
The fast-lane development of
Automotive Ethernet for Autonomous Drive
Master’s thesis in Communication Engineering

Oscar Aspestrand
Viktor Claeson

Department of Electrical Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2018

Master’s thesis EX026/2018

The fast-lane development of
Automotive Ethernet for Autonomous Drive

Oscar Aspestrand & Viktor Claeson

Department of Electrical Engineering
Chalmers University of Technology

Gothenburg, Sweden 2018

The fast-lane development of Automotive Ethernet for Autonomous Drive
Oscar Aspestrand
Viktor Claeson

© Oscar Aspestrand & Viktor Claeson, 2018.

Supervisors: Jonas Törnqvist, Qrtech
Alexander Polya, Qrtech
Chouaib Bencheikh Lehocine, Department of Signals and Systems
Examiner: Professor Alexandre Graell i Amat, Department of Electrical Engineer-
ing

Master’s Thesis EX026/2018
Department of Electrical Engineering
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover:A photo of the AUTOSAR and Linux devices used in the communication
link.

Typeset in LATEX
Gothenburg, Sweden 2018

iv

The fast-lane development of Automotive Ethernet for Autonomous Drive
Oscar Aspestrand & Viktor Claeson
Department of Electrical Engineering
Chalmers University of Technology

Abstract
Autonomous drive has emerged as a new field of interest in recent years. The major
car manufacturers are trying to implement the technologies needed for autonomous
solutions, and the concept of Automotive Ethernet is being evaluated. It is of inter-
est to investigate the current situation of the communication technologies present in
vehicles today. How does the bus technologies cope with the increasing demands on
bandwidth and how compatible are the different solutions. The purpose of this thesis
is to answer these questions by discussing the relevant technologies in an Automotive
Ethernet implementation. Focus lie on the construction of a small scale practical
model aimed at mimicking a potential scenario where an Automotive Ethernet im-
plementation is needed, in order to evaluate how feasible the current technologies
are. The communication involves a node with the operating system AUTOSAR,
common in vehicles today, and another node with Linux.

The results of the link evaluation were unexpectedly deficient and an investigation
over the whole link was performed to localize the defective area. The implemented
TCP/IP module in the AUTOSAR system displayed significant issues during large
data transmissions. Small structural additions were implemented to the existing
TCP/IP stack, which slightly improved the results, however the overall system re-
mained significantly below capacity. In conclusion, the results indicate that there
is still more work required for the relevant technologies before these implementa-
tions can be applied in practice. Further development suggestions are made, which
imply that further research should be made on the upcoming Adaptive AUTOSAR
platform as well as the Time-Sensitive Network protocol.

Keywords: Automotive Ethernet, AUTOSAR, CAN, FlexRay, LIN, MOST, SOME/IP,
TSN.

v

Acknowledgements
We would like to start by thanking our examiner Prof. Alexandre Graell i Amat and
supervisor Chouaib Bencheikh Lehocine at Chalmers for their support and feedback
throughout the thesis.

Moreover, a great thank you to the people at QRTECH and especially our super-
visors, Jonas Törnqvist and Alexander Polya, as well as Joakim Plate and Joakim
Hesselgren for support and guidance. We have learned a lot from you during this
project and all your help has been very appreciated. In addition, we would like to
thank QRTECH for the opportunity to carry out our thesis and for supplying us
with the equipment, work space and breakfast to perform this project.

Oscar Aspestrand & Viktor Claeson, Gothenburg, June 2018

vii

Contents

List of Figures xi

List of Tables xv

List of Acronyms xvii

1 Introduction 1
1.1 Purpose . 2
1.2 Scope . 2
1.3 Related Work . 3
1.4 Thesis Outline . 3

2 Background Theory for Communication Technologies in Automo-
tives 5
2.1 Preliminaries . 5

2.1.1 OSI-model . 5
2.1.2 Cyclic Redundancy Check . 6
2.1.3 TCP Socket Communication 8
2.1.4 TCP Delay Efficiency . 8

2.2 Bus technologies in automotives . 9
2.2.1 CAN . 10
2.2.2 FlexRay . 11
2.2.3 LIN . 14
2.2.4 MOST . 15

2.2.4.1 System Description 15
2.2.4.2 Frame Format . 17

2.3 Background of Automotive Ethernet 17
2.3.1 Switched network background 18
2.3.2 BroadR-Reach . 18
2.3.3 Ethernet backbone network 18
2.3.4 Ethernet AVB / TSN . 20

2.3.4.1 System Configuration 22
2.3.5 System Description . 23

2.3.5.1 Frame Format . 25
2.4 AUTOSAR . 26

2.4.1 AUTOSAR Infrastructure . 27
2.4.1.1 Basic Software . 27

ix

Contents

2.4.1.2 Runtime Environment 27
2.4.1.3 Application layer . 28

2.5 SOME/IP . 28
2.5.1 Header format . 30
2.5.2 SOME/IP-SD . 31

2.5.2.1 Initial Wait Phase 32
2.5.2.2 Repetition Phase . 32
2.5.2.3 Main Phase . 32
2.5.2.4 Functioning Modes 32

2.6 Adaptive AUTOSAR . 33
2.6.1 Technology Drivers . 33

3 Implementation of a Communication Link 35
3.1 Development Environment . 35
3.2 System model . 36

3.2.1 Source . 36
3.2.2 AUTOSAR node . 37
3.2.3 Linux node . 38
3.2.4 Sink . 38

4 Results and Analysis of the Link Performance 39
4.1 The Communication Link . 39

4.1.1 TCP Throttling . 39
4.1.2 TCP Transmission Check . 39

4.2 Round Trip Time . 40
4.3 Data Throughput . 41

4.3.1 Linux . 41
4.3.2 AUTOSAR . 44
4.3.3 Full link . 48

4.4 OS load . 49

5 Discussion 51
5.1 Further analysis of the results . 51

5.1.1 AUTOSAR . 51
5.1.2 PSH packets . 52
5.1.3 OS load . 53

5.2 Improvements & further development 53
5.2.1 Adaptive AUTOSAR Platform 53
5.2.2 ArcCore version . 54
5.2.3 BroadR-Reach . 54
5.2.4 SOME/IP . 54
5.2.5 TSN . 55

6 Conclusion 57

Bibliography 57

x

List of Figures

2.1 Transmitter and receiver CRC algorithm 7
2.2 Socket communication procedure between a server and a client socket. 8
2.3 Visual representation of one FlexRay duty cycle, where the cycle is

typically 1-5 ms. It consists of four segments, where the Network Idle
Time is a predefined interruption between cycles to adjust for any
potential drifts. 12

2.4 Structure of a LIN frame slot, with both the Master node’s Message
Header and the Slave node’s Message Response. 14

2.5 Visual representation of the MOST architecture (in gray) in contrast
to the OSI-model (in yellow). 16

2.6 Visual representation of a MOST frame for the different generations.
Each frame has dedicated bytes for control messages (2 bytes for
MOST25 and 4 bytes for MOST50 & MOST150) and the remaining
bytes are split between the asynchronous and synchronous channels. . 17

2.7 Representation of how a potential Ethernet backbone network could
function in a vehicle. 19

2.8 An example of how PTP messages can distribute clock values used
to synchronize nodes in a network. 21

2.9 A representation of a centralized configuration setup. The endpoints
communicate requirements to the CUC which informs the CNC, which
then can organize transmission path for the streams of the network. . 22

2.10 A representation of how a typical TSN bridge is configured. The
port-specific gates are controlled by a TAS, see Figure 2.11 for an
example. 24

2.11 An example of a TAS, where at relative time "T000" only the highest
priority traffic is allowed (i.e. TT traffic). 24

2.12 An example of how the transmission is scheduled in case of TT, AVB
and BE traffic. The credit development is included, with the idle
slope and send slope present. Worth noticing is also how the credits
are frozen during a TT transmission and that due to the credits being
negative, the next AVB frame is not allowed transmission. 25

2.13 Representation of an Ethernet frame, with the TSN extension to the
VLAN Tag. Included is also the minimum inter frame gap (IFG)
between two Ethernet frames. 26

xi

List of Figures

2.14 Illustration of how the AUTOSAR architecture relieves the constraint
of matching specific software to hardware, by abstracting the two from
each other. 27

2.15 Illustration of a bus system with a signal- and service-oriented ap-
proach. Worth noting is how in a signal-oriented approach the bus is
occupied by a continuous transmission of signal values. 29

2.16 Illustration of the service-oriented approach, used in a some/ip sys-
tem, with a client/server methodology of subscribing to an event. . . 29

2.17 The header format of a SOME/IP frame, where the payload is of
variable length as it depends on what lower layer headers that are
present. The highlighted areas in gray is covered by the value in the
Length field. 30

3.1 Representation of the system model that was constructed. It aims
at mimicking an automotive scenario where a more central located
computational prominent ECU (Linux) gets fed data via a computa-
tionally weaker endpoint ECU (AUTOSAR). The connection between
the ECUs is an Ethernet cable and the sink of the model is a simple
presentation stage. 36

4.1 Wireshark throughput capture of the Linux node receiving a 202834
kB file from the Source, where the first 12 seconds is a startup phase
of the system and not a part of the actual transmission. The average
throughput level is stable and with a good average rate of around 80
Mbps . 41

4.2 Wireshark IO graph of the Linux node receiving a 202834 kB file
from the Source. It highlights the data rate over the approximate 20
seconds of transmission, where the average rate is around 80 Mbps. . 42

4.3 Wireshark throughput capture of the Linux node transmitting a 202834
kB file to the Sink. The average throughput level is stable and at a
high rate of around 80 Mbps. 43

4.4 Wireshark IO graph of the Linux node transmitting a 202834 kB
file to the Sink. It highlights the data rate over the approximate 20
seconds of transmission, where the average rate is around 80 Mbps. . 43

4.5 Wireshark throughput capture of the AUTOSAR node only trans-
mitting a continuous data flow to the Linux node. The performance
is poor, with a low average rate and large fluctuations in the flow
of data. Also worth noting is how the transmission rate is zero for
several large time periods, the most prominent at around 550 elapsed
seconds. 44

4.6 Wireshark IO graph of the AUTOSAR node only transmitting a con-
tinuous data flow to the Linux node. The data rate is around 0.08
Mbps and there are time periods where it is zero, which are connected
to retransmission waiting periods. There are higher peaks of the data
rate, which indicates that the system has a higher capacity. 45

xii

List of Figures

4.7 Wireshark throughput capture of the AUTOSAR node only receiving
a continuous flow of data. The performance is mediocre, with an
average receiving rate around 1 Mbps and large fluctuations in the
flow of data. Worth noting are the drops down to zero rate, which
correlated to when TCP retransmissions occurred. 46

4.8 Wireshark IO graph of the AUTOSAR node only receiving a con-
tinuous data flow. The average rate is around 1 Mbps, however an
interesting note is that there are higher peaks indicating that it has
not reached its max capacity. 46

4.9 Wireshark throughput capture of the AUTOSAR node when receiving
a data flow that is further forwarded. The links performance is bad,
with a low average rate and long periods with no transmissions. The
packet lengths are not stable at the maximum payload size of 1460
because of the receiving window getting filled. Then packets are sent
with sizes that match the space left in the window. The packets sent
with zero length are so-called ZeroWindowProbes, with the purpose
of checking whether the receiver has new space in its window. 47

4.10 Wireshark throughput capture of the AUTOSAR node when forward-
ing a received data flow. The links performance is bad, as the rate is
low as well as long periods with no transmissions. The packet lengths
are not stable at the maximum payload size of 1460 because of the
application SW not always buffering sizes that are multiples of 1460. 48

4.11 Wireshark throughput capture of the AUTOSAR node forwarding its
received data to the Linux node. Poor performance is displayed as the
throughput is highly fluctuating, with a low average rate of around
110 kbps and with long periods of no transmission. 49

xiii

List of Figures

xiv

List of Tables

2.1 A representation of the OSI-model, including a short description for
each of the 7 layers. 6

2.2 Structure of a CAN frame. 11
2.3 Structure of a FlexRay frame. 13
2.4 Vehicular functional domains and application examples [28]. 20
2.5 The base standards of TSN [29]. 21
2.6 Possible types of a SOME/IP message. 31

4.1 iRTT Measurements . 40
4.2 OS Load Measurements. 50

xv

List of Tables

xvi

List of Acronyms

AUTOSAR AUTomotive Open System ARchitecture
AVB Audio Video Bridging
BE Best Effort
BMCA Best Master Clock Algorithm
BSW Basic Software
CAN Controller Area Network
CBS Credit Based Shaper
CNC Centralized Network Controller
CRC Cyclic Redundancy Check
CSMA/CD Carrier Sense Multiple Access with Collision Detection
CUC Centralized User Configuration
E/E Electrics and Electronics
ECU Electronic Control Units
FCS Frame Check Sequence
IFG Inter Frame Gap
LDF LIN Description File
LDPP Link Layer Discovery Protocol
LIN Local Interconnect Network
lwIP lightweight IP
MAC Medium Access Control
MOST Media Oriented Systems Transport
NIC Network Interface Controller
OEM Original Equipment Manager
OSI Open System Interconnection
P2P Point-to-Point
PDU Protocol Data Unit
PTP Precision Time Protocol
Pub/Sub Publish/Subscribe
QoS Quality of Service
RPC Remote Procedure Call
RTE RunTime Environment
RTT Round Trip Time
SD Service Discovery
SOME/IP Scalable service-Oriented MiddlewarE over IP
SRP Stream Reserve Protocol
SWC SoftWare Component
TAS Time Aware Shaper

xvii

List of Tables

TDMA Time Division Multiple Access
TSA Transmission Selection Algorithm
TSN Time-Sensitive Network
TT Time-Triggered
VFB Virtual Function Bus
VID VLAN Identifier
VLAN Virtual Local Area Network

xviii

1
Introduction

In the modern day automotive industry, the increasing implementations of new appli-
cations and infotainment systems implies that a large amount of Electronic Control
Units (ECUs) are required within a vehicle. Comparing contemporary automobiles
in the industry to former versions from 30-40 years ago, the increase in electronic
equipment is immense. Vehicles today include ECUs for a variety of features, in-
cluding aspects such as safety as well as comfort. With some of the ECUs connected
to crucial systems, the communication system in a vehicle must not falter. Thus,
it must be a high-speed-high-reliability system. As there exist many well-developed
communication protocols for other fields of expertise, an approach has been to adapt
these to fit in the automotive industry in combination with specifically constructing
some protocols for the automotive industry. With the expanding system complexity,
the need for a standardized architecture when implementing communication systems
in vehicles is vital. The AUTomotive Open System ARchitecture (AUTOSAR) De-
velopment Partnership was launched in 2003 by leading automotive manufacturers
and suppliers and defines a standardized architecture for communication systems in
vehicles, with the aim of keeping the application software independent of the hard-
ware [1], [2].

Furthermore, ECUs running on different operating systems may lack the possibility
to communicate without a compatibility extension. Scalable service-Oriented Mid-
dlewarE over IP (SOME/IP) is a protocol developed to function as a middleware so-
lution for the automotive industry and allows ECUs with different operating systems
to communicate. The protocol includes serialization, which transforms application
data into a stream of bytes instead of system specific structured data [3]. In addi-
tion, SOME/IP middleware shifts the communication concept from a signal-oriented
to a service-oriented. This means that information is sent when the receiver finds
a need for specific data, in contrast to signal-oriented transmissions where informa-
tion is sent when the sender finds a need e.g. when a value is changed or updated [4].

The AUTOSAR systems in the industry today mostly rely on bus systems like CAN,
LIN or FlexRay to transport data between ECUs in the vehicle. These bus type
systems rely on a broadcast data concept. This means that when one ECU has data
to transmit, the content is uploaded to the bus, where any receiving ECU can pick
it up. However, the data occupy the bus for all other ECUs even though they do
not need that data. This can cause overload issues, especially since the bus systems
were originally designed to transmit small data packets. The sensors and infotain-
ment implemented in vehicles today includes communication of a larger amount of

1

1. Introduction

data, which was not a concept in the initial bus link idea. An example of this could
be how a constant flow of LIDAR data should be sent to a neural network which
then can establish objects in front of a vehicle [5]. The data constraints has led to
an initiative of implementing Ethernet to automotives, which is a well functioning
protocol in other areas and it can handle large amounts of data. In vehicles however,
the requirements on speed and reliability are more crucial as communication failures
could lead to severe consequences [6], [7].

The implementation of Ethernet usually also implies that TCP/IP, in accordance
with the OSI-model, is used. This is one of the issues that the implementation of
Automotive Ethernet faces, since TCP/IP does not generally provide high-speed-
high-reliability communication. An example is that TCP/IP employs concept such
as retransmission if a packet was not received correctly. That scenario in a vehicle
could lead to fatal consequences if ECUs in charge of safety features do not trans-
mit/receive the packet immediately or if it is corrupted. An alternative to TCP/IP
and the OSI stack is to employ Ethernet extensions such as Audio Video Bridging /
Time-Sensitive Network (AVB/TSN). As the data is not supposed to be transported
across network boundaries in automotives, AVB/TSN protocols can provide suffi-
cient communication using only Ethernet frames. The frames utilize the VLAN tag
to prioritize the TSN frames and thereby AVB/TSN is able to provide low-latency
and high-quality transmission of streaming data [4].

1.1 Purpose
The core purpose of this thesis is an in-depth investigation of how far the automotive
industry has come in terms of high-speed-high-reliability communication technolo-
gies. Specifically, investigate Automotive Ethernet and evaluate whether it can be
a solution for autonomous drive applications. The focus lie on the construction of a
small scale test system, which is developed with the purpose of providing measure-
ment results and context to the theoretical background.

1.2 Scope
As AUTOSAR is continuously in development, improvements could have been made
with every new version and therefore the results may be version related. The version
used during the project was the AUTOSAR 4.2.2 release. In this version SOME/IP
is not implemented as a module yet, thus only a literature and feasibility study will
be performed. To implement SOME/IP as a complex driver was under consider-
ation but was deemed too time demanding and complicated for the scope of this
thesis. Likewise, to update the existing AUTOSAR available at the company was
considered and rejected due to time constraints.

Furthermore, in the designed practical model, the Ethernet cables and version used
was the regular 100Base-Tx instead of the BroadR-Reach thought-out for Auto-

2

1. Introduction

motive Ethernet. This is due to equipment and cost restrictions at the company.
Similarly, for the comparison of different communication technologies, only Ether-
net will be implemented in practice. The discussion and comparison to the other
technologies will be theoretical and utilizing previous work within the field.

1.3 Related Work
In [8], the authors successfully implemented a running TCP/IP Ethernet connec-
tion on an AUTOSAR platform. The microcontroller used (TMS570LS3137) was
less powerful than the one used in this thesis (MPC5744P). However, their goal
was to create a running web application which does not require quantities of either
memory or execution speed. In addition, different development tools and protocol
versions where used compared to this project, such as the TCP/IP stack and AU-
TOSAR configuration.

Degermark et al. [9] used a single-core 32-bit processor, Pentium Pro, with the
same clock speed of 200MHz as the processor used in this project. They managed
to perform quick IP routing lookups of forwarding tables at gigabit speeds, hence
our processor should be capable of a desirable bit rate hardware-wise.

1.4 Thesis Outline
The structure for the remainder of this thesis is organized as follows. In Chapter 2,
some background theory is presented regarding important concepts of Automotive
Ethernet. Chapter 3 covers the implementation choices and methods utilized when
designing the communication link. The result of the practical model when transmit-
ting images over the link is presented in Chapter 4. Chapter 5 includes a discussion
of the topics included in this thesis as well as further analysis of the results of the
communication link. Finally, Chapter 6 summarizes the conclusions and suggestions
for future improvements.

3

1. Introduction

4

2
Background Theory for

Communication Technologies in
Automotives

This chapter aims at introducing the reader to information about the communica-
tion technologies and concepts involved in the Automotive Ethernet development.
Firstly, some preliminaries are briefly explained.

2.1 Preliminaries
The following concepts were deemed important to be familiar with, as they are
referenced in the thesis and therefore a brief description was included.

2.1.1 OSI-model
The Open System Interconnection (OSI) model is a conceptual framework that alle-
viates terminology and complex interactions within computer networks. It consists
of 7 layers ranging from an application software down to the physical interface on
the hardware, Table 2.1 display the different layers along with a short description.
The communication flow goes from the higher levels to the lower ones as data is
passed on through the network. The OSI-model is often used as a reference for
protocols to determine at what abstraction level they operate e.g. TCP is a layer 4
protocol and Ethernet a layer 1 protocol.

5

2. Background Theory for Communication Technologies in Automotives

Table 2.1: A representation of the OSI-model, including a short description for
each of the 7 layers.

7 Application Network connection to the application, pro-
viding services.

6 Presentation Data conversion to different representations
and encryption.

5 Session Managing connection sessions, e.g. open,
close and recover.

4 Transport End-to-end transmission of data.
3 Network Packet forwarding and routing scheme.

2 Data Link Transfer data between nodes within one net-
work.

1 Physical Connection to the physical transmission
medium.

2.1.2 Cyclic Redundancy Check
Cyclic Redundancy Check (CRC) is an error-detecting method, which uses cyclic
codes to control if raw data has been corrupted. It includes a data verification to
the original raw bytes, on which the receiving side evaluates if the data is correct or
not.

The CRC operation can mathematically be explained as a binary data word being
treated as a polynomial, with each polynomial coefficient being zero or one, and
divided by a generator polynomial often referred to as a CRC polynomial. The
remainder of the division is the data verification check of the original raw bytes. It
is sent as a Frame Check Sequence (FCS) together with the raw bytes (as a trailer).
On the receiving side, the CRC is repeated and the remainder is compared to the
sent FCS. If they match, the result is most likely correct. There is a chance that
there was just the right amount of bit errors to go undetected by the CRC. This is
due to the CRC polynomial used, as each only have a limited amount of flipped bits
it can provide protection against.

An example of how a CRC is calculated can be seen in Figure 2.1. The divisor
is a polynomial which is predefined in each device and is one bit larger than the
remainder. The divisor performs an XOR operation in a sliding window-manner on
the whole payload step-wise. To start with, on the transmission side, the payload
is right-padded with zeros equal to the amount of bits of the desired remainder,
and then the bitwise XOR operation with the divisor starts. The division process
continues until the payload, without the padding, is a zero-vector, leaving only the
padding bits as the remainder. Upon arrival at the receiver, the payload and CRC
trailer is extracted and the same operation is repeated, with the same divisor as the
transmitter used. However, in this case, the payload is right-padded with the re-
mainder instead of zeros. If the final result is zero, the message is most likely correct.

6

2. Background Theory for Communication Technologies in Automotives

There are several methods of constructing a polynomial, which is dependent on
the application. Some provide good protection for long data words and some the
opposite. One of the most commonly used is the IEEE CRC-32 polynomial, where
the polynomial consist of 33 bits and the remainder is 32 bits [10].

1 Transmitter :
2 Payload : 100100100011110 , D iv i s o r : 1011 (CRC−3−GSM, used in mobile

networks)
3

4 100100100011110 000 <− zero pad , w i l l become remainder .
5 1011 <− Div i so r .
6 001000100011110 000
7 1011 <−2nd b i t = 0 , t h e r e f o r e moving on to next 1 in payload
8 000011100011110 000 . . . in order to a l i g n the d i v i s o r .
9 1011

10 000001010011110 000
11 1011
12 000000001011110 000
13 1011
14 000000000000110 000
15 101 1
16 000000000000011 100
17 10 11
18 000000000000001 010
19 1 011
20 000000000000000 001 <− 001 w i l l be the remainder , hence the CRC check .
21

22 Rece iver :
23 Payload : 100100100011110 , D iv i s o r : 1011 (CRC−3−GSM, used in mobile

networks)
24 Received CRC check : 001
25

26 100100100011110 001 <− Right pad with the CRC check .
27 1011 <− Div i so r known in r e c e i v e r .
28 001000100011110 001
29 1011
30 000011100011110 001
31 1011
32 000001010011110 001
33 1011
34 000000001011110 001
35 1011
36 000000000000110 001
37 101 1
38 000000000000011 101
39 10 11
40 000000000000001 011
41 1 011
42 000000000000000 000 <− A zero vec to r shows c o r r e c t message .

Figure 2.1: Transmitter and receiver CRC algorithm

7

2. Background Theory for Communication Technologies in Automotives

2.1.3 TCP Socket Communication
TCP/IP communication is built on the foundation of so-called socket communica-
tion. A TCP socket is an internal representation of an endpoint connected with the
local IP address and a port number. A socket can be defined as one out of two roles,
either as a server socket or as a client socket. The former binds a socket descriptor
to a specific port number and defines for what type of connections it should han-
dle e.g. TCP or UDP. The server is then set to a listening mode where it awaits
connections from client sockets, whom it will accept or reject depending on if they
fulfill the correct specifications. If a connection is accepted, the socket pair can now
begin to send and receive data.

The client socket does not require a binding to specific port number, it will receive
the first available one. The client socket must attempt a connect call towards an
ip-endpoint (server socket), specifying what type of connection that should be es-
tablished and await an accept. This process can be seen in Figure 2.2. The types
of socket are called: Datagram sockets, Stream sockets and Raw sockets. Datagram
sockets are also-called connectionless sockets and are used by UDP, in contrast to
Stream sockets which are called connection-oriented sockets and are used by TCP.
A raw socket simply encapsulates data without any formatting from the transport
layer.

Figure 2.2: Socket communication procedure between a server and a client socket.

2.1.4 TCP Delay Efficiency
Most TCP stacks employ the so-called Nagle algorithm, which enforces the send
command to wait for a maximum segment sized packet before transmission. This
behaviour is only interrupted when an acknowledgement (ACK) is received on the

8

2. Background Theory for Communication Technologies in Automotives

last remaining bytes in flight, i.e. so far un-acked bytes. The send buffer is then
transmitted regardless of the filled segment size. The Nagle algorithm is in most
cases an effective way to utilize the bandwidth and to avoid congestion problems,
by not transmitting packets with a small payload and large overhead. However,
it might not be suitable for all types of systems, one example being time-critical
real-time services. In these systems, latency is of highest importance and the large
overhead cost might be insignificant compared to the transmission delay when wait-
ing for maximum segment sized packets.

An issue that can occur with Nagle’s algorithm is when it is paired with the so-called
TCP delayed acknowledgements. This is also a delay efficiency method that most
TCP stacks utilize, which allows the receiving application to respond with less than
one ACK per segment. Furthermore, it can respond with a window update and an
eventual immediate response alongside the ACK. However, when paired with the
Nagle algorithm, there are scenarios where they inhibit each other. An example of
this is if the receiving end does not respond with an ACK due to the whole pack-
age not being received yet. At the same time, the Nagle algorithm is hindering
the transmission of the last remaining bytes of the package because it does not fill
the maximum segment size. This stalls the communication for the duration of the
timeout on the ACK [11].

2.2 Bus technologies in automotives
Bus-communication is the standard for data exchange in real-time between ECUs
in automotives. For serial data exchange between ECUs in automotive applications
only the lower layers of the OSI model are necessary, i.e. the Data Link Layer and
Physical Layer, in combination with the Application Layer. The reduction of the
original seven-layer OSI stack simplifies and improves the speed of the communica-
tion. Bus type communication relies on a broadcast type concept, where if a node
wants to communicate it transmits data to the bus and any other node can receive
the message. Even if there is a specific node that requires the data, the message
is still allocated on the bus for all other nodes as well. This can be a source of
congestion problems at high data loads [12]. There exists a few different bus type
protocols used for different applications, the most common in vehicles are CAN,
FlexRay, LIN and MOST (see Sections 2.2.1-2.2.4). The different network technolo-
gies must all provide solutions to the fundamentals of sharing a serial interface with
several users, organizing the access to the medium, provide a certain data rate and
a robust transmission.

9

2. Background Theory for Communication Technologies in Automotives

2.2.1 CAN
The Controller Area Network (CAN) protocol, common in vehicles today, was devel-
oped to allow microcontrollers to communicate in automotive applications. It was
developed by Robert Bosch in 1983 and it later became a standard for serial data
exchange in real-time between ECUs in automotives. CAN is a distributed com-
munication system organized as a hierarchy, which operates using a simplified OSI
stack mainly relying on the physical and data link layer. Instead of including source
or destination addresses in the messages transmitted like e.g. in Ethernet, each
message contains an identifier which specifies the message priority. As a transmit-
ted message is available for any node on the bus, each node performs an individual
test to determine if the message is of importance and should be accepted or not.
Every node on the bus responds with an acknowledgement on an error-free CAN
frame by setting a dominant bit in the acknowledgement space (see Table 2.2) of
the same packet. The receiving nodes do this regardless to if they actually use the
data or not. The transmitting node recognizes an acknowledgement without know-
ing from which receiving node it originated from. Adding that with the fact that
one acknowledgement is sufficient for the transmitter to perceive it as a successful
transmission, it causes a source of uncertainty as there is no proof that the intended
receiver node has seen the packet.

The hierarchy of the CAN network relies on the message priorities determined by the
identifiers. The method to determine which identifier is more important than the
other is called arbitration and it distinguishes between dominant (0) and recessive
(1) bits in the Message-IDentifiers. In the case of two ECUs starting to transmit at
the same time, the ECU whose message starts with the largest amount of dominant
bits is determined as the higher priority. In other words, a lower Message-ID implies
a higher priority. The node with a higher Message-ID, and thereby a lower message
priority, must wait a given fallback time before it can try to access the bus again.
However, if the CAN-bus is idle then any node can start transmitting .

The control over the transmission media is a combination of CSMA/CD (Carrier
Sense Multiple Access with Collision Detection) and NBA (Non-destructive Bitwise
Arbitration). This combination enables the maximum use of a CAN bus data trans-
fer capability. The CAN system provides high reliability, flexibility and robustness
in harsh environments such as within a vehicle. However, it was constructed to
handle small data loads and it can only achieve data rates of 1 Mbps (High-Speed
CAN). This means that it cannot handle the high data loads that some of the new
applications require. There can also be issues regarding congestion control, as higher
priority messages can block the bus for long periods of time if the data load is large
[7], [13], [14], [15].

10

2. Background Theory for Communication Technologies in Automotives

Table 2.2: Structure of a CAN frame.

Field name Length
[bits] Details

Start of frame (SOF) 1 Indicates the start of a frame transmission
and is always a 0.

Identifier (A) 11 First part of the unique identifier, which
also indicates the message priority.

Remote Transmission
Request (RTR) or Sub-
stitute Remote Request
(SRR)

1
RTR must be dominant (0) for data
frames and recessive (1) for so-called Re-
mote Frames. SRR must be recessive (1).

Identifier extension bit
(IDE) 1

With 11-bit identifiers it must be domi-
nant (0) and for 29-bit identifiers it must
be recessive (1) and then includes the two
following fields.

Identifier (B) 18 Second part of the unique identifier, which
also indicates the message priority.

Remote Transmission
Request (RTR) 1

RTR must be dominant (0) for data
frames and recessive (1) for so-called ’Re-
mote Frames’.

Reserved bits 1 or 2 One or two reserved bits depending on 11-
bit or 29-bit identifier case.

Data length code (DLC) 4 Specifies the length of data field (0-8
bytes).

Data field 0-64 The payload of the frame (length accord-
ing to the DLC field).

CRC 15 The cyclic redundancy check.
CRC delimiter 1 Must be recessive (1).

ACK slot 1

Is set to recessive (1) by the transmitter
and all receiving nodes set this to domi-
nant (0) if they have received the frame
error-free.

ACK delimiter 1 Must be recessive (1).
End of frame (EOF) 7 Must be recessive (1).

2.2.2 FlexRay
As the demand for communication required larger amounts of data being trans-
mitted from an increasing amount of ECUs, the CAN standard did not meet the
requirements. The FlexRay serial communication protocol was developed for data
exchange in more safety-critical automotive applications, with higher demands on
reliability and safety of data as well as delivering 10 Mbps compared to CAN with
1 Mbps. One of the most significant differences, compared to CAN, is that FlexRay
uses a Time Division Multiple Access (TDMA) scheme for the Medium Access Con-
trol (MAC). Instead of sensing the medium and terminate transmission on noticing

11

2. Background Theory for Communication Technologies in Automotives

a busy bus, TDMA provides each ECU in the closed network with time slots which
correlates to the time-triggered communication architecture of FlexRay. The archi-
tecture’s core property of being time-triggered provides a static activation of actions
on each cycle, which typically is between one to five milliseconds. FlexRay was sup-
posed to be a flexible network capable of asynchronous operations, which a closed
TDMA network does not supply. Hence, FlexRay networks provide a dynamic seg-
ment in combination with the static segment. A FlexRay cycle containing these
segments is portrayed in Figure 2.3. Besides the static and dynamic segments, there
is also a segment called Symbol Window. It is primarily used for maintenance and
to identify special cycles (such as a cold-start). Furthermore, between two cycles is
a Network Idle Time segment which is a predefined interruption utilized to adjust
for potential drifts in the system [13], [16].

Figure 2.3: Visual representation of one FlexRay duty cycle, where the cycle is
typically 1-5 ms. It consists of four segments, where the Network Idle Time is a
predefined interruption between cycles to adjust for any potential drifts.

The static segment is divided into several slots, correlating to an ECU in the net-
work. To avoid slowing down the FlexRay cycle by adding more static slots, the
dynamic segment can allow transmission of the less critical data. The dynamic
segment is also divided into slots, so-called minislots, which are prioritized accord-
ing to Frame IDs. The segment is of a fixed length, limiting the data that can be
transmitted per cycle. Furthermore, each minislot is of a configurable duration that
is typically a so-called macrotick (microsecond) long. A macrotick is the smallest
unit of time within a FlexRay network and is synchronized on every node. If the
ECU corresponding to a minislot is not ready for transmission, the time slot in the
dynamic segment is lost and the next minislot can take its turn. When an ECU
decides to broadcast, all future minislots are set on hold until the broadcast is com-
pleted. If the dynamic segment window is filled before all ECUs minislots have been
handled, these have to wait until the next cycle before they have an opportunity to
broadcast. This behaviour of the dynamic segment is similar to the event-triggered
behaviour in a CAN bus, by allowing nodes access to the bus in a prioritized fashion
if it is available [16].

12

2. Background Theory for Communication Technologies in Automotives

In order to maintain the schedule, each ECUs clock must be synchronized. This is
done by the static segment of FlexRay and at least two nodes are required. In order
to initialize a FlexRay clock synchronization at startup, certain startup frames are
transmitted from specific nodes. This process is called a cold-start and the nodes
responsible for sending the startup frames are called cold-start nodes. Upon comple-
tion of the cold-start, two other nodes are preconfigured to broadcast special sync
frames while the other nodes are idle. This process will synchronize each node’s
internal oscillator to the network’s tick. A clock must not exceed an offset of 0.15 %
of the reference clock. Due to e.g. frequency differences between ECUs, two nodes’
clocks may initially be the same but drift apart over time and thereby resulting in
a maximally allowed drift of 0.3 %. To avoid such an event, the Network Idle Time
slot adjusts the clock accordingly to the drift of the previous cycle.

A FlexRay frame consists of a 5-byte header, between 0-254 bytes of payload and
a 3-byte trailer. The content of the frame structure can be seen in Table 2.3. The
payload length is at maximum 254 bytes, which is about 30 times the size of a CAN
payload length [12], [13].

Table 2.3: Structure of a FlexRay frame.

Field name Length
[bits] Details

Reserved bit 1 Reserved bit

Payload preamble indicator 1 Indicates whether the data packet con-
tains a payload.

Null frame indicator 1 Indicates whether the data packet is a
Null frame.

Sync frame indicator 1 Indicates whether the data packet is a
Sync frame.

Startup frame indicator 1 Indicates whether the data packet is a
Startup frame.

Frame ID 11 Packet identifier.

Payload length 7 Length indicator for the amount of
bytes in the payload.

Header CRC 11 CRC for header. Covers the Null frame
indicator to Payload length.

Cycle count 6 Indicator for current cycle.

Data field (payload) 0-254 bytes
The actual payload of the frame.
Transmitter data is signaled by a "1"
and a receiver NACK by a "0".

Payload CRC 24 CRC of the payload.

13

2. Background Theory for Communication Technologies in Automotives

2.2.3 LIN
The Local Interconnect Network (LIN) protocol is used for automotive applications
such as power windows, central locks etc. (where CAN would overperform). These
are applications that do not have such high demands on being time or safety crit-
ical. It was a commonly deployed standard accepted in 2002, created by the LIN
consortium which was initiated in 1998. It is a single-ended system that is designed
so that 16 ECUs can share the media that the bus provides, reaching speeds of up
to 20 kbps. However, the most important feature of LIN is that it should be cost
efficient, high data rates were never the key requirement.

The multi-user access of the LIN bus is built on a Master/Slave configuration, with
one Master and up to 15 Slaves. The slaves are only allowed to transmit after they
have been polled with a header by the master. However, as it is a bus system,
two slaves can also engage in a master initiated communication and potentially all
information on the bus can be read by any unit attached to it [13].

A LIN transmission occurs during a LIN frame slot, which consists of a Message
Header, Message Response and a response space. The header is transmitted to the
bus by the master node and the response by the slave after a short processing time
called the response space, as can be seen in Figure 2.4. The master node can itself
also act as a slave in the exchange of data, as it contains a slave task in parallel with
the master task.

Figure 2.4: Structure of a LIN frame slot, with both the Master node’s Message
Header and the Slave node’s Message Response.

The Message Header consists of three fields: A Sync Break field, Sync field and an
Identifier field. The break field consists of 13 dominant bits (0) and a recessive bit
delimiter, with the purpose of announcing to all nodes that a message is incoming.
Following is the sync field which allows the slave to determine the transmission rate
that the master uses by calculating the time between two falling edges in the 8-bit
pattern of "0x55" (01010101). The slave can then synchronize its internal baud rate
to match the bus. The identifier field consists of 6 ID bits and 2 parity bits. It

14

2. Background Theory for Communication Technologies in Automotives

is using the identifier field that each node can determine if they are a publisher or
subscriber to the specific identifier. Each LIN bus has 64 IDs, of which 60 are used
for carrying data and the remaining are for diagnostics, extensions and protocol
enhancements.

The Message Response is divided into two fields, namely a Data field and a Check-
sum field. Based on the identifier field of the header, a slave will recognize that it
has been addressed and put its response in the data field. The data field contains
1-8 bytes and the following checksum is of 8 bits. The checksum algorithms can vary
between different versions of LIN, but the classic is performed by simply summing
the data bytes and the ID.

To configure the system, a so-called LIN description file (LDF) is used. The LDF
defines on which ID each node will act, what actions should be executed, the baud
rate and delays. After the LDF has been processed by a system generator, the
master node immediately begins its procedure of sending headers. An additional
mechanism of putting nodes to sleep in order to save power may also be imple-
mented. However, this action is mainly active during diagnostics of the network or
if the whole LIN bus has been inactive for more than four seconds [17], [18].

2.2.4 MOST
For automotive applications requiring larger bandwidth, which is mostly infotain-
ment applications, the bus most commonly used is the Media Oriented Systems
Transport (MOST). The MOST corporation was founded in 1998 and MOST is
an optical data bus technology that can achieve data rates up to 150 Mbps. The
MOST technology provides a synchronous transmission of audio and video data as
well as specifying interfaces and functions for infotainment applications at a high
abstraction level and is optimized for streaming data. However, unlike previously
mentioned technologies, MOST is not only involving the Physical and Data Link
layer but the whole 7-layer OSI reference model. MOST may be used for a variety
of bit rates, depending on the application, and are available in three different gen-
erations (MOST25, MOST50, MOST150) that ranges from 25 to 150 Mbps. Higher
bit rates may be available, but are not of official release [19], [20], [21].

2.2.4.1 System Description

A MOST network topology is based on a ring, either an actual or a virtual, which
can consist of up to 64 MOST devices. It is a synchronous network, with one MOST
device acting as a Timing Master that continuously sends the preamble that every
frame begins with. The other nodes in the network can then use this to synchronize
their clocks. The network itself most commonly follows a one-directed ring topology,
but may also be of star topology for specific implementations. Due to the 7-layered
OSI implementation, a MOST system can simply add and remove nodes on de-
mand. In order to configure each ECU within the network, MOST offers a channel

15

2. Background Theory for Communication Technologies in Automotives

dedicated to control messages. The other two channels available to a MOST applica-
tion are a synchronous and an asynchronous channel for data transmission [13], [22].

The architecture of a MOST device consists of three main parts, namely a Physical
Interface, Network Services and so-called Function Blocks (FBlocks). The architec-
ture in contrast to the OSI-model is visualized in Figure 2.5. The physical interface
that interacts with the hardware can be either optical or electrical, depending on the
MOST generation (where MOST25 is only optical). The MOST Network Interface
Controller (NIC) manages the different network services in the MOST architecture
and controls the access to the three different channels. The FBlocks are the in-
terfaces to the available function and services of a device. Devices may offer these
services towards an application or to the MOST network. A FBlock can be defined
as different types, namely as a Controller, Slave or Human Machine Interface (HMI).
Controllers control one or more FBlocks that are of the type Slave, which has no
information about the network. An example of a controller would be the Netblock,
which is responsible for the administration of a device (e.g. has a list of all the func-
tions and manages all the addresses of the device). HMIs can be compared to a User
Interface (UI), as they are used for interaction between the user and the devices [23].

Figure 2.5: Visual representation of the MOST architecture (in gray) in contrast
to the OSI-model (in yellow).

16

2. Background Theory for Communication Technologies in Automotives

2.2.4.2 Frame Format

A MOST message could be distributed over several MOST frames, which represent
the constantly repeated structure in which the MOST traffic is organized. The three
channels are represented in the frame structure, as one frame contains the respective
channel for a synchronous transmission of streaming data, an asynchronous trans-
mission of packet data and the transmission of control data. A visual representation
of this can be seen in Figure 2.6. The frame format also depends on what MOST
generation that is used, as they significantly differ in available sizes. A MOST25
frame consists of 64 bytes, a MOST50 frame the double i.e. 128 bytes due to the
doubled bandwidth and likewise a MOST150 frame consists of 384 bytes. Out of
these frame sizes, the channel dedicated for control messages take up 2 bytes for
MOST25 and 4 bytes for MOST50 and MOST150 out of each frame [23].

Figure 2.6: Visual representation of a MOST frame for the different generations.
Each frame has dedicated bytes for control messages (2 bytes for MOST25 and 4
bytes for MOST50 & MOST150) and the remaining bytes are split between the
asynchronous and synchronous channels.

2.3 Background of Automotive Ethernet

The incentive to adopt Ethernet in the automotive industry is to prepare for the
increasing bandwidth demands of the future. More complex systems will comple-
ment the many ECUs already present in vehicles today, and with them comes even
further requirements. The high performing technologies implemented in vehicles
today, such as FlexRay and MOST, are expensive and complex as well as unable
to reach the exponentially increasing bandwidth demands. However, Ethernet net-
works have proven to be efficient in other areas and could be the solution to the
bandwidth demands now required in the automotive industry [24].

17

2. Background Theory for Communication Technologies in Automotives

2.3.1 Switched network background
The majority of Ethernet networks installed today does not rely on the CSMA/CD
mechanism of the original IEEE Ethernet. CSMA/CD was based on the ALOHA
method for multi-user access, which simply involves retransmissions in case of col-
lisions, with the addition of establishing when the channel is occupied as well as
an exponential random back-off period in case of collisions. Switched networks
with Point-to-Point (P2P) links was the next step for Ethernet networks, making
CSMA/CD somewhat obsolete. Two units PHYs will be directly connected and
packets will traverse according to the addresses established between the PHYs. The
communication in switched networks is called full duplex and it is controlled by a
MAC which provides a mechanism to decide when packets should be sent. This,
in turn, enables flow control and allows for limited resource consumption in terms
of buffering and switching bandwidth. Each Ethernet interface has a unique serial
number assigned to it, known as the MAC address, which consists of 48 bits. The
MAC address is used in the switched network to determine if a node should read
the packets full content or simply forward it, i.e. if the destination address of the
Ethernet frame matches the node’s MAC address [13].

Ethernet has been adapted to many different areas and industries, such as aviation
and telecommunications, all of which has some adaptations to the original IEEE
Ethernet in order to match their respective restrictions. The automotive industry
is no different, it would like to reuse as much of existing technologies as possible.

2.3.2 BroadR-Reach
BroadR-Reach is an Ethernet standard on the physical layer, which reduces con-
nectivity loss and cable weight. It utilizes an unshielded single twisted pair cable
that together with the IEEE 802.3 standard reliably deliver up to 100 Mbps. The
cable should not exceed over 15 meters due to the high possibility of electromagnetic
distortion in vehicles. Compared to IEEE 1000Base-T and IEEE 100TX, which uses
65-80 MHz bandwidth, Broad-R Reach utilizes only 33.3 MHz but can deliver up
to 100 Mbps as a result of the high spectral efficiency gained from encoding tech-
niques in the Physical Layer [25]. The standard can incorporate multiple ECUs and
systems can access information simultaneously, making the link full-duplex. The
common Master/Slave method is used to determine the clock between systems.

2.3.3 Ethernet backbone network
Cost is a substantial incentive for the automotive industry, which is one of the rea-
sons that there will never be only one communication technology used throughout
a vehicle. For menial tasks, it is better to use a low-cost technology rather than a
complex and more expensive technology. However, the interconnection possibilities
of the ECUs would benefit from a switched backbone network. In that way, the
different tasks in a vehicle will only employ the technology most suitable for its
case and still be connected with other parts of the vehicle. The use case for Eth-
ernet in automotives would be as the backbone network. Instead of ECUs having

18

2. Background Theory for Communication Technologies in Automotives

interfaces for several bus technologies, they would employ a specific one and then
communicate to a gateway which in turn can encapsulate the message and forward
it via Ethernet frames. It would allow any ECU to communicate via these gateways,
where the Ethernet frame could add/strip headers to match the frames of e.g. CAN
or FlexRay. The identifier concept used in broadcasting schemes, e.g. identifiers
in CAN or assigned transmission slots in FlexRay, would be related to destination
ports/addresses on a gateway [26].

Furthermore, a switched system is more fault tolerant than a wired bus where a
single faulty node can break the entire communication. Fortunately, in a switched
network a faulty node will only affect its direct neighbours. If one part of the back-
bone network is turned off, the remainder of the nodes can still operate [27].

There are many different areas in a vehicle that utilize and depend on communication
technologies. However, the demands for each area vary significantly. Table 2.4
displays different domains in a vehicle and examples of their respective tasks [28].
Figure 2.7 represents a possible scenario of Ethernet implemented as a backbone
network, where ECUs with technology best suited for specific domains are still
employed and can further communicate via Ethernet. This would reduce the cost
for individual ECUs as well as providing better bandwidth possibilities [26].

Figure 2.7: Representation of how a potential Ethernet backbone network could
function in a vehicle.

19

2. Background Theory for Communication Technologies in Automotives

Table 2.4: Vehicular functional domains and application examples [28].

Functional domain Applications
Powertrain Control data from e.g. engine, gearbox etc.

Chassis Control data from suspension, steering, brak-
ing etc.

Body & Comfort Driving unrelated data from e.g. climate
control, mirrors, window lifts etc.

Driver assistance Control data such as speed limit information,
lane departure warnings etc.

Telematics/Infotainment Presentation data from e.g. dashboard,
head-up display etc.

Entertainment Driving unrelated data from e.g. hand-free
phones, rear seat entertainment etc.

2.3.4 Ethernet AVB / TSN
Audio Video Bridging (AVB) is an extension to Ethernet designed to provide time
synchronized, deterministic and low latency streaming services. One of the reasons
work began on developing AVB as an extension for Ethernet was due to the sig-
nificant increase in Audio/Video applications and ECUs overall. In a vehicle these
applications extend to camera devices and infotainment devices, but there is also
a significant increase in control data. The extension was developed as a standard
by IEEE and the further advancement on the AVB standard was renamed to Time-
Sensitive Network (TSN). The development includes a set of IEEE standards from
the 802.1 family and interacts on layer 2 in the OSI-model. The base standards can
be seen in Table 2.5. In order to synchronize devices in the network, the Precision
Time Protocol (PTP) along with the Best Master Clock Algorithm (BMCA) is used.
The BMCA determines a grandmaster, i.e. a master node, from which the refer-
ence clock is sent to the slaves through PTP messages. An example of how PTP
messages distribute clock values can be seen in Figure 2.8. This ensures a precise
synchronization among nodes within the network [24], [29], [30].

20

2. Background Theory for Communication Technologies in Automotives

Figure 2.8: An example of how PTP messages can distribute clock values used to
synchronize nodes in a network.

Table 2.5: The base standards of TSN [29].

Standard Title
IEEE Std 802.1Q - 2018 Bridges and Bridged Networks
IEEE Std 802.1Qbv - 2016 Enhancements for Scheduled Traffic

IEEE Std 802.1AB - 2016
Station and Media Access Control Connec-
tivity Discovery (specifies the Link Layer
Discovery Protocol (LDPP))

IEEE Std 802.1AS - 2011
Timing and Synchronization for Time-
Sensitive Applications in Bridged Local Area
Networks

IEEE Std 802.1Qav - 2009 Forwarding and Queuing Enhancements for
Time-Sensitive Streams

IEEE Std 802.1AX - 2014 Link Aggregation
IEEE Std 802.1BA - 2011 Audio Video Bridging (AVB) Systems

IEEE Std 802.1CB - 2017 Frame Replication and Elimination for Reli-
ability

21

2. Background Theory for Communication Technologies in Automotives

2.3.4.1 System Configuration

When implementing a TSN network there is much configuration needed, to allow for
a stable flow between two endpoints (talker/listener) via bridges (Ethernet switches).
A centralized approach is to use two logical entities, with interfaces to the endpoints
and bridges, called the Centralized Network Configuration (CNC) and the Central-
ized User Configuration (CUC). The CNC has global knowledge of network resources
and topology. It manages the connections in the network and acts as a proxy for the
network. Requirements for connections is provided by the CUC, which establishes
the requirements with the endpoints. Knowing the communication requirements,
the CNC can organize the transmission paths for the streams between the talkers
and listeners. A representation of the communication flow of the centralized config-
uration approach can be seen in Figure 2.9. There is potential for this configuration
to be automated in the future development of TSN [24], [31], [32].

Figure 2.9: A representation of a centralized configuration setup. The endpoints
communicate requirements to the CUC which informs the CNC, which then can
organize transmission path for the streams of the network.

22

2. Background Theory for Communication Technologies in Automotives

2.3.5 System Description
A problem with Ethernet in automotives is that it is not suitable for real-time and
safety-critical applications. This is why several extensions to Ethernet is under de-
velopment and of great interest for the autonomous drive industry. In 2005, the
so-called Best Effort (BE) traffic was introduced. This allowed prioritized traffic
to have a higher Quality-of-Service (QoS). Following BE, the AVB standard was
developed and later turned into the TSN task group with focus on safety-critical
and time-sensitive transmissions. TSN employs the Stream Reserve Protocol (SRP)
to establish AVB streams. Furthermore, TSN divides AVB traffic into two types:
stream reservation class A and B (SR-A & SR-B). They differ in terms of maximum
allowed latency, for SR-A a latency of 2 ms is required and for SR-B a latency of 50
ms, over seven hops. All the legacy Ethernet frames are covered by the Best Effort
class, which employs a priority based scheduler. The concept of Time-Triggered
(TT) traffic was also introduced. For this extended Ethernet, there are now three
traffic types available: BE, AVB and TT. They are prioritized differently, which
makes them suitable for different applications. TT the highest priority and BE the
lowest, AVB class A has higher priority than B. In automotive Ethernet networks
these three traffic types will be present, resulting in a complex transmission sched-
ule. There is a specification that ensures that class-A AVB and TT traffic can only
reserve 75% of the total bandwidth, this is to prevent starvation of the less priori-
tized traffic [33], [34].

The egress ports of the bridges has a prioritized queue, ranging from 0−7 where 7 is
the highest priority. Every frame contains a priority field that matches the bridges
queue. The TT traffic typically has the highest priority, followed by the two classes
of AVB streams and the five remaining queues for different BE traffic. The trans-
mission schedule employs so-called Transmission Selection Algorithms (TSA). For
AVB queues the most common is the Credit-Based Shaper (CBS) and for the TT
queue, the Time Aware Shaper (TAS). An example of a typical bridge configuration,
containing these elements, can be seen in Figure 2.10. The gates for each queue is
further controlled by a TAS, which Figure 2.11 is an example of, that determines
whether the port-specific gates should be opened or closed. Briefly explained, TAS
organizes the traffic into periodic cycles where TT traffic is prioritized. There is a
time reference distributed between the bridges and as the example in Figure 2.11
shows, the entry T000:10000000 in the control list implies that at the relative time
"T000" the highest priority queue is open (1) [27], [34].

23

2. Background Theory for Communication Technologies in Automotives

Figure 2.10: A representation of how a typical TSN bridge is configured. The
port-specific gates are controlled by a TAS, see Figure 2.11 for an example.

Figure 2.11: An example of a TAS, where at relative time "T000" only the highest
priority traffic is allowed (i.e. TT traffic).

AVB frames are only allowed transmission if: (i) the AVB queue is open, (ii) there
is no higher priority frame being transmitted, (iii) if the CBS allows it, i.e. if the
available credit count is greater than or equal to zero. An example of a transmis-
sion schedule is presented in Figure 2.12. The credits are initialized to zero and

24

2. Background Theory for Communication Technologies in Automotives

increases over time when no AVB transmission is present, with a configuration pa-
rameter called idle slope. Credits are decreased, with a so-called send slope, when
AVB frames are being transmitted and they are frozen if the gate is closed. If the
AVB queue is emptied while positive credit, it is reset to zero. It is when the credits
are negative that the BE traffic potentially is allowed transmission. Given that the
gates are open for the BE queues and that no higher prioritized frame is being trans-
mitted. During BE traffic transmission the credits are regenerated and if they reach
a non-negative value, pending AVB frames will be transmitted instead [33], [34], [35].

Figure 2.12: An example of how the transmission is scheduled in case of TT,
AVB and BE traffic. The credit development is included, with the idle slope and
send slope present. Worth noticing is also how the credits are frozen during a TT
transmission and that due to the credits being negative, the next AVB frame is not
allowed transmission.

2.3.5.1 Frame Format

As an extension to the regular Ethernet frame, TSN includes an addition to the
VLAN Tag segment. A representation of an Ethernet frame with the TSN addition
is displayed in Figure 2.13. The frame consists of a preamble and a Start of Frame
pattern (SOF), which are then followed by the layer 2 MAC destination and source
addresses. Following this is the IEEE 802.1Q VLAN Tag segment, which consists of
four fields: Tag Protocol Identifier (TPID), Priority Code Point (PCP), Drop Eligi-
ble Indicator (DEI) and a VLAN Identifier (VID). The PCP indicates the priority
of the data, i.e. what traffic class the frame belongs to. The DEI is a congestion
protection, as it indicates if the frame can be dropped in case of congestion, and
the VID specifies which VLAN the frame belongs to. Also included in a frame is
the Ethertype (or length for small frames), which specifies what protocol (if any) is

25

2. Background Theory for Communication Technologies in Automotives

transported in the frame. The main contribution in a frame is the payload, which is
followed by a Frame Check Sequence (FCS); a 32 bit CRC. Furthermore, in between
two Ethernet frames there is minimum inter-frame gap (IFG) [32], [35].

Figure 2.13: Representation of an Ethernet frame, with the TSN extension to
the VLAN Tag. Included is also the minimum inter frame gap (IFG) between two
Ethernet frames.

2.4 AUTOSAR
Traditionally in the automotive industry, the way to develop new electrics and elec-
tronics (E/E) has been to have one unit for every service. In modern vehicles,
the architecture connecting the E/E area has increased significantly in complexity.
The AUTomotive Open System ARchitecture (AUTOSAR) was launched in order
to provide a standardized architecture to the basic software and interfaces to ap-
plications. A standardized architecture allows for compatibility between different
Original Equipment Managers (OEMs) and sub manufacturers. One can imagine
the software and hardware as being two puzzle-pieces interconnected in a very spe-
cific way for each OEM. However, the AUTOSAR architecture functions as a middle
ground which allows any software to communicate with any hardware and an illus-
tration can be seen in Figure 2.14. This abstraction of software from hardware is
the core function of the AUTOSAR architecture and it allows for more flexible de-
velopment in the automotive industry. Another important aspect of AUTOSAR is
to allow reusability of functions across vehicle networks and OEM boundaries [2].

26

2. Background Theory for Communication Technologies in Automotives

Figure 2.14: Illustration of how the AUTOSAR architecture relieves the constraint
of matching specific software to hardware, by abstracting the two from each other.

2.4.1 AUTOSAR Infrastructure
The AUTOSAR architecture consists of a layered topology, which includes three
main layers that each has a specific purpose. The layered architecture provides a
level of abstraction between the different layers, resulting in the middleware solution
that is adaptable to any OEM solution regarding both software and hardware. A
drawback is that the layered architecture requires more available memory and com-
puting power, as you need the entire AUTOSAR stack for any application. This
can also make a simple software task become complicated since all implementations
must follow the AUTOSAR methodology.

2.4.1.1 Basic Software

The bottom layer, i.e. the layer connected to the hardware, in the architecture is
the Basic Software layer (BSW). This layer itself consists of several sublayers con-
taining different modules which are used by the Application Layer via the RunTime
Environment (RTE), such as events and timers. The BSW contains all necessary
modules in order to perform a complete abstraction of Software components (SWC)
and it is often standardized by AUTOSAR. If a module is missing to a specific SWC,
one may implement a Complex Driver. It allows users to implement standalone ex-
tensions to an AUTOSAR application, or e.g. enhance legacy functions. None of
which are however supported by AUTOSAR [36], [37].

2.4.1.2 Runtime Environment

The RTE, also known as Runtime Infrastructure, is a middleware that abstracts
the network topology for inter- and intra-ECU information exchange between the

27

2. Background Theory for Communication Technologies in Automotives

application SWCs and also between the BSW and applications. In other words, the
RTE maps and configures the SWC runnables to OS tasks and lets events trigger
the runnable SWC. This is performed by a Virtual Function Bus (VFB) and acts
as the communication medium between SWCs and the BSW. The RTE itself does
not contain any runtime components and functions more as a barrier, concatenating
functionality between the SWC and the OS/BSW without letting the two sides in
contact.

2.4.1.3 Application layer

The Application Layer contains the collection of SWC applications that interact
with the RTE. The application layer also uses the VFB to communicate with other
SWCs, either in the same ECU or in the network, by defining a connection of
connectors and ports. These connections may be of two types; Sender-Receiver and
Client-Server. How these may be implemented is specified in the RTE and their
usage in the VFB [38].

2.5 SOME/IP
The classic bus systems in automotives are based on a signal-oriented approach,
where the sender decides whether data should be transmitted or not independent of a
receivers request. Consequently, a significant amount of non-requested data is occu-
pying the bandwidth which may cause internal communication problems. SOME/IP
is a middleware using a different approach, namely service-oriented communication.
In contrast to signal-oriented systems, service-oriented systems communicate data
exclusively on the receivers demand and not when a sender finds a transmission ap-
propriate, hence an increase in qualitative bit rate. An illustration of the difference
between the two orientations can be seen in Figure 2.15. Two important concepts in
the architecture are the Service Discovery (SD) and Publish/Subscribe (Pub/Sub).
SD allows each node (ECU) to dynamically find a variety of functionality among
other nodes and configuring access, i.e. set up a subscription to a node which is
illustrated in Figure 2.16. As a result, a newly connected node may find functions
without being preconfigured with the knowledge of which nodes that hold the spe-
cific functions. Nodes may also Pub/Sub, allowing nodes to decide which content
to communicate in an active subscription. Nodes may also use other nodes’ func-
tionality and methods by a remote procedure call (RPC). However, all nodes may
not operate on the same OS and the communication might become incomprehen-
sive. In order to solve this particular problem, SOME/IP implements serialization
which parses structures such as RPC Protocol Data Units (PDU) in AUTOSAR
and converts these to byte streams ready for transmission. When a node receives
the byte stream, the SOME/IP protocol performs a deserialization to convert back
to the appropriate structure for the specified OS [3], [4].

28

2. Background Theory for Communication Technologies in Automotives

Figure 2.15: Illustration of a bus system with a signal- and service-oriented ap-
proach. Worth noting is how in a signal-oriented approach the bus is occupied by a
continuous transmission of signal values.

Figure 2.16: Illustration of the service-oriented approach, used in a some/ip sys-
tem, with a client/server methodology of subscribing to an event.

29

2. Background Theory for Communication Technologies in Automotives

2.5.1 Header format
As SOME/IP is based in the higher layers of the OSI-model, it only contributes with
a header to the data frame. Further embedded into the frame will be lower layer
headers, e.g. TCP/IP headers on an Ethernet frame. An example of a SOME/IP
frame is displayed in Figure 2.17. Highlighted is the SOME/IP header format, where
the Message-ID field consists of a 16 bit Service ID and a 16 bit Method ID. The
former is used to identify specific services, as each service must have a unique ID. A
service can consist of several methods, events and fields which is what the Method
ID is a reference to. The concept of the Message-ID is similar to the CAN ID,
which allows for enhancing/adopting these to a SOME/IP structure. The length
field simply specifies the number of bytes in the payload, some header information
and the Request/Client ID, and is assigned 32 bits. The Request ID field contains
a 16 bit Client ID and a 16 bit Session ID. The purpose of this field is to differenti-
ate multiple calls of the same method. The Client ID allows for identifying specific
clients, whilst the Session ID differentiates the multiple calls from each specific client.

Furthermore, there are four 8-bit segments before the payload (which is of variable
size as it contains headers and payload from lower OSI-layers). The Protocol Version
field simply contains information about what SOME/IP protocol version is used and
the following field is the Interface Version field, which defines the service interface
version. There is also the Message Type field, which differentiates between the
possible types of SOME/IP messages shown in Table 2.6. The last field is the
Return Code, which indicates if a request was successfully processed or not [13],
[39].

Figure 2.17: The header format of a SOME/IP frame, where the payload is of
variable length as it depends on what lower layer headers that are present. The
highlighted areas in gray is covered by the value in the Length field.

30

2. Background Theory for Communication Technologies in Automotives

Table 2.6: Possible types of a SOME/IP message.

Number Value Description

0x00 request A request expecting a response
(even void).

0x01 request_no_return A fire & forget request.

0x02 notification

A request for a notification (i.e. a
subscription to an event call back
or a field value), expecting no re-
sponse.

0x80 response The response message.

0x81 error In case a response message cannot
be delivered due to an error.

0x20 tp_request A TP request expecting a re-
sponse (even void).

0x21 tp_request_no_return A TP fire & forget request.

0x22 tp_notification

A TP request for a notification
(i.e. a subscription to an event
call back or a field value), expect-
ing no response.

0x23 tp_response The TP response message.

0x24 tp_error
In case a TP response message
cannot be delivered due to an er-
ror.

2.5.2 SOME/IP-SD
A single ECU can contain multiple clients and services, there can also be several
instances of the same service on different ECUs. The term client refers to a node
that is requesting a subscription to a specific service. In SOME/IP terminology, a
client can either be active or down and the same goes for a service. In the active
mode, there are three functioning phases that a client and service can take: the
initial wait phase, the repetition phase and the main phase.

The SOME/IP Service Discovery (SD) functions by services broadcasting so-called
offer messages on the network. It is upon receiving such a message that a client,
if interested, can subscribe to the service. To reduce subscription time, clients can
also broadcast messages of their own to request a specific service. These are called
find messages and to which a client may receive offer messages in response. Another
important aspect of the SOME/IP-SD is that a random waiting delay is implemented
in the sequence of operations. This ensures that not all services and clients start to
operate at the same time, which in turn relieves some network and CPU load. Upon
a completed subscription, a subscriber may receive two notification formats: Event
and Field Notification. Event Notifications provide data for the specific event and
acts as a Fire & Forget, whereas Field Notifications contain data related to previous
events and are therefore often equipped with set and get-methods [3], [40].

31

2. Background Theory for Communication Technologies in Automotives

2.5.2.1 Initial Wait Phase

A client in the initial wait phase is initialized to this phase on the request from
the application layer and remains in it for a time randomly chosen according to
SOME/IP specifications. Whilst in this phase, the client remains silent. Only when
an offer of the specific service that the client is interested of, it takes action. It then
subscribes to the service and enters its main phase.

Similar to a client, a service enters the initial wait phase when it is set to available
by the application layer. It remains in this phase for a time randomly chosen and it
does not send any messages during this time. However, unlike a client, any received
find message will be ignored and a service cannot skip the repetition phase.

2.5.2.2 Repetition Phase

In the repetition phase, a client will send a predefined number of find messages (ac-
cording to specifications) with an exponentially increasing waiting time between the
successive messages. Again, if a client receives an offer message from a service it is in-
terested in, it will request a subscription to this service and move to the main phase.

Upon entry to the repetition phase, a service broadcasts an offer message. Similarly,
the successive messages are sent with an exponentially increasing delay. If a find
message from a client is received, the service waits for a chosen random time before
responding with a unicast offer message. A service moves from the repetition phase
to its main phase after a predefined number of offer messages sent.

2.5.2.3 Main Phase

A client in the main phase will not send any find messages on its own, only if a
server’s offer message must be answered. However, a service will cyclically send
offer messages as well as answer find messages.

2.5.2.4 Functioning Modes

Besides being active/down and in different phases, a client can be configured in two
different modes: the request mode or the listen mode. In the former, a client will
send find messages in the repetition phase whereas in the latter it will only wait for
offer messages. A service also has two configurable modes: the offer mode and the
silent mode. In which it will send offer messages in the repetition and main phase,
or only respond to find messages [3], [40].

32

2. Background Theory for Communication Technologies in Automotives

2.6 Adaptive AUTOSAR
In the classic AUTOSAR system, it can be quite difficult to update and upgrade the
individual ECUs. This means a lack of defense against new security risk as well as
difficulties when integrating new functions. As this has become more sought after
properties, to be able to dynamically reload software components and perform more
computing-intensive tasks with large data sets, a new POSIX based standard called
the Adaptive AUTOSAR Platform has been developed. It employs a more object-
oriented approach which allows for more flexible options in the vehicle ECU archi-
tecture. It alleviates application development by being able to upgrade any ECU
instead of having to perform individual development for each ECU. Applications can
also be integrated into the system at runtime due to it building on service-oriented
communication. The main use cases thought for the new AUTOSAR standard are
more algorithms for automated driving and better possibilities for V2X communi-
cation as well as multimedia applications [41], [42].

The Adaptive AUTOSAR Platform is thought to supplement the classic AUTOSAR
standard. An approach which allows for more dynamic software configurations
and development. With the service-oriented communication concept and hetero-
geneous computation, it provides better performance as well as compatibility with
e.g. SOME/IP from the classic platform.

2.6.1 Technology Drivers
What has been the main technology drivers behind the work on a new platform,
are Ethernet and processors. As Ethernet has been introduced to the automotive
industry, offering a higher bandwidth and with switched networks enabling a more
efficient communication, the classic platform is designed for the legacy technologies
and it is optimized for such. It is therefore difficult to fully benefit from an inte-
grated Ethernet backbone network on the classic platform.

As the bandwidth demands are growing, similarly are the performance requirements
for processors. There is already multicore processors in use with the classic platform,
but multicore might not be enough in the future. It is highly likely that so-called
Manycore processors, with tens to hundreds of cores, will be needed. This increase
in number of cores would overwhelm the design of the classic platform, which was
only developed for a single core [41].

33

2. Background Theory for Communication Technologies in Automotives

34

3
Implementation of a
Communication Link

In this chapter, the focus lie on the procedure of developing a practical model of a
communication system. The model will function as an evaluation tool for perfor-
mance metrics of an AUTOSAR node interconnected with a small Ethernet network.
Furthermore, sections regarding the different development environments and soft-
ware architectures used will be described as well.

3.1 Development Environment
The hardware used was provided by QRTECH in the form of an ECU product
called QRx. Two of these were used, one running on AUTOSAR OS and the other
on Linux OS. The platform implementation and source code for the AUTOSAR
node was developed by the Swedish software company ArcCore [43].

Arctic Studio
The software platform that was used when programming the AUTOSAR QRx is
called Arctic Studio. It is a rebranded Eclipse release with modifications applied
to comply with AUTOSAR development and is also a product from ArcCore. The
coding language used was C++.

Visual Studio
For some of the simpler programs used, such as a simple TCP chat program, the
software was written in the language C# in the Microsoft Visual Studio platform.
Most of these programs were used as the initial setup when developing the system,
to allow testing the different parts of the system with ease.

Linux
In order to build and run programs on the Linux system, cross-compiling instructions
for an ARM v.7 Cortex-architecture were required. Moreover, a GDB server was
used to remotely debug the devices from a computer via an SSH connection. A
GDB server is a GNU Debugger and is used to control the execution of a program
and lookup variables between loops etc. The coding language used was C and the
platform was Eclipse.

35

3. Implementation of a Communication Link

3.2 System model
The model involved the setup of a communication link between two ECUs running
on different operating systems. The communication stack implemented was TCP/IP
which further utilizes encapsulation in Ethernet frames. Included in the system was
also two PCs, running Windows 10, that were used as control and presentation de-
vices. A representation of the system model can be seen in Figure 3.1. The model
was constructed to mimic a real scenario within a vehicle, where one ECU running
on AUTOSAR has less computational power and only transmits data to a more
powerful ECU running Linux. The TCP/IP stack was implemented in both OS,
including the necessary socket setups as described in Section 2.1.3. This allows for
TCP packages to traverse the Ethernet cable and be accepted on the receiving end.

Figure 3.1: Representation of the system model that was constructed. It aims
at mimicking an automotive scenario where a more central located computational
prominent ECU (Linux) gets fed data via a computationally weaker endpoint ECU
(AUTOSAR). The connection between the ECUs is an Ethernet cable and the sink
of the model is a simple presentation stage.

3.2.1 Source
The initial part of the system model is the source of data, e.g. an image feed from a
camera. The acquisition of data was not the center of attention, as it is the actual
transmission over the Ethernet network that was of interest. The data could e.g. be
an image feed from a sensor which should be forwarded to a neural network which
then can perform decisions based on the data. For simplicity, however, the data
feed was implemented in a C# program in Visual Studio that initialized a socket
connection with the AUTOSAR node and to which it forwarded images stored on

36

3. Implementation of a Communication Link

the PC. The C# program utilized the Console Application functionalities enabling
it to load images and using the socket send function to transmit the raw bytes. A
4-byte header was added to the images which indicate the number of bytes that each
image represents. As the communication is a steady flow of data, the 4-byte header
allowed the sink to be able to reconstruct each image.

3.2.2 AUTOSAR node
The source of data was transmitted to the AUTOSAR node in the link, which pur-
pose was to forward the data with high speed and with a reliable transmission. No
real processing is done on the data, it is only temporarily stored and then forwarded
to the Linux end. The 4-byte header was treated as regular data and forwarded
along with the rest of the image bytes.

The implementation on the AUTOSAR node included setting up two server sockets
on initialization of the ECU. With connection on both of these sockets, communi-
cation over the link could be initiated. The TCP/IP module for AUTOSAR was
implemented with interrupts that trigger when a listening socket has received a
packet. These interrupt functions were utilized to fill one out of two buffers which
were switched between a forwarding segment and the interrupt section. By always
having one buffer being filled and one being emptied, the AUTOSAR node should
have a good forwarding throughput.

The TCP/IP stack implemented in the AUTOSAR configuration was the lightweight
IP (lwIP) which is an open source TCP/IP stack designed for embedded systems to
reduce RAM usage. Due to this, a code extension to the TCP/IP stack had to be
implemented as the initial tests showed a flaw in the configuration. Sockets were
accepting packets even though the data never had reached the application layer. A
small segment, referred to as TCP Throttling, was therefore added, which purposely
decreases the source’s transmission speed if the receiver cannot keep up with pro-
cessing the received data. Practically, the method will block the TCP module on the
AUTOSAR side until the received content has been forwarded to the application.
Hence, AUTOSAR will not reply to the source with an ACK and therefore all TCP
communication is paused during the data processing duration. Upon data process
completion, a boolean flag in AUTOSAR is set to activate TCP again meaning that
the node has processed all data and is ready for new content.

Another issue concerning the TCP/IP implementation was the transmission from
the AUTOSAR node. The system would not correctly check if a packet had been
successfully sent to the next node. As a result, the data experiencing a failed trans-
mission would not be retransmitted. The packet was instead marked as sent, causing
loss of data over the link. Therefore, another code segment was implemented, re-
ferred to as TCP Transmission Check, to check if all data had been successfully
transmitted. The implementation is based on a while-loop in the forwarding seg-
ment. The original problem is related to the TCP transmitter buffer queuing up

37

3. Implementation of a Communication Link

and being filled, resulting in errors when attempting to send new packets. If this
error occurs, the loop continues until all data is successfully accepted into the buffer
and transmitted.

3.2.3 Linux node
The Linux node is similar to the AUTOSAR side of the link in terms of function-
ality, as its main purpose was to receive and forward data to another node in the
link. In addition, the Linux node also interprets the first 4-bytes of each image for
control and debugging purposes. In the thought-out automotive scenario, the Linux
system would perform a number of complex calculations on the data, considered too
demanding for AUTOSAR, and then either respond or forward the processed data
further into the network.

The Linux system first establishes two TCP client sockets that are connected to the
AUTOSAR and the Sink. The application program uses a state machine methodol-
ogy, which upon a successful connection is initialized to enter the first out of three
states: RECEIVE, STREAM and STOP. In the RECEIVE state, the system simply
awaits incoming data. Upon arrival, the first 4-bytes are retrieved and stored in the
message buffer as well as transitioning to the state STREAM.

The STREAM state consists of loops which analyze the buffer status, whether it is
full or close to maximum capacity, and perform actions based on the result. Briefly
presented, the system receives data until the whole image is received or the buffer
has less than one TCP packet payload in storage. On these events, the system will
forward the stored data and reset buffer indices. When the whole image is received,
the state STOP is set and the last segment of data will be forwarded. Following is
a reset of buffers and the state transitioning back to RECEIVE. The system is now
ready to receive the next image and to repeat the whole process.

3.2.4 Sink
In the final step of the link, the Sink of the system is a simple presentation of the
data received from the Linux node. The implementation was performed similarly
to the Source by utilizing a Windows Form Application in Visual Studio and TCP
sockets. The received data represented raw bytes of an image which was converted
to a bitmap, which in turn allowed it to be portrayed in a so-called picture box ex-
tension to the Windows Form. Like the Linux node, the Sink interprets the 4-byte
header to be able to reconstruct each image from a continuous flow of data.

38

4
Results and Analysis of the Link

Performance

This chapter presents the results obtained during the evaluation of the constructed
communication link as well as an analysis of the performance. The results are then
further discussed in Chapter 5.

4.1 The Communication Link
The constructed model described in Section 3.2 was able to establish communication
between two ECUs utilizing TCP/IP and Ethernet. The model aimed at mimick-
ing an automotive scenario where an ECU with less computational power, running
AUTOSAR, is able to transmit its vital data to a more powerful ECU, running
Linux, via Ethernet frames. The link was evaluated with the help of the program
Wireshark, which allows for network sniffing and packet capturing.

Even though there are well-defined standards for established protocol stacks, there
is always some work included when implementation them into a system. The imple-
mentation of the TCP/IP stack on the AUTOSAR node is not a one to one mapping
with the AUTOSAR standard. A few simplifications and implementation choices
have been made by the developer of the platform, such as implementing a lwIP stack
in the TCP/IP module. This resulted in performance complications.

4.1.1 TCP Throttling
With the added throttling implementation to the TCP/IP stack, mentioned in Sec-
tion 3.2.2, the initial transmission results were improved and the stack behaved more
normal. When running a simulation on the SW without the throttling addition it
could be seen how on socket level, the transmissions kept on being accepted even
though the data was never forwarded to the application. With the addition of the
throttling, however, this behaviour stopped and the correct size of data was being
forwarded.

4.1.2 TCP Transmission Check
The addition of the transmission check segment, mentioned in Section 3.2.2, relieved
the issue of a mismatch in data received compared to data transmitted. In the case

39

4. Results and Analysis of the Link Performance

of transmission errors, the application SW did no longer treat that data segment as
a successful transmission but instead as data needed to be retransmitted. However,
this did not solve the reason as to why the transmission errors occurred in the first
place. Due to this error the code would never return from the loop, which resulted in
large transmission delays that sometimes lead to timeout crashes. The transmission
errors will be further highlighted in Section 4.3.

4.2 Round Trip Time
The round trip time (RTT) of a communication system measures the time it takes for
a packet to be transmitted and the corresponding acknowledgement to be received.
As a metric, it yields information about the propagation delay and interference on
the link. It also indicates the potential for how many bytes in flight the link can
exhibit.

A common way to measure the RTT is to analyze the initial TCP handshake, i.e.
the time that transpires between the SYN, SYN/ACK and ACK. Wireshark pro-
vides this measurement, referred to as the initial round trip time (iRTT) and the
measurements of this are shown in Table 4.1. The reason why RTT is commonly
measured on the handshake is that it yields information about the base latency and
the packets are very small, meaning they have a higher chance of traversing the link
at higher speeds. Another advantage is that these packets are handled only by the
TCP stack, i.e. there is no application interface involved which could be a source of
delay. Worth noting is also that RTTs throughout the transmissions vary from one
another as well as the iRTT, including both faster and slower times. Therefore, due
to the retransmissions etc. that the link is experiencing, the iRTT provides a more
stable result.

Analyzing the measurements displayed in Table 4.1, they appear reasonable with
latencies of 1 ms or lower which should be normal for a small enclosed system. It is
interesting that the communication between the AUTOSAR node and a PC experi-
enced more latency than the other cases. However, a RTT of 1 ms does not indicate
any prominent interference or propagation issues.

Table 4.1: iRTT Measurements

Endpoints iRTT (Average)
PC ←→ AUTOSAR 0, 0010008 s
AUTOSAR ←→ Linux 0, 0005693 s
Linux ←→ PC 0, 0004455 s

40

4. Results and Analysis of the Link Performance

4.3 Data Throughput

The performance metric most centric to the evaluation of the link was the measure-
ment of data throughput, i.e. the quantity of data flow and at what transmission
rate. Wireshark has a feature that shows the throughput along with the length of
individual packets (as blue dots) for each TCP stream. There is also a graph that
shows the bit rate over transmission time, which should correlate somewhat to the
throughput graph (slightly differ due to small differences in the capture process).
These features were used to assess the Linux and AUTOSAR side on their own, as
well as the full link.

4.3.1 Linux

The Linux system proved to be reliable, by achieving data rates close to the maxi-
mum capacity of 100 Mbps. A 202834 kB file was sent from the Source and received
by the Linux node in approximately 20 seconds, meaning that the approximate bit
rate was calculated as (202834/20) ∗ 8 = 81134 kbps. The throughput graph of this
can be seen in Figure 4.1, which shows how the data flow stays at a stable level.
The result presented in Figure 4.2 indicates the same behaviour.

Figure 4.1: Wireshark throughput capture of the Linux node receiving a 202834
kB file from the Source, where the first 12 seconds is a startup phase of the system
and not a part of the actual transmission. The average throughput level is stable
and with a good average rate of around 80 Mbps

41

4. Results and Analysis of the Link Performance

Figure 4.2: Wireshark IO graph of the Linux node receiving a 202834 kB file
from the Source. It highlights the data rate over the approximate 20 seconds of
transmission, where the average rate is around 80 Mbps.

The transmitter side is able to send the 202834 kB file to the Sink in 20 seconds
as well, i.e. an approximate bit rate of around 80 Mbps, which correlates with
Figure 4.3 and Figure 4.4. Just like in the receiver part, the data flow holds a stable
level. However, there are now some packets with a length smaller than the MTU
size of 1460 bytes. As can be seen in Figure 4.3, there are packets with payload
lengths of 1428 and 32 bytes. Further inspection of these packets showed that every
transmission with length 32 included a PSH (push) flag along with the ACK. The
PSH flag is used to tell the receiving end to provide the read data segment to the
reading application immediately (and stop any potential buffering). It should not
have any negative effects on the result and the behaviour could be linked to TCP
delay efficiency concepts such as the Nagle algorithm and delayed acknowledgments
(mentioned in Section 2.1.4) or perhaps as a smart way of preventing the receiving
window to be filled up.

42

4. Results and Analysis of the Link Performance

Figure 4.3: Wireshark throughput capture of the Linux node transmitting a 202834
kB file to the Sink. The average throughput level is stable and at a high rate of
around 80 Mbps.

Figure 4.4: Wireshark IO graph of the Linux node transmitting a 202834 kB file to
the Sink. It highlights the data rate over the approximate 20 seconds of transmission,
where the average rate is around 80 Mbps.

43

4. Results and Analysis of the Link Performance

4.3.2 AUTOSAR
To evaluate the performance of the AUTOSAR system, three independent test were
performed. The AUTOSAR system’s transmitter and receiver part were tested on
their own as well as the node forwarding data to the PC it received data from. The
transmission time is varying between the measurements due to the fact that when
testing the SW parts on their own, a large amount of data was transmitted to allow
for observation of the behaviour compared to the forwarding measurement where
an image of 10228 kB was used. The Figures 4.5, 4.7, 4.9 and 4.10 display the
respective throughput results.

Figure 4.5: Wireshark throughput capture of the AUTOSAR node only transmit-
ting a continuous data flow to the Linux node. The performance is poor, with a low
average rate and large fluctuations in the flow of data. Also worth noting is how
the transmission rate is zero for several large time periods, the most prominent at
around 550 elapsed seconds.

44

4. Results and Analysis of the Link Performance

Figure 4.6: Wireshark IO graph of the AUTOSAR node only transmitting a con-
tinuous data flow to the Linux node. The data rate is around 0.08 Mbps and there
are time periods where it is zero, which are connected to retransmission waiting
periods. There are higher peaks of the data rate, which indicates that the system
has a higher capacity.

The transmitter part, seen in Figure 4.5 and Figure 4.6, showcases big issues with
the AUTOSAR node, namely a highly fluctuating throughput and a low data rate
as well as several large time gaps with no transmission. The link did not achieve the
maximum capacity of the system, as there are peaks that indicate that higher rates
are possible. Debugging of the written code showed that during the time gaps with
no transmission, the code is stuck in a segment where the lwIP TCP send buffer is
full. The resulting total amount of retransmission packets were around 7%. Possible
reasons for this behaviour as well as comments on the low data rate will be discussed
in Section 5.1.1.

The measurement on the receiver part showed a slightly more promising result, dis-
played in Figures 4.7 and 4.8. The throughput behaviour is fluctuating similar to
the Tx side, indicating that the capacity has not been reached. There are no time
periods with zero transmission, however there are drops down to zero. Upon further
inspection, all the negative trends corresponded to TCP retransmissions which will
be discussed in Section 5.1.1. The receiving socket window was filled several times
during this measurement, each of them resulting in around 1-3 ms delays. The TCP
ZeroWindow segments, which are sent by a receiver when its window is full, did not
stack up so that there were many of them in a row. However, throughout the trans-
mission, the window was always at or below 50% of its capacity, which indicates
that the application fetching data from the receiving window operated slower than
what would have been optimal. The main delay is however connected to the many
retransmissions. Besides these retransmissions, there also occur many so-called fast
retransmissions which are triggered by at least 3 duplicate acks. Of the whole mea-
surement, the total number of retransmission packets were around 9.5% and out of
those only around 28% were fast retransmissions. If these would have been more
common, the performance should have been increased significantly as they correlate

45

4. Results and Analysis of the Link Performance

to a much smaller transmission delay.

Figure 4.7: Wireshark throughput capture of the AUTOSAR node only receiving
a continuous flow of data. The performance is mediocre, with an average receiving
rate around 1 Mbps and large fluctuations in the flow of data. Worth noting are the
drops down to zero rate, which correlated to when TCP retransmissions occurred.

Figure 4.8: Wireshark IO graph of the AUTOSAR node only receiving a continuous
data flow. The average rate is around 1 Mbps, however an interesting note is that
there are higher peaks indicating that it has not reached its max capacity.

46

4. Results and Analysis of the Link Performance

Before the full link was tested, a measurement on the forwarding application SW was
performed. Only the throughput feature was used, see Figures 4.9 and 4.10, as the
packet lengths were the interesting result. The figures represent the receiving and
forwarding throughput respectively. In both figures, the negative trends in data rate
again correspond to the frequently occurring retransmissions. With the forwarding
SW running, it also resulted in the relatively small window of the AUTOSAR node
being filled faster than it is emptied by the forwarding segment. This resulted in the
receiving window being completely filled multiple times. This, in turn, results in the
receiving side experiencing so-called ZeroWindowProbe packets, with the purpose of
the sender checking whether the receiver has freed some space in its window. These
are the packets with zero length visible in Figure 4.9. The other packets, in the same
figure, that has a lesser length than 1460 are so-called TCP Window Full packets,
which as the name suggests are sent with a length corresponding to the remaining
space in the receiver window and thereby capping the window.

Figure 4.9: Wireshark throughput capture of the AUTOSAR node when receiving
a data flow that is further forwarded. The links performance is bad, with a low
average rate and long periods with no transmissions. The packet lengths are not
stable at the maximum payload size of 1460 because of the receiving window getting
filled. Then packets are sent with sizes that match the space left in the window. The
packets sent with zero length are so-called ZeroWindowProbes, with the purpose of
checking whether the receiver has new space in its window.

The reason why the packet lengths heavily vary in Figure 4.10, is due to the fact
that the application SW continuously fills one out of two receiving buffers that the
forwarding segment operates on. There is no guarantee that when the forwarding

47

4. Results and Analysis of the Link Performance

segment gets access to the buffers, that they contain a size which is a multiple of
1460. It will therefore transmit as many packets of size 1460 as possible, as well
as the remaining bytes of the buffer before it receives a new buffer to operate on.
The Nagle algorithm did therefore not affect the last bytes in each operating buffer,
which is not an optimal usage of the bandwidth.

Figure 4.10: Wireshark throughput capture of the AUTOSAR node when for-
warding a received data flow. The links performance is bad, as the rate is low as
well as long periods with no transmissions. The packet lengths are not stable at the
maximum payload size of 1460 because of the application SW not always buffering
sizes that are multiples of 1460.

4.3.3 Full link
Finally, measurements on the full link (i.e. PC −→ AUTOSAR −→ Linux −→ PC)
were performed. The result is displayed in Figure 4.11. The good performance of
the Linux node did not outweigh the bad performance of the AUTOSAR node, as the
performance of the full link is poor. The negative tendencies that the AUTOSAR
node exhibited is present, a very fluctuating throughput with an average rate of
around 110 kbps and long periods with no transmission. When these periods are
very long, it results in the initial send program crashing. During large transmissions
this occurred frequently, making the link very unreliable.

The negative trends are corresponding to retransmissions and the forwarding seg-
ment having a full lwIP TCP send buffer. An interesting behaviour is that of the
packet lengths, which occur very frequently with some small lengths. As the for-

48

4. Results and Analysis of the Link Performance

warding segment will transmit the remaining bytes left in the buffer, the scattered
result of different packet lengths is expected. However, the frequent pattern of
small lengths that can be observed is due to something else. It looks similar to the
behaviour observed in 4.3 and upon further inspection, each of these packets also
contained a PSH flag. It however differs somewhat, since it displays multiple levels
of the PSH packets and only levels at small lengths. The latter can again be ex-
plained by the forwarding segment’s behaviour, which differs to the Linux scenario
where packets were filled in a buffer of a size multiple of 1460.

Figure 4.11: Wireshark throughput capture of the AUTOSAR node forwarding its
received data to the Linux node. Poor performance is displayed as the throughput is
highly fluctuating, with a low average rate of around 110 kbps and with long periods
of no transmission.

4.4 OS load
A measurement on the idle time of the AUTOSAR OS was performed at runtime
to determine how big of a load it was experiencing. It was measured by extracting
two time values, one describing the total time of the measurement and one the idle
time. The load was calculated by relating these two to each other, i.e. how much of
the total time consisted of idle time.

The load was measured on the AUTOSAR QRx since it was the source of poor per-
formance in the link. It was measured during five different operations. One where
the node only looped the receiver part of the software, not doing any processing or
forwarding. Likewise, one operation looped only the transmitter part. Two of the

49

4. Results and Analysis of the Link Performance

modes involved both parts of the SW running, one case when they were running in-
dependent of each other and one where they were connected so that the Tx forwards
the Rx data. The last mode was with no SW part active and only the underlying
OS tasks running. Table 4.2 displays the results.

Table 4.2: OS Load Measurements.

Operation Load Uncertainty span
AUTOSAR Rx only 50 % ±10 %
AUTOSAR Rx & Tx 65 % ±10 %
AUTOSAR Forwarding 75 % ±10 %
AUTOSAR Tx only 24 % ±10 %
Background tasks 10 % ±5 %

The measurements indicate that the OS is experiencing more workload when both of
the SW parts are active. It is interesting that when forwarding, the code execution
is halted even further compared to when independently transmitting and receiving.
This means that besides any buffering issue prominent in the stack, there could also
be a timing/delay issue present when swapping between the Tx and Rx tasks.

50

5
Discussion

Interpretations of the obtained results, as well as an evaluation of the implementation
decisions and potential future improvements, will be discussed in this chapter.

5.1 Further analysis of the results
Further analysis of the measurements of the communication link will be discussed.
As the reasons behind some of the errors are unclear, the reasonings are of a hypo-
thetical nature.

5.1.1 AUTOSAR
The measurement results of the communication link highlighted several problems
with the AUTOSAR implementation. They were mainly located in the implemen-
tation of the TCP/IP module, which employed a lwIP solution. As a result of this,
two code implementations had to be made to the module i.e. the segment referred to
as the TCP throttling and transmission check. These additions seemed to alleviate
the original problems, but could likewise be the cause for new ones not encountered
yet. Without the throttling segment, the TCP receiving buffer would overwrite its
content with the subsequently received packets and thereby causing severe packet
loss on the application level. The implementation made to correct for this should
have been present in the TCP/IP module from the start, as it is vital and a core
principle of TCP. The manual implementation could potentially add delay as it was
corrected for at a relative high level of the source code.

Furthermore, the segment regarding the TCP transmission check did not verify why
a transmission error had occurred. It only added a solution that would ensure that
the callback of the transmission function would match the actual event. If an error
occurred, it would now show in the return value and allow for another transmis-
sion attempt. However, since these transmission errors occurred during substantial
periods, the implemented solution halted the code execution as it was stuck in a
transmission loop. Compared to the throttling segment, this implemented solution
is more questionable. However, for the purpose of getting actual complete measure-
ments of the system, it was required. If the transmission errors no longer occur, the
transmission check segment should be removed as it will then simply add a small
delay.

51

5. Discussion

The reason behind the errors leading to all the retransmissions is still unclear, and
the following reasonings are therefore only hypothetical. There could be the same
underlying reason to both the TCP sender buffer filling up and not transmitting as
the regularly occurring transmission errors. However, it is more likely that there are
multiple underlying issues with the platform implementation. It is possible that the
performed measurements put a strain on the platform implementation not tested
before, thus exposing some flaws or bugs in the implementation. As there are many
implementation choices that can be made when implementing an AUTOSAR plat-
form, there is a possibility that some of these choices affected the TCP module in
unexpected ways. Another theory could be that the entire AUTOSAR software
implementation is too slow, resulting in the hardware buffers filling up before the
software fetches the content. This could result in either that packet being overwrit-
ten or simply dropped when the next packet arrives.

Later versions of AUTOSAR and the ArcCore implementation are available, how-
ever, no obvious correction of the mentioned issues could be found in the new con-
figuration files. Although, as there is a big structural change in the newer ArcCore
versions, it is possible that these issues have been handled elsewhere. A complex
driver of the lwIP, instead of routing it via the TCP/IP module, could possibly
have alleviated some of the issues as well, since it would be a more straightforward
implementation to the AUTOSAR platform.

Worth to mention, in context with AUTOSAR and Ethernet, is that there exists
a restricted amount of previous published work performed on a complete Ethernet
link, working with TCP/IP. A majority of the content available is either developer
specifications, companies’ complete solutions or articles speculating how this may
work. None of the mentioned content contributes to experience in working with
these systems and the problems which may occur. It is also highly dependent on
what AUTOSAR platform implementation used, as platforms may vary structurally.

5.1.2 PSH packets
The measurements displayed a peculiar behaviour in the transmission where multi-
ple packets in a coherent pattern had the PSH flag set. As the purpose of the PSH
flag is to force the receiving buffer to release its content to the application layer,
there should be no harm in observing packets with this flag. The reason why these
packets occur is still unclear, as it was not implemented in the written software.
A theory is that it coincides with the TCP delay efficiency concepts. There could
potentially be a specification that requires a PSH flag after a specific amount of
transmitted bytes or possibly a specification that preemptively tries to prevent the
receiving buffer from filling up.

52

5. Discussion

5.1.3 OS load
The load measurements highlighted a difference between transmitting and receiving
independent from each other compared to when they were interconnected, where
the latter was more exhausting. Why there is a difference between the two cases
must be related to the written code. The most likely reason behind this is a slight
timing delay. One scenario could be that the Rx and Tx segments were both trying
to access the TCP main function at intervals closer to each other than when they
were running independently. If the two segments simultaneously want the access,
one of the segment will have to wait. The code execution will then become more
stacked and directly shift to the other segment, with no idle time in between.

These result also indicate a potential issue, as the TCP main function task could be
locked out of execution due to the scheduler being occupied by background tasks.
There were potentially many of these background tasks present in the SW, which
were unnecessary and could have been removed. Furthermore, AUTOSAR can be
configured to change the different OS priorities of specified tasks. Only small changes
to this were made and with no apparent result, there is a possibility that this could
have been further optimized.

Worth to mention is also that the measurements have a high uncertainty span. This
was due to fluctuating measurements, of which the mean was calculated, dependent
on manually halting the code execution to retrieve the clock values.

5.2 Improvements & further development
If only observing the measurement results presented in this thesis, it would im-
ply that Ethernet solutions cannot simply be transitioned from other areas. The
main issues seem to lie with the AUTOSAR platforms compatibility complications.
Prospect for the future indicates that the implementation of Automotive Ethernet
would remove the bandwidth limitations that the current bus technologies in vehi-
cles face today. However, as the measurement results indicate, there is much work
required in order to piece together an Ethernet backbone network in an automotive
scenario. There is a strong possibility that there are other protocols needed than
what was used in the thesis, in order to complete an Automotive Ethernet imple-
mentation. Thus, a few potential improvements and further development topics will
be briefly highlighted.

5.2.1 Adaptive AUTOSAR Platform
The development of the automotive industry, and the autonomous drive section
in particular, implies an ever-increasing bandwidth requirement of on-vehicle net-
works. This is the reason Ethernet was introduced to the automotive industry and
even though the classic platform supports Ethernet, it was designed with the legacy
communication technologies in mind. It has not been optimized for Ethernet and
therefore does not utilize the full potential and capability of Ethernet-based com-

53

5. Discussion

munication. However, the new Adaptive AUTOSAR Platform has better potential
to utilize this. Along with better support for multicore processors, the adaptive
platform could be the solution to the Automotive Ethernet implementations.

5.2.2 ArcCore version
Many of the problems that occurred with the AUTOSAR implementation could be
due to the fact that the ArcCore version used in the thesis is too outdated. As
the AUTOSAR standard is continuously evolving, so are the different platform im-
plementations. The latest version is of course preferred, as it better indicates the
current situation of the industry, and as mentioned could have solved the issues
present in the platform implementation used. A drawback that the AUTOSAR
standard implies is that it is a complex architecture to implement. It alleviates
the compatibility issues between different SW and HW, but any implementation
requires the whole architecture.

5.2.3 BroadR-Reach
As the acquiring of BroadR-Reach technology to use for the practical model was
deemed outside the scope of the thesis, the 100Base-TX was chosen as a suitable re-
placement since both technologies can provide up to 100 Mbps. The BroadR-Reach
technology mainly has its advantages in an automotive scenario, where it is more
resilient to interference and of less cable weight. Therefore, as the implemented
scenario was not in a vehicle, the 100Base-TX should prove to be a sufficient re-
placement. There should only be small differences in theory, however it would have
been preferred to have as many components as possible similar to a real scenario in
a vehicle.

5.2.4 SOME/IP
The service-oriented approach that SOME/IP employs has very appealing proper-
ties for a more reliable communication within a vehicle, with the ability to subscribe
to only the information you need. Furthermore, the concept of serializing frames
with a SOME/IP header could potentially solve some compatibility issues as the
SOME/IP stack would be implemented with the purpose of being a middleware
solution. The subscription latencies that occur when initializing new nodes on the
network, with the client and service methodology, could be insignificant if it only
occurs in controlled scenarios and not during runtime.

54

5. Discussion

5.2.5 TSN
An issue with Automotive Ethernet is that, even though it will solve some of the
bandwidth demands, it is not suitable for time-critical communication needed for
autonomous drive applications. Even the addition of SOME/IP would most likely
not suffice to provide a time-critical enough communication, as TCP/IP, which con-
sists of nondeterministic properties, still would have to be employed. However, what
TSN offers is to skip the higher layer protocols and treat a vehicle like a LAN. By
only transmitting Ethernet frames and with the defined scheduling techniques in-
cluded in the TSN standard, it should produce a time-critical communication that
can ensure that the most vital data is successfully prioritized and transmitted in the
network. This is of the highest importance for autonomous drive applications, as
the safety applications that will depend on the communication technique must be
completely foolproof.

As mentioned and displayed by the results, during the project there were issues
connected to the TCP/IP module. If the communication would have been based
on a TSN implementation instead, the outcome of the measurements might have
been indicating a more positive result. Even in a TSN network, the legacy Ether-
net communication is included as the BE traffic and could therefore function well as
the backbone methodology. Although, further compatibility implementations would
probably be needed to include the bus technologies.

Furthermore, a TSN network implies advanced requirements on devices in the net-
work. The CUC and CNC entities have to be present for example. It may be possible
to implement a more powerful ECU in the network, holding gateway properties as
well as handling the CUC and CNC. Nevertheless, designing the schedule and choos-
ing the appropriate TSAs will be a complex task and perhaps situational to specific
applications. As the TSN standard is evolving, it would have been interesting to
perform further studies and implementation of the technology.

55

5. Discussion

56

6
Conclusion

In this thesis, the concept of Automotive Ethernet has been investigated in terms
of the construction and testing of a communication link as well as a review of the
related technologies in the automotive industry today. From measurements on the
communication link, results suggest that the implementation of Automotive Ether-
net in coherence with AUTOSAR seems problematic. When the link was subject
to larger data loads, it experienced severe performance issues. The communication
halted for multiple seconds and the achieved data rate was significantly below the ca-
pacity. With the measured performance, Ethernet implementations displaying these
results would serve no purpose as the already existing bus technologies perform at
a higher rate and are more reliable. However, the results could heavily depend on
the platform implementation used in this thesis. The overall concept of Ethernet
as a backbone network, in coherence with high-performing bus technologies, seems
promising.

Furthermore, with the addition of new standards such as SOME/IP and TSN, sys-
tems may experience significant improvements. The fact that TSN operates only at
the lower OSI-layers and that an automotive network is comparable to a LAN, the
method should allow for less application delay etc. by excluding standard protocols
such as TCP/IP. Compared to TCP/IP, TSN can also guarantee that prioritized
data is transmitted without delay and in a deterministic way. Two properties that
are crucial in time-critical systems. Therefore, with a continued development of the
TSN standard, it seems like a promising extension to the field of autonomous drive
and it bodes well for the future.

There is also the Adaptive AUTOSAR platform, which is a new standard currently
being developed that exhibit promising aspects. A system running on this OS, bet-
ter adapted to an Ethernet implementation and perhaps in unison with protocols
such as TSN and SOME/IP, may be the much-needed breakthrough for the future
of autonomous drive. For further research within this field, we recommend looking
into the possibility of implementing lwIP as a standalone module. Furthermore,
exploring the newer Adaptive platform in coherence with the TSN standard.

57

6. Conclusion

58

Bibliography

[1] Stefan Bunzel. “AUTOSAR – the Standardized Software Architecture”. In:
Informatik-Spektrum 34.1 (2010), pp. 79–83. doi: 10.1007/s00287- 010-
0506-7.

[2] AUTOSAR cooperation. AUTOSAR. 2018. url: https://www.autosar.org.
Accessed on: 2018-01-22.

[3] Dr. Lars Völker. Scalable service-Oriented MiddlewarE over IP (SOME/IP).
2018. url: http://some-ip.com/. Accessed on: 2018-01-22.

[4] VECTOR cooperation. Introduction to Automotive Ethernet. 2018. url: https:
//elearning.vector.com/index.php?&wbt_ls_seite_id=1603254&root=
835866&seite=vl_automotive_ethernet_introduction_ko. Accessed on:
2018-01-22.

[5] M. Szarvas, U. Sakai, and J. Ogata. “Real-time Pedestrian Detection Using
LIDAR and Convolutional Neural Networks”. English. In: IEEE, Jan. 2006,
pp. 213–218. isbn: 490112286X;9784901122863;

[6] VECTOR cooperation. Introduction to CAN. 2018. url: https://elearning.
vector.com/vl_can_introduction_en.html. Accessed on: 2018-01-22.

[7] Li Ran et al. “Design method of CAN BUS network communication structure
for electric vehicle”. English. In: 2010, pp. 326–329. isbn: 9781424490387;1424490383;

[8] Robert.S, Dr. Jayasudha J.S, and Anurag. “TCP/IP Stack Implementation for
Communication over IP with AUTOSAR Ethernet Specification”. In: 2013 In-
ternational Journal of Engineering and Innovative Technology (IJEIT). Vol. 3.
1. July 2013, pp. 176–179.

[9] Mikael Degermark et al. “Small Forwarding Tables for Fast Routing Lookups”.
In: SIGCOMM Comput. Commun. Rev. 27.4 (Oct. 1997), pp. 3–14. issn: 0146-
4833. doi: 10.1145/263109.263133. url: http://doi.acm.org/10.1145/
263109.263133.

[10] P. Koopman and T. Chakravarty. “Cyclic redundancy code (CRC) polynomial
selection for embedded networks”. English. In: Palazzo dei Congressi, Florence,
Italy: IEEE, 2004, pp. 145–154. isbn: 0769520529;9780769520520;

[11] Greg Minshall et al. “Application Performance Pitfalls and TCP’s Nagle Al-
gorithm”. In: SIGMETRICS Perform. Eval. Rev. 27.4 (Mar. 2000), pp. 36–44.
issn: 0163-5999. doi: 10.1145/346000.346012. url: http://doi.acm.org.
proxy.lib.chalmers.se/10.1145/346000.346012.

[12] VECTOR cooperation. Introduction to Serial Bus Systems in Motor Vehicles.
2018. url: https://elearning.vector.com/index.php?wbt_ls_kapitel_
id=507950&root=378422&seite=vl_sbs_introduction_en. Accessed on:
2018-02-07.

59

https://doi.org/10.1007/s00287-010-0506-7
https://doi.org/10.1007/s00287-010-0506-7
https://www.autosar.org
http://some-ip.com/
https://elearning.vector.com/index.php?&wbt_ls_seite_id=1603254&root=835866&seite=vl_automotive_ethernet_introduction_ko
https://elearning.vector.com/index.php?&wbt_ls_seite_id=1603254&root=835866&seite=vl_automotive_ethernet_introduction_ko
https://elearning.vector.com/index.php?&wbt_ls_seite_id=1603254&root=835866&seite=vl_automotive_ethernet_introduction_ko
https://elearning.vector.com/vl_can_introduction_en.html
https://elearning.vector.com/vl_can_introduction_en.html
https://doi.org/10.1145/263109.263133
http://doi.acm.org/10.1145/263109.263133
http://doi.acm.org/10.1145/263109.263133
https://doi.org/10.1145/346000.346012
http://doi.acm.org.proxy.lib.chalmers.se/10.1145/346000.346012
http://doi.acm.org.proxy.lib.chalmers.se/10.1145/346000.346012
https://elearning.vector.com/index.php?wbt_ls_kapitel_id=507950&root=378422&seite=vl_sbs_introduction_en
https://elearning.vector.com/index.php?wbt_ls_kapitel_id=507950&root=378422&seite=vl_sbs_introduction_en

Bibliography

[13] Kirsten Matheus and Thomas Königseder. Automotive Ethernet. English. Cam-
bridge: Cambridge University Press, 2015. isbn: 9781107057289; 1107057280;
1107183227; 9781107183223.

[14] Nan Liang and Dobrivoje Popovic. “2 - The {CAN} bus”. In: Intelligent
Vehicle Technologies. Ed. by Ljubo Vlacic, Michel Parent, and Fumio Ha-
rashima. Automotive Engineering Series. Oxford: Butterworth-Heinemann,
2001, pp. 21–64. isbn: 978-0-7506-5093-9. doi: https://doi.org/10.1016/
B978- 075065093- 9/50004- 9. url: https://www.sciencedirect.com/
science/article/pii/B9780750650939500049.

[15] Qiangsheng Ye. “Research and application of CAN and LIN bus in automo-
bile Network System”. In: 2010 3rd International Conference on Advanced
Computer Theory and Engineering(ICACTE). Vol. 6. Aug. 2010, pp. V6-150-
V6-154. doi: 10.1109/ICACTE.2010.5579409.

[16] National Instruments Corporation. FlexRay Automotive Communication Bus
Overview. 2016. url: http://www.ni.com/white-paper/3352/en/. Accessed
on: 2018-04-25.

[17] National Instruments Corporation. Introduction to the Local Interconnect Net-
work (LIN) Bus. 2016. url: http://www.ni.com/white-paper/9733/en/.
Accessed on: 2018-04-25.

[18] C. Gabriel and H. Horia. “Integrating sensor devices in a LIN bus network”.
English. In: vol. 2003-. IEEE, 2003, pp. 150–153. isbn: 2161-2528.

[19] MOST cooperation. Media Oriented Systems Transport. 2018. url: https:
//www.mostcooperation.com/. Accessed on: 2018-02-07.

[20] Andrzej Sumorek and Marcin Buczaj. “The evolution of “Media Oriented Sys-
tems Transport” protocol”. In: TEKA Commission of Motorization and En-
ergetics in Agriculture 14 (Aug. 2014), pp. 115–120.

[21] Otto Strobel, Ridha Rejeb, and Jan Lubkoll. “Communication in automotive
systems: Principles, limits and new trends for vehicles, airplanes and vessels”.
In: 2010 12th International Conference on Transparent Optical Networks (June
2010). issn: 2162-7339. doi: 10.1109/icton.2010.5549163.

[22] Vector Informatik. Media Oriented Systems Transport (MOST). 2018. url:
https://vector.com/vi_most_en.html. Accessed on: 2018-04-26.

[23] Andreas Grzemba.MOST: The Automotive Multimedia Network; from Most25
to Most150. Franzis, 2011. isbn: 978-3-645-65061-8.

[24] Y. S. Lee, J. H. Kim, and J. W. Jeon. “FlexRay and Ethernet AVB Syn-
chronization for High QoS Automotive Gateway”. In: IEEE Transactions on
Vehicular Technology 66.7 (July 2017), pp. 5737–5751. issn: 0018-9545. doi:
10.1109/TVT.2016.2636867.

[25] Broadcom Corporation. BroadR-Reach Physical Layer Transceiver Specifica-
tion For Automotive Applications. 2014. url: http://www.ieee802.org/3/
1TPCESG/public/BroadR_Reach_Automotive_Spec_V3.0.pdf. Accessed on:
2018-04-25.

[26] Shanker Shreejith et al. “VEGa: A High Performance Vehicular Ethernet Gate-
way on Hybrid FPGA”. In: IEEE Transactions on Computers 66.10 (2017),
pp. 1790–1803. doi: 10.1109/tc.2017.2700277.

60

https://doi.org/https://doi.org/10.1016/B978-075065093-9/50004-9
https://doi.org/https://doi.org/10.1016/B978-075065093-9/50004-9
https://www.sciencedirect.com/science/article/pii/B9780750650939500049
https://www.sciencedirect.com/science/article/pii/B9780750650939500049
https://doi.org/10.1109/ICACTE.2010.5579409
http://www.ni.com/white-paper/3352/en/
http://www.ni.com/white-paper/9733/en/
https://www.mostcooperation.com/
https://www.mostcooperation.com/
https://doi.org/10.1109/icton.2010.5549163
https://vector.com/vi_most_en.html
https://doi.org/10.1109/TVT.2016.2636867
http://www.ieee802.org/3/1TPCESG/public/BroadR_Reach_Automotive_Spec_V3.0.pdf
http://www.ieee802.org/3/1TPCESG/public/BroadR_Reach_Automotive_Spec_V3.0.pdf
https://doi.org/10.1109/tc.2017.2700277

Bibliography

[27] Till Steinbach, Franz Korf, and Thomas Schmidt. “Real-time Ethernet for
Automotive Applications: A Solution for Future In-Car Networks”. In: IEEE
International Conference on Consumer Electronics (Sept. 2011), pp. 216–220.
doi: 10.1109/ICCE-Berlin.2011.6031843.

[28] Lucia Lo Bello. “The Case for Ethernet in Automotive Communications”. In:
SIGBED Rev. 8.4 (Dec. 2011), pp. 7–15. issn: 1551-3688. doi: 10 . 1145 /
2095256.2095257.

[29] IEEE. Time-Sensitive Networking (TSN) Task Group. 2018. url: https://
1.ieee802.org/tsn/. Accessed on: 2018-02-14.

[30] Y. S. Lee, J. H. Kim, and J. W. Jeon. “FlexRay and Ethernet AVB Syn-
chronization for High QoS Automotive Gateway”. In: IEEE Transactions on
Vehicular Technology 66.7 (July 2017), pp. 5737–5751. issn: 0018-9545. doi:
10.1109/TVT.2016.2636867.

[31] Cisco Systems Inc. Time-Sensitive Networking: A Technical Introduction. 2017.
url: https://www.cisco.com/c/dam/en/us/solutions/collateral/
industry-solutions/white-paper-c11-738950.pdf. Accessed on: 2018-
05-20.

[32] Avnu Alliance. Avnu Alliance. 2018. url: http://avnu.org/. Accessed on:
2018-05-22.

[33] T. Steinbach et al. “Tomorrow’s In-Car Interconnect? A Competitive Evalu-
ation of IEEE 802.1 AVB and Time-Triggered Ethernet (AS6802)”. In: 2012
IEEE Vehicular Technology Conference (VTC Fall). Sept. 2012, pp. 1–5. doi:
10.1109/VTCFall.2012.6398932.

[34] Sune Mølgaard Laursen, Paul Pop, and Wilfried Steiner. “Routing Optimiza-
tion of AVB Streams in TSN Networks”. In: SIGBED Rev. 13.4 (Nov. 2016),
pp. 43–48. issn: 1551-3688. doi: 10.1145/3015037.3015044. url: http:
//doi.acm.org.proxy.lib.chalmers.se/10.1145/3015037.3015044.

[35] W. Steiner et al. “Next generation real-time networks based on IT technolo-
gies”. In: 2016 IEEE 21st International Conference on Emerging Technologies
and Factory Automation (ETFA). Sept. 2016, pp. 1–8. doi: 10.1109/ETFA.
2016.7733580.

[36] Vector Informatik. Basic Software and RTE. 2016. url: https://elearning.
vector.com/index.php?wbt_ls_kapitel_id=1045000&root=378422&
seite=vl_autosar_introduction_en. Accessed on: 2018-04-27.

[37] Arccore AB. Introduction to Complex Drivers. 2014. url: http : / / dev .
arccore . com / public / user - doc / UD441x / Introduction - to - Complex -
Drivers_28607110.html. Accessed on: 2018-04-26.

[38] Nico Naumann. “AUTOSAR Runtime Environment and Virtual Function
Bus”. MA thesis. Postdam, Germany: Department for System Analysis and
Modeling, Hasso-Plattner Institute for IT-Systems Engineering.

[39] AUTOSAR. SOME/IP Protocol Specification. 2016. url: https : / / www .
autosar . org / fileadmin / user _ upload / standards / foundation / 1 - 0 /
AUTOSAR_PRS_SOMEIPProtocol.pdf. Accessed on: 2018-05-25.

[40] Jan Seyler, Nicolas Navet, and Loïc Fejoz. “Insights on the Configuration and
Performances of SOME/IP Service Discovery”. In: SAE International Journal
of Passenger Cars - Electronic and Electrical Systems 8.1 (Apr. 2015), pp. 124–

61

https://doi.org/10.1109/ICCE-Berlin.2011.6031843
https://doi.org/10.1145/2095256.2095257
https://doi.org/10.1145/2095256.2095257
https://1.ieee802.org/tsn/
https://1.ieee802.org/tsn/
https://doi.org/10.1109/TVT.2016.2636867
https://www.cisco.com/c/dam/en/us/solutions/collateral/industry-solutions/white-paper-c11-738950.pdf
https://www.cisco.com/c/dam/en/us/solutions/collateral/industry-solutions/white-paper-c11-738950.pdf
http://avnu.org/
https://doi.org/10.1109/VTCFall.2012.6398932
https://doi.org/10.1145/3015037.3015044
http://doi.acm.org.proxy.lib.chalmers.se/10.1145/3015037.3015044
http://doi.acm.org.proxy.lib.chalmers.se/10.1145/3015037.3015044
https://doi.org/10.1109/ETFA.2016.7733580
https://doi.org/10.1109/ETFA.2016.7733580
https://elearning.vector.com/index.php?wbt_ls_kapitel_id=1045000&root=378422&seite=vl_autosar_introduction_en
https://elearning.vector.com/index.php?wbt_ls_kapitel_id=1045000&root=378422&seite=vl_autosar_introduction_en
https://elearning.vector.com/index.php?wbt_ls_kapitel_id=1045000&root=378422&seite=vl_autosar_introduction_en
http://dev.arccore.com/public/user-doc/UD441x/Introduction-to-Complex-Drivers_28607110.html
http://dev.arccore.com/public/user-doc/UD441x/Introduction-to-Complex-Drivers_28607110.html
http://dev.arccore.com/public/user-doc/UD441x/Introduction-to-Complex-Drivers_28607110.html
https://www.autosar.org/fileadmin/user_upload/standards/foundation/1-0/AUTOSAR_PRS_SOMEIPProtocol.pdf
https://www.autosar.org/fileadmin/user_upload/standards/foundation/1-0/AUTOSAR_PRS_SOMEIPProtocol.pdf
https://www.autosar.org/fileadmin/user_upload/standards/foundation/1-0/AUTOSAR_PRS_SOMEIPProtocol.pdf

Bibliography

129. issn: 1946-4622. doi: https://doi.org/10.4271/2015-01-0197. url:
https://doi.org/10.4271/2015-01-0197.

[41] AUTOSAR. Explanations of Adaptive Platform Design. 2017. url: https:
//www.autosar.org/fileadmin/user_upload/standards/adaptive/17-
03/AUTOSAR_EXP_PlatformDesign.pdf. Accessed on: 2018-04-25.

[42] R Pallierer and B Schmelz. Combine AUTOSAR Standards for High-Performance
In-Car Computers. 2017. url: http://innovation-destination.com/2017/
12/13/combine-autosar-standards-high-performance-car-computers/.
Accessed on: 2018-04-25.

[43] ArcCore cooperation. ArcCore. 2018. url: https : / / www . arccore . com/.
Accessed on: 2018-02-08.

62

https://doi.org/https://doi.org/10.4271/2015-01-0197
https://doi.org/10.4271/2015-01-0197
https://www.autosar.org/fileadmin/user_upload/standards/adaptive/17-03/AUTOSAR_EXP_PlatformDesign.pdf
https://www.autosar.org/fileadmin/user_upload/standards/adaptive/17-03/AUTOSAR_EXP_PlatformDesign.pdf
https://www.autosar.org/fileadmin/user_upload/standards/adaptive/17-03/AUTOSAR_EXP_PlatformDesign.pdf
http://innovation-destination.com/2017/12/13/combine-autosar-standards-high-performance-car-computers/
http://innovation-destination.com/2017/12/13/combine-autosar-standards-high-performance-car-computers/
https://www.arccore.com/

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Purpose
	Scope
	Related Work
	Thesis Outline

	Background Theory for Communication Technologies in Automotives
	Preliminaries
	OSI-model
	Cyclic Redundancy Check
	TCP Socket Communication
	TCP Delay Efficiency

	Bus technologies in automotives
	CAN
	FlexRay
	LIN
	MOST
	System Description
	Frame Format

	Background of Automotive Ethernet
	Switched network background
	BroadR-Reach
	Ethernet backbone network
	Ethernet AVB / TSN
	System Configuration

	System Description
	Frame Format

	AUTOSAR
	AUTOSAR Infrastructure
	Basic Software
	Runtime Environment
	Application layer

	SOME/IP
	Header format
	SOME/IP-SD
	Initial Wait Phase
	Repetition Phase
	Main Phase
	Functioning Modes

	Adaptive AUTOSAR
	Technology Drivers

	Implementation of a Communication Link
	Development Environment
	System model
	Source
	AUTOSAR node
	Linux node
	Sink

	Results and Analysis of the Link Performance
	The Communication Link
	TCP Throttling
	TCP Transmission Check

	Round Trip Time
	Data Throughput
	Linux
	AUTOSAR
	Full link

	OS load

	Discussion
	Further analysis of the results
	AUTOSAR
	PSH packets
	OS load

	Improvements & further development
	Adaptive AUTOSAR Platform
	ArcCore version
	BroadR-Reach
	SOME/IP
	TSN

	Conclusion
	Bibliography

