mod;._asa;? E/\ST—ADL
i

Supporting Embedded Systems Development

Tool Support for EAST-ADL import of Modelisar FMU
Master of Science Thesis

SELCUK CAVDAR

Department of Applied Information Technology
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden, 2011

Report No. 2011:049

ISSN: 1651-476

CHALMERS (7

Supporting Embedded Systems Development

Tool Support for EAST-ADL import of Modelisar FMU
SELGUK CAVDAR

OSELCUK CAVDAR, 2011

Technical Report No. 2011:049

Department of Applied Information Technology
CHALMERS UNIVERSITY OF TECHNOLOGY
SE-412 96 Goteborg

Sweden

Telephone + 46 (0)31-772 1000

Page 2

CHALMERS (5%

Page 3
1. Summary

Embedded Systems play an important role in nearly every type of product now and it is increasing
its popularity even more. Thus, designing more reliable embedded systems in a shorter time of period
has been a very important topic and research area for the past decades. Model Based Development is
one of the most effective tools that researchers have come up with for this topic and is the new era of
designing Embedded Systems more efficiently. The importance and application area of Embedded
Systems has also been increasing rapidly in the Automotive Industry. Hence, it is in great interest to
develop powerful Model Based Development tools for the design of Automotive Embedded Systems to
decrease the development time and increase the safety and reliability of them. Moreover, Model Based
Development provides reusability and makes the collaboration between the developers much easier,
more reliable and more time efficient.

ATESST2 and ITEA2 are two projects which have taken place for research in “Model Based
Development of Automotive Embedded Systems” and which resulted in EAST-ADL and Modelisar. The
main aim of the Thesis was to analyse the possibility of a mapping between a Modelisar and an EAST-
ADL model and then to implement a Modelisar->EAST-ADL model conversion tool.

The Thesis work resulted in obtaining an XML based tree editor in Eclipse for EAST-ADL models
and a Modelisar>EAST-ADL model convertor application. Obtaining this conversion tool included the
steps of defining Modelisar-> EAST-ADL Mapping rules, implementing these rules in ATL and forming an
executable application.

The outcomes of the Thesis work has been used in Maenad, a European Commision FP7 project.

Keywords: Tool Integration, Model Transformation, EAST-ADL, Modelisar, Eclipse, EMF, ATL

S

CHALMERS [2¢)

Page 4

2. Contents
1. SUMMARY 3
2. CONTENTS 4
3. ACRONYMS 4
4. INTRODUCTION AND OVERVIEW 5
5. BACKGROUND 7
6. PROBLEM APPROACH 13
7. RELATED APPROACHES 34
8. RESULTS 36
9. CONCLUSIONS 39
10. FUTURE WORK 41
11. REFERENCES 43
12. APPENDIX 44
A. Appendix A 44
1. FMI MetaModel 44
2. EAST-ADL MetaModel 51
3. Mapping Rules 55
4. ATL code 63
B. Appendix B 87
1. Input and Output Files of the FMUZ2EA tool 87
2. Generating a Model Using the Editor 99
C. Appendix C 118
1. Generating the MetaModels 118
2. Obtaining the Editor 130
3. Obtaining the Plug-in 133
4. Obtaining the Executable 136
D. Appendix D 139
1. Analysis of the current problems of the KTH tool 139

3. Acronyms

Table 1. Acronyms.
VTEC Volvo Technology Corporation
EAST-ADL Electronic Architecture and Software Tools- Architecture Description Language

CHALMERS (3

Page 5

4. Introduction and Overview

Connecting Model-Based-Development tools with other Model-Based-Development and
Simulation tools have always been an interest of the ongoing research about Embedded Systems. This
interest arises of the fact that every Model Based Development Tool and Simulation Tool has different
features and characteristics. Connecting a Model Based Development Tool to another one or to a
Simulation Tool can give different advantages and can be done in different ways. In other words, each
tool needs to work in cooperation with the artifacts created by other tools to increase the efficiency of
development.

Simulztion
Tiowal 1

Maodel Based
Developmert Tool 1

Simulztion
Toal 2

Model Bazed
Development Tool

|2

Formmat 1 - Fortmat 2
Motation 1 Motation 2
(Architel_:ture L [Architecture
Descrigption Dezcription

Language 1)

Figure 4.1/ 2 Model Based Development Tools with different characteristics

Language 21

/1— hodel Bazed I+))
Simulation Toal 1 4 Development Simulation Toaol 2
Toal 1 I

Figure 4.2/ A Model Based Development Tool that has integration with 2 Simulation Tools

Model Bazed h_k""‘- Model Bazed
Development Tool 1 L—f“"f Development Tool 2
(I;I\ntﬁncrtl 1 Motation 2 Motation 2

rohitecture ;

e ANy [Architecture
Description (:] Description
Language 1) Language 2)
Formai 1 Format 1 Format 2

 J l
Simulation Simulation
Tool 1 Tool 2

Figure 4.3/ Integration Process of a Model Based Development Tool with another

CHALMERS (3%)

Page 6

As seen in Figure 4.1 Model Based Development Tool 1 and 2 have different characteristics as
they have different Notations, Simulation Tools and Formats. One important note to take here is that
Notations in our context more specifically mean Architecture Description Languages. So connecting
these 2 tools extends their capability and expressiveness. A model designed in Model Based
Development Tool 1 can be simulated by Simulation Tool 2 or can be expressed by Architecture
Description Language 2 after Model Based Development Tool 1 and 2 are connected to each other.
Connecting different architecture description languages is valuable as these languages can gain new
capabilities by it. As in Architecture Description Languages, also different Simulation Tools have different
strong and weak points. Furthermore, there are lots of Model Based Development tools already
developed for automotive industry too and it is always good to connect different tools to each other for
maximizing the reusability of already designed models. So, connection of different tools can put in extra
freedom in the design process of a model. Since different tools have different strengths in modelling a
system, a user can design some aspects of the system model in one tool and send it to another tool for
designing/simulating some other aspects of the model which gives flexibility. Another possible approach
is connecting a Model Based Development Tool with one or several Simulation Tools like shown in Figure
4.2. This would support the user with different methods of analysis and verification of the various parts of
the models. As different Simulation Tools could be more specialized in one aspect of the models, having
compatibility with several of them is definitely an advantage. If 2 Model Based Development Tools are
connected to each other then this means one can transfer one model designed in 1 of them into the other
with using a common Simulation Tool as a link. Another possible linking way could be as shown in Figure
4.3. Here Model Based Development Tool 1 uses Architecture Description Language 1 and Formatl and
is compatible with Simulation Tooll. Similarly Model Based Development Tool 2 uses Architecture
Description Language 2 and Format2 as its modelling base and is connected with Simulation Tool 2.
These 2 Model Based Development Tools can be linked by having a mapping between Architecture
Description Language 1 and 2 and afterwards changing Format 1 with Format 2. So Modell designed in
Model Based Development Tool 1 would go in a conversion from Architecture Description Language 1 to
2 and then change its format from Formatl to Format2. This transformation of the model could have been
done in different ways like changing only the Architecture Description Languages, Formats, etc. of the
model depending on the differences between Model Based Development Tools. When these additional
efforts are given for the conversion of models, as a result, all the models designed in Model Based
Development Tool 1 will have the opportunity to use all the supporting tools of Model Based Development
Tool 2, to be analyzed from a different angle and be reused in Model Based Development Tool 2 as a
new model or an addition to a previously designed model. In short, the features obtained by integrating
Model Based Development and Simulation tools gives a lot of flexibility to the user and supports
reusability in the design process.

During the development process of such integrations, It is beneficial to make a research on similar
efforts in this area for saving time and for increasing the capability of integration. For this intent, 2
different projects that have been going on in cooperation with VTEC have been selected. These 2
projects’ main scope has been integrating Simulink with Papyrus and Simulink with SystemWeaver
respectively. In short, Papyrus is a platform that aims to offer an environment for editing all kinds of EMF
based models and Systemweaver is a product life cycle management platform.

Linking Simulink with Papyrus is an approach leaded by KTH. Papyrus, in the scope of this project
is used to develop EAST-ADL models with UML profiling. So Papyrus is the Model Based Development
Tool, the Architecture Description Language is EAST-ADL and the Format is UML. The project applies
different processes to a model (an EAST-ADL model created with Papyrus and profiled with UML) and
the building blocks of these processes are EMF, Simulink and EAST-ADL metamodels, UML, Java, ATL,
Eclipse and Matlab.

Connecting SystemWeaver with Simulink has more or less the same goal as KTH’s
implementation; connecting a Model Based Development Tool to a Simulation Tool. This project also has
a similar mindset and building blocks behind the conversion. The building blocks of the project consist of
Simulink and EAST-ADL MetaModels, SystemWeaver MetaMetaModel, XML, SystemWeaver and
Matlab.

These 2 projects had similar development steps as in our project. The difference was that, their
aim is to connect a Model Based Development Tool to a Simulation Tool where our aim is to connect a
Model Based Development Tool to another one. But our project and these 2 others correspond in their
similar implementation phases. Furthermore one of the future plans of our project has been put as as
integrating Simulink with our conversion tool which is the main topic of the other 2 projects. The current
version of our project uses EMF, FMI and EAST-ADL metamodel, XML, Java, ATL, VSA, Modelisar and
Eclipse.

CHALMERS (3%)

‘\

Page 7
5. Background

This part of the report will give you an insight about some of the topics that are needed to be
familiar with to understand the work done in the thesis.

5.1 Related Projects

Modelisar, Atesst2 and Maenad projects are the closely related projects with the thesis work.
Modelisar and Atesst2 projects’ results make up the core of the thesis work and Maenad is the project
which is contributed to.

5.1.1 MODELISAR(MODELIca-autoSAR)

Modelisar is an ITEA2 project which aims in significant improvement in the design of systems and
embedded software in the vehicles. It supports Vehicle Functional Mock-up, a next generation of
methods, standards and tools to support collaborative design, simulation and test of systems and
embedded software. Functional Mock-Up Interface is one of the important results of the project which
also has a very significant role in the thesis work.

5.1.2 ATESST2(Advancing traffic efficiency and safety through software
technology phase 2)

Atesst2 is a completed European Commision FP7 Project. The objective of this project was to
refine and improve EAST-ADL. The imporvement part is concentrated on extending the language in
modelling cooperative active safety systems. As a result of the project:

-> EAST-ADL has been refined for capturing the requirements, characteristics and configurations of
cooperative systems and the related analysis, validation and verification of them.
- A guideline has been defined to use EAST-ADL for construction, validation and reuse of automotive
embedded software.

- EAST-ADL domain model has been modified for compatibility with AUTOSAR.

The current version of EAST-ADL which is used in the Thesis too is a result of this project. Also
Papyrus and KTH Simulink exchange plug-in are 2 of the several outputs of the project.

5.1.3 MAENAD(Model-based Analysis & Engineering of Novel Architectures for
Dependable Electric Vehicles)

Maenad is an ongoing European Commision FP7 Project. Maenad is also based on EAST-ADL.
This time the main scope is to refine EAST-ADL to meet the challenges in the design of Fully Electricle
Vehicles. The official main objectives of the project are as follows:

-> Provision of support for the automotive safety standard ISO 26262

-> Provision of capabilities for prediction of dependability & performance
-> Provision of capabilities for design optimization

- Demonstration of project results in a practical electrical vehicle design

The thesis work took place for contribtuion to Maenad project.

CHALMERS (3%)

*\
Page 8
5.2 Modelling Technology

Model Driven Engineering is the main concentration and contribution area of the thesis work.
MetaModelling, MetaMetaModelling and Model Transformation topics are the main notions that have
been used throughout our studies.

5.2.1 Model Based Development/ Model Driven Engineering

Model Based Development and Model Driven Engineering aims mainly on increasing the
productivity. They help the development teams to co-operate with each other easier and to increase the
compatibility and reusability of systems. Simply they help to increase the efficiency of the design process
by means of offering a domain model and tools such as development environments to the developers.
Figure 5.2.1 shows a typical software/hardware development process. One can apply Model Based
Development and Model Driven Engineering approaches through all the steps of this process, from
project definition to project test and integration. For instance EAST-ADL aims to cover earlier phases in
the development process where AUTOSAR more tries to cover the implementation phase.

Operation
Concept of Verification an
Operations nd Maintenance
) Validation
Project Requirements System
Definition and Verification
Architecture and Validation
g Integration,)
Detailed Test, and Project
Design Verification Test and
Integration
Implzmzntation
Time ’

Figure 5.2.1/ V Model(Software Development Process)
5.2.2 MetaModel/MetaMetaModel

Metamodeling, is the development of the structures, rules and constraints for modeling a class of
problems. A MetaModel determines the possible structures of the model. The MetaModel concept has a
very parallel charactersitic with programming languages. For instance, a programming language is the
grammar of a computer program where a MetaModel is the grammar of constructing a model. A model
that respects the semantics defined by a metamodel is said to conform to this metamodel. So as a
computer program should conform to its language, a model should conform to its MetaModel as well.
MetaMetaModel is one level more abstract than MetaModel. MetaMetaModel determines the semantics
of the MetaModel just as MetaModel does for its Models. The relation between these concepts can be
seen more clearly from the Figure 5.2.2. In MO level, there is a video model which is an instance of Video
element in M1. The video element is an instance of attribute in M2 and attribute is an instance of Class in
M3. So, MO is the model level, M1 is the Meta-Model level, M2 is the MetaMetaModel level. In this
example, M3 is the MetaObjectFacility 2.0 which is formed by OMG group and determines the structure
of M2 which is in this case UML 2.0. M2 could have been another language other than UML which
conforms to MOF. So MOF puts some limits on forming models conforming to it but one can create
different models (languages) using MOF. One can also create different M1 and MO models as well, only
limitation is to make sure that they conform to their corresponding M2 and M1 models. A typical way of
representing the information in MetaModels and MetaMetaModels is using XSD files which is also used
to reprsent the MetaModels that are used in the thesis work.

gy
CHALMERS (7¢

Page 9

“’; lﬂE“--
Pl A "
<<instanceOf>> .-~ A ... <<instanceOf>
_--" <<instanceQf>> Se
classifier
Attribute Class 7
A 4 A
' _t’ »* '
[-~ .)
<<instanceOf>> <<instanceOf>> <<instanceOf>> <<instanceOf>>
M1 ;
/
] P v /
BGI:’UQITQY- .', Video <<sr\apshot>>’,’l :aVideo
mode -
+itle: String title="Casablanca”
R
\
\
\
Mo <<instanceOf>>

Objekte
der
Realitat

Figure 5.2.2/ MetaMetaModelling Concept Example
5.2.3 Model Transformation

Model transformation is the way for specifying how a target model will be formed from a source
model. For this purpose, the developers must match source model elements to initialize the target model
ones. Formally, a simple model transformation has to define the way for generating a model Mb,
conforming to a metamodel MMb, from a model Ma conforming to a metamodel MMa. The transformation
rules can also be seen as a model since it has to conform to a transformation metamodel that defines the
model transformation semantics.

conformsTo conformsTo

MM,
MM 0 MM,

.y conformslo M

conformsl o conformsTo

M, |- o M,

a Transformation

Figure 5.2.3/ General structure of Model Transformation

Figure 5.2.3 shows the general structure of a model transformation. Ma is a source model which
conforms to MMa which is the MetaModel of the soruce model. Mt is the transformation rules which will
match the source elements to the target ones. Mb is the obtained target element by using Mt with Ma. Mb
should also conform to MMb (target model’s MetaModel), hence Mt is responsible of forming a valid
target model. MMa, MMt and MMb have a common MetaMetaModel which is MMM that they conform to.
MMM is the Ecore MetaMetaModel, MMa is the FMI MetaModel, MMt is the ATL MetaModel, MMb is the
EAST-ADL MetaModel, Ma is an FMI model, Mt is the ATL transformation rules and Mb is the EAST-ADL
model obtained after the converesion in our case.

CHALMERS 5¢)

ST

Page 10
5.3 FMI(Functional Mockup Interface)/FMU(Functional Mock-up Unit)

FMI defines an interface to be implemented by an executable called FMU. The FMI functions are
called by a simulator to create one or more instances of the FMU, called models, and to run these
models, typically together with other models. Models are described by differential, algebraic and discrete
equations and they are independent of the target simulator as they do not use a simulator specific header
file. An overview of the data flow of an FMU has been shown in Figure 5.3.

The purpose is to describe dynamic systems with these models and provide an interface to run
them as needed in different simulation environments. FMI is distributed in one zip-file. The zip-file
contains

e The Model Description File (XML format): This xml-file contains the definition of all variables in
the model in a standardized way.

e The C sources of the Model Interface (including the needed run-time libraries used in the
model) and/or Dynamic link libraries (DLL) for one or several target machines. This solution is
especially used if the model provider wants to hide the model source code to secure the
contained know-how. A model may contain physical parameters or geometrical dimensions,
which should not be open. On the other hand, some functionality requires source code.

e Additional model data (like tables, maps) in model specific file formats.

. - F X
fy.p-1nital values (a subset of {X,.x,.¥,.v,.m,}) | v

Enclosing Model *

time

discrete states (constant between events)
parameters of type Real, Integer, Boolean, String
inputs of type Real, Integer, Boolean, String

all exposed variables

continuous states (continuous between events)
outputs of type Real, Integer, Boolean, String
event indicators

c
N< x < cDT 3~

External Model (FMU instance)

t X ‘ ‘i.m.z

Solver

Figure 5.3/ A schematic view of an FMU and its interface
5.4 AUTOSAR(AUTomotive Open System ARchitecture)

Autosar is an industrial software architecture standard. The motivation behind starting the Autosar
project was to lower down the cost of the design phase of E/E systems for automotive industry by having
a standardized infrastructure for the management of functions. The cost of the design phase became an
important issue since more and more E/E systems has been introduced to the vehicles in the last 2
decades which made the engineering of them more complex and a longer process to go in. In this
process, automotive manufacturers work with different work groups inside the company as well as with
the others such as suppliers which makes collaboration and integration important issues. Refinements to
the system take place during the development cycle. Also there are increasingly more challenging
regulations for safety and environmental care which creates the need of improvement both in the SW and
HW aspects of the E/E system continually. Autosar's aim is to provide a solution to these modularity,
scalability, transferability and re-usability issues with a standardized software infrastructure.

CHALMERS (3%)

Page 11

5.5 EAST-ADL(Embedded Architectures and Software Technologies - Architecture
Description Language)

EAST-ADL is an architecture description language which aims to introduce more abstract levels
than AUTOSAR. Also it aims to complement AUTOSAR in the development of automotive embedded
systems. In short, the premise behind EAST-ADL is the need of managing the overall engineering
information to control system definition.

The model organization of EAST-ADL can be seen in the Figure 5.5. There are four abstraction
levels for describing software and electronics based functionality of a vehicle. The embedded system is
complete on each abstraction level and the different parts of it can be connected with using various

traceability relations.

VehicleLevel lets the user to represent the features of the vehicle from top level perspective.
AnalysisLevel models the electronic functionality in an abstract form. DesignLevel includes the
implementation oriented aspects and ImplementationLevel is the link of EAST-ADL with Autosar. The
extensions are for giving further modelling support in different aspects of the embedded systems.

SystemModel Extensions ...
Vehicle VehicleLevel
Level TechnicafestureModel
Analysis I AnalysisLevel
e FuncionalAnalysisAr >

Level § " chitecture g zll N Z
Design E DesignLevel EI[Z|[E]8
Level @ functionalDesgnAcchitecture g_ E = §_

§ HardwareDesignArchitecture o« a
Implementation ImplementationLevel
Level AUTOSAR AUTOSAR AUTOSAR

Application SW Basic SW HW
t‘%:_,‘:?; Data exchange aver porty (‘[’, Allocanio

Figure 5.5/ EAST-ADL abstraction levels
5.6 EAST-ADL Behavioural Representation candidates

UML (Unified Modelling Language), XML (Extensible Markup Language) and XMI (XML MetaData
Interchange) are used as behavioural representation candidates of EAST-ADL. UML is extensible with 2
mechanisms which are profiles and stereotypes. UML2 profile is applied to EAST-ADL domain with using
these mechanisms. XML is used in EAST-ADL for definining EAXML, a model exchange format. Also,
Papyrus is a development environment of UML profiled EAST-ADL models where as the generated
Editor in the thesis work is an XML based one. The FMU2EA tool uses both XMI and XML for the
representation of EAST-ADL models.

5.7 EAST-ADL Tooling

VSA (Volcano Vehicle System Architect), Papyrus and SystemWeaver are some of the EAST-
ADL related tools.

5.7.1 VSA

VSA is mainly developed for AUTOSAR based systems. Its aim is to give support for designing
SW and HW architectures and the interaction between them for automotive systems. It also has a feature
of forming XML based EAST-ADL models. The formed EAST-ADL models with VSA are EAXML
extensioned files and it is known that they were in the desired format. So VSA is used to verify the
models that are obtained from the generated Editor and the FMUZ2EA tool in terms of their structure and
format as they are XML based too.

CHALMERS (3%)

‘\

Page 12
5.7.2 PAPYRUS

Papyrus is a tool for modelling in UML2. It also has an EAST-ADL modelling add in. So it is a UML
based EAST-ADL model development environment. The reason Papyrus has been in attention in the
thesis work is that KTH’s Simulink Plug-in application, a project that is considered as an important related
one, is designed for Papyrus.

5.7.3 SYSTEMWEAVER

SystemWeaver is an engineering information platform designed for easier product life-cycle
management (PLM). SystemWeaver offers the possibility of establishing one single source for all E/E
systems information for all developed products. The users of the system are found in different sites within
many diverse organizational areas, and in different project phases. The “Concurrent Engineering”
approach is implemented in SystemWeaver to support these developers with up-to-date information and
with data integrity. SystemWeaver offers a Simulink exchange feature too which gives the SystemWeaver
users the capability of transferring their SystemWeaver models to Simulink. SystemWeaver has a
MetaMetaModel which enables the developers to develop a MetaModel on it and afterwards to use this
MetaModel for managing corresponding models in SystemWeaver. A part of the EAST-ADL MetaModel
has been applied on SystemWeaver as well. For its connection with Simulink and EAST-ADL,
SystemWeaver is considered as an important related approach for the thesis work and therefore an
analysis of it has been done to collect more ideas especially on its Simulink integration feature and on its
way of supporting the development of EAST-ADL models.

5.8 Platform Technology
5.8.1 ECLIPSE

Eclipse is a multi language software development environment. It has an extensible plug-in
system. Eclipse itself provides most of its features with providing plug-ins that run on top of its runtime
system. So users of Eclipse can develop their own applications and introduce them as plug-ins to Eclipse
which makes these applications to become a part of the environment. Eclipse supports a number of
powerful tools in modelling context hence it has an important role both in the thesis work, ATESTT2 and
MAENAD projects.

5.8.2 EMF(Eclipse Modelling Framewaork)

EMF is a modelling framework. It has code generation capabilities for enabling viewing and editing
of models. It is a very strong tool and played an important role through out the thesis work. EMF was the
key element in obtaining the FMI and EAST-ADL MetaModels and the EAST-ADL Editor.

5.8.3 ATL

ATL is a model transformation language that enables to specify how target models can be
produced from source models. ATL is composed of helpers, attributes and rules.

ATL helpers can be seen as equivalent to Java Methods. They are suitable for defining operations
and can be called from different points of ATL code.

ATL supports both declarative and imperative programming by ATL rules. There are 3 kinds of
ATL rules which are matched, called and lazy rules. Matched rules and lazy rules enable the programmer
to do declarative programming whereas called rules are used for imperative programming.

Matched rules find the specified source model elements and forms target model elements with
these. These rules specify how the target model elements should be created from source model
elements. Lazy rules are similar to matched rules but they are only executed when they are called from
an ATL imperative block. Called rules should be called from an ATL imperative block as well and they let
to create target models by imperative code.

CHALMERS (3]
Page 13

6. Problem approach

This section gives an overview of the work flow taken in the thesis. It also includes a detailed
explanation of the implementation steps taken for forming the FMUZ2EA tool and the EAST-ADL Editor.

6.1. Work Flow

The general approach taken for the whole project can be divided into 2 big modules as seen in
Figure 6.1.1. The steps that are planned to be taken can be summarized under the headings that can be
found inside the modules. The applied approach evolved with time and so has some differences with this
overview of the work plan. For instance, in the beginning finding new solution paths/changing the
selected solution was a part of the general plan but in the end there remained no need to change the
selected solution.

Defining theproject Ob tadning genwral
details and the L baclzrowmd dbout the
Teq Ui eIveIits —p’ topic
Amlyzing the related 1 Finuloes related
approaches 4 approaches with the
problem
o Brainstormoie on Clwosine possible
= possihle solution :> canlidate solutdon
g paths patle
:
"%p & Maladr J;l; wlysi
Y Ialang short analysis
- ﬁghﬂ:fl?l:;f - on cardlidate sohition
' P M paihs
=11
&
g = Worlking ona degper Actual
kevel on the selec ted || A Inplerentation
sohtion

Figure 6.1.1/ An Overview of the Work Plan

In Figure 6.1.2, the process followed in “Working on a deeper level on the selected solution” and
“Actual Implementation” parts of the work flow that are also the last two steps seen in Figure 6.1.1 are
shown in detail. The first phase (first big box) in this figure shows the work done to test the selected
solution path in order to see if it will be a preferable choice. The other 2 phases shows the steps taken for
the actual implementation. Further discussion about the work flow takes place in the rest of this part.

CHALMERS (7%

Having a first look in
Modelisarprojectand [Working on Eclip se
forming a small frar tion 1 Platform
of the mapping
Mald ..
work a]mu! A'II.. [y S— Ohtainine the
language specifications | MetaMod els from the
5 hennas
Chiaining a first sample
of the comversion
Ohtaining an Ediior o Shalying on EAST-
for EAST-ADL + ADL and MNodelisar
deeper
Making wp the o Working on the
complete Mapping EAXML structure
Roules
—) 1
Furiher study on ATL Inplementing the E d
Mapping Rules in E
ATL E =
_— —r
Ohiaining an Eclipse " Ohtaining an exee ukahle
plug-in fr the — for the plug-in
application
Making p reliminary p .
work o some of the . Defining p ossib e firture
posshlefuiure work ahout ihe project
inprovemens
Preparing the final
documeniation

Figure 6.1.2/ A more detailed look into the work done for the selected solution path

Page 14

CHALMERS (3%)

‘\

Page 15
6.1.1 First Phase

The thesis work started with defining the characteristics and limitations of it. The first plan was to
obtain some kind of tool that makes a conversion from a Modelisar model to an EAST-ADL model. It is
planned to implement an interface for the conversion tool to make it more user friendly. Eclipse is decided
to be used as the development platform since this project is a part of Maenad project which uses Eclipse
as well. Obtaining XML based final models which is in the structure of EAXML format was aimed.
Additionally, supporting model exchange between the built tool and Simulink is put as a considerable
future extension of the tool which was a fact that should be caught in mind during the development. The
thesis work is named as FMUZ2EA project.

After deciding on the requirements, the project flow went on with obtaining a general background
about the possible building blocks of the project. Since the main interest was in EAST-ADL, gaining
background step has started with learning this language. Model-Based-Development and MetaModeling
concepts were studied. Also a quick look on XML, Modelisar and Eclipse platform have been taken.

Gaining the fundamental information moved the project to finding the related approaches. After
some short search, 2 projects have been picked up for deeper analysis. They were selected because of
having EAST-ADL as their core. Moreover, they had Simulink integration which is a possible future focus
of the project. So these approaches were thought as having suitable characteristics to obtain an overview
of FMUZ2EA project. As told before, “KTH Simulink Exchange” application, which has been developed in
Eclipse environment as well, was one of the selected approaches. The other selected project was
Systemite AB’s SystemWeaver platform with the Simulink exchange plug-in.

After finding these 2 related projects, detailed analysis of them have been made. First, their
building blocks have been given attention. Papyrus, ATL and UML were studied in the light of KTH'’s
project in addition to the previously studied topics. In connection with Systemite’s efforts, SystemWeaver
and MetaMetaModeling concept were studied. Secondly, their structures have been looked through.
Close look have been given to their Simulink integration and their way of handling EAST-ADL models.

6.1.2 Finding Possible Paths

Obtaining an understanding of the related projects drew a clearer picture of the possible structure
of the FMU2EA. A number of brainstorming sessions have been gone through which ended up with
several ideas. Among these ideas, 1 of them was proposed as a highly potential candidate solution for
implementing the structure. This solution included some decision points such as choosing the language
to use for the application of the mapping rules between FMU and EAST-ADL. The general overview of
the plan looks like as in the Figure 6.1.2.1.

It has been planned to support a user-interface that will let the user to choose a Modelisar model
from the file system. This interface could be embedded to Eclipse platform or can take another formation
depending on the preference later. The interface would also let the user to specify the location of the
output model generated by tool. After the user selections, the corresponding EAST-ADL model should be
created in the previously specified location. It was known that this conversion would extract information
from an XML file and would create another XML file depending on the extracted information. This process
means that there was a need of mapping rules that shows which element of Modelisar corresponds to
which element in EAST-ADL. These mapping rules should have been implemented in Eclipse but how it
will be done has been a discussion topic. One of the proposals was using Java to parse the Modelisar
Model's XML and create another XML that will correspond to and EAST-ADL model. Another significant
proposal was to use ATL to make the conversion. Java had the advantage of being a known
programming language which makes it a more suitable selection for making modifications by other
people on the previous studies in the future. Also it had strong features which could have been used in
case of need during the project. In the other hand ATL was a dedicated language to Model-to-Model
transformation. Also, KTH’s simulink exchange project used ATL for making a model conversion. But,
there were doubts about the capabilities of ATL since it was still a research project. Moreover, learning
and implementing ATL language would take extra time as it had a specific structure unlike to Java, C, etc.
which would need extra effort for getting used.

CHALMERS (3%)

Page 16

After some evaluation, it has been decided to use ATL, since KTH used ATL too in their “Simulink-
Exchange” project as KTH already evaluated this language and also it was favourable to have
compatibility with this tool as there can be a KTH-VTEC collaboration about this project in the future as
KTH is a partner in Manead. But after this evaluation, it has been noticed that ATL has no good source of
documentation and have still bugs. Additionally as it is an evolving language, an implementation running
in an older version has the risk of not being able to run in a newer one. Still, ATL seemed like a good
choice as compatibility was a more prioritized issue. Also, this project was a research project itself too so
there was no problem to put time on examining the capabilities of ATL as it would give feedback for the
future projects for showing whether if it is preferable or not to use ATL.

FileSystem FileSystem

Modelisar

EAST-ADL.xml

A

Eclipse

Programming

T

Figure 6.1.2.1/First state of the interaction planned between the components of the Tool

r%aa 3
CHALMERS Y

Page 17

6.1.3 Working on the Selected Path/Software Development Process

Before starting to work on the planned solution, a general background refinement has been done.
For this purpose, a general study has been done on the Modelisar project. Secondly, a closer look has
been given to ATL structure and its working principle. Also, some previously completed ATL projects
have been looked into for getting a better idea. Additionally, Eclipse platform and EMF (Eclipse Modeling
Framework) have been studied in a deeper level. Especially, EMF is a very complex framework and a
powerful tool so special attention has been given to it. After this second background study, a more
detailed overview of the process that will take place in Eclipse has been obtained as can be seen in
Figure 6.1.3.

Eclipse
ATL
Conforms To ‘
Metametamodel (ECORE)
Conforms To Conforms To
FMI.ecore EASTADL.ecore
Conforms To Conforms To
Fmi.xml Fmi.xmi EASTADL.xmlI

Figure 6.1.3/ First Planned System Data Flow of the Tool

After somehow taking the Fmi.Xml file with the help of the interface that will be designed, this file
needs to be converted to another file format, XMI. This is because ATL works on XMI formatted files. This
process should take place every time a conversion is done since in a Modelisar model, there is Fmi.xml
file by default, so after every import of Fmi.xml there will be a conversion to Fmi.xmi. A study has been
done for converting an XML file to an XMI in the context of Fmi.xml files and the steps for the conversion
have been concluded. It was planned to do this simple transformation by Java. Moreover, ATL needs the
ECORE MetaModels of the source and target models which are FMl.ecore and EASTADL.ecore
respectively. These Metamodels can be obtained in two ways. One can manually create the Metamodel
by writing the correspding Java Classes. Or, if there are XSD files available then EMF can be used to
generate the Ecore MetaModels. In our case, XSD files for both FMI and EASTADL were available, so
EMF was used to generate the FMl.ecore and EASTADL.ecore files. With these processes, nearly
everything was ready for the first trial of the FMI.xmi to EASTADL.xml conversion. The only missing
component was the ATL file that will supply the rules for the conversion. For this, 2 things had to be done.
First step was to define some principle and basic mapping rules. Second was to implement these
mapping rules in ATL language. There was already an idea on the correspondance between Modelisar
and EAST-ADL from the start which was one of the important motivation points of the Thesis Topic. So
this idea has been shaped to obtain the first version of the mapping that formed the main structure of the

CHALMERS (3%)

Page 18

mapping. To implement the mapping in ATL, ATL language specifications have been learned in a basic
level and then mapping rules have been implemented. Finally, a number of simple conversions have
been run which gave satisfying results so ATL was kept as the transformation language.

6.1.4 Actual Implementation

With the first successful attempt of having a principle conversion, the time came for the actual,
fully detailed version. For this, a first working plan that is similar on the figures 7 and 8 have been
determined. The Figure 7 and 8 shows the actual sequence of the process which evolved over time and
slightly differentiated from the first plan.

It was decided to use majorly an lterative and Incremental Software Development Process and
partly Waterfall Model where it is applicable. This approach was preferred as the project is experimental.
How much the mapping will be possible, how suitable is ATL to implement all the mapping rules, what is
Eclipse capable of and what structure and format should the model have, were all uncertain issues in the
start. These topics get clearer all along the way which made an iterative process preferable. But in certain
phases of the project Waterfall model has also been applied.

6.1.4.1 Main Phase

There was a need of a tool that can verify the generated EAST-ADL file by the conversion and
edit it. There was no open source environment dedicated to edit EAST-ADL models in XML format.
Papyrus is an EAST-ADL editor, but it is based on UML format which didn’t work in our case. So an editor
that can edit EAST-ADL models in XML format became an interest. With this editor, the user would be
able to generate models from scratch and then import the generated EAST-ADL models by the tool as a
part of this model. Or the user can build larger models on top of the generated EAST-ADL models by
opening them in the editor. While studying EMF before, an editor generation tool has been noticed. A
more in-depth evaluation has been done on this specific tool. After spending some time on the tool, the
editor in interest has been obtained. Thereafter, obtaining an editor that has the capability of editing
AUTOSAR+EAST-ADL elements through the same model became an additional interest. After putting
some extra effort, this editor has been obtained too.

Then the attention has been moved to one of the core topics of the project, obtaining the fully
detailed mapping rules. This part of the work was more of an iterative process going back and forth
between studying on EAST-ADL and MODELISAR in a very detailed manner and adding the new
information gathered to the mapping rules. Also, working on the Papyrus and Eclipse Editor generated
models supported the process for deciding on the final structure of the models obtained by the FMU2EA
tool.

After some while, the near complete mapping rules have been obtained which carried the project
to another core topic, implementing the mapping rules in ATL. For this, further knowledge about ATL was
needed to be obtained. Although the documentation about this model transformation language was
limited, there were supporting resources like Examples and forums. With using all of the information from
these sources, an Apply&See approach has been followed. In this approach the ATL debug tool has
helped very much to see the actual characteristics of the program.

With the deeper background obtained about ATL, the near complete mapping rules has been
started to be implemented. The characteristics of ATL sometimes prevented the implementation to be
straight forward and fast. During the implementation, the mapping rules have been refined too and found
its final shape. These final rules have been completely applied in ATL but the models obtained by these
rules had minor differences with the desired model structure and these were caused by the limitations of
ATL. Fixing these differences is noted as future work.

For the final Analysis&Verification on the generated EAST-ADL.XML file’s structure, different
paths have been taken. One of the tests has ended up with the conclusion that there is a need of further
modification in the structure of the generated file. This test has been done with the VSA Volcano tool from
Mentor Graphics AB. The tool has a feature of creating and editing EAST-ADL models. Furthermore it
serializes the generated model in XML format unlike the previously used tools for verification. The reason
this tool has not been used before in defining the structure of the EAST-ADL.XML file process is that it is

r%aa 3
CHALMERS Y

Page 19

not an open source tool and it became available at this final testing time to us. The generated files from
this tool could be taken as reference since it was known that the tool completely conforms to the EAST-
ADL Schema (XSD) during serialization of the created models which means that the structure of the
obtained EAST-ADL.XML file will be in the desired format. After doing a number of tests, the differences
between the generated EAST-ADL model's XML files from ATL and VSA have been found and the
needed modifications to be done to the ATL generated XMLs in order to obtain VSA like files have been
listed.

The modified conversion process can be seen in Figure 6.1.4.1 more in depth. This figure is very
similar to Figure 6.1.3 with 2 differences. An additional step has been added to the end which can be
seen in the figure as a dashed arrow starting from EASTADL.XML and ending at EASTADL.EAXML. The
EASTADL.EAXML file is the desired final format as discussed above. The other difference is that in
Figure 6.1.4.1 the arrows from FMI.XML to FMI.XMI and from EASTADL.XML to EASTADL.EAXML are
dashed. This means that the process taken for these conversions will be handled manually. In the start
the plan was to make these extra processes with Java but it has been decided to make them manually to
leave more time on the main frame since it was known that the implementation of these extra processes
is no big deal and can be turned back later on. So this modification has been noted as a Future Work.

--

ATL

Conforms To

Metametamodel (ECORE)

Conforms To

Conforms To

Figure 6.1.4.1/Modified System Data Flow of the Tool

CHALMERS (5%

Page 20

6.1.4.2 Finalization

Now, the time has come to integrate the core with some kind of interface. Although an overview of
the interface has been formed in the beginning as a first idea, further discussion went on. An Eclipse
plug-in that pop-ups with the right click of the mouse in a Modelisar or an EAST-ADL model has been
proposed as the most convenient solution. This plug-in was planned to have the option ‘Convert to East
AdI’ when clicked to a Modelisar object and the option ‘import from’ when clicked to an EAST-ADL model.
If a Modelisar model was selected to be converted with the plug-in, then a new EAST-ADL model would
appear in the workspace. If an EAST-ADL model was selected with the plug-in to make a conversion,
then a browsing menu would appear to let the user to select the desired Modelisar model to be
converted, and after that the EAST-ADL model resulted from that Modelisar model would be outputted to
the selected EAST-ADL model in the start.

A general research has been done about the topic and it has been found that Eclipse offers a tool
to generate a plug-in for ATL applications. For saving time and having a more generic application, using
this tool for the implementation of the planned plug-in has been decided. A deeper work on the tool has
been made and afterwards the tool is used to generate the Java source files of the plug-in. Some
modifications have been done on these source files in order to make the plug-in work. This plug-in was
used by running the the main method of its source files. This was not a desirable result since it would not
be neat and straightforward from the point of view of the user. Also it was not good to let the user to
access the source code. To avoid the listed circumstances, forming an executable for the obtained plug-
in has been found as the convenient solution. Eclipse also supports an easy way of obtaining the so
called executable. With using this tool a .jar file is obtained which only needs a running JVM on the
machine to operate. This executable runs with the help of command window. The location of the
Modelisar model which the conversion will take place on, the desired name of the output model, the
desired extension of the output model and the desired location of the output file are needed as inputs.
The users enter these inputs from the command prompt. After the executable takes the inputs and the
run command, it outputs the result in the specified location with the specified extension and name.

Although the plan of having a plug-in dedicated to Eclipse evolved over time into something else,
it resulted in a more satisfying result since the tool in the end became platform independent. But, the
original plan is added to the future work list as it could be useful in a possible tool integration process with
KTH’s tools since the plug-in planned originally is very similar to the KTH’s plug-in applications.

After all, several tests have been done on the tool. These tests ended up successfully and made
the verification. Then, it has been decided to define and list relevant future improvements that could be
useful in the possible future uses and applications of the tool. Also making some preliminary work on
some of these has been found convenient to do. Finally, after all of the process that has been gone
through, the detailed final documentation of the tool has been completed, which was also the end of the
thesis project.

CHALMERS (3%)

Page 21

6.2 Final System Overview

6.2.1 FMUZ2EA Tool

With the evolution of the system in time, the final system overview looks as in Figure 6.2.1:

USER Command Java Virtual Main ATL File
Prompt Machine Method System

Runs the command prompt

Specifies the executable location |

Specifies the input location |

Specifies the output location

Enters to Run the executable

Commands JVM to run the

specified executable Runs the Main__ |
fMethoddoflthe] Run_fhtrzs ATL AtPI Takes the
referenced class in with the inpu Modelisar Model
the .jar file with the entered >

from the entered

input entered location

Makes the
conversion of the
Modelisar Model to

an EAST-ADL model

Outputs the resulted EAST-
ADL model to the entered |
location from the user

Figure 6.2.1/ Final System Overview

User starts with opening the command prompt. He specifies the .jar file’s location. Then he enters
the Modelisar model’'s location for the input and another desired location for the output and runs the
executable. Then JVM is instantiated. JVM runs the main method that is pointed in the .jar file as the
starting point. In our case, the main method takes the inputs that is entered by the user in the command
window and communicates with ATL API to run the ATL launch configurations. When the ATL launching
configurations has been done, the corresponding Modelisar model found from the entered input path is
taken from the file system by the ATL VM. After that ATL VM executes the .atl file that includes the
mapping rules for creating the corresponding EAST-ADL model of the Modelisar model. Finally, the
generated model is put into the previously specified place in the file system.

It should be noted that the input Modelisar model needs a small modification before it is
processed by ATL. For the current version of the tool, this modification will be done manually by the user
before running the executable. As stated before, the extra process that will be gone through for obtaining
the final structure of the EAST-ADL.XML file will be done manually too.

6.2.2 EAST-ADL Editor

User runs the Java source files of the Editor as an Eclipse Application. After that, another instance
of Eclipse opens. This new thread of Eclipse recognizes the Editor as a plug-in. If one can see the
generated Editor in the plug-in details menu of the new instance of Eclipse then it means that the Editor is
generated correctly and is ready to be used. Now the user can create an empty EAST-ADL model and
edit it. The Editor directs the user when building up a model. Also it supports a validation feature which
checks the model formed and gives errors if there are differences between the model built and the
Schema (XSD). When the model is saved, it is serialized into an XML file. An editor is obtained both for
FMI and EAST-ADL. The EAST-ADL Editor is capable of building AUTOSAR and EAST-ADL models
concurrently.

CHALMERS (i}
Page 22

6.3 Implementation Details

In this section an in depth explanation of all the details about the building blocks of the FMU2EA
tool and the EAST-ADL editor will take place. A general explanation about the below topics has taken
place in the problem approach part and a system overview has been given in the previous section. For
understanding more clearly about how these building blocks make up the the tool or the editor, please
refer to the previous sections.

Some of the below components are a part of both the Editor and the FMUZ2EA tool.
6.3.1 Setting up Eclipse

Different tools of Eclipse have been used for the development of the FMUZ2EA tool and the EAST-
ADL Editor. These tools are provided by EMF, MDT, M2M and XSD projects. They also support the
infrastructure for the development. All the tools of these projects can be installed to any Eclipse platform.
Also there are Eclipse releases which include the listed projects as a pack. As it is better to have a
standard platform, it is chosen to use one of these Modelling Tools releases. Galileo, Helios and
Ganymede are the latest Eclipse releases that also have the Modelling Tools releases. These three have
been published in different times so using the oldest one has the benefit of being a stable release. In the
other hand the newer ones has the benefit of supporting the newest editions which sometimes support
new tools. For obtaining the best performance, all of the 3 releases have been tested. Finally, Galileo
release has been chosen for the tool development and Helios release has been chosen for the Editor
generation. For the Galileo release, some updates have been done to some of the features and the final

versions of them can be seen in Figure 6.3.1.

Provider

Eclipse Modeling Project
Eclipse Madeling Praject
Eclipse Modeling Project
Eclipse Madeling Praject
Eclipse Modeling Project
Eclipse Madeling Project
Eclipse Modeling Project
Eclipse Madeling Project
Eclipse Modeling Project
Eclipse Madeling Project
Eclipse Modeling Project
Eclipse Madeling Project
Eclipse Modeling Project
Eclipse Modeling Project
Eclipse Modeling Project
Eclipse Modeling Project
Eclipse Modeling Project
Eclipse Modeling Project
Eclipse Modeling Project
Eclipse Modeling Project
Eclipse Modeling Project
Eclipse Modeling Project
Eclipse Modeling Project

Feature Marme

ATL - ATLAS Transformation Language
ATL Docurnmentation

ATL Examples

Eclipse Madel to Text - JET SDK

Ecore Tools {Incubation)

Ecore Tools Docurmentation {Incubation)
Ecore Tools Source (Incubation]

EMF - Eclipse Maodeling Framework Runtime and Tools
EMF Code Generation

EMF Code Generation LI

EMF Comrmon

EMF Cormrmon UL

EMF Compare core

EMF Compare core

EMF Compare Source

EMF Daka Binding

EMF Documentation

EMF Ecore

EMF Ecore Code Generator

EMF Ecore Code Generator LT

EMF Ecore Edit

EMF Ecore Mapping

EMF Ecore Mapping Editar

Wersion
3.1.1.v201009141132
3.1.1.v201009141132
3.1.1.v201009141132
1.0.2.v201001281539
0.9.0,v200906221231
0.8.0,v200906221231
0.9.0,v200906221231
2.5.0,v200906151043
2.5.0,v200906151043
2.4.0,v200906151043
2.5.0,v200906151043
2.5.0,v200906151043
1.0.1,»200909161031
1.0.1,»200909161031
1.0.1,»200909161031
1.1.0.v200906151043
2.5.0,v200906151043
2.5.0,v200906151043
2.5.0,v200906151043
2.5.0,v200906151043
2.5.0,v200906151043
2.5.0,v200906151043
2.5.0,v200906151043

Feature Id

org.eclipse.mzm.atl
org.eclipse.mzm. atl. doc
org.eclipse.mzm.atl.examples
org.edipse.jet . saurce
org.eclipse.emf . ecoretools
org.edlipse.emf.ecoretools. doc
org.eclipse.emf.ecoretools, source
org.edlipse.emf
org.eclipse.emf,codegen
org.edlipse.emf.codegen.ui
org.eclipse.emf,comman
org.edlipse.emf. commaon, ui
org.eclipse.emf,compare
org.eclipse.emf . compare, sdk.
org.eclipse.emf . compare. source
org.eclipse,emf,databinding
org.eclipse.emf.doc
org.eclipse.emf.ecore
org.eclipse.emf.codegen. ecare
org.eclipse.emf.codegen. ecore, Ui
org.edlipse.emf.ecore, edit
org.eclipse.emf.mapping.ecore

org.edlipse.emf.mapping. ecore, editor

Eclipse Modeling Project EMF Edit 2.5.0,v200906151043 org.eclipse.emf . edit

Eclipse Modeling Project EMF Edit Data Binding 1.1.0,%200906151043 org.eclipse.emf,databinding. edit
Eclipse Modeling Project EMF Edit LI 2.5.0,v200906151043 org.eclipse.emf,edit.ui

Eclipse Modeling Project EMF Indes Source (Incubakion) 0,7.0,%2009081 20607 org, eclipse.emf . index, source
{Eclipse Modeling Project: EMF Mapping 2,5.0,v200906151043 org.eclipse. emf. mapping

Eclipse Modeling Project EMF Mapping UL 2,5.0,v200906151043 org.eclipse.emf.mapping. Ui

Eclipse Modeling Project
Eclipse Modeling Project
Eclipse Modeling Project
Eclipse Modeling Project
Eclipse Modeling Project
Eclipse Modeling Project
Eclipse Modeling Project
Eclipse Modeling Project
Eclipse Modeling Project
Eclipse Modeling Project
Eclipse Modeling Project
Eclipse Modeling Project
Eclipse Modeling Project
Eclipse Modeling Project
Eclipse Modeling Project
Eclipse Modeling Project
Eclipse Modeling Project
Eclipse Madeling Praject
Eclipse Modeling Project
Eclipse Madeling Praject
Eclipse Modeling Project
Eclipse Madeling Project

Figure 6.3.1/ Version information of the plug-ins of the Galileo platform which is used as the development

EMF Model Converter

EMF Model Query

EMF Model Query Documentation

EMF Model Query OCL Integration

EMF Model Transaction Core

EMF Model Transaction Documentation

EMF Model Transaction Workbench Integration Core

EMF Model Transaction Workbench Integration Doc...

EMF Sample Ecore Editor

EMF Teneo

EMF Teneo Documentation

EMF Teneo EclipseLink Plug-in

EMF Yalidation Framework Core

EMF Validation Framework Documentation
EMF Yalidation Framework OCL Intearation
*SD Documentation

#5D Ecore Converter

¥5D Edik

A50 Mapping

#SD Mapping Editar

%30 Model

%S0 Sarnple Editar

2.5.0.v200906151043

1.2,100.v200901 27 1643-, .,
1.2,100,v200901 271543, .,
1.2,100.v200901 27 1643-..,
1.3.1,¥20090819-1457-3...
1.3.0,v20090127 1619-34..,
1.3.0,%20090127 1519-35. .,
1.3.0,v20090127 1619-22, .,

2.5.0.v200906151043

1.1.1.v200909151729-75, .,
1.1.0.v200909151729-20. ..
1.1.1.,%200909151729-79,
1.3.0.v200902052232-47. ..
13020090127 1722-35, .,
1.2.0v200901271722-22. ..

2,5.0v200906151043
2,5.0,v200906151043
2,5.0,v200906151043
2,5.0,v200906151043
2,5.0,v200906151043
2,5.0,v200906151043
2,5.0,v200906151043

environment of the FMU2EA tool

org.eclipse.emf,converter
org.edlipse.emf . query
org.eclipse.emf.query.doc
org.edipse.emf,query.ocl
org.eclipse.emf . transaction
org.eclipse.emf . transaction. doc
org.eclipse,emf . workspace
org.edlipse.emf . workspace. doc
org.eclipse.emf.ecore, editar
org.eclipse.emf . teneo
org.eclipse.emf .teneo.doc
org.edlipse.emf . teneo, eclipselink
org.eclipse,emf,validation
org.eclipse.emf . validation. doc
org.eclipse. emf validation,ocl
org.edlipse.xsd.doc
org.eclipse,xsd.ecore.converter
org.edipse.xsd.edit
org.eclipse,xsd.mapping
org.edlipse.xsd. mapping. editar
org.eclipse,xsd
org.edipse.xsd.editor

CHALMERS 7%

6.3.2 Obtaining the MetaModels

gt

Page 23

Metamodel of the FMI and EAST-ADL were needed for developing and using ATL and EMF editor
generator. Moreover this metamodel should be an Ecore Metamodel which means that it has to follow the
Ecore MetaMetamodel which can be seen from the top-view in Figure 6.3.2.1. ‘Following’ here means,
creating a metamodel that is in the structure of Ecore MetaMetaModel.

EDbject
ElladeiElarment
| | I
EFactaory EMNamedElement EAnnotation
EPackage EClassifier EEnumLiteral ETypedElement
EClass EDataType EStructuralFeature EQperation EParameter
EEnum EAttribute ERefarence

Figure 6.3.2.1 / Ecore MetaMetaModel

There are 2 ways to form a Metamodel that conforms to this ECore MetaMetaModel. First is to
create it manually from scratch. Second is to use EMF to generate one. EMF has a built in tool for
generating Ecore Metamodels from XSD files. The second one has been chosen since XSD files of FMI
and EAST-ADL were available. The first way is a huge process and can be a thesis project itself.

Applying certain steps, the MetaModels were created (These steps can be found in the Appendix
C1). But the Metamodels resulted from the generation were not in the exact format that is desired. They
had small differences. A small part of the XSD and the generated MetaModel is shown in Figure 6.3.2.2.
As can be seen in the XSD, all the elements (Real, Integer, etc.) starts with upper-case letters where as
the generated MetaModel have them as lower-case. As the attributes starts with lower-case letters in
XSD, this has caused no difference in the MM.

= H Fmiscalaryariable
-l GenModel
#fl= ExtendedMetabata
[+ =+ real : RealType
= jmkeger : IntegerType
I+ =+ boolean @ BooleanType
[= string : StringType
I+ =+ enumearation : EnumerationType

FmiScalararizble
(@ name normalizedString
valueReference unsignedint
(@ description string
(@ wariability (variability Type)
(@ causality {causality Type)
@) alias (aliasType) ’7
[&] real (RealType) T
[2] Integer {Inkeger Type)
f=-—|&] Boolean {BoolzanType)

= [€] string (SkrinaType)

[&] Enumeration (Enumner stionTyps)

2] DirectDependency [0..1] (DirectDependencyType)

(=
&

=
[

alias : AliasType

causality : CausalityType
description : String

name : Mormalizedstring
walusReference : UnsignedInt
wariabilicy : Yariability Tvpe

-

000000

-

® = directDependency : DireckDepende

= H Fmiscalarvarisble
=-fis GenModsl
+-flim ExtendedMetabata
= =+ Real : RealType

= Integer ! IntegerType
- 3 Boolsan @ BooleanType

¢ = Shring @ StringType

2| =k Enumeration @ EnumerationType

- = DirectDependency : DireckDependency Type
allas : allasType

causality | CausalityTyps

description : String

name : MormalizedString

walueReference : UnsignedInt

variability : YariabilityType

0+0+0 000

Figure 6.3.2.2 / FMI XSD and generated FMI MM and the modified FMI MM

3

CHALMERS (5%

¥

Page 24

This situation is similar in the EAST-ADL case with additional differences. In EAST-ADL XSD, all
the elements and attributes start with uppercase letter. Additionally, every different word in the name of
an element or attribute is separated by dash characters(-). EMF removes these characters and changes
the first uppercase letters with lower ones. This can be seen in Figure 6.3.2.3. In the left figure
ANALYSIS-FUNCTION-TYPE elements’ attributes and other elements inside it is shown as it is in the
EAST-ADL XSD. The right figure shows the same element in the EAST-ADL MetaModel that is
generated by EMF. As can be seen, all the element and attribute names has gone through a change. For
instance SHORT-NAME became sHORTNAME in the MetaModel.

|5 RNALYSIS FUMCTION-TVRE =l EH ARALYSISFUMCTIONTYPE
= preeens + fz GenModel
=4 & dataTime = ExtendedMetaliata
~ + 5 sHORTMAME : IDENTIFIER
& & umo string + o JONGNAME @ MLDATAS
&) SHORT-NAME [£..1] ICENTIFIER e dESC : MLDATAZ
] LORG-RAME [0.1] ML-DATA-4 + = CATEGORY @ String
%] DESC [0..1] ML-DATA-Z F e aDMINDATA @ ADRATMORTA
] CATEGORY [0..1] string + B+ UATYPEREFS | LUATYPEREFSTYDS
] ADMIN-DATA [0..1] ACeImn-DaTA + S uAYALUES @ LAVALUESTyDe
2] UA-TYPE-REFS [0..1] (La-TYPE-REFSType) + = nAME : String
2] [E) UA-VALLES 0,11 (UA-VALLES Type) + = \WHEDCOMMENTS @ CAWKEDCOMMENTS Type
[£] MAME [0..1] string v =r oWWREDRELATIONSHIPS @ OWHNEDRELATIONSHIPST wpe
= [E] CWNED-COMMENTS [0,1] (OWHED-COMMENTSType) + - oF FRACEABLESPECIFICATIOMNREFS : TRACEAELESPECIFICATIOMREFS Ty e
] CWNED-RELATIONSHPS [0,17 (OWHED-RELATIONSHIPSType) & =% cONNECTORS ¢ COMNECTORSTyRaS
(&) TRACEARLE-SPECIFICATION-REFS [0..1] (TRACEABLE-SPECTFICATICN-REFSTy e : : _. f;i:E:NPT;::S;nglfan
(8] CONMECTORS [0..1] (COMMECTORSTyE) F o pORTGROUPS | PORTGROUPST YR
#] T5-ELEMENTARY [0..1] baoiean + = pARTS L PARTSTypel
| PORTS [on.1] (PORTEType) + = 5 Sthng
#| PORT-GROUPS [0..1] (PORT-GROUPSTYpe) + = ko DateTime
Bl e (] PARTS [0..1] (PARTSTyRe) + = D : String

Figure 6.3.2.3 / AnalysisFunctionType(AFT) XSD and the generated AFT MM

This rather small and partial difference in the obtained FMI MM causes EMF not recognizing the
Modelisar models since the MM is used to open the models. This means that ATL will not be able to
interpret the model directly as it is. There are 2 solutions to this problem. Either changing the MM
manually in the desired way, or adding an additional process of changing the Models in the way that they
will conform to the original generated MM. The case in EAST-ADL is similar too. The output that is
obtained after the conversion would have slight differences than the desired one if the generated MM for
EAST-ADL is used directly. So either the MM for EAST-ADL can be changed manually or an extra step
can be added to the conversion before the output takes its final shape.

Changing the MetaModel manually is all right for the FMI MM but it is not feasible for the
EASTADL MM since EAST-ADL MM is much bigger than FMI MM which would take much more time to
modify. Also the chances of modifying the MetaModel for the EAST-ADL one in an incomplete manner is
much higher. Modifying both of the MetaModels is nicer from the tool perspective as having a compatible
MM with the model avoids an additional process on the model to make it look like in the MM. But still, this
is not a good solution in the sense that the tool loses a part of its generic character since the MetaModel
used becomes a specific one when it is modified. Also in the case of keeping the original MMs and
adding an extra process on the models, if the XSD goes through a change, then it would be possible to
generate the modified MM from EMF directly but otherwise either the changes should be applied to the
MM itself or if the XSD is used to generate a new MM, all of these manual changes should take place
again on the MM. But some changes on the XSD even can affect the ATL conversion and a refinement
can be needed in the rules depending on the case. So modifying the MM maybe can not be seen as a big
deal as other modifications can as well be needed in the case of a change of XSD.

As a result, FMI MM is changed manually for this version of the application but EAST-ADL MM is
kept as it is generated from EMF. So as a result the extra process needed for the Modelisar models are
avoided. As the original generated EAST-ADL MM is used in the system, an additional process is needed
after the output is formed. This process is explained in the “Converting the output to EAXML format”
section.

CHALMERS (3%)

‘\

Page 25

6.3.3 Obtaining the Editor

During the generation of the MetaModels, an EMF model is created too. Eclipse has the feature to
generate an Editor for this EMF model. When this feature of EMF is used to generate an Editor, Java
classes are formed by EMF. More or less everything is done by EMF. But to obtain the desired Editor,
there are options to change. The options used for generating the Editor for EAST-ADL is shown in
Appendix C2. The Editor created for Fmi uses the default options. Another important parameter is to use
the appropriate release of Eclipse with the correct versions of the features as they are linked to each
other. The platform that has been used for generating and using the Editors is Eclipse Helios as said
before. The versions of the EMF features are shown in Appendix C2.

Mentor Model
Seleck a model object ko create ¢'

Model Clject

| v]
AUTOSAR
EaXML

UTF-3 v |

A

= Mew

Adirt Model
Select a model object ko creste

FQ' =]

Model Object

Foof] W
[Root
ML Encoding

] ¥

Figure 6.3.3/ Root Elements of the different Models obtained from the original and the modified XSD

An EAST-ADL and an Fmi Editor is obtained which meets the expectations but an Editor which
gives the chance to the user to build a model that constitutes of both AUTOSAR and EAST-ADL
elements. But the constructed Editor limited the user to choose either AUTOSAR or EAST-ADL models to
build, so the user was not able to build these models concurrently. This case can be seen from the top
figure in Figure 6.3.3.1. This limitation was also a little bit strange for us in the start because an XSD that
constitutes of both AUTOSAR and EAST-ADL elements is used for the generation of the Editor. Then we
had an idea why the editor gives 2 choices when creating the model. To test the idea, a small
modification has been done to the schema and an Editor is obtained with it. This editor meets the
requirements. With this editor it is possible to add AUTOSAR and EAST-ADL elements in the same
model. In this new Editor there is no choice of AUTOSAR or EAXML when creating the model. This can
be seen from Figure 6.3.1.1.

For obtaining the modified XSD which the editor uses, a Root element is created. The AUTOSAR
and EAXML elements which are the top most and root elements of AUTOSAR and EAST-ADL are put
inside the ‘Root’ element. The structure of the root element that is added to the XSD can be seen below:

CHALMERS (3%)

‘\

Page 26

<xsd:element name="Root">
<xsd:complexType>
<xsd:choice minOccurs="0" maxOccurs="1">
<xsd:element name="AUTOSAR" type="AR:AUTOSAR"/>
<xsd:element name="EAXML" type="AR:EAXML"/>
</xsd:choice>
</xsd:complexType>
</xsd:element>

This makes the model generated with this editor to have only 1 root instead of 2. So this was why
the editor was giving 2 options to form a model. But this is a non standard solution which does not
conform to the Meta-Model of neither AUTOSAR nor EAST-ADL since an additional element is created.
This case can cause incompatibilities with the other tools to open the models that are created with this
Editor. But the solution is rather easy. The user has to do some steps manually to obtain a compatible
format of the model. These steps can be found in “Converting the output to EAXML format” section.

The generated Editor runs as an Eclipse application in another instance of Eclipse but this can be
modified. With some additional steps the generated Editor can be added to the core plug-ins. This
implementation hasn’t been done in this version of the application and is put to the Future Work list.

Also an Editor is obtained for FMI with the modified MM which gives the user the ability of creating
FMI’s from scratch or modifying the existing ones. This also adds the tool additional strength as the user
can play with the Modelisar models in hand to obtain different EAST-ADL models even if they don’t have
any Editor other than the generated one. Since the models can be exchanged through people or found in
the network, it is not guaranteed that a user will have a Modelisar Editor.

6.3.4 Obtaining the Mapping Rules

This section will give you an insight about the idea behind the conversion of Modelisar models to
EAST-ADL ones. For further details, refer to Appendix A3.

The main notion behind the conversion is the mapping between an FMU (Functional Mockup Unit)
and an EAST-ADL model. The overall look to the mapping is that an FMU corresponds to a FunctionType
element in EAST-ADL. The structure of the Function Type and the connected elements can be seen from
the relevant parts of the EAST-ADL MetaModel which can be found in Appendix A2. Also the structure
and components of FMI can be found in Appendix Al. As a general picture, a Function Type constitutes
of input, output and input/output ports. Ports are the only way of connection with FunctionTypes. For
instance, ports are used as the gateway for exchanging information between different Function Types. It
can also have function connectors and port groups but they are out of interest for this version of the
conversion. FunctionTypes and Ports have different types. A Function Type can be an
AnalysisFunctionType or a DesignFunctionType. A Port can be a FunctionFlowPort, FunctionPowerPort
or a FunctionClientServerPort. An FMU consists of an fmiModelDescirption element which is the root. It
contains FmiType and FmiScalarVariable elements which are the important ones among others. Mainly,
fmiModelDescription corresponds to a FunctionType where FmiType and FmiScalarVariable are used to
form the ports.

In theory, there is no limitation for the mapping. An FMU can be mapped to an
AnalysisFunctionType or a DesignFunctionType with FuncitonFlowPorts, FunctionPowerPorts and

CHALMERS (3%)

Page 27

FunctionClientServerPorts. But in practice there is no way to guess which FuntionType or Port will be
used. So it is always assumed that an FMU corresponds to an AnalysisFunctionType with
FunctionFlowPorts. In reality, it can also be mapped to a DesignFunctionType, but it is thought that there
is no way or it will be too costly in the sense of time to predict whether an FMU is an
AnalysisFunctionType or a DesignFunctionType, so it will be assumed that all FMUs are
AnalysisFunctionTypes. But this is not an important issue. The user can always modify the EAST-ADL
model in the way that it should be afterwards the conversion. This modification is a straightforward
process. The user has to only change the type of the FunctionType or Port from an EAST-ADL editor.
None of the information of the model would be affected by this change.

The FunctionFlowPorts are typed by Datatypes. In other words, every Port has a corresponding
DataType. DataType of the Port determines the unit of the information exchange with the other Ports that
it is connected. This DataType could be an EABoolean, EAString, Enumeration, EAFloat or an EAInteger
and Enumeration can hold several EnumerationLiterals. The DataType could also be a composite data
type but there is no correspondence between the elements of the FMU and composite data type. So an
EAST-ADL model that is generated from an FMU can not have a port whose data type is composite data
type. The Port’s DataType type is decided depending on the information in the FMU, more specifically
from FmiTypes and FmiScalarVariables of the FMU.

There are 2 more elements that are used in the mapping, RangeableValueType and
EnumerationValueType. RangeableValueType gives reference to either an EAFLOAT or an EAINTGER.
EnumerationValueType gives reference to an Enumeration. These 2 holds extra information about the
DataTypes that they give reference. The information they hold is obtained from the corresponding
FmiTypes and FmiScalarVariables of the FMU as well.

To sum up, FMU has all the relevant information for forming an AnalysisFunctionType with its
corresponding elements. One thing that should be noted here is that FMUs has no input/output elements.
They only have elements that have the input or output characteristic. This can be seen as a limitation
from the first look but from the point of view of converting an FMU to an EASTADL, there is no harm
since no incorrect or incomplete mapping is done. But if a conversion in the opposite way is desired to be
done, then this situation can become an issue. In that case, instead of creating one element that has an
input/output character, creating 2 elements which one of them is an input and the other is output can be a
solution. Furhter details of the mapping can be found in the Appendix A3.

6.3.5 XMLtoXMl

As discussed before, the FMI of the Modelisar Model is an XML file in standard. But EMF and ATL
works with XMI formatted files. So as FMI is the input of the ATL conversion, the FMI.XML file should be
converted to an FMI.XMI file. This conversion is very simple and straightforward. Only the header of the
document is replaced by another header and the structure of the rest of the file is left the same. The
reason behind this modification from XML to XMI is that EMF and ATL looks for the ECORE model to
which the model in the file conforms. So the starting line of the XML documents is changed as below to
convert it to an XMI:

XML:
<?xml version="1.0" encoding="UTF-8"?>
XMI:

<?xml version="1.0" encoding="1S0-8859-1"?>

<xmi:XMI xmi:version="2.0" xmIns:xmi="http://www.omg.org/XMI"
xmins="platform:/resource/FMIEX1/MetaModels/FmiModelDescription.ecore">

CHALMERS (3%

Page 28

6.3.6 Setting up ATL

ATL has a launch configuration menu which shows up before running an ATL conversion. The
user puts the necessary information in this menu to run the conversion. This menu can be seen in Figure
6.3.6. It needs the locations of the MetaModels of the input and output models. It is also necessary to
point where the input model is located and where the output model should be put. There are also other
advanced options which have to be adjusted for the application. This configuration has been done once
and later on, it is embedded to the tool during the Plug-In implementation of the ATL conversion. So in
the final version of the tool which runs as an executable, when the user enters the input that is needed for
the tool, this input is taken to configure the configurations of ATL. The rest of the adjustments done in the
configuration other than the ones that have been taken as input from the user are preserved in the tool.

W

= Run Configurations

Create, manage, and run configurations

- —*l,
TE %X | B 50 Mame: | FMUZEAT
— " aTL Configuration . " Advanced | = Comman
Acceleo Application - —
= f ATL TransfFormation ALFAERL
f‘ FMUZEAL JFMUZEAZIFMUZEAT atl
€ FMuzEAZ
r FMUZEAZ Metamodels
f FMUZE A4 FroitodelDescription: | JFMUZEATIFmitodelDescription.ecare
F Emﬂ;ii: [11s metametamaodel [Workspace...] [File system..,] [EMF Regiskry...]
r FrMUZEAT EAST: JFMUZEAZ adlrt ecore
¢ FMUzEAS

[11s metametamodel [Workspace...] [File Syster.. . l [EMF Registry. ..]

r public2private
f public2private (in-pl

+ -4 Eclipse Application
B Java applet
=-[T] Java spplication
31 FMUZEAE (1)
031 FMUZEAT (1)
031 FMUZEAT (2)
T JET Transformation
Ju JUnik
Ju JUnit Plug-in Test

Source Madels
IM: TEMUZEA 7 fmiodelDescription . xmi

conforms to FmiModelDescription

Target Maodels

QUT: JFMUZEAZ output2, xml

conforms to EAST

Libraries

Wiorkspace. ..] [File systen. ..

Workspace. ..] [File system..,.

I:‘ PWE Workflon

| & Operational O¥T Intero
<

Filker matched 27 of 27 items

w

'r‘?::' l Bun I [

Close:

Figure 6.3.6/ A View from ATL run configuration

6.3.7

Implementing the mapping rules on ATL was not straightforward. This is because ATL has its own
characteristics. But the mapping rules can not be changed so much for fitting to the ATL implementation
easier as mapping an element of FMI to an EAST-ADL element only makes sense in one way in general.
Only small changes can be made to the mapping rules such as leaving out some parts of the mapping or
changing the shape of the model in the way that it won’t effect the model’s structure. So the main
challenge was to suit the ATL rules to the mapping rules.

Implementing on ATL

The following ATL implementation structure has been used to apply the mapping rules. Only
conversion of a RealType in FMI is shown. For all IntegerType, BooleanType, StringType and
EnumerationType a similar kind of logic is used as it is in RealType:

‘\

CHALMERS
Page 29

For all FmiScalarVariables in fmiModelDescription that has causality = input or output
If FmiScalarVariable constitutes of a RealType
If RealType has no declaredType
FUNCTIONFLOWPORT is formed by FmiScalarVariable

EAFLOAT is formed by RealType
RANGEABLEVALUETYPE is formed by RealType

If RealType has a declaredType
FUNCTIONFLOWPORT is formed by FmiScalarVariable

EAFLOAT is formed by both RealType of FmiScalarVariable and the
RealTypeType of the declared FmiType

RANGEABLEVALUETYPE is formed by both RealType of FmiScalarVariable
and the RealTypeType of the declared FmiType

Form the corresponding EAST-ADL elements from IntegerType, BooleanType,
StringType and EnumerationType too as it is shown for RealType.

Form the EAXML structure:
RootType
EAXML
TOPLEVELPACKAGESType
EAPACKAGE
ELEMENTSType
aNALYSISFUNCTIONTYPE
eAFLOAT
eAINTEGER
eABOOLEAN
eASTRING
eNUMERATION
eNUMERATIONVALUETYPE
rANGEABLEVALUETYPE
Form the ANALYSISFUNCTIONTYPE by using fmiModelDescription:

ANALYSISFUNCTIONTYPE

CHALMERS (3%)

‘\

Page 30
SHORTNAME

nAME
uuUID
pORTS

Put the FUNCTIONFLOWPORTS formed previously into the pORTS element of the formed
ANALYSISFUNCTIONTYPE

Put the other elements formed into their corresponding elements in the previously formed
EAPACKAGE element inside EAXML(Put EAFLOATS under eAFLOAT etc.)

The implementation in ATL got the above shape depending on the ATL'’s structure. For instance,
why FUNCTIONFLOWPORT is formed separately, even though its generation procedure is the same
when a RealType has a declaredType or not, is because of the ATL’s characteristics and having a neater
and more understandable ATL code.

Some difficulties have been faced during the implementation of the above plan. The difficulties
changed the shape of the above structure a little bit. The last step of the implementation couldn’t be
applied. So the individual elements created other than Ports haven’t been put into their corresponding
locations. But this is not a big issue since according to the MetaModel of East-Adl these elements can
exist as individual elements. So the generated models are still valid but they don’t look so neat.

The solution to this is to select the elements that are created and putting them to their
corresponding location manually. Also another way is found and implemented to fix the missing step and
the desired structure has been obtained by it but this implementation is not finalised yet. Only small
details have been left to have it as the final version. The final ATL code can be found in Appendix A4.

6.3.8 Obtaining the Plug-in

As in the generation of the Editor case, Eclipse also supports a tool for auto-generating a Plug-in
for an ATL application. Certain steps are applied to obtain the Plug-in. These steps can be seen in
Appendix_C3. For this plug-in, Eclipse forms a file that constitutes of Java files and a number of other
type of files. But the plug-in does not run straight forward after the auto-generation of the source files.
Certain changes have to be done into a couple of source files. The change took place for the reason of
pointing the plug-in where the FMI and EAST-ADL metamodels are located. For making the minimum
change in the source files, also the MetaModels of FMI and EAST-ADL are added into the generated file.
With these changes, a user can enter the input and output location to the console and run the main
method.

6.3.9 Obtaining the Executable

The plug-in gives a level of usability to the tool but still running an application directly from its main
method is not a good option to use. It is better to put an interface between the user and the source files
so that the user won’t have the direct access to the source files. This is preferable since it gives a more
user friendly usage of the system. Also, in this case there is a smaller chance for the user to break down
the system. For these listed reasons, an executable is formed for the source files of the plug-in. This time
it was rather a straight forward process. Eclipse Java export options have been used to create the jar file.
This creates a stand alone application which the user even doesn’t need Eclipse to run the jar file. The
actual steps taken for creating the jar files have been shown in the Appendix C4.

6.3.10 Converting the output to EAXML format

CHALMERS (5%

Page 31

As discussed above the generated MetaModel from EMF is slightly different than the EAST-ADL
XSD itself. And the ATL uses this generated MetaModel as a basis for creating the EAST-ADL models
out of Modelisar ones. As a result the created EAST-ADL models have differences with the desired
format. The desired format is the one that directly conforms to the XSD. This is the case for the Mentor
Graphic’s VSA tool. The models created by using this tool have the desired characteristics. So the
structure of these models has been used as the basis to decide on which changes should be applied on
the model created by the FMUZ2EA tool.

In Figure 6.3.10.1 there are two models which the one in the left is created by FMU2EA tool and
the one in the right is created by VSA tool. If we analyze the differences step by step, the first one
noticeable is the 1%, 2" and the closing lines. These lines give information about the encoding type and
the reference source which is used to create the corresponding XML. The ATL generated one has a
different opening since the source used to create it is the EAST-ADL MetaModel where the source used
to create the schema. The encoding difference is not important since it is an option to have different
encoded models in the both sides and selecting different encodings doesn’t effect how the model looks in
our case.

Another difference that can be seen is that, there is a RootType element in the left model which
does not exist at all in the right one. This is because the RootType element is not an element of the
EAST-ADL XSD. The reason behind why this element is introduced to the XSD which is used to create
the MetaModel was discussed before in the text.

ading="TS0-8859-1 75 S3ml v '1.0" encodin="WIF-§'2>

mmlns:xmi="http: / feew.ong. org /060 -’::.;5:?—.:.‘:t*‘httg:,«'_x’{-"
= TN -Jocs-21Th-bo 73 -30eTEG Tedd2h" >

{f SECRT-HAEE >

E TII="a33eab?-c5il-4deb-a2 56 Dbad 256 7099 >

HE>

Figure 6.3.10.1 / Modification of an EAST-ADL
model which is generated by the tool
to the structure valid for VSA tool

hitp: fjfwer »3 org/ 2001 /D0 Schems-instance” wrlvs="hitp: ftimme. org/2010-03-11" x3i:sche

CHALMERS (3%)

‘\

Page 32

i

=" UTF-8"7
v . w3, org/2001 /XM Schema-instance’ smins="http://timms.ory

=

e T

a1,

1M

INCTICH-TYPEY

Figure 6.3.10.2 / Modification of an EAST-ADL model, which is formed by using the generated Eclipse
EAST-ADL editor, to the structure valid for VSA tool

As discussed before, the EAST-ADL MetaModel generated by EMF has differences from the XSD
in the name of the elements. And no manual change has been done to it for having the same element
names as in XSD. Normally this results as having slightly different Element name format in the created
model too. For an example, the ANALYSIS-FUNCTION-TYPE element in the XSD is passed as
aNALYSISFUNCTIONTYPE into the MetaModel so to the Model too. All of the elements and attributes
have this difference. This difference can be fixed by manually changing the MetaModel but as an
additional process is needed anyway for the other difference so for this version of the application no
change has been done to the EAST-ADL MetaModel that is used for the conversion. The last and most
critical difference is that the structures of the elements have differences. For instance, SsHORTNAME and
nAME are attributes of the aNALYSISFUNCTIONTYPE element for the created model by the ATL
conversion, but the VSA generated model has SHORT-NAME and NAME as elements inside the
ANALYSIS-FUNCTION-TYPE element. This difference is not a tolerated one. If this difference is not
fixed, VSA is not able to recognize and open the model generated by ATL conversion although even all
the other listed differences have been taken care of. Also this is a difference that is not possible to be
fixed with changing the MetaModel manually. The reason behind this difference is thought to be sourced
from the EMF model created from the XSD since this model forms the XML document. One of the
possible solution paths is guessed to be in changing the generation way of the MetaModel from the XSD
but implementing this solution or finding another solution is left as a future work. In this implementation
version, user has to do the changes manually.

After putting some of the attributes as elements, now the file is ready to be opened by VSA which
means it is modified to the desired format. The listed modifications turned the file to the one that can be
seen in the right Figure of Figure 6.3.10.2. Still there is a small difference left with the VSA generated

CHALMERS (3%)

Page 33

model. There are extra empty elements inside some elements. For instance, UA-TYPE-REFS in
ANALYSIS-FUNCTION-TYPE in VSA generated model (Right figure of Figure 6.3.10.1). Good news is
that VSA recognizes the file even if the file does not have these extra elements. So having or not having
these elements is not a constraint. Also every element is supposed to have a UUID according to the
EAST-ADL MetaModel. Generating a UUID is not random; it has a standard to follow. So putting UUIDs
of all the elements needs an extra effort for implementing. If the models are opened in VSA, VSA has the
option to generate the UUIDs of all the elements. So this process is left out instead of putting time on
working on the generation of the UUIDs. If the user needs the UUIDs he can use VSA to generate it and
VSA is a platform that can be assumed that it will exist on a user's PC who uses the FMU2EA tool.

There are also several differences between the desired file format of an EAST-ADL model and the
created file by the generated EAST-ADL Editor. These differences are fewer and more straightforward
compared to the files generated after the conversion. The structure of the XML file generated by the
Editor can be seen in the left figure of Figure 6.3.10.2. The first step that has to be taken for obtaining the
desired file format (as in the right figure of Figure 6.3.10.1) is to change the first 2 lines of the file and
erase the Root element. The second is to erase the label ‘adlrt’ from all of the lines of the file. After these
the file will look like as in the right figure of Figure 6.3.10.2. This is the file format obtained also after
some modifications to the FMUZ2EA tool generated file. So, the rest of the modifications needed are the
same as discussed in the previous paragraph.

CHALMERS (3%)

‘\

Page 34
7. Related approaches

There have been 2 projects that have been studied for the actual work which are KTH’s
Papyrus<->Simulink Exchange plug-in and Systemite AB’s SystemWeaver<->Simulink plug-in as
discussed before. KTH’s project has been a source of inspiration for the current implementation of the
FMUZ2EA tool whereas analyzing SystemWeaver<->Simulink application has been useful more for
deriving some hints for the near future planned work of ‘Integrating FMU2EA tool with Simulink’.
Additionally, these projects have been an important starting point for obtaining the general motivation
behind Model Driven Engineering.

7.1 Papyrus€->Simulink

There are lots of similarities between FMUZ2EA tool and this project. Because of this, a possible
Simulink integration application can follow KTH’s approach. Thus it is important to summarize the working
principles of the Papyrus<->Simulink tool. The Overview of the System Mechanism from Papyrus to
Simulink can be seen in Figure 7.1.2 and from Simulink to Papyrus in Figure 7.1.3.

The main notion used in the transformation can be seen in Figure 7.1.1. The process shown in
this Figure is for converting a Simulink model to a Papyrus one. The exact reverse way gives the
Papyrus2Simulink path. From the Tool Model to Intermediate Model, only file format (UML, XML, EMF,
etc.) is changed but the model structure is kept the same. This step is called Technical Space Bridge in
the Figure. When the intermediate model obtained, the structural bridge is used. This one keeps the
format same but modifies the structure of the model. The application of this notion to the tool can be seen
in the explanation of the system structure below.

Technical
Structura Space
Bridge Bridge
Target Mode intermediate Model Tool Model

«Same lechncal space as targe! mode
Same structure as 100l model

Figure 7.1.1/ Converting a Simulink Model to a Papyrus Model

- From Papyrus 2 Matlab:

A @ Y 4

34x
P MATLAB 2009

simulink.ecore
metamodel
o
complies to @
Preprocessing Sirulink Cre ator
'w\qwd H (4ava code) (MATLAB code)

aemo.di2 demo uml demo.simulink ||

Graphical Model ATL ecore @

informati informati transformations p ModelCreatar
\ (©) Jy (MATLAB code)

\
= 4

Figure 7.1.2 / Steps taken for forming a Simulink model from a Papyrus model

CHALMERS (3%)

‘\

Page 35

First a complete Papyrus Model is built up. The Papyrus Model is an East-Adl model stereotyped
with UML. Papyrus model constitutes of 2 files which one of them has a .di2 and the other has a .uml
extension. The .di2 file holds the graphical information of the model in hand which is not in interest for the
transformation of the East-Adl model to a Simulink Model. So .di2 file is ignored in the transformation
process and instead only .uml extension file is used. This file is converted to a .simulink extension file,
which is a transition file, using the ATL transformation defined by KTH. This newly created file conforms
to the Simulink Ecore MetaModel that is defined by KTH. A bunch of processes has to take place in
Matlab before the .simulink file can be converted to an .mdl file. This is done by making use of both
Java’s and Matlab’s features. In other words, this phase is passed by the co-operation of Java and
Matlab by using the codes written by KTH. Since Matlab has a feature to use Java classes, this co-
operation is not a problem. The processes in this phase can be separated into two which are Pre-
processing and Simulink model creation. Pre-processing constitutes of the Java code written. In it,
missing layout information is added to the .simulink file. Also it allows Matlab to query the structure of the
Ecore model in the .simulink file by reading it from memory. Simulink model creation is done by the
Matlab code. It sets up the Matlab environment to fulfil the process and finally creates the Simulink object
by the queried structure.

- From Matlab 2 Papyrus:

Simulink-like EAST-ADL Profile
Metamodesl U
Ecore bx Meatamodeal

I contorms

Figure 7.1.3 / Steps taken for forming a Papyrus model from a Simulink model

A similar transformation process takes place for obtaining Papyrus models from Simulink ones.
Simulink communicates with Eclipse API to generate an Intermediate Model in Eclipse. This corresponds
to a format transformation. The model obtained is changed in structure too for bringing in the EAST-ADL
profile to the model. This model is in UML format and conforms to the EAST-ADL MetaModel.

There are limitations of the tool currently. Analyses of the current problems of the tool have been
made for avoiding such possible future problems for the probable use of similar parts in the Simulink
integration with the FMU2EA tool and can be found in the Appendix D1.

7.2 SystemWeaver <->Simulink

SystemWeaver is a multi user engineering information platform designed for easier product life
cycle management. It has incorporated a plug-in which enables the tool to import-export Simulink models
from the universal database shared from all the users. Each Simulink sub-system is converted in a
SystemWeaver item, which is compliant with the SystemWeaver meta-model. All the information of the
Simulink sub-system is hidden, and the created item has the same name of the Simulink sub-system with
a unique identifier created when the item is exported.

CHALMERS

Page 36
8. Results

In this part, 2 use case examples will be given from the obtained FMU2EA tool and the EAST-ADL
editor. These examples doesn’t include the steps for converting the input file from modeldescription.xml to
modeldescripton.xmi and the output files from XML to EAXML format. These steps were discussed
previously in the implementation details section.

= FMUZ2EA TOOL USE CASE EXAMPLE

As can be seen from the top of the Figure 8.1, there is an FMU2EA7JAR file with some files
inside. This file contains the FMUZ2EA7.jar file and the FMI and EAST-ADL Metamodels as
FmiModelDescription.ecore and adlrt.ecore. These 3 must exist and should be altogether in the same file.
There are 2 other files in this example which are modelDescription.xmi and modelDescription2.xmi.
These 2 files are example inputs and they don’t need to be in any location since user has the ability to
specify the input location. For this example, they have been put into the same file with the executable for
giving a simpler showcase. One important point here is that, the input files are in XMI format rather than
XML. As discussed above, the original format of the FMU is XML but the user needs to convert it to XMI

manually.

J C:ADocuments and Settings\ytp0142\Desktop\FMUZEAT JAR

File Edit Wiew Fawvaorites Tools Help

‘ir Search Folders X E) E\ -

Lddress | C\Documents and Settings|ytp01 424 Deskkop| FMUZELS7 JAR

Mame Size | Type Dake Modified
'_Efl adlrt.ecore 7024 KB ECORE File 2010-11-17 16:09
-_EflFmiMndeIDescriptinn.ecore 75KE ECCRE File 2010-10-14 13:53
ﬂ FMUZEAZ jar 3427 KB Executable Jar File 2011-02-10 14:32
=] How ta use.txt 1KB Text Document 2011-02-10 1444
ﬂmodelDescriptioanmi S5KBE HMIFile 2011-02-08 14:55
jmodelDescriptinn.xmi 156 KB ¥MI File 2011-02-10 13:28

B3 Command Prompt - |El ﬂ

Microsoft Windows HP [Uersion 5.1.26881
CG» Copyright 1985-28001 Microsoft Cowrp.

C:sDocuments and SettingssytpBdl42>cd Desktop~FMUREATJAR

C:sDocuments and Settingssytpdld2-sDesktop~FMUZEA?JAR>java —Jjar FMUZEA?.Jjar model
Dezcription.xmi output . .xml_

J C:\Documents and Settings\ytp014 2\Desktop\FMUZEAT JAR
File Edit Miew Favorites Tools Help

? : Search Folders X E’ Ev

Address |2 ChDacurments and Settingsytp01 42 Deskbopt FMUZEAT 18R,

Marne Size | Type Date Modified
ﬂ adlrt ecare 7024 KB ECORE File £010-11-17 16:09
&= FriModelDescription. ecore 7S KB ECORE File 2010-10-14 1353
ﬂ FMUZEA? jar 3427 KB Executable Jar File 2011-02-10 14:32
=] How bo use.bxt LKB Text Document 2011-02-10 14:44
jmndelDescriptiunZ.xmi SKE AMIFile 2011-02-03 14:55
ﬂmodelDescriptiun.xmi 158 KB =MI File 2011-02-10 13:25
2 outpuk.xml 4 kB XML Document 2011-02-17 14:39

Figure 8.1 / An Example Input File for the Tool, The interface appearance of the Tool and the resulted
output file that is obtained after the conversion

CHALMERS

‘\

Page 37

Another point is that normally the input XML file of the Modelisar Model is found in a separate file
which can be seen as in Figure 8.2. This file contains the binary files of the Modelisar model plus the
XML file which we are interested in. This file structure is a default for the Modelisar project. But since
there is a need of modification of the XML document to XMI, it is more appropriate to put the resulting
XMl into another file for protecting the structure of the original file. This desired XMI can be put anywhere
wanted. If this conversion from XML to XMl is supported by the FMUZ2EA tool in the future then the user
will be able to select the original FMI file for giving it directly as input without doing any manual operation.

J C:\Documents and Settings\ytp0142\Desktop\FMI

File= Edit

G Back -

address |2 Ci\Docurments and Settingstytp01 42\ Deskbop)FMI

View Favorites Toaols Help

> ir p ! Search Folders

X 9 =)

Marmne Size | Tvpe Date Modified
ICZ)Example File Folder Z010-09-Z7 10:22
) C:hDocuments and Settings'wtpO14 2\Desktop\FMI\Example Q@.ﬁ
File Edit Wiew Fawvorites Tools Help i
l\) Back - > ‘j,\r P Search Folders x 2) Ev
address () CDocuments and Setkingsiytp 142 Deskbop), FMIExample e a Go
Marme Size | Tvpe Date Modified
) binaries File Falder 2010-09-27 1:21

2| modelDescription. xml

<

157 KB %ML Document

2010-05-20 13:48

z objects 156 KB

_ﬂ' Den har dakorn

Figure 8.2 / An Example Modelisar Model

After the input and executable files are ready, the output can be obtained in small steps:

1. From the command prompt one should open the directory of the jar file such as:

C:\Documents and Settings\ytp0142\Desktop\FMU2EA7JAR

2. After entered the directory one should give the command:

java -jar FMU2EAY. jar

3. Leave a space and enter the input's location

4. And then leave another space and put the output's desired location

So the last line of the command prompt could look like this which will give the output:

C:\Documents and Settings\ytp0142\Desktop\FMU2EA7JAR > java -jar FMU2EA7 .jar

modelDescription.xmi output.xml

As can be seen from the bottom of Figure 8.1, the output.xml file appeared in the specified folder

which for this example is the FMU2EA7JAR file.

The last procedure left to apply is modifying the output from XML to EAXML format. As discussed
before only this structure conforms to the EAST-ADL schema and is compatible with the generated Editor
and VSA tool. This process is done manually by the user for the current version but can be embedded to
the tool in the future. The input and output files can be found in Appendix B1.

CHALMERS (5%

Page 38

= EAST-ADL EDITOR USE CASE EXAMPLE

After the Editor is started and an empty model is created, a page like in the Figure 8.3 would
appear (without the opened menu). With a right click on an element, the different choices of elements that
this element can include will be shown. For instance RootType can have an EAXML or AUTOSAR
element inside and the Editor shows this as in the Figure 8.3. When an element is selected in the
appearing menu it is added to the model tree. The Editor directs the user in additional ways when
building the model such as showing the structure of the value that an attribute of an element can have
such as shown in Figure 8.5. Also it has the capability of verifying the model to some extent.

An example model created by the Editor is shown in Figure 8.4. This model constitutes of
separate AUTOSAR and EAST-ADL elements. Originally, it is not valid to have both elements in a
common root according to the AUTOSAR and EAST-ADL MetaModel but why and how the Editor is
modified in this way was discussed in “Obtaining the Editor” section previously. In the model, EAST-ADL
elements are located under the EAST-ADL part of the model, more specifically under the EAXML
element since the EAST-ADL elements are connected to this topmost root element. And AUTOSAR
elements similarly are located under AUTOSAR element. For a more detailed step by step explanation of
creating a model with the editor is given in the Appendix B2.

T amin Eolipes Patinim
ASe Litoy wndow el

4 Pheronen siovil, s

et it - Eclipas Platform
o ANt Edby Window e

-

& Nydmanlr ool akt

Rewsris St

= i shatforme frescurcePrtNode Myderonstr ation . st
Docursert Sook

oot Frem

o 5 ¥ 4 mroms R
N Tding ¢ EAML SMALV :‘: '3::'
Hleto L e
s
e
Yakoate <« Tade Progertme | @ Corawe
Reglace with A
e o o
Figure 8.3 / An Empty Adlrt Model Figure 8.4 / An Example AdIrt Model with Autosar and

EAST-ADL components

Figure 8.5 / Editor giving information about the format of the value that should be typed to an attribute of the model

CHALMERS (3%)

‘\

Page 39
9. Conclusions

It is possible to make some conclusions based on the results of the project. For instance, one of
the aims of the project was to evaluate how much Moldelisar and EAST-ADL characteristics correspond.
It has been seen that a part of Modelisar fits to EAST-ADL very well in notion. And there is a meaningful
way of mapping for the other part as well.

Choosing ATL for the conversion was an important choice for the project as ATL plays a crucial
role. The capabilities of ATL has been an important topic of discussion. After putting some effort on the
ATL implementation, a close conversion to the ideal one has been obtained. So this showed it was
capable of at least doing the desired conversion. But it is a limited language; it does not give the freedom
of commercial languages to the developer like Java does; it has limited tools that are supported. Also as
it is not a very well known and commercial language, it has weaknesses in the documentation and
example sides. Moreover, it does not give any guarantee for having compatibility with older and newer
versions of ATL implementations which means that the current implementation has the risk of being
incompatible with the newer versions of ATL. Although it has several disadvantages that are coming with
it, it has the advantage of being a specific language for Model to Model transformation. Maybe, using a
general language like Java could have taken less time for the start but in the long run ATL can become
more efficient. Also looking from the compatibility perspective, using ATL had been better for integration
with the other tools that has been already designed or will be designed for Maenad since they also used
ATL. So, although there are disadvantages of ATL, it has been a good decision to choose this language
and with the further improvements that will be made to it, the limitations and other disadvantages will be
less.

Eclipse has helped the evolution of the project very much. It has been seen that Eclipse is a
powerful platform which gives support to a developer with a lot of useful tools. Sometimes it lacks in the
official documentation but as it is a well known platform, answers to the questions can be found from
other sources of information as well. Also performance and compatibility of different tools in the platform
is an issue. Sometimes the platform causes big performance shortages. To give an example, the
computer crashed sometimes when using some of the tools of Eclipse but this can be dependent on the
computer or on the other parameters. Using different tools together can be a challenge sometimes and
unexpected behavior can be encountered which causes complex problems needed to solve. But these
downsides can be tolerated since such a complex and powerful tool has a lot to offer. Accordingly,
Eclipse was a nice selection especially for its EMF tools. It is also a common platform that is used by
other tools of the Maenad project as well which can ease the integration.

The generated Editor during the project can be an alternative to Papyrus and VSA. Papyrus is
UML based and the generated editor is XML. VSA is also XML based but it is hot an open source tool. So
it is definitely an advantage for the user to have the obtained EAST-ADL editor. These 3 EAST-ADL
editors have different advantages and disadvantages among each other and they have a different
approach of interacting with the user when building a model. So the generated Editor for sure is a handy
addition to the other 2 as it has different advantages and a different way of interfacing with the user which
can be preferred depending on the context.

Although not implemented yet, integration of Simulink with FMUZ2EA tool can be a good alternative
to KTH’s approach. This is because; the characteristics of the new integration will be slightly different.
The possible differences that have been resulted from the pre-study are that the FMUs will be used to
create S functions in Simulink instead of EASTADL blocks forming Simulink blocks (which are empty
inside). The EAST-ADL models transferred to Simulink by the new Simulink integration application can
also be simulated directly in Simulink as the FMUs will support the behaviour of the corresponding
Simulink blocks unlike the KTH implementation which do not support direct simulation capability for the
systems transferred from Papyrus to Simulink (Because they do not form any behaviour for the created
Simulink blocks. They are treated as black boxes. So in order for the user to make a simulation using the
transferred model, a behaviour model has to be assigned to the Simulink blocks). But it will be parallel to
the KTH implementation in the way of transferring the structure information of EAST-ADL blocks to form
the whole model in Simulink. Also KTH’s implementation has a number of problems currently and this

CHALMERS (3%)

Page 40

application can help to show the way to fix that problems and support the user with a tool that doesn’t
have these problems.

To sum up, all of the conclusions that have been listed above and the other experiences gained
throughout the project have been a good source of feedback for the ongoing work in Maenad and for the
other related projects. Additionally, FMU2EA and EAST-ADL Editor tools have been obtained. Although
currently these tools have some limitations, they can still be useful for the engineers who work with
Modelisar, AUTOSAR or EAST-ADL. And the study that has been carried out for defining possible Future
Work and the pre-work that has been done for some of them showed that if some of the future work plans
is going to be applied, the tool can become even more powerful and functional.

CHALMERS (3%)

‘\

Page 41
10. Future Work

A number of possible future improvements has been listed throughout the project. Some of them
are only ideas where the others have a rough application path in our mind. A possible future work for
Simulink integration has been discussed in the Conclusions part, the rest can be seen below.

As discussed before it is assumed that a Modelisar model corresponds to an Analysis
FunctionType with FunctionFlowPorts, but it can correspond to a DesignFunctionType with
FunctionPowerPorts. This assumption can be removed if an interface is created which shows the
possible mappings to the user. Then the user can select the appropriate mapping which will avoid
assumptions. Implementing this interface can take sometime and adding this application to the tool is not
so crucial, hence this improvement is not the first thing to work on.

Previously in the text, the manual steps that have to be taken by the user during the conversion
process have been mentioned. Avoiding these manual steps needs modifications in the current version of
the tool. These steps could be avoided with pre-processing which includes modifying the input model for
making it getting into the appropriate structure and post-processing which contains the steps that are
needed for obtaining the desired output structure. Pre-processing can be done with Java and post-
processing can be done with the Model to Text languages Xpand or Xtend. This modification can be an
important improvement since it can make the use of the tool much easier which would motivate people to
use it.

The implemented ATL rules of the FMUZ2EA tool can be integrated to KTH’s plug-in. It is thought
that, swapping the KTH’s ATL code with ours could be enough for the intergration besides the need of
some small modifications. With this integration, the tool can support a differet user interface. In this new
interface, the user can select the option “Convert to EAST-ADL” from the pop-up menu which appears
when right clicked onto a Modelisar model which is opened in the Eclipse Platform, instead of executing
the JAR file of the tool. When this option is used, the generated output EAST-ADL model is going to be
put into the current workspace. This new interface of the FMUZ2EA tool could be a nice addition since
some potential users are already familiar with the use of KTH's plug-in. Also having the tool embedded in
the Eclipse platform could look nicer.

As it is always good to decrease the loss of information during the transformation, making a more
comprehensive mapping of FMI>EAST-ADL could be in interest. FMU can be put as the
FunctionBehaviour of the generated EAST-ADL model as a first extension. Another extension could be
adding the mapping of all the Modelisar elements that do not have a direct correspondance in EAST-ADL
as UserAttributableElements of EAST-ADL. The structure of the FunctionBehaviour and
UserAttributableElement can be seen from the Appendix A2. Although it can be time consuming for
creating the mapping rules for every single element and implementing these in ATL, It would be good to
have this modification. But perhaps the mapping of different elements and their implementations in the
ATL rules will have similarities so after creating and applying the new rules for some of the elements, the
rest could be easier.

A model checking process can be introduced before the conversion. For this process to be
introduced, the tool should have a plug-in that opens when right clicked on an EAST-ADL model and lets
the user to select a Modelisar model to be outputted on that particular EAST-ADL model. If this way of
use of the tool is added then before outputting the resulted EAST-ADL elements to the selected EAST-
ADL model, an analysis of that model can be done for instance by a Java code. This analysis would find
the elements that have the same characteristics that are current in the EAST-ADL model and the
generated model. After the analysis these elements found in the generated model would be deleted and
then the rest can be outputted to the selected EAST-ADL model which would avoid creating duplicates.
Another type of checking could take place in the FMU itself which is easier to implement than the
previous check. Elements that would result in the same kind of EAST-ADL elements would be found and
only 1 of them would be taken for the conversion which would avoid duplicates too. The implementation
of these checks could be tricky. It is better to put a low priority to this feature since it does not add as
much usability to the tool as the time that it will take to implement.

CHALMERS (5%

Page 42

Doing the conversion in the opposite way would be a nice feature to add. It would let the user to
make use of their already existing EAST-ADL models in the context of Modelisar. But this can be
considered as a new project rather than an addition to the current one. The mapping done in the
FMU->EAST-ADL perhaps won’t work straightforwardly for a lot of cases in the opposite way for EAST-
ADL->FMU.

It is known that all the models in Eclipse platform are kept in Ecore representation in memory and
are not serialized to XML files before they are saved by the user. This is good for performance. But as
mentioned before, the FMUZ2EA tool doesn’t give the option to reach this Ecore representation because it
automatically serializes the models to XML files instead of letting the user to choose. It is thought that it
would be good for our tool’s performance as well if the user would have the option to save a model or not.
A possible way to use the tool in this way would be having an option for the conversion for either creating
the ecore representation of the model or directly generating an XML. A more important benefit of this
would be having compatibility with the tools that operates using such Ecore representations of models
and these kinds of tools are currently available in the Maenad project. For having these advantages, a
way should be found for disabling the automatic serialization of the FMU2EA tool and for reaching the
Ecore representation of the model. ATL does the serialization task in the FMUZ2EA tool but it is not known
how to direct ATL to create the Ecore representation instead of the XML file since ATL creates the XML
files without giving any other options in default. But it is guessed that communicating with ATL-VM during
the conversion can work for obtaining the desired kind of behaviour but more research should be done on
how ATL-VM works for validating the approach.

CHALMERS (3%)

Page 43

11. References

For UML.:

[1] Available: http://www.omg.org/spec/UML/2.0/ [2010-10-27]
[2
[3
[4] Available: http://www.visualcase.com/tutorials/class-diagram.htm [2010-11-10]

[5] Available: http://www.omg.org/spec/UML/20090901/Infrastructure.cmof [2010-11-10]

[5] Available: http://www.omg.org/spec/UML/20090901/Superstructure.cmof [2010-11-10]

For XML:

[7] Available: http://sv.wikipedia.org/wiki/’ XML [2010-09-01]

[8] Available: http://schema.omg.org/spec/XMI/2.1/PDF/ [2010-12-01]

For AUTOSAR:

[9] Available: http://www.autosar.org/download/AUTOSAR_TemplateModelingGuide.pdf [2011-01-27]

For EAST-ADL:

[10] Available: http://www.atesst.org/home/liblocal/docs/ATESST2 D4.1.1 EAST-ADL2-Specification 2010-06-02.pdf
[2010-09-02]

[11] Available: http://www.atesst.org/home/liblocal/docs/ATESSTBrochure2010 FINAL.pdf [2011-09-02]

[12] Available: http://www.papyrusuml.org/scripts/home/publigen/content/templates/show.asp?P=146&L=EN&ITEMID=14
[2011-09-05]

For SystemWeaver:

Available: http://www.sparxsystems.com/resources/uml2_tutorial/uml2 classdiagram.html [2010-09-15]

Available: http://www.objectmentor.com/resources/articles/umiClassDiagrams.pdf [2010-09-12]

_

[13] Jan Sdderberg, Mats Larsson, LifeCycle Management oF Simulation Models, 2008

For KTH Simulink&—->EAST-ADL exchange implementation:

[14] Available: http://code.google.com/p/kth-simulink-exchange/ [2010-09-15]

For ATL:

[15] Available: http://www.eclipse.org/m2m/atl/doc/ATL _VMSpecification%5Bv00.01%5D.pdf [2011-11-07]
[16] Available: http://wiki.eclipse.org/ATL [2010-11-08]

[17] Available: http://www.eclipse.org/m2m/atl/doc/ATL Starter Guide.pdf [2010-11-10]

[18] Available: http://wiki.eclipse.org/ATL/User Guide - The ATL Language [2010-11-12]

[19] Available: http://homepages.cwi.nl/~koehler/talks/model-transformation.pdf [2010-11-24]

[20] Available: http://wiki.eclipse.org/ATL 3.1.0 New and Noteworthy [2010-12-16]

For Eclipse:

[21] Available: http://www.openarchitectureware.org/pub/documentation/4.3.1/html/contents/emf tutorial.html [2010-10-15]
[22] Available: http://help.eclipse.org/helios/index.jsp?topic=/org.eclipse.jdt.doc.user/tasks/tasks-33.htm [2010-12-11]
For FMU and FMI:

[23] Available: http://www.functional-mockup-interface.org/ [2010-11-18]

[24] Available: http://www.modelica.org/ [2011-01-16]

[25] Available: http://www.modelica.org/publications/newsletters/2010-1/index html#item9 [2011-01-16]
[26] Available: http://www.qtronic.de/en/fmusdk.html [2010-12-05]

General Background Reading:

[27] Available: http://www.dspace.de/shared/data/pdf/tl timeline/TargetLink-2002-Volvo.pdf [2010-09-01]
[28] Available: http://www.md.kth.se/~biehl/files/papers/toolint.pdf [2010-09-10]

http://www.omg.org/spec/UML/2.0/
http://www.sparxsystems.com/resources/uml2_tutorial/uml2_classdiagram.html
http://www.objectmentor.com/resources/articles/umlClassDiagrams.pdf
http://www.visualcase.com/tutorials/class-diagram.htm
http://www.omg.org/spec/UML/20090901/Infrastructure.cmof
http://www.omg.org/spec/UML/20090901/Superstructure.cmof
http://sv.wikipedia.org/wiki/XML
http://schema.omg.org/spec/XMI/2.1/PDF/
http://www.autosar.org/download/AUTOSAR_TemplateModelingGuide.pdf
http://www.atesst.org/home/liblocal/docs/ATESST2_D4.1.1_EAST-ADL2-Specification_2010-06-02.pdf
http://www.atesst.org/home/liblocal/docs/ATESSTBrochure2010_FINAL.pdf
http://www.papyrusuml.org/scripts/home/publigen/content/templates/show.asp?P=146&L=EN&ITEMID=14
http://code.google.com/p/kth-simulink-exchange/
http://www.eclipse.org/m2m/atl/doc/ATL_VMSpecification%5Bv00.01%5D.pdf
http://wiki.eclipse.org/ATL
http://www.eclipse.org/m2m/atl/doc/ATL_Starter_Guide.pdf
http://wiki.eclipse.org/ATL/User_Guide_-_The_ATL_Language
http://homepages.cwi.nl/~koehler/talks/model-transformation.pdf
http://wiki.eclipse.org/ATL_3.1.0_New_and_Noteworthy
http://www.openarchitectureware.org/pub/documentation/4.3.1/html/contents/emf_tutorial.html
http://help.eclipse.org/helios/index.jsp?topic=/org.eclipse.jdt.doc.user/tasks/tasks-33.htm
http://www.functional-mockup-interface.org/
http://www.modelica.org/
http://www.modelica.org/publications/newsletters/2010-1/index_html#item9
http://www.qtronic.de/en/fmusdk.html
http://www.dspace.de/shared/data/pdf/tl_timeline/TargetLink-2002-Volvo.pdf
http://www.md.kth.se/~biehl/files/papers/toolint.pdf

gy
CHALMERS (7¢

Page 44
12. Appendix

Appendix includes the information that supports the explanation of the topics discussed
previously. The details that are not covered before are uncovered here.

A. Appendix A
This section gives further information about the topic “Correspondence of Modelisar with EAST -
ADL”".
1. FMI MetaModel
In this appendix, the general structure of the Fmi MetaModel will be shown.

The Figure A1.1 shows the top view of the structure of the FMI MM. All the elements of the FMI MM can
be seen here, and the attributes of the elements can be found in the following Figures. It should be noted
that UnitDefinitions, DefaultExperiment and VendorAnnotions are not used in this version of the mapping.

frniMeodelDescription

0..1 . Q.” | g L]
== UnitDefinitions = BaseUnit [—] [fmiBaseUnit |——== DisplayUnitDefinition

Q.1 a.r i] 1
———== TypeDefinitions = Type —1 miType —>—|
0.1 H M

== DefaultExperiment |
o .- o deciarad Type RealType
——== VendorAnnotations —— Tool |—>| Annctation | :
: —— IntegerType
0.1 0. 1
== Model/ariables === Scalarvarable ==
— T — —— BosleanType
y o FA)
DiraciDependency . Real StringType
; — EnumerationType
| 0. — Integer Typ

¥ - 0.
Mame — Boolaan
] Item
Siring

— Enurmeration

Figure A1.1

CHALMERS (%)

Page 45

In Figure Al1.2, Unit Definitions Element is shown. This element can have zero or several BaseUnit
Elements. The BaseUnit Element has an attribute and can have zero or several DisplayUnitDefinition.
This element is not used in the mapping.

| fmiBaselnit

O attritutes

unit

ype | ¥ normalizedString

B attrivutes

|
|
|
|
|
E displayUnit |
' bype | xE:normalizedstring |
| |
|
|
|
|

4 UnitDefinitions [- —=— =H
----------------- iy Aot

0.m

BaseUnit

. -]
ype | fmiBazelnit

S ' gain E
'——{—--—E—' DisplayUnitDefinition [Tj_ Mype | xadouble

e

| F

0. unit = offset + vohefaut 1 |

qain*displayUnit T

hype wadauble

Figure A1.2

In Figure Al1.3, DefaultExperiment element is shown. This element has a number of attributes but holds
no elements. This element is not used in the mapping.

B aitripntes

.
' tolerance

byvpe | <= double

Drefault relative integration
tolerance

Figure A1.3

In Figure Al.4, VendorAnnotations Element is shown. This element can have zero or several Tool
Elements. The Tool Element has an attribute and can have zero or several Annotation elements. This
element is not used in the mapping.

H attriputes

name
Iype |xs:nu:urmalized9tring

Marne af tool that can
interpret the name-value pairs

1 VendorAnnotations g Tool !
""""""""""" R ' B attviputes |
Taol specific data (ignored by 0.0 !
other toals) ! name
L 5 :\E'_M[TI]_ bype | ks normalizedString
i i
D__.:é value
type |x3:3tring

Figure Al.4

CHALMERS (5%

o i_'.':_i-_-.: o

Page 46

In Figure A1.5, TypeDefinitions Element is shown. This element can have zero or several Typel
Elements. The Type Element has attributes and can have one of RealType, IntegerType, BooleanType,
StringType or EnumerationType. This element is rather important for the mapping. They represent the
variables of the Modelisar model.

== = EBooleanTmre

ES’trinuT}ﬂre

—| EnumerationType

fmiype _i
| B attributes |
| name |
N I ¥	xanormalizedString
	deseription
ibype	xsistring .
N o e _.’;—_____\ Type	
. Typebefiniions - xE_ (e fmiType]	
0.m	

Figure A1.5

In FigureAl.6, RealType and IntegerType elements of Type Element is shown. They have some
attributes and part of them are used in the mapping but not all.

=l attributes |

Crefault display unit, provided
the conwersion of displaylinit
to unit is defined in

UnitCrefinitions (friBazelinitl,

-| RealType il— ! relativeQuantity

Hat <=] wshoolean

Edefaurt falze

IF relativeCuantity =true, B sttributes |
offset For displayUnit roust
be igrored,

—| IntegerType 1I—

Figure A1.6

CHALMERS (3%

Page 47

In Figure A1.7, EnumerationType element of Type Element is shown. It has some attributes and it can
hold several Item Elements.

B stiripwtes

-I EnumerationType

B sttriputes

Focoooocooooo

name
=TT~ . . .
. m bype | e normalizedString
o u T] e e essmssssmssse-
0..co First Itemn has walue=1, i deseription

Second Itern has walue = 2, h —
ete, ifype [xssthing .

Figure A1.7

In Figure A1.8, ModelVariables Element is shown. This element can have zero or several ScalarVariable
Elements. The ScalarVariable Element has attributes and can have one of Real, Integer, Boolean, String
or Enumeration. This element is rather important for the mapping. They represent the variables of the
Modelisar model as well. They can give reference to Type Elements and has the information that shows
whether a variable is used inside the model or it is a port, the gateway of connection with other models.

attributes

fmiscalorvarioble |
|
|
|

[Real [
! WiodelUaiablos [}~ { ooe. | ScalarVariable H | Integer [

------------------ REnT bype | fmiScalatariable
o EEI-jEI——' Boolean

Exposed vatiables of the 0.
model

== == -mmmmmmmmmmmm bl
]

--< DirectDependency

Oy allowed, iF causality =
output, IF nat present, the
output depends on all inputs,

Figure A1.8

r%aa 3
CHALMERS Y

Page 48

In Figure A1.9 attributes of the ScalarVariable can be seen. The attribute that shows whether the current
ScalarVariable is a port or not is 'causality’ which makes an important one.

[e

fmiScalarVariable

= attriputes

name
type | x2 normalizedString

e, "abmod3,4] #122""

valueReference

type | xEunsignedint

Tdentifier For wariable walua
in function calls (not
necessatily unique with
respect ta all variables)

Urnique identifier af vatiable, |
v description |

ilype | xssting | |
E variahility :
itype wanormalizedstring I

(ENUm | constant parameter dizcrete continuous

efaul eontinuous |
|=====—- STTTTETTEEEEEEEEEEET bl
. causality

ype | xsnormalizedstring
Enum | input autput irternal none
cletault |internsl

internal: After initizlization anly allowed |
to get value, e.q., For result storage; |
none: toal specific wariable that does
not infuence sinulation (2.4, switch |
lagaing on)

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
: | . alias | |
| ScalarVariable #'_r ype | xsnormalizedString

bype | fmiscalar/ariakle Enum [nodlas sies negateddlias

cefault | nodliaz

IF neqateddlias, the walue referenced by
| valueRefarence rust be negated

Figure A1.9

CHALMERS

Frahi b
Ll T . N

Page 49

In Figure A1.10 Real, Integer, Boolean and String elements are shown which are a part of the
ScalarVariable Element. Not all of the elements are used in the mapping.

H sttributes

IF preszent, name of type
defined with TypeDefinitions
[friType] prawiding defaults,

CreFault display unit, prowvided
the conwersion of displayUnit
to unit is defined in

UnitDefinitions (FriBasellnit),

1 relativeCiuantity

Real

Boolean [

bype xz hoolean
Edefaurt falze

IF relativeQuantity=true,
offset For displayUnit must
be ignored.

Cnly allowed, iF start is
prezent; =true: fixed initial

walue =False: gquess walue

= attriputes

IF present, name of type
defined with TypeDefinitions
(FniType) providing defaults,

Cnby allawweed, iF start is
present; =true: fixed initial

B stiripwtes

If present, name of bype
defined with TwpeDehnitions
[FrniTypel providing defaults,

walue; =False: gquess walue

Integer

by alloved, iF start is
present; =true: fxed initial
walue) =False: quass walue

B sttriputes

If present, nare of type
defined with Typelefnitions
(FniType) providing defaults,

Ivpe | xehoolean

H

v e MEHER |
Only allowed, iF start is
present; =true: fixed initial
walua) =Falze: quess walue

Figure A1.10

CHALMERS (34

Page 50
In Figure A1.11 Enumeration and DirectDependency elements are shown which are a part of the
ScalarVariable Element. Enumeration is used but DirectDependency is not used in the mapping.

B stiripwtes

declaredType
type | wE normalized=String

Marne of type defined with
TypeDefinitions [FrniType)
that provides the items of the
enurneration as well as
defaults,

Enumeration [—]

o e

DirectDependency [oF - § —e=— =} - Hame

sl e [xsnormalizedString
Only allowed, if start is Only allowed, iF causalivy = 0.
presant; =true: fxed initial output, IF not present, the

The narmes of the input
ralue: —False: quess vl output depends on all inputs, wariables that are needed to
1= :

campute this autput

Figure A1.11

2. EAST-ADL MetaModel

Page 51

In this section the part of the EAST-ADL MetaModel that is used in the mapping is shown.

Figure A2.1 shows the possible element types. Every element of the EAST-ADL should be a member of

one of these. As can be seen, all the elements are inheriting from the Identifiable element which

represents an AUTOSAR element. So every element in EAST-ADL carries AUTOSAR characteristics.

This part of the MetaModel also defines the structure of an EAST-ADL model.

autosar.document
xmil.goba Element = trus

rsion = 3.1

asplladie s

+subPackags 0.7 ;
0.1

aatpMosadString =
FormulaExpression

+pwnad Commeant

Identifiable:ldentifiabie

+ category: String [0..1]
+ shorMName: |dentifier
+ wuuid: String

1

EAETlement

UzerAtinbutesbleElam

EAXML
EAFackage EAPackageabieElement
+toplLevelPackage szlzmant
tags [l o —
sdmin.documentVersion = 2010-06-02 | %1 wspiianies a.s 0.1 «splitablas)

A

2L

TraceableSpecification

+ name: Strng [0..1]

0.1

text: String [D..1]

/

Comment

+ body: String

Relationship

+ownadRelstionship

+tracesbleSpacification

1.®

Contaxt

7

Rationale

Figure A2.1

[=1

4

CHALMERS (%)

o i_'.':_i-_-.: o

Page 52

Figure A2.2 shows the structure of a FunctionType. Since AnalysisFunctionType is one of the core
elements of the mapping, this part of the MetaModel plays a key role. As mentioned before, there is also
a DesignFunctionType which is a possible element to be formed from the Modelisar model but as it was
decided to map every Modelisar model to an AnalysisFunctionType, this element is not used. Another
important element here is FunctionPort which is a part of the FunctionType.

t) 0
Contexty 4 e} —— = -1

«atpTypex

FunctionType o iGrotn

+portGroup *

=mantary: Boolsan

+port
EAElement EAElement

1 +port +port «instanczRafe -
e «xatpPrototypes -
il R — — — ——————————— watpStructure Elements

FunctionPort = =

5 FunctionConnector

1 +connector
ol
-

f: EAElement

astpPrototypex
FunctionPrototype

AllocateableElemeant HardwareModeling::

% ﬂ AllcationTarget

+typa «izOfTypas
AnalysisFunctionType ! - A p"T\. 1 _-3,;:,-':\ 1
1 AnalysisFunctionP rototype ssllocatedElemant TET
i
+part 1 [
- . ! winstanceRafs
0.1 winstancaReafs 1
1 1
1 1
1 1
1 1
I 1
EAElement
A o FunctionAllocation

DesignFunctionType DesignFunctionPrototype

+functionAllocation

+part

Tlyps wisOfTypex

-
o

1 - 1

71 Context EAEiement
= Allzcation
«watpTypes

3 +hardwaraComponant .
Easic SoftwareFunctionType LocalDeviceManager HardwareFunctionType HardwareModeling:
a. 1 | HardwareComponentType

Figure A2.2

should have a DataType type.

In this figure EaDatatype element is shown. This element can be either EABoolean, EAString, EAFloat,
EAlnteger or Enumeration for the mapping. Also EnumerationValueType and RangeableValueType are

CHALMERS

«atpTypase
FunctionType

a1

+ izElemsntary: Boolean

ssnumearations
EADirectionKind

J//V

o
nout
out
FunctionFlowPort
+ diection: EADirectionkind

watpTypes

EAElement

«atpPrototypes
FunctionPort

i

FuncticnPowerPort

Datatypes::
CompositeDatatype

R—

+dstetypePrototype 1.~ forde

d]

Page 53

Figure A2.3 shows the structure of a FunctionPort. As mentioned before a FunctionPort can be either a
FlowPort, a PowerPort or a ClientServerPort but it is decided to only use FlowPorts. FunctionFlowPort

Context
+portGroup

wenumerations
ClientServerKind

FunctionClientServerPort

chentServarTypse: ClhantSenverking

EAElement

«atpPrototypes
Datatypes: EADatatypePrototype

+ratum EAEiement
——————————— R
51 51 Operation
+argumsan

orderad 0.1

Figure A2.3

used for supporting the information of the DataTypes.

EABoolean

EAString

Enumeration

—

wisOfTypas

+type 1

EAFscksgeshisElement
xatpTypes
FuncticnClientServerinterface

+oparation T.

Hiners

A

+bgs=Enumearation

2.~ {orderad}

EnumerationLiteral

EAElement

\-‘fb racesble Specification EAEfement
+Hyps
«atpTypes «atpPrototypes
——‘[:} EADatatype 1 wisOfTypes - |EADatatype Prototype
+datatypePrototype
1.7
forderad
0.1
ValueType CompositeDatatype
RangeabieDatatype

+bsz=Rangesile

EnumerationValueType

il

RangeableValueType

ltivalued: Boolean

: String [2..*] {order=d)

EAFloat EAInteger
+ accurscy: Float
+ rasolution: Float + max: Float + max: in
+ significantDigits: int [0..1] + min: Float + min: in

Figure A2.4

CHALMERS ()

Page 54

Figure A2.5 shows another view of FunctionType. This time FunctionTrigger and FunctionBehaviours’
relations with FunctionType are shown. These elements and their relation with FunctionType is not used

in the mapping rules but can be a part of FutureWork. For instance, FunctionBehaviour of the Model
could be the mapped Modelisar model.

EAElement

Context
«atpPrototypes
astpTypas SETOTE 3_1 g FunctionModeling.:
FunctionModeling:: TriggerP olicyKind FunctionPrototype
FunctonType
+ isElementary: Boolean E *functionFratatype 0.1 Traceable Spea e
T Mode Group

EAElzment + pracondition: String

+function FunctionTrigger
0.1 1

TriggerPolicykind
\ +moda +mods 1.7
EAEiement EAElment
“pon tnProtahrne Mode wanumerations
]_———————————| | _ wEterraiohmEs FunctionBehaviorKind
.| Functioniodeling:: + condiion: Strng
1 FunctionPort
+maode 3
o Confext
FunctionBehavior

*unction + path: String o
+ repressntation: FunctionBehawviorkind - -

Figure A2.5

This figure shows UserAttributableElement which is not a part of the current implementation but could be

included in the FutureWork. Every element in Modelisar that does not have a direct mapping can be
mapped to a UserAttributableElement.

: +usValue
UserdumbuteableElement : EAEisment
) UserAttributaValue
+ key: String
+ value: String
+uaType a.-
EAPschsgeshleElement
UserAttribute ElementType
+ celid o Shrme~ ™0 4
EIHREE "ezxtandadE =mantTyps 0..1
[~
0.1 |
+attribute
EAElement
UserAttribute Definition Tracesbie Specification
+type
- 1] ! watpTypas
-] wisOfTypax ;1| Datatypes: EADatatype

Figure A2.6

r%aa 3
CHALMERS Y

Page 55

3. Mapping Rules

Mapping Rules

FMU

==

Figure A3.1
How is the conversion done

The main notion behind the conversion is the mapping between an FMU (Functional Mockup Unit)
and an EAST-ADL model. The overall look to the mapping is that an FMU corresponds to an
AnalysisFunctionType element with (I/O)Ports in EAST-ADL metamodel. In reality, an Fmu could also be
mapped to a DesignFunctionType, but in this implementation it will be assumed that all FMUs are AFTSs.
This assumption has to be done as it is not possible to make a decision whether the mapping should be
done to an AFT or a DFT but the user can modify the EAST-ADL model in the way that it should be
afterwards the conversion. The same situation applies for selecting whether a port is FunctionFlowPort,
FunctionPowerPort or FunctionClientServerPort, and it is assumed that all ports are FunctionFlowPorts
during the mapping process.

In other words, FMU has all the relevant information which is needed to form the Ports, the Data
Types which corresponds to Ports’ types. And mainly, with Ports and their corresponding Data Type
elements, one can form an Analysis Function Type with some additional specifications which can still be
found in FMU and mapped.

CHALMERS

Page 56
FMI conform T oo
simulation tool ik
’ 77‘—“;.';‘;"" |] 1.;-.-;-‘-— VL
) conforms
[simulator read model to o i b
<-,.“,> user - Description —— - . £, Ve Amaarien)
interface i
‘ L2 Wbt Vasbotston 1)
XML schema rrave
control run 1 or defined by the
many FMI specification:
v modet Aol - fmiModelDescription.xsd
instances TRGa - fmiBaseUnit.xsd
solver T — o] implements - 'mlT‘/DG.KSd
4 the EMI AP} - fmiScalarVariable.xsd
Figure A3.2

Modeldescription.xml (which is located in the FMU.zip file is the FMI of the corresponding FMU)
holds all the information about the FMU. It follows the FMI metamodel and FMI is the interface of FMU
with the outer world. In other words, reaching an FMU is done by using its FMI. So from FMI, one can
obtain all of the properties of the FMU. Because of this fact, FMI MetaModel and so only FMI’s
components are used for the mapping process. fmiModelDescription is the root element of FMI and every
property of the FMU is hidden inside this box.

All the below Figures in this section of Appendix shows the mapping rules, in other words they
show how we related the Modelisar model elements to EAST-ADL model elements. All the Figures have
their explanations in themselves.

fmiModelDescription
MetaModel

fmiModelDescription

+modelName

TypeDefinitions> TypeDefinitionsType

ModelVariables->ModelVariablesType

4
./ ya

7/ a
, .
conforms confo‘rfns
/7 to to
/]
I i
FMU is EASTADL
Model ma{JOpef Model
Notes:

->For the meanings of the
arrows refer to the next slide.

-

EASTADL MetaModel

- P

RootType
eAXML->EAXML

EAXML

tOPLEVELPACKAGES-> TOPLEVELPACKAGESType >

(TOPLEVELPACKAGESType
eAPACKAGE->EAPACKAGE ~>

EAPACKAGE
eLEMENTS->ELEMENTSType >

ELEMENTSType
aNALYSISFUNCTIONTYPE-> ANALYSISFUNCTIONTYPE
eAFLOAT->EAFLOAT
eAINTEGER->EAINTEGER
eABOOLEAN->EABOOLEAN
eASTRING>EASTRING
eNUMERATION=>ENUMERATION
eNUMERATIONVALUETYPE >ENUMERATIONVALUETYPE
rANGEABLEVALUETYPE->RANGEABLEVALUETYPE

Figure A3.3

CHALMERS |

Straight arrow means direct mapping

v

Dashed arrow can take meanings .
depending on the context e

Curved arrow is used to indicate ré\?” -7
L & .

that the element is giving < 12~

reference to another element or L d@a’

an element is given reference by It S

another element. g creales

fmiModelDescription

Notes:

->An fmiModelDescription(There is only 1 for \\\\‘\ \“Q{eai

every FMU) is mapped to an AR \@\S\
ANALYSISFUNCTIONTYPE with ports. The ports \ S hRISY

are created and typed by their corresponding data type>.
To type the ports by the datatypes, first these specific s
datatypes should be formed.To form these datatypes again “~G.
fmiModelDescription is used. These datatypes(EAFLOAT etc.) «9, S
are also formed with the same information taken from \6‘ N
fmiModelDescription that is used for deciding the type of the ports. \\

After forming the datatypes and typing the ports with their AN
corresponding dataypes, RANGEABLEVALUETYPE and R

ENUMERATIONVALUETYPE are formed for every corresponding datatype N

->The names used for the elements and attributes are taken from the specific
MetaModel of FMI and EASTADL that are used for the mapping.

->The elements does not show all the attributes that they have as in their
MetaModels. Only the attributes that are in attention (used for the mapping)
are shown.

Figure A3.4

G
~Q N
\‘Qf
e
AR\

Page 57

ANALYSISFUNCTIONTYPE

EAFLOAT

EAINTEGER

EABOOLEAN

EASTRING

ENUMERATION

RANGEABLEVALUETYPE

N
N

N

ENUMERATIONVALUETYPE

CHALMERS

Page 58

” ”
9 . - « hotation that is also used in this table either means that there are more attributes of the elements used for

the mapping but they are not used in this mapping table so they will take place in the others OR the element shown is
given reference by its root element in the previous pages. This notation is used in the same way for all of the document.

fmiModelDescription 1 1 ANALYSISFUNCTIONTYPE
+modelName[1] > +nAME[0..1]
TypeDefinitions : TypeDefinitionsType[0..1] ---1 u +sHORTNAME[1]
ModelVariables : ModelVariablesType[0..1] | -- - +-=.maps tg] PORTS : PORTSTypel[0..1]

TypeDefinitionsType

Type : FmiType[0..*]

PORTSTypel

ModelVariablesType

fUNCTIONFLOWPORT : FUNCTIONFLOWPORTI[O..*]

ScalarVariable : FmiScalarVariable[0..*]

FmiType @ [-------=-------- !

maps to

» FUNCTIONFLOWPORT

FmiScalarvariable [---------------- !

Notes:

->1n default FmiScalarVariables are used for mapping to FUNCTIONFLOWPORT but
FmiScalarVariables can give reference to FmiTypes. In this case if the values missing
in the FmiScalarVariable are avaiable in FmiType, they are used otherwise always
FmiScalarVariables’ values are used for mapping. So if there is no reference given
from FmiScalarVariable to an FmiType, directly FmiScalarVariable is used in mapping
and FmiType is not taken into consideration otherwise for the values that are not
available in FmiScalarVariable will be taken from FmiType if they are available in it.

Figure A3.5

Notes:

FmiType -For instance, RealType and RealTypeType are nearly
identical in structure. They have the same attributes. An
EAFLOAT is created either by the RealType or RealTypeType.
1 In default, it is created by RealType but if RealType gives
RealTypeType reference to an FmiType which should hold a RealTypeType by
using its attribute ‘declaredType’ then still the information in the
RealType is used for the conversion but this time if there is an
declaredType additional information in the referenced FmiType’s
RealTypeType, this additional information is used too.

A

1

_/ FmiScalarVariable S »| EAFLOAT |¢ ________________

IntegerType

1

1

1

1

RealType :

1 |

RANGEABLEVALUETYPE | :

1

1 1

FmiT: | d by !
\/' miype FUNCTIONFLOWPORT | S0Pedhy___________ J
’

’

1| '

IntegerTypeType »| EAINTEGER [#--=-=-=-=========-— ()

'

'

1 '

'

declaredType '

'

\b FmiScalarVariable 1 '
ENUMERATIONVALUETYPE '

'

'

'

'

'

L] ENUMERATION |<- ——————————————

FmiType 1

FmiScalafVariable

Q

EnumerationTypeType

1 EABOOLEAN [€--------

Bool T
TdeclaredType ooleanType

FmiScalarVariable 1
FmiScalarVariable

\» EnumerationType 1 EASTRING [d-------- !

StringType

Figure A3.6

Pl

¥ sl 4
CHALMERS ¢
‘?"__'.i_'.':_b::"
-
e =>As stated in the previous page “...” that is connected to the FmiType here is
"= > used to show that FmiType element shown is given reference by its root element in
the previous pages.
FmiType 1

Page 59

+description[0..1] I

RANGEABLEVALUETYPE

RealType : RealTypeType[0..1]

IntegerType : IntegerTypeType[0..1]

OWNEDCOMMENTS : OWNEDCOMMENTSTypel0..1]

\

BooleanType[0..1]

StringTypel0..1] r
EnumerationType : EnumerationTypeType[0..1] OWNEDCOMMENTSType

COMMENT : COMMENTI0..*]

RealTypeType

IntegerTypeType

COMMENT

» +bODY[0..1]

ENUMERATIONVALUETYPE

EnumerationTypeType

OWNEDCOMMENTS : OWNEDCOMMENTSType[0..1]

Notes: OWNEDCOMMENTSType

->FmiType's description is mapped to a RangeableValueType's

COMMENT : COMMENTIO0..*]

Comment only if the FmiType holds an IntegerType or a RealType.

If the FmiType holds an EnumerationType than the mapping from
FmiType description to RangeableValueType comment is not used

but instead the description is mapped to the COMMENT
EnumerationValueType’s Comment. 1 bODY[0.1]
> + .
Figure A3.7
~~——»{ FmiScalarVariable 1
+name[1] 1
+description[0..1] E
+causality[0..1] B FUNCTIONFLOWPORT
Real : RealType[0..1] 1 +nAME[0..1]
Integer : IntegerType[0..1] +SHORTNAME[1]
Boolean : BooleanType[0..1] 1 +dIRECTIONIO..1]
String : StringType(0..1] OWNEDCOMMENTS : OWNEDCOMMENTSType(0..1]
Enumeration : EnumerationType[0..1]

RealType

IntegerType

OWNEDCOMMENTSType
COMMENT : COMMENTIO..*]

COMMENT

BooleanType

StringType

EnumerationType

Figure A3.8

v

+bODY[0..1]

Notes:

->FmiScalarVariable can hold one of the
datatypes, not two or more of themin the
same time. Also it should hold a datatype,

there can’t be an FmiScalarVariable
without a datatype. This means that an
FmiScalarVariable can have a Real but
not an Integer in the same time.

Page 60

EAFLOAT
N 1y inAMED.]
1
\4 » +SHORTNAME[1]
1
RealTypeType I N » +mIN[0..1]
Tmino.1] 1 I > +mAX[0..1]
+max[0..1] L EAINTEGER
+quantity[0..1] 1 L +NAME[0..1]
L +SHORTNAMEI1]
N
IntegerTypeType 1
- 1 » +mAX[0..1]
+min[0..1] |
+max[0..1] L
. ENUMERATION
+ tity[O..1]
quantity(0..1] N

EnumerationTypeType ,—> +sHORTNAME[1]
1

+quantity[0..1] IITERALS : LITERALSType[0..1]

Item->ItemTypel0..*]

LITERALSType

eNUMERATIONALLITERAL : ENUMERATIONALLITERAL[O..*] ™~

ItemType ENUMERATIONALLITERAL
1 +nAMEJ0..1]
+namef[1] 1
— 1 +SHORTNAME[1]
+description[0..1]
OWNEDCOMMENTS : OWNEDCOMMENTSType[0..1] y
OWNEDCOMMENTSType

COMMENT : COMMENT(0..] ~
T comment
5 +bopv.1

Figure A3.9

. j RANGEABLEVALUETYPE
L, +NAME[0..1]
L +SHORTNAMELL]

| RealTypeType *l‘l‘s'mqgf' 1 +UNIT[O..1]

+quantity[0..1]

» +dIMENSION[O..1]
bASERANGEABLEREF : BASERANGEABLEREFType[0..1])

1

+unit[0..1]

< BASERANGEABLEREFType

IntegerTypeType le - Is typeofl - 4-4------1 +dEST[1]
1 +VALUE[0..1]

+quantity[0..1]

ENUMERATIONVALUETYPE

1
+NAME[0..1]
1
Is type of
EnumerationTypeType - 25 -1 1 +SHORTNAME[1]
1 » +dIMENSION[0..1]

+quantity[0..1]

bASEENUMERATIONREF : BASEENUMERATIONREFTYype [0..1]

BASEENUMERATIONREFType

---------- +dEST[1]
+VALUE[0..1]

Figure A3.10

CHALMERS

Page 61

EAFLOAT
1
\‘ RealType T *NAMED. 1]
min[0.1] 1 > +SHORTNAME[1]
1 1
+max[0..1] 1 +mIN[0..1]
+quantity[0..1] 1 > +mAX[0..1]
+declaredType[0..1] | refersto __________ »| RealTypeType
EAINTEGER
IntegerType L tnAMED.]
1 >
+min[0..1] > +sHORTNAME[1]
1 1
+max[0..1] 1 +mIN[0..1]
+quantity[0..1] 1 > +mAX[0..1]
fers to
+declaredType[0..1] e »| IntegerTypeType
EnumerationType 1 ENUMERATION
1
+quantity[0..1] —:: +nAME [0..1]
+declaredType|[0..1] F=--3 +SHORTNAME[1]
|
1
,_rgfgr_s_tg» EnumerationTypeType
BooleanType li
» EABOOLEAN .
StringType li Notes:
+namef0..1] >declaredType refers to a specific element in
FmiType with using the valuereference
» EASTRING parameter it has.
N o1 ->EABOOLEAN's and EASTRING's name is
name(0..1] always initiated to Boolen and String in the
conversion.
Figure A3.11
\ RANGEABLEVALUETYPE
RealType - --- 1 +nAME[0..1]
- 1,
+quantity[0..1] T 1 +sHORTNAME[1]
'
+unit[0..1] 1 1,0 +uNIT[0..1]
1
: 1 +dIMENSION[O..1]
|
'
, bASERANGEABLEREF : BASERANGEABLEREFType[O..l]
1
1
1
i
IntegerType l€ -~ 1 </
L BASERANGEABLEREFType
+quantity[0..1] - TSType of
EREEEEEEEELEEEEEE +dEST[1]
+VALUE[O..1]
ENUMERATIONVALUETYPE
1 +nAME[0..1]
EnumerationType - L, +sHORTNAME[1]
+quantity[0..1] 1 1

+dIMENSION[O..1]

bASEENUMERATIONREF : BASEENUMERATIONREFType[O..1]

Notes:

—>dEST’s value is either: RealType,

IntegerType or EnumerationType. It

depends on who created the <~ BASEENUMERATIONREFType

Is type of

RANGEABLEVALUETYPEoOr o _Istypeol | +dEST[1]

ENUMERATIONVALUETYPE

>VALUE's value is the shortname value +VALUE[O..1]

of the variable from FMU which it is
created.

Figure A3.12

CHALMERS (%)

Page 62

FUNCTIONFLOWPORT
tYPETREF>TYPETREFType[0..1]

TYPETREFType
+value[0..1]
+dESTI[1]

Notes:

-value refers to a specific data type element with using the valuereference parameter
it has. ValueReference here is a ShortName of the referenced element. The
referenced element is the element which it is typed by.

>dEST's value is either: EAFLOAT, EAINTEGER, EABOOLEAN, EASTRING or
ENUMERATION. It depends on which the FUNCTIONFLOWPORT is created from.
FUNCTIONFLOWPORT is created from either a type in FmiType or FmiScalarVariabli
as shown in the above slides. And these types is mapped to one of the data types as
also shown in the above slides. So dEST takes the tvne of this data tvne.

Figure A3.13

Future Work for the Mapping Rules

¢ All the elements that do not have a direct mapping from FMU to EAST-ADL will be mapped to a User
Attributable Element in EAST-ADL, so the user will have still all the information of the FMU. This feature
can prevent the loss of information and besides it can be used for different purposes such as EAST-
ADL->FMU conversion(this conversion can be useful in some cases such as that, an FMU is wanted to
be created with the additional elements in an EAST-ADL model. Another example can be that the FMU
used in the conversion is not in hand and it is wanted to be generated again.).

¢ FMU can be put as the FunctionBehavior of the obtained EAST-ADL model.

gy
CHALMERS (7¢

Page 63
4, ATL code

-- @path FmiModelDescription=/FMU2EA7/FmiModelDescription.ecore

-- @path EAST=/FMU2EA7/adlrt.ecore
module FMU2EA7;
create OUT : EAST from IN : FmiModelDescription;

helper context FmiModelDescription!FmiScalarVariable def: type : String =
if not self."Real".oclIsUndefined() then
'EAFLOAT'
else
if not self."Integer".oclIsUndefined() then
'EAINTEGER'
else

if not self."Boolean".oclIsUndefined () then

'EABOOLEAN''
else
if not self."Enumeration".oclIsUndefined() then
'ENUMERATION'
else
'EASTRING'
endif
endif
endif
endif;

helper context FmiModelDescription!FmiScalarVariable def: portReal: Boolean =

if self.causality =#input and not self."Real".oclIsUndefined() then

r%aa 3
CHALMERS Y

Page 64

if not self."Real".declaredType.oclIsUndefined() then
false
else
true
endif
else

if self.causality =#output and not self."Real".oclIsUndefined()
then

if not self."Real".declaredType.oclIsUndefined() then
false
else
true
endif
else
false
endif

endif;

helper context FmiModelDescription!FmiScalarVariable def: portRealDeclared:
Boolean =

if self.causality =#input and not self."Real".oclIsUndefined() then
if not self."Real".declaredType.oclIsUndefined() then
true
else
false
endif
else

if self.causality =#output and not self."Real".oclIsUndefined()
then

if not self."Real".declaredType.oclIsUndefined() then

true

ey

i

CHALMERS 7¢

Page 65

else
false
endif
else
false
endif

endif;

helper context FmiModelDescription!FmiScalarVariable def: portInteger:
Boolean =

if self.causality =#input and not self."Integer".oclIsUndefined() then
if not self."Integer".declaredType.oclIsUndefined() then
false
else
true
endif
else

if self.causality =#output and not self."Integer".oclIsUndefined()
then

if not self."Integer".declaredType.oclIsUndefined() then
false
else
true
endif
else
false
endif

endif;

helper context FmiModelDescription!FmiScalarVariable def:
portIntegerDeclared: Boolean =

r%aa 3
CHALMERS Y

Page 66

if self.causality =#input and not self."Integer".oclIsUndefined() then
if not self."Integer".declaredType.oclIsUndefined() then
true
else
false
endif
else

if self.causality =#output and not self."Integer".oclIsUndefined()
then

if not self."Integer".declaredType.oclIsUndefined() then
true
else
false
endif
else
false
endif

endif;

helper context FmiModelDescription!FmiScalarVariable def: portEnumeration:
Boolean =

if self.causality =#input and not self.Enumeration.oclIsUndefined() then
if not self.Enumeration.declaredType.oclIsUndefined() then
false
else
true
endif
else

if self.causality =#output and not
self .Enumeration.oclIsUndefined() then

if not self.Enumeration.declaredType.oclIsUndefined() then

ey

i

CHALMERS 7¢

Page 67

false
else
true
endif
else
false
endif

endif;

helper context FmiModelDescription!FmiScalarVariable def:
portEnumerationDeclared: Boolean =

if self.causality =#input and not self.Enumeration.oclIsUndefined() then
if not self.Enumeration.declaredType.oclIsUndefined() then
true
else
false
endif
else

if self.causality =#output and not
self.Enumeration.oclIsUndefined () then

if not self.Enumeration.declaredType.oclIsUndefined() then
true
else
false
endif
else
false
endif

endif;

Fal
CHALMERS 7
Page 68
helper context FmiModelDescription!FmiScalarVariable def: portType : String =
if self.causality =#input then
"IN
else
if self.causality =#output then
'ouT!
else
'INOUT'
endif

endif;

rule fmiModelDescription2EAXML {
from
S : FmiModelDescription!fmiModelDescription
to
t: EAST!RootType (
eAXML <- EAXML
)
EAXML : EAST!EAXML (
tOPLEVELPACKAGES <- TOPLEVELPACKAGESType
)
TOPLEVELPACKAGESType: EAST!TOPLEVELPACKAGESType (
eAPACKAGE <- EAPACKAGE
)
EAPACKAGE: EAST!EAPACKAGE (
eLEMENTS <- ELEMENTSTYPE
)
ELEMENTSTYPE: EAST!ELEMENTSType (

aNALYSISFUNCTIONTYPE <- ANALYSISFUNCTIONTYPE

CHALMERS (3¢

Page 69

)
ANALYSISFUNCTIONTYPE: EAST!ANALYSISFUNCTIONTYPE (
nAME <- s.modelIdentifier,
SHORTNAME <- s.modellIdentifier,
PORTS <- PORTSTypel
) 4
PORTSTypel: EAST!PORTSTypel (
fUNCTIONFLOWPORT <-
FmiModelDescription!FmiScalarVariable.allInstances () ->select(c | c.portReal

or c.portInteger or c.portEnumeration or c.portRealDeclared or c.portBoolean
or c.portString or c.portIntegerDeclared or c.portEnumerationDeclared)

)
}

rule FmiScalarVariable2EAREAL ({
from
S : FmiModelDescription!FmiScalarVariable (s.portReal)
to
FUNCTIONFLOWPORT : EAST!FUNCTIONFLOWPORT (
nAME <- s.name,
SHORTNAME <- s.name,
dIRECTION <- s.portType,
OWNEDCOMMENTS <- OWNEDCOMMENTSType,
tYPETREF <- TYPETREFTYPE
)
OWNEDCOMMENTSType: EAST!OWNEDCOMMENTSType (
cOMMENT<-COMMENT
)
COMMENT : EAST!COMMENT (
bODY<- s.description

)y

TYPETREFTYPE: EAST!TYPETREFType (

gy
CHALMERS (7¢

Page 70

value <- s.Real.quantity,
dEST <- s.type
)
EAFLOAT: EAST!EAFLOAT (
nAME <- s.Real.quantity,
SHORTNAME <- s.Real.quantity,
mIN <- s.Real.min,
mAX <- s.Real.max
) 4
RANGEABLEVALUETYPE: EAST!RANGEABLEVALUETYPE (
nAME <- s.Real.quantity,
SHORTNAME <- s.Real.quantity,
uNIT <- s.Real.unit,
dIMENSION <- s.Real.unit,
bASERANGEABLEREF <- BASERANGEABLEREF
)
BASERANGEABRLEREF: EAST!BASERANGEABLEREFType (
value <- s.Real.quantity,

dEST <- s.type

helper context FmiModelDescription!FmiScalarVariable def:
nameDeclared (declared:String): String =

--Take all FmiTypes and search for declared
if not self.name.oclIsUndefined() then

self .name
else

let fmiSeq : Sequence (OclAny) =
FmiModelDescription!FmiType.allInstances () ->asSequence () in

r%aa 3
CHALMERS Y

Page 71

if fmiSeg->one (e|e.name=declared) then

fmiSeg->select (e|e.name=declared)->collect (e|e.name) -
>first ()

else

'No matching declared type found or More than one
FmiType has the same name'

endif

endif;

helper context FmiModelDescription!FmiScalarVariable def:
descriptionDeclared(declared:String): String =

let fmiSeq : Sequence (OclAny) =
FmiModelDescription!FmiType.allInstances () ->asSequence () in

if fmiSeg->one (e|e.name=declared) then

if not fmiSeg->select (e|e.name=declared) -
>collect(e|e.description) .oclIsUndefined() then

fmiSeg->select (e|e.name=declared) -
>collect (e|e.description)->first ()

else
'No description found'
endif
else

'No matching declared type found or More than one FmiType has
the same name'

endif;

helper context FmiModelDescription!FmiScalarVariable def:
quantityDeclared(declared:String): String =

if not self."Real".quantity.oclIsUndefined() then
self."Real".quantity
else

let fmiSeq : Sequence (OclAny) =
FmiModelDescription!FmiType.allInstances () ->asSequence () in

if fmiSeg->one (e|e.name=declared) then

&

ey
CHALMERS (7

if not fmiSeg->select (e|e.name=declared) -

>collect (e|le."RealType".quantity) .oclIsUndefined() then

fmiSeg->select (e|e.name=declared) -
>collect(e]e."RealType".quantity)->first ()

else
'No description found'
endif

else

Page 72

'No matching declared type found or More than one

FmiType has the same name'
endif

endif;

helper context FmiModelDescription!FmiScalarVariable def:
minDeclared(declared:String): Real =

if (self."Real".min > 0.0) or (self."Real".min < 0.0) then

self."Real”".min
else

let fmiSeq : Sequence (OclAny) =
FmiModelDescription!FmiType.allInstances () ->asSequence () in

if fmiSeg->one (e|e.name=declared) then

fmiSeg->select (e|e.name=declared) -
>collect(ele."RealType" .min) ->first ()

else

'No matching declared type found or More than one

FmiType has the same name'
endif

endif;

helper context FmiModelDescription!FmiScalarVariable def:
maxDeclared(declared:String) : Real =

if (self."Real".max > 0.0) or (self."Real".max < 0.0) then

self."Real".max

gy
CHALMERS (7¢

Page 73

else

let fmiSeq : Sequence (OclAny) =
FmiModelDescription!FmiType.allInstances () ->asSequence () in

if fmiSeg->one (e|e.name=declared) then

fmiSeg->select (e|e.name=declared) -
>collect(e]e."RealType" .max) ->first ()

else

'No matching declared type found or More than one
FmiType has the same name'

endif

endif;

helper context FmiModelDescription!FmiScalarVariable def:
unitDeclared(declared:String): Real =

if not self."Real".unit.oclIsUndefined () then
self."Real".unit
else

let fmiSeq : Sequence (OclAny) =
FmiModelDescription!FmiType.allInstances () ->asSequence () in

if fmiSeg->one (e|e.name=declared) then

if not fmiSeg->select (e|e.name=declared) -
>collect(ele."RealType".unit) .oclIsUndefined() then

fmiSeg->select (e|e.name=declared) -
>collect(ele."RealType".unit)->first ()

else
'No description found'
endif
else

'No matching declared type found or More than one
FmiType has the same name'

endif

endif;

CHALMERS (3%)

Page 74
rule FmiScalarVariable2EAREALDeclared {
from
S : FmiModelDescription!FmiScalarVariable (s.portRealDeclared)
to

FUNCTIONFLOWPORT : EAST!FUNCTIONFLOWPORT (
nAME <- s.name,
sHORTNAME <- s.name,
dIRECTION <- s.portType,
OWNEDCOMMENTS <- OWNEDCOMMENTSType,
tYPETREF <- TYPETREFTYPE

)

OWNEDCOMMENTSType: EAST!OWNEDCOMMENTSType (
cOMMENT<-COMMENT

)

COMMENT : EAST!COMMENT (
bODY<- s.description

)

TYPETREFTYPE: EAST!TYPETREFType (
value <- s.quantityDeclared(s.Real.declaredType),
dEST <- s.type

)

EAFLOAT: EAST!EAFLOAT (
nAME <- s.gquantityDeclared(s.Real.declaredType),
SHORTNAME <- s.quantityDeclared(s.Real.declaredType),
mIN <- s.minDeclared(s.Real.declaredType),
mAX <- s.maxDeclared(s.Real.declaredType)

)

RANGEABLEVALUETYPE: EAST!RANGEABLEVALUETYPE (

nAME <- s.quantityDeclared(s.Real.declaredType),

Page 75

SHORTNAME <- s.quantityDeclared(s.Real.declaredType),
uNIT <- s.unitDeclared(s.Real.declaredType),
dIMENSION <- s.unitDeclared(s.Real.declaredType),
OWNEDCOMMENTS <- OWNEDCOMMENTSTypeRangeable,
bASERANGEABLEREF <- BASERANGEABLEREF

),

OWNEDCOMMENTSTypeRangeable: EAST!OWNEDCOMMENTSType (
cOMMENT<-COMMENTRangeable

),

COMMENTRangeable: EAST!COMMENT (
bODY<- s.descriptionDeclared(s.Real.declaredType)

)

BASERANGEABLEREF: EAST!BASERANGEABLEREFType (
value <- s.quantityDeclared(s.Real.declaredType),

dEST <- s.type

rule FmiScalarVariable2EAINTEGER ({
from
t : FmiModelDescription!FmiScalarVariable (t.portInteger)
to
FUNCTIONFLOWPORT : EAST!FUNCTIONFLOWPORT (
nAME <- t.name,
sHORTNAME <- t.name,
dIRECTION <- t.portType,
OWNEDCOMMENTS <- OWNEDCOMMENTSType,

tYPETREF <- TYPETREFTYPE

it
CHALMERS /¢
OWNEDCOMMENTSType: EAST!OWNEDCOMMENTSType (
cOMMENT<-COMMENT
)
COMMENT : EAST!COMMENT (
bODY<- t.description
) 4
TYPETREFTYPE: EAST!TYPETREFType (
value <- t.Integer.quantity,
dEST <- t.type
)
EAINTEGER: EAST!EAINTEGER (
nAME <- t.Integer.quantity,
mIN <- t.Integer.min.toString(),
mAX <- t.Integer.max.toString(),
SHORTNAME <- t.Integer.quantity

)/

RANGEABLEVALUETYPE: EAST!RANGEABLEVALUETYPE (

nAME <- t.Integer.quantity,
SHORTNAME <- t.Integer.quantity,
dIMENSION <- t.Integer.quantity,
bASERANGEABLEREF <- BASERANGEABLEREF

)

BASERANGEABLEREF: EAST!BASERANGEABLEREFType (

value <- t.Integer.quantity,

dEST <- t.type

helper context FmiModelDescription!FmiScalarVariable def:
quantityDeclaredInteger (declared:String): String =

Page 76

gy
CHALMERS (7¢

Page 77

if not self."Integer".quantity.oclIsUndefined() then
self."Integer".quantity
else

let fmiSeq : Sequence (OclAny) =
FmiModelDescription!FmiType.allInstances () ->asSequence () in

if fmiSeg->one (e|e.name=declared) then

if not fmiSeg->select (e|e.name=declared) -
>collect(e]e."IntegerType" .quantity) .oclIsUndefined () then

fmiSeg->select (e|e.name=declared) -
>collect (ele."IntegerType" .quantity)->first ()

else
'No description found'
endif
else

'No matching declared type found or More than one
FmiType has the same name'

endif

endif;

helper context FmiModelDescription!FmiScalarVariable def:
minDeclaredInteger (declared: Integer): String =

if (self.Integer.min > 0.0) or (self.Integer.min < 0.0) then
self.Integer.min
else

let fmiSeq : Sequence (OclAny) =
FmiModelDescription!FmiType.allInstances () ->asSequence () in

if fmiSeg->one (e|e.name=declared) then

fmiSeg->select (e|le.name=declared) -
>collect(ele."IntegerType" .min)->first ()

else

'No matching declared type found or More than one
FmiType has the same name'

endif

gy
CHALMERS (7¢

endif;

helper context FmiModelDescription!FmiScalarVariable def:
maxDeclaredInteger (declared: Integer): String =

if (self.Integer.max > 0.0) or (self.Integer.max < 0.0) then
self.Integer.max
else

let fmiSeq : Sequence (OclAny) =
FmiModelDescription!FmiType.allInstances () ->asSequence () in

if fmiSeg->one (e|e.name=declared) then

fmiSeg->select (e|e.name=declared) -
>collect(ele."IntegerType" .max)->first ()

else

Page 78

'No matching declared type found or More than one

FmiType has the same name'
endif

endif;

rule FmiScalarVariable2EAINTEGERDeclared {

from

t : FmiModelDescription!FmiScalarVariable (t.portIntegerDeclared)

to

FUNCTIONFLOWPORT : EAST!FUNCTIONFLOWPORT (
nAME <- t.name,
sHORTNAME <- t.name,
dIRECTION <- t.portType,
OWNEDCOMMENTS <- OWNEDCOMMENTSType,
tYPETREF <- TYPETREFTYPE

)

OWNEDCOMMENTSType: EAST!OWNEDCOMMENTSType (

cOMMENT<-COMMENT

Page 79

)y

COMMENT: EAST!COMMENT (
bODY<- t.description
)
TYPETREFTYPE: EAST!TYPETREFType (

value <- t.quantityDeclaredInteger (t.Integer.declaredType),
dEST <- t.type
)

EAINTEGER: EAST!EAINTEGER (

nAME <- t.quantityDeclaredInteger (t.Integer.declaredType),

mIN <-
t.minDeclaredInteger (t.Integer.declaredType) .toString (),

mAX <-
t.maxDeclaredInteger (t.Integer.declaredType) .toString (),

SHORTNAME <-
t.quantityDeclaredInteger (t.Integer.declaredType)

)/
RANGEABLEVALUETYPE: EAST!RANGEABLEVALUETYPE (

nAME <- t.quantityDeclaredInteger (t.Integer.declaredType),

SHORTNAME <-
t.quantityDeclaredInteger (t.Integer.declaredType),

dIMENSION <-
t.quantityDeclaredInteger (t.Integer.declaredType),

bASERANGEABLEREF <- BASERANGEABLEREF

)

BASERANGEABLEREF: EAST!BASERANGEABLEREFType (

value <- t.quantityDeclaredInteger (t.Integer.declaredType),

dEST <- t.type

}

rule FmiScalarVariable2ENUMERATION ({

from

to

CHALMERS (3%)

Page 80

t : FmiModelDescription!FmiScalarVariable (t.portEnumeration)

FUNCTIONFLOWPORT : EAST!FUNCTIONFLOWPORT (

nAME <- t.name,

sHORTNAME <- t.name,

dIRECTION <- t.portType,

OWNEDCOMMENTS <-

OWNEDCOMMENTSType,

tYPETREF <- TYPETREFTYPE

)/

OWNEDCOMMENTSType: EAST!OWNEDCOMMENTSType (

cOMMENT<-COMMENT

)/

COMMENT: EAST!COMMENT (

bODY<- t.description

)/

TYPETREFTYPE: EAST!TYPETREFType (

value <- t.Enumeration.quantity,

dEST <- t.type

),

ENUMERATION: EAST!ENUMERATION (

nAME <- t.Enumeration.quantity,

SHORTNAME <- t.Enumeration.quantity

)

ENUMERATIONVALUETYPE :

EAST ! ENUMERATIONVALUETYPE (

nAME <- t.Enumeration.quantity,

SHORTNAME <- t.Enumeration.quantity,

dIMENSION <- t.Enumeration.quantity,

bASEENUMERATIONREF <- BASEENUMERATIONREF

r%aa 3
CHALMERS Y

Page 81

BASEENUMERATIONREF: EAST!BASEENUMERATIONREFType (
value <- t.Enumeration.quantity,

dEST <- t.type

helper context FmiModelDescription!FmiScalarVariable def:
quantityDeclaredEnumeration (declared:String): String =

if not self.Enumeration.quantity.oclIsUndefined() then
self .Enumeration.quantity
else

let fmiSeq : Sequence (OclAny) =
FmiModelDescription!FmiType.allInstances () ->asSequence () in

if fmiSeg->one (e|e.name=declared) then

if not fmiSeg->select (e|e.name=declared) -
>collect (e]e.EnumerationType.quantity) .oclIsUndefined () then

fmiSeg->select (e|e.name=declared) -
>collect (e|e.EnumerationType.quantity)->first ()

else
'No description found'
endif
else

'No matching declared type found or More than one
FmiType has the same name'

endif

endif;

helper context FmiModelDescription!FmiScalarVariable def:
ItemType (declared:String) : Sequence (OclAny) =

--Take all FmiTypes and search for declared

let fmiSeq : Sequence (OclAny) =
FmiModelDescription!FmiType.allInstances () ->asSequence () in

if fmiSeg->one (e|e.name=declared) then

CHALMERS (3¢

Page 82

fmiSeg->select (e|e.name=declared) -
>collect (e|e.EnumerationType.Item)

else

'No matching declared type found or More than one FmiType has
the same name'

endif;

rule FmiScalarVariable?2ENUMERATIONDeclared {

from

t : FmiModelDescription!FmiScalarVariable
(t.portEnumerationDeclared)

using{

EnumerationTypeType: Sequence (OclAny) =
t.ItemType (t.Enumeration.declaredType) ->first () ;

literals: Sequence (OclAny)= EnumerationTypeType-
>collect (ele.name) ;

}
to
FUNCTIONFLOWPORT : EAST!FUNCTIONFLOWPORT (
nAME <- t.name,
SHORTNAME <- t.name,
dIRECTION <- t.portType,
OWNEDCOMMENTS <- OWNEDCOMMENTSType,
tYPETREF <- TYPETREFTYPE
)
OWNEDCOMMENTSType: EAST!OWNEDCOMMENTSType (
cOMMENT<-COMMENT
)
COMMENT: EAST!COMMENT (
bODY<- t.description

)y

TYPETREFTYPE: EAST!TYPETREFType (

CHALMERS /¢
Page 83

value <-
t.quantityDeclaredEnumeration (t.Enumeration.declaredType),

dEST <- t.type
)
ENUMERATION: EAST!ENUMERATION (

nAME <-
t.quantityDeclaredEnumeration (t.Enumeration.declaredType),

SHORTNAME <-
t.quantityDeclaredEnumeration (t.Enumeration.declaredType),

1ITERALS <- LITERALSType

)y

LITERALSType: EAST!LITERALSType (
eNUMERATIONLITERAL <- ENUMERATIONLITERAL

)/

ENUMERATIONLITERAL: distinct EAST!ENUMERATIONLITERAL foreach(e in
EnumerationTypeType) (

nAME <-e.name,

SHORTNAME <-e.name,

OWNEDCOMMENTS <- OWNEDCOMMENTSTypeEnum

),

OWNEDCOMMENTSTypeEnum: distinct EAST!OWNEDCOMMENTSType foreach (e
in EnumerationTypeType) (

COMMENT<-COMMENTEnum

)

COMMENTEnum: distinct EAST!COMMENT foreach (e in
EnumerationTypeType) (

bODY<- e.description
)
ENUMERATIONVALUETYPE: EAST!ENUMERATIONVALUETYPE (

nAME <-
t.quantityDeclaredEnumeration (t.Enumeration.declaredType),

SHORTNAME <-
t.quantityDeclaredEnumeration(t.Enumeration.declaredType),

Page 84

dIMENSION <-
t.quantityDeclaredEnumeration (t.Enumeration.declaredType),

bASEENUMERATIONREF <- BASEENUMERATIONREF
),
BASEENUMERATIONREF: EAST!BASEENUMERATIONREFType (

value <-
t.quantityDeclaredEnumeration (t.Enumeration.declaredType),

dEST <- t.type

helper context FmiModelDescription!FmiScalarVariable def: portBoolean:
Boolean =

if self.causality =#input and not self."Boolean".oclIsUndefined () then
true
else

if self.causality =#output and not self."Boolean".oclIsUndefined()
then

true
else

false
endif

endif;

rule FmiScalarVariable2EABOOLEAN ({
from
s : FmiModelDescription!FmiScalarVariable (s.portBoolean)
to
FUNCTIONFLOWPORT : EAST!FUNCTIONFLOWPORT (
nAME <- s.name,

sHORTNAME <- s.name,

gy
CHALMERS (7¢

Page 85

dIRECTION <- s.portType,
OWNEDCOMMENTS <- OWNEDCOMMENTSType,
tYPETREF <- TYPETREFTYPE

)

OWNEDCOMMENTSType: EAST!OWNEDCOMMENTSType (
cOMMENT<-COMMENT

)

COMMENT : EAST!COMMENT (
bODY<- s.description

)

TYPETREFTYPE: EAST!TYPETREFType (
value <- 'Booleanl',
dEST <- s.type

)

EABOOLEAN: EAST!EABOOLEAN (

nAME <- 'Boolean'

helper context FmiModelDescription!FmiScalarVariable def: portString: Boolean

if self.causality =#input and not self."String".oclIsUndefined() then
true
else

if self.causality =#output and not self."String".oclIsUndefined()
then

true
else
false

endif

CHALMERS /¢
Page 86

endif;

rule FmiScalarVariable2EASTRING ({
from
s : FmiModelDescription!FmiScalarVariable (s.portString)
to

FUNCTIONFLOWPORT : EAST!FUNCTIONFLOWPORT (
nAME <- s.name,
sHORTNAME <- s.name,
dIRECTION <- s.portType,
OWNEDCOMMENTS <- OWNEDCOMMENTSType,
tYPETREF <- TYPETREFTYPE

)

OWNEDCOMMENTSType: EAST!OWNEDCOMMENTSType (
cOMMENT<-COMMENT

)

COMMENT : EAST!COMMENT (
bODY<- s.description

)

TYPETREFTYPE: EAST!TYPETREFType (
value <- 'Stringl',
dEST <- s.type

)

EASTRING: EAST!EASTRING (

nAME <- 'String'

CHALMERS (5%}

Page 87

B. Appendix B
This section shows example input and output files for the FMU2EA tool and gives a step by step

explanation of creation of an example model in the generated EAST-ADL editor.

1. Input and Output Files of the FMU2EA tool
Input
<?xml version="1.0" encoding="IS0-8859-1"?>

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns="platform:/resource/FMU2EA7/FmiModelDescription.ecore">

<fmiModelDescription
fmivVersion="1.0"
modelName="Modelisar.ees"
modelIdentifier="Modelisar ees"
guid="{d2df86d5-13b4-4620-bad6-58ff2%ecdb65}"
generationTool="Dymola Version 7.4, 2010-02-08"
generationDateAndTime="2010-05-20T14:48:182"
variableNamingConvention="structured"
numberOfContinuousStates="3"
numberOfEventIndicators="4">
<UnitDefinitions>
<BaseUnit
unit="K">
<DisplayUnitDefinition
displayUnit="degC"
offset="-273.15"/>
</BaseUnit>
</UnitDefinitions>
<TypeDefinitions>
<Type
name="Modelica.Blocks.Types.Init">

<EnumerationType min="1"

CHALMERS (5}
Page 88
max="4">
<Item name="NoInit"

description="No initialization (start values are used as guess
values with fixed=false)"/>

<Item name="SteadyState"

description="Steady state initialization (derivatives of states are
zero)" />

<Item name="InitialState"
description="Initialization with initial states"/>
<Item name="InitialOutput"

description="Initialization with initial outputs (and steady state
of the states if possibles)"/>

</EnumerationType>
</Type>
<Type
name="Modelica.Blocks.Types.Smoothness">
<EnumerationType min="1"
max="2">
<Item name="LinearSegments"
description="Table points are linearly interpolated"/>
<Item name="ContinuousDerivative"

description="Table points are interpolated such that the first
derivative is continuous"/>

</EnumerationType>
</Type>
<Type

name="RealTypel">

<RealType
min="1"
max="2"

quantity = "RealTypel"

CHALMERS (3%

Page 89

unit="FmiTypeReall"
>
</RealType>
</Type>
<Type
name="IntegerTypel">
<IntegerType
min="1"
max="18"
quantity = "IntegerTypel"
>
</IntegerType>
</Type>
<Type
name="EnumerationTypel">
<EnumerationType min="1"
max="2"
quantity = "EnumerationTypel" >
<Item name="LinearSegments"
description="Table points are linearly interpolated"/>
<Item name="ContinuousDerivative"

description="Table points are interpolated such that the first
derivative is continuous"/>

</EnumerationType>
</Type>
</TypeDefinitions>
<DefaultExperiment startTime="0.0"
stopTime="12.0"
tolerance="0.0001"/>

<ModelVariables>

CHALMERS

Page 90

<ScalarVariable

name="EesI"

valueReference="352321536"

causality="input">

<Integer

min = "5"

max = "10"

quantity = "Integerl"/>
</ScalarVariable>
<ScalarVariable

name="EesSoC"

valueReference="335544323"

causality="output">

<Real

min = "5.0"

max = "10.0"

quantity = "Real2"

/>

<DirectDependency/>
</ScalarVariable>

<ScalarVariable
name="EesReal3"
valueReference="335544323"

causality="output">

<Real

min = "5.0"

max = "10.0"
quantity = "Real3"

/>

CHALMERS

<DirectDependency/>
</ScalarVariable>
<ScalarVariable
name="EesReal4"
valueReference="335544323"

causality="output">

<Real

min = "5.0"

max = "10.0"
quantity = "Real4d"
/>

<DirectDependency/>
</ScalarVariable>
<ScalarVariable
name = "EESoReal"
valueReference="335544320"
causality="output">
<Real
declaredType="RealTypel"
max="10"
/>
</ScalarVariable>
<ScalarVariable
name = "EESoString"
valueReference="335544320"
causality="output">
<String
/>

</ScalarVariable>

Page 91

CHALMERS

<ScalarVariable
name = "EESBoolean"
valueReference="335544320"
causality="input">
<Boolean
/>
</ScalarVariable>
<ScalarVariable
name = "EESoEnumeration"
valueReference="335544320"
causality="output">
<Enumeration
declaredType="EnumerationTypel"
/>
</ScalarVariable>
<ScalarVariable
name="EesIAct"
valueReference="335544321"
causality="output">
<Integer
declaredType="IntegerTypel"
/>
</ScalarVariable>
<ScalarVariable
name="EesTAct"
valueReference="335544322"
causality="output">
<Integer

min = "5"

Page 92

CHALMERS

Page 93

max = "10"
quantity = "Integer3"/>
<DirectDependency/>
</ScalarVariable>
</ModelVariables>
</fmiModelDescription>

</xmi:XMI>

CHALMERS (3%)

Page 94
Output

<?xml version="1.0" encoding="IS0-8859-1"7?>

<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:adlrt="http://autosar.org/ADLRT">

<adlrt:RootType>
<eAXML>
<tOPLEVELPACKAGES>
<eAPACKAGE>

<eLEMENTS>

<aNALYSISFUNCTIONTYPE sHORTNAME="Modelisar ees"
nAME="Modelisar ees">

<pORTS>

<fUNCTIONFLOWPORT sHORTNAME="EesI" nAME="EesI"
dIRECTION="IN">

<OoWNEDCOMMENTS>
<cOMMENT />
</oWNEDCOMMENTS>
<tYPETREF value="Integerl" dEST="EA-INTEGER"/>
</fUNCTIONFLOWPORT>

<fUNCTIONFLOWPORT sHORTNAME="EesSoC" nAME="EesSoC"
dIRECTION="0QUT">

<OoWNEDCOMMENTS>
<cOMMENT />
</ oWNEDCOMMENTS>
<tYPETREF value="Real2" JdEST="EA-FLOAT"/>
</ fUNCTIONFLOWPORT>

<fUNCTIONFLOWPORT sHORTNAME="EesReal3" nAME="EesReal3"
dIRECTION="0OUT">

<OWNEDCOMMENTS>
<cOMMENT/ >
</oWNEDCOMMENTS>

<tYPETREF value="Real3" dEST="EA-FLOAT"/>

f@ﬁﬁi
CHALMERS 7
Page 95
</fUNCTIONFLOWPORT>

<fUNCTIONFLOWPORT sHORTNAME="EesReal4d" nAME="EesReal4"
dIRECTION="0UT">

<OWNEDCOMMENTS>
<cOMMENT/>
</oWNEDCOMMENTS>
<tYPETREF value="Real4" dEST="EA-FLOAT"/>
</ fUNCTIONFLOWPORT>

<fUNCTIONFLOWPORT sHORTNAME="EESoReal" nAME="EESoReal"
dIRECTION="0UT">

<OWNEDCOMMENTS>
<CcOMMENT/>
</oWNEDCOMMENTS>
<tYPETREF value="RealTypel" dEST="EA-FLOAT"/>
</fUNCTIONFLOWPORT>

<fUNCTIONFLOWPORT sHORTNAME="EESoString" nAME="EESoString"
dIRECTION="0QUT">

<OoWNEDCOMMENTS>
<cOMMENT/>
</oWNEDCOMMENTS>
<tYPETREF value="Stringl" dEST="EA-STRING"/>
</ fUNCTIONFLOWPORT>

<fUNCTIONFLOWPORT sHORTNAME="EESBoolean" nAME="EESBoolean"
dIRECTION="IN">

<OWNEDCOMMENTS>
<cOMMENT/>
</oWNEDCOMMENT S>
<tYPETREF value="Booleanl" dEST="EA-BOOLEAN"/>
</fUNCTIONFLOWPORT>

<fUNCTIONFLOWPORT sHORTNAME="EESoEnumeration"
nAME="EESoEnumeration" dIRECTION="OUT">

<OWNEDCOMMENTS>

Pl
CHALMERS
Page 96
<cOMMENT />
</OWNEDCOMMENTS>
<tYPETREF value="EnumerationTypel" dEST="ENUMERATION"/>
</fUNCTIONFLOWPORT>

<fUNCTIONFLOWPORT sHORTNAME="EesIAct" nAME="EesIAct"
dIRECTION="0UT">

<OWNEDCOMMENTS>
<COMMENT/ >
</oWNEDCOMMENTS>
<tYPETREF value="IntegerTypel" dEST="EA-INTEGER"/>
</ fUNCTIONFLOWPORT>

<fUNCTIONFLOWPORT sHORTNAME="EesTAct" nAME="EesTAct"
dIRECTION="0UT">

<OWNEDCOMMENTS>
<CcOMMENT />
</oWNEDCOMMENTS>
<tYPETREF value="Integer3" dEST="EA-INTEGER"/>
</fUNCTIONFLOWPORT>
</pORTS>
</aNALYSISFUNCTIONTYPE>
</eLEMENTS>
</eAPACKAGE>
</tOPLEVELPACKAGES>
</eAXML>
</adlrt:RootType>
<adlrt:EAFLOAT sHORTNAME="Real2" nAME="Real2" mAX="10.0" mIN="5.0"/>
<adlrt :RANGEABLEVALUETYPE sHORTNAME="Real2" nAME="Real2">
<bASERANGEABLEREF value="Real2" dEST="EA-FLOAT"/>
</adlrt:RANGEABLEVALUETYPE>

<adlrt:EAFLOAT sHORTNAME="Real3" nAME="Real3" mAX="10.0" mIN="5.0"/>

Pl
CHALMERS
Page 97
<adlrt :RANGEABLEVALUETYPE sHORTNAME="Real3" nAME="Real3">
<bASERANGEABLEREF value="Real3" dEST="EA-FLOAT"/>
</adlrt:RANGEABLEVALUETYPE>
<adlrt:EAFLOAT sHORTNAME="Real4" nAME="Reald4" mAX="10.0" mIN="5.0"/>
<adlrt :RANGEABLEVALUETYPE sHORTNAME="Real4" nAME="Reald">
<bASERANGEABLEREF value="Real4" dEST="EA-FLOAT"/>
</adlrt:RANGEABLEVALUETYPE>

<adlrt:EAFLOAT sHORTNAME="RealTypel" nAME="RealTypel" mAX="10.0"
mIN="1.0"/>

<adlrt :RANGEABLEVALUETYPE sHORTNAME="RealTypel" nAME="RealTypel"
dIMENSION="FmiTypeReall" uNIT="FmiTypeReall">

<OWNEDCOMMENTS>
<cOMMENT/>
</oWNEDCOMMENTS>
<bASERANGEABLEREF value="RealTypel" dEST="EA-FLOAT"/>
</adlrt:RANGEABLEVALUETYPE>
<adlrt:EAINTEGER sHORTNAME="Integerl" nAME="Integerl" mAX="10" mIN="5"/>

<adlrt :RANGEABLEVALUETYPE sHORTNAME="Integerl" nAME="Integerl"
dIMENSION="Integerl">

<bASERANGEABLEREF value="Integerl" dEST="EA-INTEGER"/>
</adlrt:RANGEABLEVALUETYPE>
<adlrt:EAINTEGER sHORTNAME="Integer3" nAME="Integer3" mAX="10" mIN="5"/>

<adlrt :RANGEABLEVALUETYPE sHORTNAME="Integer3" nAME="Integer3"
dIMENSION="Integer3">

<bASERANGEABLEREF value="Integer3" dEST="EA-INTEGER"/>
</adlrt:RANGEABLEVALUETYPE>

<adlrt:EAINTEGER sHORTNAME="IntegerTypel" nAME="IntegerTypel”" mAX="18"
mIN:"l H/>

<adlrt:RANGEABLEVALUETYPE sHORTNAME="IntegerTypel" nAME="IntegerTypel"
dIMENSION="IntegerTypel">

<bASERANGEABLEREF value="IntegerTypel" JdEST="EA-INTEGER"/>

</adlrt:RANGEABLEVALUETYPE>

Py
CHALMERS {5¢
Page 98
<adlrt:ENUMERATION sHORTNAME="EnumerationTypel" nAME="EnumerationTypel">
<1ITERALS>
<eNUMERATIONLITERAL sHORTNAME="LinearSegments" nAME="LinearSegments">
<OWNEDCOMMENTS>
<cOMMENT bODY="Table points are linearly interpolated"/>
</oWNEDCOMMENTS>
</eNUMERATIONLITERAL>

<eNUMERATIONLITERAL sHORTNAME="ContinuousDerivative"
nAME="ContinuousDerivative">

<OWNEDCOMMENTS>

<cOMMENT bODY="Table points are interpolated such that the first
derivative is continuous"/>

</oWNEDCOMMENTS>
</eNUMERATIONLITERAL>
</1ITERALS>
</adlrt:ENUMERATION>

<adlrt:ENUMERATIONVALUETYPE sHORTNAME="EnumerationTypel"
nAME="EnumerationTypel" JdIMENSION="EnumerationTypel">

<bASEENUMERATIONREF value="EnumerationTypel" dEST="ENUMERATION"/>
</adlrt:ENUMERATIONVALUETYPE>
<adlrt:EABOOLEAN nAME="Boolean"/>
<adlrt:EASTRING nAME="String"/>

</xmi: XMI>

2. Generatin

5

CHALMERS

=

g a Model Using the Editor

Ty
@

&

-

Page 99

This Figure shows the start page of Eclipse. In the Eclipse that can be seen from the Figure, generated
Editor’s source code is available. These source codes are mainly Java Files. In order to run the editor,
these Java files should be run, which is what is shown in Figure below.

ERL S
Fle £ hewgme Semth Proec Fun Sargle Compaitlty window W0
- . G-0-q- S R
. roped Echom
+) LAST A Roet
e FAST-ADL_ oot adt
T AR e s
4 pasTe Mew ’
S Gt
L e
< o AEE e Arethitew ‘
W moe
4w Wertee 4 Copy e
VO Mertor L Caoy Quatfed Mwm
o e o Ty
4l Merkor X
+ 5 0N K Dewte Owlots
Buskd Pt .
B actor AbezhiteT .
2 et
) Dpart
[-
Cos Progect
Cloos Uneelatnd Propacts
Vedate
Rl V@ 16dkee kg BeRITen E
Dulng Aa b 2 e Apckt L
Profla & Vv Moghomon ARSI,)
.
Toos & 4 056 Fravawrt AviiaX, ©
Cawgars Weh ’
Rastors fon Locel Watoey P Condigs s
POR Took "
Source ’
Contgues »
€ Coovent Prowet 1o ATL project
% Mo .
Propeytns ApsErae
Y Probes 3 Conenie © [pwer Log

o BAST-A0X_Ract wdtoe

Fopse Appdoaon (o Appkoman] C/iPeagrem Flssllysapeddtadjmenn son (10985 201 | 193.44.56)
STEZION 2011-02-18 13:06:56.690 cvnnna ———— -

Jers.versionel.6.0
Java.vendorvsun Nicrosystess Ino,

OSewindi, ARCHw=xD6, USewindl, Niexv ST
product ocg.eclipse.platlosm, dde

Tcotlomder conFtants:
Frapewor X atgueentsd
Compand-line argusente:

INTRY org.aciipse.ent.ecore & 0 FOL1-02-10 13:45:15.551

<

Figure B2.1

-product org,eciipae.plastorn, ide —data <

EESSAGE foth ‘org.eclipse.ged . bridge . trace' and 'ceg.eclipee. xpand.inctenental’ tegister an exXtensics passes fof

SR)

=€ Blaw
07 ¥ oule >
Anmding b rat xraldse
- » |@ - -
........ ~

s\workspace halios 3/, . /runcize-Eoligaedyslication

fewl
3

CHALMERS

Page 100

Figure B2.2 shows the start page of the 2™ instance of Eclipse which is running on the Eclipse that has
the source files. This 2™ instance has the Editor as a plug-in.

@ L Liip

- -- - € 210§ e
"~ Tavgpes n b
- = Sewch Pramct Sewis Bun Wodow teb =i
sy 1 - R 4. e) -
* & wastc i - @ 4 e EC Resowcs et
W TASTACL R L P =H =0
A hopd bydee
4 o EASTAOL A | - ~
o AsT.e0k Redd | - = SA
w el oaneal || % B Fraioos
- éﬂ_nh; = .Ew,mroudlmﬂ\nmx
« o mazra 3 * L org Ackpen rOT e erGles bl lpriete
4 = Mewor_EXS1 |
% il e pazi |
* e Menr EASTH |
+ & e paxr ||
T s
3 >
35 e W twbue o o
AN Ol b (. awaletie
< Tohy | [Propmenms | (3 Cornam 8 r=0
T conwckes to duphey o e tres,
- o B .=
| ISESSION 201590210 13:44:56. 659 ~oe o
eclipew . bzt idTd=N20100909-0000
Jova,version=i,4.0_24
Java.vazsice=Sun Microsystens Iac.
Bootloader conatentsi OF=windd, ASCH=x06, ¥S=winld, Wi=sv 3E
FratseootE argusentd! ~product ofg.eclipse.platfofh. 1o
c G-lime ar #: -pr = ocg.eclipas.placforn. ide —date C:)vorkepace Selice_I/../runtime-Iciizsedpplicatiar
VINTRY ccg.eclipav.exf.ocore 2 0 J0L1-02-18 13:43:15.283
INEEEAGT Roth 'org.eviipee.gnf . bridge,.conoe’ and 'org.eqclipee, xpand. ICCSALTAL' FRQLALED AN =sTansios garser for ‘¥
<!
o (& pAST AL Pk adror

Figure B2.2

CHALMERS

Page 101

As can be seen from the Figure, the Editor is shown as a Plug-In.

'. Tmamia 'mMmhﬁ;nhm-nvmf-! netst Eohpew Platfomi ;)\x_!;ﬂ
e MR Negmt et AT e A AR e b
e Q-

(s "
¥ 55 0 00006 Wi A e DA Luoted sefve | yntahaten Woey | estires, % | Contrpasten.
N s semvioning Agehwe bewn Ll
M S vioss Sarvint LA 080
Jemw 30 Aegutry g . 140060
Jyew Mo SE0on Benda A0 NQ SOPON RIMGN 1D NP
Ity M Sarvion ANV 06g AO00A MRNNG NTD ptty
ORGRmaye 9.3 05mvies L1 10000 g aEem 0 Ses
NG Rmaws 4.2 0088y . X1 U000N . g aciges skl
D5 Syden e BEG R g edges 0s)
02 Quevy Igue 2ADNE . o0 edpes PaIne D
Prowsionng Gataoe (. TR0 20, 0 B0 PaRe B QWY
g Coobgural 1A .. O SO BYMN g,
Swge Conbguohor M. 2AOVEI0. . 6D SOESA PR SGRCE.
LOGMe o repostony 80 I A20LERL o) ecpss pawe l Lode.
Wi Dats Protscton . 1 S.0000WN) . org BT B 80Uy
e NG R0 VvE0., o o ot
¥ o ALLNERD., Comley
bl OLALVON.. Com krelt Bh
Jetly Sevve G IANVOIL . ary werthay Aty seree
Jetny s GLIAVOIL.. g merthen. ety ad
gt 140 v WY 0ade cowwts O
— - MO SASE AN 180 Merber BASTAOL o
T ——— ———ear HOUNA SRS XA OMe 120 Merder_EATTSOL otix
(2 o 12 L AL TN el SN LAS XM 180 Perker £330 4O
" ANUNA_LALE XA Teks 180 Merter_EATT SO bests
EAST 800 Suex £ . 130 [-
ST 0L Tuet Madel 120 EAST ACK_hoot
EASTA0L Soet Tests 180 EAST.AC_POOT bets ra
Wode LE2MIBW.. g etioos owf tores areet.. .a
@ o e (o] o)
 emctin In-t'ﬂ!m-’ﬂblhzaa-' =
o Tebe Tipvipatos) Cormoke (23T e =0
Prepay Veha I
| P— ! o
g " 37 F R A =

Figure B2.3

CHALMERS

Page 102

First step, after the new instance of the Eclipse is opened, to create a new EAST-ADL Model

1 e
0 e

b e e
8 i o vt et P
T Lol

L Bt e T

Figure B2.4

CHALMERS (%)

o i_'.':_i-_-.: o

Page 103
There are different models that can be created. These models are either example models that can be
found in Eclipse as default or the models whose Editor source files are available in the main instance of
Eclipse that is running.

e

1 Fasn
B Sesrae
45 og etier v L resegies paACTrvats
3 e0pee wOv L wesepler. b ivats

2 How ok
Gefect o wizard
Yeus 4 b A wedel

Wenm

£ £t Symmarh
£ o owiche ENF MO (P
e]
yrit yrds sl
B Otatypes Mo
b Vel
[E—
< & Merter Model
& R Moded
F v Mo .
A wdive et el

Caccel

- Tashs Prasertas [0 Covem

W0 00E0kes 1) Sighgy X D% te

Figure B2.5

CHALMERS

-

Page 104

The Figure shows the 3" step of creating an empty East-ADL model. This step lets the user choose the
encoding type of the model. It also shows which kind of model is wanted to be created. The reason of this
option is because an XSD can include several different architecture description languages which results
as different choices in the Editor side. In this version of the Editor, we only have 1 kind of model which is
adlrt as the XSD with AUTOSAR and EAST-ADL elements is merged under a common element and this

XSDisu

-

Anctire & fat

sed to generate an Editor.

Pratioded
g ackpie
e rne v e

W AL PRI

anphes. puble 2orioale

Tak L
Aradabin

o Tacks [Tivogertes | S

98 CorvEoies 1D pley of S TS

& Hew

Addvt Modked

Seact 4 vl dhiect 10 coaate

Poctel et
Rosk
0% treodng

urs

7

Figure B2.6

CHALMERS

Page 105

This Figure shows the possible encodeing types that can be selected.

@ limamis Frrettbaomitsl ydenaestatms b adst £ohips Fatfomi LE% >
rhe Qs S @ . 3| &, esnace
I Premet Epleeer 7 O] e e [=L -t | =8
S e e et
¥ b5 Ferraon * i st ST it

15 rg ecigss Wiy oL eramgms Db Drvte
& 4 org edges mdny ol enaegies pbbcrivae!

i 2

Zowe i R o 0|
e el i

Zanctin Pk e Tren

e

vt | 2 g |
Prepasy Vi

< s -

- PPN 3 ey

Figure B2.7

r%aa 3
CHALMERS Y

Page 106

This Figure shows an empty EAST-ADL model. As AUTOSAR and EAST-ADL elements are merged
under Root Type elements as can be seen from the Figure, an AUTOSAR or EAST-ADL model can be
formed under this element. The root elements of these models are AUTOSAR and EAXML.

[3 Resoumca - Fustimsdeiiys tond adirt - (e Flatform =2k
Pt Negits fawth Fromc Sergh Sun Add Cdtor Widow bei
Qe SFf @ s T T
Pramst Eapbores T e Mebrore s adt
Resours S
= b5 Peanbodel = chForey (vesour oo P RNodek M et s sl it
A4S sartact = ¥ Tocawert Soob
] SR st Bk T yom
B Exanghe bt e O N o
& Zoanpie. odvt Hewr Shrg '

MeLotA ssetad
Mg sxnal
MyXER oxitad
My2hoes sarted

¢
& Mpdsnoratration | adet
a MR s o
3 MAvtasctadhend

AN rredetiecrpen X et

B M entin
N iered corteed LS
& Mpfreeactrodal ackt
o Mptacoed st
15 0g edoe A A exawges pubbcIryiets Sun
* 13 org srse e sl sosegins Ltk yeNue Cetug As ’
e
Taws

-

Corges Wit
Aeploce Wl
5 Ot Bl s 3 widlee

- .-

. el Loed Resouron

Ao
Faima Pe oy Vi

Sebocon Parerd Lt fram Tabde Sess v Cywn

& Tasds | 1 Aropentes | D Comue e
o comacies t deplay o the tree

Seteced Oteeat! bt Tyoe

Figure B2.8

CHALMERS {:

Page 107

In the figure below, an AUTOSAR model which has some elements is shown. Additional elements is tried
to be added to the model under the Elements element of it. A part of the list of the elements that can be
added to this element can be seen from the Figure. The way that one can add elements or relationships
is directly conforming to AUTOSAR metamodel, so one can say that the tool guides you in a strict way

during the design process.

— SR

r-"-*l PR =T P R0y LR e e 2 .‘d?""i-‘-ﬁnﬂ

8

Pl Tt Kuegain Jewch Frogect Sam R adeCdix Wik Mee
Lrale Qs S 4O
= Praject Exglrer 17 U U g Sttt adt |
1. Besoures Set
= b FroModel = i bt oeve resturncefFrsModed M denerar sten] ikl
Ebsth sasad = 4 Doosvant Root
S ERe sand Poct Type
@ Exarghe adt = 4 AncmaR
& Enarghel ot = & TOMEWEMAOAES Tive!
My ISR axstad = 4 CRPADAGE> SRPOYAGE
Myara.eomad & IIVENTE Tt .
My A vestad + =ecus e L NON

MySitlee. vactad L]

& R oy 37 Lo e T
0 MNP astadaudd
Nyt Svarodebieicrgten o Gt
W N vertor . ‘.
Metrgconbinad, conbeed i
W Metrdroatrode ade
"y ¢
< % Mysacord adt X Dwletw
15 g eciese adv o) cavgies SR e elo
& 1 o ecken Ew o acacies DubhCov oty Vadye
P s
Dubug Aa
£ 2 Profis As
1 Outew Bimkint] » 770 Vahixe
Texy
" vt A
s - Corpars With
Raglae WH
WhiText
Load Resourcs.
Refre
S Propetes Ve

S wc
L ACTURTGRNW
E PR ATION IS TWARECOMPORENTTVFE
g RpaTRE
4L OCLERTIE
% aEmace
&L ESWIRLDETATION
7 ESWMIOREESCR P TI0M
S PWNICULEDNTRY
- fxal
T4 CALSMNCONORENTTYE
B <% caseraytERPACE
" | % cava TR
&4 HRTIRE
2 QUIENTRERVERINIERFACE
*raocr
&7 COMMUNECATIONCUSTER
1 COMMAYECATIONERITERAL
V4 COMMUPICATIONTRANSCITVER
44 COMPECEVICEDRIVERCOMPONENT TYFE
] comostnonve
% comMPuNETIOD
2 COMGTANTSPECIFICATION
L g
*{ DATACONSTR
e %4 DO
*2 DYATALY
) DIKRETEECUSECTROACS
% DIFAY
%y
F LOLARSTRAC TOONCOMPONEN TR
1 DOUCONRIR RATION
4 ECUDETANCE
L LOPARAMETERDEMNITION
% TOSWIOMPOSITION

- e ww

Sebaction Faeerd Lst Toee Table Tese wes Colns

) Tk | [T repertes (0 Covude 10
oo comclen tn deglay o s tres.

4 >
Selectad Cowct: TLIMENTS Types

Figure B2.9

2 FLESRAYQUETER
<7 e
3 GRIEWAY
4 WRCONTADNER
2 oo
1
5 DRLEVENTATION
S INTEGERTYRE
L INTERIRCIRRIOR:
L cusTIR
3 WOELECLARATIONGR WP
% MO ECONFYARATION
4 WoOu I
% MALTRBEY
-

(SSE) X

=1 1 Ressara

CHALMERS

Page 108

In the figure below, an EAST-ADL model which has some elements is shown. Additional elements is tried
to be added to the model under the Elements element of it. A part of the list of the elements that can be
added to this element can be seen from the Figure.

: [r———ies

Fle E8 hepues Sewch Moet Sowle fun A GSe Wl Hep L ACTOS
- . £ ACRMTOR (@ resoree |
T L ANLTSISFUNCTIONTYRE e =
(3 ot Eaplars 1 mmee dls)
§ BASICSOS TWAN EFLRACTIONTYRE
1 thehemtad 4 eervnceaex
L] B ewod § DEDESIORRCRTLNITY
o Doawghe ackt § aam
& Exmgiel abt = 4 YOMEELPADAES Iypet 4
= festw W <EPAAGE > RPAYAT § COMPOGTECATATYFE
L V1T — = 4 HEVENTS et + CEPENDAMLITY
L WanEA sead = 4 w0HEN ¥ CEIMNRNCTIONTRE
& Mot = & PORTE 'yped § CESEEL
M REA sl 4 <ROUCOMMUTLCATIONSORT » EQUCOMMUNMCATIONRORT & sepneq siny
| ¢
Withiso sectsd | + <tus 0 >
o . § eanosr
& Y Demoratrasn adet | b elooo Ao A
& Wdeworgstiond st = v em o CARREN
¥ Whtheorntiatenl vetton = 4 TOREMPADAGS Typw + CASTRRG
B Whtasesy R e S L & DAMNCEATION
o W sstadret © DT Ty § TAPERATIONVALETYPE
;::mh-‘&mun -4 ':.::p"; e Ch . : ONRoNOn
st o = 4 %
@ Wreconbined corbred = ot v tamﬁn.mme
& Wirsrowvedel scbt + FALTFRAILSE
& Wescood adt - 4 FEATLAE
1 oy edpmn et el sy, | = § reanzeiaw
) 1 O
l:‘» o o e 3 1 e e '.f(" # [CATREGOLS
'fﬁ_—,_f'__ o Cop FEATLEENOOEL
Bouke & Blrstun o) £ PNCTIOREANCR
F - ek X Deete £ RUNCTIONCLIENTSERVERINTERFOCE
Ve 4 RNCTIONLIEVEE
£ FUNCTIONAL SAFETROORCERT
§ GENERICCONETRAIN
nmk“ : MR CONATRAINT ST
' 4
0"'”“) Loroao
Yakdahe § TR CONPOENTTE
Tems b T NEDMARETIRCTINTYRE
_ o Compare Wes b §NARD
Senctn Pewt et Tivw Table Trewmth Replace Wieh P HARDOURVENT
i remeis s R ’ o = ——
[Tasts |) properties | [Conecde 70| e fl'mm“m-ﬁ “@ =0
a2 el to Aepyy o thie Leadesorce ¥
f ® b | § LOCHLEVENebn
;';"':" § Mce@Eos
et W 4 rcce
§ CPERATIONALTITURTION
§ PINRASRY
& FROREMSTATENENT
§ PROOUCTROSTIONING
T ANUTYREQUREVENT
151 S 4 AMNTTTATIVESAFET POONSTRAINT
= oI ST C§ nresoetaars - =+
o Seternat Cbiect | ELEMENTS Trpe -

Figure B2.10

r%aa 3
CHALMERS Y

Page 109

As can be seen in the Figure, the attriburtes of the FunctionFlowPort’s element is shown. ShortName
attribute is selected to be entered a value. Editor directs the user to enter the value of the attribute in a
specific format. So the editor makes sure the model is valid in some sense.

[Mesaics - Firauedim VAT a#t - Telipes Platform Jig
Pl £3 Nemgee Sewss Promet Samce R Al Dt Wedw teb
ohd ™Y Qs & Sy e - %) 2 Reseuses
= Proka Exphee = O10 g *Wdeonnsration] st =D
SR " Resounn Set
= f Petiode Al = B plefore heerrenTretFode N deveraty eond. st
EAth smted = 4 Doaumert oot
] B eari - Root Type
W Doangie, acit & AITOMS
B Ecansel skt = & TORIVIIPACUYRS Typel
o) Mest.j = & RPRGE y B AE
MyLFA nestad 4 DEMENTT Trped
MyInath antad = % wwusecu
O Mg st = 4 PORTS Nped
MrdEs axtad <OCOMMUNICATIONSOR T ECLCOMMUNICATIONSORT
Myzhies antad ¢ wanoa
i MyCermntraton adt , OO OO
& Mpdanonsty soond adt = R
& Mydavondy sbord vertor * TOADTIFACOVES Type
3. Mvil st T CRAPRCUNE S LEPADRGE ek
o MFrstexitadsyel = & SEMENISTre
Mifest frirexssdescrotion & CANLYSTUNCTIONTYPE > M4 YRIFUNCTIONTYFE
B Mt rerkor = 4 PORTS Nyl
Mfritcontamd covbined = & URCTIONPLOWIONR T FURCTIONFLOWTORT
B Mfestroohmodst adit &+ TIPETREF Type
B Mpecond.adnt
45 orgedne rive. ol evongles seticion
4 e acinos i M svarins e bl T -
3 >
st o 11 B Tekum
Y g ety
Sebaction Paiek | It | Tree , Tatie | Tree wah Colave:.
o Tass T yoperues O Corsse oY -
Progerty Ve
CAREGINY E
RecTon e
e "
5 L
FORINE 8l
T 4
e 9

4 >

Ty vahss = mest tovvtth com of ‘(o ofe 7 4-A-20-8_TT0, 9007}

Figure B2.11

CHALMERS

Page 110

Below figure shows when the user is trying to enter the type of a FunctionFlowPort. As can be seen the
type can be chosen from a menu, it is not entered directly to a white box. This menu ensure that a valid
type is selected.

9 ul Fut 1N) M
e Q" SS9y~ @ =5 3L bsarce
) Pramt Lxplrer S & *Mdhworatrabyond, et e |
- 'Y Foarce Sl
= = Festods A= Pl o oo (aFr NS N denorely s0n | okt

ERith setad = & Doourwrd Poct

] R synd Fock Tyos

& Boavgle ol = & ancean

W Crevpial skt = & TORLDWILPWICHRS Typel

o - = b CRPACEAGE MPNOE

1 W IRgA saited = & ELEPENTS Typed
WA sadtad ¢ omcU> U

W Wt ek = 4 MRS Mol
Wrh wated b ROUCOMMUISCATIONSCRT > EOUCCHMIECATIONCET
Wheia sestad

& Mooy dyn skt

W Waderonctiareel adr (700

W Wimwanstsations sennr = 4 TOADEPCOGES Tipe

i Wt mtcan S CRRPCIAGE s EAPRLYARE syl

o Woet sata el UMNTE Tyre
Werst Irmededesopnn) = b CAELSIFUNCYIONTYIE Y ANAYSISFUCTIONT

W Madnt rwrice = 4 POSTE el
Wotestcaniined contensd = & AUCTINELONPORT > FUNCTIONLOWRCRT

W Mimtrooinode sl + TR fype

3F org ackss nn sl exawies pobicin

w o ree st oW s puarerden py e Tvrh, S
< ?

2 e Bl b um

= & cTom NesouceFrndR W ismonts

Swaction Paswt | Lk (Trme Tabi | Tree sth Cokns

 Taskx) T 2 Cavacke W o =N
Progesty vake
s L EABOCLERN -
L A
[EATLORT
EAPITEGER
EASTRING
(Do 0EEATIN >

The DEST of the TWETREF Type

Figure B2.12

CHALMERS

Page 111

The figure below shows the notepad view of the model formed so far.

R L 1 5|

e = 1Q N a8~ Il @] Fi-"tis s S5 | & o |
(Y ey = : 2
ENIn adlzt="hetp:// ocg/ ADLRT™> ‘.._._'
TR Raaidica 2 <AdiET | AITOAAR>
 pondpey CARLET | 0P - LEVEL- PACKACES Y
<adlee: AR-PACKAGES
s b <adlet i ELENENTS>
:&"'” Cadice: T
1) WIYEA axitad <mdlre:PORTI>
BB Vaden sestad <ad 10T ECU-CONNUNICAT ION-S0RT/ >
& Wetase “/adirtFORTI>
1 oA cevtad <imdlre:BCT=
L i ested <odlre1CCid >
I Shnadt 1 “adlce:CLOCKS >
& Wevatoed oty <fodlrt iELENINTS>
s /adlet L AR FACYAOES
: :::'"mm </mdlre: TOP-LEVEL-PACKAGESS
A0 WP sast sdevad </adire I AUTORAR>
1 Wt rancdeimmaresson AELLEATLLD -
& Wit etse <ARLET 1 TOP-LEVEL-PACKAGES > |
B Vidasionird it <A0Len | EA-PACKAOES
‘ Wtrrootrads: s 4adlct: SHORT-BASS sunpckgle/ mdise : SHORT-HANES
! <ndire ELENENTS>
i e ALEn ANALYE TS -PUNCT IO TYYES
R o il <adlt :SHOGT-NARE>ast 1</ adise : THCHT-MANES
1Y) ndetr~ . : <odlrt) PORTS>
,k' <841tz FINCTION-FLOV: FOXT>
Lt Ovim cndlee: SMCAT-NANE> £ </ nutlre : SHORT-HARE>
Apcutirm ek evabebla, <ai 1T TTPE-TREF DEST=*EA-INTEOERY>/eassns</0dlcy) TYPE-TSEF>
</ 2d1ct TENCTION- FLOV-PORTS
<fndlrrPORTI>
</B010TI ANALYS I3+ FINCTION-TYPES
AmdlreEA-DOCLXAN/ >
<alrt: EA-TNTIGER>
<OMLEe s EMORT-NANE enintl¢/adict BRONT -LANE>
</mdlrt :EA-INTZGER> E
<fedlre i ELENINTS>
</ adlet s EA-FACKAGES
</mlre 1 TOP-LEVEL-FACKAGES > (L)
6 T | T Propesties ©© &) Caeaniy, [ul S e ==0
Pogenty Yok

Figure B2.13

§
i

Bt Seach e
% s
FT AT i |1t |1 St e | 15 M 00 | G A0 | 1 LT 0L, Mt st] 5 bt b |1 e | 4 o | -4 e | 1Mt 5] o 7]

Leguex Sefings Mars Man X V»
RAMD dc/aN 22 HE SI - MENIER =avx G

Page 112

Sixel veratune"l.0% ex=cding="UTr-8" %
Tndlet i 3000 srlus i sditt* netp /fautesar org/ADLNY " >
CAALTT i AUTOSASS
Amdict : TOP-LEVEL-FACKAGES>
< <Adlee s AR-PACEAGE>
<adlrr i ILENENTIS
<edlzT:ECU>
<adlee) RIS
cadice :TCU-CONBINICATION-PORT/ >
s/atlice : FOATE>
</alis) BCU>
<edlzTiCon/ >
<mdlze:CLOCES »
</edlev ELERENTS
</AdlrtzAB-PACKAGR >
“/adle e i TOF-LEVEL-FACKAGYSS
</adlxT | AUTORARS

{THD

DETUARAG -

bErr e
EER- I .
- O——H—{IHH—————————{HD}

" <milzTiEANNLY

w “wdlck :TOP-LEVEL-FACKAGES:

an <OALeCs EA-PACEAGE U)L=**y

i ATt BICRT-NANK - sagokgl </ adlet i ANCAT-NANE:

= fudlrt XLENENTI,

: <HALLT I ANALYS [~ FIOCTION-TYRES

" cadirt 1 TIAT-NARE>aftd </ adlrt SROGT-NARD S
s CeAlot iHANI> aft i willr e SNANE

te CAALET I FORT

3 <adlet s FINCTION-FLOW-FORT>

" codirt :SHORT-NARE>£2pl </ adliz e SHUPT-RADES
“ <aller i NAMESTEpL </ aalen | NANES

m Andirt i DIRECTIONOWTC/adlce s D TRECTION:
3 CAdlrt:TYPE-TREZF DEST="BA-INTEGER®) /eaint </ adlce : TIPE-TREF)
1§ </00LrT PUNCTION-FLOV-PORTS

” <fmdlre s PORTY >

> A/l s ANALYD IS FINCTION-TTPEY

E] <8A15T | EA-DOOLE M

s CAirt i TIAT-RARE eahlat </ adlce: SHORT-RARK >
» Cudlot (UANI wablnl </ widlst i NARES

" /Al | EA-BOOLE b

» g “wdizT i EA-INTEGERS

LU CRAlrt i SHOGT-NAND eaintls/odic t - SNORT-RARES
M AL (NAMES calmt R </ a0 LT I HANE

Lo cadirr i MAXS 10/ adive 1 HAY

L Cadlot i NING0</ actiz e NIN

49 </aNirt 1 EA- INTEOGER

a“n <SMalrziELENENTI S

L) «/mdlre:CA-DATEAGE>

Lk </ MALECT TOP-LEVEL-FACEAGER>

a </mdire i EAXNL>

L1 </udlrt:Fouts

erenitm g Lnguage e leogh 1700 Wweids Anoaw Cacdl sl

Figure B2.14

2T

CHALMERS

Page 113

The Editor also has a validation functionality. This service lets the user to make sure that the model
conforms to the MetaModel and so it is a valid one.

B B Nragwe Sesh Poied Sowike Bue ASCEMG WY WD
r b bt 2 ek B[e

||z Promet Zpkew 33 2 | Pmerttade s, ~C
: =R)
S 59 fesroot DR
| P., Eaah eattad - s ¥ U Set akz
|1] ara osowi A
'_‘mm M
& Crowghel odd = £y
(4] frt = 0 G
L MY st et 3
R |
& Mre okt x
otz O —

L i aseed |
& MyOwcratison st
& Mycemoneraticel adkt -

¢ CA Open Selected Rasmarca [n Meloecs Brweser
& Mycemaner stcel neres o

hunas .
o Mt aeoce Dmbug v ol
o Mt satadond Pesfie 2s 14
L Myt hereodeisscription Vedats
W L vantor Torn »
L Mnooedend cordaed Cowrgare Wit .
W Mtetrcensodel. a3 | Peplece Wik *
B Hromcand sve fledt .
» |
“L"ty\m srkeca wivw M spwnniec p&w;\"i Load Paszurce..
o B T Eefresh
& ovane (i ﬂ,.'."g *.‘:‘_.,-j ol P Aropmeed Y
| & e Y
Sewwtur Parwt Ut Trew Taie | Trws vth Cobmrw
|2 Tk T Prosetan 17 () Cormcke| {5l =0
Provesty Veha
&l . X
% Setcted Ot ph 4, -t

Figure B2.15

CHALMERS

Page 114

The validator has found some error as shown in the Figure. As seen it says that it is needed to have
SsHORTNAME property of the listed elements to have a valid model.

O Trsaivt Vel dovvidy dhit i y

(o]

- Qs NS4 0 \> = =115 Resmarce
115 st Expiones =Dl &
- o U Reeen e
1 Mo PR ache
| Divahoanead = % Cucumert Ract
| EAOL et s & PackType
 Dxwvphe adrt = 4 anowa
W Cowplel adrt = & TORERLIACKALS Typal
&tk jar = & CEPRONGE > BRSO
MyinZh sanad = & noen Tpet
[M meted = el poy
& Mod e = & POATS Pype
s * o0 COMMAMDATION'OR T's ECLCOPPMUNCATIONNCET
Mhtin costad * wou oy
B M Oemrr stioe. ad + w00 Ay
& Modwwrctraton]. advt = + o
& Mytrwcelreton] werfay = & TONERLAACTAES Tye
o Wiriasoe = b RRFROAGE N SN G wagh
o) W axRakosd R - =
W oadoniobinn 8 Vadatiaa Dot =)
e et
1 Ptestomtned conored) 0 Pty yunvivty ety viiitin
& Mieootreds ade [
& Mhseond skt [oagross of Dooument 8o
LR
4 0K ey sbede o i Avawie o -t Y
L 3
Fouwe 1 RlTekist w - O Lo | scoum
1 ot prtoreFyss O oo eowadlasios SORTRAME o EIPAOCAGE Pust be 2o
D T et fasuns SHORTIAME of TIUS fwst s st
© The reguadfastus SHORTIAME of ECUCOMMUMICATINSURT st b £
G Tre reguead astues DG TIAME of O wust be s
G Tre coouwad Fasries HORTIME o 100K nuet 9 ool
Sckcten Pasart L Tiew || 4| »
W =
< Tass 7 Prymrtes L Core B - o}
Pogerty Norw
< *
" e e

Figure B2.16

Page 115

After fixing the errors in the model, Eclipse verifies the model as expected. This validation is not perfect
but helps very much still. For instance it does not do type checking.

o) Fi by detipiants stiuuf Lol Latraom "l.)'
L B Q- i i ™ - m Reouers
5 Promeet Exghirer SO L el a9 4 =D
= B v 7 Resoanoe Set
e ol = s wcht
¥ Ceangle.odht = % Dalumert Poot
& Ecywgiel st = & Aok Type
1 frst. o » T AUTOMR
My LHEA sastud = & TORIVEIPACLYRS Typel
MNER sastad = & FPACAGE > SNCAE apogt
W Mg w4 DEMDNE Trgedt
My XA muntach = & wwil>EcUsos
MShEso sastad = & MRS Nped
B M Cevaratration st b <aOUCOMMUNECATIONSOR T ECUCOMMUNICATIONSORT scucon|
A Nydevercireiond . acht & <O OCU mcul
B Mpdamoreds dooed yutio & o000 A0
o ML asory & ERN
B NPve antadered
L. Ml fraceodeidesc ptan
W Mt perix
Mrstconbired combired Frogr o1 malr
¥ Mfratroctracdel ackt = 7 o N
" "5 Vatidation Infarmatien (%]
W iyl ac e o dbad hd
45 crg.ackomm nir s ssargies pubicim l)
+ 35 org edyne rdve el ey snrgles bl oy |
-
s 2 =]
o 11 Bliekue o O
]
Sebaction Papses |ist | Trew Tokée | Tree wah Colave:
i Tasa T Properons D Cornoe oy e o
Progerty Vb
4 >
e . Sebacted Ctimct: plattoem A" st

Figure B2.17

CHALMERS (3¢

Page 116
The Model which has both AUTOSAR and EAST-ADL elements which is obtained using the Editor

<?xml version="1.0" encoding="UTF-8"?>
<adlrt:Root xmiIns:adlrt="http://autosar.org/ADLRT" >
<adlrt: AUTOSAR>
<adIrt: TOP-LEVEL-PACKAGES>
<adlrt:AR-PACKAGE>
<adlrt: SHORT-NAME>arpckgl</adlrt: SHORT-NAME>
<adIrt:ELEMENTS>
<adIrt:ECU>
<adlrt: SHORT-NAME>ecul</adIrt: SHORT-NAME>
<adlrt:PORTS>
<adlrt: ECU-COMMUNICATION-PORT>
<adlrt: SHORT-NAME>ecucoml</adlrt: SHORT-NAME>
</adlrt: ECU-COMMUNICATION-PORT>
</adIrt:PORTS>
</adlrt:ECU>
<adlIrt:CCU>
<adlrt: SHORT-NAME>ccul</adlrt: SHORT-NAME>
</adlrt:CCU>
<adlrt:CLOCK>
<adlrt: SHORT-NAME>clk1</adlrt: SHORT-NAME>
</adlrt: CLOCK>
</adlrt:ELEMENTS>
</adlrt: AR-PACKAGE>
</adlrt: TOP-LEVEL-PACKAGES>
</adIrt: AUTOSAR>
<adlrt:EAXML>
<adlrt: TOP-LEVEL-PACKAGES>

<adlrt:EA-PACKAGE UUID="">

CHALMERS (%)

Page 117
<adlrt: SHORT-NAME>eapckgl</adlrt: SHORT-NAME>

<adIrt:ELEMENTS>
<adlrt: ANALYSIS-FUNCTION-TYPE>
<adlrt: SHORT-NAME>aftl</adlrt: SHORT-NAME>
<adIrt:NAME>aftl</adIrt: NAME>
<adlrt:PORTS>
<adlrt:FUNCTION-FLOW-PORT>
<adlrt: SHORT-NAME>ffpl</adlrt: SHORT-NAME>
<adlrt:NAME>ffpl</adirt:NAME>
<adIrt:DIRECTION>0OUT</adIrt: DIRECTION>
<adlrt: TYPE-TREF DEST="EA-INTEGER">/eaint</adlrt: TYPE-TREF>
</adIrt:FUNCTION-FLOW-PORT>
</adIrt:PORTS>
</adlrt: ANALYSIS-FUNCTION-TYPE>
<adIrt:EA-BOOLEAN>
<adlIrt: SHORT-NAME>eablnl</adlrt: SHORT-NAME>
<adIrt:NAME>eablnl1</adlrt: NAME>
</adlrt:EA-BOOLEAN>
<adlrt:EA-INTEGER>
<adlIrt: SHORT-NAME>eaintl</adlrt: SHORT-NAME>
<adlrt:NAME>eaint1</adlrt: NAME>
<adlrt:MAX>10</adlrt: MAX>
<adlrt: MIN>0</adIrt: MIN>
</adlrt:EA-INTEGER>
</adlrt:ELEMENTS>
</adlrt:EA-PACKAGE>
</adlrt: TOP-LEVEL-PACKAGES>
</adlrt:EAXML>

</adlrt:Root>

CHALMERS

C. Appendix C

Page 118

This section includes a step by step demonstration of the process taken for the generation of the
FMI and EAST-ADL MetaModels, EAST-ADL Editor, FMU2EA Plug-in and FMU2EA Executable

1. Generating the MetaModels

The Figure below shows the Fmi XSD.

MITEX T FMIKSD fanibiode

Fle Bt Navigwe Seach Froect Pun XS0 Cowpotbility ‘Window Hep

fr & $0-Q D -

L Proma Exglover ©1
 ef FavderzPersns
| @ 4 rvzeAr 3
| i 3 rvTAr 3
= &5 marx)
= R
5 eAsT Aot sl _2010-03-22 xed

5% «-=0

| & 6E PCbRas el

| & 55 og eckpse. nivy. stl acangles pbiCervabe

| & 32 on eckome, riy. ell examphes. (b we 4
&E Seetivea

3 SvdnbEcchange

uF Teattond

¥ 35 et

.

e

imonatn, 1. rvaon

{E ST AU ma A0 | B Ry |l

o €] ROxa L

=4[o | Arwre *
5 =

59 Dwnctives

W fniGenbyvariabie of
W fnenliri oy
W felvpe sed

Y Errts

15 1yt

UL ST

F iasvd
I Coaly varibie

nles

(085

FOTLRT.

-

'

|2 prcbievs | [Conmole | threr Loy | T rasertims -

§ s

‘h‘

© Pratio

| Docmereston 1 Target ramemace |

Advacet

Figure C1.1

CHALMERS

Page 119

The First step to create the FMI Metamodel is shown in the figure.

Ry 1008 | —_— i
Cpan Rl = Progect... "'f‘:g‘ T r lﬂ!t_f‘_l_"m
Cose oW ‘(}lﬂ'b pehosebessutin | £ DASTAUnd 00 8] BA0Lecow | 4 modDeswren € e =0
G CHIAM | 3 potte 5
" EY e
{82 5025 ——— i I |
B [I
i _ N ; S
s
. o et s
[& neye O mTuge
| Corwert Lne Damders To ’
LG e . 5
I VWW 0 - [[
ekt #] egoten 3 b,
N |t Vorigen
23 tpat.. b felage
8 Bxport,
Tropeide oododid s
| fedogeDascriphon. xsd [FMIEX FN12S0)
2EASY_ADL sl _2010.03.22. 354 [FMEE...)
3FMEEA 4.0t [FIOtpectslsadriey.. |
S EAMLaw] [PMICtectsUedFie]
[
3 org.adices mim o sxanyies St 2pee, U
o atetiie
* i wmdnbtachenge
&5 Testtost
35 Nesita
L
ARt L GOLs
Do | Seurce
|2 Frotins | 2 corase | 9 Emoe o | [Fregertes 7 =
(€ sthoma

Figure C1.2

CHALMERS

Page 120
An EMF Project is created for obtaining the MetaModel.

@ ATE Tt s e e i v d - Telipis

S x|
Fae NN Nesgen Gewth Wi K D Corpnsie vl e
Tir o | B0~ Qe i@ v Loy - e bgg 2@ an Arome *
a2 Sl N R S SIS i Tt < S ey e 8 T ey A —zra
Grosaeeonm 55 E R W T TO[S s B Sl fuudosotin. | EOSLAOCNMUNG. [BiEkMare | |6 sdDuopiensw [CIROXA LM ?‘
e PardezPersns ~
4 reTADN -3 .
4 rvTAr 3
& & T T T T —
= R
18 EAST A0t sl 2010-03-22 el
= U o Dunctes
1] Fodnnira oot o =
1§ Fmddatamcrition. s W] S
1§ Emtrcalararmble oxf Select a wizard —
(5] Frdtypa.sut oy Craste 8 few Mrik (Ao 1 LORet wih an EMF wodd I
= U MutaModek —=
+ §] BRI acore] S
+ %) PrdodeDescrghon scorm Werards 1 Yyt
Fr#todeDascrytion perrnodel mm L1 in 7‘
= (= Modds = AR -
1 ea maard € At
& ERM ey & a2 g
) exoon exl & An o P
& medelbeacration onl i os b
= > fearoformaen = L Edioss Nodelnyg Fravaserh
1 PvzEA 87 Leore Mo 13
() FVLIEA 40000 ' EWF Gatmr o Model
€) PzEA d ¥
oF PCRasiedFle 1) Engry EMF Pocject
& 55 o eckpse. ninm. sll acanples. pbiciwabe 3 i Nagpeg
¥ 3 g ecigar, ny, ol ecwigles bR Ve ® U5 Ecore Yook
+ oE Sectrea # U Exarte EF Wdd Crostion Wewd
* 32 Sedeb Exchange | ¥ & GF-omd v
i TeaTodd N
38 Teetri
i (085
@ v e e [em]l—=
=
‘_ﬁ, -~ BB‘
General &N"

Figure C1.3

CHALMERS

Name of the project is given as FmiModelDescription.

@ ATU FRINEEIF Ry e e i sl

e WP e et e &

f:’» ”9_'0""9"'

=N

&6 PavdesPaccom
¥ 34 mezrap-t
&y rrazrarxl
= & mar
= & A
18] EaSt 40t _wwall 20100522, 70d
= o D
15) freduseiing. xad
5 it ot
5 freScenVanstie xd
5 frtype sud
= i MetaModes
@) R scre
F 8] FedodeDeiophon suee
B FredvodaiDescegtion genonds
o FevssDespton esdlecore
= i Modeks
[EA s
& ERr
A ER v
& modeDesaoton e
> Traratoonstion
) PazeA
7 PMIZEA & e
€ mazta_s v
of ractmad et
i 35 org. ecipen vt scapies. cobb et

¥ 3 g eciges. rim st scanglen. pabhc et l
& 4

2

rueootr 5 o s BLS T D) B nevatmorm 5

jro-

Page 121

S

N - T L
B EdOsaron |5 ESTAU A0 B ESMews 4 vodbeosinm O RREe ™ 2

|

)

]

o oy -
. IV Priject w
ot B rew 2o0pect o hobd the ENE model

~ v -5 } Bow

u-m U hm st ek
[7] s defack cimnn

Licw R L T e L e v

£ o

|| Desn St

@ (TN e [W

i3

I 3 sthewma

> =0

Figure C1.4

CHALMERS

Page 122

XML Schema(XSD) is used as a source for creating the MetaModel as we have the FMI XSD in hand.

@ ATU FRRIER D o e e i il 1 Ws

%]

=

!

(S ™ s Dwwtt pat » =Ny WD b
e NI, AL, ST APl Gl L e Bere =
(Chueeoue = B e TS D B S Pt | S EASTAUNSL0 | B ESMLeom | @ raktwosan (€ Ao e N =g
&5 PamdwcPacsom -
@ 4 Azt -
¥ 3 razrar2
= &5 marn

= & D o Dvectives
u

5] FrocuerVanstie. xsd U trig et o Model Importer @

oty
|) Peftypa s Comat the Ecare mod bazad on SN Schame o WSOL
= & Neteodey

T—
8] FrdndeDesopion suee PModel Iygreters: i Trons

W Fendsesciption, ssilecone e S Toe———

= W Nodels & Exoee vod (CDO Netrery
[EA axa 1 Rows claas recdet
& ERrom) L model
) B v e Shers .
& modeDesaoton e

= Traretomation
) PizEA
{5 PMIZEA_& 3

i 45 org ecipen.rom.atl sonpes cobkc e
W 3 g ecigen. rar st mcanples. pablc Zprrenta
¥ &E woetfinct

P ndchange

5 Teetros

35 tTreadi

b e

@ TN S R

3

I WM;

{ 3 sthema

| Generst i)
| Doopertin | Tw nmemson

2

Figure C1.5

CHALMERS

Page 123

The next step is to select the FMI XSD from the file directory which is done from the menu for XML
Schema Import.

@ ATE Fitr st b e e el - T Vipis -

(&

0 el oo S, SO A Goy o e e =€ an Aroma *
[arumacter & BRI =0 8 £ 8 Pbostsown. | E DS NG |8 tateme | 4 maboopmni €l ROEALY ™ =

R N B W ' i Zar——

e

= & s

Typam

o

s T e T Rossiuis (B P st (v woncpce..]

& ERea e [lCronte vt Scherns b Ecore Wi
& oo Gerwraor modd e narse. J

55 o eckge. niry. sl e ples pubsCsrvae
¥ op eckoe, Ky, ol euples. (RO Ve S
&E Sectiven

3 Sevudeb Exchange

W Teatlodd

¥ 35 et

—

It

— . |
L omag T

iltﬁh’ww‘ro_fhml:m £ =T =0
|8 st

| — " pratic
Coamertatin | Tat ranamace;

At [pryr—|

Figure C1.6

CHALMERS

Page 124

As can be seen from the figure, fmiModelDescription.XSD is chosen. There are 3 more XSDs also in the
Figure which are fmiScalarVariable.XSD, fmiType.XSD, fmiBaseUnit.XSD. These are a part of the FMI
schema but they are in separate files, fmiModelDescripton gives reference to these files inside. So
forming an Ecore MetaModel from the fmiModelDescription.XSD file encloses all the other three.

o alt fest Hn vl It Vg u
LI D-0"Q- S 4~ - - 100 el =@ an [7Arome *
L) Promar Exgiors A% - 0|3 R ST IS EAST_ACL el 2010 @ ERMLacwe | o cosDesoptonaw € ROXA M ™S =0
L c.‘-rwb.-s:km ~

44 TMIZEADX) -
W 4 MTALI
* &5 rarx)
= i AR
5 ST AS sl 20700322 xoed
= U M
¥ fedansirg cod
18 Fndodelecgtion, red
1§ e alarV aratio ouf
1§ FdiType.ant
= 1 MataModel
&] B acore !
B e L ee— ¥ (& FarsbesPresces & I 1y
'3 FvdtodeDam iy, gerrrccel |
o FrétodeDesryhir. saecore
= (1 Modeds
|2 BN sl
W ER ey
X Eromn enl

i

¥ medelDeacrstion o
= &> Tearoformaton
FVEA

5 FVLEA 4.0

€ PEA A
F PMtbeasiediie
* "_ﬁ O ocipse. Nlre. ol @ sy ples plACSrvale
* 1 og ecigor, Ky, ol ecyples pubRC e S
o Setren
12 SouinbExchange
E Teatodd
¥ 38 Neeiri

+
+

)

3 nescalwVonstm, osd
5 frarypmcod
2 MataVodels

+
T Modek

* L Traneformation

& MOctctisedrie

[T S p——— b

e [cmat]

— ®

Dewgn Tourow

« bk

2 Protlevs [Comole | O Birer Loy | T Pracertes :

LE

Figure C1.7

[<

it

CHALMERS

Page 125

fmiModelDescription.XSD is selected. The generated models name can be changed from the menu
below.

@ ATT it s s iia e siptben v d - Tolipis tt
I I

1]

N Neegen Gesth Wi ' T vv.2 "

TIra B0 Q~ DA eoe e oy 24 € an Arwme *
[Lrosaegon 55 F R W T T O[S0t E R Faedeopton (S EASTACLMSLANG. | B EAMLsre | g codDesopsenaw (€ ROEA LM) =0
n&nmv-m b
o 4 PMIITADY) -3 .
W 4 rTALXI
= &
= D R

18) £AsT_ASt sl 2010-03-22 2edd

= (> Mods e e cafFHEN FUSSO e delescressin o

ClCronte e Schersa to Ecors Map
o eroon ol Gerwrdor medhd fle narse; -
i meddbescrption o DDA e -

& 55 o eckpse. nii. sl acangples plsCoevabe
¥ 3 op eckor, iy, ol ecwples. pubRCSove S
&E Sectiven

3 Sk Exchange

uF Teatloat

* 35 et

@ Lot Jman] o | [ocomt]

1§

Ilt‘_mu-.-wc-ﬁ@hmlzm TR =T =0
| et

. Genwral " pratis

I Mﬁ i Target ranemace |

S
f

Figure C1.8

CHALMERS

Page 126

The final step for generating the Ecore MetaModel. One can select the packages that is desired to be
generated. Additionally, one can also give references to other previously generated MetaModels to
include them in the generation process.

@ U FUMR O EUBODRUB A ULy

37 Pr0-Q- &+

bk 2. 8 T D

+ I ravtecrerson
1S A
| & o ruzere 2
= S mama
= b s
2 EAGT_AD(_onl 0100322353

EA axnd
& tAve
£ Eon
& FodeDesrgtn o
= 1 Tramtormaton
(5] PMEEEA 3 20w
L = 2
G Fattmas e
| % o5 ongadpre w3 acsoies AT
¥ 0 argadipu rdm i acavpies pusieTpetoke
| 3 i Sdettiee
& L SednEuhaos
5 TetTod
+ 45 trestunt

| Dewgn | Saure

!

elio. 100% sl

DN D, EAS AL nd 00 B ERMLecae | 4 vt | € oA s

%$I

S

13 f“rﬁl'L‘I"W_ o

=

]

=8 Owectyaes

© tomy

 tecd Fiow DUF Propet ~oe
s mmkm Selection - ‘

ToAcEy which) [ackagas b Qa3 e which b retecence frore cther Qpewrshir @
rodes

1 ppes

— =iy

Padage Fio tane
¥ W Fdodaesrpton Fritodelunzopton sove

> Gt

@ G I el

2 Sackiors 2 Gl | @ [D L0g | (7] Propmems 77

B schoma

Figure C1.9

53

CHALMERS

The obtained Fmi Ecore MetaModel is as seen in the below Figure.

Page 127

M

Fle B0t Myegate Search Peciad Bun SwncleEoweERi Conpattdy Wodow Hep

’.o.q.-g_,'o _ﬁ_.qm'
=0 =
= @ rrdtoceDesrpton
0 eV
F s Dtendedie Qs
a2 dhalype
1) EAST 400 _wwall 100022, 7ad B fhaal ettt [org ok, e common s Erurser abor |
H revctainlype
1) fredumetinn. aed + [todemlype
5 fenddeeiogton. st + T Cosdnylype
5 ooVt il + 19 CoussieyTypeCtiect [org. edions. end corwmen U Erumrsttr]
15 Frlype s 4 0 Deladfcermentlypn
= i Netabodey # H Dreclepandoncylioe
* @) ERI suire % B beghrvbeledinlype
* &) FdeDesopion suee # E Docuventioot
Fredodalesnption genmodel # H Eruestonlyce
Fedodeescription esdlecore + B EnuentiooTpeTyps
= Modeks + [FeByssiik
10 EAMC sl # H heMogeDescrghon
& ERm 4 L Prisclyvarbie
o) ERON 4 L Feiyoe
& modeDesaoton ime & Ll IntegaType
w e Traratoonston & L IntepaTypaT e
) PMIZEA 4 [MenTyze
) PMIZEA_& a0 W L ModevistiasTioe
€) rzta s &[] peaiyps
s # [easlypaTyre
i 35 ong.eckpen. nom st scapes, pubbc Tt o [amgtype
i 3 g ecipen. rim t scanpies. pbhe Zrreste # [TodType
¥ 6E oetfiect 3 [Typeceirtendype
J Srodrbichenge +] UeDefreonType
5 Testrocl % VerubityType
35 rresdiat * 15 VeridoltyTypeCsect [ong. ecies, e corvmon utd Zrumerstoe]
T ¥ VenddsMavegComantonpe
* 1 VeudieMerngTonvestionTpeOtomet [org scipue, s cormron Ut Srurer ator]
+ E Verdotecetatirst e
@miﬂml@uu(mm £ DIGIHET =R
Propaey Yok
= ectad Coect; phatfom TMIEE] Mt b T wstion acore

Flgure ©oi.1v

CHALMERS

Page 128

In the Fig ure below EAST ADL XSD is shown.

mmmmmummmm

‘e axﬁ D Q.' DA N Ses ieen Telen 7 §|¢”9_r§f,51m'
Ehosatebm & 5 & W - = 013 hkdtesay - m G RaxAAM ™ =5
> I‘W -
i 34 rvazrAD -
3 rTALX
* & o) R . L |
= i e
9 easT oot sl 2070-03-22 20
= s o 159 Owactes
e
ErticalerVarnble oul
1 15) FdTypa.ant
S Hoe T
* | PrdodsDescrghion score (] ey, - s 1SS 00N 2
Fr#todeDascrytion perrnodel [ﬁm
PrétodeDe iy salecore (B sentnioata
e cr‘?ﬂ 13 S
| EAML el
Fom = |
o e enl . o
& medebeacrstion o (E AT T
= i tearofomaen l%m
i FvLEA [eenIcATon{=RCR.
(3 FVLZEA 2000 15 AEELICATION SO TWARL COMPOMNT-TVPE.
€ FEA Al (B RITEAR Y- EVENT-CONSTRADNT.
& 6E PCbRas el | tecmpenegr
& 35 orp eckpee. niry. all @ gles pbsCirvae [08-CAPRNSEF--Cld PRIVELEMENT SE0TOTYRE - (REF
T A (E semmenT enoTaTE
+ o Satlen
v [8400T w5t stvng
32 SdebExchange -
& & Teatlodd i e =
* 38 Teet ST
[T & Goe
W AppT o mequoata =
" CONEUSEIERICMATH o SR TIMONGCOMSTEAINT
& ROOFIASE o SLOCATION
@ UNIT SIS AMCTION PROTOTYFE
Wi i SIS ANCTION TYPE
| SR, -4
(s |
2 problevs |) Cornsla | O tirar Log | T Progerties L1 o =0
® wedwma
et ' pratic o
Docmeresnn J Tariat raramac bt l{mbove 2090314

Figure C1.11

CHALMERS

Page 129

Applying the same steps above that is used for obtaining the FMI Ecore MetaModel to the EAST-ADL
XSD results in EAST-ADL Ecore MetaModel as can be seen from the below Figure.

T S AV

Fie Bt Navgde Sexch Froiect Pun SevgkEcom EdNy Corpatbity Wi heb

My 2 0 1 D0 Q> 1D 4y o 21| € an AProma *
|Ohosaegoer 1 5 8 o T T OS] oosDesopion B FedodsDssopion. [EAST AOL el 010 BIEAML A 1D @ odDesoprenam I ROEA LY ™ =0
b oL PavaerzPersins i pheth (TPOCK] Mt o moore 2]
& 3 TMIZTADK e F
4 A3 * [AmTRACTWCASIRITType
7 &) b [AOTRACTWRROCITASIRD Type
= R * [AcToR
18) £AsT_ASt sl 2010-03-22 2edd * B acTuaToR
= > rxo L ADOITIONSZ Type
1§ froneira. cod * [apvenpata
1§ Fmodatamcr ption. red & E] AGETINGCONSTRAINT
1§} Evcalararnble oxf [ALOCATEARIRL EMENTCONTEXTRER Typm
15} Fritype. et # [ALOCATEAR LI DENTRIM e
= L MataMosek O ALOCATEAN LI EMENTI BTG e
+ B RO acore 2 ALOCATEARLERLEMENTIN ST M0kt [org ackpmm ared. comeon st Erameraor |
%) FrdodaDescrphon som * B awocanoy
2 Fr#todsDacrytion, gerrmocel # B Aoty
.‘Pmmm * B ALOCANX X Trow
= (> Modeh B ALLOCATINIARZ TR Type
1AM el F T ALOCATIONTARGETSUBTVPESENUN
o R e & M A pect [org. exigme. ond conmren Ud. £ rurve dor|
o o el B ANLYSISUNCIINROTOTY I
W medelbescrstion omi B ARLYSISHNC TN ot
= i tearofomaten BT ANCYIISFUNC DONTSESLETPESENN
[FvzEA O ANLYSISFUNCTIONT S SLETWE SENUMCbect [rg. ecitee, e coron ued. Erermenater]
(5 FVLZEA_ .00 € E ALvsiaes
€ FEA a ® E ANCMALEES Ty
& uf Pt el T ANOMALYSLETYIESENN
& 'éognannm.ulumm & T ANCMALFSUETYPESENUMNO e [org. ediese. end Connmen Ul Erumeralir]
¥ 3 o eckne, Ky, oll eples (LR oe S B APLICATICHERROR
B Seetven T APLICATICNERRORI BT PESENLM
2 SednbEcchange T APLICATICRERRORSUBTWPESENLMOb oot [erg eckprde svd, Covwnan utd Eravmr e]
uF Teatloat F B APPUCATIONSOF TWGECONPONENTT\FE
* 35 et I B ADETRAGEVENTCONSTRAINT
* [ARCALREF
E ARCAUPRMWEFCARMELEMENTRROTOTVRERES
* [ARGMNENTPROTOTIRE
* B ARGMENTRSOTOTRSEF Typa
T ARGMENTRROTOTIPESUETYPESEN.N
& 1 ARGUNENTRROTOTIPESUETYPESENMODHE [0rg #0058 e Conrwan Ul Erusystor]
B ARGMENTST e
W L ARGUMENTSTypel
w2 AR
" L ARRAYELEMENT
| "‘.{r —— v<
2 protieve) Commobe | O irar o | T Procertis 0 5)
| sty Vs e
RS
Cofast Vakwm Larnd " L)
Cevtvad Vo Paise 3
Eatrbotn Type B Soeg [leva leng Sarng)
EType 1 String [lave g Soing)
) o faive
[] o !

re Twbectad Cliet: RICRIPTON : Torg

Figure C1.12

CHALMERS

Page 130

2. Obtaining the Editor

Figure C2.1 shows the options used to generate the Editor. Changes in the options can result in different
Editors.

Sarch Corpwtity Wedoe e

~

Mo Gt Nasgets Sewch Promwd Run Generstor

AP RS A B0 S o[2 A2 E N [FEERAER SR F1@ an (&l
<. g - = - e ay——
1E] PESOLACECONSLAPTION NG bovs |] Adescurcfacsonimglions | L Advhesorcelnghjve | [EAST A0 Pock gernsdel 11 = 00| oawm | |proatsy =0
& Tg EASTALL fised BRiv™
1L Progieess | © Consnls O mor Log | Propertes - Lk
Propay ¥k -
e}
Buvde Monfag: Tty
Corgharce Loval ‘%60
Capnright Frkds 1 fadie
Copanigt Teot in
Lrgusge "
Vodel Nave T PAST-RON Prock
WorrhLS Marktys o Takie
Rurtine Conpatibiity . fake
Purire ly Yt ol
Bartrwe Patform e
Prbions Yerscn iXza
= ek
Cokor Prowders 1 fedem
Conabion Cormmands ok brun 4
Creation boons 4t
£k Dwectory T8 (EAST-L04_ROOT edtiarc
Tt Phugn Clses 13 peg.mstoser skt provder LASTAOL_RootCdtPhugn
Ef Mg (D V0 EASTALL_ROOT el
Edt Phugrin Varkaties ”»
Fork: Prondacs Lk e
Cytarend Has Chidren A fdw
Provder Reot Extends Oase L)
Tabhe Frowiders o fake
= Tdbor
Crasbon Sub-reran Ik Fabve
Edtor Dractory 18 (EAST-20L_ROOT edtoxfsee
Edior Fug Class T 0rg autoz adkt presenkstion ZASTAIL_RoxEdtoPgn
Tt Py D 1 FAST-AEL_ROGT adtor
Scdbor Py Varibles “ -
Foch Ajas Patforn 4 fake
Fuch Clert Plstform ot
= Moded
Aery Accenscts b ldie
By Covpatitie Reflective Mattods 4 fakse
Cass Nare Pattern "
Cartarmek: Prosws ok fobem
Fasture Deleguean IR Nerm
Garerste Sheny o fokze
Irkertoce Nave Pattem U
Mrwral Safiective Mettods i trus
Wodel Cvedtony I8 (EAST AL ROOT e
Wodsl Fugn Class =
ModelFugn D ¥ LAST-R0L_ROOT
Vodel P Yariabies i
COperation Refection 1 Tdkie
Suppress Contanmmt 1 faen
SR Pas Araenre e
Saggeens Fawt ser ke
Sgmrem terfeaten B
 Mude Qe et alky
R Constraties e
Hont Extends Cows g actowe oo ecve gt Titec g
Boct Deweds Intart ace ¥ arg adose wed scove Dbt
Sowt rpierserts Foerd we]
D Padage a
= Mods Frstae Dt als
Tockesn Rgs Fed il
ook Tisgs Fesw e Iy g
Poture M wrgoer Owe ‘e
Fustire Mg wigeee Dindus 2]
Fasture M W It btedacs "
Paded insrs e
Supgress D Tepes . 4
Twpgeens L die ke
= Tmaiten & Metge
(ot Frrativg e
Dyt Tewginss - ake
Facade Mepes Cast T orp acione med codegen e Jeen Tacade ast ASTFacade sloey
Faoe Ovemete e
Bathrncme Pt ‘2
Terghes Dractory Bl
Teretse Fge araties o«
lodre Jeapes “one
= Tty
Tests Swwrtory TH RASTR_BOOT sestnivr
Tots Mg 1 0 £S5 A0x_ROOT Sty
Tedts Mg @ Vit T
Yot Sute CGass. I oeg e adit tests TASTAD FootAlTests =

E : -

Figure C2.1

CHALMERS (i}

Page 131

The below figure shows the versions of the Eclipse Features installed in the Eclipse Helios platform which
is used for obtaining the Editor.

About Eclipse Features

About Eclipse Features

Provider

Eclipse Modeling Project
Eclipse Modeling Project
Eclipse Modeling Project
Eclipse Modeling Praoject
Eclipse Modeling Project
Eclipse Modeling Project
Eclipse Modeling Project
Eclipse Modeling Project
Eclipse Modeling Project
Eclipse Modeling Project
Eclipse Modeling Project
Eclipse Modeling Project
Eclipse Modeling Project
Eclipse Modeling Project
Eclipse Modeling Project
Eclipse Modeling Project
Eclipse Modeling Project
Eclipse Modeling Project
Eclipse Modeling Project
Eclipse Modeling Project
Eclipse Modeling Praoject
Eclipse Modeling Project
Eclipse Modeling Project
Eclipse Modeling Project
Eclipse Modeling Project
Eclipse Modeling Project
Eclipse Modeling Project
Eclipse Modeling Project
Eclipse Modeling Project
Eclipse Modeling Project
Eclipse Modeling Project
Eclipse Modeling Project
Eclipse Modeling Praoject
Eclipse Modeling Project
Eclipse Modeling Project
Eclipse Modeling Project
Eclipse Modeling Project
Eclipse Modeling Project
Eclipse Modeling Project
Eclipse Modeling Project
Eclipse Modeling Project
Eclipse Modeling Project
Eclipse Modeling Project
Eclipse Modeling Project
Eclipse Modeling Praoject
Eclipse Modeling Project
Eclipse Modeling Project
Eclipse Modeling Project
Eclipse Modeling Project

Frlince Madelinn Proieck

Feature Mame
Ecore Tools {Incubation)

Ecore Tools Documentatio. .
EMF - Eclipse Modeling Fra. ..

EMF Code Generation

EMF Code Generation LI
EMF Cornmon

EMF Cornrmon LI

EMF Compare core

EMF Compare core

EMF Data Binding

EMF Docurnenkation

EMF Ecare

EMF Ecore Code Generakor

EMF Ecore Code Generata, .,

EMF Ecore Edit

EMF Ecaore Mapping

EMF Ecore Mapping Editor
EMF Edit

EMF Edit Diata Binding
EMF Edit III

EMF Mapping

EMF Mapping LI

EMF Model Converter
EMF Model Query

EMF Model Query Docume. ..
EMF Model Query Examples

EMF Model Query OCL Ink...
EMF Model Transaction Core
EMF Model Transaction Da. .,
EMF Model Transaction Ex...
EMF Model Transackion W...
EMF Model Transaction W, ..
EMF Model Transackion W...

EMF Sample Ecore Editor

EMF Teneo Eclipselink Plu. ..

EMF Teneo Hibernate

EMF Yalidation Frarmework. ..
EMF Validation Framework, ..
EMF Validation Framework, ..
EMF Validation Framewark. ..
GMF Mokation Model Support
araphical Editing Framewo. ..
araphical Editing Framewa, .,
araphical Editing Framewa, .,
araphical Madeling Frame, ..
Garaphical Modeling Frame. ..
araphical Madeling Frame. ..
Garaphical Modeling Frame. ..
Graphical Modeling Frame. ..

raranhiral Modslinn Frames

MaoDisco Infrastructure (Incubation)
Version: 0.5.1.»201009160755

Build id: @buildida

Copyright {c) 2008, 2009 Mia-Software.

Visit http:/ fvnene, eclipse. orgfamtmodiscaf

Version

0100201,
0,100,201,
2.6.1.x2010..,
2.6.0.x2010..,
2.6.0.x2010..,
2,6.0.v2010..,
2.6.0.x2010..,
1.1.1.%2010..,
1.1.1.w2010..,
1.2.0.v2010..,
2.6.0.v2010..,
2.6.1.x2010..,
£.6.1.v2010..,
2.6.0.x2010..,
2.6.0.x2010..,
2.6.0.v2010..,
2.6.0.x2010..,
2,6.0.v2010..,
1.2.0.v2010..,
2.6.0.x2010..,
2.6.0.x2010..,
2.6.0.x2010..,
2,6.0.v2010..,
1.4.0,w2010..,
1.4.0.v2010..,
1.4.0,w2010..,
1.4.0,w2010..,
1.4.0.w2010..,
1.4.0,w2010..,
1.4.0,v2010..,
1.4.0,w2010..,
1.4.0,w2010..,
1.4.0,v2010..,
2.6.0.x2010..,
1.1.0.w2010..,
1.1.2.x2010..,
1.4.0.v2010..,
1.4.0,v2010..,
1.4.0,w2010..,
1.4.0.v2010..,
1.4.1.w2010..,
F.6.1w2010..,
3612010,
1.2.0.v2010..,
1.4.1.w2010..,
1.4.1.w2010..,
1.4.1.w2010..,
1.4.0,w2010..,
1.4.1.%2010..,

R0 wENN

Figure C2.2

Feature Id

org.eclipse,emf . ecoretools
org.edlipse. emf. ecoretools, doc
org.eclipse, emf

ara.eclipse, emf.codeqen
org.edlipse.emf. codegen. Ui
org.eclipse.emf . common
org.edlipse. emf, commaon, ui
org.eclipse.emf.compare
org.edlipse.emf, compare, sdk.
org.edlipse. emf, databinding
org.eclipse. emf.doc
org.eclipse.emf.ecore
org.eclipse.emf.codegen. ecore
org.edipse.emf.codegen.ec. ..
org.eclipse, emf. ecore, edit

ard. eclipse. emf . mapping. ecore
org.eclipse.emf.mapping.eco. ..
org.eclipse.emf. edit
org.edlipse.emf.databinding. ...
org. eclipse, emf . edit, ui

org. eclipse, emf.mapping
org.eclipse.emf . mapping. ui
org.eclipse,emf . converker
org.edlipse.emf. query
org.eclipse.emf . query,doc
org.eclipse.emf.query . exam...
org.edlipse.emf. query . ocl
org.eclipse. emf . transaction
org.edlipse.emf . transaction, ...
org.eclipse.emf .transaction. ...
org.edlipse. emf . workspace
org.eclipse.emf . workspace. doc
org.eclipse . emf . workspace.e. ..
org.edlipse.emf. ecore. editar
org.eclipse.emf .teneo. eclips. ..
org.edlipse.emf.teneo. hiber . ..
org. eclipse,emf . validation
org.edlipse.emf . validation, doc
org.edipse.emf . validation.e. ..
org.eclipse.emf . validation. ocl
org.edlipse.gmf. runtime. nat. ..,
org.eclipse. drawzd
org.eclipse.gef
org.edlipse. zest

ara. eclipse, gmf
org.edlipse.gmf. runtime. nat. ..,
org.eclipse.gmf.examples.ru...
org.eclipse.gmf. doc

org. eclipse. gmf . runtime, sdk,
rkn erlines amf adl

f?ﬂa *ﬁ
CHALMERS 7¢

Page 132

While generating the Ecore MetaModel of the FMI XSD, a .genmodel file is created too. This file is the
main file which lets the user to obtain the Editor’s source files. As seen in Figure, when one gives the
generate all command to Eclipse, EMF generates the Editor source files of the corresponding .genmodel.
One can run the Editor from these source files. Exactly the same procedure has been applied to EAST-
ADL.genmodel for obtaining the EAST-ADL editor. Some modifications have been done to the source
files of the EAST-ADL Editor source files in order to obtain the desired Editor.

[8 ATU e esme s e Uit de B riptinn oo el - lipae B |
Fle Bt Mawigde Seach Froect Pun Gonsestor Compatbiity o kem e
e O QU oo - O Hgnles.,, T *
€ FMUCEAS T RACERT 0 € A s & aStecom 5! EAST-ADL_Foot.asd & FwossDesoption some 1 Ao g, peroede S Ouee | 1) Propect Exphes ={
v i e
Gaarabs Model Code
Ganerats E Code \& EASTADL Rock
A = & fndewrm
Severatn Ddtor Code 3 U® o
Salarite Tagt Lol % W R Systens Levary
et M = (= vodd
Open . + # PrNodelesirpton ecore
Cpen Poregn Models . 2 TeodeDescrpten gewodd
+ 15 e

+ LS tpdtsiseFe
PO & FMLCER 3
2 6E fea
L amcEas
18 ok

¢ e = 15 e
oy + B st ore
o Puste + 8 Feitodelésopton el
FMLCEAT 2o
X Oulutn X
mme " ey u
T o, K cupsamd
DA X ¥ oupszom
Datug &es ’ MCEAT _ATL_FLUSIN
Valddata MCEAR
Tean y 1 acipse v o) A angies DRI
Comparn Wil) Sgree 2w off Avangies DUbZo
Tacdacs Wt » + g adoie ndn o Fyues?
Wit ’ 4 35 org acioze i ¥ swvoie
+ W 250 _Fles
Satree
Shim Propeetses Wew
£ >
* froben B Comle O Brrariog ! [T Progerties 1 Progwm vl
Progerty Vb ~
A
Burcls Manfast e
Conglance Lews 650
Copreeght Pk o
Coppeight Teot _
Largoagm
MNodel Nave 2 FroModalDvesoriphon
N 005 M b " fadse w
A)
- Tulectad chimet: PrdtossDescrition

Figure C2.3

CHALMERS

3. Obtaining the Plug-in

First step to create an ATL Plugin.

Page 133

£ SAontel § %

“hnlper cemtexl FmilodsDescription ' fmifcalarVariabis def: poctResl: Socisan =
Af self csusmality *Ninput and netl xelf "lssl". ocllzUniefionsd() Lhen
AL not self. "iesl*. declaredType.oolislndetfined () Lhen
false
else
TR
eniif
wlae
2f welf.cauzslity =footput and nat self,"Fesi”,ccllaPndefined () then
A mot self.YPun Y. .deciscedType.collnlndesioed () them
tnime

else

-—%

O Fie & - <
Ty o pe | atmtoml) e, | 5 B ot et
Oeee A n.eecre ~n : - - ' gal =
o E e PATT-ATL Roet
[B L W fredenece
B v s # S mza
L] # S roskmeteidie
) # L Py
; O L o opeiis . % 1L pacea
b : type:: Srring Py £
& ;u..n * gmm
& #35 e
Corwert Lre Dekenters 1 ’ e
e Pliisuiady die e g '"‘“:.’-‘“-""‘"‘
L lldll Oer # 45 oy ackore nom. st meargles. cubc st
Saatich Workspeon ’ TeUndefined () then : 2 :mmmmuww.m
< + is g acipte rl ol sargle
3 ioa*.ocilsUndetinnd || them & @ 1D i
<) Bpt... =
1 tyodaDiascription gerend [eade...)
N, cn oo [Tead 1
3 Frodelecophion germods [FMEX, .)
[

| Glge S ety

(2 orobbene @ e 9 tivarlog | propene 11 Srigrwn.
Progerty

Vehm

2

Figure C3.1

M0

CHALMERS

Page 134

When the new ATL plugin menu opens, one can specify its name as can be seen below.

Tlus

| Af self.causality =HOULPST and MOt se1f,%Feal¥.ocllisUndefined|| Shem
AL N0t welf.Mieal” redType.ool {1 them
falss

Figure C3.2

CHALMERS |
Page 135

Finally, one can specify the ATL file in interest to create a plug-in. When finished, plug-in source files
have been generated by EMF. Additional modifications have taken place to these files for obtaining the
current plug-in.

@ A7 i Pl s 1 i e

it
T -0 Q- @4 Btk S v T &Aoo, & *
O PMCERR s (€ TC PMUSALA B aBtecrs | 5 EASTALL Root ud Dedpranl | 8 Frdoselesapen. |) T O e e Explesr | S0
aLiTiad Bocie ! Sas ficoam CEMUTEAN (Xig it L L Ll AEon ——— =5
; e\ " -
of SMI“-“ . w\p’!h!'-k’l Rock
= Fradeneve
madnle | ATL Launcher oo z s
Corfoue et pocsrsbers 4 c‘ J_L’WEUK"J
create i svanTA 3
WS raRra
a s LE soazeas
nedper | CIAT waetomstontie | EMCEATIRM.CERD 0l Workspae | |'c S5
M AT tsurchcondiuratioty .{ szraL
> PSTAY
el - MetanodelZAST £ ssasrar AT OGN
catkn| | FVUZEAT (st econe Bromss., ,.: AzIAS
L5 g mcipoe i o s sphes pubhclprivae
ka L arg eckue rdm ol auseghes mdlclprren
Hat o] Py e lion 1pt = .,: 2 ek v ol Fredaa?
kcaton| | FMUTAT Traodslweorctin acre i 1:'::' i sl
i v,
th
ond
endit;
helper 5 e ST, PSP SI T R
| @ e o (e
else
endis
else
AL welf.cousality =Foutput and mot self . "Fes ™, collsUndefined() then
AT not self . "Fenl" . declaredType.oolIslndeginad() then
else -
< > <!)
2 mrcteve (O Commche O Eworiog Tlmcperties 1 O hogyes | R
Propmrty Vew

Figure C3.3

CHALMERS

4. Obtaining the Executable

Page 136

After creating the plug-in one can obtain an executable of the plug-in. The first step to do this is shown in

the below figure.

20 THFMLI2E)

e Edt Nevigwe Shoth Poed Run Congatbity ATLES Windm Heb

| et B o & Amnten. &
= [Wabtecrs S ESTAU Rectwd | edpranl 8 Frdosbesapeen S0 oue | et Eagle 1T S O
‘ Chne Chlew l ==
| Ogesd Chiearsw /Fnifcde|Deasciprion, ecore an BNy "
;'n' 3 L | = i asrany Rock
I 3 * 7 fradenere
| B S da... = S
\ ¥ S rvrotectaivedrie
’ 3 peecriprions :gmmv
| =
‘ ' pricalarVariable def) type © Srring = :gm
' X 3() then = 1€ mazras
| 4 Retvezh s # £ scrar
Corat Une Dedewtars To 4 * (L magra
: hderined () then :.‘gm‘:"“‘"m
I
| P, Chrtep # 35 2y et v ot es sphes b prme,
Tch Warkipace . # 1 arp sk o o) s seghes e Tprve
‘ R TaUndetined() then 5 5 g ecvom ol fritnd?
—— = ;swmd.-ﬂ
| s Inport., >,
S <[+ 5241} then S
| et Adetrner
| tritocewsrpton germodel [fréds. .|
2 Fout o [1
3 PeiMedaiwsirgtion geceodel [FMITY . |
* FeidedelDestgpton eons [
[
“helper context FuiMode iDescription PmiScalarVarianle def: portBeal: Joolesn =
if self.osusality =¥input and net self,"Fesl",0cileUndatined || then
Af not welf,"Fesl" . declaredType.ooilnlndefinad(l them
falnw
else
e
endis
else
AL welf.cousality =foutput and mot self."Hes!™,oollsUndefined() then
if not self."Feni" . declaredType.oolislUndetinad() them
Ininn
nu- ~
<] - (@2 < - £}
5. rebbova ' (3) Consce | O Everioy| [Mrsparties 1 K Progess [&l B re=ah
Peopmrty Vem

3

| wertatie Treet

Figure C4.1

CHALMERS

Page 137

The second step is to select between some choices. For our executable, runnable Jar file is chosen.

@ AV TR A MO e =
Lo N y Geut " v T LI = "
T i B O Qe iR A | it o

(Clagesal [€ o D G REsa pasteam | B ESTAR Rokst | [aetond | 8] Fedbeoptin, "
— fpath Trilcdellesoription/ FRUZEAT/ Fnifode IDaact LBt 10N 200K
*/FAVIEAY/sillrt . ecore

-— fpach EN

wadule FWREAT;

create CUT 1 EAST from IN 1 hlmellﬂcrlm # L magra s
— + S e

‘helper content FyaNodeliDescription'FiBcald Solact) + (5 macras
AL not welf . "Fesi™ oolisUndetined () the Erort of 1 totun on seh i e Y file on the kel e ¢ #15 srcras
'EAFLOAT' % ,‘s
K = # 35 magear an s
Lt not self "Int=y=r", 001 Ia¥ndeting - N # 15 smoran
“”'un«n-szw ion »"' - 3 15 crp aciom nan o avengies scbbeTpriee.
o — ®§ aciome redw o) assegien poblcTperiat
1L mot self."Doclenn™. 001 TaPndd & & Garwred & .:g:: d" ,
EADCOLEAN' & & Mva S 15“'*"‘“""“"’“
s, S v e + 15 1Dt
AT mot self. "Envsecation”.d 5 devadec)
* ERUNERATION 17 R 145 e
elee # o Mug-n Developreant
EASTRING: & © RuryOubig
endit F o Tass
ondit & Toat
enais ER L

LR

“helper context FraModeiDescciption' Foilcald
A self.oausality =¥input and not selr
AT not self, "Fesl", deglaredType, oo
Iaive
clse

endit

elee
AT welf.causslity =Noutput and net ||) e ez] row (I

1T mot self.“Fanl", deolaredTyps

alu-. e
] - PO —— - A el -
o Tl il [0 B | 3 gt 2 L ongrst) - (&9
Proparty Ve
e Wrtabie Trmart 24:10

Figure C4.2

CHALMERS

Page 138

Final step in obtaining the executable is shown as below. First, the plug-in obtained for the ATL
transformation is chosen. Then the desired location of where to put the generated executable is specified.
Then extracting the required libraries into the Jar file is chosen.

@i t 1 Hiy
My 0'0"&’ [rer R & et -
1) FMLCEAS 1 [4) ke & %t tiom 5] EAST-AIL floot wsd 1) ourpndtnd * | FododelDesogtion, *
fpath ToilNcdelDescriptions/FAUZEAT/ Twifude Ilescript 106 #O0Ce
ath TAST=/TAVAEAT/adlct.woore
maduls FREZEAT:
creats OUT 3 EAST from IN : 'm|Mﬂ-:Iw-rr|qﬂ’Wﬁ ot =)
helper Dontext Ynlb:!-n-n:nw::nn'rn::nnh‘llgmwmwm
tf oot welf . "Eesl” . oclisUndefined () th % & Jova Aepleation’ lach corfipr atin to we bo creske 4 1 bhe 1AM
'EATLOAT' | n >
wlew |
1f not swlf."lecs ;-".ccll.’:ndulxn1 Laren configashor.
TEAINTEGER' o
ates FMLOEAY (1) - FAUDEAT_ATL UGN 1wl
AT mat Enlf."Noolsen”.ocllsGods| E0OTdastnston:
‘EABCOLEAN' || Colurteme togmwicpbc st on PYLSTAT 16 FM.CEAT s :_] Bromss..,
olan
1f mut self_ "Enureretioe®.d| ey hedeg
ENUNESATICN [(2)Ettact recamrwd lv aewn e guererdted W8
s ZASTRIRG 7 Pachage regawi ke anwe o genersted KA
endsf O Crgry rparnd Mwars i & w-fokder romat 20 the genecabed WE
wndif
Endif {| Csawm o ar soree
L TR &

helper context 'mub:lubcnuxpt:un'!nl!cod
Af self.causality *¥iuput and notl self)
1f not self. “Paal® declaredType.oe)

else
[e

else
AL self.coauwsality =Fourput amd net

if mot self.“ie ~.".ae:lueﬂ7w;4

) Cond - [eliewl)

else
<l)

| £ Probhers & Cormela ¥ Brrsrtog ! [Properties 0
Progerty

(3 Progrem

Vo

Figure C4.3

wd

01 @ Mgntes.. B "

= O EE Ouee |1 Proect Expes : -

]

B
3 S e

i tpte e

€ smcea s

6 e

+ &5 ey

+ 1% e

15 fcear

+ 15 PeET AT wan

28 sceas

3 org addpse nn o) erangies St
* '.:»; 00 o el o) ertegbes Pty
15 g acdpse v of Sxees)

* 15 cgactpse nin o savole

& 6 350 _Fles

i i

CHALMERS (3

D. Appendix D

3

&

1. Analysis of the current problems of the KTH tool

FROM MATLAB 2 ECLIPSE

Page 139

Case 1/ If we have a model(a .mdl file) that constitutes of only subsystems and "no connections” we can
save them as a .simulink file at Matlab and then we can open this .simulink file in eclipse with no problem
and we can translate it into a .uml file also. The conversion of the .mdl file to .uml file in this case looks

right.
| .
|i untitled *
Fie Edt Wew Smuzbon Fomat Took Hep
.'\—.F' N - had
DEESE L& QL rfu ped Y DEREE REES
ehicke foue_ok | Tk
AeRatemncs n_h by]
‘el pead o Tt
ek peed Braos Retemnce_(utp
Vehidelwanics
ekt Posiion Brebe®adalPoestion_ot_ Dt 3 Wb e
e
BuakePedalSercm
HEw
Brake fooqe_n fvetick e b Wi Speead ook Tt >
e pead Dt p
Wicl torpe Post
e 0t WahicdebpeedSensr
Whesl
A boz Pedelfastion i Reguested Braie Torue oot Ot
BrakePed:l ' T TR
BrabeCalcalatar
Requested e e in_n B Retemce ot Dt 3
by o] irlbecel speed_out_Dup
BraeCorballer WheelSgeedSensar
qreq. bonpee:_in bz o 2
Brakedeiuzton

Figure D1.1/ View of the .mdl file created in Simulink. Notice that there are several subsystems in the
system and none of the subsystems in the system are connected to each other.

STLILFIAN Y. | UL LIV Yy

CHALMERS

Page 140

le Edit Wiew Format Help

N EEH&| $ER(E 4|2 R

B

Port_0_In Port_1_0Out

SimpleSimulink

o Brale Rafaranos_n_In
Sahilole s pasd_ln Brabia Mafaiahos Ot

ikl #pmad_In

Clas=s_0

Port_0_In Port_1_0Out

Class_1

==

AR

Padal Pagitlon_out

apg

ra, targue_in braka torque_Dut

Brakafctuator

MrakslPadal

of Brake Padal Po sitlon Brgle Fedal Position_out_Out k.

Bral PadalPosition_n_In

Raduestad Bralo Tomue_out_out

FraksPadalSansar

BrakaCaloulator

Brloa_torgie_in
Witssl spesd Ot

Uihasl spead_lh

Selabiliole torgue_outd_Out

wishiols epemd_out_Dut o vishlols spasd _In

o shilola _targua_ln

Wihiaal

Rajuinitad Brals Targis_ln_ln

WahlolaDynamios

“wishilole Spasd _out_ Cut

WahlolaSpandSansor

Wialea Matarsns_ait_ Bt

el spaad_Iniheal spead_out_Out

Fralis Cantrallar

S S g

Figure D1.2/ View of the FunctionTypes.mdl file which all the subsystem blocks have been added.

T Simplesimuling uml

[f. Sirnplesimulink, diz

L Resource Set

- ,.‘.“ RO R AR S R RS S E G e TT SR CTIRITR U

Mol untitlec

o) e

Ty mbemn untitlecd

P System Haelarence ABS

e Syvetemnm RPefarence BralosActuator

O System Cirabke alculator

-~ Biralasconte oller

B Systermn Refersnce DrakaPecdsl

W Siystormn Roelorance BrabaiedalSenisor
W Smymtemn Relsrsmce

W Gystem Relforance VehilcleSpaadSansor
O Smystem Reference Whees!

W Siystemn Relference WheslSoeeod Sensorn

Systam A

O Inpert PirsbksR el srsoes e I
S anport Vehicle speed In

O Inpart Whes! spesed__In
Dot Birakes Belfereraces et
Sy sbenn Braleactuator

e Inpart recy, barcpues Tny

W auatport braboe Corgue ook
Sy mbem Birmbos Caleulatar

e Inport BrabkePedalPosicion in_In

W auatpark 12 i b A mbos Torcue ok«
Systerm Drabkesantralley

S ot ecuestecdBe alos T orcae ety
S kpart BraksRelsrsoces ot cout
Sy stam Braksiacal

O oatpart PedalPosition _cat
Sy stem BrakePaedalGensor

e Inport BraloePedalltosition i Iy

G Oabtpart raksPadalPasition oot ook

Systom VolhicleDynamics

Inport Whessl spisescd _ITn

Datport Vehicle torague ot coauk
Outport Vehicle spoewscd__out oot

<
-
.~

Selection | Parent [List | Tree | Table | Tree with Columns |

L L SimpleSimulio wuml

Figure D1.3/ View of the .simulink file(which is created by Matlab) that is opened in Eclipse. Everything is

in order.

CHALMERS |

=t SirnpleSimulink. uml f] simplesimulink. diz 1= simplesimulink, uml e SimpleSimulink. simul

= platForm: fresource/EAST_Examples_SimulinkExchange/Testl.uml
=-B2 <Madel> untitled
Q < (Class> SystemModel
= Q «Class=> AnalysisLevel
= <Properky = faa : untitled
—=-E0 «Package > FunctionalComponents
= Q <C|ass = untitled

<Property = ABS | ABS
<Property > BrakeActuatar ; BrakeActuatar
<Property > BrakeCalculator ¢ BrakeCalculakor
<Property > BrakeController : BrakeController
<Property = BrakePedal : BrakePedal
<Property > BrakePedalSensor : BrakePedalSensar
<Property = YehicleDynamics : vehicleDwnamics
<Property > VehicleSpesdSensor 1 YehicleSpeedSensar
<Property = Wheel : Wheel
<Property = WheelSpeedsensor ¢ WheelSpeedsensor
=B «Class> ABS

O <Port> BrakeReference_in_In : DataType_0

O <Port> Yehicle speed_In : DataType_0

O <Port> Wwheel speed_In : DataType_0

O «Port> Brake Reference_Cut : DataType_0
= Q <Class > BrakeActuator

O <Port> req. torque_In : DataType_0

O =Port> brake torgue_Out : DataType_0
= Q <|ass » BrakeCalculator

O <Port> BrakePedalPosition_in_In : DataType_0

O <Port> RequestedBrakeTorque_out_Out : DataType_0
= Q <Class > BrakeController

O «Port> RequestedBrakeTorgue_in_In : DataTvpe_0

O <Port> BrakeReference_out_Out ¢ DataType_0
= Q <Class > BrakePedal

O <Port> PedalPosition_Ouk : DataTyvpe_0
= Q <Zlass > BrakePedalSensar

O <Port> BrakePedalPosition_in_In : DataType_0

O «Port> BrakePedalPosition_ouk_Out @ DataType 0
= Q <Zlass > Yehiclelyvnamics

O <Port> Wheel speed_In: DataType_0

O TP) N O RO I S S SRR WA TAT. SR

s

i o o Y o

= Properties Ql Error Log 2% E Consale 'UJ SWN Repositaries C' Frogress

e Testl simulink

| *Testl,uml &2

Page 141

&1 BB, uml ! =8

E

BeXE=T"0

Figure D1.4/ View of the .uml file that is obtained by converting the .simulink file in hand. Everything is
OK which means(and also will mean the same in the below figures): The structure of the system and the
building blocks looks alright and complete. We have the right classifications of types and prototypes and
we have all the types and prototypes that makes up the system(If there are also ports and connections in
the system, all of them is expected to be in hand and correctly classified for the system to be called OK).

CHALMERS (#¢)

Page 142

Case 2/ If we have a model(a .mdl file) that constitutes of "subsystems that have connections" we can
save them as a .simulink file at Matlab but we can not open this .simulink file in eclipse directly. The
compiler complains about a variable "connections” that is in the current .simulink file created by Matlab.
When we have a look of the simulink file with the help of text editor we see there is a definiton of every
connection with that variable by giving a value to that. And when we erase these variables with their
values, the compiler stops giving warnings.Now we can translate the .simulink file into a .uml file. And the
conversion of the .mdl file to .uml file in this case looks right. We can see also all the connections which
seems right.(The modified .simulink file(it was obtained by erasing the "connections” variables in the
original .simulink file that is created by Matlab) of course does not work in Matlab now. Matlab does not
recognize this file and gives errors if you try to open this modified .simulink file as we erased some of the
variables in the original .simulink file that Matlab created in first hand.)

Flo Edit View Simulation Formab Tools Help
O =& %= i [Z0zr = |Naimal R < N

BrrakaContioller

Bialacaloulator BialaFadslSensor

i iy

Wihe &l 5 peads ensar

WahloleSpeadSensor

BraksActuatar et el
1)
Yahiolabynamicx
I

BrakaFadal

Figure D1.5/ A system in Simulink/Matlab. Note that the system has connections between the blocks.

Figure D1.6/ Function Types of the system

CHALMERS

Page 143

' MyEASTModelz. diz # | MyEASTModel1,uml fl *MyEASTModell . di2 i BBW. simulink £2

@ Problems encountered. Click the 'Details’ button For Further information

= & problems encountered in file "platform: fresource/EAST_Examples_SimulinkExchange/BEw simulink”

a FeaturelotFoundException:
a FeaturelotFoundException:
a FeatureMotFoundException:
a FeatureMotFoundException:
a FeaturelotFoundExcception:
a FeaturelotFoundExcception:
a FeaturehotFoundExcception:
a FeaturehotFoundExcception:
a FeaturehotFoundExcception:
a FeaturehotFoundExcception:

A Faah wablnbEonndFwranbinn

Feature 'connections’ not found, {platform: fresourcef/EAST_Examples_SimulinkExchange/BEw . simulink, 31, 148)
Feature 'connections’ not found. {platform: fresourcef/EAST_Examples_SimulinkExchange/BEw . simulink, 35, 145)
Feature ‘connections’ not Found, (platform: fresource/EAST_Examples_SimulinkExchange BB . simulink, 39, 159)
Feature ‘connections’ not Found, (platform: fresource/EAST_Examples_SimulinkExchange /BB . simulink, 43, 153)
Feature ‘connections’ not Found. (platform: fresource/EAST_Examples_SimulinkExchange /BB . simulink, 46, 148)
Feature ‘connections’ not Found. (platform: fresource/EAST_Examples_SimulinkExchange BBy . simulink, 50, 157)
Feature 'connections' not Found. {platform: fresource/EAST_Examples_SimulinkExchange /BB . simulink, 54, 154)
Feature 'connections' not Found. {platform: fresource/EAST_Examples_SimulinkExchange /BB . simulink, 55, 151)
Feature 'connections' not Found. {platform: fresource/EAST_Examples_SimulinkExchange /BBy . simulink, 59, 151}

Feature 'connections' not Found. {platform: fresource/EAST_Examples_SimulinkExchange /BB . simulink, &4, 165)
frlabFarm racriwra lF ST Fwvarmnlac SicndinbkFucrhanna!PRW cirmolinle &2 1200

Fazhiwa 'mannackione! mak Foond

Figure D1.7/ Errors that are taken in Eclipse side when tried to open the .simulink file created in Matlab

Al ensTiodeiz.dz | &) myEasTHodeluml | /g *myEASTMOdel! d2

T LS E ORI E U D= T U= L (U= LU LT (ad TW G =
1I5609b9-0d2e-47dd-ase3-17304992 682"/ >

i22d-7e6d-4975-b1f0-604e371e9e9b "/ >

"1a9ab61d-030c-473h-a94h-e5d94a507096" connections="//fparts.0/@lines. 3"/ >

|=] *BBW simulink. £3) BEW.simulink

-1277-4£59-Gabe-£7d3c2do1859" >
1-d63b-4e8e-85eb-5ce?1de78832 "/ >
1££84d-390e-48aa-95h0-535d2f8c8467" connections="//@parts.0/flines.4"/>

19b5-807d-4658b-bh43a-4430c3fed551">
uuid="8c110£10-4he9-4a0e-bE16-ch510d7280h80 "/ >
171" uuid="h520a94h-dhec-4071-518c-8ec?5hickh3 14" connections="//Bparts.0/0@lines.6"/>

hdl-geef-4he7-8130-4afalbeSh o6
" yuid="eadf9534-biaf-4492-beib-6eT1061E£cIL" >
mid="71805893-987c-40fd-aded-a58645d242af" connections="//Apart=s.0/@line=.0"/ >

Ifh4-b341-add9e5d1531am>
tag7fchd4-9f81-4ff4-9ace-c4d44838c9a7" connections="//Bparts.0/0lines. 7"/ >

:85aee-4boe-4a7a-9459-89f4572 7ed08 ">
uuid="92874d7c-83ac-4c07-8765-d387271358934"/ >
1 uuid="9d73kh91lec-eefe—4d21-al76-eal994£38353 " connections="//fparts.0/@lines.5"/>

yfdd-5ad4-40cf-97e5-953eedc3309de ">

i3ce7-3772-4dea-584e2 -e9a671a15339"/ >

uuid="9aSh2837-82b9-4387-91958-2ab2613£c058" connections="//Aparts.0/@lines.9"/ >
1="10ac9314-ef3if-471b-h155-653caedd4ieTe” connections="//@parts.0/Blines.10"/>

Mez799bhh-£700-40ab-96d53-0387co 92 6afd s
i41688a-Tdd2 -4721-b312-6a51fashobf1"/ >
d="acflbe22-2c07-4fe5-95f6-d2011£d3584e" connections="//Hparts.0/@1lines.1"/>

14294 2650d5 "

16-3992-4had-5c53-aleaadfeheca/ >

icBed-efTe-4dde-b54bh-hE£d193h0d6e0"/ >

jec65-0729-4d0e-52h2-343e40adb7e5" connections="//fparts.0/@lines.8 //fparts.0/@1lines.11"/>

4 LY

Figure D1.8/ The "connections” variables in the .simulink file created by Matlab that is complained by the
Eclipse compiler can be seen in the most right

I Mn.la

CHALMERS :r

_'I =i--r
e
1»41.51»;:4. 42 @ MEASTMcdel und fl-mmMLw sk | BEA sk
LTI U] A Tu- Selus=uUIsyIuu=a1ma iy » i~
116 7as ..l.] uuid="a98 p9-Ddle~-47dd~aee 3~ 1TIc4952e68e" />
102)" uuid=vas 247 4975-B1L0-604¢3 7109650/ >
y » 48 405 621" uuid="1afabi61d-030c~-47Ib-a94b -2 5d94a50TH06" />

" guid=~0dellaad-1277-4r85-8abe~274302d5188¢
Y yuide*@obeath~déib-4defa-85eb-5ce71d

i S2)1Y wuld=Tehh L fB64d-) S0« -46an-9500-5

faloulator” wuid="ObllaSbd-807a-4968b-b43a-9430c3edss5L"
AP0 103 140 117" yuige"Bcl10010-4bER-daDe-bE18-cb5104726DEM "
anition=*[360 103 380 117)" uwiad*"b520a94b~-dbec~-4071-818c-8acT500ch) 14"/

Wonereller” uuid="7eé27bdl~fect~-4beT-8130-9afalbéSb7ea"
tlon*"[110 10) 140 1:17] ™ uuilde eadr9sSid-blat-4482-lelb-6e7106111C
nAY[360 103 300 117)" unid="71605803-987c-40fd-nded- w53 6454242 n1"/ 5

* uuida-

160 10

ab04r4l-ae50-4rbd4-bi41~addSe5d153 1a"
) 117" unidn"aBTrchadd ~ 9B AL CA~Tace~cAd44ESECIaT"/

nsor” uuid*"boabbase-4bSe-4aTa~-9459-0919472 Ted00”
on="[110 103 140 117]" uuid="952874d7c-0)ac~-4c07-8768~d307T27130534"%/>
Metion*"[160 103 390 117]* vuld="9d7inSic~eefe~-4a2 1-al7i~ea0994238

anice” unid="03%eifdd-0add-40ct~-37eb-93eedcd)09 ">
785 J6T7)" uuld="bD56)oeT7-3T7i-4dea~-04el-eFa671415333"/
[655 188 S8E 202)" wuid+"9aShigl7-a8 4187-3 8

10 A8 740 21" qulde*10acOitd-alit-4T hi1s§5s

aeddiaTe”/

thicliefpeediensor” uuid="Tel7950b~£T00-40ab~-36dB~030 sadq”
103 140 7] " wuid="2841688a~-Tdd2~4721-bI12~6a51LaE0SLLL"/>
HI360 103 390 1171 uulde"aofibeZ2«2c07-41c5-0526-d2011 13584/

viS0cZa~-cr0d~4rdc-bbLt~-h429 s0d5™
8 T0 AZ] ¥ uuld="TcBoeéaf-31589~dpad-BoSi~aleaadtehech” />
| 88 55 1021" uuid=*TdfdcBel ol Te-4ddé-bidb-bEd1F3b0ddaO™/

43 375 571" yutd=*indBecdt-0728-4d0e-82bR - 343 e40ndb Te S Y/

Figure D1.9/ View of the modified .simulink file after the "connections” variables are cleared

R rvenstiodeizdz |/ MyEASTModsl diz [l egw.simuink | 4 BB

@ platform: fresourcef/EAST_Examples_SimulinkExchange/BEw simulink.

Ohject Self
= <+ Model BEW < Model BEW
<+ System BEW <4 Swstem BEW
(= 4= System ABS <+ System ABS
<+ Inport BrakeReference_in_In < Inpart BrakeReference_in_In
<= Inport Yehicle speed_In <+ Inport Vehicle speed_In
<+ Inport Wheel speed_In < Inpart Wheel speed_In
4 Qutpork Brake Reference_Out 4 Outport Brake Reference_Out
(=) < System Brakefctuator <> System BrakeActuator
<+ Inport req, borque_In < Inport req. borque_In
4 Qutport brake torgue_Out 4 Outport brake borque_out
(=) < System BrakeCalculator <> System BrakeCalculator

<+ Inport BrakePedalPosition_in_In <+ Inpart BrakePedalPaosition_in_In

< Cutport RequestedBrakeTorque_m <& Outport RequestedBrake Torque_,..
=) < System BrakeController <4+ System BrakeController

<+ Inport RequestedBrakeTorque_in_1 < Inport RequestedBrakeTorgue_in_In

< Cutport BrakeReference_out_Out 4 Outport BrakeReference_out_out

=) <= System BrakePadal <4+ Systemn BrakePedal
4 Qutport PedalPosition_out 4 Outport PedalPosition_ouk
= <+ System BrakePedalSensor <4+ Swstem BrakePedalSensor

<= Inport BrakePedalPosition_in_In <+ Inpart BrakePedalPosition_in_In

4 Cukpart BrakePedalPosition_out_cn ¢ Outport BrakePedalPosition_out_, ..
=) < System YehicleDynamics <4 System VYehicleDynarmics

<= Inport Wheel speed_In < Inpart Wheel speed_In

4 Qutport Vehicle torgue_outl _Out < Outport Yehicle torque_out1 _Out

< Outport Vehicle speed_out_Out 4 Outport Yehicle speed_out_Out

= <= System YehicleSpesdSensor <4+ System VehicleSpeedSensor

<= Inport Yehicle speed_In < Inpart Yehicle speed_In

< Outpork VehicleSpeed_out_Out 4 Outport YehicleSpeed_out_Out
= <+ System Wheel <4+ System Whesl

< Inport Brake_torque_In < Inport Brake_torque_In

<= Inpaort Yehicle_torgue_In <+ Inpart Yehicle_torqua_In

4 Outport Wheel speed_Out 4 Outport Wheel speed_Out
= <+ System Wheelspeedsensor <4 Swstem WheelSpeedSansar

<= Inport Wheel speed_In < Inpart Wheel speed_In

A "wibrerk Wheal cread sk Mok S Pkt Whaal craad Aok Caik

Figure D1.10/ View of the working .simulink file after the modification. Everything seems correct.

i
(=130 “Model = iaw
[«classs systemMadel
] wClawe s Analysistavel
I wProperty » faa | BBW
= wPackage = FunctionalCamponmnte
i H “Class > DAW
L] =Claww s ABYS
W wPort s Brakeleterence_in_In | DataType 0
wPork s Vahicls spmecd I DataTypm O
W wPort s Wheel speed _In | DataType 0
N wPorks Oralos Raference Out | DalaType 0
Ll wclnss s brakenctuator
W Park s ey, targue In | DataType O
W wport s brake torgue_Out | DataType 0
=] eClans s Brakecalculator
Wwport s prakePedalFasition o _tn | Datatype 0
W aPort s Pecuestediralee Torgue ot _out | DataType O
[l wclase s brakacontroler
W wPork s Regquestedirale Torque _in_In | DataType 0
WwPort s Brakeleference_oul _Oul | DataTyps 0
I] wclases pralepPedal
WwPort s PadalPayition_ Out | DataType 0
b wclass > BrakepedalSensor
W wPork s BrakePedalfosition o 10 Datatype O
W wPort s BrakePedalPasition _out _out | DataType 0
=] wClanns Vehiclabynamics
W wport s Wheel speed_In | DataType 0
W wPork s Vehicls bareue ot] Oul | Datatype O
W wPort » Vehicle speed_out_Cut | DataType 0
] <Class > VahiclngipesdSwnsor
wport» Vehicle spoed_In | DataType 0
WPort = VehiclnSpmed_out_Oul | Dalatype O
o] wClags > Wheel
W Porh s Bl Lorgum 10 Datalype O
W wPort = Vehicle _torque_tn | DataType 0
WPark > Wheel speed_Oul | DataType 0
=[] <class s Wheelspeedsensor

Page 145

Figure D1.11/ View of the .uml file that is obtained by converting the modified .simulink file. Everything

seems OK.

m

Pt Deng Dwitm ks et
D' 28Q9v dan
WU 2y bt b A5 AR b
Laniant Faldes LB AN
e e+ s P8

. o

Bt sbeCaiine wb
CohoCart~ie

]

,IIM‘ -

oo rew

£ etz

[vt s s T
(ro demptor wralabvl

| W Cuam b C O

ie

)

» e

) b b2 MATAST Wanch b Sl e Qs w read Gatting Mrted

} IAVA AROATSEDe

ol

narsed

Jwsn. inag.NuliPsiararEarape som

«
o4 cthoml

-

o K A0 AR AN 0 i O B L AL R, JEMPE TR g . & I ad FDURAROE , PR
-

B B B e g T B S TR L L]
.

T e i LIRS LA P AR RS e Jind b i P () A PO B Red
-

B LT L L LT L e T L T T T T T S e T BN T T B I TR |
-

mo kthoml et LS rutmege Pt ICOIPET S10N . SLL IR, FTEFEOte T iing JemheEftareIoce reeet
-

ou . xth w22l Lok gy . pede 10TIreT Link prepecceroing SymteedroceIvte . pesoe
-

e thml g we | Lk ycbarge . pede ICTIPET PLON . FUL LK. FEOFCITRTE Ing. AyEteed rrresasc. dale |
.

wa_th. w2 1ma 1 LR AEDe e | CIITRT LN, FIAMLIRR, FrRFeocEning . Sode () ErCeasoD . races
wa rthomd 23kl ERETEAEOY . per | LonraTaian, EInULIAR., JrapeoTane ing Azde LFrocesect . Anlt (N

L

Lim

Leene An we)

¥oE dn = al

R e

Lineelrotesedt.

A KIAULIAK, FEAFCOTAERILG el

pMEERat, Bl
e imentel] :

nAtos Pels Ao
de 1P roceasor .4

LI ST

a

RorccimtoRade i limarcibet Tasaliie = W0
I 2

castemsaar oo 1 iede et ipen wr 101

MadelCramtorfme , Comm? i L | Sullss be |pas S, €L nnmmm) |

~ 2

Morbpoce
£ B L L)

| Move «

£

A
|G sect et -
Yéu) [
102 S g Sedxe »
T Coruomers ard St

s

3

-
i SR)
Ecocelrentos . froaliied T
Toote_tald
Clasabatidettar |
Pode [Creatie fromfLle(
il ik
oleoe =il
wlaes wil
Bodellreetcc. Szl el ©
slend wil
Eoaew_Ixix
TlasaPatbiesien |
Bocellrwetoc. tyead ling ©
tlees wil
score_txit
jwrnclnzoynch

- - Ad-eeg) o d

17 sz

O/

scacw_imir
Ssiline
<le

I;l

[F—y

Figure D1.12/ View of Matlab Command Window when trying to open the .simulink file that is modified in
Eclipse by clearing out the “connections” variables and their values

CHALMERS (5%

Page 146

Case 3/ If we have a model(a .mdl file) that constitutes of "several same subsystems(severeal prototypes
of the same type) which every subsystem have some connections with the others" we can save them as
a .simulink file at Matlab. This case does not work correctly neither if we try to open that .simulink
file(where we erase the .mdl file in Matlab to check if the same .mdl file which is used to create this
.simulink file is created) from Matlab side again(where doing this is equivalent to create the .mdl file of the
.simulink file) or from the Eclipse side.

When we try to open this file in Matlab, we lose the connections of the additional copies of the same
prototypes(subsytems) with the others where only just one of the prototypes have the connections.In
other words we only have the connections of one of the same typed prototypes and the other same type
prototypes lose their connections.(In the Case 1 and 2 nothing was wrong when we re-open the .simulink
files created in Matlab. There was no difference between the .mdl file created by this .simulink file and the
.mdl file that created this .simulink file)

When we try to open this from Eclipse again the compiler complains about the same variable. When we
correct the errors again as we did in the 2nd case, we can again convert the file to a .uml. When we
make the convertion we have a model in hand that only has the connections of the same typed
prototypes as it was in Matlab side. Everything seems OK other than the connections but.

¥ BEWZ =JOE
Fie Edi “em Smulstion Fommat Took Help
hesHdS o =] 00 [Homa ~ HER& REEs®
- RequestedimoeTongue_in_in BrebeRedoonce ot 08 —7838 5™ ———————————————— I-.Bi—:efslzl’m.—.—_ ma_in_ln RequestedBrakeTonue_pat_ Dt - — BrakeFetzPossion_n_in Fakeferziase :'_::_l]j:J
BrabeC omballer BraeCaloulster BizkzFadalSerser

I

|-}312P.e15m>e_-_h j

e ehicie spead_In Erzuz Refermce_Dm FequestzdBrakeTorges_in_ln BrakeRetermcs o Dt
L e Pedal Frsitor_in_im RequestedBrabeTonue_po_Ju

e Wibened speed i

BuabeCalzalaion ’7 MBS BraeCerballzr
| Wheed speed_m l’_'k-(lq:és(_::_EJ:J
WheslS pesdSersn
reg borgue i braletague Dt i— e Bl fongue_in
‘iiyaal spead_Oe i
o wkhicke tores_k
ErdeActuatar —Plikhicle speed _in \BlickeSpeed ot Dut
Whesl
Yoha bl B pe2 e 252 resn
wihicle tomes_sel_ D
- imezlznzad 0
‘weticke spead_ow_e
Wehighe [hmamics
Pedal Fesition_Cut
ErdeFedd
L tiehicdz speed_in WEficieSpead ot Dot H

WahideSpeedSense]

At 1 et ~Lac

Figure D1.13/ View of the designed system in Simulink. This system has several prototypes which are
same type. All the prototypes are connected to each other.

5

iy
CHALMERS (7

-

=

Page 147

| ¥ Testz,uml | # | vehicleModel, uml | W, uml | 2 &
I Resource Set

.l =l < Sysbem BBWZ2
System Reference ABS
System Reference DrakeActustor
System Reference BrakeCalculator
System Reference BralkeCalculator i
System Relference BraleController
System Reference BrakeController1
System Reference bDrakePedal
System Reference BrakePedalSensor
Systam Relference YehicleDynamics
System Reference VehiclaSpesdSensor
System Reference VehicleSpeadSensorl
System Reference Wheel
System Reference WheelSpeedSensor
Line unnamed
Line unnamed
> Line unnamed
< Line unnamed
< Line unnamed
S Line unnamescd
© Line unnamed
“ Line unnamed
* Line unnamed
© Line unnamed
© Lt unnamed
> Line unnamed
Il O Syzstem ABRS
4 e System BrakeActuator
System BrakeCalculator
e System BralkeController
e System UrakePeds!
W e System BrakePedalSensor
* - System VehicleDynamics
O System VehicleSpeasdSensor
e Sysbem Wheel!
e Svstem WheslSpeedSensor

P4t eeee

Figure D1.14/ View of the .simulink represantation of the system opened in Eclipse(Note that the needed
modification done to the .simulink, which is created in Matlab, that is done in also Case 2 hasn’t been
shown). All the subsystems are in hand.

W Testa uml | W] VehicleModel,uml | W BewW, uml | L) BewW uml
Loplmb ot femmourcs EAST Dmnormbembor BrabsBy Wirs /BOW e aml
R Mol s w2
L] wClame s SystwmMaodiwl
WL wClane > Analysivievel
S e kage s FunctionslComponsnt e
] wClaee = pEwe
I «Praperty = ARS | ARS
I wropery s« BraleActuaton | BraleActuator
W wPraperty = rakecalculator | BrakecCalculaton
Wl wProperty > Brakecalculator i | Brakecalculator
W wProperty =« frakecontroller | Brakeconty olle
W < Property = brakecController) | Brakecontyoller
I < Praperty s trakePedal | BrakePedal
W wProperky = DrakePadalbensor | DrakePadalbensor
I wProperty = VehicleDynamics | VehicleDynamics
W wpPrapeity = VehicleSpeedsensor | VehicleSpesdsensor
W wPropmrty = VehicleSpmecdSensor 1 | VehicleSpmecdSensor
Wl wPrapetiy = Whesl § Whes|
I = Prapmrty = WheslSpmedSensor | WheslSpeedSensor
A wCannmekor s unnsmeed
A wCannmebor s unnmmmed
AT wCannmebor = unnamel
AT annme ot sounnminedd
A annmebor souannamed
AT wConnmetor s unnaimed
Sonmscbor s ounnamed
A onnector s unnmimed
A wConnector s unnamed
A cConnector s unnamed
A Connector s unnamed
W wConnector = unnamed
| wClags» Aps
| wilass > DrakeActuator
| wClass = DrakeCaleulaton
| wClmme = trakeconty ol
|
|
|
1

EEFPFEEEFEEEST
2

S lmnn s DrabePecdal
S e s D abmPedslteneon
A mnn = Vehiclmbyramics

|
|
|
|
|
|
|
I

ddlanak Llukialate s dtanan

Figure D1.15/ View of the .uml represantation of the model. Everything seems alright except the
connections. There are only 12 connections in the .uml file where it has to be 18. This is due to the fact
that, only one of the subsystem’s connections are included among the other subsystems that are typed

by same type. There were 3 same typed prototypes which had totally 6 connections which is not included
in the current model.

f?a'a *ﬁ
CHALMERS 7¢

4 ¥ BBW2
1 Fe Bt Yem Sebion Fomst Took Hep
DzHSE i PR DD Ko S HsRhéE pEEeE
h J
R dbckeTosque in_in Bred ot Oue Brsiz FedalPrssion_in_in RequestedBrabcTorpue o _Dut o i EbeRedeFosition_©_n BrakzPeésiPocition ot Oae
B ErazCovbuli Budelalealater EvaeFedaliensol
[
B fiamnes n_in
i ehicke spesd] Grabe Reterenes_ [- W Reqenedi=eTipe_n_n BrebzReteence_our_ Du p
¥ BrakeRadalFasition_in_in RequestodBabe Torgue_ou_Dex
Lp{besl speed in
Bz Cal cal ot L:1 ErakeCowbalier]
P el spead In iheed spesd_par_ Dt
WheslSpeeiSenso
eegomes_n bectoge G ——————— e Eoke e
Whed spesd Dut
vz tore I
Brakefichztor polhti i . o e}
Wheel
VehickSpeedSansar
“dehicle torgue_out1_Oe
TN EES
‘wiicle speed out Dut
Vehidelynamic
FedalPosiion_Dut
BrafePedal

AhEhic: spesd I “viliciz Spead_oul Dt b

VehideSpecdSeasor]

Figure D1.16/ The view of the .mdl file that is created by the .simulink file in hand. This .simulink file is
supposed to be the representation of the .mdl file that it is created from but notice that we lost the
connections of the 3 prototypes. This is because, in the system there are other prototypes that are typed
by the same type. So when the .simulink is created from the .mdl, all the subsystems are included but not
all the connections.

CHALMERS

Page 149

Case 4/ If we have a model that is similar to Case 3 but without any connections, then everyhing works

fine.

_

Flo Tt Ve Trwdstion Fooer Tooks Helo

DS BN R > S S T (T dRMBEE . REREES
Vb voroe_sa|_O b
A b atararen W WA e spnd N |
At st Poahe Retwars O b T Lt
a0 b Adtd dpand b ¥
A
DianaP ed G ancal
Sbe ympe Nt spradt b O
Wtwel spant_Ona b
f (TERp———
eteiaiogiad ¢ Vehiclespanttans
Wl
Brsheludal M. L R T
WramaCatcatniay
A nererteetraty T - o Brwes Netwmrcy_we_0t
Whewt sptnd_W¥hew peed_se O b
[Whasitpendteenst

v 1 beden tomque_Tux
AAbeche tee_pet O Digecicts oot
ey moven b1 sk vieipn_Out (PO Mt swd_ibaet spend_cut_0
Vet spe_ O
Dissanctsmnors Vel sOwnervenet WhaslDoeedGencort
Figure D1.17/ View of the system in Matlab side

Lan ’- Lunuueina yp=a

le Edit View Format Help

IEEE YR 91 0 mnBE

E Fart_0_In Fart_1_ut Fart_01_In Fort_1_0ut
SimpleSimulink
Class 0
Class_1
e a
|-, | e P e
A et - e et 04 Load
"t gt v
Caateie
o
oy et 1 o o P PP

L v [ISErrRErr-—. SSiSsninni

- PE——— u?
hemad o HASO w-.——t_-_ln} i gt > -t 2 e
e oy J - - C
—ee [T T—
I B b
Wt sttt el na_4
[IEpre— [Ty ——
L
e e A

Figure D1.18/ View of the FunctionTypes.mdl in Matlab

pow

- ..

CHALMERS (3¢

I SimpleSimulink, diz

- Resource Set

1= simpleSimulink, uml e SimpleSimulink, s

1w platform: fresource/EAST_Examples_SimulinkE:xchange/Test2 simulink

<+ Model untitled

= < System untitled
4 System Reference ABS
4 System Reference Brakefctuator
< System Reference Brakefctuatorl
< System Reference BrakeCalculator
< Svskem Reference BrakeContraller
<> Svskem Reference BrakePedal
< System Reference BrakePedalSensor
< System Reference YehicleDynamics
4 System Reference YehicleDynarics1
4 Syskem Reference VehicleSpeedSensor
4 System Reference Wheel
<= System Reference WheelSpeedSensar
< System Reference WheelSpeedSensorl

G A G A 4 A o4 4 4

o [[[e M M o O S B

Syskem ABS

System Brakedctuator
System BrakeCalculator
System BrakeContraller
System BrakePedal

System BrakePedalSensor
System YehicleDynamics
System YehiceSpeedsensor
System Wheel

System WheelSpeed3ensor

Page 150

Figure D1.19/ View of the .simulink file of the model opened in Eclipse. Everything seems fine.

—

—

7 simplesinuiink. diz
= platform: fresource/EAST_Examples_SimulinkExchange/ Test2, uml
=-E= <Model> unkitled
Q < Class> SystemModel
+ Q «Class> AnalysisLevel
=1-F3 «Package> FunctionalCompanents
= Q < Class> untitled

O I O O O = O = B 3 R

1100 1

s

00D0DDCODODODDOOOD

|= SimpleSimulink. uml el SimpleSimulink. simul T

=Property> ABS | ABS

<Property > Brakeactuator @ BrakeActuator
<Property > Brakeactuatorl : BrakeActusator
<Property = BrakeCalculator @ BrakeCalculator
«<Property = BrakeContraller : BrakeConkroller
<Property = BrakePedal : BrakePedal

<Property = BrakePedalSensor : BrakePedalSensor
<Property = VehicleDynamics | VehicleDynanics
<Property = VehicleDynamicsl : YehicleDynamics
<Property > VehicleSpeedsensor | VehicleSpeed3ensor
<Property > Wheel : Wheel

<Property > WheelSpeedSensor ¢ WheelSpeedsensor
<Property > WheelSpeedensorl : WheelSpeedensor

<Class= ABS

«Class > Brakedctuator

«Class > BrakeCalculator

<Class > BrakeController

“Class > BrakePedal

<(Class > BrakePedalSensar

«Class> YehicleDynamics

«Class > YehicleSpeedSensor

<Class = Wheel

Q «<Class > WheelSpeedSensor
+-F0 <Package> Datatypes

+ platform: fpluginfcom. cea. papyrus.uml4east adl. extension/modelfeast adl. profile, uml

E pathmao: SUML PROFILES/Ecore.orofile, uml

Figure D1.20/ View of the .uml file that is obtained from the .simulink file of the model. Everything seems

still fine.

CHALMERS (24

o i_'.':_i-_-.: o

Page 151

FROM ECLIPSE 2 MATLAB

Case 1/ If we have a Functional Analysis Architecture that does not have connections but only Prototypes
which have ports, no problem is experienced through creating the .simulink file from the Eclipse side and
opening that file from the Matlab side. Everything seems working and correct.

(SimplaSirmuling:: Package 1)
SimpleSimulink

Property_1: Class_1 [1]
|:| Port_0: DataType_0 [1]

Property 0: Class 0 [1] Fort_1: DataType_0 1]

|:| Port_1: DataType_0 [1]
FPort_0: DataType_0[1]

Figure D1.21/ View of the model that is created in Eclipse. Note that this model has only 2 prototypes
and several ports but no connection.

4 BB, simulink # | BEMY.uml fa% BrakeBy\Wire, uml £ SirnpleSimulink

) Resource ek

e platForm: fresource/EAST_Examples_SimulinkExchangeSimpleSimulink, simulink
= < Model SirmpleSirmnulink
=< System Simplesimulink
< System Reference ssFaa
=l <= System Class_(]
< Inport Port_0_In
& Qutport Port_1_Cuk
=< Swstem Class_1
< Inport Park_0_In
& Qutport Port_1 Quk
< System SimpleSimulink
< System Reference Property_0
< Syskemn Reference Property_1

Figure D1.22/ View of the .simulink file created in Eclipse. The representation seems alright.

CHALMERS

Y

b

oy

L

SimpleSimulink

Port_1_Cut Port_0_In

Port_1_Out

Class_0 Class_1

BrakeReference_in_In

“wihicle speed_In Brake Reference_Cut BB
ihesl speed_In
ABS
req. tarque_In brake torque_ut Brake Padal Position Brake Pedal Position_out_Out
BrakeActuator

BrakeFPedalZensor

Page 152

Pedal Pasition_Out

Brake_torque_In wishiche torque_out1_Out
WMiheel speed_In
Wiheel speed_Out wihicle speed _out_Out
wehicle_torque_in WehicleDynamics
theel
FequestedBrakeTorque_in_In BrakeReference_out_Out

BrakeContraller

BrakePedal

Brake Pedal Position_in_in

RequestedBrakeTorque_out_ 0wt

BrakeCalculator

“wehicle speed_In

“ishicle Speed_out_Out

WehicleSpeedSensar

Wiheel speed_Iniitheel speed_out_Out

MWheelSpeedSenszor

Figure D1.22/ The functiontypes.mdl file. All the building blocks of the model are added(Class 0 and

Class 1).
' SimpleSimutink
File Edit Wiew Simulation Format Tools Help
b =zES = b = [100 [Homa - s @S REE®
[T——
"
==Faa
Part_0_In Part_1_Cut Part_0_In Part_1_0ut
Froperhy_0O Froperty_1

Figure D1.23/ .mdl representation of the .uml file which we begin with. The conversion seems successful.

Page 153

Case 2/ If we have a Functional Analysis Architecture with Prototypes that has connections with
eachother, no problem is experienced through creating the .simulink file from the Eclipse side and
opening that file from the Matlab side. But the .simulink file created in Eclipse does not hold the
information of the connections so that the .mdl file created in Matlab by this .simulink file. So we do not
have the connections in Matlab side.

]
(SimplaSimuling: FPackage_0)
SimpleSimulink

E A
Property 0: Class 0 [1] Port_1: DataType_0[1] Property_1: Class_1 [1]

I:i sfunctionConnectars D Port_0: DataType_0 [1]

|:| «functionConnectors D Port_1: DataType_0 [1]

Port_0: DataType_0[1]

Figure D1.24/ The same model that is designed in Case 1 with the additon of 2 function connectors.

/1 MyEASTMadel2. diz /'I *MyEASTModel.di2 /1 ErakeryWire, diz

L Resource Set

= iplatForm: fresource EAST Demaonstrator_BrakeBywire Simplesimnulink, simulink
=l <= Model SimpleSimulink
= <+ Swstem SimpleSimulink
< System Peference ssFaa
=< Swstem Class_0
< Inport Pork_0_In
< Outpork Pork_1_Ouk
= <= System Class_1
< Inport Part_0_In
& Qutpork Pork_1_Ouk
=l <= System SimpleSimulink
< System Reference Property_0
Y < System Reference Property_1

Figure D1.25/ It can be seen that same .simulink file is also obtained from this model which is not
expected. The connections are missing.

CHALMERS (%)

i

Page 154

E= I TN RS 1 Rt L s w0 rapyius

b5 =t

P easvodelz.dz | yEASTMOdelt diz |/ Brakegywire.diz |/ SimpleSimulink.diz | B SmpleSimulink.simul | =] SimpleSimulink,simal £5 16

<?¥ml wversion="1.0" encodihg="IS0-8559-1"7>
<gim:Model xmwi:version="zZ.0" xmwlns:xmi="http://wvww.omy.org/IMI"™ xmlns:sim="http:///ge.kth.wd.attestZ/3imulink/3.0"
<parts name="Simpleiimulink"” simalinkNamwe="3impleSimilink™ filename="3imple3imulink.mdl™:
<children name="ssFaa” simulinkName="%impleSimulink/ssFaa" target="//Eparts.3"/>
</partar
<parts name="Class 0" simulinkMName="Class 0" filensme="Class O.mdl™>
<inports name="Port 0_In" simulinkName="Class 0/Port_0_In"/>
<outports name="Port_1 Out™ SimulinkName="Class_DfPDrt_l_Out"f>
</partax
<parts name="Class 1" simulinkMName="Class 1" filensme="Class 1.mdl™>
<inports name="Port 0_In" simulinkName="Class 1/Port_0_In"/>
<outports name="Port_1 Out™ SimulinkName="Class_lfPDrt_l_Out"f>
</partax
<parts name="Simplefimulink"”™ sirulinkName="ZimpleSirulink™ filename="Iimple3imulink.mdl™:>
<children name="Property 0" simulinkNawe="3impleS3imulink/Property 0" target="//Bparts.1"/>
<children name="Property 1" simulinkName="SimpleSimulinkHPererty_l" target="//Bparts.2"/>
</partax
</zim:Model>

Figure D1.26/ It can be seen that there is no description or specification about the connections when
opening the .simulink file by text editor.

' SimpleSimutink *

File Edit View Simulation Format Tools Help

L =eE&E = 3 hDD |Nmma| _:J O g [58 REE®
==Faa
Port_0_In Port_1_0ut
Port_0_In Part_1_0ut
Froperty_1
Fropery_0O

Figure D1.27/ View of the .mdl obtained by the model. We don’t have the connections.

