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Abstract
Localisation of the vehicle is one of the most important part of autonomous driving
and can be achieved in many different ways. Most autonomous vehicles today are
not able to navigate in complex environments, for instance snow covered roads or
heavy rain. This thesis proposes a method for localising a vehicle using LiDAR and
Camera fused together with INS and GNSS. The method is intended to work in the
complex environments mentioned earlier. The system consists of a vehicle equipped
with a 3D scanning LiDAR, a forward looking camera, a combined INS/GNSS unit
and a 3D map over the area of interest. The LiDAR and camera are used together
to measure distances to points of interest in the 3D map which are then used to
triangulate the position of the vehicle. The position from the triangulation is then
fused with INS and GNSS in an Ensemble Kalman Filter along with a motion model
of the vehicle to estimate the position of the vehicle. It is concluded that the system
is promising with a mean translational error of about 40 centimeters which is a good
result considering that DGPS has about the same accuracy.

Keywords: LiDAR, Camera Features, Ensemble Kalman Filter, 3D Point Cloud,
Localisation
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1
Introduction

In the wake of the rapid development of technology more and more things in society
and our lives becomes autonomous. A topical subject of today is self-driving cars
which currently already are on the roads in real life testing. In the world’s first large-
scale autonomous project, by Volvo Car Group, 100 autonomous driving cars will be
used by real-world customers this year, 2017 [4]. Autonomous household appliances,
such as robotic vacuum cleaner and robotic lawn mower, are becoming more common
for taking care of our everyday work. For a mobile autonomous agent that can move
freely it is required that it knows where to move and how to do it. It must have the
ability to move from one place to another and handle all the unexpected scenarios
that may appear along the path. To achieve this information about the surrounding
environment and the current position is essential. Exteroceptive sensors can be used
to provide knowledge of the surrounding environment, but in complex environments,
for instance snow covered roads, rain and fog, the information may be insufficient.
This places higher demands on the accuracy of the current position information.

1.1 Background

Most car companies of today are developing self-driving vehicles but most of them
have not yet solved the problem how to navigate when the visibility of the road edges
are limited, for instance when there are no lane markings on the road. This can be
caused by many factors, in colder environment one cause can be snow which erases
lot of visible information. There are also many roads which are not as standardized
as car roads for instance bicycle paths which can have different or no lane markings
depending on which type of path it is.

Most autonomous vehicles today have not been tested in the snow according to
[5]. The tests have mostly been carried out in sunny environments. According to
Ford Motor Company the future of autonomous vehicles cannot depend on ideal
weather and lighting conditions since more than 70% of the US citizens lives in
snowy regions [6].

One possible way to determine the position of the vehicle is knowing the initial
position and from that position use dead reckoning from wheel encoders and an
Inertial Measurement Unit (IMU). In theory, this works well if all sensor inputs are
noise free. Since this is not the case this method will only work for small distances
since the noise from the sensors will accumulate and the error will grow over time.
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1. Introduction

There are many ways to locate a vehicle to get an absolute location. The first
and most common is GPS which is fitted to every smart phone and also in most
modern vehicles. GPS is a well developed system which works over the whole world
24 hours per day [7] with an accuracy of about 5 meters which is sufficient in most
cases. However when positioning vehicles for autonomous driving this accuracy is
not enough, it can not be more than 30-50 cm similar to the Differential Global
Positioning System (DGPS). The accuracy of the GPS can be greatly improved us-
ing two different methods, DGPS and Real Time Kinematics (RTK), both of these
systems utilises reference stations placed in the vicinity of the vehicle. With these
systems an accuracy of a few centimeters can be achieved, which is sufficient for au-
tonomous driving and also used for many projects in controlled environment. The
downside to this however is that these base stations have to be placed a few hundred
meters apart which is costly to implement in a large scale such as a whole city.

Autonomous vehicles today utilise camera to determine the local position and where
on the road the vehicle is. This is done by looking for lane markings in the road,
which is easy for the camera to detect, and some type of GPS for the global posi-
tioning. To be as efficient as possible most autonomous vehicles use some kind of
Simultaneous Localisation And Mapping (SLAM) algorithm which means that the
vehicle maps the environment at the same time as it locates itself. This is done by
fusing data from multiple sensors and a map of the environment which is updated
as the vehicle travels along its path.

There are many types of SLAM algorithms, the static approach utilises Kalman
Filters, Particle filters and matching of range data from for instance Light Detec-
tion And Ranging (LiDAR). The SLAM algorithms can be divided into two different
types [8], on-line and full SLAM. Filtering algorithms estimate the variables every
time step using only previous data, this is called on-line SLAM. Full SLAM, or
smoothing algorithms utilises the complete data set to estimate the variables.

1.2 Purpose and Scope of the Thesis
The goal of this thesis is to develop an algorithm for localisation of a vehicle in
conditions when the road surface, lane markings and curbs are not visible with a
similar accuracy as DGPS (30-50 cm). This will be done by using LiDAR, camera,
IMU and GPS. A 3D map from LiDAR measurements shall be created and used as
a baseline for comparison with feature matching from an image. The goal for the
system is to be able to run it in real time and since the LiDAR operates at 10 Hz
that is the goal for the algorithm.

The method proposed for localisation of a vehicle involves camera feature matching
together with LiDAR measurements in a 3D map fused together with GPS and IMU
using an Ensemble Kalman Filter (EnKF).

The purpose of this thesis is to test if the proposed solution for the localisation

2



1. Introduction

problem is feasible.

1.3 Delimitations

There is small amounts of data with camera, LiDAR and Inertial Measurement Unit
(IMU) for both snowy weather and and ideal weather conditions on the same road
and therefore the project is delimited to use open source data with almost ideal
weather conditions.

The project is delimited to only test and evaluate the algorithms in simulation en-
vironments due to the fact that there is no working prototype of the vehicle. There
is also no available similar vehicle with the correct sensor setup and with access to
all the data.

1.4 Method and Solution Overview

As mentioned, the goal of the thesis is to localise a vehicle in complex road condi-
tions. In this section the methods used to do this is briefly explained. Firstly, the
vehicle needs a couple of sensors: a camera, a LiDAR and a combined GNSS/INS
unit. Then a 3D map over the area of interest must be ground truthed in advance
of using the proposed algorithm.

Having the senors and the map, the vehicle triangulate its position in the point cloud
using ranges from the LiDAR to determine distances to points of interest. To get a
better and more reliable estimate of the position the output from the algorithm is
fused together with the a motion model of the vehicle and the input data from the
GNSS/INS unit.

1.5 Related Work

A. Y. Hata et al. [9] uses a 3D LiDAR to localise a vehicle in urban environment to
enhance the position from a Global Navigation Satellite System (GNSS). To do the
localisation, curbs and road signs are detected using LiDAR and are matched to a
pre built occupancy grid using Monte Carlo Localisation. To build the occupancy
grid a 3D LiDAR equipped to the car measures the distance to the curbs and signs
and place them in the occupancy grid using GNSS and RTK. This method gives a
absolute accuracy of about 0.2 meters

T. Caselitz et al. [10] proposed an algorithm for localisation using a monocular
camera and a pre build 3D map from LiDAR. The proposed algorithm uses visual
odometry that uses bundle adjustments to create a sparse set of 3D points which
are then aligned to the 3D map using Iterative Closest Point. To eliminate drift of
the visual odometry the local reconstruction is continuously aligned to the 3D map.

3



1. Introduction

Using this algorithm the resulting translational error is about 0.3 m.

J. Levinson et al. [11] proposed an localisation algorithm using GPS, IMU and
LiDAR to generate high-resolution environment maps. Offline relaxation is used to
align the maps at intersections. The map is then reduced to the flat road to remove
other vehicles from the map. To localise a moving vehicle in the map a particle
filter is used for matching the LiDAR measurements to the existing map. Using this
method Levinson et al. reaches an real time accuracy within 10 centimeters.

K. Jo et al. [12] presented a solution using Monte Carlo localisation of an au-
tonomous vehicle. The algorithm uses a GPS, a precise digital road map with lane
markings and multiple cameras. The cameras are used to match the current road
markings to the map and in that way localise the vehicle. The measurements from
the multiple cameras are then fused in a particle filter. The mean translational
accuracy of this algorithm is around 0.5 meters.

Ford [5] claims to drive autonomously in snowy conditions by creating high reso-
lution digital 3D maps. These maps are created from autonomous vehicles driving
in ideal weather conditions equipped with four LiDAR sensors which generates 2.8
millions laser points per second. These LiDAR maps are then used as a baseline for
the vehicle driving in snowy conditions to match with objects that are not covered
with snow. To handle snowflakes and raindrops Ford uses powerful sensors and an
algorithm to detect if the measurement is from a false reading or not.

All of the related works except the one from Ford uses the road and lane markings to
localise the vehicle. Ford uses LiDAR to match a prebuilt 3D map for its localisation.
The difference between these solutions and the proposed solution in this thesis is that
in this thesis the road and lane markings are excluded in the localisation algorithm.
The reason for this is for the algorithm to be able to work in complex weather and
road conditions for instance snow.

1.6 Thesis Layout
This thesis consists of four main parts excluding the introduction. The first part
describes the background theory used for the proposed solution. Next part is the
methods used to create the proposed algorithm. The result chapter presents the
results from experiments and tests of the algorithm. The thesis is wrapped up with
a discussion and conclusion.
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2
Background Theory

This chapter contains the background theory that is essential to understand the
methods used in this thesis. It describes the way positioning and orientation is
done with coordinate transformations. It also describes the different sensors used,
the way they work and how the sensor readings are fused together using Bayesian
filtering and Kalman filter.

2.1 Position and Orientation

A rigid body can be described in space if having the pose of its coordinate frame
with respect to a reference coordinate frame. The pose consists of the position of
the coordinate frame, which can be seen as a displacement from the reference frame,
and its orientation. The background theory presented in this section is obtained
from [13].

2.1.1 Representation in 2D

In Figure 2.1 the reference frame {W}, the body frame {B} and the relative pose of
the body frame with respect to the reference frame W ξB are depicted. The relative
pose is represented by the displacement (x, y) and the angle θ, that the coordinate
frame is rotated. A point P in 2D space can be described by the bounded vector

P = xx̂ + yŷ (2.1)

where (x, y) are the coordinates in a specific coordinate frame and x̂ and ŷ are unit
vectors parallel to the axes in the same coordinate frame.

5



2. Background Theory

Figure 2.1: The reference frame {W}, the body frame {B} and the relative pose
W ξB.

2.1.2 Representation in 3D
When representing the pose in three dimensions one more coordinate axis is intro-
duced, the z-axis, which is orthogonal to both the x-axis and y-axis. A point P in
3D space can then be described by the bounded vector

P = xx̂ + yŷ + zẑ (2.2)

where (x, y, z) are the coordinates in a specific coordinate frame and x̂, ŷ and ẑ are
unit vectors parallel to the axes in the same coordinate frame.

As for the 2D case the relative pose between two different reference frames can
be divided into two parts, the translation and the rotation. The translation in 3D
is a displacement by the coordinates (x, y, z), which is similar to the 2D case. The
orientation part in 3D is however much more complex than the orientation in 2D.
When rotating a reference frame in 2D we only consider rotation about the z-axis,
but for the 3D case we have to consider the rotation about all three axis.

2.1.2.1 Rotation matrix

According to Euler’s rotation theorem any rotation is a sequence of rotations around
different coordinate axes. Assuming that two vectors have the same origin, a vec-
tor defined with respect to a coordinate frame {B} can be rotated to a vector in
coordinate frame {W} by multiplying with the rotation matrix W RB, see Equation
(2.3). 

Wx
Wy
W z

 = W RB


Bx
By
Bz

 (2.3)

6



2. Background Theory

The columns of W RB is formed by the unit vectors of frame {B} projected on frame
{W}, hence the rotation matrix is orthonormal and has the following property.

Bx
By
Bz

 = (W RB)−1


Wx
Wy
W z

 = (W RB)T


Wx
Wy
W z

 = BRW


Wx
Wy
W z

 (2.4)

This means that the inverse is the same as the transpose and the rotated vector with
respect to frame {W} can be rotated back to frame {B} by multiplying with the
inverse of the rotation matrix W RB. The orthonormal rotation matrices for rotation
around the coordinate frame axes by angle θ are given bellow.

Rx(θ) =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 (2.5a)

Ry(θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 (2.5b)

Rz(θ) =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 (2.5c)

2.1.2.2 Pose matrix

As mentioned before the relative pose consists of a change in position and orienta-
tion. The orientation of a coordinate frame can be written as a linear combination
of its unit vectors and the orthogonal axes of the reference frame. The orientation
can then be combined with the translation to find the relative pose between the
coordinate frames. One of the most practical representation of the relative pose is
the 4 x 4 homogeneous transformation matrix

Wx
Wy
W z
1

 =
[

W RB t
01x3 1

] 
Bx
By
Bz
1

 (2.6)

where W RB is the orthonormal rotation matrix between the coordinate reference
frame {W} and frame {B} and t is the Cartesian translation vector between the
origin of the two coordinate frames.

2.2 Sensors
Sensors in its broadest definition is an electrical component for detecting changes in
the environment. There are many types of sensors for different purposes. Sensors
relative to this thesis are sensors that can detect motion, measure distances to the
environment and estimate the position in space.

7
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2.2.1 Light Detection And Ranging
Light Detection And Ranging (LiDAR) sensors work by sending out laser light
beams which bounces of the environment and return to the sensor, the Time of
Flight (TOF) is measured and by knowing the speed of light the distance to the
environment can be calculated. The advantage over many other ranging sensors is
that it can target a wide range of materials. LiDAR uses ultraviolet, visible or near
infrared light to image objects.

There are two main types of LiDAR sensors, high-functionality three dimensional
scanning LiDAR and low-functionality two dimensional scanning LiDAR. Velodyne’s
[14] high-functionality sensors uses multiple laser beams to detect the distance to
the environment. One example of this type is a Velodyne HDL-64E which has a
360° field of view, a rotation rate of between 5-20 Hz and 64 laser beams verti-
cally spaced with 0.4° between each beam. This gives roughly 2.2 million points
per second with an accuracy of less than 2 cm [15]. A scan from this sensor can
be seen in Figure 2.2. The low-functionality 2D sensors uses a single beam of light
which is rotated in one plane. This gives distance measurements in one plane. A
example of this type of sensor is the Sick LMS 151 [16] which has a 270 °field of view.

Figure 2.2: 3D map using Velodyne HDL-64E

2.2.2 Inertial Navigation System
An Inertial Navigation System (INS) consists of an Inertial Measurement Unit (IMU)
which is used to determine the orientation, heading and motion of the body. The
IMU consists of inertial sensors that measures acceleration, rotation and magnetic
field. The acceleration of the body is measured using linear accelerometers. An IMU
usually contains three accelerometers which are mounted perpendicular to each other
to measure accelerations in the X, Y, Z direction of the IMU [17]. Gyroscopes can
measure both rotational velocity and rotational angle. By knowing the acceleration
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and orientation of a body in space is it possible to calculate the relative position
from start and velocity by integrating the sensor values over time.

The INS can be based on many different technologies for instance Micro-Machined
Electromechanical System (MEMS) and Micro-Optical Machined Electromechani-
cal System (MOEMS). The most common technology is MEMS since the low price
and in recent development the accuracy of the MEMS Gyroscope is as good as 0.01
degrees per hour and the MEMS acceleromter is around 0.00981 m/s2 [17]. There
are four types of errors acting upon an INS: fixed and repeatable terms, temperature
induced variations, switch-on to switch-on variations, in-run variations. For instance
a bias which is predictable and the same every time the sensors is switched-on and is
therefore easy to compensate for. A temperature induced error is also easy to com-
pensate for using a predetermined calibration. A random bias which differs from
the switch-on to switch-on but stay the same during the whole run is a example of
switch-on to switch-on variations. A random bias which changes during the run is
different from sensor to sensor and is difficult to compensate for [17].

2.2.3 Global Navigation Satellite System
Global Navigation Satellite System (GNSS) is a navigation method based on satel-
lite signals sent from orbiting satellites. The signals from the satellites can be
interpreted to information about position, velocity and heading. The most com-
mon GNSS is NAVSTAR Global Positioning System (GPS) which is a space based
navigation system that works in all weather conditions which was developed by the
US. Department of Defence for military use, but later promoted for civil use [7].
There are other GNSS financed by other nations, GLONASS is Russias, COMPASS
is Chinas and the European Union has a GNSS called Galileo which is still under
development. GNSS uses satellites to determine the position and velocity of an
object which is done by measuring the time of flight for the broadcasted signals.
This technique is dependent on the internal clock of the receiver and the transmit-
ter which are never perfectly synchronised. To overcome this problem four or more
satellites are necessary to determine the three point coordinate and the clock error.

The difference between the different GNSS is the number of satellites, GPS have
24 satellites and manages to have global coverage. The GLONASS have 18 satel-
lites which is not enough to have global covreage. The Galileo project will have 27
satellites which will give global coverage and better accuracy at the polar regions
[18].

2.2.4 Camera
A camera is a light sensing device for capturing images. The name camera comes
from the word Camera Obscura which in Latin means dark chamber. The Camera
Obscura is a dark room with a small window which results in that the outside world
is projected on the wall opposite to the window. This is the basic function of the
simplest camera model called a pinhole camera which is a box with a small hole in
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one side and a photographic plate on the opposite wall. The cameras of today are
more sophisticated with multiple lenses and image sensors but it still using the basic
principle of the pinhole camera. Cameras have since the early 1970s been used in
computer vision, which is the visual perception of the outside world for a computer
[19]. There are many fields of application for computer vision today for instance
object recognition and object measurements.

Cameras have different parameters such as focal length f , image sensor size and
number of pixels in the sensor called camera intrinsic parameters. These properties
are important for computer vision to be able to determine distances in an image. The
image captured by a camera is calibrated using the parameters mentioned earlier by
a calibration matrix K, see equation (2.7), where px, py is the principal point which
is the center pixel of the image sensor and q is the size of the pixels.

K−1 =

1 0 −px

0 1 −py

0 0 f/q

 (2.7)

All image models assume that straight lines in the world are also straight lines in
an image which is not the case. With most camera lenses radial distortion occurs
and thus need to be compensated for. For compensation of radial distortion in
most lenses it is sufficient to use distortion models of low-order polynomials [19], see
equation (2.8) where xc, yc is the pixel coordinate after perspective division,

x̂c = xc(1 + k1r
2
c + k2r

4
c )

ŷc = yc(1 + k1r
2
c + k2r

4
c )

(2.8)

x̂c, x̂c is the pixel coordinate after distortion compensation, rc = x2
c + y2

c and k1, k2
is the so called radial distortion parameters. The difference between an image with
radial distortion and the same image after compensation for the radial distortion
can be seen in Figure 2.3.

(a) Raw image with distortion (b) Undistorted image after com-
pensation for radial distortion

Figure 2.3: Distorted and undistorted image from Point Grey Ladybug3 omnidi-
rectional camera.
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2.3 Camera features

Image features are used to find references in the environment. Image features are
small segments of pixels in the image that diverge a lot from their vicinity. The
features can for example be blobs, edges and corners whose pixels differs in colour
and intensity from their neighbourhood pixels. There are different image feature
detectors that can detect different kinds of features. In this section the features that
will be evaluated in the thesis are presented.

SIFT features - Scale Invariant Feature Transform. The SIFT feature detector is a
scale and rotation invariant algorithm. In the SIFT algorithm Difference of Gaus-
sians (DoG) are utilised to find image features. All the images are smoothed with
Gaussian filters in order to reduce the details in the images. The level of blurriness
is determined by the standard deviation σ in the Gaussian function. The smoothing
process is repeated using different standard deviations in order to compute the DoG.

DoG(x, y, σ) = I(x, y, kσ)− I(x, y, σ) (2.9)

where I(x, y, σi) is an image blurred by a Gaussian function with standard devia-
tion σ and k = 1, 2, ..., n where n is an arbitrary number. Local extrema are then
found by comparing each pixel with their eight neighbour pixels in the same DoG
and the nine neighbour pixels in the closest DoG levels. The local extrema are then
examined using a 3D quadratic fitting function to find the SIFT features. [20]

SURF features - Speeded Up Robust Features. The SURF algorithm is inspired by
the SIFT algorithm and the algorithms are build up with the same steps, however
the different steps are carried out differently. In the SIFT algorithm all the images
are smoothed with Gaussian filters while in the SURF algorithm all the images are
filtered with square-shaped filters as an approximation of Gaussian smoothing. This
makes the SURF algorithm much faster than the SIFT algorithm. [20]

Min Eigen Features - Minimum Eigenvalue Features. The MinEigen algorithm is
a method for detecting corner features. The algorithm calculates the eigenvalues of
a window in an image. Two small eigenvalues means that the intensity is roughly
the same in the image. Two large eigenvalues can represent a corner within the
window [21].

MSER - Maximally Stable Extremal Regions. The MSER regions are defined by
the extremal property of the intensity at the region and outer boundary. The re-
gions depend on the threshold for the intensity, and all pixels below a threshold in
the same area are grouped together to a MSER region, which can be described by
a feature descriptor [22]. Parameters can be set to choose max and min size of the
regions and the threshold of intensity can be changed.
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2.4 Map projection
A map projection is a way to convert latitude and longitude of a sphere into locations
on a plane. There are many ways to project the essentially spherical shape of the
earth onto a non-spherical paper. There is no way to do this without distortions [23].
It is very important for autonomous vehicles to be able to convert longitude and
latitude into meters since most of the other measurements from the other sensors
are given in meters. It is also of high importance that this conversion from latitude
and longitude is very accurate to get a good estimation of the vehicles position.

2.4.1 Mercator projection
Mercator projection was introduced in 1569 by Gerardus Mercator and is a so called
cylindrical projection and must be derived mathematically. The Mercator projection
is widely used for navigation purposes since any straight line in a Mercator projection
is a constant true bearing which enables easy navigation. However the Mercator
Projection is not great for projecting a map over the whole world since further away
from the equator the distances appears bigger than they are, for instance Greenland
appears bigger than South America [24]. In most web maps a projection called Web
Mercator projection or WGS84 is used since Google set the standard 2005 when
Google Map was released. The Web Mercator projection is based on the Cylindrical
Mercator projection but the big difference is that the Web Mercator projection uses
a spherical equation for the forward equations with an Earth radius of 6,378,137.0
m [25]. These maps are made for the user to be able to zoom and pan around the
map freely. Since it is a cylindrical projection it has the same issue as the standard
Mercator projection with scale distortion at the poles. In the web maps this is done
by adjusting the graphic scale bar as the user pans north or south [25].

2.5 Bayesian filtering
Bayesian filtering is used to estimate a state of a time-varying system which is ob-
served with different measurements. Here the Bayesian filtering equations and the
Kalman filter equations is going to be derived. The background theory presented in
this section is obtained from [26].

A system is often represented as a state space model where the noise is assumed to
be additive and Gaussian which means that it is normally distributed, in equation
(2.10) xk is the state at time k and yk is the measurement at the same time.

xk = f(xk−1, uk) + qk−1

yk = h(xk, uk) + rk

(2.10)

f and h is referred to as the motion model and the measurement model. uk is a
known input to the system, qk−1 is the noise of the motion and rk is the measure-
ment noise.
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For Bayesian filtering the state space is assumed to be a probabilistic state space
model which is a sequence of conditional probability distributions, see equation
(2.11) where xk is the state at time k and yk is the measurement at time k.

xk ∼ p(xk|xk−1, uk)
yk ∼ p(yk|xk)

(2.11)

p(xk|xk−1) is called the motion model and is the probability of the state xk given the
previous state xk−1. The p(yk|xk) is called the measurement model and is the proba-
bility of the measurement yk given the state xk. The state space model is Markovian
and the states are a Markov chains which means that all states xk, xk+1, ... given
xk−1 are independent.

Since the states are Markovian and using the State space model the joint prior
distribution for x0:T and the joint likelihood of the measurements y1:T is described
in equation (2.12).

p(x0:T ) = p(x0)
T∏

k=1
p(xk|xk−1, uk)

p(y1:T |x0:T ) =
T∏

k=1
p(yk|xk)

(2.12)

By applying Bayes’ Rule the posterior distribution for a given time instance T can
be calculated using equation (2.13).

p(x0:T |y1:T , u1:T ) = p(y1:T |x0:T , u1:T )p(x0:T )
p(y1:T , u1:T )

∝ p(y1:T |x0:T )p(x0:T , u1:T )
(2.13)

The problem of using Bayes’ Rule is that the number of computations increases
with every time step and will therefor only work for small datasets. To get around
this problem the Bayesian filtering equations is used which calculates the marginal
posterior distribution or the filtering distribution of the state given the history of
measurements. The Bayesian filtering equations are done in two steps, prediction
step and update step. The prediction step can be computed using the Chapman-
Kolmogorov equation:

p(xk|y1:k−1, u1:k) =
∫
p(xk|xk−1, u1:k)p(xk−1|y1:k−1, u1:k−1)dxk−1 (2.14)

The update step given the measurement is computed using Bayes’ Rule :

p(xk|y1:k) = 1
Zk

p(yk|xk)p(xk|y1:k−1, u1:k) (2.15)

where Zk is a normalisation constant and is given by the following equation

Zk =
∫
p(yk|xk)p(xk|y1:k−1, u1:k)dxk (2.16)
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2.5.1 Kalman Filter
Kalman Filter is a solution to a special case of the Bayesian filtering equations when
the model is Gaussian and linear. The linear state space is in equation (2.17).

xk = Ak−1xk−1 +Bk−1uk−1 + qk−1

yk = Hkxk +Dkuk + rk

(2.17)

As mentioned earlier the noise is assumed to be Gaussian additive with zero mean:

qk ∼ N (0, Q)
rk ∼ N (0, R)

(2.18)

The prediction step of the Kalman filter is described in the following equations

x̂k|k−1 = Ak−1xk−1|k−1 +Bkuk (2.19)

Pk|k−1 = Ak−1Pk−1|k−1A
T
k−1 +Qk−1 (2.20)

With the prediction calculated, the update step is calculated using the following five
equations where Kk is the Kalman gain, vk is the innovation and Sk is the innovation
covariance:

x̂k|k = x̂k|k−1 +Kkvk (2.21)

Pk|k = Pk|k−1 −KkSkK
T
k (2.22)

Kk = Pk|k−1H
T
k S
−1
k (2.23)

vk = yk −Hkx̂k|k−1 (2.24)

Sk = HkPk|k−1H
T
k +Rk (2.25)

2.5.2 Ensemble Kalman Filter
The Kalman Filter assumes that all part of the system is linear which often is not
the case. There are different ways to approach the problem, for example Extended
Kalman Filter (EKF) where the system is linearised at every iteration of the fil-
ter. This is computationally heavy since a Jacobian have to be calculated in each
iteration. To avoid this, a method called Ensemble Kalman Filter (EnKF) is used.
By sampling the errors of the prediction and update the EnKF gives a statistical
approximation to the EKF. The background theory presented in this section is gath-
ered from [27] and [28].
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The derivation of the EnKF is quite similar to the Kalman filter, firstly an initial
prior is made by generation ensembles of size N given the initial guess xb and η
which is N (0, B) where B is the covariance for the initial guess:

x̂0 = xb + η (2.26)

The prediction step of the EnKF consists of the motion model f(xk−1) and the
sample time ∆t and ζ is randomly drawn from N (0, Q) where Q is the motion
covariance, this is done for each ensemble j:

x̂jk|k−1 = f(xjk−1) +
√

∆tζ (2.27)

The update step is done by first calculate the Kalman gain:

K = PH(HPHT +R)−1 (2.28)

where R is the measurement covariance and PH and HPHT is approximated by:

PH = 1
N − 1

N∑
j=1

(xjk|k−1 − x)
(

N∑
j=1

(ŷjk|k−1 − y)
)T

HPHT = 1
N − 1

N∑
j=1

(ŷjk|k−1 − y)
(

N∑
j=1

(ŷjk|k−1 − y)
)T

(2.29)

Where ŷjk|k−1 is the measurement model and x, y is the mean of all the ensembles.
Using the Kalman gain the the update step is calculated using the following equation:

x̂jk|k = x̂jk|k−1 +K(yk + ε− ŷjk|k−1) (2.30)

where ε ∼ N (0, R) and R is the measurement covariance. The update step, x̂a
k|k,

gives a estimation for each ensemble and is calculated using the following equation:

x̂a
k|k = 1

N − 1
∑

x̂jk|k (2.31)
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3
Methods

In this chapter the methods used and the algorithm developed are described. The
chapter starts with a step by step explanation of the proposed algorithm. Following
that, an in depth explanation of each step in the algorithm is given. Finally the
experiments to test the algorithm are described.

3.1 Localisation System
The system proposed in this thesis is for localising a vehicle on a known road using
LiDAR and camera fused together with IMU and GPS, which is visualised in a flow
chart in Figure 3.1. For the algorithm to work a couple of sensors needs to be fitted
to a vehicle, a rotating 3D LiDAR with at least 60 beams, a forward looking camera
with wide field of view, a GPS and IMU unit. The distance and rotation between
the sensors have to be precisely measured and all measurements from the sensors
must be transformed into the same coordinate system.

Figure 3.1: Flow chart showing the localisation system from sensors to position
estimate

With the sensors on the vehicle and the sensor data translated to the correct frame
the first part of the algorithm is to build a ground truth map over the areas of
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interest, where the vehicle will be driving. This ground truth map consists of a 3D
point cloud from the LiDAR together with interest points, called features, from the
camera placed in the correct location in the 3D point cloud. This 3D map with
interest points is stored locally in the vehicle.

With the 3D map as a base for the localisation of the vehicle the GPS is used to
get a rough location of the vehicle which corresponds to a point in the 3D cloud.
To refine the position from the GPS the algorithm developed in this thesis is used.
The first step is to take a current LiDAR scan and an image from the camera at the
corresponding time to the LiDAR scan, the image is then rectified by the camera
calibration parameters and features are extracted. The LiDAR scan is then projected
onto the image to get a depth map in the image and the LiDAR measurements closest
to the features are stored for later use. The features from the current scan are
matched to the features stored in the ground truthed 3D point cloud. By combining
the known position of the features in the point cloud and the distances measured
in the current scan to the matched features, the vehicle position is triangulated. To
get an even more refined position the position estimate from the triangulation is
fused together with a motion model of the vehicle and the input from the INS unit.

3.2 Datasets

In this project three different open source data sets are used. One called KITTI
which is gathered by Karlsruhe Institute of Technology and Toyota Technological
Institute [1], one called Oxford Robotcar Dataset which is gathered by Oxford Uni-
versity [2] and one called Ford Campus Vision gathered by University of Michigan
and Ford Motor Company [3].

3.2.1 KITTI dataset
The KITTI data is gathered in a mid-sized town called Karlsruhe, Germany during
September 2011 by using a Volkswagen Passat station wagon 3.2 with a sensor
platform. The dataset contains both urban and suburbs environments. The sensor
setup used in the vehicle is listed below and can be seen in Figure 3.2 [1]:

• 2x PointGray Flea2 grayscale cameras [29] (FL2-14S3M-C), 1.4 Megapixels,
1/2” Sony ICX267 CCD, global shutter

• 2x PointGray Flea2 color cameras [30] (FL2-14S3C-C), 1.4 Megapixels, 1/2”
Sony ICX267 CCD, global shutter

• 4x Edmund Optics lenses, 4mm, opening angle ~90°, vertical opening angle of
region of interest (ROI) ~35°

• 1x Velodyne HDL-64E rotating 3D laser scanner [15], 10 Hz, 64 beams, 0.09
degree angular resolution, 2 cm distance accuracy, collecting ~1.3 million
points/second, field of view: 360°horizontal, 26.8°vertical, range: 120 m

• 1 × OXTS RT3003 inertial and GPS navigation system [31], 6 axis, 100 Hz,
L1/L2 RTK, resolution: 0.02m / 0.1°
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Figure 3.2: Volkswagen Passat with sensors (vehicle for collecting KITTI data).
Image from [1].

The incoming data from all sensors is stored by a PC with two six-core Intel XEON
X5650 processors and a shock-absorbed RAID 5 hard disk storage with a capacity
of 4 Terabytes. The PC runs a 64-bit Ubuntu Linux operating system and real-time
database. The placement of the sensors can be seen in Figure 3.3.

Figure 3.3: Sensor location for the KITTI dataset (Measurements in the figure are
approximate, the exact values are included in the development kit). Image from [1].

19



3. Methods

3.2.2 Oxford Robotcar dataset

The Oxford data is gathered in a period from May 2014 to December 2015 on a
route through the center of Oxford, England, twice a week. The vehicle used to
collect the data is the Oxford RobotCar platform which is an autonomous-capable
Nissan LEAF, see Figure 3.4, with the following sensors attached [2]:

• 1 x Point Grey Bumblebee XB3 [32] (BBX3-13S2C-38) trinocular stereo cam-
era, 1280 × 960 × 3, 16Hz, 1/3” Sony ICX445 CCD, global shutter, 3.8mm
lens, 66°HFoV, 12/24cm baseline

• 3 x Point Grey Grasshopper2 [33] (GS2-FW-14S5C-C) monocular camera,
1024 × 1024, 11.1Hz, 2/3” Sony ICX285 CCD, global shutter, 2.67mm fisheye
lens (Sunex DSL315B-650-F2.3), 180°HFoV

• 2 x SICK LMS-151 2D LIDAR [16], 270◦ FoV, 50Hz, 50m range, 0.5°resolution
• 1 x SICK LD-MRS 3D LIDAR [34], 85°HFoV, 3.2°VFoV, 4 planes, 12.5Hz,

50m range, 0.125°resolution
• 1 x NovAtel SPAN-CPT ALIGN inertial and GPS navigation system [35], 6

axis, 50Hz, GPS/GLONASS, dual antenna

Figure 3.4: Sensor locations and the RobotCar. Image from [2].

The sensor location and orientation can be seen in Figure 3.5. The data was logged
using a PC running Ubuntu Linux on two eigh-core Intel Xeon E5-2670 processors,
96GB quad-channel DDR3 memory and a RAID 0 (striped) array of eight 512GB
SSDs, for a total capacity of 4 terabytes [2].
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Figure 3.5: Sensor location for the Robotcar Platform (Measurements in the figure
are approximate, the exact values are included in the development kit). Image from
[2].

3.2.3 Ford dataset

The data from Ford Campus Vision is collected around Ford Research Campus and
downtown Dearborn, Michigan, during November-December 2009 using a modified
Ford F-250 pickup truck, see Figure 3.6, with the following sensors:

• 1x Velodyne HDL-64E rotating 3D laser scanner [15], 10 Hz, 64 beams, 0.09
degree angular resolution, 2 cm distance accuracy, collecting ~1.3 million
points/second, field of view: 360°horizontal, 26.8°vertical, range: 120 m

• 1x Point Grey Ladybug3 omnidirectional camera [36],1600×1200, 12 MP (2
MP x 6 sensors), Global shutter, 1/1.8" Sony ICX274

• 2x Riegl LMS-Q120 LiDAR, 80°FoV, 150m range, 0.2°resolution

• 1x Applanix POS-LV 420 INS with Trimble GPS [37], 6 axis, 1024-count wheel
encoder, 100Hz,

• 1x Xsens MTi-G [38], 6 axis, 100Hz
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Figure 3.6: Modified Ford F-250 pickup truck with the sensor rig attached. Image
from [3].

The location of each sensor can be seen in Figure 3.7. The data was collected using
four 2U quad-core processors mounted in the back of the pickup [3].

Figure 3.7: Sensor positions and orientation, image from [3],
(1)Velodyne , (2)Laydybug3, (3)Laydybug3 (Camera 5), (4, 5)Riegel,
(6)Body frame (actual location: center of rear axle),
(7)Local frame (Angle between X-axis and East is known)

22



3. Methods

3.2.4 Preparing data
The KITTI dataset is available in two different versions. One where the raw data
is given and one where KITTI have rectified and synced the data. The synced and
rectified data is used in this thesis which means that all the images are correlated
with a LiDAR scan and a set of IMU values and all the sensors are updated at 10
Hz. In the other two datasets the raw data is only provided which means that the
sensors are not synced. In this case the Unix timestamp for each sensor input is
given and have to be matched with each other. The Unix time stamp provided is in
microseconds and start from 1 Jan 1970.

As can be seen in Figure 3.3, 3.5 and 3.7 the sensors are mounted in different
locations and different directions in the vehicle. To be able to get correct readings
from all the sensors it is important to transform all values to the same location and
orientation in the car. Since the datasets are different, the coordinate frame that is
best to transform the sensors to is different for the datasets. For the KITTI dataset
it is most convenient to work in the body frame of the vehicle which coincides with
the position of the IMU. For the RobotCar dataset it is most convenient to use the
frame of the Bumblebee and in the Ford dataset it is most convenient to use the
Local Frame. The transformation of the sensors to the correct frame is done by
calculating the homogeneous transformation matrix. By multiplying the rotation
matrices from equation (2.5) as Rz(α)Ry(β)Rx(γ) where the angles are yaw, pitch
and roll represented as α, β, γ gives the complete rotation matrix R around the three
axis, see equation (3.1).

R =

cos γ cos β cos γ sin β sinα− cosα cos γ cos γ sin β cosα + sin γ sinα
cos β sin γ cos γ cosα + sin γ sin β sinα cosα sin γ sin β − cos γ sinα
− sin β cos β sinα cos β cosα


(3.1)

The translation of the sensors is described by a vector t of the distance, in X, Y, Z
coordinates, between the sensor that is going to be translated and the frame the
sensor is being translated into, see equation (3.2).

t =

XY
Z

 (3.2)

The rotation matrix and the translation vector is then combined into the homoge-
neous transformation matrix T by making the translation vector into homogeneous
coordinate, see equation (3.3).

T =


cos γ cos β cos γ sin β sinα− cosα cos γ cos γ sin β cosα + sin γ sinα X
cos β sin γ cos γ cosα + sin γ sin β sinα cosα sin γ sin β − cos γ sinα Y
− sin β cos β sinα cos β cosα Z

0 0 0 1


(3.3)
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3.3 Localisation

The localisation of the vehicle is done in steps, to first get a rough position which
then is refined. The first step is to use the GPS to get an absolute position in
longitude and latitude with an uncertainty radius. The area of interest is segmented
into smaller parts to gain better accuracy and the correct segment where the vehicle
is at the moment is selected by the position measurement from the GPS. All the
roads in the area of interest are previously ground truthed with LiDAR to create a
3D map and simultaneously the 3D map is mapped to a real wold map. To refine
the position from the GPS the 3D map is used as a reference which is matched using
camera and LiDAR. From this measurement the position is triangulated in order to
refine the position of the vehicle. The position from the GPS and the triangulated
position is fused together with motion measurements of the vehicle from the IMU
and the motion model using the Ensemble Kalman Filter (EnKF).

3.3.1 Map

Real world maps are available in different qualities in databases for example Open-
StreetMap or in Sweden, Nationella Vägdatabasen (NVDB). These maps are printed
in Mercator projection and are measured in degrees and minutes in longitudinal and
latitudinal direction which is the same as the coordinates given by the GPS. This
map is used to match the rough position of the vehicle in the world to the position
given by the GPS.

The reference 3D map is built in two ways depending on the type of LiDAR used.
In the KITTI and Ford dataset the Velodyne 3D LiDAR is used which gives a point
cloud with roughly 200.000 points per 360° revolution around the vehicle, see Fig-
ure 3.8a and 3.8b. In the RobotCar dataset a SICK LMS 151 is used, which is a
2D LiDAR that gives points in one plane that is perpendicular to the front of the
vehicle, see Figure 3.9a and 3.9b.
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(a) Top down view using Velodyne HDL-64E

(b) Side view using Velodyne HDL-64E

Figure 3.8: Single LiDAR scan with Velodyne HDL-64E 3D LiDAR
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(a) Top down view using Sick LMS 151

(b) Side view using Sick LMS 151

Figure 3.9: Single LiDAR scan with Sick LMS 151 2D LiDAR

To build the point cloud for the KITTI and Ford data, each scan from a ground
truth run is combined with the exact position of the vehicle at the corresponding
time. This gives an extremely dens point cloud(about 1 million points per second),
see Figure 3.10a. For the RobotCar dataset the approach is similar to the other
datasets but the resulting cloud is different in the way that is it much sparser and
have bigger shadow areas, see Figure 3.10b.
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(a) 3D map using Velodyne HDL-64E

(b) 3D map using Sick LMS 151

Figure 3.10: 3D maps created with Velodyne HDL-64E 3D and Sick LMS 151 2D
LiDAR

The LiDAR gives its measurements in meters for x, y, z coordinates and therefore
the points in the 3D map have distances measured in meters. To combine the 3D
map to the real world map it has to be transformed into meters from the Mercator
projection. Since the world is not a perfect sphere it is modeled as en ellipsoid to
get the correct ratio of objects anywhere in the world. The earth is a elliptical shape
which is described by the major and minor axis (R, r) which can be seen in equation
(3.5) and by knowing the longitudinal position λ, the x position mx in meters can
be derived from equation (3.4).

mx = R · λ · π180 (3.4)

where the values of R and r are
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R = 6378137
r = 6356752.3142

(3.5)

The y position my is more complicated to calculate since the radius of the ellipsoid
changes with the longitude ϕ and is given by equation (3.6). Eccentricity E is a
measure of the ratio between the semi-major axis and semi-minor axis, see equation
(3.7). For a ellipse the eccentricity is in the range of [0, 1] where zero is a special
case which represents a circle.

my = R ln
[

tan
(
π

4 + ϕ

2

)(1− E sinϕ
1 + E sinϕ

)E
2
]

(3.6)

E =
√

1−
(
r

R

)2
(3.7)

The Mercator projection in meter in latitude starts at the equator and gives a
positive measurement to the north and a negative to the south. In the longitudinal
direction the scale starts at zero degrees which is at time zone zero in Greenwich
Mean time.

3.3.2 Camera features
There are several techniques to distinguish points and features in an image as dis-
cussed earlier. The one used in this project is called Maximally Stable Extremal
Regions (MSER) which captures areas of intensity in an image. This is done using
the Matlab function called detectMSERFeatures [39] which returns MSER object.
The MSER are used in this thesis due to their stability in different lighting condi-
tions. The MSER descriptors and points in the image are extracted using the Matlab
function called extractFeatures [40] which takes the image and the MSER as in-
put and returns the feature descriptors and the position of the features in the image.

The LiDAR is used to get the distance to the features detected by the MSER algo-
rithm. To know which of the LiDAR measurement corresponds to the features in
the image the LiDAR measurements are projected onto the image, which is done by
multiplying the LiDAR X, Y, Z coordinates, which are transformed into the camera
frame, with the camera matrix K which converts the points into pixel coordinates
in x, y, z as follows:

pixels = K ∗

XY
Z

 (3.8)

Since images are two dimensional the z axis of the pixel coordinates is eliminated
by dividing x and y with z in equation (3.9) to get the pixel coordinates for each
LiDAR point u, v.

28



3. Methods

u = x

z

v = y

z

(3.9)

These LiDAR pixel coordinates are then matched to the position of the features
by finding the closest LiDAR pixel to the features which have to be within 5 pixels
from the feature position. The features are then positioned at the closest realX, Y, Z
LiDAR coordinate in the 3D point cloud.

3.3.3 Positioning in the map
With the ground truthed map over the area of interest the vehicle is able to position
itself using the camera and LiDAR. The camera and the LiDAR takes a snapshot at
the current moment and features are extracted from the camera image as described
in the previous section. The extracted features from the image are matched to all
features in the 3D point cloud. By knowing the positions of the features in the point
cloud and the distances from the vehicle to the features the location of the vehicle
is triangulated. The matching of the features is done by a Matlab function called
matchFeatures which takes two set of features and match them with a set threshold
returning the index of the matched features in the two sets.

3.3.4 Triangulation of estimated position
Each of the features from the camera have a known position in the 3D map. The
LiDAR gives each measurement in XYZ coordinates in the vehicles frame. To es-
timate the position in the map frame the point from the feature points have to be
transformed. The transformation is done by rotating the car frame into the map
frame and then calculate the position from the distance measurements. The normal
vectors of a coordinate system can be described by:

ex =
[
a
b

]
(3.10)

ey =
[
−b
a

]
(3.11)

The Equation for the position of the vehicle, X and Y can be seen in Equation
(3.12), where ∆x and ∆y are the measurement in X and Y coordinates from the
LiDAR, x1 and y1 is the position in the map where the LiDAR measured to.

(X, Y ) + (
[
∆x ∆y

]
ex,

[
∆x ∆y

]
ey) = (x1, y1) (3.12)

Since there are four unknown variables in Equation (3.12) two measurements from
the LiDAR is needed to calculate the position of the vehicle which is described in
Equation (3.13).
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

y1 = ∆y1a−∆x1b + y

y2 = ∆y2a−∆x2b + y

x1 = ∆x1a+ ∆y1b+ x

x2 = ∆x2 + ∆y2b + x

(3.13)

The equation system above can be rewritten into state space form which can be seen
in Equation (3.14) to Equation (3.16).

A =


1 0 ∆x1 ∆y1
0 1 ∆y1 −∆x1
1 0 ∆x2 ∆y2
0 1 ∆y2 −∆x2

 (3.14)

X =


x
y
a
b

 (3.15)

B =


x1
y1
x2
y2

 (3.16)

Equation (3.17) solves the equation system which gives the position of the car. An
illustration of the triangulation can be seen in Figure 3.11

X = A−1B. (3.17)

Figure 3.11: Triangulation of the vehicles pose using two feature points
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To get a good estimate of the position and remove any false readings, all of the
matched LiDAR measurements are randomly selected in pairs and calculated to a
position estimate. These positions are then sorted in x and y respectively from
low to high. Coordinates which are not within a set distance from the previous
set position are removed. The remaining points are then clustered together within
the closest meter from the previous position. If this cluster contains less than five
measurements, more measurements from the sorted list are taken into the cluster
if they are within 2 meters from the previous position. After the cluster is set the
mean value of the cluster is calculated which gives the estimated position.

3.4 Sensor Fusion
Ensemble Kalman Filter is used to fuse the triangulated position estimates from
LiDAR and camera, described in Section 3.3.4, with GNSS and INS data. The
three datasets are collected with different sensor setups and therefore the sensor data
process is not the same for all datasets. In this section the motion and measurement
models and the sensor data process for each datasets are presented.

3.4.1 KITTI dataset
The states in the Kalman filter can be chosen in many different ways resulting in
varying complexity and performance. In order to find a good balance between model
complexity and performance, the following states are chosen for the KITTI dataset.

x = [X Y vx vy ax ay ψ ψ̇]T (3.18)
where X and Y are the vehicle positions in the local coordinate frame {L}, see
Figure 3.12. vx, vy, ax and ay are the velocities and accelerations in the vehicle
body coordinate frame {B}. ψ is the vehicle heading (yaw) angle and ψ̇ the yaw
rate.

Figure 3.12: The vehicle and its body coordinate frame {B} depict in the local
coordinate frame {L} for KITTI dataset.
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The velocities and accelerations from the INS are measured in the vehicle body
frame, see Figure 3.12, resulting in the motion model in equation (3.19) for the
kinematic relations between the states [41]. The motion model describes the rela-
tion between the estimated states in current time step and the estimated states in
previous time step.

xk =



Xk−1 + cosψ(vxk−1Ts + axk−1T
2
s /2)− sinψ(vxk−1ψ̇k−1T

2
s /2 + 2axk−1ψ̇xk−1T

3
s /6)

Yk−1 + sinψ(vxk−1Ts + axk−1T
2
s /2) + cosψ(vxk−1ψ̇k−1T

2
s /2 + 2axk−1ψ̇xk−1T

3
s /6)

vxk−1 + axk−1Ts

vyk−1 + ayk−1Ts

axk−1 + jxk−1Ts

ayk−1 + jyk−1Ts

ψk−1 + sign(vxk−1)ψ̇k−1Ts

ψ̇k−1 + ψ̈k−1Ts


(3.19)

The subscript k defines current time step and k−1 defines previous time step. jxk−1

and jyk−1 are the jerk and ψ̈k−1 is the yaw acceleration. These states are noisy states
and are included in the motion noise qk−1, see equation (2.10). As can be seen in the
motion model the motion equations for three states are nonlinear. Therefore using
EnKF is prefered due to the computional time advantages and to get a as short as
possible computational time for the complete localisation system. The measurement
model describes the relation between the sensor measurements and the states. All
the states can be directly measured by the GNSS and INS except the accelerations.
Therefore the measurement vector is defined as

z = [X Y vx vy accx accy ψ ψ̇]T (3.20)

where the states X, Y vx, vy, ψ and ψ̇ are measured by the GNSS and INS. Note
that accx and accy are the accelerometer measurements and not the acceleration
states. By assuming that the INS is located at the center of mass of the vehicle and
the fact that velocity in the z-axis is not included in the state vector, accx and accy

can be formulated as functions of the states as in the following measurement model.
[42]

zk =



Xk

Yk

vxk

vyk

axk
− ψ̇kvyk

ayk
+ ψ̇kvxk

ψk

ψ̇k


+ rk (3.21)

where rk is the measurement noise, see equation (2.10).
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3.4.2 Ford dataset
As in the KITTI dataset the GNSS and INS used in the Ford dataset can measure
all the states directly except the accelerations and consequently it is beneficial to
choose the same state vector which is given in equation (3.18) above. The difference
is that the measurements of the velocities and accelerations are transformed into
the local coordinate frame {L}, see Figure 3.13, and are not in the vehicle body
frame {B} as in the KITTI dataset, resulting in the motion model given in equation
(3.22).

Figure 3.13: The vehicle and its body coordinate frame {B} depict in the local
coordinate frame {L} for Ford and Oxford dataset.

xk =



Xk−1 + vxk−1Ts

Yk−1 + vyk−1Ts

vxk−1 + axk−1Ts

vyk−1 + ayk−1Ts

axk−1 + jxk−1Ts

ayk−1 + jyk−1Ts

ψk−1 + sign(vxk−1)ψ̇k−1Ts

ψ̇k−1 + ψ̈k−1Ts


(3.22)

The subscript k defines current time step and k − 1 defines previous time step.
jxk−1 and jyk−1 are the jerk and ψ̈k−1 is the yaw acceleration. These states are
noisy states and are included in the motion noise qk−1, see equation (2.10). Due
to that the measurements of the velocities and accelerations are given in the local
coordinate frame there are none nonlinearities in the motion model except for one
state. In real world scenarios the velocities and accelerations are transformed and
are given in the body frame which would yield more nonlinearities, as for the KITTI
datasets. Therefore the EnKF is used also for this dataset. The fact that the
velocity and acceleration measurements are given in the local frame does not affect
the measurement model, hence the measurement vector and measurement model for
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the Ford dataset are formulated in the same way as for the KITTI dataset and are
given in equation (3.20) and equation (3.21) respectively.

3.4.3 Oxford Robotcar dataset
The INS that is used in the Oxford dataset does not measure acceleration and yaw
acceleration. Therefore the state vector is reduced to five states by removing the
acceleration states and the yaw rate state, which gives the following state vector.

x = [X Y vx vy ψ]T (3.23)

The velocities are in the same way as for the Ford dataset transformed into the local
frame, see Figure 3.13. Hence the motion model for the Ford dataset can be used
for the Oxford dataset but reduced.

xk =



Xk−1 + vxk−1Ts

Yk−1 + vyk−1Ts

vxk−1 + axk−1Ts

vyk−1 + ayk−1Ts

ψk−1 + sign(vxk−1)ψ̇k−1Ts

ψ̇k−1 + ψ̈k−1Ts


(3.24)

where axk−1 and ayk−1 are the acceleration states considered as noise states and are
included in the motion noise qk−1, see equation (2.10). As for the Ford dataset
there is only one nonlinearity in this motion model. But as mentioned before the
transformation of the velocities are not done in real world scenarios and therefore
the EnKF is used for this dataset as well. All the states can be directly measured
by the GNSS and INS and the measurement vector and measurement model can be
formulated as follows.

z = [X Y vx vy ψ]T (3.25)

zk =


Xk

Yk

vxk

vyk

ψk

+ rk (3.26)

where rk is the measurement noise, see equation (2.10).

3.5 Evaluation, Testing and Experiments
To test the accuracy and performance of the proposed algorithm and verify the
functionality a couple of tests is derived. Firstly the algorithm is tested for the
translational accuracy by using 50-100 meters of data from each dataset and com-
paring the algorithm’s estimated position with the true position of the vehicle. The
RobotCar dataset is the only one of the three datasets which contains any snow
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data and is therefore going to be used for testing the performance and translational
accuracy in snowy environment.

3.5.1 Performance
Performance tests on the translational accuracy is going to be tested for all three
datasets over a distance of about 50-100 meters depending on the usable data in
each dataset. The first test is carried out with the proposed algorithm, GPS and
IMU fused together in the EnKF. The second test is conducted with GPS only to get
a comparison between GPS and the proposed system. The third test is conducted
using the proposed algorithm, IMU and GPS but with loss of GPS in one part of
the trajectory.

In the KITTI dataset there is only one logged dataset of each road which means
that ground truthing is done on the same dataset as the algorithm runs on. To
make the data set as realistic as possible, as if it was one ground truth dataset and
another dataset that is used for testing, the ground truth map is built in one version
for each frame in the algorithm. In each of these versions of the ground truth map
the current frame in the algorithm is removed from the map and the image features
from that frame is also removed. In the Ford Campus Vision dataset the logged
data is from one run where the vehicle travels the same road for about 50 meters.
Therefore this data set is split into two, the first part is used to build the ground
truth map and the second part is used for testing the algorithm. In the RobotCar
dataset the same road is logged twice a week during one year. As mentioned earlier
this is the only data which have both ideal and snowy condition on the same road.
A dataset with ideal weather is used to build the ground truth map and the dataset
with snowy weather is used for testing the algorithm.

3.5.2 Speed versus Performance
One of the goals with the thesis is to be able to use the system in real time. There-
fore experiments on performance compared to computational speed is going to be
carried out. There are three main factors that affects the speed and performance of
the system, how often the camera LiDAR algorithm is running, number of ensem-
bles in the EnKF and different types of image features. The time of each iteration
is going to be calculated by dividing the total time of a run with the number of
estimates in that run. The tests are performed in Matlab which is quite slow since
it is not a compiled programming language. A comparison of computational speed
in Matlab and C++ was presented by T. Andrews [43] where Andrews claims that
C++ is 500 times faster than Matlab for all types of Matlab code.

In the EnKF the different inputs does not have to have the same frequency, which
provides a test of the performance versus speed of how often the camera and LiDAR
algorithm are used. The number of ensembles in the EnKF will be tested in the
difference of performance versus speed. As mentioned earlier there are many different
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image features and the performance compared to the computational speed of SURF,
MSER and Min Eigen Values is going to be evaluated.
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4
Results

In this chapter the results from the tests and the experiments described in Section
3.5 is going to be presented. The chapter is divided into three sections. In the first
section the test environment for all datasets will be presented. The second section
the result from the performance tests are presented. And the last chapter contains
the results from the performance versus speed tests for all datasets.

4.1 Test environment

As mentioned in Section 3.5 the system is tested on three datasets which are in
three different locations. The parts of the data selected in each dataset is to test
different aspects of the system. All the tests and experiments is done using the same
computer with the following specifications:

Make Dell
Model XPS13 infinity
Operating system Windows 10 Home 64-bit
Processor I7-550U, 2.4 GHz, Dual Core
RAM 8 GB, DDR3L
Graphic processor Intel HD Graphics 5500

Table 4.1: Specifications of computer used for testing and experiments

The KITTI dataset is logged in Karlsruhe, Germany. The data used in the testing
from KITTI is in a single lane road in a residential area where there are buildings
and walls on each side of the vehicle, an image from the middle of the test sequence
can be seen in Figure 4.1a. The trajectory of the test sequence in a real world map
can be seen in Figure 4.1b.
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(a) Image showing the environment in the KITTI dataset

(b) Trajectory in real world map. Location: Wolfweg, Karlsruhe, Germany

Figure 4.1: Image from the camera and trajectory for KITTI data
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In Figure 4.2 the same trajectory is plotted but now in the 3D map of the environ-
ment.

Figure 4.2: Top-down view of trajectory in the 3D map for KITTI dataset.

The RobotCar dataset is logged during a full year on the same route. The data
selected from this data set is to test the performance of the algorithm in snowy
conditions which only is available on a very limited part of the road which is in a
parking area in the center of Oxford. The amount of snow coverage on this piece of
road is estimated to be 3 cm which can be seen in Figure 4.3a and the trajectory
of the vehicle in a real world map can be seen in Figure 4.3b. In Figure 4.4 the
trajectory is plotted in the 3D map.
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(a) Image showing the environment in the RobotCar dataset

(b) Trajectory in real world map. Location: Keble College Acland Site,
Oxford, England

Figure 4.3: Camera image and trajectory for RobotCar data
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Figure 4.4: Top-down view of trajectory in the 3D map for The RobotCar dataset.
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The Ford Campus Vision dataset is logged around the Ford Research Campus in
Dearborn, Michigan which is a dual carriageway in an open industrial estate which
can be seen in Figure 4.5a and the trajectory in a real world map can be seen in
Figure 4.5b. From this dataset the algorithm is tested on how it performs when
there is a long distance to the closest points of interest.

(a) Image showing the environment in the Ford Campus Vision
dataset

(b) Test trajectory in real world map. Location: Village RD, Dear-
born, Michigan, USA

Figure 4.5: Camera image and trajectory for Ford Campus Vision data
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In Figure 4.6 the trajectory is plotted in the 3D map of the environment.

Figure 4.6: Top-down view of trajectory in the 3D map for Ford Campus Vision
dataset.

4.2 Performance

As mentioned in Section 3.5.1 three different tests are going to be performed, the
first using the complete system with the algorithm, IMU and GPS, the second using
only GPS for localisation and the third using the complete system and simulated
loss of GPS signal. The result for the three tests is going to presented for each
dataset consecutively.

4.2.1 KITTI dataset

The first test is using the LiDAR and Camera algorithm, IMU and GPS. Figure 4.7
shows the true positions and the estimated positions from the localisation system
for the entire run. It can be seen that the estimated positions, blue line, follows the
true positions, red line, with some small deviations.
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Figure 4.7: True position and estimated position for KITTI dataset

More details about the small deviations can be seen in Figure 4.8 where the absolute
mean translational error for the complete algorithm are shown. The mean error
is less than 0.3 m for all the parts of the trajectory except from one peak in x-
coordinate.

Figure 4.8: Absolute mean transalational error in x and y coordinates for the
complete system for the KITTI dataset
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The second test uses only GPS for the localisation on the same trajectory as test
one. The result is visualised in Figure 4.9 showing a graph of the translational mean
error distributed along the trajectory in x and y direction. The error in this test is
around 1 m including some peaks.

Figure 4.9: Absolute mean translational error in x and y coordinates using only
GPS for the KITTI dataset
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The third test uses the full system but loss of GPS signal is simulated between 40%
and 55% of the trajectory. The result of this can be seen in Figure 4.10 and the
error is quite the same as the result without loss of GPS signal. The mean error is
around 0.3 m with some peaks.

Figure 4.10: Absolute mean translational error in x and y coordinates for the
complete system with loss of GPS signal between 40% and 55% of the trajectory for
the KITTI dataset
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4.2.2 RobotCar dataset

The first test is using the localisation system and the true positions together with
the estimated positions are shown in Figure 4.7. The estimated positions follows
the true positions with deviations.

Figure 4.11: True position and estimated position for RobotCar dataset

The amplitude of the deviations for the whole trajectory can be seen in Figure 4.12
where the absolute mean error distributed along the trajectory in x and y direction
are shown. The error is around 0.5 m but have a peak 1 m peak in x direction at
the end of the trajectory.
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Figure 4.12: Absolute mean translational error in x and y coordinates for the
complete system using RobotCar dataset

As for the KITTI dataset the second test uses only GPS for the localisation on the
same trajectory. The result can be seen in Figure 4.13 where the mean is around 1
m for all parts of the trajectory.

Figure 4.13: Absolute mean translational error in x and y coordinates using only
GPS for the RobotCar dataset
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The third test uses the full system but loss of GPS signal is simulated between 20%
and 40% of the trajectory, the result of this can be seen in Figure 4.14. Also for this
dataset the result from the localisation system are quite the same with and without
simulated GPS loss.

Figure 4.14: Absolute mean translational error in x and y coordinates for the
complete system with loss of GPS signal between 20% and 40% of the trajectory for
the RobotCar dataset

49



4. Results

4.2.3 Ford Campus Vision dataset

The tests of the Ford Campus Vision dataset follows the same structure as the tests
of the two dataset before and is going to be presented in the same way with graphs.
The graphs in Figure 4.15 shows the the true positions together with the estimated
positions using the complete system.

Figure 4.15: True position and estimated position for Ford Campus Vision dataset

The absolute mean translational error in x and y direction for this test can be seen
in Figure 4.16. The error is around 0.4 m but have some peaks in different parts of
the trajectory.
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Figure 4.16: Absolute mean translational error in x and y coordinates for the
complete system using Ford Campus Vision dataset

Only GPS is used for localisation in the second test. The error distributed along the
trajectory is shown in Figure 4.17. The mean error is greater than 1.3 m in both x
and y directions including some peaks up to 3 m.

Figure 4.17: Absolute mean translational error in x and y coordinates using only
GPS for the Ford Campus Vision dataset
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The last test uses the full system but loss of GPS signal is simulated between 43%
and 57% of the trajectory, the result of this can be seen in Figure 4.18. The mean
error in the x direction is around 0.4 m which is less than the mean error in y
direction, where the error is around 0.5 m including peaks up to 1 m.

Figure 4.18: Absolute mean translational error in x and y coordinates for the
complete system with loss of GPS signal between 43% and 57% of the trajectory for
the Ford Campus Vision dataset

4.3 Performance versus Speed
As describes in Section 3.5.2 three tests of performance compered to computational
speed is performed on the Ford Campus Vision dataset. The first experiment tests
how the computational time and performance changes when decreasing the frequency
of the triangulation algorithm to the EnKF. The performance of the three tests is
measured in mean translational error and number of samples in percent over the
threshold 0.5 meter. The results from the first experiment is shown in Table 4.2.

Algorithm frequency Every Every other Every third
Mean error X [m] 0.42 0.45 0.67
Mean error Y [m] 0.54 0.58 0.86

Over threshold X [%] 32.9 38.3 50.7
Over threshold Y [%] 43.4 47.6 48.8
Time per sample [s] 0.5 0.25 0.17

Table 4.2: Table showing mean performance versus computational time over three
runs with different frequency of triangulation algorithm
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The second test compares the performance and speed by changing the number of
ensembles in the EnKF. The result from this experiment can be seen in Table 4.3.

Number of Ensembles 10 50 100
Mean error X [m] 0.46 0.43 0.42
Mean error Y [m] 0.79 0.57 0.59

Over threshold X [%] 33.8 36.9 32.6
Over threshold Y [%] 59.9 48.4 45.8
Time per sample [s] 0.55 0.53 0.53

Table 4.3: Table showing mean performance versus computational time over three
runs with 10, 50 and 100 ensembles in the EnKF.

In the third test three different types of image features have been tested for perfor-
mance and speed. The results from this experiment is presented in Table 4.4.

Image Feature type MSER SURF Eigen Values
Mean error X [m] 0.42 0.41 0.53
Mean error Y [m] 0.54 0.57 0.60

Over threshold X [%] 46.7 28.6 42.5
Over threshold Y [%] 61.7 46.2 48.1
Time per sample [s] 0.5 0.43 4.68

Table 4.4: Table showing mean performance versus computational time over three
runs with MSER, SURF and Eigen Value image features
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5
Discussion and Future Work

The overall results of the proposed algorithm looks promising regarding the limited
data used for testing and evaluation. As can be seen for both the KITTI and Ford
Campus Vision dataset the complete system gives better accuracy than the GPS
alone. Something that is not showed in the result is that the GPS might perform
with lower accuracy in cities with tall buildings where the GPS signal might be
blocked. From the results when GPS loss is simulated it can be concluded that the
algorithm wold be helpful in cities when the GPS looses signal.

As can be seen in the results from the KITTI dataset in Section 4.2.1 the system with
the complete algorithm performs better than using only GPS. The same trend and
results can be seen for the Ford Campus Vision dataset which means that the algo-
rithm helps in estimating the position of the vehicle. The results from the RobotCar
data also shows a improvement compared to only using the GPS but it does not
give as good results as the other two datasets, the reason for this is discussed in
Section 5.2. An advantage with the proposed algorithm, except from the improved
accuracy, is that it gives an absolute estimate of the position which is not prone to
drift like the INS.

As can be seen from the experiments, different parameters have a big impact on
both the performance and the computational speed. In Table 4.2 both the mean
error and the number values above the threshold increases when the algorithm is
used less frequently but the time it takes to calculate each sample decreases a lot.
In Table 4.3 there is not much difference between the the number of ensembles even
though a slight trend can be seen where the accuracy increases with the number
of ensembles. From the experiments with different features in Table 4.4 it is more
difficult to clearly see which of the features is the most robust since they are quite
different. The Eigen Values have the highest mean value but a small percentage of
values over the threshold, this is due to that the Eigen Value function creates very
many points and some are far way off. The MSER on the other hand produces much
fewer points but they are more stable. The SIFT features are somewhere in between
the MSER and the Eigen Values. The different features are good in different situ-
ations depending on the environment. It is also worth mentioning that the Eigen
Values are much slower than the other two features which is due to the number of
points produced.

All the speed measurements in the experiments are from Matlab which means that
they are much slower than they would be in C++. As mentioned in Section 3.5.2
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C++ code is 500 times faster than Matlab code which means that all of the times
in the experiments would meet the 10Hz goal. The Eigen Value features which are
the slowest can run at a rate of 10.8 Hz which just meets the goal, but in a real
autonomous vehicle the algorithm have to be faster to allow other functions like,
navigation, collision avoidance etc. to run within the 10 Hz specification.

5.1 Features

The feature detection used in this thesis is not that robust in varying light conditions
which decreases the chances of good feature matching between the ground truthed
point cloud and the current image, which results in lower accuracy of the position
estimation. Since features from the image is extracted using Matlab the control over
the features selected is poor which means that extracted features might be unusable.
To get a better accuracy from the triangulation algorithm these features needs to
be controlled in a way that they can be seen in all lighting conditions and that they
land on good objects that will be there the next time the vehicle passes the same
place.

Another problem with the features used is that they detects areas of intensity or
corner points which may be very similar if there are identical lamp posts along a
road which can give a false reading if the algorithm matches features from two dif-
ferent lamp posts. This creates problems in the Ford Campus Vision dataset where
there are identical lamp posts on both sides of the road every ten meters.

To improve this the features need to be selected more carefully, for instance by
finding structures like edges of building walls in the image. There are also a lot of
universities working with finding more robust features that will be more reliable in
different lighting conditions.

The Ford Campus Vision has a omnidirectional camera which means that the cam-
era have a 360°vision. To extend the current algorithm, these images could be used
for triangulation as well to get a better estimate of the position, and by doing this
the algorithm will work much better when driving the opposite direction from the
built point cloud. By increasing the number of images used for each estimation the
accuracy should increase.

Another issue related to the features is when the projected LiDAR points in the
image are matched to the features by finding the closest projected LiDAR point to
the feature. If the feature is on the edge of a lamp post for instance the closest
projected LiDAR might not be on the lamp post but instead measures the distance
to the background, the triangulation is going to be very inaccurate.
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5.2 Light Detection And Ranging

A source of error in the system is the projection of the LiDAR measurements into
a image. The precision of this is extremely important for the algorithm to work
properly, which can be hard to achieve without a extremely accurate calibration of
the camera.

In the RobotCar data as mentioned earlier there are many shadow areas in the 3D
point cloud which creates problems for the algorithm since the image features may
be in the shadow area of the LiDAR and is therefor unusable which means that
fewer features are used to triangulate the position of the vehicle, this leads to a less
accurate estimation of the position of the vehicle.

5.3 Datasets

Two of the datasets, KITTI and Ford Campus Vision, used in the thesis have worked
well since they use the same type of sensor setup as required for the algorithm to
work properly. The drawback of the open source data is that they do not have the
data we need to evaluate the algorithm during the correct conditions. This have
restricted the testing and evaluation since it can not be stated that the algorithm
works in complex road conditions.

The RobotCar dataset have some more issues than the other two datasets since the
RobotCar are only equipped with a 2D LiDAR which means that for each frame
in the algorithm a point cloud have to be built up from previous and future states
which is very time consuming and also impossible in real world testing since the
future states are unknown.

In the open source data they do not provide any exact ground truth data for the
position of the vehicle, using for instance RTK, which is needed for the construction
of the point cloud. Without this exact ground truth position the point cloud might
not be a hundred percent accurate which decreases the performance of the proposed
algorithm.

To get a better understanding for how accurate the proposed system actually is and
how well it works in different complex road conditions a test vehicle is needed where
the needed data can be logged with the correct sensors.

5.4 Future work

The LiDAR sensor is very expensive and therefore it would be good if in the future
the proposed algorithm could work using only camera, INS and GPS. One possible
way to do this is by creating the point cloud with the camera. This can be achieved
by using something called Structure From Motion which basically takes points in
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one image and track these points to a consecutive image. By knowing the calibra-
tion of the camera and the position of the points in the two images, 3D points can
be triangulated. The position of the camera for each image can also be calculated.
The main issue that have to be solved is to get a dens enough point cloud. For
this algorithm to work a stereo camera, which is two cameras mounted beside each
other, is needed to be able to triangulate points in the same time step.

In further development of the thesis it would be interesting to test different types
of Gaussian filters. There are two filters that are the most interesting, an Extended
Kalman Filter and a Particle filter. By using the particle filter it would be possible
to use all measurements from the triangulation without the selection algorithm. The
reason why it would be interesting to try different filters is because the EnKF is a
fast but not that sophisticated as many other filters which could possibly yield a
better result.
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6
Conclusion

To conclude this thesis an algorithm using LiDAR and camera to localise a vehicle
in complex road conditions was developed. The goal for the localisation system is
to have a accuracy of about 30 to 50 centimeters. The system should also be able to
run in real time and therefore a goal of 10 Hz was set. The algorithm uses a ground
truth 3D map as a baseline for triangulating the current position of the vehicle.
This estimated position is then fused together with measurements from a GPS and
an IMU in an EnKF.

It is proven that the concept of localising a autonomous vehicle using camera and
LiDAR to triangulate the position works with good accuracy. It is also shown that
the result from triangulation can be improved by using an Ensemble Kalman Filter
to fuse the data from the triangulation, INS and GNSS. The performance of the
system in snowy conditions can not be fully tested due to the small amount of snow
data and the small amount of snow in this dataset. However the mean translational
accuracy from the complete system on the test data is around 0.4 meters which
is within the set goal for the thesis even though there are some peaks over 0.5
meters. Over all the proposed system looks promising both with the accuracy and
the computational time.
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