slave to determine the transmission rate
that the master uses by calculating the time between two falling edges in the 8-bit
pattern of "0x55" (01010101). The slave can then synchronize its internal baud rate
to match the bus. The identifier field consists of 6 ID bits and 2 parity bits. It
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is using the identifier field that each node can determine if they are a publisher or
subscriber to the specific identifier. Each LIN bus has 64 IDs, of which 60 are used
for carrying data and the remaining are for diagnostics, extensions and protocol
enhancements.

The Message Response is divided into two fields, namely a Data field and a Check-
sum field. Based on the identifier field of the header, a slave will recognize that it
has been addressed and put its response in the data field. The data field contains
1-8 bytes and the following checksum is of 8 bits. The checksum algorithms can vary
between different versions of LIN, but the classic is performed by simply summing
the data bytes and the ID.

To configure the system, a so-called LIN description file (LDF) is used. The LDF
defines on which ID each node will act, what actions should be executed, the baud
rate and delays. After the LDF has been processed by a system generator, the
master node immediately begins its procedure of sending headers. An additional
mechanism of putting nodes to sleep in order to save power may also be imple-
mented. However, this action is mainly active during diagnostics of the network or
if the whole LIN bus has been inactive for more than four seconds [17], [18].

2.2.4 MOST

For automotive applications requiring larger bandwidth, which is mostly infotain-
ment applications, the bus most commonly used is the Media Oriented Systems
Transport (MOST). The MOST corporation was founded in 1998 and MOST is
an optical data bus technology that can achieve data rates up to 150 Mbps. The
MOST technology provides a synchronous transmission of audio and video data as
well as specifying interfaces and functions for infotainment applications at a high
abstraction level and is optimized for streaming data. However, unlike previously
mentioned technologies, MOST is not only involving the Physical and Data Link
layer but the whole 7-layer OSI reference model. MOST may be used for a variety
of bit rates, depending on the application, and are available in three different gen-
erations (MOST25, MOST50, MOST150) that ranges from 25 to 150 Mbps. Higher
bit rates may be available, but are not of official release [19], [20], [21].

2.2.4.1 System Description

A MOST network topology is based on a ring, either an actual or a virtual, which
can consist of up to 64 MOST devices. It is a synchronous network, with one MOST
device acting as a Timing Master that continuously sends the preamble that every
frame begins with. The other nodes in the network can then use this to synchronize
their clocks. The network itself most commonly follows a one-directed ring topology,
but may also be of star topology for specific implementations. Due to the 7-layered
OSI implementation, a MOST system can simply add and remove nodes on de-
mand. In order to configure each ECU within the network, MOST offers a channel
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dedicated to control messages. The other two channels available to a MOST applica-
tion are a synchronous and an asynchronous channel for data transmission [13], [22].

The architecture of a MOST device consists of three main parts, namely a Physical
Interface, Network Services and so-called Function Blocks (FBlocks). The architec-
ture in contrast to the OSI-model is visualized in Figure 2.5. The physical interface
that interacts with the hardware can be either optical or electrical, depending on the
MOST generation (where MOST25 is only optical). The MOST Network Interface
Controller (NIC) manages the different network services in the MOST architecture
and controls the access to the three different channels. The FBlocks are the in-
terfaces to the available function and services of a device. Devices may offer these
services towards an application or to the MOST network. A FBlock can be defined
as different types, namely as a Controller, Slave or Human Machine Interface (HMI).
Controllers control one or more FBlocks that are of the type Slave, which has no
information about the network. An example of a controller would be the Netblock,
which is responsible for the administration of a device (e.g. has a list of all the func-
tions and manages all the addresses of the device). HMIs can be compared to a User
Interface (UT), as they are used for interaction between the user and the devices [23].

Function || Function
Application Block Block
7
Network Service
Presentation Application Socket Stream
6 Service
Session
5
Transport Network Service
4 Basic Level
Network
3
Data Link MOST Network Interface
2 Controller(NIC)
Physical Optical Physical Layer/
1 Electrical Physical Layer

Figure 2.5: Visual representation of the MOST architecture (in gray) in contrast
to the OSI-model (in yellow).
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2.2.4.2 Frame Format

A MOST message could be distributed over several MOST frames, which represent
the constantly repeated structure in which the MOST traffic is organized. The three
channels are represented in the frame structure, as one frame contains the respective
channel for a synchronous transmission of streaming data, an asynchronous trans-
mission of packet data and the transmission of control data. A visual representation
of this can be seen in Figure 2.6. The frame format also depends on what MOST
generation that is used, as they significantly differ in available sizes. A MOST25
frame consists of 64 bytes, a MOST50 frame the double i.e. 128 bytes due to the
doubled bandwidth and likewise a MOST150 frame consists of 384 bytes. Out of
these frame sizes, the channel dedicated for control messages take up 2 bytes for
MOST25 and 4 bytes for MOST50 and MOST150 out of each frame [23].

MOST25 Control | Synchronous | Asynchronous

Channel Channel Channel

64 bytes

MOST50 Control Synchronous Asynchronous

Channel Channel Channel

128 bytes

MOST150 Control Synchronous Asynchronous

Channel Channel Channel

384 bytes

Figure 2.6: Visual representation of a MOST frame for the different generations.
Each frame has dedicated bytes for control messages (2 bytes for MOST25 and 4
bytes for MOST50 & MOST150) and the remaining bytes are split between the

asynchronous and synchronous channels.

2.3 Background of Automotive Ethernet

The incentive to adopt Ethernet in the automotive industry is to prepare for the
increasing bandwidth demands of the future. More complex systems will comple-
ment the many ECUs already present in vehicles today, and with them comes even
further requirements. The high performing technologies implemented in vehicles
today, such as FlexRay and MOST, are expensive and complex as well as unable
to reach the exponentially increasing bandwidth demands. However, Ethernet net-
works have proven to be efficient in other areas and could be the solution to the
bandwidth demands now required in the automotive industry [24].
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2.3.1 Switched network background

The majority of Ethernet networks installed today does not rely on the CSMA /CD
mechanism of the original IEEE Ethernet. CSMA/CD was based on the ALOHA
method for multi-user access, which simply involves retransmissions in case of col-
lisions, with the addition of establishing when the channel is occupied as well as
an exponential random back-off period in case of collisions. Switched networks
with Point-to-Point (P2P) links was the next step for Ethernet networks, making
CSMA/CD somewhat obsolete. Two units PHYs will be directly connected and
packets will traverse according to the addresses established between the PHYs. The
communication in switched networks is called full duplex and it is controlled by a
MAC which provides a mechanism to decide when packets should be sent. This,
in turn, enables flow control and allows for limited resource consumption in terms
of buffering and switching bandwidth. Each Ethernet interface has a unique serial
number assigned to it, known as the MAC address, which consists of 48 bits. The
MAC address is used in the switched network to determine if a node should read
the packets full content or simply forward it, i.e. if the destination address of the
Ethernet frame matches the node’s MAC address [13].

Ethernet has been adapted to many different areas and industries, such as aviation
and telecommunications, all of which has some adaptations to the original IEEE
Ethernet in order to match their respective restrictions. The automotive industry
is no different, it would like to reuse as much of existing technologies as possible.

2.3.2 BroadR-Reach

BroadR-Reach is an Ethernet standard on the physical layer, which reduces con-
nectivity loss and cable weight. It utilizes an unshielded single twisted pair cable
that together with the IEEE 802.3 standard reliably deliver up to 100 Mbps. The
cable should not exceed over 15 meters due to the high possibility of electromagnetic
distortion in vehicles. Compared to IEEE 1000Base-T and IEEE 100TX, which uses
65-80 MHz bandwidth, Broad-R Reach utilizes only 33.3 MHz but can deliver up
to 100 Mbps as a result of the high spectral efficiency gained from encoding tech-
niques in the Physical Layer [25]. The standard can incorporate multiple ECUs and
systems can access information simultaneously, making the link full-duplex. The
common Master/Slave method is used to determine the clock between systems.

2.3.3 Ethernet backbone network

Cost is a substantial incentive for the automotive industry, which is one of the rea-
sons that there will never be only one communication technology used throughout
a vehicle. For menial tasks, it is better to use a low-cost technology rather than a
complex and more expensive technology. However, the interconnection possibilities
of the ECUs would benefit from a switched backbone network. In that way, the
different tasks in a vehicle will only employ the technology most suitable for its
case and still be connected with other parts of the vehicle. The use case for Eth-
ernet in automotives would be as the backbone network. Instead of ECUs having
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interfaces for several bus technologies, they would employ a specific one and then
communicate to a gateway which in turn can encapsulate the message and forward
it via Ethernet frames. It would allow any ECU to communicate via these gateways,
where the Ethernet frame could add/strip headers to match the frames of e.g. CAN
or FlexRay. The identifier concept used in broadcasting schemes, e.g. identifiers
in CAN or assigned transmission slots in FlexRay, would be related to destination
ports/addresses on a gateway [26].

Furthermore, a switched system is more fault tolerant than a wired bus where a
single faulty node can break the entire communication. Fortunately, in a switched
network a faulty node will only affect its direct neighbours. If one part of the back-
bone network is turned off, the remainder of the nodes can still operate [27].

There are many different areas in a vehicle that utilize and depend on communication
technologies. However, the demands for each area vary significantly. Table 2.4
displays different domains in a vehicle and examples of their respective tasks [28].
Figure 2.7 represents a possible scenario of Ethernet implemented as a backbone
network, where ECUs with technology best suited for specific domains are still
employed and can further communicate via Ethernet. This would reduce the cost
for individual ECUs as well as providing better bandwidth possibilities [26].

Ethernet Backbone

Switch
Gateway Gateway Gateway Gateway

ECU1 ECU1 — Ecu1 £— Ecu1 = ECU1
. Gw o 5 £
fie) 4 o c
£ © ] =

=

S o 5 3

ECU 2 ECU 2 — ECU 2 & — ECU2 £ ECU 2

LIN FlexRay FlexRay MOST

Figure 2.7: Representation of how a potential Ethernet backbone network could
function in a vehicle.
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Table 2.4: Vehicular functional domains and application examples [28].

Functional domain Applications

Powertrain Control data from e.g. engine, gearbox etc.

Chassis Control data from suspension, steering, brak-
ng etc.

Driving unrelated data from e.g. climate
control, mirrors, window lifts etc.

Control data such as speed limit information,
lane departure warnings etc.

Presentation data from e.g.  dashboard,
head-up display etc.

Driving unrelated data from e.g. hand-free
phones, rear seat entertainment etc.

Body & Comfort

Driver assistance

Telematics/Infotainment

Entertainment

2.3.4 Ethernet AVB / TSN

Audio Video Bridging (AVB) is an extension to Ethernet designed to provide time
synchronized, deterministic and low latency streaming services. One of the reasons
work began on developing AVB as an extension for Ethernet was due to the sig-
nificant increase in Audio/Video applications and ECUs overall. In a vehicle these
applications extend to camera devices and infotainment devices, but there is also
a significant increase in control data. The extension was developed as a standard
by IEEE and the further advancement on the AVB standard was renamed to Time-
Sensitive Network (TSN). The development includes a set of IEEE standards from
the 802.1 family and interacts on layer 2 in the OSI-model. The base standards can
be seen in Table 2.5. In order to synchronize devices in the network, the Precision
Time Protocol (PTP) along with the Best Master Clock Algorithm (BMCA) is used.
The BMCA determines a grandmaster, i.e. a master node, from which the refer-
ence clock is sent to the slaves through PTP messages. An example of how PTP
messages distribute clock values can be seen in Figure 2.8. This ensures a precise
synchronization among nodes within the network [24], [29], [30].
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Timestamps known by the Slave:

t2 t1, t2 t1, 12, t3 t1, 12,13, t4
Clock 2 3
Slave
Sync Delay Request
message message
Sync Followup Delay Response
message (t1) message (t4)
Clock
Master t1 t4
Time

Figure 2.8: An example of how PTP messages can distribute clock values used to
synchronize nodes in a network.

Table 2.5: The base standards of TSN [29].

Standard Title

IEEE Std 802.1Q - 2018 Bridges and Bridged Networks

[EEE Std 802.1Qbv - 2016 | Enhancements for Scheduled Traffic

Station and Media Access Control Connec-

IEEE Std 802.1AB - 2016 tivity Discovery (specifies the Link Layer

Discovery Protocol (LDPP))

Timing and Synchronization for Time-

IEEE Std 802.1AS - 2011 Sensitive Applications in Bridged Local Area

Networks

IEEE Std 802.1Qav - 2009 F(?rwarding ‘and Queuing Enhancements for
Time-Sensitive Streams

IEEE Std 802.1AX - 2014 Link Aggregation

IEEE Std 802.1BA - 2011 | Audio Video Bridging (AVB) Systems

[EEE Std 802.1CB - 2017 :E?lri?}e, Replication and Elimination for Reli-
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2.3.4.1 System Configuration

When implementing a TSN network there is much configuration needed, to allow for
a stable flow between two endpoints (talker /listener) via bridges (Ethernet switches).
A centralized approach is to use two logical entities, with interfaces to the endpoints
and bridges, called the Centralized Network Configuration (CNC) and the Central-
ized User Configuration (CUC). The CNC has global knowledge of network resources
and topology. It manages the connections in the network and acts as a proxy for the
network. Requirements for connections is provided by the CUC, which establishes
the requirements with the endpoints. Knowing the communication requirements,
the CNC can organize the transmission paths for the streams between the talkers
and listeners. A representation of the communication flow of the centralized config-
uration approach can be seen in Figure 2.9. There is potential for this configuration
to be automated in the future development of TSN [24], [31], [32].

Centralized User
Configuration (CUC)

~
R
re

’ Centralized Network N
’ Configuration (CNC) \

Bridge/ Bridge/
Switch Switch

Listener

Talker

Figure 2.9: A representation of a centralized configuration setup. The endpoints
communicate requirements to the CUC which informs the CNC, which then can
organize transmission path for the streams of the network.

22



2. Background Theory for Communication Technologies in Automotives

2.3.5 System Description

A problem with Ethernet in automotives is that it is not suitable for real-time and
safety-critical applications. This is why several extensions to Ethernet is under de-
velopment and of great interest for the autonomous drive industry. In 2005, the
so-called Best Effort (BE) traffic was introduced. This allowed prioritized traffic
to have a higher Quality-of-Service (QoS). Following BE, the AVB standard was
developed and later turned into the TSN task group with focus on safety-critical
and time-sensitive transmissions. TSN employs the Stream Reserve Protocol (SRP)
to establish AVB streams. Furthermore, TSN divides AVB traffic into two types:
stream reservation class A and B (SR-A & SR-B). They differ in terms of maximum
allowed latency, for SR-A a latency of 2 ms is required and for SR-B a latency of 50
ms, over seven hops. All the legacy Ethernet frames are covered by the Best Effort
class, which employs a priority based scheduler. The concept of Time-Triggered
(TT) traffic was also introduced. For this extended Ethernet, there are now three
traffic types available: BE, AVB and TT. They are prioritized differently, which
makes them suitable for different applications. TT the highest priority and BE the
lowest, AVB class A has higher priority than B. In automotive Ethernet networks
these three traffic types will be present, resulting in a complex transmission sched-
ule. There is a specification that ensures that class-A AVB and TT traffic can only
reserve 75% of the total bandwidth, this is to prevent starvation of the less priori-

tized traffic [33], [34].

The egress ports of the bridges has a prioritized queue, ranging from 0 — 7 where 7 is
the highest priority. Every frame contains a priority field that matches the bridges
queue. The TT traffic typically has the highest priority, followed by the two classes
of AVB streams and the five remaining queues for different BE traffic. The trans-
mission schedule employs so-called Transmission Selection Algorithms (TSA). For
AVB queues the most common is the Credit-Based Shaper (CBS) and for the TT
queue, the Time Aware Shaper (TAS). An example of a typical bridge configuration,
containing these elements, can be seen in Figure 2.10. The gates for each queue is
further controlled by a TAS, which Figure 2.11 is an example of, that determines
whether the port-specific gates should be opened or closed. Briefly explained, TAS
organizes the traffic into periodic cycles where TT traffic is prioritized. There is a
time reference distributed between the bridges and as the example in Figure 2.11
shows, the entry T000:10000000 in the control list implies that at the relative time
"T000" the highest priority queue is open (1) [27], [34].
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TT-7 AVB (SR-A)-6 AVB (SR-B)-5 BE-4 BE-0
CBS CBS
Gate Gate Gate Gate — Gate

Transmission Selection

Figure 2.10: A representation of how a typical TSN bridge is configured. The
port-specific gates are controlled by a TAS, see Figure 2.11 for an example.

Time Aware Shaper (TAS)

Gate Control List:
T000:1000000
T001:0000000
T002:0111111

T125:1000000

Figure 2.11: An example of a TAS, where at relative time "T000" only the highest
priority traffic is allowed (i.e. TT traffic).

AVB frames are only allowed transmission if: (i) the AVB queue is open, (ii) there
is no higher priority frame being transmitted, (iii) if the CBS allows it, i.e. if the
available credit count is greater than or equal to zero. An example of a transmis-
sion schedule is presented in Figure 2.12. The credits are initialized to zero and
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increases over time when no AVB transmission is present, with a configuration pa-
rameter called idle slope. Credits are decreased, with a so-called send slope, when
AVB frames are being transmitted and they are frozen if the gate is closed. If the
AVB queue is emptied while positive credit, it is reset to zero. It is when the credits
are negative that the BE traffic potentially is allowed transmission. Given that the
gates are open for the BE queues and that no higher prioritized frame is being trans-
mitted. During BE traffic transmission the credits are regenerated and if they reach
a non-negative value, pending AVB frames will be transmitted instead [33], [34], [35].

Credits \ ! ! ! ! N
BE BE
Queue

SR-B
AVB.- SR-B SR-B
Queue

. BE SR-B | SR-B

Time

n
Transmission

Figure 2.12: An example of how the transmission is scheduled in case of TT,
AVB and BE traffic. The credit development is included, with the idle slope and
send slope present. Worth noticing is also how the credits are frozen during a TT
transmission and that due to the credits being negative, the next AVB frame is not
allowed transmission.

2.3.5.1 Frame Format

As an extension to the regular Ethernet frame, TSN includes an addition to the
VLAN Tag segment. A representation of an Ethernet frame with the TSN addition
is displayed in Figure 2.13. The frame consists of a preamble and a Start of Frame
pattern (SOF), which are then followed by the layer 2 MAC destination and source
addresses. Following this is the IEEE 802.1Q VLAN Tag segment, which consists of
four fields: Tag Protocol Identifier (TPID), Priority Code Point (PCP), Drop Eligi-
ble Indicator (DEI) and a VLAN Identifier (VID). The PCP indicates the priority
of the data, i.e. what traffic class the frame belongs to. The DEI is a congestion
protection, as it indicates if the frame can be dropped in case of congestion, and
the VID specifies which VLAN the frame belongs to. Also included in a frame is
the Ethertype (or length for small frames), which specifies what protocol (if any) is
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transported in the frame. The main contribution in a frame is the payload, which is
followed by a Frame Check Sequence (FCS); a 32 bit CRC. Furthermore, in between
two Ethernet frames there is minimum inter-frame gap (IFG) [32], [35].

7B 1B 6B 6B 4B 2B 42B - 1500B 48 | 12B
Preamble | SOF MAC MAC VLAN Tag | Ethertype/ Payload FCS | IFG
Destination | Source Length
16 bits 3 bits 1 bit 12 bits
Tag Protocol Priority Code Drop Eligible VLAN
Identifier Point Indicator Identifier

Figure 2.13: Representation of an Ethernet frame, with the TSN extension to
the VLAN Tag. Included is also the minimum inter frame gap (IFG) between two
Ethernet frames.

2.4 AUTOSAR

Traditionally in the automotive industry, the way to develop new electrics and elec-
tronics (E/E) has been to have one unit for every service. In modern vehicles,
the architecture connecting the E/E area has increased significantly in complexity.
The AUTomotive Open System ARchitecture (AUTOSAR) was launched in order
to provide a standardized architecture to the basic software and interfaces to ap-
plications. A standardized architecture allows for compatibility between different
Original Equipment Managers (OEMs) and sub manufacturers. One can imagine
the software and hardware as being two puzzle-pieces interconnected in a very spe-
cific way for each OEM. However, the AUTOSAR architecture functions as a middle
ground which allows any software to communicate with any hardware and an illus-
tration can be seen in Figure 2.14. This abstraction of software from hardware is
the core function of the AUTOSAR architecture and it allows for more flexible de-
velopment in the automotive industry. Another important aspect of AUTOSAR is
to allow reusability of functions across vehicle networks and OEM boundaries [2].
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Software
Software
- AUTOSAR
Hardware @ 1I
Hardware

Figure 2.14: Illustration of how the AUTOSAR architecture relieves the constraint
of matching specific software to hardware, by abstracting the two from each other.

2.4.1 AUTOSAR Infrastructure

The AUTOSAR architecture consists of a layered topology, which includes three
main layers that each has a specific purpose. The layered architecture provides a
level of abstraction between the different layers, resulting in the middleware solution
that is adaptable to any OEM solution regarding both software and hardware. A
drawback is that the layered architecture requires more available memory and com-
puting power, as you need the entire AUTOSAR stack for any application. This
can also make a simple software task become complicated since all implementations
must follow the AUTOSAR methodology.

2.4.1.1 Basic Software

The bottom layer, i.e. the layer connected to the hardware, in the architecture is
the Basic Software layer (BSW). This layer itself consists of several sublayers con-
taining different modules which are used by the Application Layer via the RunTime
Environment (RTE), such as events and timers. The BSW contains all necessary
modules in order to perform a complete abstraction of Software components (SWC)
and it is often standardized by AUTOSAR. If a module is missing to a specific SWC,
one may implement a Complex Driver. It allows users to implement standalone ex-
tensions to an AUTOSAR application, or e.g. enhance legacy functions. None of
which are however supported by AUTOSAR [36], [37].

2.4.1.2 Runtime Environment

The RTE, also known as Runtime Infrastructure, is a middleware that abstracts
the network topology for inter- and intra-ECU information exchange between the
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application SWCs and also between the BSW and applications. In other words, the
RTE maps and configures the SWC runnables to OS tasks and lets events trigger
the runnable SWC. This is performed by a Virtual Function Bus (VFB) and acts
as the communication medium between SWCs and the BSW. The RTE itself does
not contain any runtime components and functions more as a barrier, concatenating
functionality between the SWC and the OS/BSW without letting the two sides in
contact.

2.4.1.3 Application layer

The Application Layer contains the collection of SWC applications that interact
with the RTE. The application layer also uses the VFB to communicate with other
SWCs, either in the same ECU or in the network, by defining a connection of
connectors and ports. These connections may be of two types; Sender-Receiver and
Client-Server. How these may be implemented is specified in the RTE and their
usage in the VFB [38].

2.5 SOME/IP

The classic bus systems in automotives are based on a signal-oriented approach,
where the sender decides whether data should be transmitted or not independent of a
receivers request. Consequently, a significant amount of non-requested data is occu-
pying the bandwidth which may cause internal communication problems. SOME/IP
is a middleware using a different approach, namely service-oriented communication.
In contrast to signal-oriented systems, service-oriented systems communicate data
exclusively on the receivers demand and not when a sender finds a transmission ap-
propriate, hence an increase in qualitative bit rate. An illustration of the difference
between the two orientations can be seen in Figure 2.15. Two important concepts in
the architecture are the Service Discovery (SD) and Publish/Subscribe (Pub/Sub).
SD allows each node (ECU) to dynamically find a variety of functionality among
other nodes and configuring access, i.e. set up a subscription to a node which is
illustrated in Figure 2.16. As a result, a newly connected node may find functions
without being preconfigured with the knowledge of which nodes that hold the 